WO2011004721A1 - レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法 - Google Patents

レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法 Download PDF

Info

Publication number
WO2011004721A1
WO2011004721A1 PCT/JP2010/060848 JP2010060848W WO2011004721A1 WO 2011004721 A1 WO2011004721 A1 WO 2011004721A1 JP 2010060848 W JP2010060848 W JP 2010060848W WO 2011004721 A1 WO2011004721 A1 WO 2011004721A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
underlayer film
resist underlayer
Prior art date
Application number
PCT/JP2010/060848
Other languages
English (en)
French (fr)
Inventor
佳臣 広井
登喜雄 西田
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2011521885A priority Critical patent/JP5522415B2/ja
Publication of WO2011004721A1 publication Critical patent/WO2011004721A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers

Definitions

  • the present invention relates to a resist underlayer film forming composition for lithography useful at the time of processing a semiconductor substrate, and a resist pattern forming method using the resist underlayer film forming composition.
  • a resist underlayer film that can suppress the influence of reflected waves on the resist film when the resist film is exposed can also be referred to as an antireflection film.
  • the microfabrication forms a thin film of a photoresist composition on a semiconductor substrate such as a silicon wafer, and irradiates with an actinic ray such as ultraviolet rays through a mask pattern on which a device pattern is drawn, and develops it.
  • This is a processing method for forming fine irregularities corresponding to the pattern on the substrate surface by etching the substrate using the obtained photoresist pattern as a protective film.
  • a conventional composition for forming a resist underlayer film usually contains a crosslinking agent and a crosslinking catalyst in addition to a polymer as a base of the cured film in order to form a strong cured film by thermal crosslinking. Further, in recent years, acidic additives and the like are also blended for improving the skirt shape of the resist pattern.
  • the resist underlayer film is required to have a higher dry etching rate than that of the resist film (a large selection ratio of the dry etching rate).
  • a conventional resist underlayer film (such as an antireflection film) formed from a composition containing an acrylic resin or a methacrylic resin is not always satisfactory with respect to the dry etching rate. This is thought to be because the bonds between carbon atoms (CC bond) constituting the main chain of the acrylic resin or methacrylic resin are not easily broken by dry etching.
  • An object of the present invention is to provide a new underlayer film forming composition that can be suppressed, and a resist pattern forming method using the underlayer film forming composition.
  • the present invention relates to an aromatic carbonyl derivative, such as an aromatic aldehyde derivative, an aromatic ketone derivative, preferably a benzaldehyde derivative or naphthaldehyde having at least two substituents consisting of one or two selected from a hydroxy group and a carboxyl group
  • a resist underlayer film forming composition for lithography comprising a polymer obtained by reacting a derivative with a diepoxy compound having two epoxy groups, a sulfonic acid compound, and a solvent.
  • the polymer has an aromatic carbonyl structure, for example, an aromatic aldehyde structure in the main chain, and the aromatic aldehyde structure is preferably a benzaldehyde structure or a naphthaldehyde structure, a two-dimensional polymer or a linear polymer,
  • the group carbonyl structure is an ether bond, ie —C—O—C—, or an ester bond, —C ( ⁇ O) —O— or —O—C ( ⁇ O) —, or an ester bond and an ether bond. It has been introduced into the main chain.
  • the polymer means a polymer that is not a monomer, and does not exclude so-called oligomers.
  • the polymer contained in the composition of the present invention has the following formula (1): (In the formula, R, A 1 , A 2 , A 3 , A 4 , A 5 and A 6 each independently represents a hydrogen atom, a methyl group or an ethyl group, Q represents a divalent organic group, n 1 represents a number of 1 to 4, n 2 and n 3 each independently represents a number of 0 or 1, m represents the number of repeating units and is 5 to 300.) It has the repeating structure represented by these. The number m of repeating units is, for example, 10 or more and 300 or less.
  • the polymer may contain a structure other than the formula (1).
  • the main repeating structure represented by the formula (1) and optionally included structures are arranged linearly to constitute a polymer.
  • the repeating structure represented by the above formula (1) has, for example, an aromatic aldehyde structure in which R represents a hydrogen atom in the main chain, and more preferably a structure represented by the following formula (1a). (In the formula, A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , Q and m are those defined in the above formula (1).)
  • the polymer contained in the composition of the present invention has the following formulas (2) and (3):
  • R represents a hydrogen atom, a methyl group or an ethyl group
  • n 1 represents a number of 1 to 4
  • n 2 and n 3 each independently represents a number of 0 or 1.
  • a 1 , A 2 , A 3 , A 4 , A 5 and A 6 each independently represents a hydrogen atom, a methyl group or an ethyl group
  • Q represents a divalent organic group.
  • the polymer may contain structural units other than the formulas (2) and (3).
  • the main structural units represented by the formula (2) and the formula (3) and optionally included structural units are arranged linearly to constitute a polymer.
  • the structural unit represented by the above formula (2) is more preferably a structural unit represented by the following formula (2a).
  • Q is the following formula (4):
  • Q 1 represents an alkylene group having 1 to 10 carbon atoms, a divalent organic group having an alicyclic hydrocarbon having 3 to 10 carbon atoms, a phenylene group, a naphthylene group or an anthrylene group
  • Group, naphthylene group and anthrylene group are each an alkyl group having 1 to 6 carbon atoms, a halogen atom, an alkoxy group having 1 to 6 carbon atoms, a nitro group, a cyano group, and an alkylthio group having 1 to 6 carbon atoms.
  • n 4 and n 5 each independently representing the number 0 or 1.
  • Q is the following formula (5):
  • X 1 is the following formula (6) or the following formula (7):
  • R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 3 to 6 carbon atoms, a benzyl group or a phenyl group, Substituted with at least one group selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a halogen atom, an alkoxy group having 1 to 6 carbon atoms, a nitro group, a cyano group, and an alkylthio group having 1 to 6 carbon atoms Or R 1 and R 2 may be bonded to each other to form a ring having 3 to 6 carbon atoms).
  • It is group represented by these.
  • Q is a group represented by the formula (5).
  • Q may further have a group represented by the formula (4).
  • Formula (1a) or Formula (3) Q is following formula (8): (Wherein R 3 represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 3 to 6 carbon atoms, a benzyl group or a phenyl group, and the phenyl group is an alkyl group having 1 to 6 carbon atoms, (It may be substituted with at least one group selected from the group consisting of a halogen atom, an alkoxy group having 1 to 6 carbon atoms, a nitro group, a cyano group, and an alkylthio group having 1 to 6 carbon atoms.) It is group represented by these.
  • Q is a group represented by the formula (8).
  • Q may further have a group represented by the formula (4).
  • the alkyl group is not limited to a straight chain and may be branched, and examples thereof include a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, and an n-hexyl group.
  • the alkylene group include a methylene group, an ethylene group, an n-propylene group, an n-pentylene group, an n-octylene group, a 2-methylpropylene group, and a 1,4-dimethylbutylene group.
  • the alicyclic hydrocarbon include cyclobutane, cyclohexane, and adamantane.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, an n-pentyloxy group, and an isopropoxy group.
  • Examples of the alkylthio group include a methylthio group, an ethylthio group, an n-pentylthio group, and an isopropylthio group.
  • Examples of the alkenyl group include a vinyl group, 1-propenyl group, 2-propenyl group (allyl group), 1-methyl-2-propenyl group, 1-butenyl group, 2-butenyl group, and 3-butenyl group.
  • the alkylene group, alkoxy group and alkylthio group are not limited to a straight chain, and may have a branched structure or a cyclic structure.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the polymer having a repeating structure represented by the formula (1) or the polymer containing two kinds of structural units represented by the formulas (2) and (3) is at least one kind represented by the following formula (9).
  • R represents a hydrogen atom, a methyl group or an ethyl group
  • n 1 represents a number of 1 to 4
  • n 2 and n 3 each independently represents a number of 0 or 1
  • a 1 , A 2 A 3 , A 4 , A 5 and A 6 each independently represents a hydrogen
  • At least one compound represented by the formula (9) and at least one compound represented by the formula (10) are dissolved in an organic solvent so as to have an appropriate molar ratio, and the epoxy group is activated.
  • a polymer having a repeating structure represented by the formula (1) or a polymer having two structures represented by the formulas (2) and (3) is obtained by polymerization.
  • only one kind of each of the compounds represented by the formula (9) and the formula (10) can be used, but two or more kinds of compounds can be used in combination.
  • the ratio of the compound represented by the formula (9) and the compound represented by the formula (10) used in the reaction is 3: 1 to 1: 3 as a molar ratio of the formula (9): the formula (10).
  • the catalyst for activating the epoxy group is, for example, a quaternary phosphonium salt such as ethyltriphenylphosphonium bromide or a quaternary ammonium salt such as benzyltriethylammonium chloride, which is represented by the formula (9) used.
  • An appropriate amount can be selected from the range of 0.1 to 10% by mass with respect to the total mass of the compound to be prepared and the compound represented by formula (10).
  • the optimum temperature and time for the polymerization reaction can be selected from the range of 80 to 160 ° C. and 2 to 50 hours.
  • Preferable examples of the compound represented by the formula (9) include 2,3-dihydroxybenzaldehyde, 2,4-dihydroxybenzaldehyde, 2,5-dihydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, 3,5-dihydroxy Examples thereof include benzaldehyde, and 2,4-dihydroxybenzaldehyde is particularly preferable.
  • Q is the following formula (11): (Wherein Q 1 represents an alkylene group having 1 to 10 carbon atoms, a divalent organic group having an alicyclic hydrocarbon having 3 to 10 carbon atoms, a phenylene group, a naphthylene group, or an anthrylene group, and the phenylene group)
  • the naphthylene group and the anthrylene group are each composed of an alkyl group having 1 to 6 carbon atoms, a halogen atom, an alkoxy group having 1 to 6 carbon atoms, a nitro group, a cyano group, and an alkylthio group having 1 to 6 carbon atoms. It may be substituted with at least one group selected from the group, and n 4 and n 5 each independently represents the number 0 or 1.) It is group represented by these.
  • the compound represented by the formula (10) is, for example, the following formula (13):
  • Y represents an alkyl group having 1 to 6 carbon atoms, a halogen atom, an alkoxy group having 1 to 6 carbon atoms, a nitro group, a cyano group, or an alkylthio group having 1 to 6 carbon atoms
  • p is 0.
  • Q is the following formula (12): (Wherein R 3 represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 3 to 6 carbon atoms, a benzyl group or a phenyl group, and the phenyl group is an alkyl group having 1 to 6 carbon atoms, (It may be substituted with at least one group selected from the group consisting of a halogen atom, an alkoxy group having 1 to 6 carbon atoms, a nitro group, a cyano group, and an alkylthio group having 1 to 6 carbon atoms.) It is group represented by these.
  • the compound represented by the formula (10) preferably has a symmetric structure across the structure Q, and specific examples thereof are shown in the following formulas (10-a) to (10-i). However, it is not limited to these examples.
  • the polymer of the present invention may be reacted with other compounds having a polymerizable group as long as the effects of the present invention are not impaired. It is good also as a reaction product obtained.
  • the k value at a specific wavelength can be controlled.
  • 2,4-dihydroxy is used as a compound having a unit that contributes to absorption at a wavelength of 193 nm. Examples include benzoic acid.
  • the sulfonic acid compound contained in the composition of the present invention is used as a compound that promotes the crosslinking reaction, and is, for example, in a proportion of 0.1% by mass or more and 10% by mass or less with respect to the polymer contained in the composition of the present invention. Can be added.
  • the sulfonic acid compound examples include p-phenolsulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium-p-toluenesulfonate, camphorsulfonic acid, 5-sulfosalicylic acid, 4-chlorobenzenesulfonic acid, 4- Examples include hydroxybenzene sulfonic acid, benzene disulfonic acid and 1-naphthalene sulfonic acid.
  • Solvents included in the composition of the present invention include, for example, propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monopropyl ether, methyl ethyl ketone, ethyl lactate, cyclohexanone, ⁇ -butyrolactone, N-methyl- One solvent selected from the group consisting of 2-pyrrolidone, or a mixture of two or more solvents. And the ratio of the solvent with respect to the composition of this invention is 50 to 99.5 mass%, for example.
  • the ratio of the polymer contained in the composition of the present invention can be, for example, a ratio of 0.5% by mass to 30% by mass with respect to the resist underlayer film forming composition.
  • the composition of the present invention may contain a crosslinkable compound (crosslinking agent) in addition to the polymer, the sulfonic acid compound and the solvent as long as the effects of the present invention are not impaired, and further promote a crosslinking reaction other than the sulfonic acid compound.
  • a compound may be included.
  • the component excluding the solvent is defined as a solid content
  • the solid content includes an additive such as a polymer, a crosslinkable compound added if necessary, and a compound that promotes a crosslinking reaction.
  • the ratio of the polymer in solid content is 70 to 98 mass%, for example.
