WO2011004621A1 - 真空処理装置 - Google Patents

真空処理装置 Download PDF

Info

Publication number
WO2011004621A1
WO2011004621A1 PCT/JP2010/052186 JP2010052186W WO2011004621A1 WO 2011004621 A1 WO2011004621 A1 WO 2011004621A1 JP 2010052186 W JP2010052186 W JP 2010052186W WO 2011004621 A1 WO2011004621 A1 WO 2011004621A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge chamber
substrate
ridge
plasma
converter
Prior art date
Application number
PCT/JP2010/052186
Other languages
English (en)
French (fr)
Inventor
竹内 良昭
西宮 立享
宮原 弘臣
禎子 中尾
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/203,757 priority Critical patent/US20110308735A1/en
Priority to EP10796932A priority patent/EP2453466A1/en
Priority to CN201080012376.4A priority patent/CN102356452B/zh
Publication of WO2011004621A1 publication Critical patent/WO2011004621A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • H01L31/1824Special manufacturing methods for microcrystalline Si, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a vacuum processing apparatus, and more particularly to a vacuum processing apparatus that performs processing (including dry etching) on a substrate using plasma.
  • an amorphous silicon film is the basic material of the thin-film silicon solar cells, SiH 4 gas, or a SiH 4 gas, a mixed gas of hydrogen gas as a raw material, is manufactured by a plasma CVD method.
  • the amorphous silicon film is sometimes used as a single layer, and is also used as a two-layer tandem with microcrystalline silicon and further as a three-layer structure. For this reason, it is considered that the performance of the amorphous silicon film has a great influence on the performance of the entire laminated thin-film silicon solar cell.
  • a solar cell having an amorphous silicon film (hereinafter abbreviated as “a-Si solar cell”) is degraded in performance due to light degradation.
  • a-Si solar cell a solar cell having an amorphous silicon film
  • the amorphous silicon film is formed at a high speed, the degree of light degradation increases, so that the stabilization performance of the a-Si solar cell after the performance degradation due to light degradation has been greatly reduced. Due to this problem, there is a problem that it is difficult to increase the deposition rate of the amorphous silicon film in the a-Si solar cell.
  • the film formation of the amorphous silicon film using the frequency in the VHF band is not sufficient, although the photodegradation can be suppressed, and the performance of the a-Si solar cell exceeds the allowable range.
  • plasma is generated between a cathode, which is a parallel plate electrode, and a mesh electrode, and the substrate is placed at a position away from the mesh electrode with the region where the plasma is generated as a gas decomposition region. Has been placed.
  • the SiH 2 radical reacts with the mother gas before the SiH 2 radical diffuses into the substrate, and Si nanoclusters are less likely to be mixed into the amorphous silicon film.
  • extremely high performance is realized such that the stabilization efficiency after photodegradation is 9.3%.
  • Non-Patent Documents 1 and 2 a method of manufacturing an a-Si solar cell that suppresses performance degradation by using a flow of a mother gas or the like has been proposed (see, for example, Non-Patent Documents 1 and 2).
  • a hollow electrode type plasma generation unit is disposed inside a cylindrical casing, and a gas supply unit that ejects a mother gas toward the plasma generation unit is disposed at one end of the casing. Has been.
  • the other end of the housing is connected to a vacuum pump to perform evacuation.
  • the substrate is arranged at a position sandwiching the gas supply unit together with the plasma generation unit.
  • the mother gas supplied from the gas supply unit is sucked into the vacuum pump through the plasma generation unit.
  • generation part is similarly attracted
  • Patent Document 1 has a problem that it is difficult to use it in the production of an actual a-Si solar cell because the film forming speed is low.
  • Non-Patent Documents 1 and 2 described above have a problem that it is difficult to increase the area of the substrate on which the film forming process is performed. This is because the method of applying a very high frequency of 60 MHz to an electrode having a large number of holes to cause a hollow discharge in the hole portion uses an extremely high frequency, and therefore the electric field on the electrode is not uniform due to the influence of standing waves. In addition, even if a uniform electric field is generated, it is very difficult to stably maintain a uniform hollow discharge in a large number of holes.
  • the present invention has been made to solve the above-described problems, and is a vacuum processing apparatus capable of improving the quality of a film to be formed, increasing the area and increasing the film forming speed.
  • the purpose is to provide.
  • a vacuum processing apparatus includes a discharge chamber formed of a ridge waveguide having a pair of ridge electrodes that are arranged to face each other and generate plasma between the discharge chamber and the pair of ridge electrodes toward the pair of ridge electrodes.
  • a gas supply unit for supplying a mother gas used for plasma formation; a substrate to be treated by the plasma; a decompression container for housing at least the discharge chamber, the gas supply unit and the substrate; An exhaust part that communicates with the substrate in the vessel with the discharge chamber interposed therebetween and reduces the pressure inside the decompression vessel is provided, and the discharge chamber is provided with the gas supply unit and the exhaust unit, A flow in a direction away from the substrate is formed.
  • the mother gas is supplied from the gas supply unit toward the pair of ridge electrodes, and the fluid in the decompression vessel is exhausted by the exhaust unit. A flow away from is formed. For this reason, foreign substances (such as Si nanoclusters when the mother gas is SiH 4 gas) are simultaneously generated from the decompression vessel to the exhaust part by the flow when plasma is generated between the pair of ridge electrodes. To do. On the other hand, since the generated long-lived radicals move toward the substrate by diffusion, the substrate is processed.
