WO2011004842A1 - 基板、基板の製造方法、超電導線材および超電導線材の製造方法 - Google Patents
基板、基板の製造方法、超電導線材および超電導線材の製造方法 Download PDFInfo
- Publication number
- WO2011004842A1 WO2011004842A1 PCT/JP2010/061540 JP2010061540W WO2011004842A1 WO 2011004842 A1 WO2011004842 A1 WO 2011004842A1 JP 2010061540 W JP2010061540 W JP 2010061540W WO 2011004842 A1 WO2011004842 A1 WO 2011004842A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- nickel
- substrate
- alloy
- copper
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 239000000463 material Substances 0.000 title abstract description 12
- 230000008569 process Effects 0.000 title abstract description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 244
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 90
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 84
- 239000000956 alloy Substances 0.000 claims abstract description 84
- 239000010949 copper Substances 0.000 claims abstract description 79
- 229910052802 copper Inorganic materials 0.000 claims abstract description 45
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 40
- 238000005275 alloying Methods 0.000 claims description 26
- 238000007747 plating Methods 0.000 claims description 12
- 230000007423 decrease Effects 0.000 claims description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 230000009467 reduction Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 266
- 239000010409 thin film Substances 0.000 description 22
- 239000007789 gas Substances 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 230000005291 magnetic effect Effects 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 229910002482 Cu–Ni Inorganic materials 0.000 description 5
- 239000011241 protective layer Substances 0.000 description 5
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000000313 electron-beam-induced deposition Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000005389 magnetism Effects 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 230000001603 reducing effect Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- -1 YAlO 3 Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002887 superconductor Substances 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 241000954177 Bangana ariza Species 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- XATZQMXOIQGKKV-UHFFFAOYSA-N nickel;hydrochloride Chemical compound Cl.[Ni] XATZQMXOIQGKKV-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B12/00—Superconductive or hyperconductive conductors, cables, or transmission lines
- H01B12/02—Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
- H01B12/06—Films or wires on bases or cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
- H01B1/026—Alloys based on copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0268—Manufacture or treatment of devices comprising copper oxide
- H10N60/0296—Processes for depositing or forming copper oxide superconductor layers
- H10N60/0576—Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
- H10N60/0632—Intermediate layers, e.g. for growth control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12458—All metal or with adjacent metals having composition, density, or hardness gradient
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12611—Oxide-containing component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12903—Cu-base component
Definitions
- the present invention relates to a substrate, a substrate manufacturing method, a superconducting wire, and a superconducting wire manufacturing method.
- the RE123-based thin film superconducting wire has (1) a critical current density at a liquid nitrogen temperature (77.3 K) of about 10 6 A / cm 2, which is about two orders of magnitude higher than that of a bismuth-based silver sheathed wire. (2) Due to the advantage of high critical current density under a magnetic field, development as a next-generation high-temperature superconducting wire is expected.
- a ceramic thin film intermediate layer is formed on a metal substrate, and a superconducting layer is formed thereon.
- a superconducting layer is formed thereon.
- Patent Document 1 an oxide layer on the surface of an oriented metal substrate is removed, and thin films such as an intermediate layer and a superconducting layer are epitaxially grown while maintaining the biaxial orientation of the oriented metal substrate. How to do is described.
- Patent Document 1 when a superconducting wire is produced using a ferromagnetic material such as Ni as an oriented metal substrate, if a current is passed through the obtained superconducting wire, the saturation magnetization of the substrate is large, which is caused by hysteresis loss. There was a problem that AC loss increased.
- an object of the present invention is to provide a substrate, a substrate manufacturing method, a superconducting wire, and a superconducting wire manufacturing method that can reduce the AC loss of the superconducting wire.
- the substrate of the present invention includes a copper layer, an alloy layer formed on the copper layer and containing copper and nickel, a nickel layer formed on the alloy layer, and an intermediate layer formed on the nickel layer. ing.
- the nickel concentration in the alloy layer at the interface between the alloy layer and the copper layer is smaller than the nickel concentration in the alloy layer at the interface between the alloy layer and the nickel layer.
- the nickel concentration of the alloy layer monotonously decreases from the interface between the alloy layer and the nickel layer toward the interface between the alloy layer and the copper layer.
- the substrate manufacturing method of the present invention includes the following steps.
- a base material in which a nickel layer is formed on a copper layer using a plating method is prepared.
- the other part of the nickel layer is alloyed while leaving a part of the nickel layer.
- an intermediate layer is epitaxially grown on the nickel layer.
- the superconducting wire of the present invention includes a copper layer, an alloy layer formed on the copper layer and containing copper and nickel, a nickel layer formed on the alloy layer, an intermediate layer formed on the nickel layer, And a superconducting layer formed on the intermediate layer.
