WO2011004842A1 - 基板、基板の製造方法、超電導線材および超電導線材の製造方法 - Google Patents

基板、基板の製造方法、超電導線材および超電導線材の製造方法 Download PDF

Info

Publication number
WO2011004842A1
WO2011004842A1 PCT/JP2010/061540 JP2010061540W WO2011004842A1 WO 2011004842 A1 WO2011004842 A1 WO 2011004842A1 JP 2010061540 W JP2010061540 W JP 2010061540W WO 2011004842 A1 WO2011004842 A1 WO 2011004842A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nickel
substrate
alloy
copper
Prior art date
Application number
PCT/JP2010/061540
Other languages
English (en)
French (fr)
Inventor
高史 山口
昌也 小西
肇 太田
Original Assignee
住友電気工業株式会社
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 東洋鋼鈑株式会社 filed Critical 住友電気工業株式会社
Priority to CN2010800311246A priority Critical patent/CN102473487B/zh
Priority to KR1020127003392A priority patent/KR101680405B1/ko
Priority to IN532DEN2012 priority patent/IN2012DN00532A/en
Priority to US13/381,109 priority patent/US8912126B2/en
Priority to EP10797153.3A priority patent/EP2453447B1/en
Publication of WO2011004842A1 publication Critical patent/WO2011004842A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • H10N60/0632Intermediate layers, e.g. for growth control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12458All metal or with adjacent metals having composition, density, or hardness gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component

