WO2011013516A1 - 内歯車加工方法およびそれに使用する工具のドレス方法 - Google Patents

内歯車加工方法およびそれに使用する工具のドレス方法 Download PDF

Info

Publication number
WO2011013516A1
WO2011013516A1 PCT/JP2010/061936 JP2010061936W WO2011013516A1 WO 2011013516 A1 WO2011013516 A1 WO 2011013516A1 JP 2010061936 W JP2010061936 W JP 2010061936W WO 2011013516 A1 WO2011013516 A1 WO 2011013516A1
Authority
WO
WIPO (PCT)
Prior art keywords
dressing
tool
grindstone
threaded
screw
Prior art date
Application number
PCT/JP2010/061936
Other languages
English (en)
French (fr)
Inventor
吉言 ▲柳▼瀬
政志 越智
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/387,260 priority Critical patent/US9278398B2/en
Priority to EP10804262.3A priority patent/EP2460625B1/en
Priority to KR1020127002012A priority patent/KR101406429B1/ko
Priority to BR112012001626A priority patent/BR112012001626A2/pt
Priority to CN201080032296.5A priority patent/CN102470507B/zh
Publication of WO2011013516A1 publication Critical patent/WO2011013516A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F23/00Accessories or equipment combined with or arranged in, or specially designed to form part of, gear-cutting machines
    • B23F23/12Other devices, e.g. tool holders; Checking devices for controlling workpieces in machines for manufacturing gear teeth
    • B23F23/1225Arrangements of abrasive wheel dressing devices on gear-cutting machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F5/00Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made
    • B23F5/02Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by grinding
    • B23F5/04Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by grinding the tool being a grinding worm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/06Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels
    • B24B53/075Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels for workpieces having a grooved profile, e.g. gears, splined shafts, threads, worms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/06Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels
    • B24B53/08Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels controlled by information means, e.g. patterns, templets, punched tapes or the like
    • B24B53/085Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels controlled by information means, e.g. patterns, templets, punched tapes or the like for workpieces having a grooved profile, e.g. gears, splined shafts, threads, worms