  • the electric field strength distribution is uniform between the pair of ridge electrodes. Further, by using the ridge waveguide, the area where the electric field intensity distribution is uniform can be easily increased in area. Therefore, uniform plasma can be generated over a wide range with respect to the substrate.
  • a power source that supplies high-frequency power to the discharge chamber, an inner conductor and an outer conductor, a coaxial line that guides the high-frequency power from the power source to the discharge chamber, and a ridge waveguide having a pair of ridge portions
  • a converter that is arranged adjacent to the direction in which the discharge chamber extends, and that guides the high-frequency power from the coaxial line to the discharge chamber, and is provided inside the decompression vessel. It is desirable to be stored.
  • the discharge chamber and the conversion portion adjacent to the discharge chamber are disposed inside the decompression vessel, the discharge chamber and the conversion portion itself do not need to have strength to withstand the pressure difference. Therefore, compared with the case where the discharge chamber and the conversion unit itself have a strength that can withstand the pressure difference, the configuration of the discharge chamber and the conversion unit can be simplified, and the degree of freedom of the configuration is increased.
  • a power source that supplies high-frequency power to the discharge chamber, an inner conductor and an outer conductor, a coaxial line that guides the high-frequency power from the power source to the discharge chamber, and a ridge waveguide having a pair of ridge portions
  • a converter that is disposed adjacent to the discharge chamber in the direction in which the discharge chamber extends, and that guides the high-frequency power from the coaxial line to the discharge chamber.
  • the converter is disposed outside the decompression vessel.
  • a window portion for maintaining a decompressed state inside the decompression vessel is provided between the discharge chamber and the conversion portion.
  • the discharge chamber is disposed inside the decompression vessel, it is not necessary for the discharge chamber itself to have the strength to withstand the pressure difference. Therefore, compared with the case where the discharge chamber itself has a strength that can withstand the pressure difference, the configuration of the discharge chamber can be simplified, and the degree of freedom of the configuration is increased.
  • the volume of the decompression vessel can be reduced as compared with the case where the entire discharge chamber and the conversion section are arranged inside the decompression vessel. Therefore, it becomes easy to maintain the reduced pressure state in the reduced pressure container.
  • the decompression container is provided with a pair of openings that allow the substrate to be moved relative to each other and allow the substrate to enter and exit the decompression container.
  • the substrate can be carried in between the pair of ridge electrodes from one of the pair of openings, and the substrate can be subjected to plasma treatment. Further, the substrate subjected to the plasma treatment can be carried out from the other of the pair of openings.
  • an adjusting unit that adjusts the flow rate of the fluid exhausted to the exhaust unit is provided between the discharge chamber and the opening communicating with the exhaust unit in the decompression vessel. It is desirable.
  • the inside of a pressure reduction container is divided into the area
  • positioned is adjusted by the adjustment part.
  • the substrate, the gas supply unit, and the discharge chamber are arranged in this order inside the decompression vessel, and the exhaust unit communicates with the gas supply unit in the decompression vessel at a position sandwiching the discharge chamber therebetween. Therefore, it is possible to improve the quality of the film to be formed, increase the area, and increase the film forming speed.
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of a film forming apparatus according to the present embodiment.
  • FIG. 2 is a partial cross-sectional view illustrating the configuration of the process chamber of FIG.
  • the present invention is applied to an amorphous silicon used for an amorphous solar cell, a microcrystalline solar cell, a TFT for liquid crystal display (Thin Film Transistor), etc., on a large substrate having an area of 1 m 2 or more.
  • a film forming apparatus (vacuum processing apparatus) 1 capable of forming a film made of crystalline silicon such as microcrystalline silicon, silicon nitride or the like will be described.
  • the film forming apparatus 1 includes a process chamber (discharge chamber) 2, a first converter (converter) 3A, a second converter (converter) 3B, a first coaxial line ( (Coaxial line) 4A, first power supply (power supply) 5A, first matcher 6A, second coaxial line (coaxial line) 4B, second power supply (power supply) 5B, second matcher 6B, vacuum A container (depressurized container) 7, an exhaust part 9, and a gas supply part 10 are mainly provided.
  • the process chamber 2 is a portion that performs plasma processing on the substrate S disposed inside.
  • the process chamber 2 is a part made of a conductive non-magnetic or weak magnetic material such as aluminum or an aluminum alloy material, and is formed in a so-called double ridge waveguide tube.
  • the process chamber 2 is provided with a pair of ridge electrodes 21 and 21.
  • the pair of ridge electrodes 21, 21 constitutes a ridge portion in the process chamber 2 that is a double ridge waveguide, and one ridge electrode 21 is arranged to face the other ridge electrode 21.
  • the ridge electrode 21 is formed with a plurality of through holes such as a mesh or punching metal.
  • the opening area of the through hole is preferably designed so that plasma is confined between the pair of ridge electrodes 21 and 21.
  • the direction in which the process chamber 2 extends is the L direction (left and right direction in FIG. 1)
  • the direction orthogonal to the pair of ridge electrodes 21 and 21, and the direction in which the lines of magnetic force extend is the E direction (up and down direction in FIG. 1).
  • a direction along the pair of ridge electrodes 21 and 21 and perpendicular to the E direction is defined as an H direction (a direction perpendicular to the paper surface in FIG. 1).
  • a translucent glass substrate can be exemplified.
  • a substrate having a vertical and horizontal size of 1.4 m ⁇ 1.1 m and a thickness of 3.0 mm to 4.5 mm can be exemplified. .
  • the first converter 3A and the second converter 3B are portions to which high-frequency power supplied from the first power supply 5A and the second power supply 5B is introduced, respectively. Electric power is transmitted to the process chamber 2.