  • the crosslinkable compound is, for example, a nitrogen-containing compound having 2 to 4 nitrogen atoms substituted with a methylol group or an alkoxymethyl group, and is, for example, 1% by mass to 30% by mass with respect to the polymer contained in the composition of the present invention.
  • crosslinkable compound examples include hexamethoxymethylmelamine, tetramethoxymethylbenzoguanamine, 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 1,3,4,6-tetrakis (butoxymethyl) glycoluril, 1,3,4,6-tetrakis (hydroxymethyl) glycoluril, 1,3-bis (hydroxymethyl) urea, 1,1,3,3-tetrakis (butoxymethyl) urea and 1,1,3,3- Examples include tetrakis (methoxymethyl) urea.
  • the composition of the present invention may further contain a surfactant and / or an adhesion aid.
  • the surfactant is an additive for improving applicability to the substrate.
  • Known surfactants such as nonionic surfactants and fluorosurfactants can be used, and they are added in a proportion of, for example, 0.01% by mass to 0.5% by mass with respect to the composition of the present invention. be able to.
  • the adhesion auxiliary agent is an additive for the purpose of improving the adhesion between the substrate or the resist film and the resist underlayer film, and is an additive that suppresses peeling of the resist film when developing after exposure.
  • chlorosilanes, alkoxysilanes, silazanes, silanes, and heterocyclic compounds can be used, and for example, 0.1% by mass to 2% by mass with respect to the resist underlayer film forming composition of the present invention. Can be added at a ratio of
  • the composition of the present invention can be applied to a lithography process in the manufacturing process of a semiconductor device.
  • the resist pattern is formed through at least the step of exposing and the step of developing the resist film after exposure.
  • the above exposure is performed using, for example, an ArF excimer laser.
  • EUV wavelength 13.5 nm
  • electron beam may be used.
  • EUV is an abbreviation for extreme ultraviolet light.
  • the resist for forming the resist film may be either a positive type or a negative type.
  • a chemically amplified resist that is sensitive to ArF excimer laser, EUV, or electron beam can be used.
  • the semiconductor substrate is typically a silicon wafer, but an SOI (Silicon on Insulator) substrate or a compound semiconductor wafer such as gallium arsenide (GaAs), indium phosphide (InP), or gallium phosphide (GaP) is used. May be.
  • a semiconductor substrate on which an insulating film such as a silicon oxide film, a nitrogen-containing silicon oxide film (SiON film), or a carbon-containing silicon oxide film (SiOC film) is formed may be used. Apply the composition.
  • the resist underlayer film forming composition of the present invention is a composition that does not require the use of a crosslinking agent or an acidic additive for improving the resist pattern shape that has been widely used in conventional resist underlayer film forming compositions. It is a thing. For this reason, when a resist underlayer film forming composition is applied to a substrate and baked to form an underlayer film, generation of sublimates derived from components such as a crosslinking agent can be suppressed, and then the sublimate to the resist underlayer film or the like. It is possible to suppress the occurrence of defects and the like due to the adhesion.
  • the resist underlayer film forming composition of the present invention contains a polymer having an aromatic carbonyl structure, for example, an aromatic aldehyde structure in the main chain.
  • the aromatic carbonyl structure include a polymer having a repeating structure represented by the formula (1) or a polymer containing two kinds of structural units represented by the formulas (2) and (3). Therefore, a resist underlayer film having a large selection ratio of the dry etching rate to the resist film can be obtained without reducing the aromatic ring density.
  • the main chain of the two-dimensional polymer (linear polymer) contained in the resist underlayer film forming composition of the present invention has a C—O bond (ester bond or ether bond) that is more easily broken by dry etching than C—C bond.
  • the dry etching rate of the resist underlayer film obtained can be made higher than the composition for forming a resist underlayer film using an acrylic resin or a methacrylic resin as a polymer. Accordingly, the time required for removing the resist underlayer film by dry etching can be shortened, and the reduction in the thickness of the photoresist layer accompanying the removal of the underlayer film by dry etching can be suppressed.
  • the resist underlayer film forming composition for lithography of the present invention can form a resist underlayer film that absorbs light with a short wavelength, particularly KrF excimer laser (wavelength 248 nm) and / or ArF excimer laser (wavelength 193 nm). Therefore, the obtained resist underlayer film can efficiently absorb the reflected light from the substrate, and effectively absorbs the reflected light from the semiconductor substrate in the lithography process using a KrF excimer laser or an ArF excimer laser.
  • a film that can also be used as an antireflection film, that is, a resist underlayer film having a practical refractive index and attenuation coefficient at the above wavelength can be provided.
  • the polymer of the resist underlayer film forming composition of the present invention includes, as described above, an aromatic carbonyl derivative having an aromatic benzene ring or naphthalene ring in the main chain of the polymer, such as an aromatic aldehyde derivative, an aromatic ketone. Since the derivative is introduced, the density of the resist underlayer film to be formed can be increased, and a resist pattern having a desired shape (a cross section in a direction perpendicular to the substrate is rectangular) and having no tailing can be obtained. Can be formed.
  • FIG. 1 is a cross-sectional SEM image of a resist pattern on a resist underlayer film formed using the resist underlayer film forming composition prepared in Example 1.
  • the weight average molecular weight shown to the following synthesis example of this specification is a measurement result by gel permeation chromatography (henceforth GPC).
  • the measurement conditions etc. are as follows using the Tosoh Co., Ltd. product GPC apparatus for a measurement.
  • the dispersity shown in the following synthesis examples of the present specification is calculated from the measured weight average molecular weight and number average molecular weight.
  • Example 1 0.014 g of 5-sulfosalicylic acid was mixed with 3.03 g of the solution containing 0.56 g of the polymer obtained in Synthesis Example 1, and 10.33 g of cyclohexanone and 5.70 g of propylene glycol monomethyl ether acetate were added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m to obtain a resist underlayer film forming composition for lithography.
  • Example 2 To 3.00 g of the solution containing 0.55 g of the polymer obtained in Synthesis Example 2, 0.014 g of 5-sulfosalicylic acid was mixed, and 15.65 g of cyclohexanone was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m to obtain a resist underlayer film forming composition for lithography.
  • Example 3 To 3.00 g of the solution containing 0.52 g of the polymer obtained in Synthesis Example 3 above, 0.013 g of 5-sulfosalicylic acid was mixed, and 9.69 g of cyclohexanone and 5.21 g of propylene glycol monomethyl ether acetate were added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m to obtain a resist underlayer film forming composition for lithography.
  • Example 4 To 3.00 g of the solution containing 0.55 g of the polymer obtained in Synthesis Example 1, 0.015 g of p-phenolsulfonic acid was mixed, and 10.33 g of cyclohexanone and 5.50 g of propylene glycol monomethyl ether acetate were added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m to obtain a resist underlayer film forming composition for lithography.
  • the resist underlayer films formed using the resist underlayer film forming compositions of Examples 1 to 4 of the present invention all have a film thickness variation of 1 nm or less (initial film). 1% or less of the thickness), it was found to have solvent resistance.
  • the resist underlayer films formed using the resist underlayer film forming compositions of Comparative Example 1 and Comparative Example 2 both had no solvent resistance.
  • the resist underlayer film forming compositions for lithography prepared in Examples 1 to 4 were each applied onto a silicon wafer by a spinner.
  • the silicon wafer was placed on a hot plate and baked at 205 ° C. for 1 minute to form a resist underlayer film (film thickness 0.05 ⁇ m).
  • These resist underlayer films were measured for refractive index (n value) and attenuation coefficient (k value) at a wavelength of 193 nm using a spectroscopic ellipsometer (manufactured by JA Woollam, VUV-VASE VU-302). The obtained results are shown in Table 3.
  • the resist underlayer film forming compositions for lithography prepared in Examples 1 to 4 were each applied onto a silicon wafer by a spinner.
  • the silicon wafer was placed on a hot plate and baked at 205 ° C. for 1 minute to form a resist underlayer film (film thickness: 0.1 ⁇ m).
  • the dry etching rate (the amount of change in film thickness per unit time) was measured using RIE system ES401 manufactured by Nippon Scientific Co., Ltd. under conditions using tetrafluoromethane as the dry etching gas.
  • a photoresist solution (manufactured by Sumitomo Chemical Co., Ltd., trade name: PAR710) was applied onto the silicon wafer by a spinner.
  • the silicon wafer was placed on a hot plate and baked at 90 ° C. for 1 minute to form a photoresist film.
  • the dry etching rate was measured using RIE system ES401 manufactured by Japan Scientific under the condition that tetrafluoromethane was used as the dry etching gas.
  • Table 3 shows the results of a comparison between the resist underlayer film formed from the resist underlayer film forming composition of Examples 1 to 4 and the dry etching rate of the photoresist film (PAR710).
  • the selectivity refers to the dry etching rate of the resist underlayer film formed from the resist underlayer film forming composition of each example when the dry etching rate of the photoresist film (PAR710) is 1.0.
  • the resist underlayer film obtained from the resist underlayer film forming composition of Examples 1 to 4 of the present invention has a sufficiently effective refractive index (n value) with respect to 193 nm light.
  • the results were obtained that had an attenuation coefficient (k value) and a sufficient dry etching selectivity to the photoresist film. That is, this result shows that the resist underlayer film obtained from the resist underlayer film forming composition of the present invention can shorten the time required for removal of the resist underlayer film by dry etching, and the resist underlayer film accompanying removal by dry etching It was shown that a decrease in the thickness of the resist film on the film can also be suppressed.
  • the resist underlayer film forming composition prepared in Example 4 and the resist underlayer film forming composition prepared in Comparative Example 3 as a comparison target were applied to a silicon wafer having a diameter of 4 inches using a spin coater at 1,500 rpm for 60 seconds. Respectively.
  • the wafer coated with the resist underlayer film forming composition is set in a sublimation amount measuring apparatus (see International Publication No. 2007/111147 pamphlet) integrated with a hot plate, baked for 120 seconds, and the sublimate is QCM (Quartz).
  • the crystals were collected on a crystal microbalance sensor, that is, a crystal resonator on which an electrode was formed.
  • the QCM sensor can measure a small amount of mass change by utilizing the property that when a sublimate adheres to the surface (electrode) of the crystal unit, the frequency of the crystal unit changes (decreases) according to the mass. .
  • the detailed measurement procedure is as follows.
  • the hot plate of the sublimation amount measuring device was heated to 205 ° C., the pump flow rate was set to 1 m 3 / s, and the first 60 seconds were left to stabilize the device.
  • the wafer coated with the resist underlayer film forming composition was quickly placed on the hot plate from the slide port, and the sublimated material was collected from the time point of 60 seconds to the time point of 180 seconds (120 seconds).
  • the initial film thickness of the resist underlayer film formed on the wafer was 80 nm.
  • the flow attachment (detection part) that connects the QCM sensor and the collection funnel part of the sublimation quantity measuring device is used without a nozzle, so that the chamber with a distance of 30 mm from the sensor (quartz crystal unit) is used.
  • the airflow flows from the unit flow path (caliber: 32 mm) without being restricted.
  • the QCM sensor uses a material mainly composed of silicon and aluminum (AlSi) as an electrode, the diameter of the crystal unit (sensor diameter) is 14 mm, the electrode diameter on the surface of the crystal unit is 5 mm, and the resonance frequency is 9 MHz. The thing of was used.
  • the obtained frequency change was converted to grams from the eigenvalue of the quartz crystal used for the measurement, and the relationship between the amount of sublimation and the time course of one wafer coated with the resist underlayer film forming composition was clarified.
  • Table 4 the amount of sublimation (unit: ng: nanogram) indicated by the measuring apparatus from 0 second to 180 seconds in Example 4 and Comparative Example 3 is described.
  • the first 60 seconds is a time zone in which the apparatus is left to stabilize the apparatus (no wafer is set), and the amount of sublimation indicated by the measurement apparatus is a negative value in order to indicate the stable state of the measurement apparatus. I read it as it was. Therefore, the measurement value from the time point of 60 seconds after the wafer is placed on the hot plate to the time point of 180 seconds is the measurement value related to the amount of sublimation.
  • the resist underlayer film obtained from the resist underlayer film forming composition of Example 4 of the present invention was sublimated from the resist underlayer film obtained from the resist underlayer film forming composition of Comparative Example 3. The result that generation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Epoxy Resins (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】ドライエッチング速度の選択比が大きいというレジスト下層膜としての要求性能に加えて、膜形成時(焼成時)に昇華物の発生を抑制できる、新たなレジスト下層膜形成組成物、並びに該レジスト下層膜形成組成物を用いるレジストパターン形成法を提供すること。 【解決手段】芳香族カルボニル構造、例えば芳香族アルデヒド構造を主鎖に有するポリマー、スルホン酸化合物及び溶剤を含み、前記芳香族カルボニル構造はエーテル結合、エステル結合、又はエステル結合とエーテル結合を介して前記ポリマーの主鎖に導入されている、リソグラフィー用レジスト下層膜形成組成物並びに該組成物を用いたパターン形成法。