Definitions

  • the present invention relates to an internal gear machining method for grinding a tooth surface of an internal gear to be machined using a barrel-shaped screw-shaped tool and a dressing method for a barrel-shaped screw-shaped tool.
  • the sharpness of the grindstone wears down as the grinding process is performed. Therefore, after grinding a predetermined number of gears, it is necessary to regenerate a sharp blade surface by dressing a grindstone with a ground surface worn.
  • the present invention has been made to solve the above-described problems, and stabilizes the processing accuracy of the internal gear to be processed even in a tool after the grinding surface of the grindstone is regenerated. It is an object of the present invention to provide an internal gear machining method that can be achieved and a dressing method for a tool used therefor.
  • the internal gear machining method according to the first invention for solving the above-described problem is as follows.
  • An axis crossing angle for grinding is set based on the outer diameter of the threaded tool after dressing predicted before dressing the threaded tool, The threaded tool is dressed based on the set axis crossing angle, The dressed screw-like tool is arranged at the set crossing angle.
  • the internal gear machining method according to the second invention for solving the above-described problem is as follows.
  • the axis crossing angle is set to be gradually smaller every time the threaded tool is dressed.
  • An internal gear machining method for solving the above-described problem is as follows.
  • a sliding speed at the time of grinding before dressing is calculated, and the rotational speed of the internal gear to be processed and the rotational speed of the threaded tool are set based on the calculated sliding speed.
  • a dressing method for a threaded tool according to a fourth invention for solving the above-described problems is as follows. Screw that uses a dressing tool to dress a barrel-shaped screw-shaped tool that is formed so that its diameter gradually increases from both axial ends toward the axially intermediate portion.
  • a dressing method for a tool Before dressing, the outer diameter of the threaded tool after dressing is predicted, Based on the predicted outside diameter of the threaded tool after dressing, an axis crossing angle at the time of grinding after dressing is set, A twist angle of the screw-like tool is set from the set axis crossing angle, Dressing is performed with the dressing tool so that the screw-shaped tool has the set twist angle.
  • a dressing method for a threaded tool according to the fifth invention for solving the above-described problem is as follows.
  • the dressing tool is an internal tooth dressing gear that can rotate around a dressing gear rotation axis, Dressing is performed in a state where the dress gear and the screw-shaped tool are engaged with each other at the set axis crossing angle.
  • a dressing method for a threaded tool according to a sixth invention for solving the above-described problems is as follows.
  • the dressing tool is a dresser having a shape having a cross-sectional shape of a tooth of an internal gear to be processed as an outline, Dressing is performed in a state where the dresser is engaged with the threaded tool at the set twist angle.
  • the internal gear machining method by setting the crossing angle and the twist angle of the threaded tool at the time of grinding based on the outer diameter after dressing the threaded tool as described above,
  • the contact state between the threaded tool and the internal gear to be machined can always be the same without changing before and after the dressing of the threaded tool.
  • the same grinding state as before dressing can be achieved, so that the change in the tooth surface shape of the internal gear to be machined between machining before dressing and machining after dressing is suppressed, and machining accuracy is reduced. Can be stabilized.
  • the dressing method of the threaded tool according to the present invention even if the outer diameter of the threaded grinding wheel is reduced by dressing the threaded tool as described above, the contact state with the internal gear to be machined during grinding Can be manufactured in the same state as the thread-like grindstone before dressing. In other words, even after dressing, the same grinding state as before dressing can be achieved, so that the change in tooth surface shape of the internal gear to be machined between machining before dressing and machining after dressing is suppressed, and machining accuracy is improved. A threaded tool that can be stabilized can be produced.
  • FIG. 5 (a) shows the analysis result of simulation (1).
  • FIG. 5 (a) shows the grinding wheel torsion angle, the workpiece rotational speed (min ⁇ 1 ), the grinding wheel rotational speed (min ⁇ 1 ), the sliding speed (m / s), and
  • FIG. 5B is a diagram showing the relationship between the grindstone outer diameter and the shaft angle.
  • FIG. 6A shows the analysis result of simulation (2).
  • FIG. 6A shows the grinding wheel torsion angle, the workpiece rotational speed (min ⁇ 1 ), the grinding wheel rotational speed (min ⁇ 1 ), the sliding speed (m /
  • FIG. 6B is a table showing the relationship between the grindstone outer diameter and the shaft angle. It is a figure which shows the arrangement
  • a gear grinding machine employing the internal gear machining method according to the present embodiment uses a threaded grindstone (threaded tool) 11 to move the tooth surface of a workpiece W that is an internal gear to be machined. Further, as shown in FIG. 3, the machine is capable of dressing a threaded grindstone 11 with a dress gear 14 as a dressing tool, using a dressing device 1 attached to the internal gear grinding machine.
  • the workpiece grinding machine is mounted on the gear grinding machine so as to be rotatable around a vertical (Z-axis direction) workpiece rotation axis C1 by a workpiece rotation drive source M1.
  • the gear grinder also supports a grindstone arbor 12 mounted on a grindstone spindle (not shown) so as to be rotatable around a grindstone rotation axis B1 by a grindstone rotation drive source M2, and a workpiece rotation axis C1 and a grindstone rotation axis B1.
  • the direction in which the distance is adjusted hereinafter referred to as the X-axis direction
  • the direction orthogonal to the X-axis direction and further orthogonal to the grinding wheel rotation axis B1 hereinafter referred to as the Y-axis direction
  • the Z-axis direction Supported as possible.
  • a threaded grindstone 11 for grinding the workpiece W is attached to the tip of the grindstone arbor 12. Therefore, by moving the grindstone arbor 12 in the X-axis, Y-axis, and Z-axis directions and rotating it around the grindstone rotation axis B1, the threaded grindstone 11 moves and rotates together with the grindstone arbor 12.
  • the grindstone arbor 12 is supported so as to be able to turn around a grindstone turning axis (not shown) extending in the X-axis direction. Accordingly, by turning the grindstone arbor 12 about the grindstone rotation axis and changing the swivel angle of the grindstone rotation axis B1, an axis crossing angle (hereinafter, referred to as “rotation angle”) between the grindstone rotation axis B1 and the work rotation axis C1 is changed.
  • the shaft angle ⁇ ) is adjustable. That is, the threaded grindstone 11 at the time of grinding rotates around the grindstone rotation axis B1 that intersects the workpiece rotation axis C1 of the workpiece W at the axis angle ⁇ .
  • the blade surface (grinding surface) of the threaded grindstone 11 is worn and sharpness is lowered.
  • the threaded grindstone 11 is dressed.
  • the dressing gear 14 provided in the dressing device 1 has substantially the same specifications as the workpiece W, and as shown in FIG. 3, a plurality of tooth surfaces 14a are formed at a predetermined pitch on the inside, and the threaded grinding wheel 11 Diamond abrasive grains are electrodeposited (coated) on the tooth surfaces 14a which are in meshing contact with the blade surfaces of the blades.
  • the dress gear 14 When dressing the threaded grindstone 11 with the dress gear 14, as shown in FIG. 3, the dress gear 14 is arranged at the work mounting position instead of the work.
  • the threaded grindstone 11 is arranged at a predetermined turning angle so that the grindstone rotation axis B1 becomes a predetermined axis angle ⁇ 2 with respect to the dress gear rotation axis C2.
  • the shaft angle ⁇ 2 is predicted by the control device 13 of the gear grinding machine before dressing, and the outer diameter of the threaded grindstone 11 that will be after dressing is predicted, and is calculated and set according to the value of the outer diameter. .
  • the prediction of the outer diameter of the threaded grindstone 11 after dressing is based on how much the dress gear 14 cuts into the threaded grindstone 11 when dressing, for example, by calculation from the center-to-center distance between the threaded grindstone 11 and the dress gear 14. Can be sought.
  • the threaded grindstone 11 arranged at the shaft angle ⁇ 2 is moved to the inside of the dress gear 14 by the axis X1 that forms the X-axis direction, the axis Y1 that forms the Y-axis direction, and the axis Z1 that forms the Z-axis direction. Thereafter, it is further moved and meshed with the dress gear 14.
  • the dress gear 14 is rotated about the dress gear rotation axis C2, and the threaded grindstone 11 is swung in the vertical direction (Z-axis direction) while rotating about the grindstone rotation axis B1.
  • the tooth surface 14a of the dress gear 14 dresses the blade surface of the threaded grindstone 11, and the blade surface (ground surface) of the threaded grindstone 11 is regenerated.
  • the shaft angle set based on the outer diameter of the threaded grindstone 11 after dressing described above is obtained using the following calculation formula (1).
  • W is the sliding speed (grinding speed)
  • Mn is the module
  • z is the number of teeth
  • is the shaft angle (deg)
  • is the work twist angle (deg)
  • N1 is the work speed ( min ⁇ 1 ).
  • the thread-shaped grindstone 21 is dressed when the thread-shaped grindstone 11 is dressed. Therefore, the desired shaft angle during grinding according to the outer diameter of the threaded grindstone 21 is obtained, and the twist angle of the threaded grindstone 11 that matches this shaft angle is obtained. For this reason, when the threaded grindstone 11 is dressed, dressing is performed by the dress gear at the shaft angle ⁇ 2 set so as to have a desired twist angle after dressing. After dressing, the shaft angle ⁇ during grinding is set according to the twist angle of the threaded grindstone 21, and grinding is performed.
  • a sliding speed V20 is generated which is a relative speed of the workpiece angular speed (circumferential speed of the work W) ⁇ 21 (may be a relative speed of the grinding wheel angular speed ⁇ 22 of the threaded grinding wheel 21 with respect to the work angular speed ⁇ 21 of the work W).
  • the internal gear machining method when dressing, the outer diameter of the threaded grindstone 21 after dressing is predicted, and the predicted outer diameter of the threaded grindstone 21 is determined. Based on the diameter, the dressing gear is set so that the shaft angle ⁇ 2 obtained by the calculation is obtained, and dressing is performed.
  • the shaft angle ⁇ (the same value as the shaft angle ⁇ 2 at the time of dressing) between the threaded grinding wheel and the workpiece is set based on the outer diameter and twist angle of the threaded grinding wheel 21 after dressing.
  • the contact state between the workpiece W and the threaded grindstone at the time of grinding can always be the same without changing even if the threaded grindstone is dressed.
  • the same grinding state as before dressing can be achieved, and the change in tooth surface shape of the workpiece W between processing before dressing and processing after dressing is suppressed, and processing accuracy is stabilized.
  • a threaded grindstone capable of achieving the above can be produced.
  • simulation (1) will be described with reference to FIGS. 5 (a) and 5 (b).
  • the grindstone rotation speed, the work rotation speed, the shaft angle ⁇ , and the like are associated therewith. Is set.
  • size of the outer diameter (diameter) of a screw-shaped grindstone and shaft angle (SIGMA), and the sliding speed at the time of grinding can be calculated
  • the shaft angle ⁇ during grinding is reduced. Reduce the twist angle of the threaded grinding wheel.
  • the dressing shaft angle ⁇ may be set smaller as the grindstone outer diameter becomes smaller.
  • the work rotation speed and the grindstone rotation speed may be set large.
  • the set shaft angle ⁇ decreases, the number of rotations of the workpiece and the thread-shaped grindstone is increased, so that the sliding speed of the thread-shaped grindstone at the time of grinding is determined by the thread shape at the time of grinding before dressing.
  • the sliding speed of the grindstone can be maintained as a reference, that is, constant, and the grindability can be stabilized even if a threaded grindstone is dressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 砥石の研削面を再生処理した後の工具であっても、被加工内歯車の加工精度の安定化を図ることができる内歯車加工方法に使用する工具のドレス方法を提供することにある。そこで、軸方向両端部から軸方向中間部に向かうに従ってその径が漸次大きくなるように形成され、被加工内歯車の加工に用いられる樽形のねじ状砥石(11)に対して、ドレスギヤ回転軸(C2)周りに回転可能な内歯状のドレスギヤ(14)を噛み合わせてドレスを行うねじ状工具のドレス方法であって、ドレスする前にドレス後のねじ状砥石(11)の外径が予測され、前記ねじ状砥石(11)のドレス後の予測外径に基づきドレスギヤ回転軸(C2)とねじ状砥石(11)のねじ状工具回転軸(B1)との軸交差角(Σ2)が設定され、前記設定された軸交差角(Σ2)でドレスギヤ(14)とねじ状砥石(11)とが噛み合わされた状態にてドレスを行うようにした。