  • the first converter 3A and the second converter 3B convert the transmission mode of high-frequency power into a parallel plate mode using the characteristics of the ridge waveguide.
  • FIG. 3 is a schematic diagram illustrating the configuration of the first converter and the second converter of FIG.
  • the inner conductor 41 in the first coaxial line 4A is electrically connected to one of the pair of ridge portions 31, 31, for example, the lower ridge portion 31 in FIG.
  • An outer conductor 42 in the first coaxial line 4A is electrically connected to the other of the pair of ridge portions 31, 31, for example, the upper ridge portion 31 in FIG.
  • the first coaxial line 4A and the second coaxial line 4B convert the high frequency power supplied from the first power source 5A and the second power source 5B to the first converter 3A and the second converter 3B, respectively. It leads to.
  • a first power source 5A and a first matching unit 6A are electrically connected to the first coaxial line 4A.
  • a second power source 5B and a second matching unit 6B are electrically connected to the second coaxial line 4B.
  • the first coaxial line 4 ⁇ / b> A and the second coaxial line 4 ⁇ / b> B are provided with an inner conductor 41 and an outer conductor 42.
  • the inner conductor 41 is formed from a conductor such as a metal extending in a rod shape or a linear shape.
  • the outer conductor 42 is formed of a conductor such as a metal formed in a cylindrical shape in which the inner conductor 41 is disposed.
  • a derivative (not shown) is disposed between the inner conductor 41 and the outer conductor 42.
  • Known configurations can be used as the configurations of the first coaxial line 4A and the second coaxial line 4B, and are not particularly limited.
  • the first power source 5A and the second power source 5B transmit high frequency power to the process chamber 2 as shown in FIG.
  • high frequency power having a frequency of 13.56 MHz or more, preferably 30 MHz to 400 MHz (VHF band to UHF band) is supplied, and the phase of the supplied high frequency power can be adjusted.
  • the size of the double ridge waveguide is increased at 13.56 MHz, and therefore, 30 MHz or more is preferable in order to further utilize the features of the present invention.
  • the frequency becomes higher the influence of standing waves generated in the direction in which the process chamber 2 extends becomes more prominent.
  • the first power source 5A is electrically connected to the first coaxial line 4A, and supplies high-frequency power to the first converter 3A via the matching unit and the first coaxial line 4A.
  • the second power source 5B is electrically connected to the second coaxial line 4B and supplies high-frequency power to the second converter 3B via the second coaxial line 4B.
  • the high frequency power supplied to the first converter 3A and the second converter 3B is transmitted to the process chamber 2 after the transmission mode is converted into the parallel plate mode.
  • the power source 5 a known high-frequency power source can be used, and is not particularly limited.
  • the vacuum chamber 7 accommodates therein a process chamber 2, a first converter 3 ⁇ / b> A, a second converter 3 ⁇ / b> B, a gas introduction pipe 10 ⁇ / b> B to be described later, a substrate S, and the like.
  • the vacuum vessel 7 has a structure that can withstand a pressure difference.
  • a structure formed of stainless steel (SUS material according to JIS standard), a general structural rolling material (SS material according to JIS standard), a rib material, or the like can be used.
  • the exhaust unit 9 is connected to the vacuum vessel 7. Therefore, the inside of the vacuum vessel 7 and the inside of the process chamber 2, the first converter 3 ⁇ / b> A, and the second converter 3 ⁇ / b> B are brought into a vacuum state of about 0.1 kPa to 10 kPa by the exhaust unit 9.
  • a substrate support 71 on which the substrate S is arranged is provided inside the vacuum vessel 7. As shown in FIG. 1, the substrate support 71 is a wall surface of the vacuum vessel 7 that faces a wall surface in which an opening 72 that communicates with an exhaust section 9 described later is formed (a lower wall surface in FIG. 1). Is arranged.
  • the substrate support 71 also adjusts the temperature and temperature distribution of the substrate S arranged.
  • the substrate support base 71 circulates a temperature-controlled heat medium inside or incorporates a temperature-controlled heater to control its own temperature so that the whole has a substantially uniform temperature.
  • it has a function of making the temperature of the counter electrode 3 that is in contact uniform to a predetermined temperature.
  • the above-mentioned heat medium is a non-conductive medium, and a highly heat conductive gas such as hydrogen or helium, a fluorine-based inert liquid, an inert oil, pure water, or the like can be used as the heat medium.
  • a fluorine-based inert liquid for example, trade name: Galden, F05, etc.
  • Galden, F05, etc. is preferable because the pressure does not increase even in the range of 150 ° C. to 250 ° C. and control is easy.
  • the exhaust unit 9 exhausts gas from the inside of the process chamber 2, the first converter 3 ⁇ / b> A, and the second converter 3 ⁇ / b> B to reduce the pressure to a vacuum state.
  • the exhaust unit 9 communicates with an opening 72 formed on the wall surface of the vacuum vessel 7.
  • a known vacuum pump or the like can be used as the exhaust unit 9 and is not particularly limited.
  • the gas supply unit 10 uses a pair of ridge electrodes 21 as a base gas (for example, SiH 4 gas) containing a source gas for forming a film on the surface of the substrate S used for plasma generation. , 21 are supplied.
  • the gas supply unit 10 is provided with a gas supply source 10A and a gas introduction pipe 10B.
  • gas supply sources are arrange
  • the gas introduction pipe 10B is connected to the gas supply source 10A and is disposed between the substrate support 71 and the process chamber 2 inside the vacuum vessel wall 402A. Further, the gas introduction pipe 10 ⁇ / b> B ejects a mother gas toward the pair of ridge electrodes 21 and 21 in the process chamber 2.