Description

レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
 本発明は、半導体基板加工時に有用なリソグラフィー用レジスト下層膜形成組成物、並びに該レジスト下層膜形成組成物を用いるレジストパターン形成法に関するものである。なお、レジスト膜を露光する際に、反射波がそのレジスト膜へ及ぼす影響を抑制できるレジスト下層膜は反射防止膜とも称することができる。
 従来から半導体装置の製造において、フォトレジスト組成物を用いたリソグラフィーによる微細加工が行われている。前記微細加工は、シリコンウェハー等の半導体基板上にフォトレジスト組成物の薄膜を形成し、その上にデバイスのパターンが描かれたマスクパターンを介して紫外線などの活性光線を照射し、現像し、得られたフォトレジストパターンを保護膜として基板をエッチング処理することにより、基板表面に、前記パターンに対応する微細凹凸を形成する加工法である。近年、半導体デバイスの高集積度化が進み、使用される活性光線もi線(波長365nm)、KrFエキシマレーザー(波長248nm)からArFエキシマレーザー(波長193nm)へと短波長化されている。
 而して、かかるフォトレジストパターンサイズの微細化が進む中、フォトレジストパターンの倒壊等を防止するためにフォトレジストの薄膜化が望まれ、エッチング除去工程におけるフォトレジスト層の膜厚の減少を抑制するために、共に使用されるレジスト下層膜としては、より短時間でエッチングによる除去が可能なレジスト下層膜が望まれている。エッチング除去工程の短時間化のために、フォトレジスト溶剤に対する膜減りが小さく、より薄膜で使用可能なレジスト下層膜、或いはフォトレジストとの間でエッチング速度のより高い選択性を持つレジスト下層膜であることが要求されている。なお、かかる要求に対応すべく、種々のレジスト下層膜形成組成物や反射防止膜が提案されている(例えば特許文献1乃至特許文献3など)。
 なお、従来のレジスト下層膜形成用の組成物は、熱架橋により強固な硬化膜を形成するべく、硬化膜のベースとなるポリマーの他、通常、架橋剤及び架橋触媒が配合されている。また、近年では、レジストパターンの裾形状を改善できるとして、酸性添加剤等も配合されている。
国際公開第03/017002号パンフレット 特開2004-212907号公報 特開2005-049810号公報
 レジスト下層膜には、レジスト膜よりドライエッチング速度が大きい(ドライエッチング速度の選択比が大きい)ことが求められる。しかしながら、アクリル樹脂又はメタクリル樹脂を含む組成物から形成される従来のレジスト下層膜(反射防止膜など)は、ドライエッチング速度に関して必ずしも満足できるものではなかった。この原因として、アクリル樹脂又はメタクリル樹脂の主鎖を構成する炭素原子同士の結合(C-C結合)は、ドライエッチングでは容易に分断されないためと考えられている。
 また近年、半導体装置製造のリソグラフィープロセスにおいて、上述した従来のレジスト下層膜形成組成物を用いてレジスト下層膜を形成する際、焼成時に前記架橋剤や酸性添加物等の低分子化合物に由来する昇華物が発生することが新たな問題となってきている。この昇華物は、その後、例えば、前記レジスト下層膜の上に異物として付着し、欠陥等の悪影響を与えることが懸念され、こうした昇華物の発生をできるだけ抑制できるという新たな要求性能を満たす組成物の提案が求められている。
 本発明は、このような事情に鑑みてなされたものであり、ドライエッチング速度の選択比が大きいというレジスト下層膜としての要求性能に加えて、膜形成時(焼成時)に昇華物の発生を抑制できる、新たな下層膜形成組成物、並びに該下層膜形成組成物を用いるレジストパターン形成法を提供することを目的とする。
 本発明は、芳香族カルボニル誘導体、例えば芳香族アルデヒド誘導体、芳香族ケトン誘導体、好ましくはヒドロキシ基及びカルボキシル基から選択される一種又は二種からなる、少なくとも2つの置換基を有するベンズアルデヒド誘導体又はナフトアルデヒド誘導体と、エポキシ基を2つ有するジエポキシ化合物とを用い反応させて得られるポリマー、スルホン酸化合物及び溶剤を含む、リソグラフィー用レジスト下層膜形成組成物である。前記ポリマーは、芳香族カルボニル構造、例えば芳香族アルデヒド構造を主鎖に有し、当該芳香族アルデヒド構造は好ましくはベンズアルデヒド構造又はナフトアルデヒド構造である、二次元ポリマー又は線状ポリマーであり、前記芳香族カルボニル構造はエーテル結合すなわち-C-O-C-、若しくはエステル結合すなわち-C(=O)-O-又は-O-C(=O)-、或いはエステル結合とエーテル結合を介して前記ポリマーの主鎖に導入されている。本発明においてポリマーとは、モノマーではない重合体を意味し、いわゆるオリゴマーを排除するものではない。
 本発明の組成物に含まれるポリマーは、下記式(1):
Figure JPOXMLDOC01-appb-C000017
(式中、R、A1、A2、A3、A4、A5及びA6は、それぞれ独立に、水素原子、メチル基又はエチル基を表し、Qは二価の有機基を表し、n1は1乃至4の数を表し、n2及びn3はそれぞれ独立に0又は1の数を表し、mは繰り返し単位の数を表し5乃至300である。)
で表される繰り返し構造を有する。
繰り返しの単位の数mは例えば10以上300以下である。
なお前記ポリマーは、前記式(1)以外の構造を含んでいてもよい。前記式(1)で表される主な繰り返し構造及び任意で含まれる構造は、線状に配列してポリマーを構成する。
 上記式(1)で表される繰り返し構造は、例えばRが水素原子を表す芳香族アルデヒド構造を主鎖に有し、より好ましくは下記式(1a)で表される構造である。
Figure JPOXMLDOC01-appb-C000018
(式中、A1、A2、A3、A4、A5、A6、Qは及びmは、前記式(1)において定義されたものを表す。)
 あるいは、本発明の組成物に含まれるポリマーは、下記式(2)及び(3):
Figure JPOXMLDOC01-appb-C000019
(式(2)中、Rは水素原子、メチル基又はエチル基を表し、n1は1乃至4の数を表し、n2及びn3はそれぞれ独立に0又は1の数を表す。
 式(3)中、A1、A2、A3、A4、A5及びA6は、それぞれ独立に、水素原子、メチル基又はエチル基を表し、Qは二価の有機基を表す。)
で表される2種の構造単位を含むポリマーである。
 なお前記ポリマーは、前記式(2)及び式(3)以外の構造単位を含んでいてもよい。前記式(2)及び式(3)で表される主な構造単位並びに任意で含まれる構造単位は、線状に配列してポリマーを構成する。
 上記式(2)で表される構造単位は、より好ましくは下記式(2a)で表される構造単位である。
Figure JPOXMLDOC01-appb-C000020
 前記式(1)、式(1a)又は式(3)において、Qは下記式(4):
Figure JPOXMLDOC01-appb-C000021
(式中、Q1は炭素原子数1乃至10のアルキレン基、炭素原子数3乃至10の脂環式炭化水素を有する二価の有機基、フェニレン基、ナフチレン基又はアントリレン基を表し、前記フェニレン基、ナフチレン基及びアントリレン基は、それぞれ、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至6のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも一つの基で置換されていてもよく、n4及びn5はそれぞれ独立に0又は1の数を表す。)
で表される基である。
 また前記式(1)、式(1a)又は式(3)において、Qは下記式(5):
Figure JPOXMLDOC01-appb-C000022
〔式中、X1は下記式(6)又は下記式(7):
Figure JPOXMLDOC01-appb-C000023
(式中、R1及びR2はそれぞれ独立に、水素原子、炭素原子数1乃至6のアルキル基、炭素原子数3乃至6のアルケニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至6のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも一つの基で置換されていてもよく、あるいはR1とR2は互いに結合して炭素原子数3乃至6の環を形成していてもよい。)で表される二価の基を表す。〕
で表される基である。
 前記式(1)で表される繰り返し構造、前記式(1a)で表される繰り返し構造、又は前記式(3)で表される構造単位において、Qが前記式(5)で表される基に加えてQが前記式(4)で表される基をさらに有していてもよい。
 あるいは前記式(1)、式(1a)又は式(3)において、Qは下記式(8):
Figure JPOXMLDOC01-appb-C000024
(式中、R3は炭素原子数1乃至6のアルキル基、炭素原子数3乃至6のアルケニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至6のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも1つの基で置換されていてもよい。)
で表される基である。
 前記式(1)で表される繰り返し構造、前記式(1a)で表される繰り返し構造、又は式(3)で表される構造単位において、Qが前記式(8)で表される基に加えてQが前記式(4)で表される基をさらに有していてもよい。
