WO2011013342A1 - パターン評価方法、その装置、及び電子線装置 - Google Patents

パターン評価方法、その装置、及び電子線装置 Download PDF

Info

Publication number
WO2011013342A1
WO2011013342A1 PCT/JP2010/004743 JP2010004743W WO2011013342A1 WO 2011013342 A1 WO2011013342 A1 WO 2011013342A1 JP 2010004743 W JP2010004743 W JP 2010004743W WO 2011013342 A1 WO2011013342 A1 WO 2011013342A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
pattern
electron beam
amount
image
Prior art date
Application number
PCT/JP2010/004743
Other languages
English (en)
French (fr)
Inventor
山梨弘将
早田康成
大橋健良
福田宗行
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to US13/386,540 priority Critical patent/US8816277B2/en
Priority to JP2011524653A priority patent/JP5525528B2/ja
Publication of WO2011013342A1 publication Critical patent/WO2011013342A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1478Beam tilting means, i.e. for stereoscopy or for beam channelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24578Spatial variables, e.g. position, distance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2611Stereoscopic measurements and/or imaging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Definitions

  • the present invention scans the surface of a sample (semiconductor wafer, reticle, etc.) with a charged particle beam and detects secondary charged particles or reflected particles generated from the sample, thereby forming the shape of a fine pattern formed on the sample surface and its
  • the present invention relates to a pattern evaluation technique using a charged particle beam capable of obtaining a two-dimensional scanning image representing a dimension and easily determining unevenness of a sample surface.
  • CDSEM Crohn's disease
  • some samples to be measured have a surface made of an insulating material, and the trajectory of the decelerated electron beam is bent by the charge on the sample surface or its distribution, resulting in the defocusing and astigmatism of the CDSEM. It has been shown to cause aberrations.
  • As the cause of the charged sample being charged it is expected that the organic material constituting the resist will be polarized and fixed due to friction during the resist coating process. I can't.
  • Such charging is considered to be charging by a fixed charge that remains even if the sample is grounded.
  • charging may be caused by the incidence of primary electrons during sample observation or when acquiring an image for measuring a length of an automatic recipe. If these charges exist, the focal position of the incident electron beam shifts from the sample surface due to the trajectory change of the charged particles incident on the sample, and the focal position shift and astigmatism occur. Correction is required and throughput is reduced. In addition, if the charge has an in-plane distribution and the charge amount differs between the chips on the sample, the focus adjustment and astigmatism correction as described above are required each time the measurement chip is changed, resulting in a decrease in throughput. .
  • Patent Document 1 discloses a technique for measuring the astigmatism difference from the distance between the focal points at which the contrast of the differential images in orthogonal directions at different focal positions is maximized by image processing.
  • Patent Document 2 using the parallax method, astigmatism is used so that a part of the axial beam is blocked by a diaphragm and the amount of movement of the beam on the sample is minimized when the focal position is shifted.
  • a technique for performing correction is disclosed.
  • the scanning electron microscope described above accelerates the primary electrons emitted from the electron source, converges them with an electrostatic or electromagnetic lens, and irradiates the sample surface. Secondary electrons are generated from the sample by the irradiation of the primary electrons. Scanning the irradiated electron beam on the sample surface to obtain the secondary electron signal intensity increases the amount of secondary electrons generated at the edges of various patterns formed on the sample surface, reflecting the sample shape. An electron microscope image (SEM image) is obtained. The bright portion corresponding to the edge portion of the sample shape appearing in this image is called a white band.
  • the scanning electron microscope is disclosed in, for example, Patent Documents 3 to 6.
  • Patent Document 1 it is necessary to acquire and compare several tens of images in order to measure the astigmatic difference. Therefore, a scanning electron microscope that observes around 10 pA requires ten and several seconds to correct astigmatism.
  • Patent Document 2 there is a limit to the amount of beam movement on the sample when the focal position is shifted, and although high speed can be expected compared with the correction method of Patent Document 1, accuracy is insufficient.
  • the tilt of the beam can be realized by appropriately setting a plurality of deflectors of the charged particle optical system. These set values are registered as inclined trajectories in a storage area of a storage unit provided in the charged particle beam optical system control apparatus, and a plurality of set values are registered for each azimuth angle to be inclined.
  • the tilt azimuth is one azimuth for the measurement of the focal position deviation, and that the azimuth azimuth is four azimuths for the astigmatism measurement. become. Therefore, this technique can increase the amount of beam movement on the sample when the focal position is shifted, and can be expected to achieve both accuracy and speed as compared with Patent Document 2.
  • a normal CDSEM includes an electric beam deflecting unit (for example, a beam deflecting unit such as an electromagnetic deflector or an electrostatic deflector) for moving an image acquisition position on a desired pattern, and the amount of stage movement.
  • an electric beam deflecting unit for example, a beam deflecting unit such as an electromagnetic deflector or an electrostatic deflector
  • This function is indispensable for the error correction and focus correction other than the image acquisition position.
  • the pattern displacement ie, parallax
  • an error caused by the beam deflecting means that moves the image acquisition position exists in the astigmatism or focus correction technique with a small amount of dose described in Japanese Patent Application No. 2008-247001. Yes.
  • the pattern position deviation value depending on the beam deflection amount is different when the sample height is different.
  • the value of the pattern position deviation amount depends on the azimuth and angle at which the beam is tilted, the beam acceleration voltage, and the optical system mode (select the resolution priority mode or the depth of focus priority mode with different beam opening angles). I have also confirmed that.
  • the incidence of primary electrons may deviate by about ⁇ 0.1 ° from the vertical, but if it is in an angular range where the wide bandwidth does not change, it is difficult to determine unevenness as described above.
  • FIG. 15A and FIG. 15B show the principle of performing line-and-space pattern unevenness determination using two images having different primary electron incident angles 1504.
  • FIG. 15A shows the case where the primary electrons 151 are incident on the sample perpendicularly
  • FIG. 15B shows the case where the primary electrons are incident on the sample with an incident angle of 1504 inclined.
  • each figure schematically shows a cross section 1502 of a sample having a line-and-space pattern formed on the surface, and a state in which primary electrons 1501 are incident on the sample, and an SEM image 1503 obtained is shown in the lower part.
  • a white portion 1505 in the SEM image is a white band and corresponds to an edge portion of the sample surface shape.
  • the white band width is increased, it can be determined that the side where the incident angle is inclined is a recess as viewed from the edge corresponding to the white band.
  • Patent Document 3 discloses a method of measuring a three-dimensional shape of a sample by acquiring two images having different primary electron incident angles and performing stereoscopic viewing.
  • Patent Document 4 discloses a method for determining unevenness from changes in white band widths of a plurality of images having different primary electron incident angles. However, if the incident angle of primary electrons is changed, the irradiation position of primary electrons may move. When the positional deviation occurs, it becomes an obstacle to the periodic pattern unevenness determination.
  • FIG. 16 shows an SEM image 1601 obtained by making the primary electron incident angle perpendicular to a periodic pattern such as a line and space pattern and a SEM image 1602 obtained by inclining when a positional deviation occurs. Is a comparison. As shown in this figure, when a positional shift of about 1/4 or more of the pattern period 1603 occurs, the white band corresponding to the same edge cannot be correctly identified in two images having different incident angles, and the SEM image The unevenness determination in 1601 cannot be performed.
  • Patent Document 5 discloses a method of performing pattern identification and determining concavity and convexity by comparing images with small positional deviations obtained by gradually changing the primary electron incident angle step by step. In principle, it is possible to cope with the problem of displacement caused by changing the incident angle of primary electrons. However, the method for matching images acquired by changing the primary electron incident angle stepwise disclosed in Patent Document 5 requires a plurality of images, and it takes time to determine the unevenness.
  • the step width for changing the primary electron incident angle is made fine, and the positional deviation caused by the change in the primary electron incident angle of one step is less than 1/4 of the pattern period. It must be made sufficiently small, the number of images acquired increases, and the problem of measurement time becomes serious. With recent miniaturization of semiconductor circuits, it is necessary to observe fine patterns.
  • the change in the incident angle of 2 ° must be divided into 50 steps or more, and it is necessary to acquire 50 or more images. Become. If the time required to acquire one image is estimated to be 30 ms, it takes 1.5 seconds to determine one unevenness. In an electron microscope used for a semiconductor inspection apparatus, one point inspection is performed in a few seconds, and if unevenness determination is performed by this method, the throughput is greatly deteriorated.
  • Patent Document 6 discloses a method of obtaining and correcting the relationship between the primary electron incident angle and the positional deviation amount in advance.
  • This misregistration correction method is a method for obtaining a correction amount by predicting the misregistration amount from only the primary electron incident angle.
  • the positional shift amount does not depend only on the incident angle of the primary electrons, but also depends on the acceleration voltage of the primary electrons, the excitation of the objective lens, and the deflection amount of the image shift deflector.
  • the amount of displacement when the change amount of the incident angle is 2 ° is about 100 nm due to the change in the primary electron acceleration voltage (from 300 V to 800 V), and the change in the excitation of the objective lens (from the focal length of 2.9 mm).
  • the displacement amount is changed by about 50 nm at 3.0 mm), and by about 100 nm when the deflection amount of the image shift deflector (from 0 ⁇ m to 15 ⁇ m) is changed.
  • the image shift deflector is used to correct random variations in the amount of movement of the stage and determine the image acquisition area on the sample, so that the amount of deflection is random and difficult to predict. Therefore, this correction method cannot cope with the above-described change in the condition of the electron optical system.
  • a first object of the present invention is to provide a pattern evaluation method and apparatus that does not deteriorate the measurement accuracy in an astigmatism or focus correction technique that uses a tilt of a charged particle beam and has a low dose. It is in.
  • a second object of the present invention is to provide an electron beam apparatus capable of determining irregularities of a periodic pattern formed on a substrate in a short time. It is another object of the present invention to provide an electron beam apparatus capable of determining unevenness under arbitrary optical conditions.
  • a fine pattern evaluation method using a charged particle beam of a charged particle beam apparatus including a charged particle optical system and a processing unit
  • charging is performed from at least two different directions.
  • the sample is irradiated with a charged particle beam, and the images obtained by irradiating the sample with the charged particle beam from at least two different directions are compared.
  • the pattern position deviation amount is measured, and the processing unit corrects the pattern position deviation amount based on the correction amount of the pattern position deviation amount depending on the beam deflection of the charged particle beam for moving the image acquisition position on the sample.
  • a pattern evaluation method characterized by the above, and further, an astigmatism difference amount, a focus position deviation amount, or both are calculated from the corrected pattern position deviation amount.
  • a pattern evaluation apparatus using a charged particle beam a charged particle optical system that irradiates a charged particle beam onto a sample, and a charged particle beam from at least two different directions. Compare the images obtained by irradiating the charged particle beam from at least two different directions based on the charged particle optical system conditions and the storage unit that holds the charged particle optical system conditions for irradiating And a beam deflection unit for deflecting the charged particle beam.
  • the processing unit corrects the amount of pattern displacement based on beam deflection for moving the image acquisition position on the sample. And the pattern correction amount is corrected using the calculated correction amount. Further, the processing unit calculates the charged particle from the pattern position shift amount corrected by the correction amount. Astigmatic hidden quantity of the beam or the focus position deviation amount, or to provide an arrangement for calculating both.
  • a correction amount of the pattern positional deviation amount between images depending on the beam deflection moving the image acquisition position is calculated, and the astigmatism difference amount or the focal position is calculated.
  • the processing unit can calculate errors according to parameters such as the acceleration voltage of the incident electrons, the sample height, and the tilt direction and tilt angle of the irradiated charged particle beam, so that no error occurs even under various use conditions.
  • the above problem can also be solved by having a control unit that feeds back to the beam deflection unit based on this correction amount.
  • an electron source a stage on which a sample is placed, a detector for detecting an electrical signal from the sample, the electron source, the stage, and the detector are provided.
  • An electron beam apparatus having a control operation unit that controls and creates image data based on an electric signal detected by the detector, wherein the control operation unit scans the electron beam emitted from the electron source and the sample
  • An incident angle / scanning interlock control unit for controlling an incident angle to the light source, and an electric power from the sample generated by the electron beam scanned while changing the incident angle to the sample by the incident angle / scanning interlock control unit.
  • An electron beam apparatus comprising: an unevenness determination calculation unit that determines unevenness on the surface of the sample using image data created based on a signal.
  • An electron source a stage on which the sample is placed; a detector that detects an electrical signal from the sample; a deflection unit that changes an incident angle of the electron beam emitted from the electron source to the sample; and the electron beam Accelerating means for accelerating, an image shift deflector for changing the irradiation range of the electron beam, an objective lens for converging the electron beam, and a control unit for controlling these, and an electric signal detected by the detector
  • the control calculation unit includes an incident angle of the electron beam, which is changed by the deflection unit, with respect to the sample, and the electron beam accelerated by the acceleration unit.
  • An electron beam apparatus comprising: an unevenness determination calculation unit that performs unevenness determination of a specific pattern of the sample from a plurality of image data having different incident angles of lines.
  • An electron source a stage on which the sample is placed; a detector that detects an electrical signal from the sample; a deflection unit that changes an incident angle of the electron beam emitted from the electron source to the sample; and the electron beam Accelerating means for accelerating, an image shift deflector for changing the irradiation range of the electron beam, an objective lens for converging the electron beam, and a control unit for controlling these, and an electric signal detected by the detector
  • the control calculation unit includes an incident angle of the electron beam, which is changed by the deflection unit, with respect to the sample, and the electron beam accelerated by the acceleration unit.
  • An electron beam apparatus including an unevenness determination calculation unit that performs unevenness determination.
  • An electron source a stage on which the sample is placed; a detector that detects an electrical signal from the sample; a deflection unit that changes an incident angle of the electron beam emitted from the electron source to the sample; and the electron beam Accelerating means for accelerating, an image shift deflector for changing the irradiation range of the electron beam, an objective lens for converging the electron beam, and a control unit for controlling these, and an electric signal detected by the detector
  • the control calculation unit includes an incident angle of the electron beam, which is changed by the deflection unit, with respect to the sample, and the electron beam accelerated by the acceleration unit.
  • a displacement profile estimation calculation unit for estimating the displacement amount, a scan of the electron beam emitted from the electron source, an incident angle to the sample, and a displacement amount estimated by the displacement profile estimation calculation unit are corrected.
  • An electron beam apparatus comprising: an unevenness determination calculation unit that determines unevenness of the surface of the sample using image data created based on an electrical signal from the sample.
  • An electron beam apparatus when one image is acquired, one or a plurality of images are acquired by changing the incident angle of the electron beam with respect to the sample, and the electron beam with respect to the sample is acquired from the image.
  • An electron beam apparatus comprising means for determining a relationship between an incident angle and a deviation amount of an electron beam irradiation position on the sample surface.
  • a plurality of images are obtained by changing the incident angle of the electron beam, and the side wall of the pattern is incident when the electron beam is inclined and incident among the patterns formed on the sample surface
  • a control unit that identifies the recorded shape of the sample by detecting the shape of the pattern that is not irradiated with the electron beam from another image and determines the unevenness of the specific pattern of the sample from the image.
  • An electron beam apparatus comprising: a control unit that performs unevenness determination of a specific pattern of a sample and adjustment of a focal position deviation using an image acquired by changing an incident angle of the electron beam.
  • the accuracy of focusing and astigmatism correction can be improved by improving the measurement accuracy of the focal position deviation amount and the astigmatism difference amount in the parallax method.
  • the speed of pattern dimension measurement with good measurement reproducibility can be improved as compared with the conventional method using contrast.
  • an electron beam apparatus that can determine the irregularities of the periodic pattern formed on the substrate in a short time.
  • an electron beam apparatus capable of determining unevenness under an arbitrary optical condition including an accelerating voltage, excitation of an objective lens, and positional deviation when the amount of deflection of a primary electron beam changes.
  • FIG. 3 is a schematic diagram of a focused reference state showing the principle of an astigmatism or focus correction method using beam tilt according to the first embodiment. It is a schematic diagram which shows the parallax before and behind the inclination in the case of FIG. 2A. It is a schematic diagram in the state where the focus shifted
  • FIG. 3 is a schematic diagram of a focused reference state showing the principle of an astigmatism or focus correction method using beam tilt according to the first embodiment. It is a schematic diagram which shows the parallax before and behind the inclination in the case of FIG. 2A. It is a schematic diagram in the state where the focus shifted
  • FIG. 4 is a projection view on a XY plane of beams inclined in four different directions according to the first embodiment. It is a flowchart (first half) figure of the automatic recipe concerning a 1st Example. It is a flowchart (latter half) figure of the automatic recipe concerning a 1st Example. It is a schematic diagram which shows the difference in the sample irradiation position before and behind the beam inclination depending on the deflection amount and the inclination direction before the beam inclination according to the first embodiment. It is a schematic diagram which shows the pattern position shift between the images before and after beam tilting due to the deflection amount before beam tilting according to the first embodiment.
  • FIG. 10 is a flowchart of automatic dimension measurement of a sample pattern according to Example 5.
  • FIG. 10 is a schematic diagram of a configuration of a storage unit and a control calculation unit of an electron microscope according to Example 6.
  • FIG. 10 is a flowchart of automatic dimension measurement of a sample pattern according to Example 6.
  • FIG. 10 is a schematic diagram of a configuration of a storage unit and a control calculation unit of an electron microscope according to Example 7.
  • FIG. 10 is a flowchart of automatic dimension measurement of a sample pattern according to Example 7.
  • FIG. 10 is a schematic diagram of a configuration of a storage unit and a control calculation unit of an electron microscope according to an eighth embodiment.
  • FIG. 10 is an explanatory diagram according to Example 8 and is a graph showing a relationship between a scanning position and a primary electron incident angle and a relationship between an estimated positional deviation amount of the scanning position.
  • FIG. 10 is a flowchart of automatic dimension measurement of a sample pattern according to Example 9.
  • FIG. 10 is a schematic diagram illustrating a relationship between a focus shift and a position shift according to the tenth embodiment.
  • a correction amount of a pattern misalignment error depending on the beam deflection amount and the tilt direction can be obtained.
  • the astigmatism difference and the defocus amount are calculated by reflecting in the parallax value. This makes it possible to perform high-speed astigmatism correction and focusing with high accuracy.
  • FIG. 1 is a schematic configuration diagram relating to a mirror part of a fine pattern evaluation apparatus for pattern dimension measurement using a charged particle beam according to the first embodiment.
  • the wafer 11 as a sample is in a state where it is transferred to a predetermined position in the vacuum sample chamber 12b immediately below the mirror body 12a.
  • the primary electron beam 15 emitted from the electron gun 14 is converted into a converging lens 16, an astigmatism corrector 19, and a deflector 9a.
  • the wafer 11 on the wafer holder 13 is irradiated through the deflector 9b and the objective lens 10.
  • the wafer holder 13 that holds the wafer 11 is applied with the retarding voltage 2 having a predetermined value output from the focus control unit 3 so that the incident energy of the electron beam on the sample wafer 11 can be adjusted to a desired value.
  • the retarding voltage 2 having a predetermined value output from the focus control unit 3 so that the incident energy of the electron beam on the sample wafer 11 can be adjusted to a desired value.
  • secondary electrons 17 generated from the sample wafer 11 enter the detector 18 and are detected as signals.
  • the detection signal that is the output of the detector 18 is input to the processing unit 5 or the control unit 8 by electrical connection, and is used for processing such as image creation. Used.
  • a two-dimensional image can be obtained from the detection signal by two-dimensionally scanning the primary electrons incident on the sample in this state by the first deflector 9b having two stages.
  • the scanning position in the first deflector can be electrically moved by a second deflector 9a having two stages (a deflector for deflecting the beam that moves the image acquisition position).
  • the focus control unit 3 controls the objective lens 10 or the retarding voltage 2 for focusing, and the astigmatism correction is not performed. Adjustment of the point corrector 19 is performed by the astigmatism corrector control unit 4, and a secondary electron image necessary for accurate evaluation of the fine pattern shape can be obtained.
  • Such a fine pattern evaluation apparatus is used in a semiconductor device manufacturing line, and in many cases, a pre-programmed automatic recipe is executed from the control unit 8 of the entire apparatus, so that measurement points on a wafer designated in the recipe are measured. It is possible to automatically acquire a specified pattern image existing in
  • 5 is a processing unit, a processing unit such as a central processing unit (Central Processing Unit (CPU)) that performs correction amount calculation described in detail later, 6 is a recording unit such as a memory, Reference numeral 7 denotes a light source optical system controller such as an electron gun 14, 9c and 9d denote deflectors 9a and 9b, respectively, and 70 denotes a display unit for displaying an image of the sample.
  • a processing unit such as a central processing unit (Central Processing Unit (CPU)) that performs correction amount calculation described in detail later
  • 6 is a recording unit such as a memory
  • Reference numeral 7 denotes a light source optical system controller such as an electron gun 14
  • 9c and 9d denote deflectors 9a and 9b, respectively
  • 70 denotes a display unit for displaying an image of the sample.
  • an output unit such as a printer and an input unit such as a keyboard and a mouse are connected to the control unit 8 as necessary.
  • control unit 8 includes the processing unit 5, or the focus control unit 3, the astigmatism corrector control unit 4, the light source optical system control unit 7, the first and second deflection control units 9c and 9d.
  • processing unit 5 and the recording unit 6 may be referred to as a control unit.
  • the processing unit 5, the recording unit 6, the control unit 8, and the display unit 70 can be realized by a normal computer such as a personal computer (PC) equipped with a CPU, a memory, a display device, and the like.
  • PC personal computer
  • the stored programs such as various calculation processes and control processes are executed.
  • FIGS. 2A, 2B, 2C, and 2D An astigmatism or focus correction method using parallax when the beam is tilted will be described with reference to FIGS. 2A, 2B, 2C, and 2D.
  • the irradiation position on the sample surface 20 of the beam in FIG. 2A is expressed using two orthogonal axes on the sample surface, the X axis and the Y axis (X and Y are the same as the wafer stage movement axis), and the reference position It is assumed that the focal point and astigmatism of the beam 21 before tilting are aligned with respect to the point A.
  • a different deflection amount is superimposed on each of the two stage deflectors of the second deflector 9a, thereby tilting the beam 21 in the X direction and irradiating the same position point A as before tilting.
  • the angle amount by which the beam is inclined is 25, and the deflection amounts in the X direction and the Y direction are recorded in the recording unit 6 of the apparatus. In this case, the beam irradiates the same position point A on the sample surface before and after tilting.
  • parallax ⁇ X is generated between the patterns of the image 21b and the image 22b. If the parallax ⁇ X between the two images of the non-tilted beam and the tilted beam is measured in this way, the focal position deviation amount ⁇ d can be calculated from the tilt angle of the beam and the parallax ⁇ X. This is the basic principle of detection of focal position deviation by the parallax method.
  • the focal position deviation amount ⁇ d parallax ⁇ (1000 / tilt angle (mrad)) ⁇ ⁇ ⁇ (Formula 1) ⁇ Parallax x 33
  • the focal position shift is an observation image obtained by irradiating from at least two directions, in this case, the vertical direction and one direction Focusing is possible by using two observation images obtained by tilting. Further, by averaging the focal position shift amounts obtained by tilting in a plurality of directions (for example, tilting in a direction parallel to the Y axis), more accurate focusing can be performed.
  • the tilt direction is indicated by a counterclockwise angle, for example, in addition to the beam tilt (0 degree azimuth) in the X-axis direction described above, the 90-degree azimuth and 225-degree azimuth corresponding to the tilt in the Y-axis direction It is preferable to use an inclination at a 315 degree azimuth.
  • the parallax of each inclination direction is D0, D90, D225, D315,
  • the value of the astigmatism between the 0 degree tilt direction and the 90 degree tilt direction is D0 ⁇ 33-D90 ⁇ 33---(Formula 2)
  • the value of astigmatism between 225 and 315 degrees D225 ⁇ 33-D315 ⁇ 33---(Formula 3) It can be asked.
  • the astigmatic difference value obtained by the parallax method is obtained in advance by obtaining a graph showing the correlation between the astigmatic difference value and the correction amount of the astigmatism corrector that can be obtained by the conventional astigmatism correction method.
  • aberration correction can be performed.
  • the wafer stored in a sealed container called FOUP Front-Opening Unified ⁇ ⁇ Pod
  • FOUP Front-Opening Unified ⁇ ⁇ Pod
  • the lid of the FOUP cassette is automatically opened, and the measurement wafer is transferred from the cassette to the wafer holder 13 moved to the load lock chamber 12c of FIG. 1 by the transfer arm.
  • the measurement wafer is introduced onto the stage of the vacuum sample chamber 12b while being mounted on the wafer holder 13 (LOAD 40).
  • LOAD 40 stage of the vacuum sample chamber
  • wafer alignment (41) is executed using the pattern on the wafer.
  • the Z sensor When the stage is moved (42) in the vicinity of the length measurement pattern position registered in advance in the recipe, the Z sensor is automatically operated (43) to calculate the sample height, and the value is transferred to the processing unit 5.
  • the current value of the objective lens is automatically set in order to adjust (44) the focus of the secondary electron image according to the working distance that is the distance between the lens main surface and the upper end of the sample, the sample height, and the like.
  • an image is acquired at a relatively low magnification (45), and the position of the alignment pattern is read from the image (46) to detect the relative position of the beam and the wafer.
  • the beam is deflected by the second deflector 9a so that a pattern for measuring the focal position deviation and astigmatism difference is at the center of the screen (47).
  • the two-dimensional information of the deflection amount here is transferred to the processing unit 5.
  • the second deflector 9a since the sample stage moves mechanically, there is a limit to the accuracy of the actual arrival position with respect to the target movement amount.
  • the target pattern In order to put the target pattern into the imaging field of view at a high magnification, it can be used in combination with an electric beam moving means. is necessary.
  • the measurement of the focal position deviation or astigmatism difference is performed with the length measurement pattern, the pattern is damaged before the image for length measurement is acquired, so that correct measurement cannot be performed. Therefore, it is necessary to measure the focal position shift and astigmatism difference with another pattern closest to the pattern to be measured by the electric beam moving means.
  • the beam deflection for moving the image acquisition position is essential in the CDSEM.
  • the SEM image of the focus / astigmatism measurement pattern is acquired (48), the direction (inclination) in which the beam is determined by the second deflector 9a in accordance with the inclination condition that is the optical system condition stored in the recording unit 6 Inclined (angle and orientation) (49), and further images were acquired.
  • tilt images of four conditions are acquired by changing the direction at the same tilt angle (50).
  • the pattern position deviation amount is corrected according to the correction amount (position deviation correction value) calculated by the processing unit 5 (52). Based on these data, the focal position deviation amount and the astigmatism difference amount are calculated (54).
  • the focus position deviation and the astigmatism difference can be corrected.
  • the beam is moved to the position of the pattern to be measured (56), and an image is acquired at a high magnification (5 7) This makes it possible to perform highly accurate length measurement (measurement of pattern dimensions).
  • the stage is moved to the vicinity of the next measurement position (58).
  • the beam irradiation position of the beam on the sample surface 50 is expressed using two orthogonal axes on the sample surface, the X axis and the Y axis (X and Y are the same as the wafer stage movement axis).
  • FIG. 6A shows a case where the beam 61 before tilting and the beam 62 after tilting both irradiate the point A as the reference position in a state where the focal point and astigmatism are on the wafer surface and the beam is not deflected. Yes.
  • the positions of the patterns in the images are the same even if they are compared.
  • the value of the pattern position deviation amount ( ⁇ X, ⁇ Y) on the image depends on the deflection amount. If the deflection amount is large, the value may be several tens of nm.
  • the deflection amount is large, the value may be several tens of nm.
  • a graph 71 in FIG. 7A shows the beam deflection amount dependency of the pattern position shift amount ( ⁇ X, ⁇ Y) when the acceleration voltage is 800 V and the tilt is in the 0-degree direction.
  • This deflection amount-dependent pattern positional deviation amount becomes an error when measuring a focal positional deviation or astigmatism difference in the parallax method.
  • the tilt angle is 30 mrad, it is 670 nm when converted to an error defocus error with a positional deviation amount of 20 nm, and the error cannot be ignored.
  • the beam deflection amount dependency of the error of the positional deviation amount it is possible to realize accurate measurement of the focal positional deviation and astigmatism difference.
  • ⁇ X a1 * X ⁇ 2 + b1 * X * Y + c1 * Y ⁇ 2 + d1 * X + e1 * Y + f1 ---(Formula 4)
  • ⁇ Y a2 * X ⁇ 2 + b2 * X * Y + c2 * Y ⁇ 2 + d2 * X + e2 * Y + f2 ---(Formula 5) It becomes.
  • a1, a2, b1, b2, c1, c2, d1, d2, e1, e2, f1, and f2 are constants.
  • the deflection amount (X, Y) may vary from measurement point to measurement point, and it is necessary to be able to calculate the pattern position deviation amount ( ⁇ X, ⁇ Y) with an arbitrary deflection amount (X, Y). Therefore, even in the table lookup method, interpolation processing is required for the deflection amounts (X, Y) that are not in the table.
  • the reason why the second-order polynomial is used in this embodiment is considered that the cause of this error is caused by off-axis distortion in the objective lens. This is because it can be expressed by the following polynomial.
  • a graph 72 in FIG. 7B shows a case where the same acceleration voltage of 800 V is inclined in the direction of 135 degrees. Although the dependency according to the polynomial of X and Y similar to FIG. 7A is shown, it is clearly different from FIG. 7A. That is, the correction according to the present invention depends on both the beam deflection for moving the image acquisition position and the condition for tilting the beam. Therefore, when using a plurality of inclined beams as in the astigmatic difference measurement, it is necessary for the recording unit 6 to store constants corresponding to each of them.
  • the recording unit 6 stores a table 80 in which constants a1, a2, b1, and the like corresponding to conditions such as an acceleration voltage 81, an optical mode 82, and a tilt azimuth 83 to be used are set as shown in FIG. become. If the beam trajectory changes due to exchange of the electron source or aperture, this constant may change, and this constant needs to be updated during regular maintenance. However, updating the constants for all usable conditions is not practical in consideration of the measurement time, and the constants are updated only for the conditions to be used.
  • a table 90 showing whether or not the parallax method can be used depending on the measurement conditions shown in FIG. 9A can be displayed on the display unit 70.
  • the acceleration voltage 91 is 800V
  • the optical mode 92 is the high resolution mode
  • the coefficient is adjusted.
  • focus and astigmatism correction can be performed, but the focus depth is 800V. This indicates that the mode cannot be corrected.
  • both modes can be used at 500 V, as shown in the remarks column 94, only the focus correction is possible in the depth of focus mode.
  • a display function that can determine whether the focus or astigmatism correction function according to the present invention is possible or not depending on the use conditions of the apparatus is an effective function. Further, in this embodiment, when a condition that cannot be adjusted is selected, a warning display 95 in FIG. 9B is displayed.
  • the correction amount of the pattern positional deviation error depending on the beam deflection amount and the tilt direction is set to charged particles. This is reflected in the beam tilt condition which is an optical system condition.
