WO2011004805A1 - ポリクロロプレンラテックス組成物及びその製造方法並びに成形体 - Google Patents

ポリクロロプレンラテックス組成物及びその製造方法並びに成形体 Download PDF

Info

Publication number
WO2011004805A1
WO2011004805A1 PCT/JP2010/061441 JP2010061441W WO2011004805A1 WO 2011004805 A1 WO2011004805 A1 WO 2011004805A1 JP 2010061441 W JP2010061441 W JP 2010061441W WO 2011004805 A1 WO2011004805 A1 WO 2011004805A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
polychloroprene latex
parts
monomer
alkali metal
Prior art date
Application number
PCT/JP2010/061441
Other languages
English (en)
French (fr)
Inventor
育佳 橋本
美沙希 夛田
渡邉 浩佑
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to JP2011521918A priority Critical patent/JPWO2011004805A1/ja
Priority to EP10797116.0A priority patent/EP2452973B1/en
Priority to US13/379,580 priority patent/US8436102B2/en
Priority to CN2010800303521A priority patent/CN102471543A/zh
Publication of WO2011004805A1 publication Critical patent/WO2011004805A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/14Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen
    • C08F36/16Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen containing halogen
    • C08F36/18Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen containing halogen containing chlorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof

Definitions

  • the present invention relates to a polychloroprene latex composition, a method for producing the same, and a molded body using the composition.
  • the present invention relates to a polychloroprene latex composition used for dip molding, a method for producing the same, and a molded body obtained by dip molding the composition.
  • Polychloroprene latex has excellent properties such as mechanical strength, weather resistance, heat resistance, and chemical resistance, so it can be used for materials for immersion moldings such as gloves, fiber treatment agents, paper processing agents, adhesives, adhesives, and elasticity. Widely used in fields such as asphalt (modified asphalt) and elastic cement.
  • natural rubber was generally used as a material for immersion molded bodies such as gloves.
  • natural rubber contains proteins that cause allergic symptoms, if it is used directly on skin, it may cause symptoms such as hives and rashes. This problem is particularly important in the medical field, and there is a demand for materials that do not cause allergic symptoms in disposable medical gloves such as surgical gloves.
  • JP 2000-198881 A Japanese Patent Laid-Open No. 2003-41410 JP 2007-106994 A
  • the conventional techniques described above have the following problems. That is, the deproteinized natural rubber latex described in Patent Document 1 requires a process for deproteinizing natural rubber, and even if a ketone is blended, sufficient mechanical strength may not be obtained. There is a problem.
  • the nitrile butadiene rubber latex described in Patent Document 2 has a problem that the texture of the obtained immersion molded article is hard, and it is difficult to use for a long time, particularly when used for gloves.
  • polychloroprene latex has a problem that it is inferior in flexibility and stability over time, and Patent Document 3 attempts to improve these properties, but it is not sufficient. Polychloroprene latex also has a problem that it is difficult to release from the mold during immersion molding.
  • the present invention mainly provides a polychloroprene latex composition, a method for producing the same, and a molded body that can provide a molded article having good mold release properties and excellent flexibility during immersion molding. Objective.
  • the polychloroprene latex composition according to the present invention is a polychloroprene latex obtained by emulsion polymerization in the presence of 3 parts by mass or less of an alkali metal salt of rosin acid per 100 parts by mass of a monomer: 100 parts by mass, and alkyl diphenyl ether And an alkali metal salt of disulfonic acid: 0.01 to 1.0 part by mass.
  • 1 to 30% by mass of 2,3-dichloro-1,3-butadiene may be contained in 100 parts by mass of the monomer.
  • the method for producing a polychloroprene latex composition according to the present invention comprises a monomer in the presence of 3 parts by mass or less of an alkali metal salt of rosin acid and an alkali metal salt of alkyldiphenyl ether disulfonic acid per 100 parts by mass of the monomer.
  • Emulsion polymerization is performed to obtain a polychloroprene latex containing 0.01 to 1.0 part by mass of an alkali metal salt of alkyldiphenyl ether disulfonic acid with respect to 100 parts by mass of the polychloroprene latex.
  • the method for producing another polychloroprene latex composition according to the present invention includes polychloroprene after emulsion polymerization of a monomer using an alkali metal salt of rosin acid of 3 parts by mass or less per 100 parts by mass of the monomer as an emulsifier.
  • Latex Alkali metal salt of alkyldiphenyl ether disulfonic acid: 0.01 to 1.0 part by mass is added to 100 parts by mass of latex.
  • an alkali metal salt of alkyldiphenyl ether disulfonic acid may be added after emulsion polymerization of the monomer using an alkali metal salt of rosin acid as an emulsifier.
  • Emulsion polymerization was started with the initial monomer addition amount of 10 to 50% by mass of the total monomer, and the polymerization was completed from the point that polymerization progressed to a monomer conversion rate of between 1 and 40%. Until the rate is reached, the remaining monomer cooled to a temperature lower than the polymerization temperature can be continuously added into the polymerization system to carry out emulsion polymerization.
  • the molded body according to the present invention is obtained by dip molding the above-described polychloroprene latex composition, such as a glove.
  • the present invention it is possible to improve the mold releasability from the mold during dip molding, and to obtain a dip molded body having excellent flexibility.
  • the polychloroprene latex composition (hereinafter also simply referred to as a composition) according to an embodiment of the present invention has an alkali metal salt of alkyldiphenyl ether disulfonic acid: 0.01-1. Contains 0 parts by weight.
  • the polychloroprene latex is the main component of the polychloroprene latex composition of the present embodiment.
  • a polychloroprene latex obtained by emulsion polymerization in the presence of an alkali metal salt of rosin acid exceeding 3 parts by mass per 100 parts by mass of the monomer is used, the resulting immersion molded articles (films) are likely to stick to each other. Therefore, it becomes difficult to use. Therefore, in the composition of this embodiment, polychloroprene latex obtained by emulsion polymerization in the presence of 3 parts by mass or less of an alkali metal salt of rosin acid per 100 parts by mass of the monomer is used.
  • the polychloroprene latex blended in the composition of the present embodiment contains 1 to 30% by mass of 2,3-dichloro-1,3-butadiene in 100 parts by mass of the monomer to be emulsion polymerized. It is desirable. Thereby, crystal resistance can be improved and the softness
  • Alkali metal salt of alkyl diphenyl ether disulfonic acid is added to reduce poor emulsification and formation of aggregates of polychloroprene latex and obtain a homogeneous immersion molded product.
  • the content of the alkali metal salt of alkyldiphenyl ether disulfonic acid is 0.01 to 1.0 part by mass per 100 parts by mass of the polychloroprene latex.
  • the content of the alkali metal salt of the alkyldiphenyl ether disulfonic acid is less than 0.01 parts by mass with respect to 100 parts by mass of the polychloroprene latex, the effect of reducing the above-described emulsification failure and aggregate formation is insufficient. I can't get it.
  • the content of the alkali metal salt of alkyl diphenyl ether disulfonic acid exceeds 1.0 part by mass, the coagulation property of the latex is not improved, and a homogeneous immersion molded article cannot be obtained.
  • the above-described polychloroprene latex composition is obtained by emulsion polymerization of a monomer in the presence of an alkali metal salt of rosin acid and an alkali metal salt of alkyldiphenyl ether disulfonic acid, or in the presence of an alkali metal salt of rosin acid.
  • the emulsion is obtained by emulsion polymerization and then adding an alkali metal salt of alkyldiphenyl ether disulfonic acid.
  • chloroprene is emulsion-polymerized to obtain a polychloroprene latex.
  • chloroprene alone, or a monomer copolymerizable with chloroprene and chloroprene in the presence of an emulsifying / dispersing agent, emulsion polymerization is carried out by adding a polymerization initiator or a chain transfer agent, and the desired polymerization conversion is achieved. When the rate is reached, a polymerization terminator is added to terminate the polymerization.
  • chloroprene refers to 2-chloro-1,3-butadiene.
  • the monomer copolymerizable with chloroprene is one that is copolymerized with chloroprene to adjust the properties of the resulting polychloroprene latex, such as methyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, etc.
  • 2,3-dichloro-1,3-butadiene and chloroprene are particularly good because they have good copolymerizability with chloroprene and are easy to adjust characteristics such as crystal resistance and flexibility. It is preferable to use it as a monomer to be copolymerized.