Description

内歯車加工方法およびそれに使用する工具のドレス方法
 本発明は、樽形のねじ状工具を用いて被加工内歯車の歯面の研削加工を行う内歯車加工方法および樽形のねじ状工具のドレス方法に関する。
 歯車は自動車用トランスミッション等において多用されている。近年、トランスミッションの低振動化及び低騒音化を図ることを目的として、歯車の加工精度の更なる向上が求められている。歯車加工法では、一般に、所定の歯車素材に対して歯切り加工を行うことにより歯車を形成し、歯切り加工された歯車を熱処理した後に、この熱処理による歪等を除去するために仕上げ加工(研削加工)が行われている。従来から、熱処理後の被加工歯車と砥石とを、軸交差角を与えた状態で噛み合わせ、研削を行っている。これら研削加工に使用される工具の形状にも、研削する歯車の形状に応じて、外歯車形、内歯車形、ねじ(ウォーム)形等がある。
 砥石の切れ味は研削加工を行うに従い摩耗して低下する。そのため、所定数量の歯車を研削した後には、研削面が摩耗した砥石に対して、ドレスを行って鋭い刃面を再生させることが必要となる。
 ドレスを行う方法として、仕上げ加工された後の歯車とほぼ同じ歯車諸元に設定されたドレスギヤを用いて砥石をドレスすることが行われている。ドレス時は、ドレスギヤを被加工歯車に見立て、ドレスギヤと砥石との軸交差角を被加工歯車の研削加工時の軸交差角に設定しドレスを行うことが一般的である。一方、特許文献1には、外歯式のワーク(被加工外歯車)と内歯砥石との研削加工に関し、ドレス可能回数を増大させ砥石寿命を長くするために、外歯式ドレスギヤと内歯砥石との交差軸角(軸交差角)をドレス毎に漸次小さくするようにしたハードギヤホーニング加工方法が開示されている。
特開平11-138346号公報(例えば、段落[0011]~[0020]など参照)
 近年は外歯車のみならず内歯車についても、その加工精度の更なる向上が求められている。被加工内歯車に研削加工を行う砥石としてねじ状砥石を用いて被加工歯車に噛み合わせて仕上げ加工する方法がある。このねじ状砥石に対しドレスギヤを用いてドレス毎に軸交差角を変えない一般的なドレスを行う方法は、ドレスを行う毎に小さくなるねじ状砥石の径の変化の影響がねじ状砥石の刃面形状に影響することで、ドレス後のねじ状砥石と被加工内歯車との接触状態がドレス前のねじ状砥石の場合と変化し、これが研削加工に少なからず影響を及ぼし、研削加工後の被加工内歯車の歯面形状が変化する可能性があった。特に量産加工では、加工精度の安定化に影響する。
 従って、本発明は上述のような課題を解決するために為されたものであって、砥石の研削面を再生処理した後の工具であっても、被加工内歯車の加工精度の安定化を図ることができる内歯車加工方法およびそれに使用する工具のドレス方法を提供することを目的としている。
 上述した課題を解決する第1の発明に係る内歯車加工方法は、
 ワーク回転軸周りに回転可能な被加工内歯車と、前記ワーク回転軸に対して所定の軸交差角に配置される工具回転軸周りに回転可能な樽形のねじ状工具とを、噛み合わせて同期回転させることにより、被加工内歯車に研削加工を行う内歯車加工方法において、
 前記ねじ状工具をドレスする前に予測されたドレス後の前記ねじ状工具の外径に基づき研削加工の軸交差角が設定され、
 前記設定された軸交差角に基づいて前記ねじ状工具がドレスされ、
 前記ドレスされたねじ状工具が前記設定された軸交差角に配置される
ことを特徴とする。
 上述した課題を解決する第2の発明に係る内歯車加工方法は、
 第1の発明に係る内歯車加工方法において、
 前記軸交差角が、前記ねじ状工具をドレスする毎に漸次小さく設定される
ことを特徴とする。
 上述した課題を解決する第3の発明に係る内歯車加工方法は、
 第1の発明に係る内歯車加工方法において、
 ドレスする前の研削加工時のすべり速度が演算され、前記演算されたすべり速度を基準とし前記被加工内歯車の回転数と前記ねじ状工具の回転数が設定される
ことを特徴とする。
 上述した課題を解決する第4の発明に係るねじ状工具のドレス方法は、
 軸方向両端部から軸方向中間部に向かうに従ってその径が漸次大きくなるように形成され、被加工内歯車の加工に用いられる樽形のねじ状工具に対してドレス工具を用いてドレスを行うねじ状工具のドレス方法であって、
 ドレスする前にドレス後のねじ状工具の外径が予測され、
 前記ねじ状工具のドレス後の予測外径に基づきドレス後の研削加工時の軸交差角が設定され、
 前記設定された軸交差角から前記ねじ状工具のねじれ角が設定され、
 前記ねじ状工具が前記設定されたねじれ角となるよう前記ドレス工具にてドレスを行う
ことを特徴とする。
 上述した課題を解決する第5の発明に係るねじ状工具のドレス方法は、
 第4の発明に係るねじ状工具のドレス方法において、
 前記ドレス工具はドレスギヤ回転軸周りに回転可能な内歯状のドレスギヤであり、
 前記設定された軸交差角で前記ドレスギヤと前記ねじ状工具とが噛み合わされた状態にてドレスを行う
ことを特徴とする。
 上述した課題を解決する第6の発明に係るねじ状工具のドレス方法は、
 第4の発明に係るねじ状工具のドレス方法において、
 前記ドレス工具は被加工内歯車の歯の断面形状を輪郭とする形状をなすドレッサであり、
 前記設定されたねじれ角で前記ドレッサが前記ねじ状工具に噛み合わされた状態にてドレスを行う
ことを特徴とする。
 従って、本発明に係る内歯車加工方法よれば、上述したようにねじ状工具をドレスした後の外径に基づき研削加工時の軸交差角及びねじ状工具のねじれ角が設定されることにより、ねじ状工具と被加工内歯車との接触状態を、ねじ状工具のドレスの前後で変わることなく常に同じ状態にすることができる。これにより、ドレス後であってもドレス前と同様な研削状態とすることができるため、ドレス前の加工とドレス後の加工とでの被加工内歯車の歯面形状の変化を抑え、加工精度の安定化を図ることができる。
 本発明に係るねじ状工具のドレス方法によれば、上述したようにねじ状工具をドレスすることによりねじ状砥石の外径が小さくなっても、研削加工時の被加工内歯車との接触状態を、ドレス前のねじ状砥石と同様な状態にできるねじ状砥石を作製できる。すなわち、ドレス後であってもドレス前と同様な研削状態とすることができるため、ドレス前の加工とドレス後の加工とでの被加工内歯車の歯面形状の変化を抑え、加工精度の安定化を図ることができるねじ状工具を作製できる。
本発明に係る内歯車加工方法の一実施形態を示した図である。 ねじ状砥石の縦断面図である。 ドレス装置におけるねじ状砥石およびドレスギヤの配置状態を示す図である。 本発明に係る内歯車加工方法の一実施形態の説明図である。 シミュレーション(1)の解析結果であって、図5(a)は各砥石諸元に対する、砥石ねじれ角、ワーク回転数(min-1)、砥石回転数(min-1)、すべり速度(m/s)を示した表であり、図5(b)は砥石外径と軸角との関係を示した図である。 シミュレーション(2)の解析結果であって、図6(a)は各砥石諸元に対する、砥石ねじれ角、ワーク回転数(min-1)、砥石回転数(min-1)、すべり速度(m/s)を示した表であり、図6(b)は砥石外径と軸角との関係を示した図である。 ドレス装置におけるねじ状砥石およびディスクドレッサの配置状態を示す図である。
 [主な実施形態]
 本発明に係る内歯車加工方法およびそれに使用する工具のドレス方法の実施形態について、図1~図6を参照して具体的に説明する。
 本実施形態に係る内歯車加工方法を採用した歯車研削盤(図示省略)は、図1に示すように、被加工内歯車であるワークWの歯面をねじ状砥石(ねじ状工具)11により研削加工し、さらに、図3に示すように、その内歯車研削盤に付設されたドレス装置1を用いて、ねじ状砥石11をドレス工具であるドレスギヤ14によりドレスを可能とする機械である。
 上記歯車研削盤には、ワークWが、鉛直(Z軸方向)なワーク回転軸C1周りにワーク回転駆動源M1により回転可能に取り付けられる。