- the nickel concentration in the alloy layer at the interface between the alloy layer and the copper layer is smaller than the nickel concentration in the alloy layer at the interface between the alloy layer and the nickel layer.
- the nickel concentration in the alloy layer monotonously decreases from the interface between the alloy layer and the nickel layer toward the interface between the alloy layer and the copper layer.
- the method for producing a superconducting wire of the present invention includes the following steps.
- a base material in which a nickel layer is formed on a copper layer using a plating method is prepared.
- the other part of the nickel layer is alloyed while leaving a part of the nickel layer.
- an intermediate layer is epitaxially grown on the nickel layer.
- a superconducting layer is formed on the intermediate layer.
- the substrate manufacturing method, the superconducting wire, and the superconducting wire manufacturing method of the present invention a part of nickel contained in the substrate is alloyed to become a nonmagnetic material. For this reason, the hysteresis loss of a board
- the step of alloying the nickel layer is performed under reduced pressure not containing hydrogen gas.
- the step of alloying the nickel layer is performed under reduced pressure not containing hydrogen gas.
- the oxide layer on the Ni surface remains until just before the intermediate layer is formed, and the lattice matching with the intermediate layer is good by reducing the intermediate layer when it is formed.
- H 2 O can be present near the substrate to prevent oxygen vacancies in the metal oxide that is the intermediate layer and to assist orientation.
- FIG. 1 is a cross-sectional view schematically showing a substrate 1 according to an embodiment of the present invention.
- a substrate 1 in an embodiment of the present invention includes a copper layer (hereinafter also referred to as a Cu layer) 2, an alloy layer 3 formed on the copper layer 2 and containing copper and nickel, A nickel layer 4 (hereinafter also referred to as Ni layer) formed on the alloy layer 3 and an intermediate layer 5 formed on the nickel layer 4 are provided.
- the substrate 1 can have a long tape shape.
- the Cu layer 2 is suitable for an alignment substrate because Cu atoms are biaxially oriented.
- the term “biaxially oriented” includes not only complete biaxial orientation but also a case where the crystal axis shift angle is 25 ° or less.
- the orientation is preferably such that the ⁇ 100> axis is oriented in the direction perpendicular to the substrate surface and the ⁇ 010> axis is oriented in the length direction of the substrate.
- the Cu layer 2 can be laminated on another metal or alloy.
- the Cu layer 2 can be provided on stainless steel (hereinafter also referred to as SUS) which is a high-strength material.
- the Cu layer 2 can have a long tape-like shape.
- the thickness of the Cu layer 2 is, for example, 15 to 18 ⁇ m.
- the alloy layer 3 is a nonmagnetic metal containing nickel and copper.
- the alloy layer 3 is preferably oriented.
- the saturation magnetization of the alloy layer 3 is smaller than the saturation magnetization of Ni alone. That is, the case where the magnetic flux density is 0T and the case where the magnetic flux density exceeds 0T and is lower than the magnetic flux density of Ni alone are included.
- the magnetism of the alloy layer 3 is smaller than that of Ni alone. That is, the case where the maximum energy (BHmax) is 0 J / m 3 and the case where the maximum energy exceeds 0 J / m 3 and is smaller than the maximum energy of Ni alone are included.
- the alloy layer 3 there is a Ni concentration distribution. Specifically, the alloy layer and the copper layer shown in FIG. 1B and FIG. 2B than the concentration of nickel in the alloy layer at the interface between the alloy layer and the nickel layer shown in FIG. The nickel concentration in the alloy layer at the interface is small.
- the alloy layer 3 from the interface between the alloy layer 3 and the Ni layer 4 shown in FIG. 1A and FIG. 2A, the alloy layer 3 and the Cu layer 2 shown in FIG. 1B and FIG. It is preferable that the Ni concentration in the alloy layer 3 monotonously decreases toward the interface.
- the monotonic decrease will be described with reference to FIG.
- An example of monotonous decrease is as shown by c, d, and e in FIG.
- the concentration of Ni in the alloy layer 3 always decreases toward.
- Another example of the monotonous decrease is as shown by f in FIG. 4B, from the interface between the alloy layer 3 and the Ni layer 4 indicated by A toward the interface between the alloy layer 3 and the Cu layer 2 indicated by B.
- the concentration of Ni in the alloy layer 3 is reduced or the same. That is, the monotonic decrease includes a portion where the Ni concentration increases from the interface between the alloy layer 3 and the Ni layer 4 indicated by A toward the interface between the alloy layer 3 and the Cu layer 2 indicated by B. Means no.
- the thickness of the alloy layer 3 is, for example, 1.0 to 2.1 ⁇ m.
- the Ni layer 4 is a layer for preventing oxidation when the intermediate layer 5 is formed. When the Cu layer 2 is oriented, the Ni layer 4 is also oriented.