  • the amount of 2,3-dichloro-1,3-butadiene in all monomers is preferably 1 to 30% by mass, Preferably, it is 5 to 20% by mass.
  • the amount of 2,3-dichloro-1,3-butadiene in the total monomer is less than 1% by mass, the effect of improving the crystal resistance may not be obtained, and when it exceeds 30% by mass. In some cases, the crystallization of the polymer proceeds too much, and the flexibility is lowered.
  • a normal alkali metal salt of rosin acid can be used as an emulsifying / dispersing agent used for emulsion polymerization.
  • the amount of the alkali metal salt of rosin acid used in the emulsion polymerization is 3 parts by mass or less per 100 parts by mass of the monomer.
  • the amount of alkali metal salt of rosin acid is more than 3 parts by mass, the polychloroprene latex tends to stick due to residual rosin acid, and sticking to the mold during dip molding may cause molding defects, The surface of the obtained immersion molded body becomes sticky.
  • alkali metal salt of rosin acid can also be used together as an emulsifier / dispersant.
  • emulsifying / dispersing agents that can be used in combination with alkali metal salts of rosin acid include carboxylic acid type, sulfonic acid type, and sulfuric acid ester type.
  • Examples include, but are not limited to, phonates, condensates of sodium naltalin sulfonate and formaldehyde, polyoxyethylene acyl ethers, polyoxyethylene alkylphenols, sorbitan fatty acid esters, polyoxyethylene acyl esters, and the like.
  • the polymerization initiator used for emulsion polymerization is not particularly limited, and those used for usual emulsion polymerization of chloroprene can be used. Specifically, persulfates such as potassium persulfate and organic peroxides such as 3-butyl hydroperoxide are preferably used.
  • the chain transfer agent is not particularly limited, and those used for usual emulsion polymerization of chloroprene can be used. Specifically, long chain alkyl mercaptans such as n-dodecyl mercaptan and tert-dodecyl mercaptan, dialkylxanthogen disulfides such as diisopropylxanthogen disulfide and diethylxanthogen disulfide, and known chain transfer agents such as iodoform can be used. .
  • the polymerization temperature of the chloroprene latex is not particularly limited, and can generally be in a range where emulsion polymerization is performed (0 to 55 ° C.), but it is preferable to perform polymerization in the range of 30 to 50 ° C. . Thereby, the temporal stability of the flexibility of the obtained immersion molded body is improved.
  • the polymerization pass-through rate of chloroprene latex is preferably 60 to 95%, more preferably 80 to 90%.
  • the polymerization pass-through rate is less than 60%, the solid content of the polymer latex is lowered, and productivity may be deteriorated.
  • the polymerization time may be prolonged, resulting in a decrease in productivity, a decrease in mechanical strength when the dip-molded article is formed, or a case where it becomes brittle.
  • the polymerization terminator added when the polymerization is terminated is not particularly limited, and a commonly used one can be used. Specifically, phenothiazine, para-t-butylcatechol, hydroquinone, hydroquinone monomethyl ether, diethylhydroxylamine and the like can be used.
  • the polymerization is started with the initial addition amount of the monomer being 10 to 50% by mass of the total amount, and the polymerization is performed until the monomer conversion rate is between 1 and 40%. It is preferable that the remaining monomer cooled to a temperature lower than the polymerization temperature is continuously added into the polymerization system from the point where the polymerization proceeds until the conversion to completion of polymerization is reached. Thereby, the heat removal in a polymerization system can be performed effectively and a polymerization reaction can be performed stably in a short time.
  • an alkali metal salt of alkyldiphenyl ether disulfonic acid per 100 parts by mass of polychloroprene latex is added to the obtained polychloroprene latex, and the polychloroprene latex composition of this embodiment is added.
  • the addition time of the alkali metal salt of alkyl diphenyl ether disulfonic acid is not particularly limited, and can be added at any time before emulsion polymerization, during emulsion polymerization or after completion of emulsion polymerization.
  • the addition amount is preferably 0.1 to 0.4 times the addition amount of the alkali metal salt of rosin acid.
  • chloroprene latex composition of the present embodiment may optionally contain an additive conventionally used in rubber latex processing.
  • additives include other polymers, fillers, antioxidants, metal oxides, curing agents, surfactants, and plasticizers.
  • the polychloroprene latex composition of the present embodiment uses rosin acid and alkyldiphenyl ether disulfonic acid, the adhesiveness of the polychloroprene latex composition is improved, and a mold for dip molding is used. It is possible to improve the releasability from. Moreover, since the polychloroprene latex composition of this embodiment is improving the crystal resistance of polychloroprene latex, the immersion molding excellent in the softness
  • the polychloroprene latex composition of the present embodiment is suitable for immersion moldings such as gloves.
  • the method for producing such a dip-molded body is not particularly limited, and a normal molding method can be applied. For example, after immersing / solidifying, leaching (removing water-soluble impurities), and drying. It is obtained by vulcanization.
  • Example 1 ⁇ Polychloroprene latex> Using a reactor having an internal volume of 10 liters, water: 100 parts by mass, disproportionated sodium rosinate: 2.5 parts by mass, potassium hydroxide: 0.8 parts by mass, sodium naltarin sulfonate, Condensate of formaldehyde: 0.8 parts by mass and sodium sulfite: 0.3 parts by mass were added, and after dissolution, 100 parts by mass of chloroprene and 0.14 parts by mass of n-dodecyl mercaptan were added with stirring.
  • polymerization was performed at 40 ° C. in a nitrogen atmosphere.
  • an emulsion of phenothiazine was added to stop the polymerization, and sodium alkyldiphenyl ether disulfonate 0.5 parts by mass was added.
  • unreacted monomers were removed under reduced pressure to obtain polychloroprene latex.
  • the water was evaporated and concentrated under reduced pressure, and the solid content of the polychloroprene latex was adjusted to 60% by mass.
  • the polychloroprene latex composition of Example 1 was prepared by adding the compounds shown in Table 1 below to the polychloroprene latex having a solid content of 60% by mass obtained by the method described above.
  • Example 2 Except for changing the addition amount of the monomer to chloroprene monomer: 95 parts by mass and 2,3-dichloro-1,3-butadiene monomer: 5 parts by mass, the same as in Example 1 described above
  • the polychloroprene latex composition of Example 2 was obtained by the method and conditions.
  • Example 3 Except for changing the addition amount of the monomer to chloroprene monomer: 90 parts by mass and 2,3-dichloro-1,3-butadiene monomer: 10 parts by mass, the same as in Example 1 described above
  • the polychloroprene latex composition of Example 3 was obtained by the method and conditions.
  • Example 4 Except for changing the addition amount of the monomers to chloroprene monomer: 80 parts by mass and 2,3-dichloro-1,3-butadiene monomer: 20 parts by mass, the same as in Example 1 described above
  • the polychloroprene latex composition of Example 4 was obtained by the method and conditions.
  • Example 5 Polymerization was carried out with the initial charge amounts of monomers being 27 parts by mass of chloroprene monomer, 3 parts by mass of monomer of 2,3-dichloro-1,3-butadiene and 0.04 parts by mass of n-dodecyl mercaptan.
  • Example 5 A polychloroprene latex composition of Example 5 was obtained in the same manner and under the same conditions as in Example 1 except that the addition of 0.1 part by mass was started.
  • Example 6 Sodium alkyldiphenyl ether disulfonate: A polychloroprene latex composition of Example 6 was obtained in the same manner and under the same conditions as in Example 3 except that the addition of 0.5 part by mass was changed before the initiation of polymerization.
  • Example 7 A polychloroprene latex composition of Example 7 was obtained in the same manner and under the same conditions as in Example 6 except that the addition amount of the condensate of sodium naltalin sulfonate and formaldehyde was changed to 0 parts by mass.
  • Example 8 A polychloroprene latex composition of Example 8 was obtained in the same manner and under the same conditions as in Example 3 except that the amount of disproportionated sodium rosinate was changed to 1.5 parts by mass.
  • Example 9 A polychloroprene latex composition of Example 9 was obtained in the same manner and under the same conditions as in Example 3 except that the amount of disproportionated sodium rosinate was changed to 3.0 parts by mass.
  • Comparative Example 1 A polychloroprene latex composition of Comparative Example 1 was obtained in the same manner and under the same conditions as in Example 1 except that sodium alkyldiphenyl ether disulfonate was not used.