 また、歯車研削盤には、図示しない砥石主軸に装着された砥石アーバ12が、砥石回転軸B1周りに砥石回転駆動源M2により回転可能に支持されると共に、ワーク回転軸C1と砥石回転軸B1との間の距離が調整される方向(以下、X軸方向と称す)、X軸方向と直交しさらに砥石回転軸B1と直交する方向(以下、Y軸方向と称す)、Z軸方向に移動可能に支持される。そして、この砥石アーバ12の先端には、ワークWを研削するためのねじ状砥石11が装着される。従って、砥石アーバ12をX軸,Y軸,Z軸方向に移動及び砥石回転軸B1周りに回転させることにより、ねじ状砥石11は砥石アーバ12と共に移動及び回転することになる。
 更に、砥石アーバ12は、X軸方向に延在する図示しない砥石旋回軸周りに旋回可能に支持される。従って、砥石アーバ12をその砥石旋回軸周りに旋回させて、その砥石回転軸B1の旋回角度を変更することにより、この砥石回転軸B1とワーク回転軸C1との間に軸交差角(以下、軸角Σと称す)が調整可能となっている。すなわち、研削時のねじ状砥石11は、ワークWのワーク回転軸C1に対して、軸角Σで交差する砥石回転軸B1周りに回転することになる。
 そして、図2に示すように、ねじ状砥石11は、砥石幅(砥石の軸方向長さ)Hの方向にてその軸方向中間部(中心部)から軸方向両端部11a,11bに向かうに従って、その径寸法が漸次小さくなるような樽形に形成される。このように、ねじ状砥石11を樽形に形成することにより、このねじ状砥石11を、言い換えると砥石回転軸B1をワーク回転軸C1に対して軸角Σで傾斜して配置しても、ねじ状砥石11の軸方向端部がワークと干渉せず加工することが可能となる。更に、ねじ状砥石11の中間部における外径の大きさ(寸法)がDとなっており、ねじ状砥石11には、ワーク諸元と適切な噛み合いをする砥石諸元が与えられている。なお、軸角Σは、ワークねじれ角及びねじ状砥石の軸方向中間部の砥石ねじれ角(以下、砥石基準ねじれ角と称す)から、[(砥石基準ねじれ角)-(ワークねじれ角)]あるいは[(砥石基準ねじれ角)+(ワークねじれ角)]として求められる。
 従って、図1に示すように、ワークWをねじ状砥石11により研削する場合には、先ず、制御装置13からの指令により所定の軸角Σ1となるようにねじ状砥石11が所定の旋回角に配置される。次いで、軸角Σ1に配置されたねじ状砥石11を、ワークWの内側に移動させた後、更に移動させてワークWに噛み合わせる。そして、このような噛み合い状態において、ワークWをワーク回転軸C1周りに回転させると共に、ねじ状砥石11を砥石回転軸B1周りに回転させながら、上下方向(Z軸方向)に揺動させる。これにより、ねじ状砥石11の刃面により、ワークWの歯面が研削されることになる。
 上記研削時においては、ねじ状砥石11がワーク回転軸C1に対して軸角Σ1で交差する砥石回転軸B1周りに回転することから、ねじ状砥石11とワークWとの間には、すべり速度V10が発生することになる。このすべり速度V10は、ねじ状砥石11の刃面とワークWの歯面との接触点における、ねじ状砥石11の砥石角速度(ねじ状砥石11の周方向の速度)ω12に対するワークWのワーク角速度(ワークWの周方向の速度)ω11の相対速度(ワークWのワーク角速度ω11に対するねじ状砥石11の砥石角速度ω12の相対速度でも良い)である。このように、その噛み合い回転と軸角Σ1とによって、ねじ状砥石11とワークWとの間にすべり速度V10を発生させることにより、ワークWの歯面が研削されることになる。
 ここで、ねじ状砥石11を用いて所定数量のワークWを研削すると、ねじ状砥石11の刃面(研削面)が摩耗し切れ味が低下するので、定期的にドレス装置1を駆動して、ねじ状砥石11のドレスを行っている。
 このドレス装置1が具備するドレスギヤ14は、ワークWとほぼ同一諸元を有し、図3に示すように、内側に所定のピッチにて歯面14aが複数形成されており、ねじ状砥石11の刃面に噛み合い接触するその歯面14aに、ダイヤモンド砥粒が電着(被覆)されている。
 ねじ状砥石11をドレスギヤ14によりドレスする場合には、図3に示すように、ドレスギヤ14がワークに代わってワーク取付位置に配置される。他方、砥石回転軸B1をドレスギヤ回転軸C2に対して所定の軸角Σ2となるようにねじ状砥石11が所定の旋回角に配置される。軸角Σ2は、ドレス実施前に歯車研削盤の制御装置13にて、ドレスした後になるであろうねじ状砥石11の外径が予測され、その外径の値に応じて演算され設定される。ドレス後のねじ状砥石11の外径の予測は、ドレスする際に、ドレスギヤ14がどの程度ねじ状砥石11に対して切り込むか、例えばねじ状砥石11とドレスギヤ14との中心間距離から計算により求めることができる。
 次いで、軸角Σ2に配置されたねじ状砥石11を、X軸方向をなす軸X1、Y軸方向をなす軸Y1、及び、Z軸方向をなす軸Z1により、ドレスギヤ14の内側に移動させた後、更に移動させてドレスギヤ14に噛み合わせる。そして、このような噛み合い状態において、ドレスギヤ14をドレスギヤ回転軸C2周りに回転させると共に、ねじ状砥石11を砥石回転軸B1周りに回転させながら、上下方向(Z軸方向)に揺動させる。これにより、ドレスギヤ14の歯面14aにより、ねじ状砥石11の刃面がドレスされて、ねじ状砥石11の刃面(研削面)が再生される。
 ここで、上述したドレス後のねじ状砥石11の外径の大きさに基づき設定される軸角は、以下の演算式(1)を用いて求められる。
Figure JPOXMLDOC01-appb-M000001
 上述した演算式(1)において、Wがすべり速度(研削速度)、Mnがモジュール、zが歯数、Σが軸角(deg)、βがワークねじれ角(deg)、N1がワーク回転数(min-1)を示す。
 ドレス後のねじ状砥石21とワークWとの接触状態を、ドレス前のねじ状砥石11とワークWとの接触状態と同じ状態にするためには、ねじ状砥石11をドレスするとねじ状砥石21の外径が小さくなることから、ねじ状砥石21の外径に応じた研削加工時の所望の軸角を求め、この軸角に適合するねじ状砥石11のねじれ角を求める。このため、ねじ状砥石11のドレス時は、ドレス後に所望のねじれ角となるよう設定された軸角Σ2にてドレスギヤによりドレスが行われる。ドレス後はねじ状砥石21のねじれ角に応じて研削加工時における軸角Σが設定され、研削加工を行う。さらに、研削加工時のすべり速度を変化させないことも重要であり、この演算式(1)に基づき、ねじ状砥石11をドレスした後でもドレス前と同じすべり速度を得るためには、軸角の変化に対応した研削加工時のワーク回転数を設定する。砥石とワークとは同期回転を行うため、ワーク回転数の変化に応じて砥石回転数も設定される。すなわち、図4に示すように、ドレス後のねじ状砥石21でワークWを研削する場合には、ドレス後のねじ状砥石21を、ドレス前のねじ状砥石11が配置される軸角Σ1よりも小さい軸角Σ2に配置され、ねじ状砥石21の刃面とワークWの歯面との接触点における、ねじ状砥石21の砥石角速度(ねじ状砥石21の周方向の速度)ω22に対するワークWのワーク角速度(ワークWの周方向の速度)ω21の相対速度(ワークWのワーク角速度ω21に対するねじ状砥石21の砥石角速度ω22の相対速度でも良い)であるすべり速度V20が発生する。このように軸角の変化に対応したワーク回転数及び砥石回転数が設定されることにより、ドレス後の研削加工時のすべり速度V20をドレス前のすべり速度V10と同じにすることができる。
 したがって、本実施形態に係る内歯車加工方法によれば、上述したように、ドレスを行う際、ドレス後のねじ状砥石21の外径を予測しておき、この予測したねじ状砥石21の外径に基づき、演算で求められた軸角Σ2となるようにドレスギヤを設定し、ドレスを行う。ドレス後にワークの研削加工を行う際は、ドレス後のねじ状砥石21の外径、ねじれ角に基づきねじ状砥石とワークとの軸角Σ(ドレス時の軸角Σ2と同じ値)を設定し、ねじ状砥石21を配置することにより、研削加工時のワークWとねじ状砥石の接触状態を、ねじ状砥石をドレスしても変わることなく常に同じ状態にすることができる。これにより、ドレス後であってもドレス前と同様な研削状態とすることができ、ドレス前の加工とドレス後の加工とでのワークWの歯面形状の変化を抑え、加工精度の安定化を図ることができるねじ状砥石を作製できる。
 次に、ドレス後の加工精度の安定化を目的とした、ねじ状砥石11の外径の大きさに基づく軸角Σの設定方法について、図5および図6を用いて具体的に説明する。