- the thickness of the Ni layer 3 is preferably 0.3 to 1.5 ⁇ m.
- the intermediate layer 5 is a layer for forming the superconducting layer 6 on this surface.
- the intermediate layer 5 is composed of one layer or two or more layers. When the intermediate layer 5 is composed of a plurality of layers, the layers constituting the intermediate layer 5 may be composed of different materials.
- a metal oxide having one or more metal elements having a pyrochlore type, a meteorite type, a rock salt type or a perovskite type crystal structure is preferably used.
- the rare earth element oxide such as CeO 2, YSZ (yttria-stabilized zirconia), BZO (BaZrO 3), STO (SrTiO 3), Al 2 O 3, YAlO 3, MgO, Ln-M-O -based Compounds (Ln is one or more lanthanoid elements, M is one or more elements selected from Sr, Zr and Ga, and O is oxygen).
- the oxide relaxes the difference in crystal constant and crystal orientation between the Cu layer 2 which is an oriented metal substrate and the superconducting layer 6 formed on the intermediate layer 5, and the metal from the Cu layer 2 to the superconducting layer 6. Plays a role in preventing the outflow of atoms.
- An example of such a material is CeO 2 .
- FIG. 2 is a cross-sectional view schematically showing superconducting wire 7 in one embodiment of the present invention.
- superconducting wire 7 according to one embodiment of the present invention is formed on copper layer 2, alloy layer 3 formed on copper layer 2 and containing copper and nickel, and alloy layer 3.
- a nickel layer 4 formed thereon, an intermediate layer 5 formed on the nickel layer 4, and a superconducting layer 6 formed on the intermediate layer 5.
- the superconducting wire 7 can have a long tape shape.
- the copper layer 2, alloy layer 3, nickel layer 4 and intermediate layer 5 in the superconducting wire 7 are the same as those used for the substrate 1.
- Superconducting layer 6 has a long tape-like shape.
- the superconducting layer 6 is composed of REBa 2 Cu 3 O y (y is 6 to 8, more preferably approximately 7, RE is Y (yttrium), or rare earth such as Gd (gadolinium), Sm (samarium), Ho (holmium), etc.
- GdBCO is expressed as GdBa 2 Cu 3 O y (y is 6 to 8, more preferably approximately 7).
- the superconducting wire 7 may further include a protective layer (not shown) formed on the superconducting layer 6.
- the protective layer protects the superconducting layer 6 and is a contact portion with the external electrode.
- the protective layer is not particularly limited as long as it has high conductivity, but Ag, Au, Pt, Al, or an alloy thereof is preferably used.
- FIG. 3 is a cross-sectional view schematically showing a method for manufacturing substrate 1 and superconducting wire 7 in one embodiment of the present invention.
- substrate 1 in one embodiment of this invention uses the plating method as shown in FIG.3 (b) on Cu layer 2 as shown in FIG.3 (a).
- a step of preparing the base material on which the Ni layer 4 is formed, a step of alloying the other part of the Ni layer 4 while leaving a part of the Ni layer 4 as shown in FIG. (D), the step of epitaxially growing the intermediate layer 5 on the Ni layer 4 after the step of alloying the Ni layer 4 is provided.
- the method of manufacturing superconducting wire 7 in one embodiment of the present invention includes a step of forming superconducting layer 6 on intermediate layer 5 as shown in FIG.
- Step of forming the nickel layer As shown in FIGS. 3 (a) and 3 (b), specifically, first, a substrate on which the Ni layer 4a is formed on the Cu layer 2 by using a plating method is prepared.
- the plating method include a method in which the Cu layer 2 is subjected to electrolytic nickel plating in a solution containing nickel chloride, nickel sulfate and the like.
- the thickness of the Ni layer 4 formed on the Cu layer 2 by using a plating method is preferably 1.3 to 3.6 ⁇ m, and preferably 1.3 to 3.0 ⁇ m. It is more preferable that In the case of 1.3 ⁇ m or more, even if heat of about 800 to 1000 ° C. is applied in the process of alloying the other part of the Ni layer 4 while leaving a part of the Ni layer 4 to be described later, all Ni atoms are Cu Diffusion to the layer 2 can be suppressed. For this reason, it is possible to effectively exhibit the function of the Ni layer 4 that is not easily oxidized and has good lattice matching with the intermediate layer 5. In the case of 3.6 ⁇ m or less, Ni constituting the Ni layer 4 easily diffuses into the Cu layer 2 in the alloying step, so that alloying can be performed efficiently.
- the other part of the Ni layer 4 is alloyed while leaving a part of the Ni layer 4.
- Ni constituting the Ni layer 4 and Cu constituting the Cu layer 2 are alloyed, and the alloy layer 3 containing a Cu—Ni alloy can be formed.