  • the substrate S is disposed on a substrate support base 71 inside the vacuum vessel 7. Thereafter, a gas such as air is exhausted from the inside of the vacuum vessel 7 to the exhaust unit 9. Since the inside of the vacuum vessel 7 and the inside of the process chamber 2, the first converter 3 ⁇ / b> A, and the second converter 3 ⁇ / b> B communicate with each other through the through holes formed in the pair of ridge portions 31, 31, the process chamber Gas is also exhausted from the inside of 2 etc.
  • a mother gas such as SiH 4 gas is supplied during the period 21.
  • the exhaust amount of the exhaust part is controlled to maintain a vacuum state of about 0.1 kPa to 10 kPa inside the process chamber 2 or the like, in other words, between the pair of ridge electrodes 21 and 21.
  • the high frequency power supplied from the first power supply 5A is transmitted to the first converter 3A via the first matching unit 6A by the first coaxial line 4A.
  • a value such as impedance in a system transmitting high-frequency power is adjusted.
  • the transmission mode of the high frequency power is converted into the parallel plate mode.
  • the high frequency power supplied to the first converter 3A is transmitted to the process chamber 2, and an electric field is formed between the pair of ridge electrodes 21 and 21.
  • the high frequency power supplied from the second power source 5B is transmitted to the second converter 3B in the same manner as the high frequency power supplied from the first power source 5A, and the transmission mode is converted into the parallel plate mode.
  • the high frequency power supplied to the second converter 3B is transmitted to the process chamber 2 to form an electric field between the pair of ridge electrodes 21 and 21.
  • a standing wave is formed by the high frequency power supplied from the first power source 5A and the high frequency power supplied from the second power source 5B.
  • the phase of the high frequency power supplied from the first power supply 5A and the second power supply 5B is fixed, the position (phase) of the standing wave is fixed, and the L-direction in the pair of ridge electrodes 21 and 21 is fixed.
  • the position of the standing wave formed in the process chamber 2 is adjusted by adjusting the phase of the high-frequency power supplied from at least one of the first power supply 5A and the second power supply 5B. Thereby, the distribution of the electric field intensity in the L direction in the pair of ridge electrodes 21 and 21 is made uniform over time.
  • the position of the standing wave is supplied from the first power supply 5A and the second power supply 5B so that the position of the standing wave moves in the L direction in a sine wave shape, a triangular wave shape, or a staircase (step) shape as time passes.
  • the phase of the generated high frequency power is adjusted.
  • the range in which the standing wave moves, the method of moving the standing wave (Sin wave shape, triangular wave shape, stepped shape, etc.) and the optimization of the phase adjustment period are the power distribution, the light emission distribution from the plasma, This is performed based on the distribution of plasma density, the distribution of characteristics related to the formed film, and the like. Examples of characteristics relating to the film include film thickness, film quality, and characteristics as a semiconductor such as a solar cell.
  • the mother gas supplied from the gas supply source 10A of the gas supply unit 10 is ejected from the gas introduction pipe 10B toward the process chamber 2.
  • the mother gas flows between the pair of ridge electrodes 21 and 21 through the through holes formed in the ridge electrode 21.
  • the mother gas is ionized between the pair of ridge electrodes 21 and 21 to form plasma.
  • a film-forming species formed by ionizing the mother gas is deposited on the substrate S through a through hole from between the pair of ridge electrodes 21 and 21, and a film such as an amorphous silicon layer or a crystalline silicon layer is formed. Is done.
  • a vacuum vessel 7 is used for the vacuum vessel 7 to reduce the quality of the formed film, such as Si nanocluster formed between the pair of ridge electrodes 21, 21, or unnecessary for the film formation. Exhausted from inside.
  • a gas flow from the gas introduction pipe 10B to the exhaust part 9 through the process chamber 2 is formed by the exhaust by the exhaust part 9 and the ejection of the mother gas by the gas introduction pipe 10B.
  • Si nanoclusters and the like generated by plasma are exhausted from the vacuum vessel 7 along with this gas flow.
  • the film forming species generated by the plasma is deposited on the substrate S by diffusion regardless of the gas flow.
  • the test result by the film forming apparatus 1 having the above configuration will be described.
  • Film formation of the amorphous silicon (a-Si) layer by the film forming apparatus 1 was performed under the following conditions. That is, the mother gas supplied to the film forming apparatus 1 is 100% SiH 4 , and the mother gas is supplied at a flow rate of 10 SLM (standard liter / min).
  • the pressure inside the vacuum vessel 7 is maintained at 10 Pa, and high frequency power of 60 MHz is supplied to the pair of ridge electrodes 21 and 21 from the first power supply 5A and the second power supply 5B.
  • the substrate S is kept at a temperature of 220 ° C. by the substrate support 71.
  • a film-forming speed of 0.7 nm / s was obtained.
  • the a-Si defect density measured by CPM (constant photocurrent method) was 2 ⁇ 10 15 pieces / cc in the initial stage immediately after film formation, and 7 ⁇ 10 15 pieces / cc in the stage after photodegradation. .
  • the a-Si solar cell structure has a glass / TCO / p layer (B-doped a-SiC: H) / buffer layer (a-SiC: H) / i layer (a-Si, 250 nm / n layer ( P-doped ⁇ c-Si) / back electrode (ZnO / Ag).
  • the initial efficiency which is the single cell efficiency immediately after the manufacture of the a-Si solar cell, is 10.1%, and the efficiency after photodegradation is 9.4%.