 ここで、軸角Σとねじ状砥石11の外径の大きさとの関係を明らかにするため、後述するシミュレーション(1)、(2)にて解析を行った。なお、これらシミュレーション(1)、(2)においては、ドレスにより砥石の外径が変化することを想定し、それぞれの解析を行った。
  先ず、シミュレーション(1)について、図5(a),(b)を用いて説明する。
 このシミュレーション(1)にて、ドレスギヤ諸元及び砥石諸元を下記の(D1)及び(T1)に示すように設定した。
  (D1)ドレスギヤ諸元
      モジュール        :2.0
      歯数           :60
      圧力角          :20°
      ねじれ角         :20°
      歯底径          :131.7mm
      歯先径          :123.7mm
      歯幅           :30mm
  (T1)砥石諸元
      歯数           :23
      砥石外径(中心部)    :75.6mm(初回)
      砥石ピッチ径(外径)   :71.6mm(初回)
      砥石幅          :30mm
      砥石基準ねじれ角     :50.0°(初回)
 このように、ねじ状砥石11において、歯数、砥石外径、砥石ピッチ径、砥石幅、砥石ねじれ角が設定されると、これに伴って、砥石回転数、ワーク回転数、軸角Σなどが設定される。これにより、ねじ状砥石の外径(直径)の大きさと軸角Σとの関係や研削加工時のすべり速度を求めることができる。
 このうち、ねじ状砥石の外径の変化に対する各条件について検討するために、図5(a)に示すように、それらの砥石諸元の一部とそのときの軸角Σ、砥石回転数、ワーク回転数、すべり速度、ワークと砥石との中心間距離とを表にまとめると共に、図5(b)に示すように、軸角Σと砥石外径との関係を明らかにした。
 図5(a)、(b)に示すように、ねじ状砥石とワークとの接触状態を考慮すると、ドレスを行うことによってねじ状砥石外径が小さくなるに従って、研削加工時の軸角Σ及びねじ状砥石のねじれ角を小さくする。このようなねじ状砥石のねじれ角とするためには、図5(b)に示すように、砥石外径が小さくなるに従って、ドレス時の軸角Σを小さく設定すればよい。一方、すべり速度を一定にするためには、ワーク回転数および砥石回転数を大きく設定すればよい。すなわち、設定される軸角Σが小さくなるに従って、ワークおよびねじ状砥石の回転数を大きくすることで、研削加工時のねじ状砥石のすべり速度を、ドレスを行う前の研削加工時のねじ状砥石のすべり速度を基準、すなわち、一定に維持でき、ねじ状砥石をドレスしても、研削性を安定化できる。
 次いで、シミュレーション(2)について、図6(a),(b)を用いて説明する。
 このシミュレーション(2)にて、ドレスギヤ諸元及び砥石諸元を下記の(D2)及び(T2)に示すように設定した。
  (D2)ドレスギヤ諸元
      モジュール        :1.2
      歯数           :90
      圧力角          :20°
      ねじれ角         :20°
      歯底径          :117.3mm
      歯先径          :112.5mm
      歯幅           :30mm
  (T2)砥石諸元
      歯数           :31
      砥石外径(中心部)    :55mm(初回)
      砥石ピッチ径(外径)   :52.6mm(初回)
      砥石幅          :30mm
      砥石基準ねじれ角     :45°(初回)
 このように、ねじ状砥石11において、歯数、砥石外径、砥石ピッチ径、砥石幅、砥石ねじれ角が設定されると、これに伴って、砥石回転数、ワーク回転数、軸角Σなどが設定される。これにより、ねじ状砥石の外径(直径)の大きさと軸角Σとの関係や研削加工時のすべり速度を求めることができる。
 このうち、ねじ状砥石の外径の変化に対する各条件について検討するために、図6(a)に示すように、それらの砥石諸元の一部とそのときの軸角Σ、砥石回転数、ワーク回転数、すべり速度、ワークと砥石との中心間距離とを表にまとめると共に、図6(b)に示すように、軸角Σと砥石外径との関係を明らかにした。
 図6(a)、(b)に示すように、ねじ状砥石とワークとの接触状態を考慮すると、ドレスを行うことによってねじ状砥石外径が小さくなるに従って、研削加工時の軸角Σ及びねじ状砥石のねじれ角を小さくする。このようなねじ状砥石のねじれ角とするためには、図6(b)に示すように、砥石外径が小さくなるに従って、ドレス時の軸角Σを小さく設定すればよい。一方、すべり速度を一定にするためには、ワーク回転数および砥石回転数を大きく設定すればよい。すなわち、設定される軸角Σが小さくなるに従って、ワークおよびねじ状砥石の回転数を大きくすることで、研削加工時のねじ状砥石のすべり速度を、ドレスを行う前の研削加工時のねじ状砥石のすべり速度を基準、すなわち、一定に維持でき、ねじ状砥石をドレスしても、研削性を安定化できる。
[他の実施形態]
 上述した実施形態では、ねじ状砥石11をドレスギヤ14によりドレスする場合について説明したが、ドレスギヤとは別のドレス工具を用いてねじ状砥石をドレスする方法として、被加工内歯車の1歯の断面形状(砥石との接触線)を輪郭とする形状をなすディスクドレッサによりドレスする方法がある。図7に示すように、ねじ状砥石11と噛み合うよう、ねじ状砥石11のねじれ角と同じ角度に配置されたディスクドレッサ24をドレッサ回転軸C4周りに回転させ、ねじ状砥石11の刃面のドレスを行う。具体的には制御装置からの指令によりねじ状砥石11を砥石回転軸B1周りに回転させながらZ軸方向に揺動させる一方、ディスクドレッサ24がねじ状砥石11の刃面形状に沿うよう、ねじ状砥石11がX軸、Y軸に移動させると共にディスクドレッサ回転軸C4と直交するように配置されたドレッサ旋回軸C3周りに旋回させることでねじ状砥石11のドレスを行う。この場合についても本発明は適用可能である。ディスクドレッサによりねじ状砥石をドレスを実施する前に、歯車研削盤の制御装置にて、ドレスした後のねじ状砥石11の外径が予測され、この予測した外径の値に基づき、ドレス後の研削加工におけるねじ状砥石とワークとの適切な軸交差角が演算により設定される。設定された軸交差角に適合するねじ状砥石の形状(ねじれ角)となるように、ディスクドレッサが配置され、この状態でねじ状砥石11と噛み合わされた後、ねじ状砥石11を砥石回転軸B1周りに回転させながらZ軸方向に揺動させる一方、ディスクドレッサ24がねじ状砥石11の刃面形状に沿うよう、ねじ状砥石11がX軸、Y軸に移動させると共にディスクドレッサ24がドレッサ旋回軸C3周りに旋回させることでディスクドレッサ24によりねじ状砥石11のドレスが行われる。ドレス後は、設定された軸交差角となるようにねじ状砥石が配置され、また、ドレス前の研削加工時と同じすべり速度となるよう、ワーク回転数および砥石回転数が設定され、研削加工が行われる。
 これにより、ディスクドレッサ24によりねじ状砥石11をドレスする場合であっても、上述した、ドレスギヤ14によりねじ状砥石11をドレスする場合と同様な作用効果を奏する。
 本発明に係る内歯車加工方法およびそれに使用される工具のドレス方法は、研削性を安定化できるため、工作機械産業などで有益に利用することができる。
1      ドレス装置
11     ねじ状砥石
12     砥石アーバ
13     制御装置
14     ドレスギヤ
21     ねじ状砥石
24     ディスクドレッサ
M1     ワーク回転駆動源
M2     砥石回転駆動源
W      ワーク
Σ1,Σ2  軸角
B1     砥石回転軸
C1     ワーク回転軸
C2     ドレスギヤ回転軸
C3     ディスクドレッサ旋回軸
C4     ディスクドレッサ回転軸
V10,V20 すべり速度
ω11,ω21 ワーク角速度
ω12,ω22 砥石角速度