Definitions

  • the present invention relates to a substrate, a substrate manufacturing method, a superconducting wire, and a superconducting wire manufacturing method.
  • the RE123-based thin film superconducting wire has (1) a critical current density at a liquid nitrogen temperature (77.3 K) of about 10 6 A / cm 2, which is about two orders of magnitude higher than that of a bismuth-based silver sheathed wire. (2) Due to the advantage of high critical current density under a magnetic field, development as a next-generation high-temperature superconducting wire is expected.
  • a ceramic thin film intermediate layer is formed on a metal substrate, and a superconducting layer is formed thereon.
  • a superconducting layer is formed thereon.
  • Patent Document 1 an oxide layer on the surface of an oriented metal substrate is removed, and thin films such as an intermediate layer and a superconducting layer are epitaxially grown while maintaining the biaxial orientation of the oriented metal substrate. How to do is described.
  • Patent Document 1 when a superconducting wire is produced using a ferromagnetic material such as Ni as an oriented metal substrate, if a current is passed through the obtained superconducting wire, the saturation magnetization of the substrate is large, which is caused by hysteresis loss. There was a problem that AC loss increased.
  • an object of the present invention is to provide a substrate, a substrate manufacturing method, a superconducting wire, and a superconducting wire manufacturing method that can reduce the AC loss of the superconducting wire.
  • the substrate of the present invention includes a copper layer, an alloy layer formed on the copper layer and containing copper and nickel, a nickel layer formed on the alloy layer, and an intermediate layer formed on the nickel layer. ing.
  • the nickel concentration in the alloy layer at the interface between the alloy layer and the copper layer is smaller than the nickel concentration in the alloy layer at the interface between the alloy layer and the nickel layer.
  • the nickel concentration of the alloy layer monotonously decreases from the interface between the alloy layer and the nickel layer toward the interface between the alloy layer and the copper layer.
  • the substrate manufacturing method of the present invention includes the following steps.
  • a base material in which a nickel layer is formed on a copper layer using a plating method is prepared.
  • the other part of the nickel layer is alloyed while leaving a part of the nickel layer.
  • an intermediate layer is epitaxially grown on the nickel layer.
  • the superconducting wire of the present invention includes a copper layer, an alloy layer formed on the copper layer and containing copper and nickel, a nickel layer formed on the alloy layer, an intermediate layer formed on the nickel layer, And a superconducting layer formed on the intermediate layer.
  • the nickel concentration in the alloy layer at the interface between the alloy layer and the copper layer is smaller than the nickel concentration in the alloy layer at the interface between the alloy layer and the nickel layer.
  • the nickel concentration in the alloy layer monotonously decreases from the interface between the alloy layer and the nickel layer toward the interface between the alloy layer and the copper layer.
  • the method for producing a superconducting wire of the present invention includes the following steps.
  • a base material in which a nickel layer is formed on a copper layer using a plating method is prepared.
  • the other part of the nickel layer is alloyed while leaving a part of the nickel layer.
  • an intermediate layer is epitaxially grown on the nickel layer.
  • a superconducting layer is formed on the intermediate layer.
  • the substrate manufacturing method, the superconducting wire, and the superconducting wire manufacturing method of the present invention a part of nickel contained in the substrate is alloyed to become a nonmagnetic material. For this reason, the hysteresis loss of a board
  • the step of alloying the nickel layer is performed under reduced pressure not containing hydrogen gas.
  • the step of alloying the nickel layer is performed under reduced pressure not containing hydrogen gas.
  • the oxide layer on the Ni surface remains until just before the intermediate layer is formed, and the lattice matching with the intermediate layer is good by reducing the intermediate layer when it is formed.
  • H 2 O can be present near the substrate to prevent oxygen vacancies in the metal oxide that is the intermediate layer and to assist orientation.
  • FIG. 1 is a cross-sectional view schematically showing a substrate 1 according to an embodiment of the present invention.
  • a substrate 1 in an embodiment of the present invention includes a copper layer (hereinafter also referred to as a Cu layer) 2, an alloy layer 3 formed on the copper layer 2 and containing copper and nickel, A nickel layer 4 (hereinafter also referred to as Ni layer) formed on the alloy layer 3 and an intermediate layer 5 formed on the nickel layer 4 are provided.
  • the substrate 1 can have a long tape shape.
  • the Cu layer 2 is suitable for an alignment substrate because Cu atoms are biaxially oriented.
  • the term “biaxially oriented” includes not only complete biaxial orientation but also a case where the crystal axis shift angle is 25 ° or less.
  • the orientation is preferably such that the ⁇ 100> axis is oriented in the direction perpendicular to the substrate surface and the ⁇ 010> axis is oriented in the length direction of the substrate.
  • the Cu layer 2 can be laminated on another metal or alloy.
  • the Cu layer 2 can be provided on stainless steel (hereinafter also referred to as SUS) which is a high-strength material.
  • the Cu layer 2 can have a long tape-like shape.
  • the thickness of the Cu layer 2 is, for example, 15 to 18 ⁇ m.
  • the alloy layer 3 is a nonmagnetic metal containing nickel and copper.
  • the alloy layer 3 is preferably oriented.
  • the saturation magnetization of the alloy layer 3 is smaller than the saturation magnetization of Ni alone. That is, the case where the magnetic flux density is 0T and the case where the magnetic flux density exceeds 0T and is lower than the magnetic flux density of Ni alone are included.
  • the magnetism of the alloy layer 3 is smaller than that of Ni alone. That is, the case where the maximum energy (BHmax) is 0 J / m 3 and the case where the maximum energy exceeds 0 J / m 3 and is smaller than the maximum energy of Ni alone are included.
  • the alloy layer 3 there is a Ni concentration distribution. Specifically, the alloy layer and the copper layer shown in FIG. 1B and FIG. 2B than the concentration of nickel in the alloy layer at the interface between the alloy layer and the nickel layer shown in FIG. The nickel concentration in the alloy layer at the interface is small.
  • the alloy layer 3 from the interface between the alloy layer 3 and the Ni layer 4 shown in FIG. 1A and FIG. 2A, the alloy layer 3 and the Cu layer 2 shown in FIG. 1B and FIG. It is preferable that the Ni concentration in the alloy layer 3 monotonously decreases toward the interface.
  • the monotonic decrease will be described with reference to FIG.
  • An example of monotonous decrease is as shown by c, d, and e in FIG.
  • the concentration of Ni in the alloy layer 3 always decreases toward.
  • Another example of the monotonous decrease is as shown by f in FIG. 4B, from the interface between the alloy layer 3 and the Ni layer 4 indicated by A toward the interface between the alloy layer 3 and the Cu layer 2 indicated by B.
  • the concentration of Ni in the alloy layer 3 is reduced or the same. That is, the monotonic decrease includes a portion where the Ni concentration increases from the interface between the alloy layer 3 and the Ni layer 4 indicated by A toward the interface between the alloy layer 3 and the Cu layer 2 indicated by B. Means no.
  • the thickness of the alloy layer 3 is, for example, 1.0 to 2.1 ⁇ m.
  • the Ni layer 4 is a layer for preventing oxidation when the intermediate layer 5 is formed. When the Cu layer 2 is oriented, the Ni layer 4 is also oriented.
  • the thickness of the Ni layer 3 is preferably 0.3 to 1.5 ⁇ m.
  • the intermediate layer 5 is a layer for forming the superconducting layer 6 on this surface.
  • the intermediate layer 5 is composed of one layer or two or more layers. When the intermediate layer 5 is composed of a plurality of layers, the layers constituting the intermediate layer 5 may be composed of different materials.
  • a metal oxide having one or more metal elements having a pyrochlore type, a meteorite type, a rock salt type or a perovskite type crystal structure is preferably used.
  • the rare earth element oxide such as CeO 2, YSZ (yttria-stabilized zirconia), BZO (BaZrO 3), STO (SrTiO 3), Al 2 O 3, YAlO 3, MgO, Ln-M-O -based Compounds (Ln is one or more lanthanoid elements, M is one or more elements selected from Sr, Zr and Ga, and O is oxygen).
  • the oxide relaxes the difference in crystal constant and crystal orientation between the Cu layer 2 which is an oriented metal substrate and the superconducting layer 6 formed on the intermediate layer 5, and the metal from the Cu layer 2 to the superconducting layer 6. Plays a role in preventing the outflow of atoms.
  • An example of such a material is CeO 2 .
  • FIG. 2 is a cross-sectional view schematically showing superconducting wire 7 in one embodiment of the present invention.
  • superconducting wire 7 according to one embodiment of the present invention is formed on copper layer 2, alloy layer 3 formed on copper layer 2 and containing copper and nickel, and alloy layer 3.
  • a nickel layer 4 formed thereon, an intermediate layer 5 formed on the nickel layer 4, and a superconducting layer 6 formed on the intermediate layer 5.
  • the superconducting wire 7 can have a long tape shape.
  • the copper layer 2, alloy layer 3, nickel layer 4 and intermediate layer 5 in the superconducting wire 7 are the same as those used for the substrate 1.
  • Superconducting layer 6 has a long tape-like shape.
  • the superconducting layer 6 is composed of REBa 2 Cu 3 O y (y is 6 to 8, more preferably approximately 7, RE is Y (yttrium), or rare earth such as Gd (gadolinium), Sm (samarium), Ho (holmium), etc.
  • GdBCO is expressed as GdBa 2 Cu 3 O y (y is 6 to 8, more preferably approximately 7).
  • the superconducting wire 7 may further include a protective layer (not shown) formed on the superconducting layer 6.