- the magnetism of the Cu—Ni alloy is smaller than that of Ni alone. For this reason, when the superconducting wire 7 is manufactured using the substrate 1 having the alloy layer 3, the concentration of the magnetic field on the end portion in the width direction of the superconducting wire 7 can be reduced. Therefore, the magnetic field affecting the current flowing through the superconducting wire 7 can be reduced, and the AC loss of the superconducting wire can be reduced.
- the step of alloying the nickel layer 4 is preferably performed under reduced pressure that does not contain hydrogen gas.
- the atmospheric gas for example, Ar, N 2 or the like can be used.
- Under reduced pressure is a pressure lower than atmospheric pressure, and for example, 0.1 to 10 Pa is preferable.
- the Ni layer 4 is preferably heat-treated at a temperature of 800 to 1000 ° C.
- the temperature is less than 800 ° C.
- alloying of nickel does not proceed and a sufficient magnetic reduction effect cannot be obtained.
- the temperature exceeds 1000 ° C., Ni and Cu diffuse and form a complete alloy, so that Cu diffuses on the Ni layer surface. Since Cu is easily oxidized, the orientation of the Ni layer 4 surface cannot be improved.
- the Ni layer is preferably heat-treated at a temperature of 800 to 1000 ° C. for 15 to 25 minutes. If the heat treatment time is less than 15 minutes, alloying does not proceed sufficiently, and a magnetism reducing effect cannot be expected. If it exceeds 25 minutes, Ni and Cu diffuse and form a complete alloy, so that Cu diffuses on the surface of the Ni layer. Since Cu is easily oxidized, the orientation of the Ni layer 4 surface cannot be improved.
- the intermediate layer 5 is epitaxially grown on the Ni layer 4 to obtain the substrate 1.
- the method for forming the oxide thin film to be the intermediate layer 5 is not particularly limited as long as it does not contradict the object of the present invention. Sputtering, EBD (Electron Beam Deposition), PLD (Pulse Laser Deposition); A method such as a pulse laser deposition method or a thermal evaporation method is preferably used.
- the CeO 2 as the intermediate layer 5 is formed on the Ni layer 4 biaxially oriented with the ⁇ 100> axis in the direction perpendicular to the substrate surface and the ⁇ 010> axis in the length direction of the substrate after the alloying step.
- ⁇ 100> axis is the direction perpendicular to the substrate surface
- ⁇ 011> axis is CeO 2 thin film formed oriented in the length direction of the substrate, biaxially oriented highly CeO 2 thin film Is obtained.
- the orientation can be maintained by epitaxially growing the second intermediate layer on the first intermediate layer.
- FIG. 3 is a cross-sectional view schematically showing a method for manufacturing substrate 1 and superconducting wire 7 in one embodiment of the present invention.
- the method of manufacturing superconducting wire 7 in one embodiment of the present invention is performed by applying a plating method as shown in FIG. 3 (b) on Cu layer 2 as shown in FIG. 3 (a).
- the step of forming the nickel layer, the step of alloying, and the step of epitaxially growing the intermediate layer are the same as the substrate manufacturing method.
- the method for forming the oxide thin film to be the superconducting layer 6 is not particularly limited as long as it does not contradict the purpose of the present invention.
- a method such as a growth (Metal Organic Chemical Vapor Deposition) method is preferably used.
- a protective layer (not shown) can be formed on the superconducting layer 6 as necessary.
- Methods such as a sputtering method, EBD method, PLD method, thermal evaporation method, MOD method, MOCVD method, a plating method, are used preferably.
- Example 1 First, a substrate having a 18 ⁇ m thick Cu layer on a 100 ⁇ m thick SUS substrate was prepared. The substrate having the Cu layer was subjected to electrolytic nickel plating in a solution containing nickel hydrochloride to form a Ni layer having a thickness of 2.4 ⁇ m.
- the Ni layer was heat-treated at a heat treatment temperature of 850 ° C. to 1000 ° C. for 15 minutes under an atmosphere of pressure 0.1 Pa to 10 Pa using Ar gas. Thereby, a Cu—Ni alloy layer was formed from the Ni layer and the Cu layer.
- a mixed gas of H 2 gas and Ar gas (composition: H 2 gas 3 mol%, Ar gas 97 mol%) was used as the reducing gas, under a pressure of 5.2 Pa atmosphere, and the substrate temperature.
- a CeO 2 thin film having a thickness of 0.15 ⁇ m was formed as an intermediate layer on the Ni layer.
- the mixed gas was changed (composition: O 2 gas 0.5 mol%, Ar gas 99.5 mol%), and the pressure was adjusted to 2.6 Pa on the CeO 2 layer at a substrate temperature of 900 ° C.