Claims (6)

  1.  ワーク回転軸周りに回転可能な被加工内歯車と、前記ワーク回転軸に対して所定の軸交差角に配置される工具回転軸周りに回転可能な樽形のねじ状工具とを、噛み合わせて同期回転させることにより、被加工内歯車に研削加工を行う内歯車加工方法において、
     前記ねじ状工具をドレスする前に予測されたドレス後の前記ねじ状工具の外径に基づき研削加工の軸交差角が設定され、
     前記設定された軸交差角に基づいて前記ねじ状工具がドレスされ、
     前記ドレスされたねじ状工具が前記設定された軸交差角に配置される
    ことを特徴とする内歯車加工方法。
  2.  請求項1に記載された内歯車加工方法において、
     前記軸交差角が、前記ねじ状工具をドレスする毎に漸次小さく設定される
    ことを特徴とする内歯車加工方法。
  3.  請求項1に記載された内歯車加工方法において、
     ドレスする前の研削加工時のすべり速度が演算され、前記演算されたすべり速度を基準とし前記被加工内歯車の回転数と前記ねじ状工具の回転数が設定される
    ことを特徴とする内歯車加工方法。
  4.  軸方向両端部から軸方向中間部に向かうに従ってその径が漸次大きくなるように形成され、被加工内歯車の加工に用いられる樽形のねじ状工具に対してドレス工具を用いてドレスを行うねじ状工具のドレス方法であって、
     ドレスする前にドレス後のねじ状工具の外径が予測され、
     前記ねじ状工具のドレス後の予測外径に基づきドレス後の研削加工時の軸交差角が設定され、
     前記設定された軸交差角から前記ねじ状工具のねじれ角が設定され、
     前記ねじ状工具が前記設定されたねじれ角となるよう前記ドレス工具にてドレスを行う
    ことを特徴とするねじ状工具のドレス方法。
  5.  請求項4に記載されたねじ状工具のドレス方法において、
     前記ドレス工具はドレスギヤ回転軸周りに回転可能な内歯状のドレスギヤであり、
     前記設定された軸交差角で前記ドレスギヤと前記ねじ状工具とが噛み合わされた状態にてドレスを行う
    ことを特徴とするねじ状工具のドレス方法。
  6.  請求項4に記載されたねじ状工具のドレス方法において、
     前記ドレス工具は被加工内歯車の歯の断面形状を輪郭とする形状をなすドレッサであり、
     前記設定されたねじれ角で前記ドレッサが前記ねじ状工具に噛み合わされた状態にてドレスを行う
    ことを特徴とするねじ状工具のドレス方法。
PCT/JP2010/061936 2009-07-27 2010-07-15 内歯車加工方法およびそれに使用する工具のドレス方法 WO2011013516A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/387,260 US9278398B2 (en) 2009-07-27 2010-07-15 Method for machining internally toothed gear and method for dressing tool used for same
EP10804262.3A EP2460625B1 (en) 2009-07-27 2010-07-15 Method for machining internally toothed gear
KR1020127002012A KR101406429B1 (ko) 2009-07-27 2010-07-15 내치차 가공 방법 및 그것에 사용하는 공구의 드레싱 방법
BR112012001626A BR112012001626A2 (pt) 2009-07-27 2010-07-15 métodos de usinar engrenagem interna, e de retificar ferramenta
CN201080032296.5A CN102470507B (zh) 2009-07-27 2010-07-15 内齿轮加工方法及用于其的工具的修整方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009173822A JP5285526B2 (ja) 2009-07-27 2009-07-27 内歯車加工方法およびそれに使用する工具のドレス方法
JP2009-173822 2009-07-27