  • the beam tilt condition which is an optical system condition.
  • the steps (100 to 108) before the beam is tilted are the same as the steps (40 to 48) of the first embodiment.
  • This is a new charged particle optical system condition created by feeding back the amount of correction of pattern position deviation depending on the beam deflection amount and the tilt direction when the beam is tilted for measurement of astigmatism and focal position deviation amount.
  • the second deflector 9a of FIG. 1 tilts the beam in a predetermined direction (tilt angle and azimuth) to acquire an image.
  • the tilt condition is obtained by adding a beam deflection amount corresponding to the correction amount of the pattern position deviation based on the tilt condition so far.
  • the pattern position shift depending on the beam deflection amount and the tilt direction is corrected.
  • an image is acquired (111), and the pattern position shift amount (parallax) before and after the beam tilt is measured (112). ).
  • the larger the correction amount the larger the parallax value. Therefore, it is necessary to reduce the magnification.
  • the pattern position shift amount depending on the beam deflection amount is further added, it is necessary to further reduce the magnification. Limiting the magnification itself is a demerit, and the size per pixel of the detector is fixed, so the smaller the magnification, the worse the measurement accuracy. It turns out to be advantageous.
  • the length of a 45 nm resist line was measured with a reproducibility of 0.35 nm. As a result, it was possible to improve the throughput when measuring 100 points on the wafer from the conventional 4 sheets per hour to 8 sheets per hour.
  • the correction amount of the pattern displacement error depending on the beam deflection amount and the tilt direction is reflected in the obtained parallax value.
  • the schematic configuration of the mirror portion of the measuring apparatus using the charged particle beam according to the third embodiment is the same as that shown in FIG.
  • astigmatism correction is not performed, and only focus correction is performed. This is an effective method for conductive samples (for example, silicon) in which astigmatism is unlikely to occur.
  • the focal position shift without astigmatism is an observation image obtained by irradiating from at least two directions because the focal plane changes only in the Z direction (direction perpendicular to X and Y), in this case the vertical direction. And two observation images obtained with one azimuth inclination can be used for focusing.
  • the length of a 30 nm polysilicon line was measured with a reproducibility of 0.25 nm using this example.
  • the throughput when measuring 100 points on the wafer could be improved from 8 sheets per hour including astigmatism correction to 9 sheets per hour.
  • the present invention is not limited to the CDSEM, and is automatically defocused or non-focused such as DRSEM (Defect Scanning Electron Microscope) for identifying defects on the wafer and SIM (Scanning Ion Microscope) excellent in surface measurement. It is clear that the present invention is widely effective for a scanning charged particle beam apparatus for correcting a point difference.
  • DRSEM Defect Scanning Electron Microscope
  • SIM Sccanning Ion Microscope
  • one of the means for solving the other problems described above is to change the incident angle of primary electrons continuously when acquiring one SEM image, and different incident angles within the same image.
  • This is an image acquisition method for acquiring an image in which the regions obtained in (1) are continuously connected.
  • the white band is continuously connected in the same image.
  • the white band corresponding to can be easily identified.
  • the required time is as short as about 30 ms.
  • Another means is an approximate expression that predicts the amount of misalignment using the acceleration voltage of the primary electrons, the excitation of the electrostatic or electromagnetic lens, and the deflection amount of the deflection means for deflecting the electron beam as parameters, in addition to the incident angle of the primary electrons.
  • the scanning electron microscope stores the correction table in the storage unit of the scanning electron microscope and corrects misalignment by moving the stage or controlling the image shift deflector when changing the incident angle.
  • the displacement of the electron beam irradiation position can be reduced to about several nanometers, and the white band corresponding to the same edge can be identified.
  • FIG. 17 The fourth embodiment will be described with reference to FIGS. 17, 18A, 18B, 19, 19, 20A, 20B, and 21.
  • FIG. 17 is a diagrammatic representation of FIGS. 17, 18A, 18B, 19, 19, 20A, 20B, and 21.
  • FIG. 17 is a block diagram showing the main components of the scanning electron microscope according to the fourth embodiment.
  • the primary electron beam 1702 emitted from the electron gun 1701 controlled by the electron gun control unit 1711 is converged and irradiated on the surface of the sample 1709 placed on the stage 1710.
  • the focus of the primary electron beam is adjusted by controlling the excitation of the objective lens 1708 by the objective lens control unit 1715 or by controlling the potential of the stage 1710 by the retarding voltage control unit 1716.
  • electrostatic or electromagnetic lenses other than the objective lens are omitted, but there may be one or more lenses for converging the primary electron beam other than the objective lens.
  • Secondary electrons 1704 generated from the sample surface by the irradiation of primary electrons are detected by the detector 1705.
  • the primary electrons can be scanned on the sample surface by controlling the scanning deflector 1707 by the scanning deflector control unit 1714. Further, by controlling the image shift deflector 1706 by the image shift deflector control unit 1713, the irradiation range of the primary electrons can be moved without moving the stage.
  • an alignment deflector 1703 for deflecting primary electrons is provided separately from the deflector, and the incident angle of the primary electrons can be changed by controlling the deflection amount by the alignment deflector control unit 1712.
  • the incident angle of the primary electrons may be changed by a method using a deflector other than the alignment deflector or a method of tilting the stage or column 1720.
  • deflectors other than the image shift deflector, alignment deflector, and scanning deflector are omitted, but there may be a deflector that deflects primary electrons for other purposes. Two or more deflectors may be provided.
  • the control calculation unit 1718 of the entire apparatus sends a control signal to each control unit. Further, the secondary electron signal intensity obtained by the detector 1705 is displayed on the display unit 1719 in accordance with a control signal to the scan changer control unit 1714. Thereby, an SEM image can be obtained.
  • Reference numeral 317 denotes a recording unit for recording image data
  • reference numeral 1721 denotes an incident angle profile recording area
  • reference numeral 1722 denotes an incident angle / scanning interlock control unit
  • reference numeral 1723 denotes an unevenness determination calculation unit.
  • FIG. 18A shows an example of a method of scanning the primary electron beam 1702 when observing a region (primary electron beam irradiation region) 1801 on the sample surface. This observation region 1801 is called a visual field.
  • FIG. 18A shows a state in which the scanning position is moved in the order of lines 1803, 1804, and 1805, and primary electrons are irradiated to the position (X, Y) in the field of view.
  • 18A illustrates a scanning method in which the entire field of view is repeatedly scanned while shifting from left to right (scanning in the X direction) little by little from top to bottom (Y direction).
  • other scanning methods are used. It may be used.
  • the scanning direction during scanning in the X direction may be reversed (from right to left), or the scanning direction may be changed for each line.
  • the order of the lines to be scanned may be changed.
  • the secondary electrons generated from the sample by the primary electron irradiation are detected by the detector.
  • the detected secondary electron signal intensity is displayed as the brightness of the pixel in the image display unit corresponding to the scanning position, an SEM image 1806 shown in FIG. 18B is obtained.
  • Line in the SEM image 1806 1807,1808,1809 are Zorezore corresponds to the scanning lines 1803,1804,1805 on the specimen, the position of the SEM image 1806 (I X, I Y) is within the field of view Corresponds to the position (X, Y).
  • FIG. 18B a SEM image with a small total number of images is schematically shown for simplicity, but in practice, the number of pixels on one side is arbitrary, and for example, 512 pixels are used.
  • an image is acquired while changing the primary electron incident angle using the incident angle / scanning interlock control unit 1722 according to the incident angle data stored in the incident angle profile recording area 1721 in the recording unit 1717. To do.
  • FIG. 19 shows a flowchart of the above. Hereinafter, each step of this flowchart will be described.
  • an incident angle profile is determined and stored in the incident angle profile recording area 1721.
  • the incident angle profile is a relationship between an electron beam scanning position in the Y direction and a primary electron incident angle when acquiring an image for performing unevenness determination as shown in FIG. 20A.
  • the incident angle profile may be set to be automatically determined so as to obtain the optimum tilt angle according to the period of the pattern to be measured, the acceleration voltage of the primary electrons, and the observation magnification, or the optimum tilt angle. May be used each time, the same incident angle profile may be used. Alternatively, the operator of the apparatus may determine manually.
  • step 1902 the irradiation position of the primary electrons is moved using a stage or an image shift deflector to a position where the sample is to be measured.
  • step 1903 referring to the incident angle profile previously recorded, the incident angle / scanning interlock control unit 1722 sends a control signal to the alignment deflector control unit 1712 and the scan deflector control unit 1714, so that the primary The SEM image is acquired by scanning the primary electron beam while changing the incident angle of electrons.
  • an SEM image as schematically shown in FIG. 20B is obtained.
  • the upper part of this SEM image is an image area acquired by making primary electrons incident perpendicularly to the sample surface (incident angle: 0 °), and the central part is an image area acquired while changing the incident angle,
  • the lower part is an image area obtained by tilting at a constant angle, in this embodiment, 2 °.
  • the white band width changes with the inclination of the primary electron incident angle, and at the same time, the primary electron irradiation position shifts and the white band is slanted.
  • the change range of the incident angle is set to 0 ° to 2 °, but the present invention is not limited to this. It is sufficient if there is a difference in the width of the white band, and the maximum incident angle can be set to a value exceeding 0.1 °, for example. However, in practice, the maximum incident angle is preferably 1 ° to 2 °.
  • the unevenness determination image acquired by the above method does not need to be clear, and it is sufficient if the change in the white band can be determined. Therefore, one image may be acquired.
  • the S / N of the image may be improved by acquiring and integrating a plurality of images.
  • the acquisition time of one image is usually 1 second or less, it is necessary to control the primary electron incident angle at a high speed.
  • the response speed of the alignment deflector is not sufficient, so that the primary electron incident angle is
  • the scanning speed may be slowed to increase the image acquisition time.
  • the primary electron beam may be scanned in the Y direction.
  • the incident angle profile has a relationship between the scanning position in the X direction and the primary electron incident angle.
  • step 1904 the unevenness determination is performed by analyzing the SEM image obtained in step 1903 by the unevenness determination calculation unit 1723 while referring to the incident angle profile stored in the storage area 1721.
  • the same region of the sample is selected from the white band of the image region (upper image) obtained by allowing primary electrons to enter perpendicularly and the image region (lower image) obtained by oblique incidence.
  • the white band corresponding to the edge is identified.
  • white bands corresponding to the same edge of the sample are connected, and identification is possible by the following method.
  • FIG. 21 the secondary electron signal intensity in each horizontal line of the obtained SEM image is plotted. Hereinafter, this is called a secondary electron profile. In the figure, only the secondary electron profiles of some horizontal lines are shown.
  • the peak position of the secondary electron profile of each line is obtained.
  • the S / N may be improved by averaging the secondary electron profiles of a plurality of lines. Further, instead of using the secondary electron profiles of all the lines, some lines may be extracted and only the secondary electron profiles may be used as shown in FIG.
  • peaks corresponding to the same edge can be determined at the top and bottom of the image as indicated by the circles in FIG.
  • the unevenness is determined. Specifically, the peak widths of the peaks corresponding to the same edge in the secondary electron profile of the normal incidence region (upper image) and the oblique incidence region (lower image) are compared.
  • the peak width in the peaked circle in FIG. 21 is larger in the oblique incidence region, and it can be seen that the primary electrons hit the side wall at the oblique incidence. That is, it can be determined that the left side (the side where the primary electrons are inclined) of the peak of the circle is a recess.
  • an increase in peak intensity may be used as an index. Both of them may be used.
  • the unevenness determination is similarly performed on a plurality of adjacent edges, and the sample pattern of each edge is determined. The accuracy of determination can also be improved in consideration of repetition of the concave and convex portions.
  • a half width at which the peak intensity is 50% of the maximum value may be used, or a standard determined separately may be used instead of 50%.
  • a Gaussian function or the like may be used to determine the peak width and peak intensity, even when the S / N of the image is bad and there is a large noise in the secondary electron profile, the influence can be reduced.
  • the different peaks in the secondary electron profile of the same line in the oblique incident region are compared. It is also possible to judge unevenness. In that case, the peak width or intensity in the secondary electron profile alternately repeats the magnitude, and it can be determined that the direction of the primary electron incident angle is a recess when viewed from a peak having a large peak width (or a large peak intensity). .
  • the peaks indicated by the arrows in FIG. 21 are compared, it is determined that the first and third peak widths from the left are large, and the left side (side where the primary electron incident angle is inclined) is a recess. it can.
  • the incident angle profile illustrated in FIG. 20A is merely an example, and as long as the primary electron incident angle changes from a certain incident angle to a different incident angle, the concave / convex determination can be performed with any incident angle profile.
  • the profile may be configured only in a region where the primary electron incident angle changes, such as the central region in FIG. 20A, or may not be changed between two values having different incident angles as in FIG. It may vary between two or more values. Further, the change in the incident angle may not be unidirectional.
  • unevenness determination whether or not the unevenness determination is successful may be determined, and if the unevenness determination fails, a conditional branch may be set so that the incident angle profile is changed and the unevenness determination is attempted again. Or you may set a branch so that it may move to a measurement point next, without measuring at the measurement point. By performing such an error process, it is possible to improve the reliability of the dimension measurement result after the unevenness determination.
  • the following methods can be considered to determine the success or failure of the unevenness determination.
  • step 1905 the primary electron incident angle is made vertical, and an SEM image for dimension measurement is acquired. Since the upper part of the SEM image of FIG. 20B is acquired by vertically incident primary electrons, the SEM image for dimension measurement is acquired with the primary electron incident angle vertical without changing the sample position. As in 16 of 1601, an image in which four white bands are arranged is obtained.
  • the second white band from the left corresponds to the peak marked in FIG. 21.
  • the left side of the second white band from the left is the sample. It can be determined that the formed pattern is a recess, that is, a space. If necessary, the result of the unevenness determination may be displayed on the display unit separately from the SEM image, or a marker indicating unevenness may be displayed in the SEM image.
  • the unevenness determination result may be stored separately from the image data, or the image data with the marker described above may be stored. This makes it possible to refer to the result of the unevenness determination later.
  • the dimension of the target pattern is measured (1906). For example, when it is desired to measure the line width, the distance between the second white band and the third white band from the left may be measured.
  • a conventionally used algorithm may be used as an algorithm for measuring the white band interval to obtain the line width. The same applies to the space width measurement.
  • the reason why the primary electron is perpendicularly incident and the image is separately acquired is that the SEM image acquired by the normal incidence has higher resolution than the SEM image acquired by the oblique incidence, and the highly accurate dimension measurement can be performed.
  • the unevenness of the sample pattern can be easily determined, and the dimensions of the line and space pattern can be automatically measured.
  • the fourth embodiment it is possible to provide an electron beam apparatus capable of determining the irregularities of the periodic pattern formed on the substrate in a short time.
  • the fifth embodiment will be described with reference to FIGS. 20A, 20B and FIG.
  • the matters described in the fourth embodiment and not described in the present embodiment are the same as those in the fourth embodiment.
  • FIG. 22 is a flowchart different from that of the fourth embodiment when the dimension measurement of the line and space pattern is performed using the present embodiment.
  • Example 4 was a method of acquiring an SEM image for measuring pattern dimensions separately from the SEM image used for unevenness determination.
  • the present embodiment is a method of measuring pattern dimensions using an image used for unevenness determination.
  • a partial region of the SEM image used for the unevenness determination is obtained by vertically entering primary electrons.
  • the dimension measurement of the pattern is performed in the image area obtained by vertically incident primary electrons in the obtained image.
  • the incident angle profile of FIG. 20A illustrated in Example 4 includes a normal incidence region, and can also be used in this example. Therefore, according to this incident angle profile, scanning is performed while changing the primary electron incident angle using the incident angle / scanning interlock control unit in the same manner as in Example 4, and an SEM image is obtained, as shown in FIG. 20B. An example of measuring the line width dimension using an SEM image will be described.
  • Steps 2201 and 2202 are the same as 1901 and 1902 in the fourth embodiment.
  • Step 2203 when an SEM image is acquired, which region in the image is a region where primary electrons are acquired at normal incidence is recorded. This can be done by storing the incident angle profile in the incident angle profile recording area so that it can be referred to later.
  • the normal incident area may be indicated only by image data by recording a marker indicating the normal incident area in an image stored in the image recording area, or the normal incident area is recorded along with each image data. It is also possible to save the dedicated data.
  • the upper part is an area obtained by causing primary electrons to enter perpendicularly, and this area is stored so that it can be referred to later if it is a perpendicular incidence area.
  • step 2204 as in step 1904, the unevenness determination calculation unit performs unevenness determination, and in step 2205, the dimension of the target pattern is measured.
  • a portion between the second white band and the third white band from the right is a convex portion, that is, a line. Therefore, when measuring the line width, it is only necessary to measure the interval between the white bands on both sides of the portion determined to be a line in the image region in which the primary electron incident angle is stored in advance.
  • the line width can be measured by measuring the white band interval of the region 2001 surrounded by the solid line in FIG. 20B.
  • an electron beam apparatus capable of determining the irregularities of the periodic pattern formed on the substrate in a short time. Further, it is possible to provide an electron beam apparatus that can perform unevenness determination and dimension measurement only by acquiring one SEM image, and can further improve the throughput.
  • Example 6 will be described with reference to FIGS. In addition, it describes in Example 4 and Example 5, and the matter which is not described in a present Example is the same as them.
  • This example is an example in which the unevenness determination is performed by a method different from the method described in the fourth and fifth examples.
  • the primary electron irradiation angle is estimated from the incident angle of the primary electrons, the acceleration voltage of the primary electrons, the excitation of the objective lens, the deflection amount of the image shift deflector, and the primary electron incident angle is changed.
  • the irradiation position of the primary electrons is corrected by the estimated positional deviation amount.
  • a plurality of images having different primary electron incident angles are acquired, and these images are compared to determine unevenness, and the dimensions of the target pattern are measured.
  • FIG. 23 a configuration in which the control calculation unit and the recording unit of the entire apparatus are changed as shown in FIG. 23 in the configuration of FIG.
  • the scanning electron microscope having the configuration shown in FIGS. 17 and 23 is used to perform pattern unevenness determination at a plurality of points on the semiconductor wafer on which the line and space pattern is formed. It is a flowchart at the time of measuring a width
  • step 2401 the irradiation position of the primary electrons is moved to a location where the sample is to be measured using a stage or an image shift deflector.
  • step 2402 primary electrons are vertically incident to acquire an SEM image. This is image 1.
  • step 2403 using the position estimation calculation unit, the acceleration voltage of the primary electrons, the excitation of the objective lens, the deflection amount of the image shift deflector, and the tilt angle of the primary electrons tilted in the next step are stored in the recording unit. Substituting approximate displacement equation Substituting into the approximate equation stored in the recording area, the estimated value of the displacement amount of the primary electron irradiation position is calculated.
  • a value stored in the storage unit may be used as the inclination angle of the primary electrons, or an input window may be displayed on the display unit and the operator may input the tilt angle.
  • a correction table describing the amount of misalignment under various conditions is stored in the storage unit, and a method of referring to it is used. May be.
  • step 2404 the alignment deflector is controlled to incline the primary electron incident angle by a set angle, and the positional deviation correction control unit images to deflect the primary electron beam by an amount obtained by reversing the estimated positional deviation amount.
  • a control signal is sent to the shift deflector controller, and the primary electron irradiation position is moved so as to cancel out the positional deviation. Note that the offset of the estimated positional deviation may be canceled by moving the stage.
  • step 2405 an SEM image is acquired in a state where the primary electrons are obliquely incident on the sample. This is image 2.
  • step 2406 matching is performed between the image 1 acquired by vertically incident primary electrons and the image 2 acquired by inclining incident.
  • Image 1 and image 2 have almost no misalignment because the misalignment correction is performed. Therefore, white bands corresponding to the same edge can be identified by matching.
  • step 2407 the unevenness of the sample pattern in the image 1 is determined by the method described in the fourth embodiment.
  • the white band width in the image 2 acquired by tilting the primary electrons is thicker than the white band width in the image 1 acquired by vertically incident primary electrons.
  • the primary electrons hit the side wall of the edge corresponding to the white band during oblique incidence. That is, it can be determined that the side where the primary electrons are inclined as viewed from the white band is a recess.
  • an increase in peak intensity may be used as an index, or both of them may be used.
  • the unevenness determination is performed on a plurality of adjacent edges in the same manner. Considering that the concave and convex portions of the sample pattern are repeated, the determination accuracy can be improved.
  • the white band width or peak intensity alternately alternates in magnitude, and it can be determined that the side where the primary electron incident angle is inclined is a recess when viewed from a white band having a large white band width (or a large peak intensity). . Since there is almost no deviation of the primary electron irradiation position between the image 1 and the image 2, if the unevenness can be determined in the image 2, the unevenness of the sample pattern in the image 1 can also be determined.
  • the unevenness determination is performed in image 1 in this way, it can be determined which part of image 1 corresponds to the line of the sample pattern and which part corresponds to the space, and the dimension of the target pattern can be measured in step 2408. .
  • step 2409 the change of the primary electron incident angle and the positional deviation correction performed in step 2404 are canceled. This completes one point of measurement.
  • an electron beam apparatus capable of determining the irregularities of the periodic pattern formed on the substrate in a short time. Moreover, the electron beam apparatus which can perform uneven
  • the amount of misalignment is estimated and the image shift deflector is controlled so as to cancel out the misalignment.
  • no correction is performed. Instead, the amount of misalignment is taken into account when matching the image 1 acquired by vertically entering the primary electrons with the image 2 acquired by being inclined and incident.
  • FIG. 26 is a flowchart of another embodiment for estimating the shift amount of the primary electron irradiation position. Below, each step of this flowchart is demonstrated.
  • Steps 2601, 2602, and S2603 are the same as steps 2401, 2402, and 2403 in the sixth embodiment.
  • the image 2 is acquired by changing the primary electron incident angle without performing positional deviation correction.
  • the positional deviation correction matching calculation unit is used to perform matching between image 1 and image 2. At this time, matching is performed in consideration of the positional deviation estimated in step S2603.
  • matching is performed after performing image processing for moving the image by the estimated displacement amount.
  • the white band that should be matched with a specific white band in one image is determined from several white bands in the other image, the difference in position on the image is the largest in the estimated misregistration amount. You may use the method of selecting a close thing.
  • step 2606 the unevenness is determined in step 2606, and the dimension of the target pattern is measured in step 2607. Finally, in step 2608, the primary electron incident angle is returned to the vertical direction to complete one point measurement.
  • an electron beam apparatus capable of determining the irregularities of the periodic pattern formed on the substrate in a short time. Moreover, the electron beam apparatus which can perform uneven
  • This example is a method of using the positional deviation correction method described in Example 6 together when acquiring one SEM image while continuously changing the primary electron incident angle in Examples 4 and 5.
  • the change amount of the primary electron incident angle is small, the change in the peak width and the yes peak intensity shown in FIG. 21 also becomes small, and as a result, the accuracy of the unevenness determination deteriorates.
  • a threshold value is provided for the amount of change in peak width or peak intensity to determine the success or failure of the unevenness determination, the success rate decreases.
  • the movement of the pattern on the image accompanying the change in the incident angle can be greatly reduced by correcting the displacement of the primary electron irradiation position by the method described in the sixth embodiment.
  • the configuration includes a quantity profile estimation calculation unit 2702 and an incident angle / image shift / scanning interlock control unit 2703.
  • a step of estimating a positional deviation amount profile is inserted before Step 1903, and in the case of Example 5, before Step 2203.
  • the positional deviation amount profile is a positional deviation amount (positional deviation) at each scanning position as shown on the right side of FIG.
  • a positional deviation amount profile estimation calculation unit 2702 is used to calculate a positional deviation amount profile from the incident angle profile stored in the incident angle profile recording unit and the approximate expression stored in the positional deviation approximate expression recording area. Save in the volume profile recording area.
  • step 1903 after the estimation of the positional deviation amount, the incident angle profile and the positional deviation amount profile stored in advance are referred to, and the incident angle / image shift / scanning interlock controller controls the alignment deflector.
  • the primary electron incident angle is changed according to the incident angle profile while scanning the primary electron beam, and at the same time, the positional deviation amount profile and the positive / negative
  • the primary electron beam is deflected by the inverted amount to correct the positional deviation.
  • an electron beam apparatus capable of determining the irregularities of the periodic pattern formed on the substrate in a short time. Moreover, the electron beam apparatus which can perform uneven
  • FIG. 29 and 30 A ninth embodiment will be described with reference to FIGS. 29 and 30.
  • FIG. The matters described in any of Examples 4 to 8 and not described in this example are the same as those described above.
  • This example is a method that uses the roughness present in the sample.
  • An actual sample has edge roughness in a direction perpendicular to the pattern period.
  • the actual line pattern has roughness called line edge roughness in the direction in which the line extends.
  • Such roughness is random and varies from edge to edge.
  • the roughness of the line is also reflected in the shape of the white band in the SEM image as shown on the lower side of FIG. Therefore, when comparing an SEM image acquired by making primary electrons vertically incident and an SEM image obtained by making it incident obliquely, a white band corresponding to the same edge is identified by selecting a white band having the same roughness. Can do.
  • FIG. 30 is a flowchart for performing unevenness determination using roughness at a plurality of points on a semiconductor wafer on which a line and space pattern is formed, and automatically measuring the width of the line pattern or space pattern. Below, each step of this flowchart is demonstrated.
  • Step 3001 the irradiation position of the primary electrons is moved to the place where measurement is desired in Step 3001.
  • step 3002 primary electrons are vertically incident to acquire an SEM image. This is image 1.
  • step 3003 primary electrons are incident obliquely to acquire an SEM image. This is image 2.
  • step S3004 unevenness determination is performed on image 2.
  • the unevenness determination uses a method of comparing adjacent white bands in an image (image 2) acquired by obliquely entering primary electrons among the methods described in the sixth embodiment.
  • white band matching is performed in step S3005.
  • one of the white bands corresponding to the edge where the primary electrons do not hit the side of the pattern when the primary electrons are incident obliquely that is, the white band having the narrower white band width (or the smaller peak intensity).
  • the white band of the image 1 that has the best match with the roughness is determined from the white bands of the image 1.
  • the unevenness determination in the image 1 can be performed.
  • the edge where the primary electrons do not hit the side surface of the pattern when the primary electrons are obliquely incident is selected for the following reason.
  • the roughness of the highest part (top) of the pattern is mainly reflected in the white band of the SEM image. Even when the primary electron incident angle is tilted in a direction in which the primary electrons do not hit the side wall of the pattern, the roughness of the top of the pattern is also reflected in the white band.
  • step 3006 the dimension of the target pattern is measured. it can.
  • the positional deviation correction method described in Embodiment 6 may be used in combination.
  • the amount of misalignment between image 1 and image 2 is large, or when the magnification is high, the overlapping of the imaging areas of image 1 and image 2 becomes small or disappears completely, so both images are captured. There may be no white band. In that case, accurate identification of the white band becomes impossible in step 3005.
  • a misregistration correction step corresponding to steps 2403 and 2404 may be inserted before step 3003, and a correction cancellation step of step 2409 may be inserted after step 3006.
  • an electron beam apparatus capable of determining the irregularities of the periodic pattern formed on the substrate in a short time. Moreover, the electron beam apparatus which can perform uneven
  • the image used for the unevenness determination is also used for focus correction.
  • focus correction is performed using the fact that the image positional deviation amount is linearly related to the focal deviation amount.
  • the normal focus correction method takes a long time because it acquires a plurality of SEM images while changing the objective lens current and the retarding voltage and compares them to obtain the in-focus condition.
  • the defocus amount L can be obtained using the SEM image for performing the unevenness determination. Then, using the relationship between the defocus amount obtained in advance and the change amount of excitation of the objective lens, the change amount of excitation of the objective lens necessary for correcting the defocus amount L is obtained, and the control unit of the objective lens You can adjust the focus.
  • focus adjustment may be performed by controlling the retarding voltage instead of controlling the excitation of the objective lens.
  • an SEM image for measuring the pattern dimension is acquired, and the dimension of the target pattern is measured.
  • focus adjustment is indispensable. In this embodiment, since focus adjustment can be performed using an image for determining unevenness, it is not necessary to acquire a new image only for focus adjustment, and throughput can be improved.
  • an electron beam apparatus capable of determining the irregularities of the periodic pattern formed on the substrate in a short time.
  • the electron beam apparatus which can perform uneven
  • a high-throughput electron beam apparatus can be provided.
  • the present invention scans a charged particle beam on a sample surface and detects secondary charged particles or reflected particles generated from the sample, thereby performing a two-dimensional scanning that represents the shape and dimensions of a fine pattern formed on the sample surface. This is useful as a fine pattern evaluation technique for obtaining an image. Further, it is useful as an apparatus for observing the shape of a sample using an electron beam, particularly an electron beam apparatus that can easily determine the unevenness of the sample surface.
  • Image shift deflector control unit 1714 ... Scanning deflector control unit, 1715 ... Objective lens control unit, 1716 ... Retarding voltage control unit, 1717 ... Recording unit, 1718 ... Control calculation unit of entire apparatus, 1719 ... Display unit, 1720 ... Column, 1721 ... Incident angle profile recording region, 1722 ... Incident angle / scanning interlock control unit, 1723 ... Concavity and convexity determination calculation unit, 1801 ... Primary Electron irradiation region, 1803 to 1805... Order in which primary electrons are scanned, 1806... SEM image, 1807 to 1809 .. Order in which SEM image is formed, 2001. Approximate expression recording area, 2302...
  • Misregistration estimation calculation unit 2303... Misregistration correction control unit, 2501 Positional deviation correcting matching calculator, 2701 ... positional deviation amount profile recording area, 2702 ... positional displacement amount profile estimation calculation unit, 2703 ... incident angle image shift scan interlocking controller.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 ビームの傾斜による視差を利用して試料表面の凹凸判定をし、寸法測定を行うパターン評価装置において、画像取得位置を移動するためのビーム偏向量に依存する位置ずれ量で補正した後のビーム傾斜前後のパターン位置ずれ量から、非点較差量又は焦点位置ずれ量を算出する。また、1枚のSEM画像を取得する際に一次電子の入射角を連続的に変化させ、同一画像内で異なる入射角で得られた領域が連続的につながっている画像を取得することにより、1枚の画像取得により凹凸判定を行う。