- a YSZ thin film having a thickness of 0.26 ⁇ m was formed as two intermediate layers.
- Example 1 a substrate of Example 1 was obtained.
- GdBCO was formed as a superconducting layer on the intermediate layer by the PLD method. Thereby, the superconducting wire of Example 1 was obtained.
- Example 1 A substrate and a superconducting wire were obtained in the same manner as in Example 1 except that the Ni layer was not heat-treated.
- Example 2 A substrate and a superconducting wire were obtained in the same manner as in Example 1 except that the heat treatment time for the Ni layer was 30 minutes.
- Example 1 and Comparative Examples 1 and 2 For the substrates of Example 1 and Comparative Examples 1 and 2, the thickness of each of the Ni layer, Cu—Ni layer (alloy layer), Cu layer and the biaxial orientation of the CeO 2 thin film were measured. Furthermore, hysteresis loss was measured for the superconducting wires of Example 1 and Comparative Examples 1 and 2. The results are shown in Table 1.
- the thickness of each layer of the substrate was measured by an electronic microanalyzer (EPMA) analysis.
- the c-axis orientation of the CeO 2 thin film on the substrate was determined by measuring the X-ray diffraction peak intensities (I (200) and I (111)) from the (200) plane and the (111) plane of the CeO 2 thin film. 200) / (I (200) + I (111)). The larger the numerical value, the higher the c-axis orientation of the CeO 2 thin film as the intermediate layer, which is preferable.
- the X-ray diffraction peak intensity from the (200) plane is the amount of crystals whose ⁇ 100> axis is oriented in the direction perpendicular to the substrate plane, and the X-ray diffraction peak intensity from the (111) plane is ⁇ 111. > Indicates the amount of crystals in which the axis is uniaxially oriented in the direction perpendicular to the substrate surface.
- VSM vibrating magnetometer
- Example 1 the Ni layer was heat-treated for 15 minutes to form a 1.7 ⁇ m thick Cu—Ni alloy layer while leaving the 1.3 ⁇ m thick Ni layer. From the EPMA analysis results, it was confirmed that the Ni concentration in the alloy layer was monotonically decreasing from the interface between the alloy layer and the nickel layer toward the interface between the alloy layer and the copper layer. Cu and Ni were only partially alloyed, and Cu did not diffuse on the Ni layer surface, so the biaxial orientation of the CeO 2 thin film was excellent. Moreover, the hysteresis loss was able to be reduced compared with the comparative example 1 which does not heat-process an Ni layer.
- Comparative Example 2 Ni and Cu were completely alloyed by heat-treating the Ni layer for 30 minutes, and the hysteresis loss of the superconducting wire was reduced. However, since Cu diffused on the Ni layer surface, the biaxial orientation of the CeO 2 thin film was deteriorated as compared with Comparative Example 1 in which the Ni layer was not heat-treated.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
(基板)