  • Comparative Example 2 Example 1 described above, except that 0.5 parts by mass of a fatty acid (Vandes M-500-32 (disproportionated tall oil soap) manufactured by Harima Chemicals Co., Ltd.) was used instead of sodium alkyldiphenyl ether disulfonate.
  • the polychloroprene latex composition of Comparative Example 2 was obtained in the same manner and under the same conditions.
  • Comparative Example 3 Except for changing the addition amount of sodium of the formaldehyde naphthalenesulfonic acid condensate to 0 parts by mass and the addition amount of sodium alkyldiphenyl ether disulfonate to 1.2 parts by mass, the same method and conditions as in Example 6 described above, A polychloroprene latex composition of Comparative Example 3 was obtained.
  • Comparative Example 4 A polychloroprene latex composition of Comparative Example 4 was obtained in the same manner and under the same conditions as in Example 3 except that the amount of disproportionated sodium rosinate was changed to 3.5 parts by mass.
  • ⁇ Dry film hardness> The obtained polychloroprene latex was air-dried at room temperature, and then moisture was completely removed by vacuum drying to obtain a dry film.
  • a plurality of the produced dry films were stacked and heated at 70 ° C. for 15 minutes to form a sheet having a thickness of 6 mm or more, and stored at room temperature for 1 week. This sheet was heated at 70 ° C. for 20 minutes, and after decrystallization, the hardness when stored at 0 ° C. for 150 hours was measured. At that time, the measurement of the dry film hardness was performed according to the type A durometer measurement method described in JIS K6253.
  • ⁇ Film texture> The texture of the film was evaluated based on the amount of change in hardness when the dry film produced by the method described above was stored at 0 ° C. for 150 hours. The determination was ⁇ when the amount of change from the initial hardness was less than 50, ⁇ when it was 50 or more and less than 80, and ⁇ when it was less than 81.
  • ⁇ Compounding stability> Each polychloroprene latex composition of Examples and Comparative Examples was filtered through an 80-mesh wire mesh to determine the amount of aggregates in the polychloroprene latex composition. And stability was evaluated in three steps according to the amount of aggregates. Specifically, the case where the amount of the aggregate was less than 0.02% by mass was evaluated as ⁇ , the case where the amount was 0.02% by mass or less and less than 0.5% by mass was evaluated as ⁇ , and the case where the aggregate amount was 0.5% by mass or more was determined as ⁇ .
  • the primary flocculant used here improves the film formation of the immersion molding liquid, and the secondary flocculant promotes the solidification of the formed immersion molding liquid.
  • the sample for evaluation was prepared by the following method.
  • a test tube having an outer diameter of 40 mm and a length of 320 mm was immersed in a primary flocculant for 10 seconds to a depth of 150 mm with the mouth portion facing up.
  • the polychloroprene latex composition was produced on the surface of the test tube.
  • the obtained immersion film was leached (leached) with running water for 1 minute to remove water-soluble components.
  • the immersion film from which this water-soluble component was removed was further immersed in a secondary flocculant for 1 minute, and then the surface secondary flocculant was removed with running water. Subsequently, it dried at 70 degreeC for 2 hours, and produced the unvulcanized film.
  • This unvulcanized film is peeled off from the test tube, vulcanized at 141 ° C. for 60 minutes to obtain a vulcanized film, punched into a dumbbell shape No. 3 by the method described in JIS K6251, and manufactured by Ueshima Seisakusho. Using a tensile tester (Quick Reader mx), the modulus and the breaking strength at 300% elongation were measured.
  • TERIC320 shown in Table 2 is a nonionic surfactant manufactured by HUNTSMAN.
  • a glass plate having a width of 80 mm, a length of 150 mm, and a thickness of 4 mm was immersed in the primary flocculant for 10 seconds so as to have an immersion depth of 100 mm and air-dried for 3 minutes. Then, it was immersed in the polychloroprene latex composition for 4 minutes, and the immersion film was produced on the glass plate. The obtained immersion film was subjected to leaching (leaching) with running water for 1 minute to remove water-soluble components.
  • the immersion film from which this water-soluble component was removed was further immersed in a secondary flocculant for 1 minute, and then the surface secondary flocculant was removed with running water. Subsequently, it dried at 70 degreeC for 2 hours, and produced the unvulcanized film on the glass plate. This film was vulcanized with a glass plate at 141 ° C. for 30 minutes to obtain a vulcanized film.
  • the obtained vulcanized film was peeled 180 degrees from the glass plate using a Tensilon universal testing machine (TENSILON RTC-1225A) manufactured by ORIENTEC under a condition of 200 mm per minute according to JIS K-6854-2. The strength was measured. As a result, 180 degree peel strength was determined to be less than 0.02 N / mm, ⁇ , 0.02 N / mm to less than 0.05 N / mm, and 0.05 N / mm or more to be evaluated as x.
  • TENSILON RTC-1225A Tensilon universal testing machine manufactured by ORIENTEC under a condition of 200 mm per minute according to JIS K-6854-2.
  • the strength was measured.
  • 180 degree peel strength was determined to be less than 0.02 N / mm, ⁇ , 0.02 N / mm to less than 0.05 N / mm, and 0.05 N / mm or more to be evaluated as x.
  • ⁇ Vulcanized film adhesiveness> An evaluation sample (vulcanized film) was prepared using each of the polychloroprene latex compositions of Examples and Comparative Examples, and the primary flocculant B and secondary flocculant shown in Table 2 above. Specifically, this immersion molding liquid was subjected to immersion molding using a test tube under the same conditions as in the vulcanized film strength test, and an immersion film was produced on the surface of the test tube. Then, the obtained film was leached (leached) with running water for 1 minute to remove water-soluble components.
  • the immersion film from which this water-soluble component was removed was further immersed in a secondary flocculant for 1 minute, and then the surface secondary flocculant was removed with running water. Subsequently, it dried at 70 degreeC for 2 hours, and produced the unvulcanized film.
  • the unvulcanized film was peeled from the test tube and vulcanized at 141 ° C. for 30 minutes to produce a vulcanized film. Then, two vulcanized films obtained were thermocompression bonded at 70 ° C. to obtain evaluation samples.
  • This sample for evaluation was subjected to a T-type peel test in accordance with JIS K-6854-3 under the condition of 200 mm per minute using a Tensilon universal testing machine (TENSILON RTC-1225A) manufactured by ORIENTEC Co., Ltd. Sex was evaluated in three stages. In the judgment, the case where the T-type peel strength was less than 0.02 N / mm was rated as ⁇ , the case where 0.02 N / mm or more and less than 0.05 N / mm was given, and the case where 0.05 N / mm or more was given as ⁇ .
  • TENSILON RTC-1225A Tensilon universal testing machine
  • the surfactant 1 shown in Tables 3 and 4 above is alkyl diphenyl ether disulfonic acid, and the surfactant 2 is a condensate of sodium naphthalene sulfonate and formaldehyde.
  • the locations marked with * in the column of evaluation indicate that they were not worthy of evaluation because many aggregates were generated when the polychloroprene latex composition was blended.
  • the locations marked with ** indicate that the film was not worthy of evaluation because a homogeneous film could not be obtained.
  • the polychloroprene latex composition of Comparative Example 1 was agglomerated at the time of blending. Moreover, since the polychloroprene latex composition of Comparative Example 2 had a problem of fatty acid blooming on the film surface, the subsequent test was stopped. Furthermore, since the polychloroprene latex composition of Comparative Example 3 did not coagulate sufficiently and a homogeneous film could not be obtained, the subsequent test was stopped. Furthermore, the polychloroprene latex composition of Comparative Example 4 had a strong film adhesive strength and deteriorated peelability from the mold.
  • the polychloroprene latex compositions of Examples 1 to 9 produced within the scope of the present invention exhibited excellent characteristics in all items. From this result, according to the present invention, it was confirmed that an immersion molded article having good mold releasability and excellent flexibility was obtained.
  • the polychloroprene latex compositions of Examples 3, 5, 6 and 8 in which 2,3-dichloro-1,3-butadiene (DC) was copolymerized at 1 to 30% by mass of the whole monomer An immersion molded article with high film strength could be obtained.
  • DC 2,3-dichloro-1,3-butadiene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Gloves (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 浸漬成形時において鋳型からの離型性が良好で、かつ柔軟性に優れた浸漬成形体が得られるポリクロロプレンラテックス組成物及びその製造方法並びに成形体を提供する。 ロジン酸のアルカリ金属塩及びアルキルジフェニルエーテルジスルホン酸のアルカリ金属塩の存在下で、単量体を乳化重合して、単量体100質量部あたり3質量部以下のロジン酸のアルカリ金属塩の存在下で乳化重合して得たポリクロロプレンラテックス100質量部に対して、アルキルジフェニルエーテルジスルホン酸のアルカリ金属塩を0.01~1.0質量部含有するポリクロロプレンラテックス組成物を得る。