Description

パターン評価方法、その装置、及び電子線装置
 本発明は、試料(半導体ウエハやレチクル等)表面に荷電粒子ビームを走査し、試料から発生する2次荷電粒子または反射粒子を検出することで、試料表面に形成された微細パターンの形状やその寸法を表す2次元走査の画像を得たり、試料表面の凹凸を簡便に判定することが出来る荷電粒子ビームを用いたパターン評価技術に関する。
 現在、半導体デバイスパターンの寸法測定には測長SEM(Critical Dimension Scanning Electron Microscope、以下CDSEMと略す)を用いるのが主流である。CDSEMの構造は基本的に走査型電子顕微鏡と同じである。まず、加熱型や電界放出型の電子源から放出した電子を加速する。その後、レンズによって電子ビームのビーム径を細くしぼった電子ビームを形成する。その電子ビームを試料(例えば、半導体ウエハやレチクル等)上に2次元的に走査し、発生する2次電子や反射電子を検出することで、試料上の微細パターンの走査画像を得ることができる。
 近年新しくプロセス工程に導入される材料の中には電子ビームに対する耐性が弱いものもあり、入射電子の低エネルギー化によるダメージ低減が必要となっている。しかし、電子ビームは低エネルギーになるほど分解能が劣化するため、低エネルギー化は回路パターンの微細化に伴い要求されるCDSEMの高分解能化のトレンドと相反する。このため、電子源から電子が発生した後の加速電圧を高めに設定し、その後、試料に電子が入射する前に、減速電界をかける(リターディング電圧の印加)という機構が設けられている。これによって取得する画像の高分解能化と低ダメージ化が両立出来る。
 一方、測定する試料の中には表面が絶縁材料で構成されているものがあり、試料表面の帯電やその分布によって減速後の電子ビームの軌道が曲げられて、CDSEMの焦点位置ずれや非点収差などを引き起こすことが明らかにされている。試料が帯電する原因としては二つあり、元々試料が帯電している場合と、CDSEMによる電子ビーム照射で帯電する場合である。搬入される試料が帯電している原因として、レジスト塗布工程時の摩擦によるレジストを構成する有機材料の分極化とその固定化などが予想されているが、全ての帯電の原因を説明する事は出来ない。このような帯電は、試料を接地させても残留してしまう固定的な電荷による帯電と考えられている。
 電子ビーム照射による帯電では、試料観察時や自動レシピの測長用画像の取得時の1次電子の入射によって帯電を発生させることが挙げられる。これらの帯電が存在すると、試料に入射する荷電粒子の軌道変化により入射電子ビームの収束位置が試料表面からずれ、焦点位置のずれや非点収差が発生し、焦点位置の調整や非点較差の補正が必要になり、スループットが低下する。また、帯電が面内分布を持ち、試料上のチップ間で帯電量が異なると、測定チップを変更するごとに、上記のような焦点調整や非点収差補正が必要になってスループットが低下する。
 これに対し、特許文献1では、画像処理により、異なる焦点位置での直交する方位の微分画像のコントラストが最大になる焦点間の距離から非点較差を測定する技術が開示されている。また特許文献2では、視差法の考え方を用いて、軸上ビームの1部分を絞りで遮断し、焦点位置をずらした時の試料上でのビームの移動量が最小になるように非点収差補正を行う技術が開示されている。
 上述の走査電子顕微鏡は、電子源から放出された一次電子を加速し、静電または電磁レンズによって収束させて試料表面上に照射する。この一次電子の照射によって試料からは二次電子が発生する。照射した電子線を試料表面上で走査して二次電子信号強度を取得すると、試料表面に形成された様々なパターンのエッジ部分で二次電子の発生量が多くなるため、試料の形状を反映した電子顕微鏡画像(SEM画像)が得られる。この画像に表れる試料形状のエッジ部分に対応した明部をホワイトバンドという。なお、走査電子顕微鏡に関しては、例えば特許文献3~6に開示されている。
特開2003-16983号公報 特開2002-134059号公報 特開平05-41195号公報 特開2006-332069号公報 特開2006-010375号公報 特許2004-127930号公報
 特許文献1では、非点較差を測定するためには、数10枚の画像を取得して比較することが必要である。そのため、10pA前後で観察する走査電子顕微鏡では、非点収差補正に10数秒必要となる。一方、特許文献2では、焦点位置をずらした時の試料上でのビームの移動量に限界があり、特許文献1の補正方法に比べて高速化が期待できるものの、精度が不足する。
 本発明者等の検討によれば、荷電粒子ビームを試料上の法線から傾斜させた、傾斜ビームを照射する電子光学系設定条件を登録・保持し、傾斜ビームで得た観察像と傾斜前のビームで得た観察像を比較して移動量と方向を測定し、この像の移動量と移動方向から焦点位置ずれや非点較差の量を算出する手法が有効であることが判明した(特願2008-247001号、平成20年9月26日出願済み)。
 この出願の開示によると、ビームの傾斜は荷電粒子光学系の複数の偏向器に適切な設定をすることで実現することが可能としている。これらの設定値は、荷電粒子線光学系制御装置に設けた記憶部の記憶領域に傾斜軌道として登録され、傾ける方位角ごとに複数点登録されている。基準となる入射ビームに対して、焦点位置ずれ測定では傾斜方位は1方位、非点較差測定では傾斜方位は4方位が望ましく、2~5枚の画像で非点較差や焦点位置ずれ測定が可能になる。したがって、この技術は、特許文献2と比較すると、焦点位置をずらした時の試料上でのビームの移動量を大きくすることが可能であり、精度と速度の両立が期待できる。
 一方、通常のCDSEMでは所望のパターン上に画像取得位置を移動するための電気的なビーム偏向部(例えば電磁偏向器や静電偏向器などの、ビーム偏向手段)を備えており、ステージ移動量の誤差補正や画像取得位置以外での焦点補正に必須な機能である。しかし、この電気的なビーム偏向の量に依存して傾斜前後の画像間のパターン位置ずれ量(すなわち視差)の値が異なることが、われわれの検討で判明した。これは、画像取得位置を移動するビーム偏向手段に起因した誤差が、特願2008-247001号に記載の、高速でドーズ量の少ない非点もしくは焦点補正技術に存在してしまうことを意味している。
 同様に試料高さが異なると、上記のビーム偏向量に依存するパターン位置ずれ量の値が異なることも、われわれの検討で判明した。また、このパターン位置ずれ量の値がビームを傾斜する方位、角度、ビームの加速電圧や光学系モード(ビームの開き角度が異なるモードで解像度優先モードか焦点深度優先モードかを選択)に依存することも確認している。
 さて上述した走査電子顕微鏡においては、一般的に、一次電子は試料表面に対してほぼ垂直に入射させる。しかし、一次電子を垂直に入射させて取得した1枚のSEM画像からは、試料のエッジ位置は分かるが、形状が窪んでいるのか、盛り上がっているのかの判定(以降、凹凸判定と呼ぶ)が困難である。
 例えば、半導体回路で配線が一定間隔で並んだラインアンドスペースパターンのように凹部と凸部が規則的に配列しているパターンの場合、一次電子を垂直に入射させて取得したSEM画像からの凹凸判定は困難である。
 実際には、一次電子の入射は垂直から±0.1°程度ずれることがあるが、ホワイドバンド幅が変わらない角度範囲であれば、上記と同様に、凹凸判定は困難である。
 図15A、図15Bに、一次電子入射角1504が異なる2枚の画像を用いてラインアンドスペースパターンの凹凸判定を行う原理を示す。図15Aは一次電子151を試料に対して垂直に入射させた場合、図15Bは一次電子を試料に対して入射角1504傾斜させて入射させた場合である。
 それぞれの図の上部には、表面にラインアンドスペースパターンが形成された試料の断面1502と、試料に対して一次電子1501が入射する様子を模式的に示し、下部には得られるSEM画像1503を示した。SEM画像中で白い部分1505がホワイトバンドであり、試料表面形状のエッジ部分に対応する。
 これら2枚のSEM画像の中の一番右のホワイトバンド1505に注目すると、一次電子入射角1504を垂直から斜めに変更したときに、ホワイトバンド幅が太くなっていることが分かる。この変化は、一次電子入射角を傾斜させたことにより、そのホワイトバンド1505に対応するエッジの側面に一次電子が当たるようになったためである。
 したがって、ホワイトバンド幅が太くなった場合には、そのホワイトバンドに対応するエッジから見て、入射角を傾けた側が凹部であると判定することができる。
 特許文献3には、一次電子入射角の異なる2枚の画像を取得して立体視を行い、試料の3次元的な形状を測定する方法が開示されている。また、特許文献4には、一次電子入射角の異なる複数の画像のホワイトバンド幅の変化から凹凸の判定を行う方法が開示されている。しかしながら、一次電子の入射角を変更すると、一次電子の照射位置が移動することがある。位置ずれが発生すると、周期的なパターンの凹凸判定に障害となる。
 図16は、位置ずれが発生する場合に、ラインアンドスペースパターンのような周期的なパターンに対して、一次電子入射角を垂直にして取得したSEM画像1601と、傾斜させて取得したSEM画像1602を比較したものである。この図に示したように、パターンの周期1603の1/4程度以上の位置ずれが発生すると、入射角の異なる2枚の画像中で同一エッジに対応するホワイトバンドを正しく同定できず、SEM画像1601における凹凸判定はできない。
 なお、このような位置ずれは、孤立パターンなど非周期的なパターンの場合には、そのパターン形状の特徴から画像上のホワイトバンドの同定が可能であり、問題とならない。また、形状の特徴から設計データのどの部分に対応するか判断できる場合には、そもそもSEM画像を用いて凹凸判定する必要がない。
 特許文献5に、一次電子入射角を少しずつ段階的に変化させて得られたそれぞれの位置ずれの小さい画像同士を比べることで、パターンの同定を行い、凹凸判定を行う方法が開示されており、一次電子の入射角の変更に伴う位置ずれの問題に対して原理的には対応が可能である。しかしながら、特許文献5に開示されている一次電子入射角を段階的に変化させて取得した画像をマッチングする方法では複数の画像が必要になり、凹凸の判定に時間がかかる。
 特に、微細なパターンの凹凸判定を行う際には、一次電子入射角を変化させるステップ幅を細かくして、1ステップの一次電子入射角変化で発生する位置ずれがパターンの周期の1/4より十分小さくなるようにせねばならず、画像取得枚数が増大し、測定時間の問題が深刻になる。近年の半導体回路の微細化に伴って、微細なパターンの観察が必要になっている。
 例えばパターンの周期が50nm以下の回路の観察も必要になっており、上記条件を考慮すると、位置ずれ量は約10nm以下に抑えなければならない。一方で一次電子入射角を2°変更すると500nm以上もの位置ずれが発生する場合がある。
 1ステップの一次電子入射角変化で発生する位置ずれ量を10nm以下にするためには、入射角2°の変化を50ステップ以上に分割しなくてはならず、50枚以上の画像取得が必要になってしまう。一枚の画像取得にかかる時間を30msと見積もれば、1点の凹凸判定に1.5秒の時間がかかる。半導体検査装置に利用される電子顕微鏡では、1点の検査を数秒で行っており、この方法で凹凸判定を行うとスループットを大きく悪化させる。
 一方、特許文献6には、一次電子入射角と位置ずれ量の関係をあらかじめ求めておき、補正する方法が開示されている。この位置ずれ補正法は、一次電子入射角のみから位置ずれ量を予想し補正量を求める方法である。しかしながら、位置ずれ量は一次電子の入射角のみに依存するのではなく、一次電子の加速電圧、対物レンズの励磁、イメージシフト偏向器の偏向量にも依存する。
 例えば、入射角の変更量が2°の場合の位置ずれ量をみると、一次電子加速電圧の変化(300Vから800V)の違いで100nm程度、対物レンズの励磁の変化(焦点距離2.9mmから3.0mm)で50nm程度、イメージシフト偏向器の偏向量の変化(0μmから15μm)で100nm程度、位置ずれ量が変化している。
 つまり、入射角のみから位置ずれ量を予想して補正するだけでは、電子光学系の条件によっては100nm以上の位置ずれが残る。特にイメージシフト偏向器はステージ移動量のランダムなばらつきを補正して試料上の画像取得領域を決めるために用いられるので、偏向量がランダムで予測が困難である。従って、この補正法では、上記の電子光学系の条件変化に対応することが出来ない。
 本発明の第一の課題は、荷電粒子ビームの傾斜を利用した、高速でドーズ量の少ない非点もしくは焦点補正技術において、測定精度を劣化させることのないパターン評価方法、および装置を提供することにある。
 本発明の第二の課題は、基板に形成された周期的なパターンの凹凸を短時間で判定可能な電子線装置を提供することにある。また、任意の光学条件において凹凸判定が可能な電子線装置を提供することにある。
 上記の第一の課題を解決するため、本発明においては、荷電粒子光学系と処理部を備えた荷電粒子線装置の荷電粒子ビームを用いた微細パターン評価方法として、少なくとも2つの異なる方向から荷電粒子ビームを試料に照射するための光学系条件に基づき、試料上に荷電粒子ビームを照射し、少なくとも2つの異なる方向から荷電粒子ビームを試料に照射して得られた画像を比較して画像間のパターン位置ずれ量を測定し、処理部において、試料上の画像取得位置を移動するための荷電粒子ビームのビーム偏向に依存したパターン位置ずれ量の補正量に基づき、パターン位置ずれ量を補正することを特徴とするパターン評価方法、更にはこの補正されたパターン位置ずれ量から非点較差量、もしくは焦点位置ずれ量、またはその両方を算出することを特徴とするパターン評価方法を提供する。
 また、本発明においては、上記の課題を解決するため、荷電粒子ビームを用いたパターン評価装置として、試料上に荷電粒子ビームを照射する荷電粒子光学系と、少なくとも2つの異なる方向から荷電粒子ビームを照射するための荷電粒子光学系条件を保持する記憶部と、この荷電粒子光学系条件に基づき、少なくとも2つの異なる方向から荷電粒子ビームを照射して得た画像を比較し、画像間のパターンの位置ずれ量を算出する処理部と、荷電粒子ビームを偏向するビーム偏向部を備え、処理部は、試料上の画像の取得位置を移動するためのビーム偏向に基づくパターン位置ずれ量の補正量を算出し、算出した補正量を用いてパターン位置ずれ量を補正する構成、更に、処理部が、この補正量で補正したパターン位置ずれ量から、荷電粒子ビームの非点較差量、もしくは焦点位置ずれ量、またはその両方を算出する構成を提供する。
 すなわち、上記の第一の課題を解決するため、本発明においては、画像取得位置を移動するビーム偏向に依存した画像間のパターン位置ずれ量の補正量を算出し、非点較差量や焦点位置ずれ量の計算時にパターン位置ずれ量の補正を行う処理部を有することで、上記の誤差の補正を可能とする。更に、処理部は、入射電子の加速電圧や試料高さ、照射荷電粒子ビームの傾斜方向と傾斜角度等のパラメータに応じて算出することで、種々の使用条件でも誤差が生じないように出来る。また、この補正量をもとにビーム偏向部にフィードバックする制御部を有することでも上記課題は解決出来る。
 更に上記の第二の課題を達成するための一形態として、電子源と、試料を載せるステージと、前記試料からの電気信号を検出する検出器と、前記電子源、前記ステージ、前記検出器を制御すると共に前記検出器により検出された電気信号により画像用データを作成する制御演算部とを有する電子線装置において、前記制御演算部は、前記電子源から放出される電子線の走査と前記試料への入射角とを制御する入射角・走査連動制御部と、前記入射角・走査連動制御部により、前記試料への入射角を変更しながら走査された前記電子線により生じる前記試料からの電気信号に基づき作成される画像用データを用いて前記試料の表面の凹凸を判定する凹凸判定演算部と、を含むことを特徴とする電子線装置とする。
 また、電子源と、試料を載せるステージと、前記試料からの電気信号を検出する検出器と、前記電子源から放出される電子線の前記試料への入射角を変える偏向手段と、前記電子線を加速する加速手段と、前記電子線の照射範囲を変えるイメージシフト偏向器と、前記電子線を収束させる対物レンズと、これらを制御する制御部を制御すると共に前記検出器により検出された電気信号により画像用データを作成する制御演算部とを有する電子線装置において、前記制御演算部は、前記偏向手段により変えられる電子線の前記試料に対する入射角、前記加速手段により加速される前記電子線の加速電圧、前記イメージシフト偏向器により変えられる偏向量、および前記対物レンズの励磁に応じて、前記試料表面における前記電子線照射位置のずれ量を推定する位置ずれ推定演算部と、前記位置ずれ推定演算部により推定された位置ずれ量を補正する位置ずれ補正制御部と、前記位置ずれ補正制御部により位置ずれが補正された前記電子線の入射角の異なる複数枚の画像用データから前記試料の特定パターンの凹凸判定を行う凹凸判定演算部と、を含むことを特徴とする電子線装置とする。
 また、電子源と、試料を載せるステージと、前記試料からの電気信号を検出する検出器と、前記電子源から放出される電子線の前記試料への入射角を変える偏向手段と、前記電子線を加速する加速手段と、前記電子線の照射範囲を変えるイメージシフト偏向器と、前記電子線を収束させる対物レンズと、これらを制御する制御部を制御すると共に前記検出器により検出された電気信号により画像用データを作成する制御演算部とを有する電子線装置において、前記制御演算部は、前記偏向手段により変えられる電子線の前記試料に対する入射角、前記加速手段により加速される前記電子線の加速電圧、前記イメージシフト偏向器により変えられる偏向量、および前記対物レンズの励磁に応じて、前記試料表面における前記電子線照射位置のずれ量を推定する位置ずれ推定演算部と、前記位置ずれ推定演算部により推定された位置ずれ量を考慮して前記電子線の入射角が異なる複数枚の画像用データから前記試料の特定パターンの凹凸判定を行う凹凸判定演算部と、を含むことを特徴とする電子線装置とする。
 また、電子源と、試料を載せるステージと、前記試料からの電気信号を検出する検出器と、前記電子源から放出される電子線の前記試料への入射角を変える偏向手段と、前記電子線を加速する加速手段と、前記電子線の照射範囲を変えるイメージシフト偏向器と、前記電子線を収束させる対物レンズと、これらを制御する制御部を制御すると共に前記検出器により検出された電気信号により画像用データを作成する制御演算部とを有する電子線装置において、前記制御演算部は、前記偏向手段により変えられる電子線の前記試料に対する入射角、前記加速手段により加速される前記電子線の加速電圧、前記イメージシフト偏向器により変えられる偏向量、および前記対物レンズの励磁に応じて、前記試料表面における前記電子線照射位置のずれ量を推定する位置ずれプロファイル推定演算部と、前記電子源から放出される電子線の走査、前記試料への入射角、および前記位置ずれプロファイル推定演算部により推定された位置ずれ量を補正する入射角・イメージシフト・走査連動制御部と、前記入射角・イメージシフト・走査連動制御部により前記試料への入射角を変更しながら、かつ位置ずれを補正しながら走査された前記電子線により生じる前記試料からの電気信号に基づき作成される画像用データを用いて前記試料の表面の凹凸を判定する凹凸判定演算部と、を含むことを特徴とする電子線装置とする。
 また、電子線装置において、1枚の画像を取得する際に、試料に対する電子線の入射角を変更して1枚あるいは複数枚の画像を取得し、前記画像から、前記試料に対する前記電子線の入射角と前記試料表面における電子線照射位置のずれ量の関係を求める手段を有することを特徴とする電子線装置とする。
 また、電子線装置において、電子線の入射角を変更して複数枚の画像を取得し、試料表面に形成されたパターンの中で、前記電子線を傾斜させて入射したときに前記パターンの側壁に前記電子線が照射されないパターンの形状を他の画像から検出することで、記録された前記試料形状の同定を行い、前記画像から前記試料の特定パターンの凹凸判定を行う制御部を備えたことを特徴とする電子線装置とする。
 また、電子線装置において、電子線の入射角を変更して取得した画像を用いて、試料の特定パターンの凹凸判定と焦点位置ずれ調整を行う制御部を備えたことを特徴とする電子線装置とする。
 上述した構成の本発明により、視差法における焦点位置ずれ量や非点較差量の測定精度を向上することにより、焦点合わせや非点収差補正の精度を向上させることができる。その結果、測定再現性の良いパターン寸法測定のスピードを従来のコントラストを用いた方法より向上させることができる。
 また、基板に形成された周期的なパターンの凹凸を短時間で判定可能な電子線装置を提供することができる。また、加速電圧、対物レンズの励磁、一次電子線の偏向量が変化した場合の位置ずれを含め、任意の光学条件において凹凸判定が可能な電子線装置を提供することができる。
各実施例に係わる荷電粒子ビームを用いた微細パターン評価装置の鏡体部関連の概要構成図である。 第1の実施例に係わる、ビーム傾斜を利用した非点もしくは焦点補正方法の原理を示す、焦点が合った基準状態の模式図である。 図2Aの場合の傾斜前後の視差を示す模式図である。 第1の実施例に係わる、ビーム傾斜を利用した非点もしくは焦点補正方法の原理を示す、焦点がずれた状態の模式図である。 図2Cの場合の傾斜前後の視差を示す模式図である。 第1の実施例に係わる、異なる4方位に傾斜したビームのXY平面への投影図である。 第1の実施例に係わる自動レシピのフローチャート(前半)図である。 第1の実施例に係わる自動レシピのフローチャート(後半)図である。 第1の実施例に係わる、ビーム傾斜前の偏向量と傾斜方位に依存する、ビーム傾斜前後の試料照射位置の違いを示す模式図である。 第1の実施例に係わる、ビーム傾斜前の偏向量に起因するビーム傾斜前後の画像間のパターン位置ずれを示す模式図である。 第1の実施例に係る、ビーム傾斜前の偏向量に依存する、0度方位のビーム傾斜前後の画像間のパターン位置ずれ量(視差)を示す図である。 第1の実施例に係る、ビーム傾斜前の偏向量に依存する、135度方位のビーム傾斜前後の画像間のパターン位置ずれ量(視差)を示す図である。 第1の実施例に係わる、荷電粒子線を用いた測定装置の記録部に格納されている表の一例を示す模式図である。 第1の実施例に係わる、画面表示の使用可能条件の表示の一例を示す図である。 第1の実施例に係わる、画面表示の使用不可の警告の表示の一例を示す図である。 第2の実施例に係わる自動レシピのフローチャート(前半)図である。 本発明の第2の実施例に係わる自動レシピのフローチャート(後半)図である。 第3の実施例に係わる、1方位に傾斜したビームのXY平面への投影図である。 第3の実施例に係わる自動レシピのフローチャート(前半)図である。 第3の実施例に係わる自動レシピのフローチャート(後半)図である。 一次電子入射角が異なるSEM画像を利用した凹凸判定の例で、垂直入射を示す図である。 一次電子入射角が異なるSEM画像を利用した凹凸判定の例で、斜め入射を示す図である。 一次電子照射位置の移動により凹凸判定が不可能なSEM画像の例を説明するための図である。 第4の実施例に係わる電子顕微鏡の鏡体部の構成図である。 第4の実施例に係わる電子顕微鏡の画像取得方法の模式図であり、電子線を照射している状態を示す。 第4の実施例に係わる電子顕微鏡の画像取得方法の模式図であり、SEM画像を示す。 第4の実施例に係わる試料パターンの自動寸法計測のフローチャート図である。 実施例4、5、8に係わる説明図で、走査位置と一次電子入射角の関係を示したグラフを示す。 実施例4、5、8に係わる説明図で、得られるSEM画像の例を示す。 実施例4、5、8にて得られたSEM画像において、試料表面の同一エッジに対応するホワイトバンドを同定する方法を説明するための模式図である。 実施例5に係わる試料パターンの自動寸法計測のフローチャート図である。 実施例6に係わる電子顕微鏡の記憶部、制御演算部の構成の概略図である。 実施例6に係わる試料パターンの自動寸法計測のフローチャート図である。 実施例7に係わる電子顕微鏡の記憶部、制御演算部の構成の概略図である。 実施例7に係わる試料パターンの自動寸法計測のフローチャート図である。 実施例8に係わる電子顕微鏡の記憶部、制御演算部の構成の概略図である。 実施例8に係わる説明図で、走査位置と一次電子入射角の関係と、走査位置の推定された位置ずれ量の関係を示したグラフである。 実施例9に係わる説明図で、模式的なラインエッジラフネスとラインエッジラフネスを反映したSEM画像の例を示す。 実施例9に係わる試料パターンの自動寸法計測のフローチャート図である。 実施例10に係わる焦点ずれと位置ずれの関係の模式図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。