  • the protective layer protects the superconducting layer 6 and is a contact portion with the external electrode.
  • the protective layer is not particularly limited as long as it has high conductivity, but Ag, Au, Pt, Al, or an alloy thereof is preferably used.
  • FIG. 3 is a cross-sectional view schematically showing a method for manufacturing substrate 1 and superconducting wire 7 in one embodiment of the present invention.
  • substrate 1 in one embodiment of this invention uses the plating method as shown in FIG.3 (b) on Cu layer 2 as shown in FIG.3 (a).
  • a step of preparing the base material on which the Ni layer 4 is formed, a step of alloying the other part of the Ni layer 4 while leaving a part of the Ni layer 4 as shown in FIG. (D), the step of epitaxially growing the intermediate layer 5 on the Ni layer 4 after the step of alloying the Ni layer 4 is provided.
  • the method of manufacturing superconducting wire 7 in one embodiment of the present invention includes a step of forming superconducting layer 6 on intermediate layer 5 as shown in FIG.
  • Step of forming the nickel layer As shown in FIGS. 3 (a) and 3 (b), specifically, first, a substrate on which the Ni layer 4a is formed on the Cu layer 2 by using a plating method is prepared.
  • the plating method include a method in which the Cu layer 2 is subjected to electrolytic nickel plating in a solution containing nickel chloride, nickel sulfate and the like.
  • the thickness of the Ni layer 4 formed on the Cu layer 2 by using a plating method is preferably 1.3 to 3.6 ⁇ m, and preferably 1.3 to 3.0 ⁇ m. It is more preferable that In the case of 1.3 ⁇ m or more, even if heat of about 800 to 1000 ° C. is applied in the process of alloying the other part of the Ni layer 4 while leaving a part of the Ni layer 4 to be described later, all Ni atoms are Cu Diffusion to the layer 2 can be suppressed. For this reason, it is possible to effectively exhibit the function of the Ni layer 4 that is not easily oxidized and has good lattice matching with the intermediate layer 5. In the case of 3.6 ⁇ m or less, Ni constituting the Ni layer 4 easily diffuses into the Cu layer 2 in the alloying step, so that alloying can be performed efficiently.
  • the other part of the Ni layer 4 is alloyed while leaving a part of the Ni layer 4.
  • Ni constituting the Ni layer 4 and Cu constituting the Cu layer 2 are alloyed, and the alloy layer 3 containing a Cu—Ni alloy can be formed.
  • the magnetism of the Cu—Ni alloy is smaller than that of Ni alone. For this reason, when the superconducting wire 7 is manufactured using the substrate 1 having the alloy layer 3, the concentration of the magnetic field on the end portion in the width direction of the superconducting wire 7 can be reduced. Therefore, the magnetic field affecting the current flowing through the superconducting wire 7 can be reduced, and the AC loss of the superconducting wire can be reduced.
  • the step of alloying the nickel layer 4 is preferably performed under reduced pressure that does not contain hydrogen gas.
  • the atmospheric gas for example, Ar, N 2 or the like can be used.
  • Under reduced pressure is a pressure lower than atmospheric pressure, and for example, 0.1 to 10 Pa is preferable.
  • the Ni layer 4 is preferably heat-treated at a temperature of 800 to 1000 ° C.
  • the temperature is less than 800 ° C.
  • alloying of nickel does not proceed and a sufficient magnetic reduction effect cannot be obtained.
  • the temperature exceeds 1000 ° C., Ni and Cu diffuse and form a complete alloy, so that Cu diffuses on the Ni layer surface. Since Cu is easily oxidized, the orientation of the Ni layer 4 surface cannot be improved.
  • the Ni layer is preferably heat-treated at a temperature of 800 to 1000 ° C. for 15 to 25 minutes. If the heat treatment time is less than 15 minutes, alloying does not proceed sufficiently, and a magnetism reducing effect cannot be expected. If it exceeds 25 minutes, Ni and Cu diffuse and form a complete alloy, so that Cu diffuses on the surface of the Ni layer. Since Cu is easily oxidized, the orientation of the Ni layer 4 surface cannot be improved.
  • the intermediate layer 5 is epitaxially grown on the Ni layer 4 to obtain the substrate 1.
  • the method for forming the oxide thin film to be the intermediate layer 5 is not particularly limited as long as it does not contradict the object of the present invention. Sputtering, EBD (Electron Beam Deposition), PLD (Pulse Laser Deposition); A method such as a pulse laser deposition method or a thermal evaporation method is preferably used.
  • the CeO 2 as the intermediate layer 5 is formed on the Ni layer 4 biaxially oriented with the ⁇ 100> axis in the direction perpendicular to the substrate surface and the ⁇ 010> axis in the length direction of the substrate after the alloying step.
  • ⁇ 100> axis is the direction perpendicular to the substrate surface
  • ⁇ 011> axis is CeO 2 thin film formed oriented in the length direction of the substrate, biaxially oriented highly CeO 2 thin film Is obtained.
  • the orientation can be maintained by epitaxially growing the second intermediate layer on the first intermediate layer.
  • FIG. 3 is a cross-sectional view schematically showing a method for manufacturing substrate 1 and superconducting wire 7 in one embodiment of the present invention.
  • the method of manufacturing superconducting wire 7 in one embodiment of the present invention is performed by applying a plating method as shown in FIG. 3 (b) on Cu layer 2 as shown in FIG. 3 (a).
  • the step of forming the nickel layer, the step of alloying, and the step of epitaxially growing the intermediate layer are the same as the substrate manufacturing method.
  • the method for forming the oxide thin film to be the superconducting layer 6 is not particularly limited as long as it does not contradict the purpose of the present invention.
  • a method such as a growth (Metal Organic Chemical Vapor Deposition) method is preferably used.
  • a protective layer (not shown) can be formed on the superconducting layer 6 as necessary.
  • Methods such as a sputtering method, EBD method, PLD method, thermal evaporation method, MOD method, MOCVD method, a plating method, are used preferably.
  • Example 1 First, a substrate having a 18 ⁇ m thick Cu layer on a 100 ⁇ m thick SUS substrate was prepared. The substrate having the Cu layer was subjected to electrolytic nickel plating in a solution containing nickel hydrochloride to form a Ni layer having a thickness of 2.4 ⁇ m.
  • the Ni layer was heat-treated at a heat treatment temperature of 850 ° C. to 1000 ° C. for 15 minutes under an atmosphere of pressure 0.1 Pa to 10 Pa using Ar gas. Thereby, a Cu—Ni alloy layer was formed from the Ni layer and the Cu layer.
  • a mixed gas of H 2 gas and Ar gas (composition: H 2 gas 3 mol%, Ar gas 97 mol%) was used as the reducing gas, under a pressure of 5.2 Pa atmosphere, and the substrate temperature.
  • a CeO 2 thin film having a thickness of 0.15 ⁇ m was formed as an intermediate layer on the Ni layer.
  • the mixed gas was changed (composition: O 2 gas 0.5 mol%, Ar gas 99.5 mol%), and the pressure was adjusted to 2.6 Pa on the CeO 2 layer at a substrate temperature of 900 ° C.
  • a YSZ thin film having a thickness of 0.26 ⁇ m was formed as two intermediate layers.
  • Example 1 a substrate of Example 1 was obtained.
  • GdBCO was formed as a superconducting layer on the intermediate layer by the PLD method. Thereby, the superconducting wire of Example 1 was obtained.
  • Example 1 A substrate and a superconducting wire were obtained in the same manner as in Example 1 except that the Ni layer was not heat-treated.
  • Example 2 A substrate and a superconducting wire were obtained in the same manner as in Example 1 except that the heat treatment time for the Ni layer was 30 minutes.
  • Example 1 and Comparative Examples 1 and 2 For the substrates of Example 1 and Comparative Examples 1 and 2, the thickness of each of the Ni layer, Cu—Ni layer (alloy layer), Cu layer and the biaxial orientation of the CeO 2 thin film were measured. Furthermore, hysteresis loss was measured for the superconducting wires of Example 1 and Comparative Examples 1 and 2. The results are shown in Table 1.
  • the thickness of each layer of the substrate was measured by an electronic microanalyzer (EPMA) analysis.
  • the c-axis orientation of the CeO 2 thin film on the substrate was determined by measuring the X-ray diffraction peak intensities (I (200) and I (111)) from the (200) plane and the (111) plane of the CeO 2 thin film. 200) / (I (200) + I (111)). The larger the numerical value, the higher the c-axis orientation of the CeO 2 thin film as the intermediate layer, which is preferable.
  • the X-ray diffraction peak intensity from the (200) plane is the amount of crystals whose ⁇ 100> axis is oriented in the direction perpendicular to the substrate plane, and the X-ray diffraction peak intensity from the (111) plane is ⁇ 111. > Indicates the amount of crystals in which the axis is uniaxially oriented in the direction perpendicular to the substrate surface.
  • VSM vibrating magnetometer
  • Example 1 the Ni layer was heat-treated for 15 minutes to form a 1.7 ⁇ m thick Cu—Ni alloy layer while leaving the 1.3 ⁇ m thick Ni layer. From the EPMA analysis results, it was confirmed that the Ni concentration in the alloy layer was monotonically decreasing from the interface between the alloy layer and the nickel layer toward the interface between the alloy layer and the copper layer. Cu and Ni were only partially alloyed, and Cu did not diffuse on the Ni layer surface, so the biaxial orientation of the CeO 2 thin film was excellent. Moreover, the hysteresis loss was able to be reduced compared with the comparative example 1 which does not heat-process an Ni layer.
  • Comparative Example 2 Ni and Cu were completely alloyed by heat-treating the Ni layer for 30 minutes, and the hysteresis loss of the superconducting wire was reduced. However, since Cu diffused on the Ni layer surface, the biaxial orientation of the CeO 2 thin film was deteriorated as compared with Comparative Example 1 in which the Ni layer was not heat-treated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 本発明の基板(1)は、銅層(2)と、銅層(2)上に形成され、かつ銅およびニッケルを含む合金層(3)と、合金層(3)上に形成されたニッケル層(4)と、ニッケル層(4)上に形成された中間層(5)とを備えている。合金層(3)とニッケル層(4)との界面における合金層(3)のニッケルの濃度よりも、合金層(3)と銅層(2)との界面における合金層(3)のニッケルの濃度が小さい。本発明によれば、超電導線材(7)の交流損失を低減することができる基板(1)、基板(1)の製造方法、超電導線材(7)および超電導線材(7)の製造方法を提供することができる。