図1は、本発明の一実施の形態における基板1を概略的に示す断面図である。図1を参照して、本発明の一実施の形態における基板1は、銅層(以下Cu層ともいう)2と、銅層2上に形成され、かつ銅およびニッケルを含む合金層3と、合金層3上に形成されたニッケル層4(以下Ni層ともいう)と、ニッケル層4上に形成された中間層5とを備えている。
(銅層)
Cu層2は、Cu原子が2軸配向しているため、配向基板に適している。なお2軸配向しているとは、完全な2軸配向のみならず、結晶軸のずれ角が25°以下の場合も含まれる。また、配向の方向は、<100>軸が基板面に垂直な方向に、<010>軸が基板の長さ方向に配向していることが好ましい。
Cu層2の厚みは、たとえば15~18μmである。
合金層3は、ニッケルおよび銅を含む非磁性金属である。合金層3は配向していることが好ましい。
(ニッケル層)
Ni層4は、中間層5を形成する際に、酸化を防止するための層である。Cu層2が配向している場合には、Ni層4も配向する。
(中間層)
中間層5は、この表面上に超電導層6が形成されるための層である。中間層5は、1層または2層以上からなる。中間層5が複数の層により構成されている場合、中間層5を構成するそれぞれの層は互いに異なる材質により構成されていてもよい。
(超電導線材)
図2は、本発明の一実施の形態における超電導線材7を概略的に示す断面図である。図2を参照して、本発明の一実施の形態における超電導線材7は、銅層2と、銅層2上に形成され、かつ銅およびニッケルを含む合金層3と、合金層3上に形成されたニッケル層4と、ニッケル層4上に形成された中間層5と、中間層5上形成された超電導層6とを備えている。
超電導線材7における銅層2、合金層3、ニッケル層4および中間層5は、基板1に用いたものと同じである。
超電導層6は、長尺なテープ状の形状を有している。超電導層6は、REBa2Cu3Oy(yは6~8、より好ましくはほぼ7、REとはY(イットリウム)、またはGd(ガドリニウム)、Sm(サマリウム)、Ho(ホルミウム)などの希土類元素を意味する)として表される超電導体などであり、たとえばGdBCOからなることが好ましい。GdBCOとは、GdBa2Cu3Oy(yは6~8、より好ましくはほぼ7)として表される。
(基板の製造方法)
図3は、本発明の一実施の形態における基板1および超電導線材7の製造方法を概略的に示す断面図である。図3を参照して、本発明の一実施の形態における基板1の製造方法は、図3(a)に示すようなCu層2上に、図3(b)に示すようにめっき法を用いてNi層4が形成された基材を準備する工程と、図3(c)に示すようにNi層4の一部を残しつつNi層4の他の部分を合金化する工程と、図3(d)に示すようにNi層4を合金化する工程の後にNi層4上に中間層5をエピタキシャル成長させる工程とを備える。さらに図3を参照して、本発明の一実施の形態における超電導線材7の製造方法は、図3(e)に示すように、中間層5上に超電導層6を形成する工程を備える。
図3(a)および(b)に示すように、具体的には、まず、Cu層2上に、めっき法を用いてNi層4aが形成された基板を準備する。めっき法は例えばCu層2を塩化ニッケル、硫酸ニッケルなどを含む溶液中で電解ニッケルめっき処理する方法が挙げられる。
図3(c)に示すように、次に、Ni層4の一部を残しつつNi層4の他の部分を合金化する。この工程により、Ni層4を構成するNiと、Cu層2を構成するCuとが合金化され、Cu-Ni合金を含む合金層3を形成することができる。Cu-Ni合金の磁性は、Ni単体の場合よりも小さい。このため、合金層3を有する基板1を用いて超電導線材7を製造すると、超電導線材7の幅方向端部への磁界の集中を緩和することができる。したがって、超電導線材7を流れる電流に影響を及ぼす磁場が低減し、超電導線材の交流損失を低減することができる。
図3(d)に示すように、次に、Ni層4上に中間層5をエピタキシャル成長させて、基板1を得る。中間層5となる酸化物薄膜の形成方法としては、本発明の目的に反さない限り特に制限はなく、スパッタ法、EBD(電子線ビーム蒸着;Electron Beam Deposition)法、PLD(パルスレーザー蒸着;Pulse Laser Deposition)法、熱蒸着法などの方法が好ましく用いられる。
(超電導線材の製造方法)
図3は、本発明の一実施の形態における基板1および超電導線材7の製造方法を概略的に示す断面図である。図3を参照して、本発明の一実施の形態における超電導線材7の製造方法は、図3(a)に示すようなCu層2上に、図3(b)に示すようにめっき法を用いてNi層4が形成された基材を準備する工程と、図3(c)に示すようにNi層4の一部を残しつつNi層4の他の部分を合金化する工程と、図3(d)に示すようにNi層4を合金化する工程の後にNi層4上に中間層5をエピタキシャル成長させる工程と、図3(e)に示すように、中間層5上に超電導層6を形成する工程とを備える。
たとえば実施の形態4で得られた基板1の中間層5の上に超電導層6を形成した場合、中間層5は配向性が良好であるため、2軸配向性の高い超電導層6を得ることができる。
まず、100μm厚さのSUS基板上に18μmの厚みのCu層を有する基板を準備した。前記Cu層を有する基板を塩酸ニッケルを含む溶液中で電解ニッケルめっきを行い、2.4μmの厚みのNi層を形成した。
Ni層の熱処理を行わない以外は、上記実施例1と同様にして、基板および超電導線材を得た。
Ni層の熱処理時間を30分間とする以外は、上記実施例1と同様にして、基板および超電導線材を得た。
実施例1、比較例1および2の基板について、Ni層、Cu-Ni層(合金層)、Cu層の各層の厚みおよびCeO2薄膜の2軸配向性について測定した。さらに実施例1、比較例1および2の超電導線材について、ヒステリシス損失を測定した。結果を表1に示す。
Claims (8)
- 銅層(2)と、
前記銅層(2)上に形成され、かつ銅およびニッケルを含む合金層(3)と、
前記合金層(3)上に形成されたニッケル層(4)と、
前記ニッケル層(4)上に形成された中間層(5)とを備え、
前記合金層(3)と前記ニッケル層(4)との界面における前記合金層(3)のニッケルの濃度よりも、前記合金層(3)と前記銅層(2)との界面における前記合金層(3)のニッケルの濃度が小さい、基板(1)。 - 前記合金層(3)と前記ニッケル層(4)との界面から、前記合金層(3)と前記銅層(2)との界面に向かって前記合金層(3)のニッケルの濃度が単調減少している、請求の範囲第1項に記載の基板(1)。
- めっき法を用いて銅層(2)上にニッケル層(4)が形成された基材を準備する工程と、
前記ニッケル層(4)の一部を残しつつ前記ニッケル層(4)の他の部分を合金化する工程と、
前記ニッケル層(4)を合金化する工程の後に前記ニッケル層(4)上に中間層(5)をエピタキシャル成長させる工程とを備えた、基板(1)の製造方法。 - 前記ニッケル層(4)を合金化する工程を水素ガスを含まない減圧下にて行う、請求の範囲第3項に記載の基板(1)の製造方法。
- 銅層(2)と、
前記銅層(2)上に形成され、かつ銅およびニッケルを含む合金層(3)と、