 第1の実施例においては、異なる2つの方向以上で取得した画像から非点収差補正と焦点合わせを行う場合において、ビーム偏向量と傾斜方位に依存したパターン位置ずれ誤差の補正量を、得られた視差の値に反映して非点較差と焦点ずれ量の計算を行う。これによって精度の高い高速な非点収差補正と焦点合わせが可能になる。
 図1は、第1の実施例に係わる荷電粒子ビームを用いたパターン寸法測定用の微細パターン評価装置の鏡体部関連の概要構成図である。試料であるウエハ11が鏡体12aの直下の真空試料室12b内の所定位置に搬送された状態にある。真空試料室12b内のステージとして機能するウエハホルダ13上に設置されたウエハ11を観察するため、電子銃14から放出された1次電子線15は収束レンズ16、非点補正器19、偏向器9a、偏向器9b、対物レンズ10を通ってウエハホルダ13上のウエハ11に照射される。ウエハ11を保持するウエハホルダ13には、焦点制御部3から出力された所定値のリターディング電圧2が印加されていて電子ビームの試料ウエハ11への入射エネルギーを所望の値に調整することができる。入射電子がウエハ上の微細パターンを照射したときに前記試料ウエハ11から発生する2次電子17が検出器18に入り、信号として検出される。なお、検出器18の出力の接続先の図示を省略したが、検出器18の出力である検出信号は、電気的接続により処理部5や制御部8などに入力され、画像作成などの処理に用いられる。
 すなわち、この状態で試料に入射する1次電子を2段からなる第1の偏向器9bにより2次元的に走査することで、検出信号から2次元画像を得ることができる。この第1の偏向器において走査する位置は2段からなる第2の偏向器9a(画像取得位置を移動するビーム偏向のための偏向器)によって電気的に移動することが可能である。ウエハ内の画像取得位置によって試料高さの違いの影響などを調整するために、焦点合わせに関しては対物レンズ10もしくはリターディング電圧2の制御を焦点制御部3にて、また非点収差補正は非点補正器19の調整を非点補正器制御部4にて行い、微細パターン形状の正確な評価に必要な2次電子像を得ることが出来る。このような微細パターン評価装置は半導体デバイスの製造ラインに用いられており、多くはあらかじめプログラミングした自動レシピを、装置全体の制御部8から実行することで、レシピ内で指定したウエハ上の測定箇所に存在する、指定したパターン画像を自動的に取得することが出来る。
 なお、図1の微細パターン評価装置において、5は処理部、後で詳述する補正量算出等を行う中央処理部(Central Processing Unit:CPU)などの処理部、6はメモリなどの記録部、7は電子銃14などの光源光学系制御部、9c、9dはそれぞれ偏向器9a、偏向器9bを制御する偏向制御部、70は試料の画像等を表示する表示部である。適宜、必要に応じて、プリンタなどの出力部、キーボード、マウス等の入力部が制御部8に接続される。また、本明細書において、制御部8に処理部5を含め、あるいは焦点制御部3、非点補正器制御部4、光源光学系制御部7、第1、第2の偏向制御部9c、9dを含め、更にはそれらに処理部5、記録部6を含めて制御部と呼ぶ場合がある点に留意されたい。これらの処理部5、記録部6、制御部8、表示部70は、CPU、メモリ、表示デバイスなどを備えたパーソナルコンピュータ(Personal Computer:PC)などの通常のコンピュータで実現でき、CPUはメモリに記憶された各種の計算処理や制御処理などのプログラムを実行する。
 次に、ビームを傾斜した場合の視差を利用する、非点もしくは焦点の補正方法について図2A、2B、2C、2Dを用いて説明する。図2A中のビームの試料表面20における照射位置を、試料面上の直交する2つの軸、X軸、Y軸(X,Yはウエハステージ移動軸と同じ)を用いて表現するとし、基準位置とした点Aに対して傾斜前のビーム21について焦点や非点を合わせたものとする。次に、第2の偏向器9aの2段の偏向器のそれぞれに異なる偏向量を重畳することで、ビーム21に対しX方向に傾斜し、傾斜前と同じ位置点Aを照射する傾斜ビーム22を形成する。この時、ビームを傾斜した角度量は25であり、X方向およびY方向それぞれの偏向量は装置の記録部6に記録しておく。この場合、ビームは傾斜前後で試料表面の同じ位置点Aを照射している。
 例として、4つのホールを含むパターンを傾斜前のビーム21で走査して得られる画像21a、傾斜後のビーム22を走査して得られる画像22aとして図2Bの画像21aと画像22aを比較した場合の視差はゼロ(画像内にある4つのホールパターンの位置は全く同じ)である。
 次にこの状態から、同じウエハ内の別の場所にある点Bの近傍を観察するためにステージを動かした結果、試料高さがΔdだけ高くなった場合を考える。図2Cのように試料高さがΔdだけ高く変化した結果、ウエハから見ると焦点位置がΔdだけ下方に移動したことになる。この場合、傾斜しない場合のビームを点Bに合わせたとすると、図2Aと同じ条件で傾斜したビームはウエハ上の点Cの位置に照射されることになる。傾斜しないビーム23と傾斜ビーム24を用いて走査した画像はそれぞれ図2Dの画像23aと画像24aのようになり、視差ΔXが画像21bと画像22bのパターン間に発生する。このように傾斜しないビームと傾斜したビームの二枚の画像間の視差ΔXを測定すれば、ビームの傾斜角と視差ΔXから焦点位置ずれの量Δdが計算できる。これが視差法による焦点位置ずれの検出の基本原理である。
 例えば、ビームの傾斜した角度である傾斜角を例えば、30mradに設定しておけば、焦点位置ずれ量Δdは、
  Δd=視差×(1000/傾斜角(mrad))      - - -  (式1)
      ≒視差×33
で求めることができ、この値を焦点制御部3にフィードバックすることで焦点合わせをすることができる。焦点位置ずれは、合焦面がZ方向(X、Yに垂直な方向)にのみ変化するので、少なくとも2つの方位から照射して得られた観察画像、この場合は垂直方向と1つの方位の傾斜で得られた二つの観察画像を用いることで焦点合わせが可能である。さらに、複数方位の傾斜(例えば、Y軸に平行な方向への傾斜)で得られた焦点位置ずれ量を平均すれば、より精度の高い焦点合わせをすることができる。
 次にビームが傾斜した場合の視差を用いた非点収差補正の方法について簡単に説明する。非点収差がない場合の焦点位置ずれ量は、入射電子の傾斜する方位角によらず一定である。しかし非点収差がある場合は、傾斜する方位角により焦点位置ずれ量が異なっている。この非点収差を補正するためには、複数の方位角にビームを傾斜して、各々の方位の焦点位置ずれ量を計測する必要があり、二つの傾斜方向での焦点位置ずれ量の差を非点較差と呼ぶ。例えば、視差法で非点収差補正を行う際には、少なくとも4方位にビームを傾斜させることが望ましく、図3に示すようにZ軸を上から見たときに、X方向を0度とし、左回りの角度で傾斜方向を示すとすると、例えば既述のX軸方向へのビームの傾斜(0度方位)に加えて、Y軸方向への傾斜に相当する90度方位、225度方位と315度方位での傾斜を用いると良い。ここで、各傾斜方位の視差をD0、D90、D225、D315とすると、
0度傾斜方位と90度傾斜方位の非点較差の値は、
  D0×33-D90×33                 - - -   (式2)
225度傾斜方位と315度傾斜方位の非点較差の値は、
  D225×33-D315×33                - - -  (式3)
と求めることができる。
 この非点較差の値と、従来の非点補正法で求めることが可能な非点補正器の補正量の相関を示すグラフをあらかじめ求めておくことによって、視差法で求めた非点較差の値から収差補正をすることができる。
 これより、第1の実施例を図4、図5に示すフローチャートにしたがって説明する。まず、カセットに搭載された状態で保管されているウエハはゴミや汚れを防ぐために、FOUP(Front-Opening Unified Pod)という密閉容器に入れられた状態で、図1に概要構成図を示した微細パターン評価装置にセットされる。その状態で自動レシピを開始すると、FOUPカセットのふたが自動でオープンし、測定ウエハは搬送アームによってカセットから図1のロードロック室12cに移動したウエハホルダ13へ搬送される。次に、測定ウエハはウエハホルダ13に搭載された状態で、真空試料室12bのステージ上に導入される(LOAD40)。ステージに対するウエハ位置を微調整するため、ウエハ上のパターンを用いてウエハアライメント(41)を実行する。
 そして、あらかじめレシピに登録された測長パターン位置近傍にステージ移動(42)すると、Zセンサが自動作動(43)して試料高さを計算し、その値が処理部5に転送される。同時に、レンズ主面と試料上端との距離である作動距離や試料高さ等に応じて、2次電子像の焦点を調整(44)するために対物レンズの電流値が自動設定される。次に、比較的低倍率で、画像を取得し(45)、画像からアライメントパターンの位置を読み取
る(46)ことによりビームとウエハの相対的な位置を検出する。この情報をもとに、焦点位置ずれや非点較差の測定するためのパターンが画面の中心に来るように第2の偏向器9aによりビームを偏向する(47)。ここでの偏向量の2次元情報は処理部5に転送される。
 この第2の偏向器9aの重要性をここで述べておく。まず、試料ステージは機械的に移動するので目標移動量に対する実際の到着位置精度に限界があり、目標のパターンを高倍率で撮像視野内に入れるには電気的なビームの移動手段との併用が必要である。また、焦点位置ずれや非点較差の測定を測長するパターンで行うと、測長用の画像取得の前にパターンにダメージが入るため、正しい測定が出来なくなってしまう。したがって、電気的なビームの移動手段により、測定したいパターンの直近の別パターンで焦点位置ずれや非点較差の測定を行う必要がある。このように、画像取得位置を移動するためのビーム偏向はCDSEMにおいて必須であると言える。
 焦点・非点測定パターンのSEM像を取得(48)したのち、記録部6に格納されている光学系条件である傾斜条件にしたがって、第2の偏向器9aによりビームを決められた方向(傾斜角と方位)に傾斜し(49)、更に画像を取得した。本実施例では同じ傾斜角で方位を変えて4条件の傾斜像を取得している(50)。取得した画像からそれぞれのパターン位置ずれ量を算出(51)した後、処理部5により計算された補正量(位置ずれ補正値)にしたがってパターン位置ずれ量を補正する(52)。これらのデータをもとに、焦点位置ずれ量と非点較差量を算出する(54)ことになる。
 得られた焦点位置ずれ量と非点較差量をもとに焦点制御部3や非点補正器制御部4にフィードバック(55)することで、焦点位置ずれと非点較差を補正することができる。この補正後に測長対象のパターンの位置へビームを移動し(56)、高倍率で画像取得(5
7)することで、精度の高い測長(パターン寸法の測定)が可能となる。画像取得後、次の測長位置近傍へステージ移動を行う(58)。
 以上が第1の実施例の全体のフローである。次に、本実施例におけるパターン位置ずれ量の補正を図6A、6Bを用いて詳しく説明する。
 図6A、6Bにおいて、ビームの試料表面50におけるビーム照射位置を試料面上の直交する2つの軸、X軸とY軸(X,Yはウエハステージ移動軸と同じ)を用いて表現する。図6Aは焦点と非点がウエハ表面に合っていて、ビームを偏向していない状態において、傾斜前のビーム61と傾斜後のビーム62が共に基準位置とした点Aを照射する場合を示している。焦点位置ずれや非点較差がない状態において、傾斜前後でビームが試料表面60の同じ位置である点Aを照射し、偏向器でビーム61或いはビーム62を走査して得られる画像63或いは画像64を比較しても画像内にあるパターンの位置は同じである。
 図6Aに例示した試料表面を撮影した画像においては、点Aを中心に4つのホールが形成されている。ところが、第2の偏向器によりビームを偏向して点Bを照射するような位置にビームを移動すると、図6Bのように、傾斜前のビーム65の照射点Bと傾斜後のビーム66の照射点Cの間に距離(ΔX,ΔY)の視差が生じる。したがって、ビーム65を走査して得られる画像67とビーム66を走査して得られる画像68を比較すると、画像内にある4つのホールパターンの位置が異なることになる。この画像上でのパターン位置ずれ量(ΔX、ΔY)の値は偏向量に依存することがわれわれの実験で判明しており、偏向量が大きな場合は数十nmの値をとることもある。その一例を図7A、7Bを使って説明する。
 加速電圧800Vで0度方位に傾斜した場合のパターン位置ずれ量(ΔX、ΔY)のビーム偏向量依存性を表したのが図7Aのグラフ71である。図7Aでは、ビーム偏向量(X、Y)が(±15、±15)の範囲(測定点の幅は2.5刻み)で発生するパターン位置ずれ量(ΔX,ΔY)を太線の長さと向きで示している。例えば、ビーム偏向量が(15、―15)の場合、パターン位置ずれ量がΔX=20nm、ΔY=20nm程度である。この偏向量依存のパターン位置ずれ量は、視差法において焦点位置ずれや非点較差を測定する際の誤差となる。傾斜角を30mradとした場合、20nmの位置ずれ量の誤差焦点ずれ誤差に換算すると670nmとなり、誤差として無視できない大きさになる。
本実施例はこの位置ずれ量の誤差のビーム偏向量依存性を補正することで精度の良い焦点位置ずれや非点較差の測定を実現するものである。
 今回、誤差となるパターン位置ずれ量のビーム偏向量依存性は多項式近似で行った。具体的には、パターン位置ずれ量(ΔX,ΔY)、偏向量(X、Y)として、
  ΔX=a1*X^2+b1*X*Y+c1*Y^2+d1*X+e1*Y+f1
                                                  - - -   (式4)
  ΔY=a2*X^2+b2*X*Y+c2*Y^2+d2*X+e2*Y+f2
                                                  - - -   (式5)
となる。ここでa1、a2、b1、b2、c1、c2、d1、d2、e1、e2、f1、f2は定数である。
 多項式の他に、スプライン関数やテーブルルックアップ方式を用いることも可能である。偏向量(X、Y)は測定点毎に異なる可能性があり、任意の偏向量(X、Y)でパターン位置ずれ量(ΔX,ΔY)を算出できる必要がある。したがって、テーブルルックアップ方式においても、テーブルにない偏向量(X、Y)に対しては補間処理が必要となる。なお、本実施例で2次の多項式を用いた理由は、この誤差の原因が対物レンズ内での軸外歪に起因していると考えられ、軸外歪を3次の項まで考慮すると2次の多項式で表現できるためである。したがって、上記の各定数を装置の記録部6に格納しておけば、処理部5での補正計算が可能となる。また、この定数は試料高さに依存するので、異なる高さの試料を測定するためには複数の高さでの定数を求めておき、その間の高さの試料に対しては内挿して定数を求め直すことで対応が可能である。上記のように補正した視差を前出の(式1)の視差に置き換えればよい。
 これら偏向量に依存した誤差はビームを傾斜する方向、すなわち傾斜する角度や傾斜する方位に依存する。同じ加速電圧800Vで135度方位に傾斜した場合をあらわしたのが図7Bのグラフ72である。図7Aと同様のX、Yの多項式にしたがった依存性を示しているが、明らかに図7Aとは異なる。すなわち、本発明による補正には、画像取得位置を移動するためのビーム偏向とビームを傾斜する条件の両方に依存することになる。したがって、非点較差測定のように複数の傾斜ビームを用いる際には、それぞれに対応した定
数を記録部6が格納しておく必要がある。
 更に、これらの定数が光学系のモードや加速電圧によって異なることも確認されている。したがって、記録部6には図8に示すような使用する加速電圧81、光学モード82、チルト方位83などの条件と対応する定数a1、a2、b1等を設定した表80が格納されていることになる。電子源交換や絞り交換でビームの軌道が変化するとこの定数が変化する可能性があり、定期的なメンテナンスの際にはこの定数を更新する必要が生じる。しかし、使用可能なすべての条件に対して定数を更新することは測定時間を考慮すると現実的ではなく、使用したい条件に絞って定数を更新することになる。
 その管理のために本実施例では、図9Aに示す、測定条件によって視差法が使用可能かどうかを示す表90を、表示部70に表示できるようになっている。図9Aでは、加速電圧91が800V、光学モード92が高解像モードで係数が調整されており、調整状態93に示すように、焦点や非点収差補正が可能であるが、800Vの焦点深度モードでは補正が出来ないことを示している。また、500Vでは両モードとも使用可能であるが、備考欄94に示すように、焦点深度モードでは焦点補正のみ可能であることを示している。この表示方式や表示内容に限定されることはないが、装置の使用条件により本発明による焦点や非点収差補正機能が可能かどうか判別できる表示機能は有効な機能である。本実施例では更に、調整ができていない条件を選択した場合に、図9Bの警告表示95が示されるようになっている。
 以上のことから、ビーム偏向量と方向に依存したパターン位置ずれ量の補正計算を行うことで、ドーズ量の少ない非点もしくは焦点補正方法を高精度で実施することが可能となり、再現性の高いパターン評価(測長)を実現することができた。ドーズが少ないということは、電子の照射時間が短いことなので、評価または検査に要する装置のスループットが向上することにもなる。
 また、本実施例によれば、新たな機器の制御が発生することがなく、その分の誤差が増加することがないのでより有利であると考えられる。本実施例を用いて65nmのレジストラインの測長を0.3nmの再現性で行った。この結果、ウエハ上200点測長した場合のスループットを従来の1時間当たり3枚から1時間当たり6枚へと向上させることが出来た。
 第2の実施例においては、異なる2つの方向以上で取得した画像から非点収差補正と焦点合わせを行う場合において、ビーム偏向量と傾斜方位に依存したパターン位置ずれ誤差の補正量を、荷電粒子光学系条件であるビーム傾斜条件に反映させる。これにより、非点較差と焦点ずれ量の計算で補正をすることなしに、精度の高い高速な非点収差補正と焦点合わせが可能になる。第2の実施例に係わる荷電粒子線を用いた測定装置の鏡体部の概要構成は、図1と同様である。
 図10、図11に第2の実施例に係わる自動測定用レシピのフローを示す。レシピのフローにおいて、ビームを傾斜させる前までの工程(100~108)は第1の実施例の工程(40~48)と同様である。次に非点較差と焦点位置ずれ量の測定用にビーム傾ける際に、ビーム偏向量と傾斜方位に依存したパターン位置ずれの補正量をフィードバックして作成した、新たな荷電粒子光学系条件であるビーム傾斜条件を使用し(109)、図1の第2の偏向器9aによりビームを決められた方向(傾斜角と方位)に傾斜して、画像を取得する。具体的にはこれまでの傾斜条件をもとに、パターン位置ずれの補正量に相当するビーム偏向量を加えた傾斜条件となる。これで、ビーム偏向量と傾斜方位に依存したパターン位置ずれは補正されたことになり、この状態で画像を取得し(111)、ビーム傾斜前後のパターン位置ずれ量(視差)を測定する(112)。
 ビームを傾斜する角度は全ての方位で30mradなので、焦点位置のずれ量Δdは
  Δd=視差×(1000/傾斜角(mrad))
      ≒視差×33                                 - - -   (式6)
となる。これ以後の工程(113~117)については、第1の実施例(工程54~58)と同様である。
 以上のことから、ビーム偏向量と方向に依存したパターン位置ずれ量の補正を行うことで、ドーズ量の少ない非点もしくは焦点補正方法を高精度で実施することが可能となり、精度の高いパターン評価(測長)を実現することができる。また、ドーズが少ないということは、電子の照射時間が短いことなので、評価または検査のために使用する装置のスループットが向上することにもなる。また、本実施例のようにパターン位置ずれ量の補正を光学系に反映させずに、焦点ズレ量や非点較差量の計算結果を補正する方法も考えられるが、その場合使用する倍率を小さくする必要が生じる場合がある。視差法による焦点補正、非点補正はその補正量が大きいほど視差の値が大きくなるので、倍率を小さめにする必要がある。それにビーム偏向量などに依存したパターン位置ズレ量がさらに加わった場合、より倍率を小さくする必要がある。倍率が制限されること自体がデメリットであり、かつ検出器の1画素あたりの大きさは固定されているので、単純に倍率が小さい方が測定精度は悪くなる方向にあるので、本実施例が有利であることが分かる。
 本実施例を用いて45nmのレジストラインの測長を0.35nmの再現性で行った。この結果、ウエハ上100点測長した場合のスループットを従来の1時間当たり4枚から1時間当たり8枚へと向上させることが出来た。
 第3の実施例においては、異なる2つの方向で取得した画像から焦点合わせを行う場合において、ビーム偏向量と傾斜方位に依存したパターン位置ずれ誤差の補正量を、得られた視差の値に反映して焦点ずれ量の計算を行う。複数方位のビームの傾斜がないため、高速かつ精度の高い焦点合わせが可能になる。第3の実施例に係わる荷電粒子線を用いた測定装置の鏡体部の概要構成は図1と同様である。本実施例では非点収差補正は行わず、焦点補正のみ行った。非点較差の発生しにくい導電性試料(例えばシリコンなど)には有効な方法である。非点ずれのない焦点位置ずれは、合焦面がZ方向(X、Yに垂直な方向)にのみ変化するので、少なくとも2つの方位から照射して得られた観察画像、この場合は垂直方向と1つの方位の傾斜で得られた二つの観察画像を用いることで焦点合わせが可能である。