Description

基板、基板の製造方法、超電導線材および超電導線材の製造方法
 本発明は、基板、基板の製造方法、超電導線材および超電導線材の製造方法に関する。
 高温超電導体の発見以来、ケーブル、マグネット、限流器等の電力機器用途への適用を目指して高温超電導線材の開発が活発に行われている。高温超電導線材としては、大別してビスマス系銀シース線材とRE123系の薄膜線材(RE=希土類元素)の2種類がある。
 RE123系薄膜超電導線材は、(1)液体窒素温度(77.3K)での臨界電流密度が、ビスマス系銀シース線材と比較して約2桁高い106A/cm2程度の性能を有する、(2)磁場下での臨界電流密度が高い、という利点のために次世代の高温超電導線材として開発が期待されている。
 薄膜超電導線材の一般的な構造としては、金属基板の上にセラミックスの薄膜中間層が形成され、その上に超電導層が形成される。薄膜超電導線材において、優れた超電導特性を引き出すためには、超電導層の結晶方位を三次元的に揃える事が必要である。そのためには、前記の薄膜中間層について配向性の高い薄膜を形成する必要がある。
 特開2005-1935号公報(特許文献1)には、配向金属基板表面の酸化層を除去して、配向金属基板の2軸配向性を維持したまま、中間層および超電導層などの薄膜をエピタキシャル成長する方法が記載されている。
特開2005-1935号公報
 しかし、特許文献1のように、配向金属基板としてNiなどの強磁性体を用いて超電導線材を作製した場合、得られた超電導線材に電流を流すと、基板の飽和磁化が大きく、ヒステリシス損失による交流損失が増加するという問題があった。
 したがって本発明の目的は、超電導線材の交流損失を低減することができる基板、基板の製造方法、超電導線材および超電導線材の製造方法を提供することである。
 本発明の基板は、銅層と、銅層上に形成され、かつ銅およびニッケルを含む合金層と、合金層上に形成されたニッケル層と、ニッケル層上に形成された中間層とを備えている。合金層とニッケル層との界面における合金層のニッケルの濃度よりも、合金層と銅層との界面における合金層のニッケルの濃度が小さい。
 本発明の基板において好ましくは、合金層とニッケル層との界面から、合金層と銅層との界面に向かって合金層のニッケルの濃度が単調減少している。
 本発明の基板の製造方法は以下の工程を備えている。めっき法を用いて銅層上にニッケル層が形成された基材を準備する。ニッケル層の一部を残しつつニッケル層の他の部分を合金化する。ニッケル層を合金化する工程の後にニッケル層上に中間層をエピタキシャル成長させる。
 本発明の超電導線材は、銅層と、銅層上に形成され、かつ銅およびニッケルを含む合金層と、合金層上に形成されたニッケル層と、ニッケル層上に形成された中間層と、中間層上形成された超電導層とを備えている。合金層とニッケル層との界面における合金層のニッケルの濃度よりも、合金層と銅層との界面における合金層のニッケルの濃度が小さい。
 本発明の超電導線材において好ましくは、合金層とニッケル層との界面から、合金層と銅層との界面に向かって合金層のニッケルの濃度が単調減少している。
 本発明の超電導線材の製造方法は以下の工程を備えている。めっき法を用いて銅層上にニッケル層が形成された基材を準備する。ニッケル層の一部を残しつつニッケル層の他の部分を合金化する。ニッケル層を合金化する工程の後にニッケル層上に中間層をエピタキシャル成長させる。中間層上に超電導層を形成する。
 本発明の基板、基板の製造方法、超電導線材および超電導線材の製造方法によれば、基板に含まれるニッケルの一部が合金化されて非磁性体となっている。このため、基板のヒステリシス損失が減少し、超電導線材の交流損失を低減することができる。
 本発明の基板の製造方法において好ましくは、ニッケル層を合金化する工程を水素ガスを含まない減圧下にて行う。
 本発明の超電導線材の製造方法において好ましくは、ニッケル層を合金化する工程を水素ガスを含まない減圧下にて行う。
 ニッケル層を合金化する工程を水素ガスを含まない減圧下にて行うことで、中間層形成直前までNi表面の酸化層を残し、中間層形成時に還元することで中間層と格子マッチングが良好なNiを表面に露出させつつ基板近くにH2Oを存在させ、中間層である金属酸化物の酸素欠損を防ぎ、配向を助けることができる。
 本発明によれば、超電導線材の交流損失を低減することができる基板および超電導線材を得ることができる。
本発明の一実施の形態における基板を概略的に示す断面図である。 本発明の一実施の形態における超電導線材を概略的に示す断面図である。 本発明の一実施の形態における基板および超電導線材の製造方法を概略的に示す断面図である。 本発明の一実施の形態における基板または超電導線材の合金層中のニッケル濃度を示すグラフである。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には、同一の参照符号を付し、その説明は繰り返さない。
 <実施の形態1>
 (基板)
 図1は、本発明の一実施の形態における基板1を概略的に示す断面図である。図1を参照して、本発明の一実施の形態における基板1は、銅層(以下Cu層ともいう)2と、銅層2上に形成され、かつ銅およびニッケルを含む合金層3と、合金層3上に形成されたニッケル層4(以下Ni層ともいう)と、ニッケル層4上に形成された中間層5とを備えている。
 基板1は、長尺なテープ状の形状を有することができる。
 (銅層)
 Cu層2は、Cu原子が2軸配向しているため、配向基板に適している。なお2軸配向しているとは、完全な2軸配向のみならず、結晶軸のずれ角が25°以下の場合も含まれる。また、配向の方向は、<100>軸が基板面に垂直な方向に、<010>軸が基板の長さ方向に配向していることが好ましい。
 Cu層2は、他の金属または合金上に積層することもできる。たとえば、高強度材料であるステンレス鋼(以下SUSともいう)上にCu層2を設けることもできる。
 Cu層2は、長尺なテープ状の形状を有することができる。
 Cu層2の厚みは、たとえば15~18μmである。
 (合金層)
 合金層3は、ニッケルおよび銅を含む非磁性金属である。合金層3は配向していることが好ましい。
 合金層3の飽和磁化は、Ni単体の飽和磁化よりも小さい。つまり、磁束密度が0Tの場合と、磁束密度が0Tを超えてNi単体の磁束密度よりも低い場合とを含む。
 合金層3の磁性は、Ni単体の磁性よりも小さい。つまり、最大エネルギー(BHmax)が0J/m3の場合と、最大エネルギーが0J/m3を超えてNi単体の最大エネルギーよりも小さい場合とを含む。
 合金層3内には、Ni濃度分布がある。具体的には、図1のAおよび図2のAで示す合金層とニッケル層との界面における合金層のニッケルの濃度よりも、図1のBおよび図2のBで示す合金層と銅層との界面における合金層のニッケルの濃度が小さい。