  • the mother gas is supplied from the gas introduction pipe 10 ⁇ / b> B of the gas supply unit 10 toward the pair of ridge electrodes 21, 21, and the gas in the vacuum vessel 7 is exhausted by the exhaust unit 9.
  • a flow from the substrate S toward the process chamber 2 is formed as a whole. Therefore, foreign matters such as Si nanoclusters generated at the same time as plasma is generated between the pair of ridge electrodes 21 and 21 flow into the exhaust unit 9 from the vacuum vessel 7 by the flow.
  • the electric field strength distribution is uniform between the pair of ridge electrodes 21 and 21.
  • the ridge waveguide it is possible to easily increase the area where the electric field intensity distribution is uniform. Therefore, uniform plasma can be generated over a wide range on the substrate S, and a high-quality film can be formed in a large area and can be formed at a high speed.
  • the substrate S has been described as being applied to the example in which the substrate S extends in the horizontal direction (the left-right direction in FIG. 1) in the vacuum vessel 7, but the substrate S extends in the vertical direction or in an oblique direction. It may be arranged and is not particularly limited.
  • FIG. 4 is a schematic view for explaining another embodiment of the film forming apparatus of FIG.
  • the arrangement position of the gas introduction pipe 10B may be between the substrate S and the ridge electrode 21 as shown in FIGS. 1 and 2, or the first converter 3A and the substrate S as shown in FIG. And between the second converter 3B and the substrate S, and is not particularly limited.
  • the mother gas ejected from the gas introduction pipe 10B toward the ridge electrode 2 flows between the ridge electrodes 2.
  • a plurality of ejection holes for supplying gas are provided along the H direction on the surface of the gas supply source 10B facing the ridge electrode 2.
  • Si nanoclusters and the like are exhausted from the inside of the vacuum vessel 7 by the exhaust unit 9 from the through-hole formed in the ridge electrode 21, and the film forming species is directed to the substrate S by diffusion.
  • An amorphous silicon or crystalline silicon thin film is formed on the substrate S.
  • FIG. 5 is a schematic view for explaining another embodiment of the film forming apparatus of FIG.
  • the gas introduction pipe 10 ⁇ / b> B is arranged inside the first converter 3 ⁇ / b> A and inside the second converter 3 ⁇ / b> B, and the mother gas is ejected between the pair of ridge electrodes 2.
  • It may be a configuration and is not particularly limited.
  • the carrier gas supplied from the carrier gas supply unit 10C is ejected toward the ridge electrode 2 between the first converter 3A and the substrate S and between the second converter 3B and the substrate S. It is desirable that a carrier gas introduction pipe 10D to be disposed is disposed.
  • the carrier gas ejected from the carrier gas introduction pipe 10 ⁇ / b> D flows between the ridge electrodes 2 along the gas flow toward the exhaust part 9.
  • the mother gas ejected from the gas introduction pipe 10 ⁇ / b> B flows between the ridge electrodes 2.
  • Si nanoclusters and the like are exhausted from the inside of the vacuum vessel 7 by the exhaust unit 9 from the through-hole formed in the ridge electrode 21, and the film forming species is directed to the substrate S by diffusion.
  • An amorphous silicon or crystalline silicon thin film is formed on the substrate S.
  • FIG. 6 is a schematic diagram illustrating the configuration of the film forming apparatus according to the present embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the film forming apparatus (vacuum processing apparatus) 101 includes a process chamber 2, a first converter (converter) 103A, a second converter (converter) 103B, and a first coaxial line. 4A, the first power source 5A, the first matching unit 6A, the second coaxial line 4B, the second power source 5B, the second matching unit 6B, the vacuum vessel (decompression vessel) 107, the exhaust unit 9, A gas supply unit 10 is mainly provided.
  • the first converter 103A and the second converter 103B are portions to which the high frequency power supplied from the first power source 5A and the second power source 5B are introduced, respectively, and the supplied high frequency Electric power is transmitted to the process chamber 2.
  • the first converter 103A and the second converter 103B convert the transmission mode of the high-frequency power into the parallel plate mode using the characteristics of the ridge waveguide.
  • the first converter 103A and the second converter 103B are arranged outside the vacuum vessel 107, and the inside thereof. The difference is that the pressure is not reduced but atmospheric pressure.
  • a vacuum window (window) 104 is disposed between the first converter 103A and the process chamber 2 and between the second converter 103B and the process chamber 2.
  • the vacuum window 104 maintains a vacuum state inside the process chamber 2 and transmits high-frequency power between the first converter 103A and the process chamber 2 and between the second converter 103B and the process chamber 2. It does not inhibit.
  • a material for forming the vacuum window 104 a material formed from a material generally used as a vacuum window such as quartz glass can be used, and the material is not particularly limited.
  • the vacuum container 107 stores therein the process chamber 2, the gas introduction pipe 10 ⁇ / b> B, the substrate S, and the like. That is, it differs from the vacuum vessel 7 in the first embodiment in that the first converter 103A and the second converter 103B are not housed.
  • the vacuum vessel 107 has a structure that can withstand a pressure difference between the inside and the outside of the vacuum vessel 107.
  • a structure formed of stainless steel (SUS material according to JIS standard), a general structural rolling material (SS material according to JIS standard), a rib material, or the like can be used.
  • the vacuum vessel 107 is provided with an opening 72 connected to the exhaust unit 9. Therefore, the inside of the vacuum vessel 107 and the inside of the process chamber 2 are brought into a vacuum state of about 0.1 kPa to 10 kPa by the exhaust unit 9.
  • the film forming process which is the plasma process for the substrate S in the film forming apparatus 101 having the above-described configuration is the same as that of the first embodiment, the description thereof is omitted.