 本発明において、アルキル基としては、直鎖状に限らず分岐状でもよく、例えばメチル基、エチル基、イソプロピル基、tert-ブチル基、n-ヘキシル基が挙げられる。アルキレン基としては、例えばメチレン基、エチレン基、n-プロピレン基、n-ペンチレン基、n-オクチレン基、2-メチルプロピレン基、1,4-ジメチルブチレン基が挙げられる。脂環式炭化水素としては、例えばシクロブタン、シクロヘキサン、アダマンタンが挙げられる。アルコキシ基としては、例えばメトキシ基、エトキシ基、n-ペンチルオキシ基、イソプロポキシ基が挙げられる。アルキルチオ基としては、例えばメチルチオ基、エチルチオ基、n-ペンチルチオ基、イソプロピルチオ基が挙げられる。アルケニル基としては、例えばビニル基、1-プロペニル基、2-プロペニル基(アリル基)、1-メチル-2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基が挙げられる。上記アルキレン基、アルコキシ基及びアルキルチオ基は、直鎖状に限定されず、分岐構造又は環状構造でもよい。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 前記式(1)で表される繰り返し構造を有するポリマー又は式(2)及び(3)で表される2種の構造単位を含むポリマーは、下記式(9)で表される少なくとも1種の化合物、及び下記式(10)で表される少なくとも1種の化合物:
Figure JPOXMLDOC01-appb-C000025
(式中、Rは水素原子、メチル基又はエチル基を表し、n1は1乃至4の数を表し、n2及びn3はそれぞれ独立に0又は1の数を表し、A1、A2、A3、A4、A5及びA6は、それぞれ独立に、水素原子、メチル基又はエチル基を表し、Qは二価の有機基を表す。)
の反応生成物である。
 すなわち、式(9)で表される少なくとも1種の化合物と式(10)で表される少なくとも1種の化合物を、適切なモル比になるよう、有機溶剤へ溶解させ、エポキシ基を活性化させる触媒の存在のもと、重合させることによって、前記式(1)で表される繰り返し構造を有するポリマー又は式(2)及び(3)で表される2種の構造を含むポリマーが得られる。ここで式(9)及び式(10)で表される化合物は、それぞれ一種類のみを用いることができるが、また、二種類以上の化合物を組み合わせて用いることもできる。また、反応に使用される式(9)で表される化合物と式(10)で表される化合物の割合としては、モル比で式(9):式(10)として3:1~1:3、好ましくは3:2~2:3であり、または5:4~4:5であり、最も好ましくは1:1である。
 エポキシ基を活性化させる触媒とは、例えば、エチルトリフェニルホスホニウムブロミドのような第4級ホスホニウム塩、あるいはベンジルトリエチルアンモニウムクロリドのような第4級アンモニウム塩であり、使用する式(9)で表される化合物及び式(10)で表される化合物の全質量に対して0.1~10質量%の範囲から適量を選択して用いることができる。
 重合反応させる温度及び時間は、80~160℃、2~50時間の範囲から、最適な条件を選択することができる。
 前記式(9)で表される化合物の好適な例としては、2,3-ジヒドロキシベンズアルデヒド、2,4-ジヒドロキシベンズアルデヒド、2,5-ジヒドロキシベンズアルデヒド、3,4-ジヒドロキシベンズアルデヒド、3,5-ジヒドロキシベンズアルデヒド等が挙げられ、特に好ましくは、2,4-ジヒドロキシベンズアルデヒドである。
 前記式(10)において、Qは下記式(11):
Figure JPOXMLDOC01-appb-C000026
(式中Q1は炭素原子数1乃至10のアルキレン基、炭素原子数3乃至10の脂環式炭化水素を有する二価の有機基、フェニレン基、ナフチレン基又はアントリレン基を表し、前記フェニレン基、ナフチレン基及びアントリレン基は、それぞれ、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至6のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも一つの基で置換されていてもよく、n4及びn5はそれぞれ独立に0又は1の数を表す。)
で表される基である。
前記式(10)で表される化合物は、例えば下記式(13):
Figure JPOXMLDOC01-appb-C000027
(式中、Yは炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至6のアルコキシ基、ニトロ基、シアノ基又は炭素原子数1乃至6のアルキルチオ基を表し、pは0乃至4の整数を表し、pが2乃至4の場合、前記Yは同一であっても異なっていてもよい。)
で表される。
また、前記式(10)において、Qは下記式(12):
Figure JPOXMLDOC01-appb-C000028
(式中、R3は炭素原子数1乃至6のアルキル基、炭素原子数3乃至6のアルケニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至6のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも1つの基で置換されていてもよい。)
で表される基である。
 前記式(10)で表される化合物は、好ましくは構造Qを挟んで対称構造を有していることが好ましく、その具体例を下記式(10-a)乃至式(10-i)に示すが、これらの例に限定されるわけではない。
Figure JPOXMLDOC01-appb-C000029
 なお、本発明のポリマーは、前記式(9)及び式(10)で表される化合物に加えて、本発明の効果を損なわない限りにおいて重合性の基を有するその他の化合物を加えて、反応させて得られる反応生成物としてもよい。
 特に特定波長の吸収に寄与する官能基を有するその他の化合物を加えることにより、特定波長におけるk値を制御することができ、たとえば波長193nmの吸収に寄与するユニットを有する化合物として2,4-ジヒドロキシ安息香酸等が挙げられる。
 本発明の組成物に含まれるスルホン酸化合物は、架橋反応を促進させる化合物として用いられ、本発明の組成物に含まれる前記ポリマーに対し、例えば0.1質量%以上10質量%以下の割合で添加することができる。スルホン酸化合物の具体例として、p-フェノールスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、ピリジニウム-p-トルエンスルホナート、カンファースルホン酸、5-スルホサリチル酸、4-クロロベンゼンスルホン酸、4-ヒドロキシベンゼンスルホン酸、ベンゼンジスルホン酸及び1-ナフタレンスルホン酸が挙げられる。
 本発明の組成物に含まれる溶剤は、例えばプロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノプロピルエーテル、メチルエチルケトン、乳酸エチル、シクロヘキサノン、γ-ブチロラクトン、N-メチル-2-ピロリドンからなる群から選択された1種の溶剤、又は2種以上の溶剤の混合物である。そして、本発明の組成物に対する溶剤の割合は、例えば50質量%以上99.5質量%以下である。
 本発明の組成物に含まれるポリマーの割合は、当該レジスト下層膜形成組成物に対し例えば0.5質量%以上30質量%以下の割合とすることができる。
 本発明の組成物は、ポリマー、スルホン酸化合物及び溶剤の他に、本発明の効果を損ねない限りにおいて架橋性化合物(架橋剤)を含んでもよく、さらにスルホン酸化合物以外の架橋反応を促進させる化合物を含んでもよい。
 溶剤を除いた成分を固形分と定義すると、その固形分はポリマー及び、必要に応じて添加される架橋性化合物、架橋反応を促進させる化合物などの添加物を含む。固形分中のポリマーの割合は、例えば70質量%以上98質量%以下である。
 架橋性化合物は、例えばメチロール基又はアルコキシメチル基で置換された窒素原子を2乃至4つ有する含窒素化合物であり、本発明の組成物に含まれるポリマーに対し例えば1質量%以上30質量%以下の割合で添加することができる。架橋性化合物の具体例として、ヘキサメトキシメチルメラミン、テトラメトキシメチルベンゾグアナミン、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ヒドロキシメチル)グリコールウリル、1,3-ビス(ヒドロキシメチル)尿素、1,1,3,3-テトラキス(ブトキシメチル)尿素及び1,1,3,3-テトラキス(メトキシメチル)尿素等が挙げられる。
 本発明の組成物は、界面活性剤及び/又は接着補助剤をさらに含んでもよい。界面活性剤は、基板に対する塗布性を向上させるための添加物である。ノニオン系界面活性剤、フッ素系界面活性剤のような公知の界面活性剤を用いることができ、本発明の組成物に対し例えば0.01質量%以上0.5質量%以下の割合で添加することができる。接着補助剤は、基板又はレジスト膜とレジスト下層膜との密着性を向上させることを目的とし、露光後に現像を行う際にレジスト膜の剥離を抑制する添加物である。接着補助剤として、例えばクロロシラン類、アルコキシシラン類、シラザン類、シラン類、複素環状化合物を用いることができ、本発明のレジスト下層膜形成組成物に対し例えば0.1質量%以上2質量%以下の割合で添加することができる。
 本発明の組成物は、半導体装置の製造過程におけるリソグラフィー工程に適用することができる。本発明の組成物を半導体基板上に塗布しベークしてレジスト下層膜を形成する工程、前記レジスト下層膜上にレジスト膜を形成する工程、前記レジスト下層膜と前記レジスト膜で被覆された半導体基板を露光する工程、露光後に前記レジスト膜を現像する工程、を少なくとも経て、レジストパターンが形成される。
 上記露光は、例えばArFエキシマレーザーを用いて行われる。ArFエキシマレーザーにかえて、EUV(波長13.5nm)又は電子線を用いてもよい。"EUV"は極端紫外線の略称である。レジスト膜を形成するためのレジストは、ポジ型、ネガ型いずれでもよい。ArFエキシマレーザー、EUV又は電子線に感光する化学増幅型レジストを用いることができる。