 さらに、合金層3において、図1のAおよび図2のAで示す合金層3とNi層4との界面から、図1のBおよび図2のBで示す合金層3とCu層2との界面に向かって合金層3のNiの濃度が単調減少していることが好ましい。
 図4を用いて単調減少について説明する。単調減少の一例は、図4(a)のc,d,eに示すように、Aで示す合金層3とNi層4との界面から、Bで示す合金層3とCu層2との界面に向かって合金層3のNiの濃度が常に減少する。単調減少の他の一例は、図4(b)のfに示すように、Aで示す合金層3とNi層4との界面から、Bで示す合金層3とCu層2との界面に向かって合金層3のNiの濃度が減少するかまたは同じである。つまり、単調減少とは、Aで示す合金層3とNi層4との界面から、Bで示す合金層3とCu層2との界面に向かってNi濃度が増加している部分が含まれていないことを意味する。
 合金層3の厚みは、たとえば1.0~2.1μmである。
 (ニッケル層)
 Ni層4は、中間層5を形成する際に、酸化を防止するための層である。Cu層2が配向している場合には、Ni層4も配向する。
 Ni層3の厚みは、0.3~1.5μmであることが好ましい。
 (中間層)
 中間層5は、この表面上に超電導層6が形成されるための層である。中間層5は、1層または2層以上からなる。中間層5が複数の層により構成されている場合、中間層5を構成するそれぞれの層は互いに異なる材質により構成されていてもよい。
 中間層5としては、パイロクロア型、螢石型、岩塩型またはペロブスカイト型の結晶構造をもつ、1種以上の金属元素を有する金属酸化物が好ましく用いられる。具体的には、CeO2などの希土類元素酸化物、YSZ(イットリア安定化ジルコニア)、BZO(BaZrO3)、STO(SrTiO3)、Al23、YAlO3、MgO、Ln-M-O系化合物(Lnは1種以上のランタノイド元素、MはSr、ZrおよびGaの中から選ばれる1種以上の元素、Oは酸素)などが挙げられる。かかる酸化物は、配向金属基板であるCu層2と、中間層5上に形成される超電導層6の、結晶定数および結晶配向の差を緩和するとともに、Cu層2から超電導層6への金属原子の流出を防止する役割を果たす。このような材料としては、たとえばCeO2が挙げられる。
 <実施の形態2>
 (超電導線材)
 図2は、本発明の一実施の形態における超電導線材7を概略的に示す断面図である。図2を参照して、本発明の一実施の形態における超電導線材7は、銅層2と、銅層2上に形成され、かつ銅およびニッケルを含む合金層3と、合金層3上に形成されたニッケル層4と、ニッケル層4上に形成された中間層5と、中間層5上形成された超電導層6とを備えている。
 超電導線材7は、長尺なテープ状の形状を有することができる。
 超電導線材7における銅層2、合金層3、ニッケル層4および中間層5は、基板1に用いたものと同じである。
 (超電導層)
 超電導層6は、長尺なテープ状の形状を有している。超電導層6は、REBa2Cu3y(yは6~8、より好ましくはほぼ7、REとはY(イットリウム)、またはGd(ガドリニウム)、Sm(サマリウム)、Ho(ホルミウム)などの希土類元素を意味する)として表される超電導体などであり、たとえばGdBCOからなることが好ましい。GdBCOとは、GdBa2Cu3y(yは6~8、より好ましくはほぼ7)として表される。
 なお、超電導線材7は、超電導層6上に形成された保護層(図示せず)をさらに備えていてもよい。保護層は、超電導層6を保護するとともに、外部電極との接触部である。保護層としては、電導性の高いものであれば特に制限はないが、Ag、Au、Pt、Alまたはこれらの合金などが好ましく用いられる。
 <実施の形態3>
 (基板の製造方法)
 図3は、本発明の一実施の形態における基板1および超電導線材7の製造方法を概略的に示す断面図である。図3を参照して、本発明の一実施の形態における基板1の製造方法は、図3(a)に示すようなCu層2上に、図3(b)に示すようにめっき法を用いてNi層4が形成された基材を準備する工程と、図3(c)に示すようにNi層4の一部を残しつつNi層4の他の部分を合金化する工程と、図3(d)に示すようにNi層4を合金化する工程の後にNi層4上に中間層5をエピタキシャル成長させる工程とを備える。さらに図3を参照して、本発明の一実施の形態における超電導線材7の製造方法は、図3(e)に示すように、中間層5上に超電導層6を形成する工程を備える。
 (ニッケル層を形成する工程)
 図3(a)および(b)に示すように、具体的には、まず、Cu層2上に、めっき法を用いてNi層4aが形成された基板を準備する。めっき法は例えばCu層2を塩化ニッケル、硫酸ニッケルなどを含む溶液中で電解ニッケルめっき処理する方法が挙げられる。
 図3(b)に示すように、Cu層2上にめっき法を用いて形成されるNi層4の厚みは、1.3~3.6μmであることが好ましく、1.3~3.0μmであることがより好ましい。1.3μm以上の場合、後述するNi層4の一部を残しつつNi層4の他の部分を合金化する工程において800~1000℃程度の熱が加えられても、すべてのNi原子がCu層2に拡散することを抑制できる。このため、Ni層4の、酸化されにくく、かつ中間層5との格子のマッチングが良好である機能を効果的に発現できる。3.6μm以下の場合、合金化する工程において、Ni層4を構成するNiがCu層2へ容易に拡散するので合金化を効率的に行うことができる。
 (合金化する工程)
 図3(c)に示すように、次に、Ni層4の一部を残しつつNi層4の他の部分を合金化する。この工程により、Ni層4を構成するNiと、Cu層2を構成するCuとが合金化され、Cu-Ni合金を含む合金層3を形成することができる。Cu-Ni合金の磁性は、Ni単体の場合よりも小さい。このため、合金層3を有する基板1を用いて超電導線材7を製造すると、超電導線材7の幅方向端部への磁界の集中を緩和することができる。したがって、超電導線材7を流れる電流に影響を及ぼす磁場が低減し、超電導線材の交流損失を低減することができる。
 また、この工程では、Ni層4表面の一部を残しているため、Ni層4の配向性を維持することができる。
 ニッケル層4を合金化する工程は、水素ガスを含まない減圧下にて行うことが好ましい。雰囲気ガスとしてはたとえばAr、N2などを使用することができる。減圧下とは、大気圧より低い圧力のことであり、たとえば0.1~10Paが好ましい。
 ニッケル層4を合金化する工程は、たとえばNi層4を800~1000℃の温度で熱処理することが好ましい。温度が800℃未満であるとニッケルの合金化が進まず、十分な磁性低減効果が得られない。1000℃を超えると、NiとCuが拡散して完全合金化するため、Ni層表面にCuが拡散する。Cuは酸化されやすいため、Ni層4表面の配向性を向上することができない。
 Ni層4を合金化する工程は、たとえばNi層を800~1000℃の温度で15分~25分間熱処理することが好ましい。熱処理時間が15分未満であると合金化が十分進まず、磁性低減効果が望めない。25分を超えると、NiとCuが拡散して完全合金化するため、Ni層表面にCuが拡散する。Cuは酸化されやすいため、Ni層4表面の配向性を向上することができない。