 したがって垂直ビームの他は、図12の121に示す0度方位の傾斜ビーム91のみで良く、焦点位置ずれ量Δdは、
  Δd=視差×(1000/傾斜角(mrad))
      ≒視差×33                                - - -   (式7)
で求めることができ、この値を焦点制御部3にフィードバックすることで焦点合わせをすることができる。また、実施例3のフローチャートは図13と図14である。図13、図14に示す各工程130~148は、工程137~145を除き、図4、図5に示した工程40~58と同じである。工程139、140において、複数方位でのビーム傾斜の繰り返し測定がないため、スループットの向上を図ることが出来る。
 本実施例を用いて30nmのポリシリコンラインの測長を0.25nmの再現性で行った。この結果、ウエハ上100点測長した場合のスループットを非点収差補正込みの1時間当たり8枚から1時間当たり9枚へと向上させることが出来た。
 なお、以上の各実施例ではCDSEMに本発明を適用した例を示した。しかし、本発明はCDSEMに限定されることなく、ウエハ上の欠陥の同定を行うDRSEM(Defect Review Scanning Electron Microscope)や、表面計測に優れたSIM(Scanning Ion Microscope)など、自動で焦点ずれや非点較差の補正を行う走査型の荷電粒子ビーム装置に広く有効であることは明らかである。
 さて、先に説明した他の課題を解決するための、手段のひとつは、1枚のSEM画像を取得する際に一次電子の入射角を連続的に変化させ、同一画像内で、異なる入射角で得られた領域が連続的につながっている画像を取得する画像取得方法である。
 この画像取得方法を用いれば、入射角の変化によって電子線の照射位置がずれたとしても、ホワイトバンドが同一画像内で連続的につながっているため、異なる入射角で得られた領域において同一エッジに対応するホワイトバンドの同定が容易に可能である。この方法では、最小で1枚の画像取得により凹凸判定が可能なので、所要時間は30ms程度と短い。
 もうひとつの手段は、一次電子の入射角に加えて、一次電子の加速電圧、静電または電磁レンズの励磁、電子線を偏向させる偏向手段の偏向量をパラメータとして位置ずれ量を予測する近似式、あるいは補正表を走査電子顕微鏡の記憶部に保存しておき、入射角を変更する時に、ステージの移動、あるいはイメージシフト偏向器の制御を行って、位置ずれ補正を行う走査電子顕微鏡である。
 この走査電子顕微鏡を用いて取得した入射角の異なる画像では、電子線照射位置のずれを数nm程度まで低減でき、同一エッジに対応するホワイトバンドの同定が可能である。
 第4の実施例について、図17、図18A、18B、図19、図20A、20B、図21を用いて説明する。
 図17は、第4の実施例である走査電子顕微鏡の主要構成要素を示した構成図である。
 電子銃制御部1711によって制御された電子銃1701から発せられた一次電子線1702は、ステージ1710の上に置かれた試料1709の表面上に収束して照射される。一次電子線の焦点の調整は、対物レンズ制御部1715によって対物レンズ1708の励磁を制御することにより、またはリターディング電圧制御部1716でステージ1710の電位を制御することで行う。図では、対物レンズ以外の静電あるいは電磁レンズは省略したが、対物レンズ以外に一次電子線を収束させる1つあるいは複数のレンズがあっても良い。
 一次電子の照射によって試料表面から発生する二次電子1704は、検出器1705によって検出される。
 一次電子は、走査偏向器1707を走査偏向器制御部1714によって制御することで、試料表面上で走査を行うことができる。また、イメージシフト偏向器1706をイメージシフト偏向器制御部1713によって制御することで、ステージを移動させることなく一次電子の照射範囲を移動させることが出来る。
 さらに、上記偏向器とは別に、一次電子を偏向させるアライメント偏向器1703が設置されており、アライメント偏向器制御部1712によって偏向量を制御することで、一次電子の入射角を変更できる。なお、アライメント偏向器以外の偏向器を用いる方法や、ステージやカラム1720を傾ける方法で一次電子の入射角を変更しても良い。図では、上記イメージシフト偏向器、アライメント偏向器、走査偏向器以外の偏向器は省略したが、これ以外の目的で一次電子を偏向させる偏向器があっても良い。また、それぞれの偏向器を2つ以上設けても良い。
 装置全体の制御演算部1718は、各制御部へ制御信号を送る。また、検出器1705で得られた二次電子信号強度を、走査変更器制御部1714への制御信号に従って表示部1719上に表示させる。これによりSEM画像を得ることができる。なお、符号317は画像データ等を記録する記録部、符号1721は入射角プロファイル記録領域、符号1722は入射角・走査連動制御部、符号1723は凹凸判定演算部を示す。
 以下で、SEM画像を得る方法の詳細を説明する。図18Aは、試料表面上の領域(一次電子線照射領域)1801を観察する際に、一次電子線1702を走査する方法の一例である。なお、この観察領域1801を視野と呼ぶ。
 図18Aは、ライン1803、1804、1805の順に走査位置を移動させてきて、視野内の位置(X、Y)に一次電子を照射させている状態を示している。なお、図18Aでは左から右への走査(X方向の走査)を上から下(Y方向)に少しずつずらしながら繰り返して視野全面を走査する走査方法を例示したが、これ以外の走査方法を用いても良い。
 例えば、X方向の走査時の走査方向を逆(右から左)にしても良いし、走査方向をラインごとに変えても良い。また、1803、1804、1805、とY方向に順番に走査するのではなく、走査するラインの順序を入れ替えても良い。これらの走査方法を用いることで、一次電子照射に起因する試料表面の帯電の影響を軽減する効果が期待できる。上記いずれの走査方法についても、X方向とY方向を入れ替えてY方向のライン走査を行っても良い。
 一次電子の照射よって試料から発生する二次電子は、検出器によって検出される。検出された二次電子信号強度を、走査位置と対応する画像表示部中の画素の明度として表示させると、図18Bに示すSEM画像1806が得られる。
 SEM画像1806中のライン1807、1808、1809は、ぞれぞれ、試料上の走査ライン1803、1804、1805に対応しており、SEM画像1806内の位置(I、I)は視野内の位置(X、Y)に対応している。なお、図18Bでは、簡単のために少ない画総数のSEM画像を模式的に示したが、実際には一辺の画素数は任意であり、例えば512画素が用いられる。
 凹凸判定を行う際には、記録部1717内の入射角プロファイル記録領域1721に保存された入射角データに従って、入射角・走査連動制御部1722を用いて一次電子入射角を変更しながら画像を取得する。
 上記のような構成をした電子顕微鏡を用いて、ラインアンドスペースパターンが形成された半導体ウエハ上の複数の点において、パターンの凹凸判定を行い、ラインパターンあるいはスペースパターンの幅を自動で計測する際のフローチャートを図19に示す。以下、このフローチャートの各ステップについて説明する。
 まず、ステップ1901で入射角プロファイルを決定し、入射角プロファイル記録領域1721に記憶させる。入射角プロファイルとは、図20Aに示すような、凹凸判定を行う画像を取得する際のY方向の電子線走査位置と一次電子入射角の関係である。
 入射角プロファイルは、計測するパターンの周期、一次電子の加速電圧、観察倍率に応じて、最適な傾斜角度を得られるように、自動で決定されるよう設定しても良いし、最適な傾斜角度が不明な場合には毎回同じ入射角プロファイルを用いても良い。あるいは、装置の操作者が手動で決定しても良い。
 その後、ステップ1902で試料の計測を行いたい箇所へ、ステージやイメージシフト偏向器を用いて一次電子の照射位置を移動させる。
 次に、ステップ1903で、先に記録した入射角プロファイルを参照して、入射角・走査連動制御部1722によってアライメント偏向器制御部1712と走査偏向器制御部1714に制御信号を送ることで、一次電子の入射角を変更しながら一次電子線を走査しSEM画像を取得する。
 例えば、図20Aに示す入射角プロファイルに従って一次電子入射角を変化させながら走査を行い、ラインアンドスペースパターンが形成された試料のSEM画像を取得すると、図20Bに模式的に示すようなSEM画像が得られる。このSEM画像の上部は、一次電子を試料表面に対して垂直(入射角度:0°)に入射して取得した画像領域であり、中央部は入射角を変化させながら取得した画像領域であり、下部は一定の角度、本実施例では2°傾斜させて取得した画像領域である。
 画像中央部では一次電子入射角の傾斜に伴ってホワイトバンド幅が変化すると同時に、一次電子照射位置がずれ、ホワイトバンドが斜めになっている。なお、本実施例では入射角度の変化範囲を0°から2°としたが、これに限らない。ホワイトバンドの幅に差がつけばよく、最大入射角度として、例えば0.1°を越えた値とすることができる。但し、実用上は最大入射角度として1°~2°が好適である。
 上記方法で取得する凹凸判定用の画像は、寸法測定用の画像とは異なり、鮮明である必要は無く、ホワイトバンドの変化が判別できれば十分である。したがって、画像取得は1枚でも良い。もちろん、複数枚の画像を取得して積算することで画像のS/Nを向上させても良い。
 また、1枚の画像取得時間は通常1秒以下であるので一次電子入射角の制御を高速に行う必要があるが、例えばアライメント偏向器の応答速度が十分でないなどの理由で一次電子入射角の高速な制御が難しい場合には、走査速度を遅くして画像取得時間を長くしても良い。
 なお、ここでは記述したのは縦方向(Y方向)のラインアンドスペースパターンに対して、一次電子線をX方向にライン走査する場合についてである。これ以外の任意の周期的なパターンに対しても、周期と同じ方向に一次電子線をライン走査すれば同等なSEM画像を得ることができる。
 例えば、横方向(X方向)のラインアンドスペースパターンに対しては、一次電子線をY方向にライン走査すれば良い。この場合、入射角プロファイルはX方向の走査位置と一次電子入射角の関係になる。
 ステップ1904では、ステップ1903で得られたSEM画像を、記憶領域1721に保存した入射角プロファイルを参照しながら、凹凸判定演算部1723によって解析することで、凹凸判定を行う。
 最初に、SEM画像内で、一次電子を垂直に入射させて得られた画像領域(画像上部)と斜めに入射させて得られた画像領域(画像下部)のホワイトバンドの中から、試料の同一エッジに対応するホワイトバンドの同定を行う。このSEM画像では、試料の同一エッジに対応するホワイトバンドがつながっており、下記の方法で、同定が可能である。まず、図21に示すように、得られたSEM画像の各横ラインにおける二次電子信号強度をプロットする。以降、これを二次電子プロファイルと呼ぶ。図には、一部の横ラインの二次電子プロファイルのみを示している。
 そして、各ラインの二次電子プロファイルのピーク位置を求める。この作業の前に複数のラインの二次電子プロファイルを平均化してS/Nを向上させても良い。また、すべてのラインの二次電子プロファイルを用いるかわりに、図21のように一部のラインを抽出してその二次電子プロファイルのみを用いても良い。
 次に、いずれかの二次電子プロファイル中のピークをひとつ選び、上下に隣接する横ラインの二次電子プロファイルにおいて、最も位置が近いピークを決定し、同一エッジに対応するピークと判定する。これを繰り返すことで、図21の丸印で示すように画像上部と下部で同一エッジに対応するピークが決定できる。
 なお、上記の過程において、いずれかの横ラインの二次電子プロファイルでピーク位置が検出できなかった場合や、隣接する横ラインの二次電子プロファイルにおける最も近いピークとの距離が試料パターンの周期に対してあらかじめ定めた割合以上に大きくなった場合には、ピークの同定に失敗したと判断し、最初に選ぶピークを別のものにして再度上記の作業を行うよう設定しても良い。
 同一エッジに対応するピークを同定した後、凹凸判定行う。具体的には、垂直入射領域(画像上部)と斜め入射領域(画像下部)の2次電子プロファイルにおける同一エッジに対応するピークのピーク幅を比較する。
 垂直入射領域に比べて、図21の丸印をつけたピークでは斜め入射領域の方がピーク幅が大きくなっており、斜め入射時に側壁に一次電子が当たっていることがわかる。すなわち、丸印のピークの左側(一次電子が傾斜している側)が凹部であると判定できる。
 上記のようにピーク幅の増大を指標にするかわりに、ピーク強度の増大を指標にしても良い。また、その両方を用いても良い。さらに、SEM画像内に複数のホワイトバンドがある場合、ひとつのエッジに対応するピークから凹凸判定を行うかわりに、隣り合う複数のエッジに付いて同様に凹凸判定を行い、エッジ毎に試料パターンの凹部と凸部が繰り返すことを考慮して判定の精度を向上することも出来る。
 ピーク幅の決定には、ピーク強度が最大値の50%になる半値幅を用いても良いし、50%ではなく別に定めた基準を用いても良い。あるいは、ガウス関数などでフィッテングを行ってピーク幅とピーク強度を決定することで、画像のS/Nが悪く二次電子プロファイルに大きなノイズがある場合にも、その影響を軽減することができる。
 上記に示した、異なるラインの二次電子プロファイル中の同一エッジに対応するピークを比較して凹凸を判定する方法以外に、斜め入射領域の同一ラインの二次電子プロファイル内における異なるピークを比較して凹凸判定することも出来る。その場合、二次電子プロファイル中のピークの幅、あるいは強度は交互に大小を繰り返し、ピーク幅が大きい(あるいはピーク強度が大きい)ピークから見て一次電子入射角の方向が凹部であると判定できる。
 たとえば、図21の矢印で示したピークを比較すると、左から1番目と3番目のピーク幅が大きくなっており、その左側(一次電子入射角が傾斜している側)が凹部であると判定できる。
 なお、図20Aに例示した入射角プロファイルは一例に過ぎず、一次電子入射角が、ある入射角から異なる入射角へ変化してさえいれば、どのような入射角プロファイルでも凹凸判定は可能である。例えば、図20Aの中央領域のような一次電子入射角が変化する領域のみで構成させるプロファイルでもよいし、図20Aのように入射角が異なる2つの値の間で変化するのではなく、異なる3つ以上の値の間で変化しても良い。また、入射角の変化が一方向でなくても良い。
 さらに、これまで記述した様な2つの二次電子プロファイルを比較する方法だけでなく、3つ以上の二次電子プロファイルにおける同一エッジに対応するピークの強度あるいはピーク幅と入射角との相関をとる方法も可能である。入射角の傾斜に伴って、ピークの強度やピーク幅が増大している場合は、ピークから見て入射角が傾斜していく方向が凹部であると判定できる。
 上記の凹凸判定において凹凸判定の成否を判断し、凹凸判定が失敗した場合には入射角プロファイルを変更して再度凹凸判定を試みるように条件分岐を設定しても良い。あるいは、その測定点での計測を行わずに次に測定点に移動するように分岐を設定しても良い。このようなエラー処理を行うことで、凹凸判定後の寸法測定の結果の信頼性を高めることができる。
 凹凸判定の成否を判断するには、以下のような方法が考えられる。まず、ピークのピーク幅あるいはピーク強度の大小を比較する際に、その差がある閾値より小さい場合に凹凸判定に失敗したと判断する方法である。あるいは、同一エッジに対応するピークの強度あるいはピーク幅と入射角との相関をとる方法の場合、その相関係数がある閾値より小さい場合に凹凸判定に失敗したと判断する方法もある。
 凹凸判定を行った後、ステップ1905では一次電子入射角を垂直にして寸法計測用のSEM画像を取得する。図20BのSEM画像のうち、上部が一次電子を垂直に入射して取得した領域であるので、試料位置を変化させず一次電子入射角を垂直にして寸法計測用のSEM画像を取得すると、図16の1601のように、ホワイトバンドが4本並んだ画像になる。
 このうち、左から2本目のホワイトバンドが図21で丸印をつけたピークに対応しているので、先に記述した凹凸判定の結果から、左から2本目のホワイトバンドの左側が、試料に形成されたパターンの凹部、つまりスペース部であると判定できる。必要であれば、凹凸判定の結果をSEM画像とは別に表示部に表示させても良いし、SEM画像中に凹凸を示すマーカーを表示させても良い。
 これにより、凹凸判定の結果を操作者が逐次確認することができる。また、SEM画像を記憶部に保存する場合には、凹凸判定の結果を画像データとは別に保存しても良いし、前述のマーカーのついた画像データを保存しても良い。これにより、後で凹凸判定の結果を参照することが可能となる。
 SEM画像中の試料パターンの凹凸判定後、目的のパターンの寸法を計測する(1906)。例えば、ライン幅を計測したい場合には、左から2本目のホイトバンドと3本目のホワイトバンドの間隔を測れば良い。ホワイトバンド間隔を計測してライン幅を求めるアルゴリズムは、従来用いられているものを使用すれば良い。スペース幅計測の場合も同様である。
 なお、一次電子を垂直入射させて別途画像を取得するのは、斜め入射で取得したSEM画像より垂直入射によって取得したSEM画像の方が分解能が高く、高精度の寸法計測ができるためである。
 ここまで記述した手順により一点の測長が完了する。その後、別の測定点に移動し、設定された測定点すべての計測が終わるまで同様の手順を繰り返して測定を終了する。
 このように、本実施例では、簡便に試料パターンの凹凸判定を行い、ラインアンドスペースパターンの寸法を自動で計測できる。
 従来のラインアンドスペースパターンの寸法計測では、一次電子入射角の異なる多数の画像を取得して凹凸判定を行ったり、パターン端から計測点までのホワイトバンドの数を数えて計測点での凹凸を推定したりするなど、凹凸判定に煩雑な手続きが必要であり、計測に時間がかかっていたが、本実施例を用いることで、スループットの向上が可能である。
 なお、図19に示したフローチャートでは凹凸判定とパターンの寸法の計測に関わるステップのみを記載したが、この他に焦点を調整するステップや、一次電子照射領域を試料上の計測したい位置に正確にあわせるために、あらかじめ登録した試料上にあるパターンの位置を検出して、一次電子照射位置を補正するステップがあってもよい。
 以上説明した第4の実施例によれば、基板に形成された周期的なパターンの凹凸を短時間で判定可能な電子線装置を提供することができる。
 第5の実施例について、図20A、20B、図22を用いて説明する。なお、実施例4に記載され、本実施例に未記載の事項は実施例4と同様である。
 図22は、本実施例を用いてラインアンドスペースパターンの寸法計測を実施するときの実施例4とは別のフローチャートである。
 実施例4は、凹凸判定に用いるSEM画像とは別にパターン寸法の計測を行うSEM画像を取得する方法であった。一方、本実施例は、凹凸判定に用いた画像を利用してパターン寸法の計測も行う方法である。本実施例では、凹凸判定に用いるSEM画像の一部の領域を、一次電子を垂直に入射して取得する。そして、得られた画像中の一次電子を垂直に入射させて取得した画像領域でパターンの寸法計測を行う。
 例えば、実施例4で例示した図20Aの入射角プロファイルには、垂直入射領域が含まれており、本実施例においても用いることができる。そこで、この入射角プロファイルに従って、実施例4と同様に入射角・走査連動制御部を用いて一次電子入射角を変更しながら走査を行ってSEM画像を取得し、得られた図20BのようなSEM画像を利用してライン幅の寸法を計測する例を説明する。
 ステップ2201、2202は、実施例4の1901、1902と同じである。次のステップ2203にてSEM画像を取得する際にその画像中のどの領域が一次電子を垂直入射で取得した領域であるかを記録する。これは、入射角プロファイルを入射角プロファイル記録領域に保存し、後で参照できるようにしておけば良い。あるいは、画像記録領域に保存する画像中に垂直入射領域を示すマーカーを記入する方法により、画像データのみで垂直入射領域を示しても良いし、各画像データに付随して、垂直入射領域を記録した専用のデータを保存する方法でもよい。図20Bでは上部が一次電子を垂直に入射させて取得した領域であり、この領域が垂直入射領域であると後で参照できるように記憶しておく。
 ステップ2204では、ステップ1904と同様に凹凸判定演算部により凹凸判定を行い、ステップ2205で目的のパターンの寸法計測を行う。実施例4に記述した方法により右から2本目のホワイトバンドと3本目のホワイトバンドの間が凸部、すなわちラインであると判定できる。従って、ライン幅を計測する場合は、先に記憶させておいた一次電子入射角が垂直である画像領域の中で、ラインと判定された部分の両側のホワイトバンドの間隔を計測すれば良い。たとえば、図20Bの実線で囲んだ領域2001のホワイトバンドの間隔を計測することでライン幅を計測することができる。
 上記のように、寸法計測を行うためには一次電子入射角が垂直である領域の画像データと凹凸判定の結果があれば十分である。従って、記憶部の容量を節約する必要がある場合などには、取得した画像の全領域を保存せず、一次電子入射角が垂直である画像領域のみを切り出して、凹凸判定した結果を合わせて保存しても良い。
 本実施例によれば、基板に形成された周期的なパターンの凹凸を短時間で判定可能な電子線装置を提供することができる。また、1枚のSEM画像を取得するだけで凹凸判定と寸法計測が可能になり、さらなるスループット向上が可能な電子線装置を提供することができる。
 第6の実施例について、図23、図24を用いて説明する。なお、実施例4や実施例5に記載され、本実施例に未記載の事項はそれらと同様である。
 本実施例は、実施例4,5に記述した方法とは異なる方法で凹凸判定を行う実施例である。本実施例では、一次電子の入射角、一次電子の加速電圧、対物レンズの励磁、イメージシフト偏向器の偏向量から一次電子照射位置のずれ量を推定し、一次電子入射角を変化させるときに推定された位置ずれ量だけ、一次電子の照射位置を補正する。そして一次電子入射角の異なる複数の画像を取得し、これらの画像を比較して凹凸判定を行い、目的のパターンの寸法を計測する。
 本実施例を実施するためには、図17の構成のうち、装置全体の制御演算部と記録部を、図23ように変更した構成が必要である。それぞれ、位置ずれ近似式記録領域2301、位置ずれ推定演算部2302、位置ずれ補正制御部2303である。
 図24は、図17及び図23の構成をした走査電子顕微鏡を用いて、ラインアンドスペースパターンが形成された半導体ウエハ上の複数の点において、パターンの凹凸判定を行い、ラインパターンあるいはスペースパターンの幅を自動で計測する際のフローチャートである。以下で、このフローチャートの各ステップについて説明する。
 まず、ステップ2401では、試料の計測を行いたい箇所へ、ステージやイメージシフト偏向器を用いて一次電子の照射位置を移動させる。
 そして、ステップ2402で一次電子を垂直に入射してSEM画像を取得する。これを画像1とする。