Description

ポリクロロプレンラテックス組成物及びその製造方法並びに成形体
 本発明は、ポリクロロプレンラテックス組成物及びその製造方法並びに、この組成物を使用した成形体に関する。特に、浸漬成形に使用されるポリクロロプレンラテックス組成物及びその製造方法、並びにこの組成物を浸漬成形した成形体に関する。
 ポリクロロプレンラテックスは、機械的強度、耐候性、耐熱性、耐薬品性などの特性が良好であるため、手袋などの浸漬成形体の材料、繊維処理剤、紙加工剤、粘・接着剤、弾性アスファルト(改質アスファルト)、弾性セメントなどの分野で広く使用されている。
 一方、手袋などの浸漬成形体の材料としては、一般に、天然ゴムが使用されていた。しかしながら、天然ゴムにはアレルギー症状を引き起こす蛋白質が含まれているため、これを直接皮膚に接触する物に使用すると、じんましんやかぶれなどの症状が出ることがある。この問題は、医療分野においては特に重要であり、手術用の手袋などの医療用の使い捨て手袋において、アレルギー症状が起きない材料が求められている。
 そこで、従来、このような問題を解決するため、蛋白質を除去した天然ゴムラテックスが開発されている(例えば、特許文献1参照。)。この特許文献1に記載の脱蛋白天然ゴムラテックスでは、脱蛋白による強度低下を補うために、ケトン類を含有させている。また、ポリクロロプレンラテックスやニトリルブタジエンゴムラテックスなどの天然ゴム以外の材料を使用した手袋も提案されている(例えば、特許文献2,3参照。)。
特開2000-198881号公報 特開2003-41410号公報 特開2007-106994号公報
 しかしながら、前述した従来の技術には、以下に示す問題点がある。即ち、特許文献1に記載の脱蛋白天然ゴムラテックスには、天然ゴムを脱蛋白処理する工程が必須となり、更に、ケトン類を配合しても十分な機械的強度が得られないことがあるという問題点がある。また、特許文献2に記載のニトリルブタジエンゴムラテックスは、得られる浸漬成形体の風合いが硬く、特に手袋に使用した場合は、長時間の使用が難しいという問題点がある。
 一方、ポリクロロプレンラテックスには、柔軟性及び経時変化安定性に劣るという問題点があり、特許文献3ではこれらの特性の改良を図っているが、まだ十分ではない。また、ポリクロロプレンラテックスには、浸漬成形時に鋳型から離型しにくいという問題点もある。
 そこで、本発明は、浸漬成形時において鋳型からの離型性が良好で、かつ柔軟性に優れた浸漬成形体が得られるポリクロロプレンラテックス組成物及びその製造方法並びに成形体を提供することを主目的とする。
 本発明に係るポリクロロプレンラテックス組成物は、単量体100質量部あたり3質量部以下のロジン酸のアルカリ金属塩の存在下で乳化重合して得たポリクロロプレンラテックス:100質量部と、アルキルジフェニルエーテルジスルホン酸のアルカリ金属塩:0.01~1.0質量部と、を含有するものである。
 この組成物は、前記単量体100質量部中に2,3-ジクロロ-1,3-ブタジエンが1~30質量%含まれていてもよい。
 本発明に係るポリクロロプレンラテックス組成物の製造方法は、単量体100質量部あたり3質量部以下のロジン酸のアルカリ金属塩及びアルキルジフェニルエーテルジスルホン酸のアルカリ金属塩の存在下で、単量体を乳化重合して、ポリクロロプレンラテックス100質量部に対して、アルキルジフェニルエーテルジスルホン酸のアルカリ金属塩を0.01~1.0質量部含有するポリクロロプレンラテックスを得る。
 また、本発明に係る他のポリクロロプレンラテックス組成物の製造方法は、単量体100質量部あたり3質量部以下のロジン酸のアルカリ金属塩を乳化剤として単量体を乳化重合した後、ポリクロロプレンラテックス:100質量部に対して、アルキルジフェニルエーテルジスルホン酸のアルカリ金属塩:0.01~1.0質量部を添加する。
 これらの製造方法では、ロジン酸のアルカリ金属塩を乳化剤として単量体を乳化重合した後、アルキルジフェニルエーテルジスルホン酸のアルカリ金属塩を添加してもよい。
 また、単量体の初期添加量を全単量体の10~50質量%として乳化重合を開始し、単量体の転化率が1~40%の間まで重合が進行した点から重合終了転化率に達するまでの間に、重合温度よりも低い温度に冷却した残りの単量体を重合系内へ連続的に添加して乳化重合することもできる。
 本発明に係る成形体は、前述したポリクロロプレンラテックス組成物を浸漬成形して得たものであり、例えば手袋などである。
 本発明によれば、浸漬成形をする際の鋳型からの離型性を改善することができると共に、柔軟性に優れた浸漬成形体が得られる。
 以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。
 本発明の実施形態に係るポリクロロプレンラテックス組成物(以下、単に組成物ともいう。)は、ポリクロロプレンラテックス:100質量部に対して、アルキルジフェニルエーテルジスルホン酸のアルカリ金属塩:0.01~1.0質量部を含有している。
[ポリクロロプレンラテックス]
 ポリクロロプレンラテックスは、本実施形態のポリクロロプレンラテックス組成物の主成分である。しかしながら、単量体100質量部あたり3質量部を超えるロジン酸のアルカリ金属塩の存在下で乳化重合して得たポリクロロプレンラテックスを使用すると、得られる浸漬成形体(フィルム)同士が粘着しやすくなるため、使いにくくなる。よって、本実施形態の組成物では、単量体100質量部あたり3質量部以下のロジン酸のアルカリ金属塩の存在下で乳化重合して得たポリクロロプレンラテックスを使用する。
 また、本実施形態の組成物に配合されるポリクロロプレンラテックスは、乳化重合される単量体100質量部中に2,3-ジクロロ-1,3-ブタジエンが1~30質量%含まれていることが望ましい。これにより、耐結晶性を向上して、成形体の柔軟性を向上させることができる。
[アルキルジフェニルエーテルジスルホン酸のアルカリ金属塩]
 アルキルジフェニルエーテルジスルホン酸のアルカリ金属塩は、ポリクロロプレンラテックスの、乳化不良や凝集物の生成を低減し、均質な浸漬成形体を得るために添加されている。また、本実施形態の組成物においては、アルキルジフェニルエーテルジスルホン酸のアルカリ金属塩の含有量を、ポリクロロプレンラテックス100質量部あたり0.01~1.0質量部とする。
 なお、ポリクロロプレンラテックス100質量部に対して、アルキルジフェニルエーテルジスルホン酸のアルカリ金属塩の含有量が0.01質量部未満の場合、前述した乳化不良や凝集物の生成を低減させる効果が不十分に得られない。また、アルキルジフェニルエーテルジスルホン酸のアルカリ金属塩の含有量が1.0質量部を超えると、ラテックスの凝結性が向上せず、均質な浸漬成形体が得られなくなる。
 前述したポリクロロプレンラテックス組成物は、ロジン酸のアルカリ金属塩及びアルキルジフェニルエーテルジスルホン酸のアルカリ金属塩の存在下で、単量体を乳化重合するか、又はロジン酸のアルカリ金属塩の存在下で単量体を乳化重合した後、アルキルジフェニルエーテルジスルホン酸のアルカリ金属塩を添加することにより得られる。
 例えば、ロジン酸のアルカリ金属塩の存在下で単量体を乳化重合した後、アルキルジフェニルエーテルジスルホン酸のアルカリ金属塩を添加する場合は、先ず、クロロプレンを乳化重合してポリクロロプレンラテックスを得る。具体的には、クロロプレン単独、又はクロロプレン及びクロロプレンと共重合可能な単量体を乳化/分散剤の存在下で、重合開始剤や連鎖移動剤を添加して乳化重合し、目的とする重合転化率に達した際に重合停止剤を添加して重合を停止させる。ここで、クロロプレンとは、2-クロロ-1,3-ブタジエンをいう。
 また、クロロプレンと共重合可能な単量体は、得られるポリクロロプレンラテックスの性質を調整するためにクロロプレンと共重合させるものであり、例えば、アクリル酸メチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル等のアクリル酸のエステル類や、メタクリル酸メチル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシルなどのメタクリル酸のエステル類や、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシ(メタ)アクリレート類や、2,3-ジクロロ-1,3-ブタジエン、1-クロロ-1,3-ブタジエン、ブタジエン、イソプレン、エチレン、スチレン、アクリロニトリルなどを用いることができる。なお、これらは単独でも使用することができるが、必要に応じて、2種類以上を併用することもできる。