 上記半導体基板は、代表的にはシリコンウエハーであるが、SOI(Silicon on Insulator)基板、又は砒化ガリウム(GaAs)、リン化インジウム(InP)、リン化ガリウム(GaP)などの化合物半導体ウエハーを用いてもよい。酸化珪素膜、窒素含有酸化珪素膜(SiON膜)、炭素含有酸化珪素膜(SiOC膜)などの絶縁膜が形成された半導体基板を用いてもよく、その場合、当該絶縁膜上に本発明の組成物を塗布する。
 本発明のレジスト下層膜形成組成物は、従来のレジスト下層膜形成組成物において広く使用されてきた架橋剤や、レジストパターン形状改善のための酸性添加剤等の使用を必須とはしていない組成物である。このため、レジスト下層膜形成組成物を基板に塗布しベークして下層膜を形成する際、架橋剤等の成分に由来する昇華物の発生が抑制でき、その後、レジスト下層膜等への昇華物が付着することに起因する欠陥等の発生が抑制できる。
 また本発明のレジスト下層膜形成組成物は、芳香族カルボニル構造、例えば芳香族アルデヒド構造を主鎖に有するポリマーを含む。芳香族カルボニル構造として、例えば、前記式(1)で表される繰り返し構造を有するポリマー或いは前記式(2)及び(3)で表される2種の構造単位を含むポリマーを含む。そのため、芳香族環密度を低下させることなく、レジスト膜に対するドライエッチング速度の選択比が大きいレジスト下層膜が得られる。また本発明のレジスト下層膜形成組成物に含まれる二次元ポリマー(線状ポリマー)の主鎖は、C-C結合よりもドライエッチングで分断されやすいC-O結合(エステル結合又はエーテル結合)を有するため、ポリマーとしてアクリル樹脂又はメタクリル樹脂を用いたレジスト下層膜形成用組成物よりも、得られるレジスト下層膜のドライエッチング速度を高くすることができる。従って、レジスト下層膜のドライエッチングによる除去に要する時間を短縮でき、下層膜のドライエッチングによる除去に伴うフォトレジスト層の膜厚の減少を抑制できる。
 また本発明のリソグラフィー用レジスト下層膜形成組成物は、短波長の光、特にKrFエキシマレーザー(波長248nm)及び/又はArFエキシマレーザー(波長193nm)に対して吸収を示すレジスト下層膜を形成できる。したがって得られたレジスト下層膜は、基板からの反射光を効率よく吸収することができ、KrFエキシマレーザー又はArFエキシマレーザー等を用いたリソグラフィー工程において、半導体基板からの反射光を効果的に吸収する反射防止膜としても使用できる膜、すなわち、上記波長において実用的な屈折率と減衰係数を備えるレジスト下層膜を提供することができる。
 また本発明のレジスト下層膜形成組成物のポリマーには、前述の通り、ポリマーの主鎖に芳香族環であるベンゼン環又はナフタレン環を有する芳香族カルボニル誘導体、例えば芳香族アルデヒド誘導体、芳香族ケトン誘導体が導入されていることから、形成されるレジスト下層膜の密度を高めることができ、所望の形状(基板に垂直な方向の断面が矩形形状)を有し、裾引きのない、レジストパターンを形成できる。
図1は、実施例1で調製したレジスト下層膜形成組成物を用いて形成されたレジスト下層膜上のレジストパターンの断面SEM像である。
 以下、本発明について実施例を挙げて詳述するが、本発明はこれらの実施例に何ら限定されるものではない。
 なお、本明細書の下記合成例に示す重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、GPCと略称する)による測定結果である。測定には東ソー(株)製GPC装置を用い、測定条件等は次のとおりである。また、本明細書の下記合成例に示す分散度は、測定された重量平均分子量、及び数平均分子量から算出される。
[GPC条件]
GPCカラム:Shodex〔登録商標〕Asahipak〔登録商標〕(昭和電工(株)製)
カラム温度:40℃
溶媒:N,N-ジメチルホルムアミド(DMF)
流量:0.6ml/分
標準試料: 標準ポリスチレン試料(東ソー(株)製)
ディテクター:RIディテクター(東ソー(株)製、RI-8020)
 [レジスト下層膜の膜厚測定器]
NanoSpec/AFT5100(Nanometrics社製)
<合成例1>
 モノアリルジグリシジルイソシアヌル酸(四国化成工業(株)製)7.0g、2,4-ジヒドロキシベンズアルデヒド(和光純薬工業(株))3.47g及びベンジルトリエチルアンモニウムクロリド(東京化成工業(株))0.28gを、シクロヘキサノン14.43gに加え溶解させた。反応容器を窒素置換後、135℃で4時間反応させ、ポリマー溶液を得た。GPC分析を行ったところ、得られたポリマーは標準ポリスチレン換算にて重量平均分子量15,000、分散度は4.1であった。
<合成例2>
 DG-DMH(ジグリシジルジメチルヒダントイン、ナガセケムテックス(株))4.1g、2,4-ジヒドロキシベンズアルデヒド(和光純薬工業(株))2.1g及びベンジルトリエチルアンモニウムクロリド(東京化成工業(株))0.17gを、シクロヘキサノン14.49gに加え溶解させた。反応容器を窒素置換後、135℃で4時間反応させ、ポリマー溶液を得た。GPC分析を行ったところ、得られたポリマーは標準ポリスチレン換算にて重量平均分子量32,000、分散度は7.0であった。
<合成例3>
 1,4-BDDEP(1,4-ビス(オキシラン-2-イルオキシ)ブタン、四日市合成(株))4.1g、2,4-ジヒドロキシベンズアルデヒド(和光純薬工業(株))2.7g及びベンジルトリエチルアンモニウムクロリド(東京化成工業(株))0.23gを、シクロヘキサノン16.77gに加え溶解させた。反応容器を窒素置換後、135℃で4時間反応させ、ポリマー溶液を得た。GPC分析を行ったところ、得られたポリマーは標準ポリスチレン換算にて重量平均分子量7,000、分散度は2.2であった。
<合成例4>
 モノアリルジグリシジルイソシアヌル酸(四国化成工業(株)製)4.0g、レゾルシノール(和光純薬工業(株))1.6g及びベンジルトリエチルアンモニウムクロリド(東京化成工業(株))0.17gを、シクロヘキサノン13.47gに加え溶解させた。反応容器を窒素置換後、135℃で4時間反応させ、ポリマー溶液を得た。GPC分析を行ったところ、得られたポリマーは標準ポリスチレン換算にて重量平均分子量6,000、分散度は2.6であった。
<合成例5>
 モノアリルジグリシジルイソシアヌル酸(四国化成工業(株)製)4.0g、ピロガロール(和光純薬工業(株))1.8g及びベンジルトリエチルアンモニウムクロリド(東京化成工業(株))0.17gを、シクロヘキサノン14.00gに加え溶解させた。反応容器を窒素置換後、135℃で4時間反応させ、ポリマー溶液を得た。GPC分析を行ったところ、得られたポリマーは標準ポリスチレン換算にて重量平均分子量7,000、分散度は3.0であった。
<合成例6>
 モノアリルジグリシジルイソシアヌル酸(四国化成工業(株)製)4.0g、5-ヒドロキシイソフタル酸(東京化成工業(株))2.7g及びベンジルトリエチルアンモニウムクロリド(東京化成工業(株))0.16gを、シクロヘキサノン15.93gに加え溶解させた。反応容器を窒素置換後、135℃で4時間反応させ、ポリマー溶液を得た。GPC分析を行ったところ、得られたポリマーは標準ポリスチレン換算にて重量平均分子量18,000、分散度は4.7であった。
<合成例7>
 モノアリルジグリシジルイソシアヌル酸(四国化成工業(株)製)4.0g、フロログルシノール(別名:1,3,5-トリヒドロキシベンゼン、東京化成工業(株))1.8g及びベンジルトリエチルアンモニウムクロリド(東京化成工業(株))0.17gを、シクロヘキサノン14.12gに加え溶解させた。反応容器を窒素置換後、135℃で4時間反応させ、ポリマー溶液を得た。GPC分析を行ったところ、得られたポリマーは標準ポリスチレン換算にて重量平均分子量544、分散度は1.1であった。
(実施例1)
 上記合成例1で得られたポリマー0.56gを含む溶液3.03gに5-スルホサリチル酸0.014gを混合し、シクロヘキサノン10.33g、プロピレングリコールモノメチルエーテルアセテート5.70gを加え溶解させた。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過し、リソグラフィー用レジスト下層膜形成組成物とした。
(実施例2)
 上記合成例2で得られたポリマー0.55gを含む溶液3.00gに5-スルホサリチル酸0.014gを混合し、シクロヘキサノン15.65gを加え溶解させた。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過し、リソグラフィー用レジスト下層膜形成組成物とした。
(実施例3)
 上記合成例3で得られたポリマー0.52gを含む溶液3.00gに5-スルホサリチル酸0.013gを混合し、シクロヘキサノン9.69g、プロピレングリコールモノメチルエーテルアセテート5.21gを加え溶解させた。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過し、リソグラフィー用レジスト下層膜形成組成物とした。
(実施例4)
 上記合成例1で得られたポリマー0.55gを含む溶液3.00gにp-フェノールスルホン酸0.015gを混合し、シクロヘキサノン10.33g、プロピレングリコールモノメチルエーテルアセテート5.50gを加え溶解させた。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過し、リソグラフィー用レジスト下層膜形成組成物とした。