 次に、ステップ2403で、位置ずれ推定演算部を用いて、一次電子の加速電圧、対物レンズの励磁、イメージシフト偏向器の偏向量、次のステップで傾斜させる一次電子の傾斜角を記録部の位置ずれ近似式記録領域に保存されている近似式に代入し、一次電子照射位置のずれ量の推定値を計算する。
 なお、一次電子の傾斜角は、記憶部に保存されている値を用いても良いし、表示部上に入力ウィンドウを表示させ、操作者が入力するようにしてもよい。また、位置ずれ量の推定には、あらかじめ定めた近似式を用いる方法のかわりに、記憶部に様々な条件における位置ずれ量を記した補正表を保存しておき、それを参照する方法を用いても良い。
 その後、ステップ2404で、アライメント偏向器を制御して一次電子入射角を設定された角度だけ傾斜させ、位置ずれ推定量を正負反転した量だけ一次電子線を偏向するよう位置ずれ補正制御部からイメージシフト偏向器制御部に制御信号を送り、位置ずれを相殺するように一次電子照射位置を移動させる。なお、推定した位置ずれの相殺は、ステージを移動させることで行っても良い。
 そして、ステップ2405で、一次電子を試料に対して斜めに入射させた状態でSEM画像を取得する。これを画像2とする。
 ステップ2406では、一次電子を垂直に入射させ取得した画像1と、傾斜させて入射させ取得した画像2のマッチングを行う。画像1と画像2は、上記の位置ずれ補正を行っているために位置ずれがほとんどない。したがって、マッチングによって同じエッジに対応するホワイトバンドを同定できる。
 同一エッジに対応するピークが同定できれば、ステップ2407に進み、実施例4に記載の方法で、画像1における試料パターンの凹凸判定を行う。同一エッジに対応するホワイトバンドを比較した時、一次電子を垂直入射させて取得した画像1におけるホワイトバンド幅に対して、一次電子を傾斜させて取得した画像2におけるホワイトバンド幅が太くなっている場合には、斜め入射時にそのホワイトバンドに対応するエッジの側壁に一次電子が当たっていることがわかる。すなわち、そのホワイトバンドから見て一次電子が傾斜している側が凹部であると判定できる。
 ホワイトバンド幅の増大のかわりにピーク強度の増大を指標にしても良いし、その両方を用いても良い。さらに、SEM画像内に複数のホワイトバンドがある場合、ひとつのエッジに対応するホワイトバンドに注目して凹凸判定するかわりに、隣り合う複数のエッジに付いて同様に凹凸判定を行い、エッジ毎に試料パターンの凹部と凸部が繰り返すことを考慮して判定の精度を向上することも出来る。
 また、上記に示したような同一のエッジに対応するホワイトバンドを比較するかわりに、画像2の中の隣り合ったホワイトバンドを比較して凹凸判定することもできる。その場合、ホワイトバンド幅あるいはピーク強度は交互に大小を繰り返し、ホワイトバンド幅は大きい(あるいはピーク強度が大きい)ホワイトバンドから見て、一次電子入射角が傾斜している側が凹部であると判定できる。画像1と画像2の間には一次電子照射位置のずれはほとんどないので、画像2において凹凸判定ができれば、画像1における試料パターンの凹凸も判定できる。
 このようにして画像1での凹凸判定を行えば、画像1のどの部分が試料パターンのラインに対応し、どの部分がスペースに対応するかがわかり、ステップ2408で目的のパターンの寸法を計測できる。
 最後のステップ2409では、ステップ2404で行った一次電子入射角の変更と位置ずれ補正を解除する。以上で一点の計測が修了する。
 一点の計測が終われば、別の測定点に移動し、設定された測定点すべての計測が終わるまで同様の手順を繰り返す。
 このように本実施例を用いることで、任意の一次電子加速電圧、対物レンズの励磁、イメージシフト偏向器の偏向量において、ラインアンドスペースパターンの寸法計測を自動で正確に行うことが可能になる。
 本実施例によれば、基板に形成された周期的なパターンの凹凸を短時間で判定可能な電子線装置を提供することができる。また、任意の光学条件において凹凸判定が可能な電子線装置を提供することができる。
 第7の実施例について、図25、図26を用いて説明する。なお、実施例4~6のいずれかに記載され、本実施例に未記載の事項はそれらと同様である。
 実施例7では位置ずれ量を推定し、位置ずれを相殺するようにイメージシフト偏向器を制御する方法であったが、この実施例では補正は行なわない。そのかわりに、一次電子を垂直で入射させ取得した画像1と、傾斜させて入射させ取得した画像2をマッチングさせる際に位置ずれ量を考慮する。
 本実施例を実施するためには、図17の構成のうち、装置全体の制御演算部と記録部を、図25のように変更した構成が必要である。位置ずれ近似式記録領域2301と位置ずれ推定演算部2302は実施例6と同様であり、これに加えて、位置ずれ補正マッチング演算部2501が搭載されている。
 図26は、一次電子照射位置のずれ量の推定を行う別の実施例のフローチャートである。以下で、このフローチャートの各ステップについて説明する。
 ステップ2601、2602、S2603は、実施例6におけるステップ2401、2402、2403と同じである。その後、ステップ2604にて位置ずれ補正を行わずに一次電子入射角を変化させて画像2を取得する。ステップ2605では、位置ずれ補正マッチング演算部を用いて、画像1と画像2のマッチングを行うのであるが、この際、ステップS2603で推定された位置ずれを考慮してマッチングを行う。
 具体的には、いずれかの画像について、推定した位置ずれ量だけ画像を移動させる画像処理を行った後、マッチングを行う。あるいは、一方の画像中の特定のホワイトバンドとマッチングすべきホワイトバンドを、他方の画像中のいくつかのホワイトバンドから決定する際に、画像上における位置の違いが、推定した位置ずれ量に最も近いものを選ぶ方法を用いても良い。
 上記の方法を用いることで、イメージシフト偏向器を用いた位置ずれ補正を行うことなく、画像1と画像2の中の同じエッジに対応するホワイトバンドを同定でき、凹凸判定が可能になる。
 ホワイトバンドの同定ができれば、実施例6のステップ2407、2408と同様に、ステップ2606で凹凸判定を行い、ステップ2607で目的のパターンの寸法計測を行う。最後に、ステップ2608で一次電子入射角を垂直に戻して一点の測定が完了する。
 一点の計測が終われば、別の測定点に移動し、設定された測定点すべての計測が終わるまで同様の手順を繰り返す。
 このように本実施例を用いることでも、任意の一次電子加速電圧、対物レンズの励磁、イメージシフト偏向器の偏向量において、ラインアンドスペースパターンの寸法計測を自動で正確に行うことが可能になる。本実施例は、位置ずれ量が大きすぎて、画像1と画像2に中に同一エッジに対応するホワイトバンドが存在しない場合には適用できない一方、実施例6では必要であった位置ずれ補正制御部が不要で、演算部のみで実施可能であるという利点がある。
 本実施例によれば、基板に形成された周期的なパターンの凹凸を短時間で判定可能な電子線装置を提供することができる。また、任意の光学条件において凹凸判定が可能な電子線装置を提供することができる。
 第8の実施例について、図27、図28を用いて説明する。なお、実施例4~7のいずれかに記載され、本実施例に未記載の事項はそれらと同様である。
 本実施例は、実施例4、5において一次電子入射角を連続的に変化させながら1枚のSEM画像を取得する際に、実施例6に記述した位置ずれ補正方法を併用する方法である。
 実施例4、5では、図20Bに示したように、入射角を大きく変更するほど位置ずれも大きくなる。一方、図21に示した方法でピークの同定を行なうためは、一次電子入射角の変更による電子線照射位置のずれ量が、視野の大きさよりも小さい必要があるので、用いることのできる入射角の変更量には上限がある。したがって、一次電子入射角の変更量に対する電子線照射位置ずれの割合が大きい場合、視野が狭くなる高倍率で実施例4、5を実施しようとすると、用いることのできる一次電子入射角変更量が小さくなってしまう。
 一次電子入射角の変更量が小さければ、図21に示したピークの幅あるはいピーク強度の変化も小さくなり、その結果、凹凸判定の精度が悪化する。ピーク幅やピーク強度の変化量に閾値を設けて凹凸判定の成否を判断する場合には、成功率が低下してしまう。
 これに対して、本実施例では、実施例6で記述した方法で一次電子照射位置ずれを補正することで、入射角の変更に伴う画像上のパターンの移動を大幅に軽減することができる。
 本実施例を実施するためには、図17の構成のうち、装置全体の制御演算部と記録部を、図27のように変更した構成が必要である。入射角プロファイル記録領域1721、凹凸判定演算部1723は実施例4と同様、位置ずれ近似式記録領域2301は実施例6と同様であり、これに加えて、位置ずれ量プロファイル記録領域2701、位置ずれ量プロファイル推定演算部2702、入射角・イメージシフト・走査連動制御部2703からなる構成である。
 実施例4と実施例6を併用する場合には、ステップ1903の前に、実施例5の場合はステップ2203の前に、位置ずれ量プロファイルを推定するステップを挿入する。位置ずれ量プロファイルとは、図28の右側に示すような、各走査位置における位置ずれ量(位置ずれ)のことである。ここでは位置ずれ量プロファイル推定演算部2702を用いて、入射角プロファイル記録部に保存された入射角プロファイルと位置ずれ近似式記録領域に保存された近似式から位置ずれ量プロファイルを計算し、位置ずれ量プロファイル記録領域に保存する。
 なお、図28の右側においては、走査領域上部で一次電子線が垂直入射するため、これに応じて推定位置ずれ量が0となっているが、一般に0であるとは限らない。位置ずれ量を推定した後のステップ1903(実施例5では2203)では、先に保存した入射角プロファイルと位置ずれ量プロファイルを参照して、入射角・イメージシフト・走査連動制御部からアライメント偏向器制御部、イメージシフト偏向器制御部、走査偏向器制御部に制御信号を送ることで、一次電子線を走査しながら一次電子入射角を入射角プロファイルに従って変化させると同時に、位置ずれ量プロファイルと正負反転した量だけ一次電子線を偏向し位置ずれを補正する。
 その結果、高倍率で観察する場合でも、入射角変更量の大きな入射角プロファイルを使用することが可能になり、凹凸判定の精度を向上できる。あるいは、凹凸判定の成功率を向上できる。
 本実施例によれば、基板に形成された周期的なパターンの凹凸を短時間で判定可能な電子線装置を提供することができる。また、任意の光学条件において凹凸判定が可能な電子線装置を提供することができる。
 第9の実施例を図29、図30を用いて説明する。なお、実施例4~8のいずれかに記載され、本実施例に未記載の事項はそれらと同様である。
 本実施例は、試料に存在するラフネスを利用する方法である。実際の試料には、パターンの周期と直行する方向にエッジのラフネスがある。例えば図29の上側に示したように、実際のラインパターンには、ラインがのびている方向にラインエッジラフネスと呼ばれるラフネスが存在する。
 このようなラフネスはランダムであり、エッジごとに異なる。そしてラインのラフネスは、図29の下側に示したようにSEM画像におけるホワイトバンドの形状にも反映される。従って、一次電子を垂直入射させて取得したSEM画像と斜めに入射させて取得したSEM画像を比較する際、ラフネスが一致するホワイトバンドを選択することで同じエッジに対応するホワイトバンドを同定することができる。
 図30は、ラインアンドスペースパターンが形成された半導体ウエハ上の複数の点において、ラフネスを利用した凹凸判定を行い、ラインパターンあるいはスペースパターンの幅を自動で計測する際のフローチャートである。以下で、このフローチャートの各ステップについて説明する。
 まず、ステップ3001で計測を行いたい箇所へ一次電子の照射位置を移動させる。
 そして、ステップ3002で一次電子を垂直に入射してSEM画像を取得する。これを画像1とする。また、ステップ3003では一次電子を斜めに入射してSEM画像を取得する。これを画像2とする。
 次にステップS3004では画像2において凹凸判定を行う。凹凸判定は、実施例6に記載した方法のうち、一次電子を斜めに入射して取得した画像(画像2)の中の隣り合ったホワイトバンドを比較する方法を用いる。
 画像2における凹凸判定を行った後、ステップS3005にてホワイトバンドのマッチングを行う。この際、一次電子を斜め入射した時にパターンの側面に一次電子が当たらない方のエッジに対応するホワイトバンド、つまりホワイトバンド幅が狭い方(あるいはピーク強度が小さい方)のホワイトバンドの中からひとつを選択する。そして、選択したホワイトバンドとラフネスが最もよく一致するものを、画像1のホワイトバンドの中から決定する。
 このようにして、同じエッジに対応するホワイトバンドが同定できるので、画像1における凹凸判定も可能になる。ホワイトバンドの同定を行う際には、相関値がある閾値以下になった場合には、同定に失敗したと判断しても良い。その場合、最初に画像2で選択するホワイトバンドを別のものにして、再度、同定を試みても良い。
 なお、この同定法において、最初に画像2で選択するホワイトバンドとして、一次電子を斜め入射した時にパターンの側面に一次電子が当たらないエッジの方を選択するのは、以下の理由による。一次電子を垂直に入射させた場合、主にパターンの一番高い部分(トップ)のラフネスが、SEM画像のホワイトバンドに反映される。パターンの側壁に一次電子があたらない方向に一次電子入射角を傾斜した場合も、やはりパターンのトップのラフネスが、ホワイトバンドに反映される。
 一方、一次電子を斜めに入射させたことにより、パターンの側壁に一次電子が照射されるようになる場合には、パターンのトップのみならず根元(ボトム)の形状もホワイトバンドに反映されるので、垂直入射時からのホワイトバンドのラフネスの変化が大きい。そのため、垂直入射時と斜め入射時で同じエッジに対応するホワイトバンドを正しく同定するためには、斜め入射時にパターンの側面に一次電子が当たらないエッジに対応するホワイトバンドを用いる必要がある。
 上記の方法により画像1での凹凸判定を行えば、画像1のどの部分が試料パターンのラインに対応し、どの部分がスペースに対応するかがわかり、ステップ3006にて目的のパターンの寸法を計測できる。
 一点の計測が終われば、別の測定点に移動し、設定された測定点すべての計測が終わるまで同様の手順を繰り返した後、測定を完了する。
 本実施例を用いることで、補正を行うことなく試料パターンの凹凸判定を行い、ラインアンドスペースパターンの寸法を自動で計測できる。
 なお、本実施例においても、実施例6に記述した位置ずれ補正方法を併用しても良い。画像1と画像2の間の位置ずれ量が大きい場合や、倍率が高い場合には、画像1と画像2の撮像領域の重なりが小さくなるため、あるいは全く無くなるため、両方の画像に撮像されるホワイトバンドが存在しない可能性がある。その場合、ステップ3005において、ホワイトバンドの正確な同定が不可能になってしまう。
 これに対し、実施例6の位置ずれ補正を併用すれば、画像1と画像2の間の位置ずれ量を大幅に低減でき、同じホワイトバンドは存在しないという問題は回避できる。具体的にはステップ3003の前に、ステップ2403、2404に対応する位置ずれ補正ステップを挿入し、ステップ3006の後にステップ2409の補正解除のステップを挿入すれば良い。
 本実施例によれば、基板に形成された周期的なパターンの凹凸を短時間で判定可能な電子線装置を提供することができる。また、任意の光学条件において凹凸判定が可能な電子線装置を提供することができる。
 第10の実施例について、図31を用いて説明する。なお、実施例4~9のいずれかに記載され、本実施例に未記載の事項はそれらと同様である。
 本実施例は、実施例4、6、7、9、及び、実施例8のうち実施例4と実施例6を併用した方法を実施する際に、凹凸判定に用いた画像を焦点補正にも利用する実施例である。この方法では、画像の位置ずれ量が焦点のずれ量と線形関係にあることを用いて焦点補正を行う。
 図19、22、24、26、30に示したフローチャットでは省略したが、通常は入射電子の焦点位置を補正するステップが存在する。通常の焦点補正法は、対物レンズ電流やリターディング電圧を変えながら複数のSEM画像を取得し、それらを比較して合焦点条件を求めるため、長い時間がかかる。
 本実施例では、この焦点補正を短い時間で行うことで、実施例4、6、7、8、9と同等の寸法測定を短時間で実行することができる。なお、実施例4、6、7、8、9における凹凸判定法は、焦点ずれのためにSEM画像がぼやけていても、ホワイトバンドが分かる程度のSEM画像であれば適用できる。
 したがって、精密な焦点補正は凹凸判定の後に行なっても問題はなく、凹凸判定用の画像を焦点補正に利用できる。以下に、本実施例の焦点補正法の詳細を記す。
 図31は、焦点ずれのある場合に、試料に一次電子が入射する様子を表した断面図である。試料位置(実線)の合焦点条件(点線)からのずれがLであったとすると、一次電子の入射角をΔθ変更したときに発生する一次電子照射位置のずれ量dは、合焦点条件の場合の位置ずれ量d0に対して、
  d=d+L・Δθ                                - - -   (式8)
となる。
 したがって、あらかじめ合焦点条件で測定を行ってdを求めておき記録部に保存しておけば、凹凸判定を行う画像で位置ずれ量dを評価し、焦点ずれ量Lを求めることが可能である。あるいは、d/Δθが、得たい焦点調整精度よりも小さい電子光学系では、dを無視して位置ずれ量dのみからL=d/Δθと焦点ずれ量Lを求められる。さらに、実施例6に記載の方法を用いてdを十分小さくすれば、任意の電位光学系においてdのみからLを求めることができる。
 上記の方法により、凹凸判定を行うSEM画像を利用して焦点ずれ量Lを求めることができる。そして、あらかじめ求めておいた焦点ずれ量と対物レンズの励磁の変更量の関係を用いて、焦点ずれ量Lを補正するために必要な対物レンズの励磁の変更量を求め、対物レンズの制御部によって焦点を調整できる。あるいは、対物レンズの励磁を制御するかわりに、リターディング電圧を制御して焦点調整を行ってもよい。
 本実施例では、上記方法により焦点調整した後、パターン寸法を計測するためのSEM画像を取得し、目的のパターンの寸法を計測する。特に実施例4と、実施例8のうち、実施例4と実施例6を併用した方法では、ステップ1904の後に焦点補正を実施することで、追加の画像を全く取得する必要がなく、従来焦点調整に費やしていた時間が大幅に短縮できる。
 また、実施例6、7、9では、それぞれステップS2409、S2608、S3006の後に、焦点補正及び寸法測定用の画像取得が必要になるが、従来の焦点調整法を用いるよりは、トータルで高速な寸法計測が期待できる。なお、実施例5において本実施例の焦点補正を行おうとすると、ステップ2205の代わりに焦点補正と寸法測定用の画像取得が必要になり実質的に実施例4と同等になるので、本実施例の適用対象には挙げなかった。
 高精度で寸法を計測したい場合には、SEM画像取得前に焦点調整を行う必要がある。また、試料に帯電があって焦点ずれが発生する場合は、焦点調整は不可欠である。本実施例では、凹凸判定を行うための画像を利用して焦点調整できるので、焦点調整のためだけに新たに画像取得する必要がなく、スループット向上が可能である。
 本実施例においても、基板に形成された周期的なパターンの凹凸を短時間で判定可能な電子線装置を提供することができる。また、任意の光学条件において凹凸判定が可能な電子線装置を提供することができる。また、高スループットの電子線装置を提供することができる。
 本発明は、試料表面に荷電粒子ビームを走査し、試料から発生する2次荷電粒子または反射粒子を検出することで、試料表面に形成された微細パターンの形状やその寸法を表す2次元走査の画像を得る微細パターン評価技術として有用である。また、電子線を用いて試料の形状を観察する装置、特に試料表面の凹凸を簡便に判定できる電子線装置として有用である。
2…リターディング電源、3…焦点制御部、4…非点補正器制御部、5…処理部、6…記録部、7…光源制御部、8…装置全体の制御系、9a…第2の偏向器、9b…第1の偏向器、9c…第2の偏向制御部、9d…第1の偏向制御部、10…対物レンズ、11…ウエハ、12a…鏡体、12b…真空試料室、12c…ロードロック室、13…ウエハホルダ、14…電子銃、15…1次電子線、16…収束レンズ、17…2次電子、18…検出器、19…非点補正器、70…表示部、20…試料表面、21…点Aを照射する、傾斜前のビーム、22…ビーム21が傾斜した後のビーム、21a…ビーム21にて取得した画像、22a…ビーム22で取得した画像、23…点Bを照射する傾斜前のビーム、24…ビーム23が傾斜した後のビーム、23a…ビーム23にて取得した画像、24a…ビーム24で取得した画像、25…ビームを傾斜する角度、29…試料表面、31…0度方位に傾斜したビームをXY平面に投影した像、32…90度方位に傾斜したビームをXY平面に投影した像、33…225度方位に傾斜したビームをXY平面に投影した像、34…315度方位に傾斜したビームをXY平面に投影した像、50…試料表面、51…点Aを照射する、傾斜前のビーム、52…ビーム51が傾斜した後のビーム、53…ビーム51にて取得した画像、54…ビーム52で取得した画像、55…点Bを照射する傾斜前のビーム、56…ビーム55が傾斜した後のビーム、57…ビーム55にて取得した画像、58…ビーム56で取得した画像、59…試料表面、91…0度方位に傾斜したビームをXY平面に投影した像、1501…一次電子線、1502…表面にラインアンドスペースパターンが形成された試料の断面、1503…SEM画像、1504…一次電子の試料に対する入射角、1505…ホワイトバンド、1601…ラインアンドスペース試料に対して一次電子を垂直に入射して得られるSEM画像の例、1602…ラインアンドスペース試料に対して一次電子を斜めに入射して得られるSEM画像の例、1603…ラインアンドスペースパターンの周期、1701…電子銃、1702…一次電子、1703…アライメント偏向器、1704…二次電子、1705…二次電子検出器、1706…イメージシフト偏向器、1707…走査偏向器、1708…対物レンズ、1709…試料、1710…ステージ、1711…電子銃制御部、1712…アライメント偏向器制御部、1713…イメージシフト偏向器制御部、1714…走査偏向器制御部、1715…対物レンズ制御部、1716…リターディング電圧制御部、1717…記録部、1718…装置全体の制御演算部、1719…表示部、1720…カラム、1721…入射角プロファイル記録領域、1722…入射角・走査連動制御部、1723…凹凸判定演算部、1801…一次電子照射領域、1803~1805…一次電子を走査する順、1806…SEM画像、1807~1809…SEM画像が形成される順、2001…実施例5にて寸法計測する領域の例、2301…位置ずれ近似式記録領域、2302…位置ずれ推定演算部、2303…位置ずれ補正制御部、2501…位置ずれ補正マッチング演算部、2701…位置ずれ量プロファイル記録領域、2702…位置ずれ量プロファイル推定演算部、2703…入射角・イメージシフト・走査連動制御部。