 前述した各単量体のうち、特に、クロロプレンと共重合性が良好で、耐結晶性ひいては柔軟性などの特性を調整しやすいことから、2,3-ジクロロ-1,3-ブタジエンをクロロプレンと共重合する単量体として使用することが好ましい。この2,3-ジクロロ-1,3-ブタジエンを共重合させる場合は、全単量体中の2,3-ジクロロ-1,3-ブタジエン量を1~30質量%とすることが好ましく、より好ましくは5~20質量%である。全単量体中の2,3-ジクロロ-1,3-ブタジエン量が1質量%未満の場合、耐結晶性を向上させる効果が得られない場合があり、また、30質量%を超える場合には、重合体の結晶化が進みすぎて、柔軟性が低下する場合がある。
 乳化重合に使用する乳化/分散剤としては、通常のロジン酸のアルカリ金属塩を用いることができる。特に、着色安定性の観点から、不均化ロジン酸のナトリウム及び/又はカリウム塩を使用することが好ましい。乳化重合時のロジン酸のアルカリ金属塩の使用量は、単量体100質量部あたり3質量部以下である。ロジン酸のアルカリ金属塩の量が3質量部より多い場合、残留したロジン酸のためにポリクロロプレンラテックスが粘着しやすくなり、浸漬成形をする際に鋳型へ粘着して成形不良が発生したり、得られた浸漬成形体の表面がべたついたものになったりする。
 なお、本発明の効果を損なわない範囲で、乳化/分散剤として、ロジン酸のアルカリ金属塩以外の他の構造を有するものを併用することもできる。ロジン酸のアルカリ金属塩と併用可能な乳化/分散剤としては、カルボン酸型、スルホン酸型、硫酸エステル型などがあり、例えば、炭素数が8~20個のアルキルスルフォネート、アルキルアリルサルフォネート、ナルタリンスルホン酸ナトリウムとホルムアルデヒドの縮合物、ポリオキシエチレンアシルエーテル、ポリオキシエチレンアルキルフェノール、ソルビタン脂肪酸エステル、ポリオキシエチレンアシルエステルなどが挙げられるが、これらに限定されるものではない。
 乳化重合に使用する重合開始剤は、特に限定されるものではなく、通常のクロロプレンの乳化重合に使用されるものを使用することができる。具体的には、過硫酸カリウムなどの過硫酸塩、第3-ブチルヒドロパーオキサイドなどの有機過酸化物などが好適に用いられる。
 連鎖移動剤も、特に限定されるものではなく、通常のクロロプレンの乳化重合に使用されるものが使用できる。具体的には、n-ドデシルメルカプタンやtert-ドデシルメルカプタンなどの長鎖アルキルメルカプタン類、ジイソプロピルキサントゲンジスルフィドやジエチルキサントゲンジスルフィドなどのジアルキルキサントゲンジスルフィド類、ヨードホルムなどの公知の連鎖移動剤を使用することができる。
 一方、クロロプレンラテックスの重合温度は、特に限定されるものではなく、一般に乳化重合が行われる範囲(0~55℃)とすることができるが、30~50℃の範囲で重合を行うことが好ましい。これにより、得られる浸漬成形体の柔軟性の経時的安定性が向上する。
 また、クロロプレンラテックスの重合転嫁率は、60~95%であることが好ましく、より好ましくは80~90%である。この重合転嫁率が60%未満である場合は、重合体ラテックスの固形分が低下し、生産性が悪化する場合がある。また、95%より大きい場合は、重合時間が長くなって生産性が低下したり、浸漬成形体とした際の機械的強度が低下したり、脆くなる場合がある。
 重合を停止する際に添加する重合停止剤は、特に限定されるものではなく、通常用いられているものを使用することができる。具体的には、フェノチアジン、パラ-t-ブチルカテコール、ハイドロキノン、ハイドロキノンモノメチルエーテル、ジエチルヒドロキシルアミンなどを用いることができる。
 更に、本実施形態の組成物の製造方法では、単量体の初期添加量を全体量の10~50質量%として重合を開始し、単量体の転化率が1~40%の間まで重合が進行した点から重合終了転化率に達するまでの間に、重合温度よりも低い温度に冷却した残りの単量体を、重合系内へ連続的に添加することが好ましい。これにより、重合系内の除熱を効果的に行い、短時間で安定的に重合反応を行うことができる。
 次に、得られたポリクロロプレンラテックスに、ポリクロロプレンラテックス100質量部あたり0.01~1.0質量部のアルキルジフェニルエーテルジスルホン酸のアルカリ金属塩を添加し、本実施形態のポリクロロプレンラテックス組成物を得る。なお、アルキルジフェニルエーテルジスルホン酸のアルカリ金属塩の添加時期は特に限定するものではなく、乳化重合前、乳化重合中又は乳化重合終了後の任意のタイミングで添加することが可能である。
 ただし、乳化重合前にアルキルジフェニルエーテルジスルホン酸を添加する場合は、その添加量を、ロジン酸のアルカリ金属塩の添加量の0.1~0.4倍とすることが好ましい。これにより、重合液が安定し、目的とするポリクロロプレンラテックス組成物を効率的に得ることができる。
 また、本実施形態のクロロプレンラテックス組成物は、任意でゴムラテックス加工において慣用的に用いられる添加剤を含有していてもよい。このような添加剤としては、例えば、他のポリマー、充填剤、酸化防止剤、金属酸化物、硬化剤、界面活性剤及び可塑剤が挙げられる。
 以上詳述したように、本実施形態のポリクロロプレンラテックス組成物は、ロジン酸とアルキルジフェニルエーテルジスルホン酸を用いているため、ポリクロロプレンラテックス組成物の粘着性が改善し、浸漬成形をする際の鋳型からの離型性を良好にすることができる。また、本実施形態のポリクロロプレンラテックス組成物は、ポリクロロプレンラテックスの耐結晶性を向上させているため、柔軟性に優れた浸漬成形体が得られる。
 更に、本実施形態のポリクロロプレンラテックス組成物は、手袋などの浸漬成形体に好適である。このような浸漬成形体の製造方法は、特に限定されるものではなく、通常の成形方法を適用することができ、例えば、浸漬・凝固後、浸出(水溶性不純物の除去)、乾燥させた後、加硫することにより得られる。
 以下、本発明の実施例及び比較例を挙げて、本発明の効果について具体的に説明する。なお、本発明はこれらの実施例により限定されるものではない。本実施例においては、以下に示す方法で、実施例及び比較例のポリクロロプレンラテックス組成物を製造し、その特性を評価した。
(実施例1)
<ポリクロロプレンラテックス>
 内容積10リットルの反応器を用いて、窒素気流下で水:100質量部、不均化ロジン酸ナトリウム:2.5質量部、水酸化カリウム:0.8質量部、ナルタリンスルホン酸ナトリウムとホルムアルデヒドの縮合物:0.8質量部、亜硫酸ナトリウム:0.3質量部を仕込み、溶解後、攪拌しながらクロロプレン100質量部とn-ドデシルメルカプタン0.14質量部を加えた。
 そして、過硫酸カリウムを開始剤として使用し、窒素雰囲気下、40℃で重合を行い、重合率が90%に達したところでフェノチアジンの乳濁液を加えて重合を停止し、アルキルジフェニルエーテルジスルホン酸ナトリウムを0.5質量部加えた。その後、減圧下で未反応単量体を除去して、ポリクロロプレンラテックスを得た。更に、減圧下で水分を蒸発させ濃縮を行い、ポリクロロプレンラテックスの固形分が60質量%となるように調整した。
<ポリクロロプレンラテックス組成物>
 前述した方法により得た固形分60質量%のポリクロロプレンラテックスに、下記表1示す化合物を添加して、実施例1のポリクロロプレンラテックス組成物を作製した。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 単量体の添加量を、クロロプレン単量体:95質量部、2,3-ジクロロ-1,3-ブタジエンの単量体:5質量部に変更した以外は、前述した実施例1と同様の方法及び条件で、実施例2のポリクロロプレンラテックス組成物を得た。
(実施例3)
 単量体の添加量を、クロロプレン単量体:90質量部、2,3-ジクロロ-1,3-ブタジエンの単量体:10質量部に変更した以外は、前述した実施例1と同様の方法及び条件で、実施例3のポリクロロプレンラテックス組成物を得た。
(実施例4)
 単量体の添加量を、クロロプレン単量体:80質量部、2,3-ジクロロ-1,3-ブタジエンの単量体:20質量部に変更した以外は、前述した実施例1と同様の方法及び条件で、実施例4のポリクロロプレンラテックス組成物を得た。
(実施例5)
 単量体の初期仕込み量を、クロロプレン単量体:27質量部と2,3-ジクロロ-1,3-ブタジエンの単量体:3質量部及びn-ドデシルメルカプタン:0.04質量部として重合を開始し、重合率が10%になったところで、-10℃に冷却した残りのクロロプレン単量体:63質量部と2,3-ジクロロ-1,3-ブタジエンの単量体:7質量部及びn-ドデシルメルカプタン:0.1質量部の添加を開始することに変更した以外は、前述した実施例1と同様の方法及び条件で、実施例5のポリクロロプレンラテックス組成物を得た。
(実施例6)
 アルキルジフェニルエーテルジスルホン酸ナトリウム:0.5質量部の添加を重合開始前に変更したこと以外は、前述した実施例3と同様の方法及び条件で、実施例6のポリクロロプレンラテックス組成物を得た。