(比較例1)
 上記合成例4で得られたポリマー0.51gを含む溶液3.01gに5-スルホサリチル酸0.013gを混合し、シクロヘキサノン9.32g、プロピレングリコールモノメチルエーテルアセテート5.06gを加え溶解させた。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過し、リソグラフィー用レジスト下層膜形成組成物とした。
(比較例2)
 上記合成例5で得られたポリマー0.48gを含む溶液3.10gに5-スルホサリチル酸0.012gを混合し、シクロヘキサノン8.57g、プロピレングリコールモノメチルエーテルアセテート4.75gを加え溶解させた。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過し、リソグラフィー用レジスト下層膜形成組成物とした。
(比較例3)
 下記式(14)の構造を有するポリマー(標準ポリスチレン換算にて重量平均分子量 60,000)を含む溶液5.03g(ポリマー濃度15質量%)に、テトラメトキシメチルグリコールウリル(日本サイテックインダストリーズ(株)、商品名:POWDERLINK〔登録商標〕1174)0.19g、ピリジニウム-p-トルエンスルホネート0.012g(東京化成工業(株))、ビスフェノールS(東京化成工業(株))0.024g、プロピレングリコールモノメチルエーテル12.67g、及びプロピレングリコールモノメチルエーテルアセテート7.17gを加え溶液とした。その後、孔径0.01μmのポリエチレン製ミクロフィルターを用いてろ過し、リソグラフィー用レジスト下層膜形成用組成物とした。
Figure JPOXMLDOC01-appb-C000030
[フォトレジスト溶剤への溶出試験]
 実施例1乃至実施例4及び比較例1乃至比較例2で調製したリソグラフィー用レジスト下層膜形成組成物を、それぞれ、スピナーにより、半導体基板であるシリコンウェハー上に塗布した。そのシリコンウェハーをホットプレート上に配置し、205℃で1分間ベークし、レジスト下層膜を形成した。これらのレジスト下層膜をシクロヘキサノン及び、プロピレングリコールモノメチルエーテル(PGME)/プロピレングリコールモノメチルエーテルアセテート(PGMEA)=7/3(質量比)に浸漬し、その溶剤に不溶であるか否かの確認実験を行った。
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
 表1及び表2に示す結果から、本発明の実施例1乃至実施例4のレジスト下層膜形成組成物を用いて形成されたレジスト下層膜は、いずれも膜厚変化量が1nm以下(初期膜厚の1%以下)であることから、溶剤耐性を有することがわかった。一方、比較例1及び比較例2のレジスト下層膜形成組成物を用いて形成されたレジスト下層膜は、いずれも溶剤耐性を有さない結果となった。
[光学パラメーターの測定]
 実施例1乃至実施例4で調製したリソグラフィー用レジスト下層膜形成組成物を、それぞれスピナーにより、シリコンウェハー上に塗布した。そのシリコンウェハーをホットプレート上に配置し、205℃で1分間ベークし、レジスト下層膜(膜厚0.05μm)を形成した。これらのレジスト下層膜を分光エリプソメーター(J.A.Woollam社製、VUV-VASE VU-302)を用い、波長193nmでの屈折率(n値)及び減衰係数(k値)を測定した。得られた結果を表3に示す。
[ドライエッチング速度の測定]
 実施例1乃至実施例4で調製したリソグラフィー用レジスト下層膜形成組成物を、それぞれスピナーにより、シリコンウェハー上に塗布した。そのシリコンウェハーをホットプレート上に配置し、205℃で1分間ベークし、レジスト下層膜(膜厚0.1μm)を形成した。そして、日本サイエンティフィック(株)製、RIEシステムES401を用い、ドライエッチングガスとしてテトラフルオロメタンを使用した条件下でドライエッチング速度(単位時間当たりの膜厚の変化量)を測定した。
 また、フォトレジスト溶液(住友化学(株)製、商品名:PAR710)をスピナーにより、シリコンウェハー上に塗布した。そのシリコンウェハーをホットプレート上に配置し、90℃で1分間ベークし、フォトレジスト膜を形成した。そして日本サイエンティフィック製RIEシステムES401を用い、ドライエッチングガスとしてテトラフルオロメタンを使用した条件下でドライエッチング速度を測定した。実施例1乃至実施例4のレジスト下層膜形成組成物より形成されたレジスト下層膜と、前記フォトレジスト膜(PAR710)のドライエッチング速度との比較を行った結果を、表3に示す。表3中、選択比とは、フォトレジスト膜(PAR710)のドライエッチング速度を1.0としたときの、各実施例のレジスト下層膜形成組成物より形成されたレジスト下層膜のドライエッチング速度を表す。
Figure JPOXMLDOC01-appb-T000033
 表3に示すように、本発明の実施例1乃至実施例4のレジスト下層膜形成組成物より得られたレジスト下層膜は、193nmの光に対して十分に有効な屈折率(n値)と減衰係数(k値)を有し、また、フォトレジスト膜に対する十分なドライエッチングの選択比を有するとする結果が得られた。
 すなわちこの結果は、本発明のレジスト下層膜形成組成物から得られるレジスト下層膜は、レジスト下層膜のドライエッチングによる除去に要する時間を短縮することができ、また、ドライエッチングによる除去に伴うレジスト下層膜上のレジスト膜の膜厚の減少をも抑制することができることを示すものであった。
[昇華物量の測定]
 直径4インチのシリコンウェハー上に、実施例4で調製したレジスト下層膜形成組成物及び比較対象として比較例3で調製したレジスト下層膜形成組成物を、スピンコーターにて、1,500rpm、60秒間でそれぞれ塗布した。レジスト下層膜形成組成物が塗布されたウェハーを、ホットプレートが一体化した昇華物量測定装置(国際公開第2007/111147号パンフレット参照)にセットして、120秒間ベークし、昇華物をQCM(Quartz Crystal Microbalance)センサー、すなわち電極が形成された水晶振動子に捕集した。QCMセンサーは、水晶振動子の表面(電極)に昇華物が付着するとその質量に応じて水晶振動子の周波数が変化する(下がる)性質を利用して、微量の質量変化を測定することができる。
 詳細な測定手順は、以下の通りである。昇華物量測定装置のホットプレートを205℃に昇温し、ポンプ流量を1m3/sに設定し、最初の60秒間は装置安定化のために放置した。その後直ちに、レジスト下層膜形成組成物が塗布されたウェハーをスライド口から速やかにホットプレートに乗せ、60秒の時点から180秒の時点(120秒間)の昇華物の捕集を行った。なおウェハー上に形成されたレジスト下層膜の当初の膜厚は80nmであった。
 なお、前記昇華物量測定装置のQCMセンサーと捕集ロート部分の接続となるフローアタッチメント(検出部分)にはノズルをつけずに使用し、そのため、センサー(水晶振動子)との距離が30mmのチャンバーユニットの流路(口径:32mm)から、気流が絞られることなく流入する。また、QCMセンサーには、電極として珪素とアルミニウムを主成分とする材料(AlSi)を用い、水晶振動子の直径(センサー直径)が14mm、水晶振動子表面の電極直径が5mm、共振周波数が9MHzのものを用いた。
 得られた周波数変化を、測定に使用した水晶振動子の固有値からグラムに換算し、レジスト下層膜形成組成物が塗布されたウェハー1枚の昇華物量と時間経過との関係を明らかにした。表4に、実施例4及び比較例3における、0秒から180秒までの測定装置が示す昇華物量(単位はng:ナノグラム)を記載した。なお、最初の60秒間は装置安定化のために放置した(ウェハーをセットしていない)時間帯であり、測定機器の安定状態を示すために測定装置が示す昇華物量をマイナスの値であってもそのまま読み取った。したがって、ウェハーをホットプレートに載せた60秒の時点の後から180秒の時点までの測定値が昇華物量に関する測定値である。
Figure JPOXMLDOC01-appb-T000034
 表4に示すように、本発明の実施例4のレジスト下層膜形成組成物より得られたレジスト下層膜は、比較例3のレジスト下層膜形成組成物より得られたレジスト下層膜より昇華物の発生が抑制されているとする結果が得られた。
[フォトレジストパターンの形成及び評価]
 前記実施例1乃至実施例4で調製したレジスト下層膜形成組成物を、スピナーによりシリコンウェハー上に塗布した。ホットプレート上にて205℃で1分間加熱し、膜厚50~80nmのレジスト下層膜を形成した。このレジスト下層膜の上に、市販のフォトレジスト溶液(JSR(株)製、商品名:AR2772JN)をスピナーにより塗布し、ホットプレート上にて110℃で90秒間加熱し、フォトレジスト膜(膜厚0.21μm)を形成した。
 次いで、(株)ニコン製、NSR-S307E(波長193nm、NA:0.85,σ:0.65/0.93(ANNULAR))のスキャナーを用い、フォトマスクを通して所定の条件で露光を行った。フォトマスクは形成すべきレジストパターンに応じて選択した。露光後、ホットプレート上にて、105℃で60秒間露光後加熱(PEB)を行い、冷却後、工業規格の60秒シングルパドル式工程にて、現像液として0.26規定のテトラメチルアンモニウムヒドロキシド水溶液を用いて現像した。形成されたレジストパターンの、基板(シリコンウエハー)と垂直方向の断面形状を断面SEMにて観察したところ、目的のレジストパターンが形成されていることが確認できた。実施例1で調製されたレジスト下層膜形成組成物を用いて形成されたレジスト下層膜上の、レジストパターンの断面SEM像を図1に示す。