Claims (30)

  1. 荷電粒子光学系と処理部を備えた荷電粒子線装置の荷電粒子ビームを用いた微細パターン評価方法であって、
    少なくとも2つの異なる方向から荷電粒子ビームを試料に照射するための光学系条件に基づき、前記試料上に前記荷電粒子ビームを照射し、
    少なくとも2つの異なる方向から前記荷電粒子ビームを試料に照射して得られた画像を比較して画像間のパターン位置ずれ量を測定し、
    前記処理部は、前記試料上の画像取得位置を移動するための前記荷電粒子ビームのビーム偏向に依存した前記パターン位置ずれ量の補正量に基づき、前記パターン位置ずれ量を補正する、
    ことを特徴とするパターン評価方法。
  2. 請求項1に記載のパターン評価方法であって、
    前記処理部は、前記補正量で補正したパターン位置ずれ量から非点較差量、もしくは焦点位置ずれ量、またはその両方を算出する、
    ことを特徴とするパターン評価方法。
  3. 請求項2に記載のパターン評価方法であって、
    前記処理部は、前記補正量を、前記荷電粒子ビームの加速電圧や試料高さに応じて算出する、
    ことを特徴とするパターン評価方法。
  4. 請求項2に記載のパターン評価方法であって、
    前記処理部は、前記補正量を、照射する前記荷電粒子ビームの傾斜方向と傾斜角度に応じて算出する、
    ことを特徴とするパターン評価方法。
  5. 請求項1に記載のパターン評価方法であって、
    前記パターン位置ずれ量の前記補正量を前記光学系条件にフィードバックして前記荷電粒子ビームを照射する、
    ことを特徴とするパターン評価方法。
  6. 請求項5に記載のパターン評価方法であって、
    前記処理部は、前記パターン位置ずれ量の前記補正量を、前記荷電粒子ビームの加速電圧、あるいは前記試料の高さに応じて算出する、
    ことを特徴とするパターン評価方法。
  7. 請求項5に記載のパターン評価方法であって、
    前記処理部は、前記パターン位置ずれ量の前記補正量を、照射する前記荷電粒子ビームの傾斜方向と傾斜角度に応じて算出する、
    ことを特徴とするパターン評価装置とそれを用いた評価方法。
  8. 請求項1に記載のパターン評価方法であって、
    前記補正量を前記荷電粒子ビームのビーム偏向量に依存した多項式により求める、
    ことを特徴とするパターン評価方法。
  9. 請求項1に記載のパターン評価方法であって、
    前記処理部は、4つの異なる方向から荷電粒子ビームを試料に照射することにより得られた前記画像を比較して画像間の前記パターン位置ずれ量を測定し、前記補正量で補正した前記パターン位置ずれ量から前記非点較差量を算出する、ことを特徴とするパターン評価方法。
  10. 請求項1に記載のパターン評価方法であって、
    前記補正量を算出可能な前記光学系条件に関する情報を前記荷電粒子線装置の表示部に表示する、
    ことを特徴とするパターン評価方法。
  11. 荷電粒子ビームを用いたパターン評価装置であって、
    試料上に荷電粒子ビームを照射する荷電粒子光学系と、
    少なくとも2つの異なる方向から前記荷電粒子ビームを照射するための前記荷電粒子光学系の光学系条件を登録保持する記憶部と、
    前記光学系条件に基づき、少なくとも2つの異なる方向からの前記荷電粒子ビームの照射で得た画像を比較して画像間のパターン位置ずれ量を算出する処理部と、
    前記荷電粒子ビームを偏向するビーム偏向部を備え、
    前記処理部は、前記ビーム偏向部の前記試料上の前記画像の取得位置を移動するためのビーム偏向に基づく前記パターン位置ずれ量の補正量を算出し、前記補正量を用いて前記パターン位置ずれ量を補正する、
    ことを特徴とするパターン評価装置。
  12. 請求項11に記載のパターン評価装置であって、
    前記処理部は、前記補正量で補正した前記パターン位置ずれ量から、前記荷電粒子ビームの非点較差量、もしくは焦点位置ずれ量、またはその両方を算出する、
    ことを特徴とするパターン評価装置。
  13. 請求項12に記載のパターン評価装置であって、
    前記処理部は、前記補正量を、前記荷電粒子ビームの加速電圧、あるいは前記試料の高さに応じて算出する、
    ことを特徴とするパターン評価装置。
  14. 請求項12に記載のパターン評価装置であって、
    前記処理部は、前記補正量を、照射する前記荷電粒子ビームの傾斜方向と傾斜角度に応じて算出する、
    ことを特徴とするパターン評価装置。
  15. 請求項11に記載のパターン評価装置であって、
    前記パターン位置ずれ量の前記補正量を前記光学系条件にフィードバックして前記荷電粒子ビームを照射するよう制御する制御部を更に備える、
    ことを特徴とするパターン評価装置。
  16. 請求項15に記載のパターン評価装置であって、
    前記処理部は、前記パターン位置ずれ量の前記補正量を、前記荷電粒子ビームの加速電圧、あるいは前記試料の高さに応じて算出する、
    ことを特徴とするパターン評価装置。
  17. 請求項15に記載のパターン評価装置であって、
    前記処理部は、前記パターン位置ずれ量の前記補正量を、照射する前記荷電粒子ビームの傾斜方向と傾斜角度に応じて算出する、
    ことを特徴とするパターン評価装置。
  18. 請求項12に記載のパターン評価装置であって、
    前記処理部は、前記補正量を前記ビーム偏向部のビーム偏向量に依存した多項式により求める、
    ことを特徴とするパターン評価装置。
  19. 請求項12に記載のパターン評価装置であって、
    前記記憶部は、少なくとも4つの異なる方向から照射するための前記荷電粒子光学系の光学系条件を登録して保持する、
    ことを特徴とするパターン評価装置。
  20. 荷電粒子ビーム装置によるパターン評価装置であって、
    試料を搭載するステージと、
    前記ステージ上の前記試料に荷電粒子ビームを照射し、前記試料から発生する二次荷電粒子を検出する荷電粒子光学系と、
    前記荷電粒子光学系の光学系条件を定めて前記荷電粒子光学系を制御し、検出した前記二次荷電粒子から前記試料の画像を得るよう制御する制御部と、
    前記試料の画像の取得位置を移動するため、前記荷電粒子ビームを偏向するビーム偏向部と、
    前記画像を表示する表示部とを備え、
    前記制御部は、少なくとも2つの異なる方向から前記荷電粒子ビームを前記試料上に照射するための前記光学系条件を保持する記憶部と、前記光学系条件に基づき、少なくとも2つの異なる方向からの前記荷電粒子ビームの照射で得た、前記試料の画像を比較して画像間のパターン位置ずれ量を算出し、且つ前記ビーム偏向部のビーム偏向に基づく前記パターン位置ずれ量の補正量を算出し、算出した前記補正量を用いて前記パターン位置ずれ量を補正し、補正した前記パターン位置ずれ量から、前記荷電粒子ビームの非点較差量、もしくは焦点位置ずれ量、またはその両方を算出する処理部を有する、
    ことを特徴とするパターン評価装置。
  21. 電子源と、試料を載せるステージと、前記試料からの電気信号を検出する検出器と、前記電子源、前記ステージ、前記検出器を制御すると共に前記検出器により検出された電気信号により画像用データを作成する制御演算部とを有する電子線装置において、
    前記制御演算部は、
    前記電子源から放出される電子線の走査と前記試料への入射角とを制御する入射角・走査連動制御部と、
    前記入射角・走査連動制御部により、前記試料への入射角を変更しながら走査された前記電子線により生じる前記試料からの電気信号に基づき作成される画像用データを用いて前記試料の表面の凹凸を判定する凹凸判定演算部と、を含むことを特徴とする電子線装置。
  22. 請求項21記載の電子線装置において、
    前記制御演算部は、前記凹凸判定演算部で凹凸判定後、前記試料の指定されたパターンの寸法を自動で計測する機能を有することを特徴とする電子線装置。
  23. 電子源と、試料を載せるステージと、前記試料からの電気信号を検出する検出器と、前記電子源から放出される電子線の前記試料への入射角を変える偏向手段と、前記電子線を加速する加速手段と、前記電子線の照射範囲を変えるイメージシフト偏向器と、前記電子線を収束させる対物レンズと、これらを制御する制御部を制御すると共に前記検出器により検出された電気信号により画像用データを作成する制御演算部とを有する電子線装置において、
    前記制御演算部は、
    前記偏向手段により変えられる電子線の前記試料に対する入射角、前記加速手段により加速される前記電子線の加速電圧、前記イメージシフト偏向器により変えられる偏向量、および前記対物レンズの励磁に応じて、前記試料表面における前記電子線照射位置のずれ量を推定する位置ずれ推定演算部と、
    前記位置ずれ推定演算部により推定された位置ずれ量を補正する位置ずれ補正制御部と、
    前記位置ずれ補正制御部により位置ずれが補正された前記電子線の入射角の異なる複数枚の画像用データから前記試料の特定パターンの凹凸判定を行う凹凸判定演算部と、を含むことを特徴とする電子線装置。
  24. 請求項23記載の電子線装置において、
    前記制御演算部は、前記凹凸判定演算部で凹凸判定後、前記試料の指定されたパターンの寸法を自動で計測する機能を有することを特徴とする電子線装置。
  25. 電子源と、試料を載せるステージと、前記試料からの電気信号を検出する検出器と、前記電子源から放出される電子線の前記試料への入射角を変える偏向手段と、前記電子線を加速する加速手段と、前記電子線の照射範囲を変えるイメージシフト偏向器と、前記電子線を収束させる対物レンズと、これらを制御する制御部を制御すると共に前記検出器により検出された電気信号により画像用データを作成する制御演算部とを有する電子線装置に
    おいて、
    前記制御演算部は、
    前記偏向手段により変えられる電子線の前記試料に対する入射角、前記加速手段により加速される前記電子線の加速電圧、前記イメージシフト偏向器により変えられる偏向量、および前記対物レンズの励磁に応じて、前記試料表面における前記電子線照射位置のずれ量を推定する位置ずれ推定演算部と、
    前記位置ずれ推定演算部により推定された位置ずれ量を考慮して前記電子線の入射角が異なる複数枚の画像用データから前記試料の特定パターンの凹凸判定を行う凹凸判定演算部と、を含むことを特徴とする電子線装置。
  26. 請求項25記載の電子線装置において、
    前記制御演算部は、前記凹凸判定演算部で凹凸判定後、前記試料の指定されたパターンの寸法を自動で計測する機能を有することを特徴とする電子線装置。
  27. 電子源と、試料を載せるステージと、前記試料からの電気信号を検出する検出器と、前記電子源から放出される電子線の前記試料への入射角を変える偏向手段と、前記電子線を加速する加速手段と、前記電子線の照射範囲を変えるイメージシフト偏向器と、前記電子線を収束させる対物レンズと、これらを制御する制御部を制御すると共に前記検出器により検出された電気信号により画像用データを作成する制御演算部とを有する電子線装置において、
    前記制御演算部は、
    前記偏向手段により変えられる電子線の前記試料に対する入射角、前記加速手段により加速される前記電子線の加速電圧、前記イメージシフト偏向器により変えられる偏向量、および前記対物レンズの励磁に応じて、前記試料表面における前記電子線照射位置のずれ量を推定する位置ずれプロファイル推定演算部と、
    前記電子源から放出される電子線の走査、前記試料への入射角、および前記位置ずれプ
    ロファイル推定演算部により推定された位置ずれ量を補正する入射角・イメージシフト・
    走査連動制御部と、
    前記入射角・イメージシフト・走査連動制御部により前記試料への入射角を変更しながら、かつ位置ずれを補正しながら走査された前記電子線により生じる前記試料からの電気信号に基づき作成される画像用データを用いて前記試料の表面の凹凸を判定する凹凸判定演算部と、を含むことを特徴とする電子線装置。
  28. 電子線装置において、1枚の画像を取得する際に、試料に対する電子線の入射角を変更して1枚あるいは複数枚の画像を取得し、前記画像から、前記試料に対する前記電子線の入射角と前記試料表面における電子線照射位置のずれ量の関係を求める手段を有することを特徴とする電子線装置。
  29. 電子線装置において、電子線の入射角を変更して複数枚の画像を取得し、試料表面に形成されたパターンの中で、前記電子線を傾斜させて入射したときに前記パターンの側壁に前記電子線が照射されないパターンの形状を他の画像から検出することで、記録された前記試料形状の同定を行い、前記画像から前記試料の特定パターンの凹凸判定を行う制御部を備えたことを特徴とする電子線装置。
  30. 電子線装置において、電子線の入射角を変更して取得した画像を用いて、試料の特定パターンの凹凸判定と焦点位置ずれ調整を行う制御部を備えたことを特徴とする電子線装置。
PCT/JP2010/004743 2009-07-27 2010-07-26 パターン評価方法、その装置、及び電子線装置 WO2011013342A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/386,540 US8816277B2 (en) 2009-07-27 2010-07-26 Pattern evaluation method, device therefor, and electron beam device
JP2011524653A JP5525528B2 (ja) 2009-07-27 2010-07-26 パターン評価方法、その装置、及び電子線装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009174315 2009-07-27
JP2009-174315 2009-07-27
JP2009185845 2009-08-10
JP2009-185845 2009-08-10