(実施例7)
 ナルタリンスルホン酸ナトリウムとホルムアルデヒドの縮合物の添加量を0質量部に変更したこと以外は、前述した実施例6と同様の方法及び条件で、実施例7のポリクロロプレンラテックス組成物を得た。
(実施例8)
 不均化ロジン酸ナトリウムの添加量を1.5質量部に変更したこと以外は、前述した実施例3と同様の方法及び条件で、実施例8のポリクロロプレンラテックス組成物を得た。
(実施例9)
 不均化ロジン酸ナトリウムの添加量を3.0質量部に変更したこと以外は、前述した実施例3と同様の方法及び条件で、実施例9のポリクロロプレンラテックス組成物を得た。
(比較例1)
 アルキルジフェニルエーテルジスルホン酸ナトリウムを使用しなかったこと以外は、前述した実施例1と同様の方法及び条件で、比較例1のポリクロロプレンラテックス組成物を得た。
(比較例2)
 アルキルジフェニルエーテルジスルホン酸ナトリウムの代わりに脂肪酸(ハリマ化成社製 バンデスM-500-32(不均化トール油石鹸))を0.5質量部添加することに変更したこと以外は、前述した実施例1と同様の方法及び条件で、比較例2のポリクロロプレンラテックス組成物を得た。
(比較例3)
 ホルムアルデヒドナフタレンスルホン酸縮合物のナトリウムの添加量を0質量部、アルキルジフェニルエーテルジスルホン酸ナトリウムの添加量を1.2質量部に変更したこと以外は、前述した実施例6と同様の方法及び条件で、比較例3のポリクロロプレンラテックス組成物を得た。
(比較例4)
 不均化ロジン酸ナトリウムの添加量を3.5質量部に変更したこと以外は、前述した実施例3と同様の方法及び条件で、比較例4のポリクロロプレンラテックス組成物を得た。
 前述した方法で作製した実施例1~9及び比較例1~4の各クロロプレンラテック組成物について、硬度変化、配合安定性及びその配合物で作製したフィルム物性を、以下に示す方法により評価した。
<乾燥フィルム硬度>
 得られたポリクロロプレンラテックスを室温で風乾した後、真空乾燥により水分を完全に除去して乾燥フィルムを得た。作製した乾燥フィルムを複数枚重ねて70℃で15分間加熱して厚さ6mm以上のシート状にし、1週間室温で保管した。このシートを70℃で20分間加熱し、除晶後、0℃、150時間で保管した時の硬度を測定した。その際、乾燥フィルム硬度の測定は、JIS K6253に記載のタイプAデュロメータ測定方法に準じて行った。
<フィルム風合い>
 前述した方法で作製した乾燥フィルムを、0℃、150時間で保管した時の硬度の変化量により、フィルムの風合いを評価した。判定は、初期硬度からの変化量が50未満であったものを◎、50以上80未満のものを○、81未満のものを×とした。
<配合安定性>
 実施例及び比較例の各ポリクロロプレンラテックス組成物を、80メッシュの金網で濾過して、ポリクロロプレンラテックス組成物中の凝集物量を求めた。そして、凝集物量の多少により安定性を3段階で評価した。具体的には、凝集物量が0.02質量%未満のものを◎、0.02質量%以上0.5質量%未満のものを○、0.5質量%以上のものを×として判定した。
<加硫フィルム強度>
 実施例及び比較例の各ポリクロロプレンラテックス組成物と、下記表2に示す一次凝集剤A及び二次凝集剤を用いて評価用試料(加硫フィルム)を作製した。なお、ここで使用する一次凝集剤は、浸漬成形液の成膜を向上させるものであり、二次凝集剤は、成膜した浸漬成形液の凝固を促進させるものである。
Figure JPOXMLDOC01-appb-T000002
 評価用試料は次に示す方法で作製した。外形40mm、長さ320mmの試験管を、口部が上になるようにして深さ150mmまで一次凝集剤に10秒間浸漬した。次に、3分間風乾した後、ポリクロロプレンラテックス組成物に4分間浸漬させて、試験管の表面に浸漬フィルムを作製した。得られた浸漬フィルムを、流水で1分間リーチング(浸出)して水溶性成分を除去した。
 この水溶性成分を除去した浸漬フィルムを、更に二次凝集剤に1分間浸漬した後、流水により表面の二次凝集剤を除去した。次いで、70℃で2時間乾燥して、未加硫フィルムを作製した。この未加硫フィルムを試験管から剥離し、141℃で60分間加硫して加硫フィルムとし、JIS K6251に記載の方法でダンベル状3号形に打抜いて試験片とし、上島製作所製の引張試験機(Quick Reader mx )を用いて、300%伸張時のモデュラス及び破断強度の測定を行った。
<加硫フィルム離型性>
 実施例及び比較例の各ポリクロロプレンラテックス組成物と、上記表2に示す一次凝集剤B及び二次凝集剤を用いて評価用試料(加硫フィルム)を作製した。なお、上記表2に示す「TERIC320」は、HUNTSMAN社のノニオン系界面活性剤である。
 具体的には、一次凝集剤に、幅80mm、長さ150mm、厚さ4mmのガラス板を、浸漬深さ100mmとなるように10秒間浸漬し、3分風乾した。その後、ポリクロロプレンラテックス組成物に4分間浸漬させて、ガラス板上に浸漬フィルムを作製した。得られた浸漬フィルムを、流水で1分間リーチング(浸出)を行い、水溶性成分を除去した。
 この水溶性成分を除去した浸漬フィルムを、更に二次凝集剤に1分間浸漬した後、流水により表面の二次凝集剤を除去した。次いで、70℃で2時間乾燥して、ガラス板上に未加硫フィルムを作製した。このフィルムをガラス板とともに141℃で30分間加硫して、加硫フィルムを得た。
 得られた加硫フィルムについて、ORIENTEC社製のテンシロン万能試験機(TENSILON RTC-1225A)を用いて、毎分200mmの条件で、JIS K-6854-2に準じて、ガラス板からの180度剥離強度を測定した。その結果、180度剥離強度が0.02N/mm未満のものを◎、0.02N/mm以上0.05N/mm未満のものを○、0.05N/mm以上のものを×として判定した。
<加硫フィルム粘着性>
 実施例及び比較例の各ポリクロロプレンラテックス組成物と、上記表2に示す一次凝集剤B及び二次凝集剤を用いて評価用試料(加硫フィルム)を作製した。具体的には、この浸漬成形液に、加硫フィルム強度試験と同一の条件で試験管を用いて浸漬成形して、試験管の表面に浸漬フィルムを作製した。そして、得られたフィルムを、流水で1分間リーチング(浸出)して水溶性成分を除去した。
 この水溶性成分を除去した浸漬フィルムを、更に二次凝集剤に1分間浸漬した後、流水により表面の二次凝集剤を除去した。次いで、70℃、2時間乾燥して未加硫フィルムを作製した。この未加硫フィルムを試験管から剥離して、141℃で30分間加硫して、加硫フィルムを作製した。そして、得られた加硫フィルム2枚を70℃で熱圧着して評価用試料とした。
 この評価用試料を、ORIENTEC社製のテンシロン万能試験機(TENSILON RTC-1225A)を用いて、毎分200mmの条件で、JIS K-6854-3に準じてT型剥離試験を行い、フィルムの粘着性を3段階で評価した。判定は、T型剥離強度が0.02N/mm未満のものを◎、0.02N/mm以上0.05N/mm未満のものを○、0.05N/mm以上のものを×とした。
 以上の評価結果を、下記表3及び表4にまとめて示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 なお、上記表3及び表4に示す界面活性剤1はアルキルジフェニルエーテルジスルホン酸であり、界面活性剤2はナフタリンスルホン酸ナトリウムとホルムアルデヒドの縮合物である。また、評価の欄において※印を付した箇所は、ポリクロロプレンラテックス組成物の配合時に凝集物が多く発生したため評価に値しなかったことを示す。さらに、※※印を付した箇所は、均質なフィルムが得られなかったために評価に値しなかったことを示す。
 上記表4に示すように、比較例1のポリクロロプレンラテックス組成物は、配合時に凝集物が発生したことから、以降の試験は中止とした。また、比較例2のポリクロロプレンラテックス組成物は、フィルム表面に脂肪酸がブルームする問題が生じたことから、以降の試験は中止とした。更に、比較例3のポリクロロプレンラテックス組成物は、十分に凝固せず、均質なフィルムを得ることができなったため、以降の試験は中止とした。更にまた、比較例4のポリクロロプレンラテックス組成物は、フィルムの粘着力が強く、型からの剥離性が悪化した。
 これに対して、本発明の範囲内で作製した実施例1~9のポリクロロプレンラテックス組成物は、いずれの項目においても優れた特性を示した。この結果より、本発明によれば、鋳型からの離型性が良好で、かつ柔軟性に優れた浸漬成形体が得られることが確認された。特に、2,3-ジクロロ-1,3-ブタジエン(DC)を単量体全体の1~30質量%にして共重合した実施例3、5、6及び8のポリクロロプレンラテックス組成物では、よりフィルム強度の高い浸漬成形体を得ることができた。
 