Publications (1)

Publication Number Publication Date
WO2011013516A1 true WO2011013516A1 (ja) 2011-02-03

Family

ID=43529174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061936 WO2011013516A1 (ja) 2009-07-27 2010-07-15 内歯車加工方法およびそれに使用する工具のドレス方法

Country Status (8)

Country Link
US (1) US9278398B2 (ja)
EP (1) EP2460625B1 (ja)
JP (1) JP5285526B2 (ja)
KR (1) KR101406429B1 (ja)
CN (1) CN102470507B (ja)
BR (1) BR112012001626A2 (ja)
TW (1) TWI415713B (ja)
WO (1) WO2011013516A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192672A1 (ja) * 2013-05-29 2014-12-04 三菱重工業株式会社 内歯車研削方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2314404B1 (de) * 2009-10-22 2012-06-20 Klingelnberg AG Verfahren zur Hart-Feinbearbeitung der Zahnflanken eines Zahnrades
JP5751706B2 (ja) * 2011-10-26 2015-07-22 ダイハツ工業株式会社 歯車型被加工物の加工方法
JP5854792B2 (ja) * 2011-11-25 2016-02-09 三菱重工業株式会社 鼓形歯車状砥石のドレッシング方法及びディスク形ドレッサ
DE102012015846A1 (de) * 2012-04-17 2013-10-17 Liebherr-Verzahntechnik Gmbh Verfahren und Vorrichtung zum Hartfeinbearbeiten von modifizierten Verzahnungen
JP5536250B1 (ja) * 2013-03-22 2014-07-02 三菱重工業株式会社 歯車加工装置
CN103433569B (zh) * 2013-09-04 2015-08-19 重庆大学 凸节曲线非圆齿轮蜗杆砂轮磨削方法
KR101913918B1 (ko) 2014-05-30 2018-10-31 미츠비시 쥬코우 고우사쿠 기카이 가부시키가이샤 스카이빙 가공용 커터
JP6606967B2 (ja) * 2014-11-07 2019-11-20 株式会社ジェイテクト 歯車加工装置及び歯車加工方法
JP6871675B2 (ja) * 2014-11-07 2021-05-12 株式会社ジェイテクト 歯車加工装置及び歯車加工方法
CN107848051A (zh) * 2015-07-17 2018-03-27 本田技研工业株式会社 电沉积工具、齿轮磨削用螺旋状磨具、电沉积工具的制造方法以及齿轮磨削用螺旋状磨具的制造方法
DE102016005210A1 (de) * 2016-04-28 2017-11-02 Liebherr-Verzahntechnik Gmbh Verfahren zur Verzahnbearbeitung eines Werkstückes
DE102016005258A1 (de) * 2016-04-28 2017-11-02 Liebherr-Verzahntechnik Gmbh Verfahren zum Abrichten einer Schleifschnecke
DE102017125602A1 (de) * 2016-11-04 2018-05-09 Jtekt Corporation Zahnradbearbeitungsvorrichtung und Zahnradbearbeitungsverfahren
JP2018122425A (ja) * 2017-02-03 2018-08-09 株式会社ジェイテクト 歯切り工具の加工装置、加工方法、工具形状シミュレーション装置及び工具形状シミュレーション方法
EP3698919B1 (de) * 2019-02-20 2024-05-08 Klingelnberg AG Verfahren zum abrichten eines schleifwerkzeugs
CN109807404B (zh) * 2019-02-25 2021-08-13 天津大学 内齿圈锥形螺旋齿砂轮磨齿方法
JP7120958B2 (ja) * 2019-04-19 2022-08-17 ファナック株式会社 ドレッシング推定装置、及び制御装置
DE102021108382A1 (de) * 2021-04-01 2022-10-06 Präwema Antriebstechnik GmbH Verfahren zum erzeugen von verschränkungen an den zahnflanken eines innenverzahnten werkstücks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08252768A (ja) * 1995-03-17 1996-10-01 Nachi Fujikoshi Corp ハードギヤホーニングのドレス補正方法
JPH11138346A (ja) 1997-10-31 1999-05-25 Nachi Fujikoshi Corp ハードギヤホーニング加工方法
JP2003039321A (ja) * 2001-08-01 2003-02-13 Nissan Motor Co Ltd 内歯砥石のドレス方法
WO2009025198A1 (ja) * 2007-08-17 2009-02-26 Mitsubishi Heavy Industries, Ltd. 樽形ウォーム状工具のドレッシング方法及びドレッシング装置及び内歯車研削盤