Publications (1)

Publication Number Publication Date
WO2011013342A1 true WO2011013342A1 (ja) 2011-02-03

Family

ID=43529014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004743 WO2011013342A1 (ja) 2009-07-27 2010-07-26 パターン評価方法、その装置、及び電子線装置

Country Status (3)

Country Link
US (1) US8816277B2 (ja)
JP (1) JP5525528B2 (ja)
WO (1) WO2011013342A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213781A (ja) * 2012-04-04 2013-10-17 Hitachi High-Technologies Corp 位置ずれ計測装置及び位置ずれ計測方法ならびに位置ずれ計測装置を用いた走査電子顕微鏡
JP2014020974A (ja) * 2012-07-20 2014-02-03 Hitachi High-Technologies Corp パターン測定装置
KR101964529B1 (ko) * 2017-11-16 2019-04-02 한국기초과학지원연구원 투과전자현미경 장치 및 이를 이용한 이미지 보정 방법
JP2020061240A (ja) * 2018-10-09 2020-04-16 株式会社日立製作所 計測装置及び試料の表面の計測方法
JP2020521325A (ja) * 2017-05-18 2020-07-16 アプライド マテリアルズ イスラエル リミテッド 半導体ウエハ上のパターン内の高低差の測定
JPWO2019073592A1 (ja) * 2017-10-13 2020-08-06 株式会社日立ハイテク パターン計測装置およびパターン計測方法
JP2021082595A (ja) * 2021-02-03 2021-05-27 株式会社日立ハイテク 荷電粒子線装置およびパターン計測方法
TWI744644B (zh) * 2018-06-06 2021-11-01 日商日立全球先端科技股份有限公司 圖案測定方法、圖案測定工具、及電腦可讀媒體

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455944B1 (ko) * 2010-09-30 2014-10-28 가부시키가이샤 히다치 하이테크놀로지즈 주사 전자 현미경
JP5677677B2 (ja) * 2011-05-09 2015-02-25 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP5981744B2 (ja) * 2012-03-21 2016-08-31 株式会社日立ハイテクサイエンス 試料観察方法、試料作製方法及び荷電粒子ビーム装置
JP2015052573A (ja) * 2013-09-09 2015-03-19 株式会社東芝 パターン計測装置及びパターン計測方法
KR102234659B1 (ko) * 2013-10-29 2021-04-05 삼성전자주식회사 고에너지 전자 빔을 이용하여 인-셀 오버레이 오프셋을 측정할 수 있는 sem 장치와 그 방법
US20160336143A1 (en) * 2015-05-15 2016-11-17 Kabushiki Kaisha Toshiba Charged particle beam apparatus and method of calibrating sample position
JP2019204618A (ja) * 2018-05-22 2019-11-28 株式会社日立ハイテクノロジーズ 走査型電子顕微鏡
JP6987233B2 (ja) * 2018-05-22 2021-12-22 株式会社日立ハイテク 荷電粒子線装置及びその軸調整方法
JP7202642B2 (ja) * 2019-03-26 2023-01-12 株式会社日立ハイテクサイエンス 荷電粒子ビーム装置、及び制御方法
DE102020113502A1 (de) * 2020-05-19 2021-11-25 Carl Zeiss Microscopy Gmbh Verfahren zum Betreiben eines Teilchenstrahlmikroskops

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273861A (ja) * 2000-03-28 2001-10-05 Toshiba Corp 荷電ビーム装置およびパターン傾斜観察方法
JP2003016983A (ja) * 2001-07-04 2003-01-17 Hitachi Ltd 荷電粒子線装置および自動非点収差調整方法
JP2003090719A (ja) * 2001-07-12 2003-03-28 Hitachi Ltd 試料の凹凸判定方法、及び荷電粒子線装置
JP2005310602A (ja) * 2004-04-23 2005-11-04 Hitachi High-Technologies Corp 荷電粒子線調整方法、及び荷電粒子線装置
JP2007208039A (ja) * 2006-02-02 2007-08-16 Nikon Corp 荷電粒子線露光装置
JP2008084626A (ja) * 2006-09-27 2008-04-10 Hitachi High-Technologies Corp 荷電粒子ビームの走査方法及び荷電粒子線装置
JP2008198405A (ja) * 2007-02-09 2008-08-28 Hitachi High-Technologies Corp 走査形電子顕微鏡

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541195A (ja) 1991-08-07 1993-02-19 Mitsubishi Electric Corp 走査型電子顕微鏡装置
US20060060781A1 (en) 1997-08-11 2006-03-23 Masahiro Watanabe Charged-particle beam apparatus and method for automatically correcting astigmatism and for height detection
JP4581223B2 (ja) 2000-10-27 2010-11-17 株式会社日立製作所 集束イオンビーム装置
JP4270229B2 (ja) 2001-07-12 2009-05-27 株式会社日立製作所 荷電粒子線装置
JP3968334B2 (ja) 2002-09-11 2007-08-29 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び荷電粒子線照射方法
JP4272121B2 (ja) 2004-06-23 2009-06-03 株式会社日立ハイテクノロジーズ Semによる立体形状計測方法およびその装置
US8766183B2 (en) 2008-09-26 2014-07-01 Hitachi High-Technologies Corporation Charged particle beam device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273861A (ja) * 2000-03-28 2001-10-05 Toshiba Corp 荷電ビーム装置およびパターン傾斜観察方法
JP2003016983A (ja) * 2001-07-04 2003-01-17 Hitachi Ltd 荷電粒子線装置および自動非点収差調整方法
JP2003090719A (ja) * 2001-07-12 2003-03-28 Hitachi Ltd 試料の凹凸判定方法、及び荷電粒子線装置
JP2005310602A (ja) * 2004-04-23 2005-11-04 Hitachi High-Technologies Corp 荷電粒子線調整方法、及び荷電粒子線装置
JP2007208039A (ja) * 2006-02-02 2007-08-16 Nikon Corp 荷電粒子線露光装置
JP2008084626A (ja) * 2006-09-27 2008-04-10 Hitachi High-Technologies Corp 荷電粒子ビームの走査方法及び荷電粒子線装置
JP2008198405A (ja) * 2007-02-09 2008-08-28 Hitachi High-Technologies Corp 走査形電子顕微鏡

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213781A (ja) * 2012-04-04 2013-10-17 Hitachi High-Technologies Corp 位置ずれ計測装置及び位置ずれ計測方法ならびに位置ずれ計測装置を用いた走査電子顕微鏡
JP2014020974A (ja) * 2012-07-20 2014-02-03 Hitachi High-Technologies Corp パターン測定装置
JP2020521325A (ja) * 2017-05-18 2020-07-16 アプライド マテリアルズ イスラエル リミテッド 半導体ウエハ上のパターン内の高低差の測定
JP7026140B2 (ja) 2017-05-18 2022-02-25 アプライド マテリアルズ イスラエル リミテッド 半導体ウエハ上のパターン内の高低差の測定
JPWO2019073592A1 (ja) * 2017-10-13 2020-08-06 株式会社日立ハイテク パターン計測装置およびパターン計測方法
KR101964529B1 (ko) * 2017-11-16 2019-04-02 한국기초과학지원연구원 투과전자현미경 장치 및 이를 이용한 이미지 보정 방법
TWI744644B (zh) * 2018-06-06 2021-11-01 日商日立全球先端科技股份有限公司 圖案測定方法、圖案測定工具、及電腦可讀媒體
JP7120873B2 (ja) 2018-10-09 2022-08-17 株式会社日立製作所 計測装置及び試料の表面の計測方法
JP2020061240A (ja) * 2018-10-09 2020-04-16 株式会社日立製作所 計測装置及び試料の表面の計測方法
JP2021082595A (ja) * 2021-02-03 2021-05-27 株式会社日立ハイテク 荷電粒子線装置およびパターン計測方法
JP2022088488A (ja) * 2021-02-03 2022-06-14 株式会社日立ハイテク パターン計測方法、パターン計測装置、およびパターン計測プログラム
JP7048778B2 (ja) 2021-02-03 2022-04-05 株式会社日立ハイテク 荷電粒子線装置およびパターン計測方法
JP7346644B2 (ja) 2021-02-03 2023-09-19 株式会社日立ハイテク パターン計測方法、パターン計測装置、およびパターン計測プログラム

Also Published As

Publication number Publication date
JPWO2011013342A1 (ja) 2013-01-07
US20130026361A1 (en) 2013-01-31
JP5525528B2 (ja) 2014-06-18
US8816277B2 (en) 2014-08-26

Similar Documents

Publication Publication Date Title
JP5525528B2 (ja) パターン評価方法、その装置、及び電子線装置
USRE49784E1 (en) Apparatus of plural charged-particle beams
US9966227B2 (en) Specimen observation method and device using secondary emission electron and mirror electron detection
US7385196B2 (en) Method and scanning electron microscope for measuring width of material on sample
US8766183B2 (en) Charged particle beam device
JP4679978B2 (ja) 荷電粒子ビーム応用装置
JP2018535525A (ja) 複数の荷電粒子ビームの装置
JP4383950B2 (ja) 荷電粒子線調整方法、及び荷電粒子線装置
JP2007187538A (ja) 荷電粒子線装置及びそれを用いた画像取得方法
US20080067447A1 (en) Standard component for calibration and calibration method using it and electro beam system
JP2004342341A (ja) ミラー電子顕微鏡及びそれを用いたパターン欠陥検査装置
US6809319B2 (en) Electron beam writing equipment and electron beam writing method
US7910885B2 (en) System and method for determining a cross sectional feature of a structural element using a reference structural element
JP6043528B2 (ja) パターン測定装置
WO2020157860A1 (ja) 荷電粒子線システム及び荷電粒子線撮像方法
JP5372445B2 (ja) 走査型電子顕微鏡装置およびその焦点あわせ方法
JP6116921B2 (ja) 荷電粒子線装置
JP4431624B2 (ja) 荷電粒子線調整方法、及び荷電粒子線装置
JP3911407B2 (ja) 荷電粒子線走査式装置
TWI843354B (zh) 帶電粒子線裝置及使用其之檢查方法
WO2023139668A1 (ja) 荷電粒子線装置及びそれを用いた検査方法
JP4288744B2 (ja) 検査方法
JP4246311B2 (ja) ビーム加工方法及び集束イオンビーム装置
JP2010016007A (ja) 荷電粒子線調整方法及び荷電粒子線装置
JP2013178877A (ja) 荷電粒子線装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804095

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011524653

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13386540

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10804095

Country of ref document: EP

Kind code of ref document: A1