 (中間層をエピタキシャル成長させる工程)
 図3(d)に示すように、次に、Ni層4上に中間層5をエピタキシャル成長させて、基板1を得る。中間層5となる酸化物薄膜の形成方法としては、本発明の目的に反さない限り特に制限はなく、スパッタ法、EBD(電子線ビーム蒸着;Electron Beam Deposition)法、PLD(パルスレーザー蒸着;Pulse Laser Deposition)法、熱蒸着法などの方法が好ましく用いられる。
 たとえば、合金化工程後の<100>軸が基板面に垂直な方向に、<010>軸が基板の長さ方向に、2軸配向しているNi層4上に、中間層5としてCeO2薄膜をエピタキシャルに成長させると、<100>軸が基板面に垂直な方向に、<011>軸が基板の長さ方向に配向したCeO2薄膜が形成され、2軸配向性の高いCeO2薄膜が得られる。
 中間層が複数の層から構成されている場合は、たとえば第1中間層上に第2中間層をエピタキシャル成長させることで配向性を維持することができる。
 <実施の形態4>
 (超電導線材の製造方法)
 図3は、本発明の一実施の形態における基板1および超電導線材7の製造方法を概略的に示す断面図である。図3を参照して、本発明の一実施の形態における超電導線材7の製造方法は、図3(a)に示すようなCu層2上に、図3(b)に示すようにめっき法を用いてNi層4が形成された基材を準備する工程と、図3(c)に示すようにNi層4の一部を残しつつNi層4の他の部分を合金化する工程と、図3(d)に示すようにNi層4を合金化する工程の後にNi層4上に中間層5をエピタキシャル成長させる工程と、図3(e)に示すように、中間層5上に超電導層6を形成する工程とを備える。
 ニッケル層を形成する工程、合金化する工程および中間層をエピタキシャル成長させる工程は基板の製造方法と同じである。
 <超電導層の形成>
 たとえば実施の形態4で得られた基板1の中間層5の上に超電導層6を形成した場合、中間層5は配向性が良好であるため、2軸配向性の高い超電導層6を得ることができる。
 超電導層6となる酸化物薄膜の形成方法としては、本発明の目的に反さない限り特に制限はなく、PLD法、MOD(有機金属成膜;Metal Organic Deposition)法、MOCVD(有機金属気相成長;Metal Organic Chemical Vapor Deposition)法などの方法が好ましく用いられる。
 さらに、超電導層6を保護するため、必要に応じて、超電導層6の上に保護層(図示せず)を形成することもできる。保護層の形成方法としては、特に制限はないが、スパッタ法、EBD法、PLD法、熱蒸着法、MOD法、MOCVD法、めっき法などの方法が好ましく用いられる。
 (実施例1)
 まず、100μm厚さのSUS基板上に18μmの厚みのCu層を有する基板を準備した。前記Cu層を有する基板を塩酸ニッケルを含む溶液中で電解ニッケルめっきを行い、2.4μmの厚みのNi層を形成した。
 次に、上記Ni層を、Arガスを用いて、圧力0.1Pa~10Pa雰囲気下で、850℃~1000℃の熱処理温度で15分間で熱処理を行った。これにより、Ni層およびCu層からCu-Ni合金層を形成した。
 その直後に、スパッタ法により、還元性ガスとしてH2ガスとArガスの混合ガス(組成:H2ガス3モル%、Arガス97モル%)を用いて、圧力5.2Pa雰囲気下、基板温度700℃で、上記Ni層上に中間層としてCeO2薄膜を、0.15μmの厚さで形成した。その上に、混合ガスを変更(組成:O2ガス0.5モル%、Arガス99.5モル%)し、圧力2.6Pa雰囲気下、基板温度900℃で、上記CeO2層上に第2中間層としてYSZ薄膜を0.26μmの厚さで形成した。最後に、混合ガスを変更(組成:O2ガス1モル%、Arガス99モル%)し、圧力2.6Pa雰囲気下、基板温度800℃で、上記YSZ層上に第3中間層としてCeO2薄膜を0.05μmの厚さで形成した。これにより実施例1の基板を得た。
 次に、中間層上に、PLD法により、超電導層としてGdBCOを形成した。これにより実施例1の超電導線材を得た。
 (比較例1)
 Ni層の熱処理を行わない以外は、上記実施例1と同様にして、基板および超電導線材を得た。
 (比較例2)
 Ni層の熱処理時間を30分間とする以外は、上記実施例1と同様にして、基板および超電導線材を得た。
 (測定方法)
 実施例1、比較例1および2の基板について、Ni層、Cu-Ni層(合金層)、Cu層の各層の厚みおよびCeO2薄膜の2軸配向性について測定した。さらに実施例1、比較例1および2の超電導線材について、ヒステリシス損失を測定した。結果を表1に示す。
 基板の各層の厚みは、電子マイクロアナライザー(EPMA;Electron Probe Micro-Analyzer)分析により測定した。
 基板上のCeO2薄膜のc軸配向性は、CeO2薄膜の(200)面および(111)面からのX線回折ピーク強度(I(200)およびI(111))を測定し、I(200)/(I(200)+I(111))の数値により評価した。かかる数値が大きいほど、中間層たるCeO2薄膜のc軸配向性が高く、好ましい。なお、(200)面からのX線回折ピーク強度は、<100>軸が基板面に垂直な方向に配向している結晶量を、(111)面からのX線回折ピーク強度は、<111>軸が基板面に垂直な方向に1軸配向している結晶量を示す。
 超電導線材のヒステリシス損失は、超電導線材を室温で、超電導線材のテープ面に平行な方向に磁場を印加したときのヒステリシス損失を、振動磁化型磁力計(VSM)を用いて測定した。
 (測定結果)
Figure JPOXMLDOC01-appb-T000001
 実施例1は、Ni層を15分間熱処理することで、厚さ1.3μmのNi層を残しつつ、厚さ1.7μmのCu-Ni合金層が形成された。EPMA分析結果より、合金層中のNi濃度が合金層とニッケル層との界面から、合金層と銅層との界面に向かって単調減少していることが確認された。CuとNiは一部のみ合金化し、Ni層表面にCuは拡散しなかったため、CeO2薄膜の2軸配向性が優れていた。また、Ni層の熱処理を行わない比較例1に比べてヒステリシス損失を低減することができた。
 比較例1は、Ni層の熱処理を行わなかったため、NiとCuが合金化されず、超電導線材のヒステリシス損失が大きかった。
 比較例2は、Ni層を30分間熱処理することで、NiとCuが完全合金化し、超電導線材のヒステリシス損失は低減した。しかし、Ni層表面にCuが拡散したため、Ni層の熱処理を行わない比較例1に比べて、CeO2薄膜の2軸配向性が悪化した。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 基板、2 銅層、3 合金層、4 ニッケル層、5 中間層、6 超電導層、7 超電導線材。