前記合金層(3)上に形成されたニッケル層(4)と、
前記ニッケル層(4)上に形成された中間層(5)と、
前記中間層(5)上形成された超電導層(6)とを備え、
前記合金層(3)と前記ニッケル層(4)との界面における前記合金層(3)のニッケルの濃度よりも、前記合金層(3)と前記銅層(2)との界面における前記合金層(3)のニッケルの濃度が小さい、超電導線材(7)。 - 前記合金層(3)と前記ニッケル層(4)との界面から、前記合金層(3)と前記銅層(2)との界面に向かって前記合金層(3)のニッケルの濃度が単調減少している、請求の範囲第5項に記載の超電導線材(7)。
- めっき法を用いて銅層(2)上にニッケル層(4)が形成された基材を準備する工程と、
前記ニッケル層(4)の一部を残しつつ前記ニッケル層(4)の他の部分を合金化する工程と、
前記ニッケル層(4)を合金化する工程の後に前記ニッケル層(4)上に中間層(5)をエピタキシャル成長させる工程と、
前記中間層(5)上に超電導層(6)を形成する工程とを備えた、超電導線材(7)の製造方法。 - 前記ニッケル層(4)を合金化する工程を水素ガスを含まない減圧下にて行う、請求の範囲第7項に記載の超電導線材(7)の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010800311246A CN102473487B (zh) | 2009-07-10 | 2010-07-07 | 衬底、制造衬底的方法、超导线材和制造超导线材的方法 |
KR1020127003392A KR101680405B1 (ko) | 2009-07-10 | 2010-07-07 | 기판, 기판의 제조 방법, 초전도 선재 및 초전도 선재의 제조 방법 |
IN532DEN2012 IN2012DN00532A (ja) | 2009-07-10 | 2010-07-07 | |
US13/381,109 US8912126B2 (en) | 2009-07-10 | 2010-07-07 | Substrate, method of producing substrate, superconducting wire, and method of producing superconducting wire |
EP10797153.3A EP2453447B1 (en) | 2009-07-10 | 2010-07-07 | Substrate, method of producing substrate superconducting wire and method of producing of superconducting wire |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009163514A JP5356134B2 (ja) | 2009-07-10 | 2009-07-10 | 基板、基板の製造方法、超電導線材および超電導線材の製造方法 |
JP2009-163514 | 2009-07-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011004842A1 true WO2011004842A1 (ja) | 2011-01-13 |
Family
ID=43429266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/061540 WO2011004842A1 (ja) | 2009-07-10 | 2010-07-07 | 基板、基板の製造方法、超電導線材および超電導線材の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8912126B2 (ja) |
EP (1) | EP2453447B1 (ja) |
JP (1) | JP5356134B2 (ja) |
KR (1) | KR101680405B1 (ja) |
CN (1) | CN102473487B (ja) |
IN (1) | IN2012DN00532A (ja) |
WO (1) | WO2011004842A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5367927B1 (ja) * | 2012-04-16 | 2013-12-11 | 古河電気工業株式会社 | 超電導成膜用基材及び超電導線並びに超電導線の製造方法 |
DE112015007114T5 (de) * | 2015-11-11 | 2018-08-02 | Sumitomo Electric Industries, Ltd. | Supraleitender Draht |
KR20210003089A (ko) * | 2018-03-09 | 2021-01-11 | 인디안 인스티투트 오브 싸이언스 | 초전도 블록, 초전도 나노결정, 초전도 장치 및 이의 방법 |
CN110534017B (zh) * | 2018-12-26 | 2021-03-26 | 友达光电股份有限公司 | 显示面板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005001935A (ja) | 2003-06-11 | 2005-01-06 | Sumitomo Electric Ind Ltd | 酸化物薄膜の製造方法 |
JP2006127847A (ja) * | 2004-10-27 | 2006-05-18 | Sumitomo Electric Ind Ltd | 膜形成用配向基板および超電導線材 |
JP2007165153A (ja) * | 2005-12-14 | 2007-06-28 | Internatl Superconductivity Technology Center | 厚膜テープ状re系(123)超電導体の製造方法。 |
JP2007188756A (ja) * | 2006-01-13 | 2007-07-26 | Internatl Superconductivity Technology Center | 希土類系テープ状酸化物超電導体 |
JP2009046734A (ja) * | 2007-08-21 | 2009-03-05 | Chubu Electric Power Co Inc | エピタキシャル膜形成用配向基板及びエピタキシャル膜形成用配向基板の表面改質方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1045483A (zh) * | 1989-03-09 | 1990-09-19 | 日本钢管株式会社 | 超导体制件 |
GB0010494D0 (en) * | 2000-04-28 | 2000-06-14 | Isis Innovation | Textured metal article |