  • the process chamber 2 since the process chamber 2 is disposed inside the vacuum vessel 107, it is not necessary for the process chamber 2 itself to have the strength to withstand the pressure difference. Therefore, compared with the case where the process chamber 2 itself has a strength that can withstand the pressure difference, the configuration of the process chamber 2 can be simplified, and the degree of freedom of the configuration of the process chamber 2 can be increased.
  • the volume of the vacuum container 107 can be reduced. Therefore, it becomes easy to maintain the vacuum state inside the vacuum vessel 107.
  • first converter 103A and the second converter 103B are placed under an atmospheric pressure state, discharge is less likely to occur compared to the process chamber 2 placed under a vacuum state. Therefore, it becomes easy to generate discharge only between the pair of ridge electrodes 21 and 21 that generate plasma.
  • FIG. 7 is a schematic diagram illustrating the configuration of the film forming apparatus according to the present embodiment.
  • the same components as those of the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the film forming apparatus (vacuum processing apparatus) 201 includes a process chamber 2, a first converter 103A, a second converter 103B, a first coaxial line 4A, and a first power source 5A.
  • the first matching unit 6A, the second coaxial line 4B, the second power source 5B, the second matching unit 6B, the vacuum vessel (reduced pressure vessel) 207, the exhaust unit 9, and the gas supply unit 10 are mainly used. Is provided.
  • the vacuum container 207 accommodates the process chamber 2, the gas introduction pipe 10 ⁇ / b> B, the substrate S, and the like.
  • the vacuum vessel 207 has a structure that can withstand a pressure difference.
  • a structure formed of stainless steel (SUS material according to JIS standard), a general structural rolling material (SS material according to JIS standard), a rib material, or the like can be used.
  • the vacuum vessel 207 is provided with an opening 72 connected to the exhaust unit 9 and an exhaust adjustment plate (adjustment unit) 209.
  • the exhaust adjustment plate 209 makes the pressure condition in the area where the process chamber 2 and the substrate S are disposed in the vacuum vessel 207 uniform.
  • the exhaust adjustment plate 209 is a plate-like member in which a plurality of through holes are formed.
  • a punching metal or a mesh can be used as the exhaust adjustment plate 209.
  • the exhaust adjustment plate 209 is disposed between the process chamber 2 and the opening 72.
  • the inside of the vacuum vessel 207 is divided into a region communicating with the opening 72 (upper region in FIG. 7) and a region in which the process chamber 2 and the substrate S are disposed (lower region in FIG. 7). ing.
  • the film forming process that is the plasma process for the substrate S in the film forming apparatus 201 having the above-described configuration is the same as that of the second embodiment, the description thereof is omitted.
  • the inside of the vacuum vessel 207 is arranged in the vacuum vessel 207 by the exhaust adjustment plate 209, the region where the process chamber 2, the gas introduction pipe 10 ⁇ / b> B, the substrate S and the like are arranged, and the region communicated with the exhaust unit 9. It is divided into. Then, the flow rate of the mother gas or the like flowing from the region where the process chamber 2 or the like is disposed into the region communicating with the exhaust unit 9 is adjusted by the exhaust adjustment plate 209. Then, the pressure distribution in the region where the process chamber 2 and the like are arranged is made uniform. As a result, the vacuum state in the region where the process chamber 2 or the like where the plasma processing is performed on the substrate S is arranged can be kept uniform by the exhaust unit 9 and the exhaust adjustment plate 209.
  • FIG. 8 is a schematic diagram illustrating the configuration of the film forming apparatus according to the present embodiment. The same components as those of the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the film forming apparatus (vacuum processing apparatus) 301 includes a process chamber 2, a first converter 103A, a second converter 103B, a first coaxial line 4A, and a first power source 5A.
  • the first matching unit 6A, the second coaxial line 4B, the second power source 5B, the second matching unit 6B, the vacuum vessel (reduced pressure vessel) 307, the exhaust unit 9, and the gas supply unit 10 are mainly used. Is provided.
  • the vacuum container 307 stores the process chamber 2, the gas introduction pipe 10 ⁇ / b> B, the substrate S, and the like.
  • the vacuum vessel 307 has a structure that can withstand a pressure difference.
  • a structure formed of stainless steel (SUS material according to JIS standard), a general structural rolling material (SS material according to JIS standard), a rib material, or the like can be used.
  • the pair of slits 308 and 308 are through holes formed in a substantially rectangular shape on the wall surface of the vacuum vessel 307 and are holes through which the substrate S is carried in or out.
  • the same substrate S as that in the first embodiment or a longer substrate S can be used.
  • a flexible material that can be wound can be used as the material of the substrate S.
  • a roll-to-roll film forming process can be performed using the film forming apparatus 301 of the present embodiment.
  • the film forming process that is the plasma process for the substrate S in the film forming apparatus 301 having the above-described configuration is the same as that of the second embodiment, the description thereof is omitted.
  • the substrate S is carried between the pair of ridge electrodes 21 and 21 from one of the pair of slits 308 and 308, and the substrate S is subjected to plasma processing such as film formation processing. it can. Furthermore, the substrate S on which the film forming process has been performed can be carried out from the other of the pair of slits 308 and 308.
  • the film forming process can be continuously performed on the substrate S having an area larger than that of the pair of ridge electrodes 21 and 21, and the productivity can be improved.
  • the film formation process is performed while moving the substrate S, whereby the substrate S is subjected to a uniform film formation process. A uniform film is formed.
  • the present invention has been described by applying the present invention to a film forming apparatus using the plasma CVD method.