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2228967A (en) * 1938-10-29 1941-01-14 Fellows Gear Shaper Co Method of completing gear finishing tools
FR879289A (fr) * 1938-12-10 1943-02-18 Niles Werke Ag Deutsche Dispositif pour le meulage de pignons suivant le procédé en développante
BE538404A (ja) * 1954-05-24
US3602209A (en) * 1968-07-16 1971-08-31 Fritz Bocker Dressing tool for forming and dressing helically ribbed grinding wheels
FR2070927A5 (ja) * 1969-12-11 1971-09-17 Arretche Jean Raymond
US3813821A (en) * 1971-04-06 1974-06-04 Toyota Motor Co Ltd Method and apparatus for finishing the tooth surfaces of hypoid gears
CH556207A (de) * 1973-03-26 1974-11-29 Maag Zahnraeder & Maschinen Ag Verfahren und maschine zur herstellung von schraegverzahnten evolventenstirnraedern mit innenverzahnung.
US4077164A (en) * 1977-06-23 1978-03-07 Abrasive Technology, Inc. Diamond gear hone
CS224371B1 (en) * 1981-06-10 1984-01-16 Borivoj Prazsky Grinding wheel moving-in apparatus for gear-grinding machines
CH676099A5 (ja) * 1984-09-05 1990-12-14 Reishauer Ag
IT1218510B (it) * 1987-09-11 1990-04-19 Cima Apparecchiatura per la diamantatura in macchina delle mole a vite impiegate in macchine rettificatrici di ingranaggi
US5175962A (en) * 1991-09-05 1993-01-05 The Gleason Works Method of and apparatus for machining spur and helical gears
DE4207511A1 (de) * 1992-03-10 1993-09-16 Franz Martin Arndt Verfahren zum schleifen von evolventenzaehnen mit hilfe einer innenschraubenden konvexen globoidschraubschnecke als nachformbares schleifwerkzeug
DE4329822C2 (de) * 1992-09-04 1996-09-05 Honda Motor Co Ltd Zahnrad-Feinbearbeitungsvorrichtung
US5289815A (en) * 1993-06-21 1994-03-01 The Gleason Works Method of dressing a threaded grinding wheel
DE19619401C1 (de) * 1996-05-14 1997-11-27 Reishauer Ag Verfahren, Werkzeug und Vorrichtung zum Profilieren von Schleifschnecken für das kontinuierliche Wälzschleifen
JP4451564B2 (ja) * 1998-03-18 2010-04-14 ザ グリーソン ワークス ねじ状研削ホイール及びその目立て方法
US6561869B2 (en) * 1999-12-10 2003-05-13 Denso Corporation Gear grinding machine and gear grinding method
US6602115B2 (en) * 2001-01-03 2003-08-05 The Boeing Company Tool and method for precision grinding of a conical face gear that meshes with a conical involute pinion
DE10131060A1 (de) * 2001-06-27 2003-01-09 Zahnradfabrik Friedrichshafen Vorrichtung zum Herstellen und Bearbeiten der Gerad- bzw. Schrägverzahnung von Werkstücken
JP2003211362A (ja) * 2002-01-21 2003-07-29 Denso Corp 歯車研削用砥石及びその製造方法
JP2004268200A (ja) * 2003-03-07 2004-09-30 Noritake Co Ltd 複合型レジノイド砥石
US7682222B2 (en) * 2004-05-26 2010-03-23 The Gleason Works Variable rate method of machining gears
US20070275640A1 (en) * 2004-07-09 2007-11-29 Nsk Ltd. Worm Wheel Machining Method, Worm Wheel, Worm Speed Reducer And Electric Power Steering Apparatus
JP4648219B2 (ja) * 2006-02-28 2011-03-09 三菱重工業株式会社 歯車研削盤
CN100484695C (zh) * 2007-01-31 2009-05-06 黄开元 齿条的加工方法及设备
TW200904573A (en) * 2007-07-26 2009-02-01 neng-jia Shi Combined cutter for machining inner gear
AU2008283249A1 (en) * 2007-08-02 2009-02-05 Honda Motor Co., Ltd. Gear machining apparatus and machining method
JP4875601B2 (ja) * 2007-12-14 2012-02-15 三菱重工業株式会社 樽形ウォーム状工具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08252768A (ja) * 1995-03-17 1996-10-01 Nachi Fujikoshi Corp ハードギヤホーニングのドレス補正方法
JPH11138346A (ja) 1997-10-31 1999-05-25 Nachi Fujikoshi Corp ハードギヤホーニング加工方法
JP2003039321A (ja) * 2001-08-01 2003-02-13 Nissan Motor Co Ltd 内歯砥石のドレス方法
WO2009025198A1 (ja) * 2007-08-17 2009-02-26 Mitsubishi Heavy Industries, Ltd. 樽形ウォーム状工具のドレッシング方法及びドレッシング装置及び内歯車研削盤

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192672A1 (ja) * 2013-05-29 2014-12-04 三菱重工業株式会社 内歯車研削方法
JP2014231109A (ja) * 2013-05-29 2014-12-11 三菱重工業株式会社 内歯車研削方法
US10307843B2 (en) 2013-05-29 2019-06-04 Mitsubishi Heavy Industries Machine Tool Co., Ltd. Internal gear grinding method

Also Published As

Publication number Publication date
TW201124234A (en) 2011-07-16
JP2011025365A (ja) 2011-02-10
BR112012001626A2 (pt) 2016-03-15
TWI415713B (zh) 2013-11-21
KR101406429B1 (ko) 2014-06-13
KR20120030566A (ko) 2012-03-28
US20120184187A1 (en) 2012-07-19
EP2460625B1 (en) 2019-11-20
US9278398B2 (en) 2016-03-08
EP2460625A1 (en) 2012-06-06
CN102470507A (zh) 2012-05-23
EP2460625A4 (en) 2016-12-28
CN102470507B (zh) 2014-05-28
JP5285526B2 (ja) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5285526B2 (ja) 内歯車加工方法およびそれに使用する工具のドレス方法
JP5419473B2 (ja) 内歯車加工方法
JP5351700B2 (ja) 樽形ねじ状工具の製作方法
JP6133131B2 (ja) 内歯車研削方法
JP5222125B2 (ja) 内歯車加工用樽形ねじ状工具
JP5705567B2 (ja) 歯車研削方法
WO2014061327A1 (ja) ドレッシング装置および歯車研削装置
JP2020504023A (ja) 歯付き歯車、特に内歯部分を硬仕上げするための方法およびそれに好適な機械工具
JP5748582B2 (ja) ねじ状工具の製作方法
JP5473735B2 (ja) 内歯車研削用ねじ状砥石のドレッシング方法
JP2018130795A (ja) ギヤの加工方法
JP2013230554A (ja) 樽形ねじ状工具の製作方法
JP2023088525A (ja) 歯車仕上げ用砥石及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080032296.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127002012

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010804262

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201000188

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 13387260

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012001626

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012001626

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120124