Claims (8)

  1.  銅層(2)と、
     前記銅層(2)上に形成され、かつ銅およびニッケルを含む合金層(3)と、
     前記合金層(3)上に形成されたニッケル層(4)と、
     前記ニッケル層(4)上に形成された中間層(5)とを備え、
     前記合金層(3)と前記ニッケル層(4)との界面における前記合金層(3)のニッケルの濃度よりも、前記合金層(3)と前記銅層(2)との界面における前記合金層(3)のニッケルの濃度が小さい、基板(1)。
  2.  前記合金層(3)と前記ニッケル層(4)との界面から、前記合金層(3)と前記銅層(2)との界面に向かって前記合金層(3)のニッケルの濃度が単調減少している、請求の範囲第1項に記載の基板(1)。
  3.  めっき法を用いて銅層(2)上にニッケル層(4)が形成された基材を準備する工程と、
     前記ニッケル層(4)の一部を残しつつ前記ニッケル層(4)の他の部分を合金化する工程と、
     前記ニッケル層(4)を合金化する工程の後に前記ニッケル層(4)上に中間層(5)をエピタキシャル成長させる工程とを備えた、基板(1)の製造方法。
  4.  前記ニッケル層(4)を合金化する工程を水素ガスを含まない減圧下にて行う、請求の範囲第3項に記載の基板(1)の製造方法。
  5.  銅層(2)と、
     前記銅層(2)上に形成され、かつ銅およびニッケルを含む合金層(3)と、
     前記合金層(3)上に形成されたニッケル層(4)と、
     前記ニッケル層(4)上に形成された中間層(5)と、
     前記中間層(5)上形成された超電導層(6)とを備え、
     前記合金層(3)と前記ニッケル層(4)との界面における前記合金層(3)のニッケルの濃度よりも、前記合金層(3)と前記銅層(2)との界面における前記合金層(3)のニッケルの濃度が小さい、超電導線材(7)。
  6.  前記合金層(3)と前記ニッケル層(4)との界面から、前記合金層(3)と前記銅層(2)との界面に向かって前記合金層(3)のニッケルの濃度が単調減少している、請求の範囲第5項に記載の超電導線材(7)。
  7.  めっき法を用いて銅層(2)上にニッケル層(4)が形成された基材を準備する工程と、
     前記ニッケル層(4)の一部を残しつつ前記ニッケル層(4)の他の部分を合金化する工程と、
     前記ニッケル層(4)を合金化する工程の後に前記ニッケル層(4)上に中間層(5)をエピタキシャル成長させる工程と、
     前記中間層(5)上に超電導層(6)を形成する工程とを備えた、超電導線材(7)の製造方法。
  8.  前記ニッケル層(4)を合金化する工程を水素ガスを含まない減圧下にて行う、請求の範囲第7項に記載の超電導線材(7)の製造方法。
PCT/JP2010/061540 2009-07-10 2010-07-07 基板、基板の製造方法、超電導線材および超電導線材の製造方法 WO2011004842A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010800311246A CN102473487B (zh) 2009-07-10 2010-07-07 衬底、制造衬底的方法、超导线材和制造超导线材的方法
KR1020127003392A KR101680405B1 (ko) 2009-07-10 2010-07-07 기판, 기판의 제조 방법, 초전도 선재 및 초전도 선재의 제조 방법
IN532DEN2012 IN2012DN00532A (ja) 2009-07-10 2010-07-07
US13/381,109 US8912126B2 (en) 2009-07-10 2010-07-07 Substrate, method of producing substrate, superconducting wire, and method of producing superconducting wire
EP10797153.3A EP2453447B1 (en) 2009-07-10 2010-07-07 Substrate, method of producing substrate superconducting wire and method of producing of superconducting wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009163514A JP5356134B2 (ja) 2009-07-10 2009-07-10 基板、基板の製造方法、超電導線材および超電導線材の製造方法
JP2009-163514 2009-07-10