Claims (19)

  1. 芳香族カルボニル構造を主鎖に有するポリマー、スルホン酸化合物及び溶剤を含み、前記芳香族カルボニル構造はエーテル結合、エステル結合、又はエステル結合とエーテル結合を介して前記ポリマーの主鎖に導入されている、リソグラフィー用レジスト下層膜形成組成物。
  2. 前記芳香族カルボニル構造が芳香族アルデヒド構造である、請求項1に記載のリソグラフィー用レジスト下層膜形成組成物。
  3. 前記芳香族アルデヒド構造が、ベンズアルデヒド構造又はナフトアルデヒド構造である、請求項2に記載のリソグラフィー用レジスト下層膜形成組成物。
  4. 下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R、A1、A2、A3、A4、A5及びA6は、それぞれ独立に、水素原子、メチル基又はエチル基を表し、Qは二価の有機基を表し、n1は1乃至4の数を表し、n2及びn3はそれぞれ独立に0又は1の数を表し、mは繰り返し単位の数を表し5乃至300である。)で表される繰り返し構造を有するポリマー、スルホン酸化合物及び溶剤を含むリソグラフィー用レジスト下層膜形成組成物。
  5. 前記ポリマーが下記式(1a):
    Figure JPOXMLDOC01-appb-C000002
    (式中、A1、A2、A3、A4、A5、A6、Q及びmは、前記式(1)において定義されたものを表す。)で表される繰り返し構造を有するポリマーである、請求項4に記載のリソグラフィー用レジスト下層膜形成組成物。
  6. 下記式(2)及び式(3):
    Figure JPOXMLDOC01-appb-C000003
    (式(2)中、Rは水素原子、メチル基又はエチル基を表し、n1は1乃至4の数を表し、n2及びn3はそれぞれ独立に0又は1の数を表す。
     式(3)中、A1、A2、A3、A4、A5及びA6は、それぞれ独立に、水素原子、メチル基又はエチル基を表し、Qは二価の有機基を表す。)
    で表される2種の構造単位を含むポリマー、スルホン酸化合物及び溶剤を含むリソグラフィー用レジスト下層膜形成組成物。
  7. 前記ポリマーが、下記式(2a)及び式(3):
    Figure JPOXMLDOC01-appb-C000004
    (式中、A1、A2、A3、A4、A5、A6、Qは、前記式(3)において定義されたものを表す。)で表される2種の構造単位を含むポリマーである、請求項6に記載のリソグラフィー用レジスト下層膜形成組成物。
  8. 前記式(1)又は式(1a)において、Qは下記式(4):
    Figure JPOXMLDOC01-appb-C000005
    (式中、Q1は炭素原子数1乃至10のアルキレン基、炭素原子数3乃至10の脂環式炭化水素を有する二価の有機基、フェニレン基、ナフチレン基又はアントリレン基を表し、前記フェニレン基、ナフチレン基及びアントリレン基は、それぞれ、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至6のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも一つの基で置換されていてもよく、n4及びn5はそれぞれ独立に0又は1の数を表す。)
    で表される基である、請求項4又は請求項5に記載のリソグラフィー用レジスト下層膜形成組成物。
  9. 前記式(1)又は式(1a)において、Qは下記式(5):
    Figure JPOXMLDOC01-appb-C000006
    〔式中、X1は下記式(6)又は下記式(7):
    Figure JPOXMLDOC01-appb-C000007
    (式中、R1及びR2はそれぞれ独立に、水素原子、炭素原子数1乃至6のアルキル基、炭素原子数3乃至6のアルケニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至6のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも一つの基で置換されていてもよく、あるいはR1とR2は互いに結合して炭素原子数3乃至6の環を形成していてもよい。)で表される二価の基を表す。〕
    で表される基である、請求項4又は請求項5に記載のリソグラフィー用レジスト下層膜形成組成物。
  10. 前記式(1)又は式(1a)において、Qは下記式(8):
    Figure JPOXMLDOC01-appb-C000008
    (式中、R3は炭素原子数1乃至6のアルキル基、炭素原子数3乃至6のアルケニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至6のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも1つの基で置換されていてもよい。)
    で表される基である、請求項4又は請求項5に記載のリソグラフィー用レジスト下層膜形成組成物。
  11. 前記式(3)において、Qは下記式(4):
    Figure JPOXMLDOC01-appb-C000009
    (式中、Q1は炭素原子数1乃至10のアルキレン基、炭素原子数3乃至10の脂環式炭化水素を有する二価の有機基、フェニレン基、ナフチレン基又はアントリレン基を表し、前記フェニレン基、ナフチレン基及びアントリレン基は、それぞれ、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至6のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも一つの基で置換されていてもよく、n4及びn5はそれぞれ独立に0又は1の数を表す。)
    で表される基である、請求項6又は請求項7に記載のリソグラフィー用レジスト下層膜形成組成物。
  12. 前記式(3)において、Qは下記式(5):
    Figure JPOXMLDOC01-appb-C000010
    〔式中、X1は下記式(6)又は下記式(7):
    Figure JPOXMLDOC01-appb-C000011
    (式中、R1及びR2はそれぞれ独立に、水素原子、炭素原子数1乃至6のアルキル基、炭素原子数3乃至6のアルケニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至6のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも一つの基で置換されていてもよく、あるいはR1とR2は互いに結合して炭素原子数3乃至6の環を形成していてもよい。)で表される二価の基を表す。〕
    で表される基である、請求項6又は請求項7に記載のリソグラフィー用レジスト下層膜形成組成物。
  13. 前記式(3)において、Qは下記式(8):
    Figure JPOXMLDOC01-appb-C000012
    (式中、R3は炭素原子数1乃至6のアルキル基、炭素原子数3乃至6のアルケニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至6のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも1つの基で置換されていてもよい。)
    で表される基である、請求項6又は請求項7に記載のリソグラフィー用レジスト下層膜形成組成物。
  14. 前記ポリマーは下記式(9)で表される少なくとも1種の化合物及び下記式(10)で表される少なくとも1種の化合物:
    Figure JPOXMLDOC01-appb-C000013
    (式中、Rは水素原子、メチル基又はエチル基を表し、n1は1乃至4の数を表し、n2及びn3はそれぞれ独立に0又は1の数を表し、A1、A2、A3、A4、A5及びA6は、それぞれ独立に、水素原子、メチル基又はエチル基を表し、Qは二価の有機基を表す。)
    の反応生成物である、請求項4乃至請求項7のうちいずれか一項に記載のリソグラフィー用レジスト下層膜形成組成物。
  15. 前記ポリマーは下記式(9a)で表される少なくとも1種の化合物及び下記式(10)で表される少なくとも1種の化合物:
    Figure JPOXMLDOC01-appb-C000014
    (式中、A1、A2、A3、A4、A5、A6及びQは前記式(10)において定義されたものを表す。)の反応生成物である、請求項14に記載のリソグラフィー用レジスト下層膜形成組成物。
  16. 前記式(10)において、Qは下記式(11):
    Figure JPOXMLDOC01-appb-C000015
    (式中Q1は炭素原子数1乃至10のアルキレン基、炭素原子数3乃至10の脂環式炭化水素を有する二価の有機基、フェニレン基、ナフチレン基又はアントリレン基を表し、前記フェニレン基、ナフチレン基及びアントリレン基は、それぞれ、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至6のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも一つの基で置換されていてもよく、n4及びn5はそれぞれ独立に0又は1の数を表す。)
    で表される基である、請求項14又は請求項15に記載のリソグラフィー用レジスト下層膜形成組成物。
  17. 前記式(10)において、Qは下記式(12):
    Figure JPOXMLDOC01-appb-C000016
    (式中、R3は炭素原子数1乃至6のアルキル基、炭素原子数3乃至6のアルケニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至6のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも1つの基で置換されていてもよい。)で表される基である、請求項14又は請求項15に記載のリソグラフィー用レジスト下層膜形成組成物。
  18. 請求項1乃至請求項17のうちいずれか一項に記載のリソグラフィー用レジスト下層膜形成組成物を半導体基板上に塗布しベークしてレジスト下層膜を形成する工程、前記レジスト下層膜上にレジスト膜を形成する工程、前記レジスト下層膜と前記レジスト膜で被覆された半導体基板を露光する工程、露光後に前記レジスト膜を現像する工程、を含む半導体装置の製造に用いるレジストパターンの形成方法。
  19. 前記露光は、ArFエキシマレーザーを用いて行われる、請求項18に記載のレジストパターンの形成方法。
PCT/JP2010/060848 2009-07-07 2010-06-25 レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法 WO2011004721A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011521885A JP5522415B2 (ja) 2009-07-07 2010-06-25 レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009160898 2009-07-07
JP2009-160898 2009-07-07