Claims (7)

  1.  単量体100質量部あたり3質量部以下のロジン酸のアルカリ金属塩の存在下で乳化重合して得たポリクロロプレンラテックス:100質量部と、
     アルキルジフェニルエーテルジスルホン酸のアルカリ金属塩:0.01~1.0質量部と、
     を含有するポリクロロプレンラテックス組成物。
  2.  前記単量体100質量部中に2,3-ジクロロ-1,3-ブタジエンが1~30質量%含まれていることを特徴とする請求項1に記載のポリクロロプレンラテックス組成物。
  3.  単量体100質量部あたり3質量部以下のロジン酸のアルカリ金属塩及びアルキルジフェニルエーテルジスルホン酸のアルカリ金属塩の存在下で、単量体を乳化重合して、ポリクロロプレンラテックス100質量部に対して、アルキルジフェニルエーテルジスルホン酸のアルカリ金属塩を0.01~1.0質量部含有するポリクロロプレンラテックスを得るポリクロロプレンラテックス組成物の製造方法。
  4.  単量体100質量部あたり3質量部以下のロジン酸のアルカリ金属塩を乳化剤として単量体を乳化重合した後、ポリクロロプレンラテックス:100質量部に対して、アルキルジフェニルエーテルジスルホン酸のアルカリ金属塩:0.01~1.0質量部を添加するポリクロロプレンラテックス組成物の製造方法。
  5.  単量体の初期添加量を全単量体の10~50質量%として乳化重合を開始し、単量体の転化率が1~40%の間まで重合が進行した点から重合終了転化率に達するまでの間に、重合温度よりも低い温度に冷却した残りの単量体を重合系内へ連続的に添加して乳化重合することを特徴とする請求項3又は4に記載のポリクロロプレンラテックス組成物の製造方法。
  6.  請求項1又は2に記載のポリクロロプレンラテックス組成物を浸漬成形して得た浸漬成形体。
  7.  手袋であることを特徴とする請求項6に記載の浸漬成形体。
PCT/JP2010/061441 2009-07-06 2010-07-06 ポリクロロプレンラテックス組成物及びその製造方法並びに成形体 WO2011004805A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011521918A JPWO2011004805A1 (ja) 2009-07-06 2010-07-06 ポリクロロプレンラテックス組成物及びその製造方法並びに成形体
EP10797116.0A EP2452973B1 (en) 2009-07-06 2010-07-06 Polychloroprene latex composition, process for production of same, and products of forming thereof
US13/379,580 US8436102B2 (en) 2009-07-06 2010-07-06 Polychloroprene latex composition, process for production of same, and products of forming thereof
CN2010800303521A CN102471543A (zh) 2009-07-06 2010-07-06 聚氯丁二烯胶乳组合物及其制造方法以及成型体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009159655 2009-07-06
JP2009-159655 2009-07-06

Publications (1)

Publication Number Publication Date
WO2011004805A1 true WO2011004805A1 (ja) 2011-01-13

Family

ID=43429229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061441 WO2011004805A1 (ja) 2009-07-06 2010-07-06 ポリクロロプレンラテックス組成物及びその製造方法並びに成形体

Country Status (6)