  • the present invention is not limited to the film forming apparatus, and an apparatus for performing plasma processing such as plasma etching. It can be applied to various other devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Plasma Technology (AREA)

Abstract

 製膜される膜の高品質化を図るとともに、大面積化および製膜速度の高速化を図ることができる真空処理装置を提供する。互いに対向して配置され、間にプラズマを生成するリッジ電極を有するリッジ導波管からなる放電室(2)と、放電室(2)に隣接して配置され、リッジ電極に向かってプラズマの形成に用いられる母ガスを供給するガス供給部(10)と、放電室(2)との間にガス供給部(10)を挟む位置に配置され、プラズマによる処理が施される基板(S)と、少なくとも放電室(2)、ガス供給部(10)および基板(S)を内部に収納する減圧容器(7)と、減圧容器(7)におけるガス供給部(10)との間に放電室(2)を挟む位置に連通され、減圧容器(7)内部の圧力を低減させる排気部(9)と、が設けられている。

Description

真空処理装置
 本発明は、本発明は、真空処理装置に関し、特にプラズマを用いて基板に処理(ドライエッチングも含む)を行う真空処理装置に関する。
 一般的に、薄膜太陽電池の生産性を向上させるためには、高品質なシリコン薄膜を、高速に、かつ、大面積で製膜することが重要である。このような高速かつ大面積な製膜を行う方法としては、プラズマCVD(化学気相成長)法による製膜方法が知られている。
 例えば、薄膜シリコン太陽電池の基本的な材料であるアモルファスシリコン膜は、SiHガス、又は、SiHガスと、水素ガスとの混合気体を原料として、プラズマCVD法により製作されている。アモルファスシリコン膜は単層で用いられる場合があるとともに、微結晶シリコンとの2層タンデムとして、さらには、3層化構造としても用いられるものである。そのため、アモルファスシリコン膜の性能は、積層型の薄膜シリコン太陽電池全体の性能に大きな影響を与えると考えられている。
 その一方で、アモルファスシリコン膜を有する太陽電池(以下、「a-Si太陽電池」と表記する。)には、光劣化による性能低下が生じることが知られている。さらに、アモルファスシリコン膜を高速に製膜した場合には光劣化の程度が増大するため、光劣化による性能低下後におけるa-Si太陽電池の安定化性能は、大幅に低下していた。
 この問題により、a-Si太陽電池におけるアモルファスシリコン膜の製膜速度を上げることが難しいという問題があった。
 光劣化が発生する原因の一つとして、SiHが過剰分解されることにより生成された多分子Si(Siナノクラスター)がアモルファスシリコン膜に混入することが報告されている。
 アモルファスシリコン膜への多分子Siの混入を防止する方法の一つとして、プラズマの生成に用いられる周波数を、従来のRF帯(13MHz)からVHF帯(数十MHz)に変更する方法が知られている。VHF帯の周波数を用いてプラズマを生成することにより、アモルファスシリコン膜の製膜速度が向上されるとともに、光劣化の抑制が図られる。
 しかしながら、VHF帯の周波数を用いたアモルファスシリコン膜の製膜では、光劣化を抑制できるものの十分ではなく、a-Si太陽電池において許容範囲を超える性能低下が起きていた。
 その一方で、Siナノクラスターの基と考えられるSiHラジカルの寿命が短い、すなわち母ガスとの反応性が高いことを利用し、性能低下を抑制したa-Si太陽電池の製造方法が提案されている(例えば、特許文献1参照。)。
 具体的には、平行平板電極であるカソードと、メッシュ状の電極との間にプラズマが生成され、そのプラズマが生成された領域をガス分解領域として、メッシュ状の電極から離れた位置に基板が配置されている。
 このようにすることで、SiHラジカルが基板に拡散するまでに、SiHラジカルと母ガスとが反応し、Siナノクラスターがアモルファスシリコン膜に混入しにくくなる。
 その結果、当該製造方法により製造されたアモルファスシングルセルにおいて、光劣化後の安定化効率が9.3%になるという極めて高い性能が実現されている。
 さらに、母ガスなどの流れを利用して、性能低下を抑制したa-Si太陽電池の製造方法の提案されている(例えば、非特許文献1および2参照。)。
 具体的には、筒型の筐体の内部にホロー電極型のプラズマ生成部が配置され、筐体の一方の端部には、プラズマ生成部に向って母ガスを噴出させるガス供給部が配置されている。その一方で、筐体の他方の端部は、真空ポンプと接続され真空引きが行われている。基板は、プラズマ生成部とともにガス供給部を間に挟む位置に配置されている。
 このようにすることで、ガス供給部から供給された母ガスは、プラズマ生成部を介して真空ポンプに吸引される。すると、プラズマ生成部において生成されたSiナノクラスターも、同様に真空ポンプに吸引される。そのため、Siナノクラスターが基板上のアモルファスシリコン膜に混入しにくくなる。
特開2006-19593号公報
古閑一憲,佐藤宙,中村誠William,宮原弘臣,松崎秀文,白谷正治著、「シランホロー放電を用いたa-Si:H堆積への水素希釈の効果」、第25回「プラズマプロセシング研究会」プロシーディングス、2008年1月23日、p.93-94 W.M.Nakamura,D.Shimokawa,H.Miyahara,K.Koga,and M.Shiratani,Spatial Profile of Deposition Rate of a-Si:H Films in Multi-Hollow Discharge Plasma Chemical Vapor Deposition,Transactions of the Materials Research Society of Japan,32[2],2007,p.469-472