Publications (1)

Publication Number Publication Date
WO2011004721A1 true WO2011004721A1 (ja) 2011-01-13

Family

ID=43429144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060848 WO2011004721A1 (ja) 2009-07-07 2010-06-25 レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法

Country Status (3)

Country Link
JP (1) JP5522415B2 (ja)
TW (1) TWI462960B (ja)
WO (1) WO2011004721A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133088A1 (ja) * 2012-03-08 2013-09-12 日産化学工業株式会社 高密着性レジスト下層膜形成用組成物
KR20180117612A (ko) * 2016-03-09 2018-10-29 닛산 가가쿠 가부시키가이샤 레지스트 하층막 형성 조성물 및 이것을 이용한 레지스트 패턴의 형성방법
WO2020209327A1 (ja) * 2019-04-11 2020-10-15 日産化学株式会社 ヒドロキシアリール基末端の重合体を含む薬液耐性保護膜形成組成物
KR20210040357A (ko) 2018-07-31 2021-04-13 닛산 가가쿠 가부시키가이샤 레지스트 하층막 형성 조성물
WO2021111977A1 (ja) * 2019-12-04 2021-06-10 日産化学株式会社 レジスト下層膜形成用組成物
WO2021111976A1 (ja) * 2019-12-04 2021-06-10 日産化学株式会社 ポリマーの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109640A (ja) * 1997-10-08 1999-04-23 Clariant Japan Kk 反射防止膜又は光吸収膜用組成物及びこれに用いる重合体
WO2003067329A1 (en) * 2002-02-01 2003-08-14 Brewer Science, Inc. Organic anti-reflective coating compositions for advanced microlithography
WO2005098542A1 (ja) * 2004-04-09 2005-10-20 Nissan Chemical Industries, Ltd. 縮合系ポリマーを有する半導体用反射防止膜
WO2006115074A1 (ja) * 2005-04-19 2006-11-02 Nissan Chemical Industries, Ltd. エチレンジカルボニル構造を有するポリマーを含むリソグラフィー用反射防止膜形成組成物
WO2009057458A1 (ja) * 2007-10-31 2009-05-07 Nissan Chemical Industries, Ltd. レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109640A (ja) * 1997-10-08 1999-04-23 Clariant Japan Kk 反射防止膜又は光吸収膜用組成物及びこれに用いる重合体
WO2003067329A1 (en) * 2002-02-01 2003-08-14 Brewer Science, Inc. Organic anti-reflective coating compositions for advanced microlithography
WO2005098542A1 (ja) * 2004-04-09 2005-10-20 Nissan Chemical Industries, Ltd. 縮合系ポリマーを有する半導体用反射防止膜
WO2006115074A1 (ja) * 2005-04-19 2006-11-02 Nissan Chemical Industries, Ltd. エチレンジカルボニル構造を有するポリマーを含むリソグラフィー用反射防止膜形成組成物
WO2009057458A1 (ja) * 2007-10-31 2009-05-07 Nissan Chemical Industries, Ltd. レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104136997A (zh) * 2012-03-08 2014-11-05 日产化学工业株式会社 高密合性抗蚀剂下层膜形成用组合物
JPWO2013133088A1 (ja) * 2012-03-08 2015-07-30 日産化学工業株式会社 高密着性レジスト下層膜形成用組成物
US9195137B2 (en) 2012-03-08 2015-11-24 Nissan Chemical Industries, Ltd. Composition for forming highly adhesive resist underlayer film
KR101805119B1 (ko) 2012-03-08 2017-12-06 닛산 가가쿠 고교 가부시키 가이샤 고밀착성 레지스트 하층막 형성용 조성물
WO2013133088A1 (ja) * 2012-03-08 2013-09-12 日産化学工業株式会社 高密着性レジスト下層膜形成用組成物
KR102374269B1 (ko) 2016-03-09 2022-03-15 닛산 가가쿠 가부시키가이샤 레지스트 하층막 형성 조성물 및 이것을 이용한 레지스트 패턴의 형성방법
KR20180117612A (ko) * 2016-03-09 2018-10-29 닛산 가가쿠 가부시키가이샤 레지스트 하층막 형성 조성물 및 이것을 이용한 레지스트 패턴의 형성방법
KR20210040357A (ko) 2018-07-31 2021-04-13 닛산 가가쿠 가부시키가이샤 레지스트 하층막 형성 조성물
WO2020209327A1 (ja) * 2019-04-11 2020-10-15 日産化学株式会社 ヒドロキシアリール基末端の重合体を含む薬液耐性保護膜形成組成物
CN113646352A (zh) * 2019-04-11 2021-11-12 日产化学株式会社 包含羟基芳基末端的聚合物的药液耐性保护膜形成用组合物
US11965059B2 (en) 2019-04-11 2024-04-23 Nissan Chemical Corporation Chemical-resistant protective film forming composition containing hydroxyaryl-terminated polymer
WO2021111976A1 (ja) * 2019-12-04 2021-06-10 日産化学株式会社 ポリマーの製造方法
WO2021111977A1 (ja) * 2019-12-04 2021-06-10 日産化学株式会社 レジスト下層膜形成用組成物
CN114746468A (zh) * 2019-12-04 2022-07-12 日产化学株式会社 聚合物的制造方法

Also Published As

Publication number Publication date
JP5522415B2 (ja) 2014-06-18
TWI462960B (zh) 2014-12-01
TW201113317A (en) 2011-04-16
JPWO2011004721A1 (ja) 2012-12-20

Similar Documents

Publication Publication Date Title
JP5267819B2 (ja) レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
JP5382390B2 (ja) 硫黄原子を含有するレジスト下層膜形成用組成物及びレジストパターンの形成方法
JP5168517B2 (ja) レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
JP5158381B2 (ja) レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
KR100949343B1 (ko) 반사방지막 형성 조성물
JP5382321B2 (ja) レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
JP4984098B2 (ja) レジスト下層膜形成組成物及びレジストパターンの形成方法
JP5522415B2 (ja) レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
KR102344285B1 (ko) 불소함유 계면활성제를 포함하는 막형성 조성물
JP5141882B2 (ja) バリア性を示すレジスト下層膜の形成用組成物及びレジスト下層膜のバリア性評価方法
WO2012067040A1 (ja) レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
WO2017154600A1 (ja) レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
WO2013088931A1 (ja) レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
JP2010181453A (ja) レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
WO2020255984A1 (ja) ジシアノスチリル基を有する複素環化合物を含むウェットエッチング可能なレジスト下層膜形成組成物
JP6414631B2 (ja) カチオン重合性レジスト下層膜形成組成物
WO2018012253A1 (ja) ヒダントイン環を有する化合物を含むレジスト下層膜形成組成物
JP6699168B2 (ja) レジスト下層膜形成用組成物及びレジストパターンの形成方法
JP2012013872A (ja) イオン液体を含むレジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
JP2010078823A (ja) レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797032

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011521885

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10797032

Country of ref document: EP

Kind code of ref document: A1