JP5074083B2 (ja) * | 2007-04-17 | 2012-11-14 | 中部電力株式会社 | エピタキシャル薄膜形成用のクラッド配向金属基板及びその製造方法 |
JP5400416B2 (ja) | 2009-02-20 | 2014-01-29 | 中部電力株式会社 | 超電導線材 |
-
2009
- 2009-07-10 JP JP2009163514A patent/JP5356134B2/ja active Active
-
2010
- 2010-07-07 US US13/381,109 patent/US8912126B2/en active Active
- 2010-07-07 WO PCT/JP2010/061540 patent/WO2011004842A1/ja active Application Filing
- 2010-07-07 IN IN532DEN2012 patent/IN2012DN00532A/en unknown
- 2010-07-07 EP EP10797153.3A patent/EP2453447B1/en active Active
- 2010-07-07 KR KR1020127003392A patent/KR101680405B1/ko active IP Right Grant
- 2010-07-07 CN CN2010800311246A patent/CN102473487B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005001935A (ja) | 2003-06-11 | 2005-01-06 | Sumitomo Electric Ind Ltd | 酸化物薄膜の製造方法 |
JP2006127847A (ja) * | 2004-10-27 | 2006-05-18 | Sumitomo Electric Ind Ltd | 膜形成用配向基板および超電導線材 |
JP2007165153A (ja) * | 2005-12-14 | 2007-06-28 | Internatl Superconductivity Technology Center | 厚膜テープ状re系(123)超電導体の製造方法。 |
JP2007188756A (ja) * | 2006-01-13 | 2007-07-26 | Internatl Superconductivity Technology Center | 希土類系テープ状酸化物超電導体 |
JP2009046734A (ja) * | 2007-08-21 | 2009-03-05 | Chubu Electric Power Co Inc | エピタキシャル膜形成用配向基板及びエピタキシャル膜形成用配向基板の表面改質方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2453447A4 |
Also Published As
Publication number | Publication date |
---|---|
US20120108436A1 (en) | 2012-05-03 |
CN102473487A (zh) | 2012-05-23 |
JP5356134B2 (ja) | 2013-12-04 |
CN102473487B (zh) | 2013-10-16 |
US8912126B2 (en) | 2014-12-16 |
IN2012DN00532A (ja) | 2015-08-21 |
KR20120051009A (ko) | 2012-05-21 |
EP2453447A4 (en) | 2015-04-22 |
EP2453447B1 (en) | 2017-11-01 |
EP2453447A1 (en) | 2012-05-16 |
KR101680405B1 (ko) | 2016-11-28 |
JP2011018599A (ja) | 2011-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2728589A1 (en) | Re-123 superconducting wire and method for manufacturing the same | |
JP5356134B2 (ja) | 基板、基板の製造方法、超電導線材および超電導線材の製造方法 | |
JP2012094388A (ja) | 酸化物超電導線材およびその製造方法 | |
JP2007220467A (ja) | 超電導薄膜材料の製造方法、超電導機器、および超電導薄膜材料 | |
JP2009283372A (ja) | 人工ピンを導入した酸化物超電導導体及びその製造方法 | |
JP6104757B2 (ja) | 酸化物超電導線材及びその製造方法 | |
JP5096422B2 (ja) | 基板および超電導線材の製造方法 | |
US9570215B2 (en) | Method for manufacturing precursor, method for manufacturing superconducting wire, precursor, and superconducting wire | |
JP5736522B2 (ja) | Re123系超電導線材およびその製造方法 | |
JP5739972B2 (ja) | 超電導線材の前駆体および超電導線材 | |
JP2016143516A (ja) | 酸化物超電導線材及びその製造方法 | |
JP6262304B2 (ja) | 酸化物超電導線材の製造方法 | |
JPWO2017064893A1 (ja) | 酸化物超電導線材 | |
JP2019125436A (ja) | 酸化物超電導線材 | |
JP2009238501A (ja) | 酸化物超電導線材及び酸化物超電導線材の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080031124.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10797153 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13381109 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 532/DELNP/2012 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20127003392 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2010797153 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010797153 Country of ref document: EP |