Country Link
US (1) US8436102B2 (ja)
EP (1) EP2452973B1 (ja)
JP (1) JPWO2011004805A1 (ja)
CN (2) CN105017592A (ja)
MY (1) MY160095A (ja)
WO (1) WO2011004805A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219204A (ja) * 2011-04-11 2012-11-12 Denki Kagaku Kogyo Kk ポリクロロプレンラテックス及びその製造方法
WO2013129676A1 (ja) * 2012-03-02 2013-09-06 電気化学工業株式会社 ポリクロロプレンラテックス、ポリクロロプレンラテックス組成物及び成形品
CN103459444A (zh) * 2011-04-06 2013-12-18 电气化学工业株式会社 聚氯丁二烯胶乳、橡胶组合物及浸渍成型品
WO2014188859A1 (ja) * 2013-05-20 2014-11-27 電気化学工業株式会社 クロロプレンゴム、その製造方法及びクロロプレンゴム組成物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY162967A (en) * 2011-03-10 2017-07-31 Denka Company Ltd Method for evaluating chemical stability of polychloroprene latex
TWI481629B (zh) * 2012-10-30 2015-04-21 Jinex Corp Ltd 羧基丁腈乳膠的製備方法及以該羧基丁腈乳膠所製得之物品
JP5923129B2 (ja) * 2014-03-26 2016-05-24 デンカ株式会社 ポリクロロプレンラテックス、ポリクロロプレンラテックス組成物及び浸漬成形体
WO2020144955A1 (ja) * 2019-01-10 2020-07-16 昭和電工株式会社 イソプレン系重合体ラテックス組成物
WO2021141011A1 (ja) * 2020-01-06 2021-07-15 昭和電工株式会社 ラテックス組成物、成形体、および、成形体の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042314A1 (fr) * 2001-11-15 2003-05-22 Denki Kagaku Kogyo Kabushiki Kaisha Procede de prolongation de la vie en pot d'adhesif polychloropropene aqueux en deux parties
JP2006199933A (ja) * 2004-12-24 2006-08-03 Denki Kagaku Kogyo Kk クロロプレン重合体組成物及び接着剤組成物
JP2006219546A (ja) * 2005-02-09 2006-08-24 Denki Kagaku Kogyo Kk ポリクロロプレンラテックス及びその製造方法並びに用途
JP2007106994A (ja) * 2005-09-15 2007-04-26 Showa Denko Kk クロロプレン系重合体ラテックス及びその製造方法
JP2008231404A (ja) * 2007-02-20 2008-10-02 Denki Kagaku Kogyo Kk クロロプレン系重合体組成物、その製造方法、並びにこれを用いた接着剤
JP2009191182A (ja) * 2008-02-15 2009-08-27 Denki Kagaku Kogyo Kk クロロプレン系重合体組成物、接着剤組成物、並びにクロロプレン系重合体組成物の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000198881A (ja) 1999-01-07 2000-07-18 Sumitomo Rubber Ind Ltd 脱蛋白天然ゴムラテックスおよびそれを用いたゴム手袋
US6451893B1 (en) 2001-05-22 2002-09-17 Microflex Corporation Soft nitrile zinc oxide free medical gloves
TW200801513A (en) 2006-06-29 2008-01-01 Fermiscan Australia Pty Ltd Improved process
JP2008050511A (ja) * 2006-08-28 2008-03-06 Denki Kagaku Kogyo Kk 加硫型水性接着剤及びその用途
JP5481775B2 (ja) * 2006-11-06 2014-04-23 東ソー株式会社 クロロプレンラテックス及びクロロプレンラテックスを含有する接着剤組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042314A1 (fr) * 2001-11-15 2003-05-22 Denki Kagaku Kogyo Kabushiki Kaisha Procede de prolongation de la vie en pot d'adhesif polychloropropene aqueux en deux parties
JP2006199933A (ja) * 2004-12-24 2006-08-03 Denki Kagaku Kogyo Kk クロロプレン重合体組成物及び接着剤組成物
JP2006219546A (ja) * 2005-02-09 2006-08-24 Denki Kagaku Kogyo Kk ポリクロロプレンラテックス及びその製造方法並びに用途
JP2007106994A (ja) * 2005-09-15 2007-04-26 Showa Denko Kk クロロプレン系重合体ラテックス及びその製造方法
JP2008231404A (ja) * 2007-02-20 2008-10-02 Denki Kagaku Kogyo Kk クロロプレン系重合体組成物、その製造方法、並びにこれを用いた接着剤
JP2009191182A (ja) * 2008-02-15 2009-08-27 Denki Kagaku Kogyo Kk クロロプレン系重合体組成物、接着剤組成物、並びにクロロプレン系重合体組成物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2452973A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459444A (zh) * 2011-04-06 2013-12-18 电气化学工业株式会社 聚氯丁二烯胶乳、橡胶组合物及浸渍成型品
CN103459444B (zh) * 2011-04-06 2016-03-23 电化株式会社 聚氯丁二烯胶乳、橡胶组合物及浸渍成型品
US9394454B2 (en) 2011-04-06 2016-07-19 Denka Company Limited Polychloroprene latex, rubber composition and dip-molded article
JP2012219204A (ja) * 2011-04-11 2012-11-12 Denki Kagaku Kogyo Kk ポリクロロプレンラテックス及びその製造方法
WO2013129676A1 (ja) * 2012-03-02 2013-09-06 電気化学工業株式会社 ポリクロロプレンラテックス、ポリクロロプレンラテックス組成物及び成形品
CN104144954A (zh) * 2012-03-02 2014-11-12 电气化学工业株式会社 聚氯丁二烯胶乳、聚氯丁二烯胶乳组合物以及成型品
JPWO2013129676A1 (ja) * 2012-03-02 2015-07-30 電気化学工業株式会社 ポリクロロプレンラテックス、ポリクロロプレンラテックス組成物及び成形品
US9296849B2 (en) 2012-03-02 2016-03-29 Denka Company Limited Polychloroprene latex, polychloroprene latex composition, and molded article
CN104144954B (zh) * 2012-03-02 2017-07-25 电化株式会社 聚氯丁二烯胶乳、聚氯丁二烯胶乳组合物以及成型品
WO2014188859A1 (ja) * 2013-05-20 2014-11-27 電気化学工業株式会社 クロロプレンゴム、その製造方法及びクロロプレンゴム組成物
JP2014227438A (ja) * 2013-05-20 2014-12-08 電気化学工業株式会社 クロロプレンゴム組成物、クロロプレンゴム及びその製造方法

Also Published As

Publication number Publication date
EP2452973A4 (en) 2013-05-22
US20120108744A1 (en) 2012-05-03
EP2452973B1 (en) 2014-07-02
MY160095A (en) 2017-02-28
US8436102B2 (en) 2013-05-07
CN105017592A (zh) 2015-11-04
EP2452973A1 (en) 2012-05-16
CN102471543A (zh) 2012-05-23
JPWO2011004805A1 (ja) 2012-12-20

Similar Documents

Publication Publication Date Title
WO2011004805A1 (ja) ポリクロロプレンラテックス組成物及びその製造方法並びに成形体
JP5969985B2 (ja) ポリクロロプレンラテックス、ゴム組成物及び浸漬成形品
JP6041650B2 (ja) ポリクロロプレンラテックス、ポリクロロプレンラテックス組成物及び浸漬成形製品
JP6833675B2 (ja) ゴム用組成物及びその用途
EP2824121B1 (en) Polychloroprene latex, polychloroprene latex composition, and molded article
JP2007106994A (ja) クロロプレン系重合体ラテックス及びその製造方法
JP2011122141A (ja) クロロプレン系重合体ラテックス及びその製造方法
JP2019044116A (ja) クロロプレン共重合体ラテックス組成物及びその成形物
WO2013105370A1 (ja) 硫黄変性クロロプレンゴム及びその製造方法、並びに成形体
WO2021006118A1 (ja) クロロプレン共重合体ラテックス及びその製造方法、加硫物、並びに、浸漬成形体及びその製造方法
JP5369135B2 (ja) ポリクロロプレンラテックス及びその製造方法
JP2011168720A (ja) 接着剤用共重合体ラテックス
JPWO2016133193A1 (ja) ゴムラテックス、ゴムラテックス組成物及び浸漬成形製品
JP4428209B2 (ja) クロロプレンゴム及びその製造方法、並びにクロロプレンゴム組成物
WO2021079981A1 (ja) クロロプレン共重合体ラテックス及びその製造方法
JP2005336273A (ja) ディップ成形用共重合体ラテックス、ディップ成形用組成物およびディップ成形物
WO2015145867A1 (ja) ポリクロロプレンラテックス、ポリクロロプレンラテックス組成物及び浸漬成形体
JP2009191235A (ja) クロロプレン系重合体組成物、その製造方法、並びに接着剤組成物
JP6490670B2 (ja) ゴムラテックス、ゴムラテックス組成物及び成形品
JP2009108195A (ja) 加硫ゴム製造用クロロプレンポリマーラテックス組成物及びその製造方法
US11427701B2 (en) Chloroprene copolymer latex composition and molded product thereof
JP5549856B2 (ja) 高弾性硫黄変性クロロプレンゴムの製造方法
TW202100336A (zh) 用於修復或回收彈性膜之方法
WO2022102247A1 (ja) クロロプレン重合体組成物及びその製造方法、並びに、浸漬成形体
JP2006321881A (ja) ディップ成形用共重合体ラテックスの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080030352.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797116

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011521918

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13379580

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010797116

Country of ref document: EP