Publications (1)

Publication Number Publication Date
WO2011004842A1 true WO2011004842A1 (ja) 2011-01-13

Family

ID=43429266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061540 WO2011004842A1 (ja) 2009-07-10 2010-07-07 基板、基板の製造方法、超電導線材および超電導線材の製造方法

Country Status (7)

Country Link
US (1) US8912126B2 (ja)
EP (1) EP2453447B1 (ja)
JP (1) JP5356134B2 (ja)
KR (1) KR101680405B1 (ja)
CN (1) CN102473487B (ja)
IN (1) IN2012DN00532A (ja)
WO (1) WO2011004842A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5367927B1 (ja) * 2012-04-16 2013-12-11 古河電気工業株式会社 超電導成膜用基材及び超電導線並びに超電導線の製造方法
DE112015007114T5 (de) * 2015-11-11 2018-08-02 Sumitomo Electric Industries, Ltd. Supraleitender Draht
KR20210003089A (ko) * 2018-03-09 2021-01-11 인디안 인스티투트 오브 싸이언스 초전도 블록, 초전도 나노결정, 초전도 장치 및 이의 방법
CN110534017B (zh) * 2018-12-26 2021-03-26 友达光电股份有限公司 显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005001935A (ja) 2003-06-11 2005-01-06 Sumitomo Electric Ind Ltd 酸化物薄膜の製造方法
JP2006127847A (ja) * 2004-10-27 2006-05-18 Sumitomo Electric Ind Ltd 膜形成用配向基板および超電導線材
JP2007165153A (ja) * 2005-12-14 2007-06-28 Internatl Superconductivity Technology Center 厚膜テープ状re系(123)超電導体の製造方法。
JP2007188756A (ja) * 2006-01-13 2007-07-26 Internatl Superconductivity Technology Center 希土類系テープ状酸化物超電導体
JP2009046734A (ja) * 2007-08-21 2009-03-05 Chubu Electric Power Co Inc エピタキシャル膜形成用配向基板及びエピタキシャル膜形成用配向基板の表面改質方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1045483A (zh) * 1989-03-09 1990-09-19 日本钢管株式会社 超导体制件
GB0010494D0 (en) * 2000-04-28 2000-06-14 Isis Innovation Textured metal article
JP5074083B2 (ja) * 2007-04-17 2012-11-14 中部電力株式会社 エピタキシャル薄膜形成用のクラッド配向金属基板及びその製造方法
JP5400416B2 (ja) 2009-02-20 2014-01-29 中部電力株式会社 超電導線材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005001935A (ja) 2003-06-11 2005-01-06 Sumitomo Electric Ind Ltd 酸化物薄膜の製造方法
JP2006127847A (ja) * 2004-10-27 2006-05-18 Sumitomo Electric Ind Ltd 膜形成用配向基板および超電導線材
JP2007165153A (ja) * 2005-12-14 2007-06-28 Internatl Superconductivity Technology Center 厚膜テープ状re系(123)超電導体の製造方法。
JP2007188756A (ja) * 2006-01-13 2007-07-26 Internatl Superconductivity Technology Center 希土類系テープ状酸化物超電導体
JP2009046734A (ja) * 2007-08-21 2009-03-05 Chubu Electric Power Co Inc エピタキシャル膜形成用配向基板及びエピタキシャル膜形成用配向基板の表面改質方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2453447A4

Also Published As

Publication number Publication date
US20120108436A1 (en) 2012-05-03
CN102473487A (zh) 2012-05-23
JP5356134B2 (ja) 2013-12-04
CN102473487B (zh) 2013-10-16
US8912126B2 (en) 2014-12-16
IN2012DN00532A (ja) 2015-08-21
KR20120051009A (ko) 2012-05-21
EP2453447A4 (en) 2015-04-22
EP2453447B1 (en) 2017-11-01
EP2453447A1 (en) 2012-05-16
KR101680405B1 (ko) 2016-11-28
JP2011018599A (ja) 2011-01-27

Similar Documents

Publication Publication Date Title
EP2728589A1 (en) Re-123 superconducting wire and method for manufacturing the same
JP5356134B2 (ja) 基板、基板の製造方法、超電導線材および超電導線材の製造方法
JP2012094388A (ja) 酸化物超電導線材およびその製造方法
JP2007220467A (ja) 超電導薄膜材料の製造方法、超電導機器、および超電導薄膜材料
JP2009283372A (ja) 人工ピンを導入した酸化物超電導導体及びその製造方法
JP6104757B2 (ja) 酸化物超電導線材及びその製造方法
JP5096422B2 (ja) 基板および超電導線材の製造方法
US9570215B2 (en) Method for manufacturing precursor, method for manufacturing superconducting wire, precursor, and superconducting wire
JP5736522B2 (ja) Re123系超電導線材およびその製造方法
JP5739972B2 (ja) 超電導線材の前駆体および超電導線材
JP2016143516A (ja) 酸化物超電導線材及びその製造方法
JP6262304B2 (ja) 酸化物超電導線材の製造方法
JPWO2017064893A1 (ja) 酸化物超電導線材
JP2019125436A (ja) 酸化物超電導線材
JP2009238501A (ja) 酸化物超電導線材及び酸化物超電導線材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080031124.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797153

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13381109

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 532/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127003392

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010797153

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010797153

Country of ref document: EP