 しかしながら、上述の特許文献1に記載の技術では製膜速度が遅いため、現実のa-Si太陽電池の製造に用いることは困難であるという問題があった。
 上述の非特許文献1および2に記載の技術では、製膜処理が施される基板の面積の大型化を図りにくいという問題があった。
 これは、孔を多数開けた電極に60MHzの超高周波数を印加して孔部にホロー放電を起こさせる方法では、超高周波を用いるがために定在波の影響で電極上の電界が不均一になり、また均一な電界が出来たとしても多数の孔の中で安定して均一なホロー放電を維持することは非常に困難なためである。
 本発明は、上記の課題を解決するためになされたものであって、製膜される膜の高品質化を図るとともに、大面積化および製膜速度の高速化を図ることができる真空処理装置を提供することを目的とする。
 上記目的を達成するために、本発明は、以下の手段を提供する。
 本発明の一態様に係る真空処理装置は、互いに対向して配置され、間にプラズマを生成する一対のリッジ電極を有するリッジ導波管からなる放電室と、前記一対のリッジ電極に向かって前記プラズマの形成に用いられる母ガスを供給するガス供給部と、前記プラズマによる処理が施される基板と、少なくとも前記放電室、前記ガス供給部および前記基板を内部に収納する減圧容器と、該減圧容器における前記基板とともに前記放電室を間に挟む位置に連通され、前記減圧容器内部の圧力を低減させる排気部と、が設けられ、前記放電室には、前記ガス供給部および前記排気部により、前記基板から遠ざかる方向への流れが形成されている。
 上記態様によれば、ガス供給部から一対のリッジ電極に向って母ガスが供給されるとともに、排気部により減圧容器内の流体が排気されるため、放電室の内部には、全体として、基板から遠ざかる流れが形成される。そのため、一対のリッジ電極の間でプラズマが生成されると同時に生成される異物(母ガスがSiHガスの場合には、Siナノクラスターなど)は、当該流れによって、減圧容器から排気部に流入する。
 その一方で、生成された寿命の長いラジカルは拡散により基板に向かって移動するため、基板に処理が施される。
 さらに、リッジ導波管の特性により、一対のリッジ電極の間では電界強度分布が均一になる。さらに、リッジ導波管を用いることにより、電界強度分布が均一化された領域を容易に大面積化できる。
 そのため、基板に対して均一なプラズマを広い範囲に生成することができる。
 上記態様においては、高周波電力を前記放電室に供給する電源と、内部導体および外部導体からなり、前記電源から前記放電室へ前記高周波電力を導く同軸線路と、一対のリッジ部を有するリッジ導波管からなり、前記放電室が延びる方向に隣接して配置され、前記同軸線路から前記放電室へ前記高周波電力を導く変換部と、がさらに設けられ、前記減圧容器の内部には前記変換部も収納されていることが望ましい。
 上記態様によれば、放電室および放電室と隣接する変換部の全体が減圧容器の内部に配置されているため、放電室および変換部自体が圧力差に耐える強度を備える必要がない。そのため、放電室および変換部自体が当該圧力差に耐える強度を備える場合と比較して、放電室および変換部の構成を簡素にすることができ、構成の自由度が高くなる。
 上記態様においては、高周波電力を前記放電室に供給する電源と、内部導体および外部導体からなり、前記電源から前記放電室へ前記高周波電力を導く同軸線路と、一対のリッジ部を有するリッジ導波管からなり、前記放電室が延びる方向に隣接して配置され、前記同軸線路から前記放電室へ前記高周波電力を導く変換部と、がさらに設けられ、前記変換部は前記減圧容器の外部に配置され、前記放電室と前記変換部との間には、前記減圧容器の内部の減圧状態を保つ窓部が設けられていることが望ましい。
 上記態様によれば、放電室が減圧容器の内部に配置されているため、放電室自体が圧力差に耐える強度を備える必要がない。そのため、放電室自体が当該圧力差に耐える強度を備える場合と比較して、放電室の構成を簡素にすることができ、構成の自由度が高くなる。
 さらに、放電室および変換部の全体を減圧容器の内部に配置した場合と比較して、減圧容器の容積を小さくできる。そのため、減圧容器の内部における減圧状態の維持が容易となる。
 その一方で、変換部は大気圧状態の下に置かれるため、減圧状態の下に置かれる放電室と比較して放電が発生しにくくなる。そのため、プラズマを生成する一対のリッジ電極の間でのみ放電を発生させやすくなる。
 上記態様においては、前記減圧容器は、前記基板を相対移動可能に配置するとともに、前記基板を前記減圧容器に出入りさせる一対の開口部が設けられていることが望ましい。
 上記態様によれば、一対の開口部の一方から、一対のリッジ電極の間に基板を搬入させて、基板に対してプラズマ処理を施すことができる。さらに、プラズマ処理が施された基板を一対の開口部の他方から搬出させることができる。
 これにより、基板の搬入、基板へのプラズマ処理、基板の搬出を連続して行うことができる。そのため、一対のリッジ電極よりも大きな面積を有する基板に対して連続してプラズマ処理を施すことができ、生産性の向上を図ることができる。
 さらに、プラズマの分布が不均一であっても、基板を移動させながらプラズマ処理を施すことにより、基板には均一なプラズマ処理が施されることになる。
 その一方で、プラズマが形成される放電室の内部と、基板が移動する領域とは離れているため、基板の移動によるプラズマの乱れが生じることがない。
 上記態様においては、前記減圧容器の内部における、前記放電室と、前記排気部と連通する開口と、の間には、前記排気部に排気される流体の流量を調節する調節部が設けられていることが望ましい。
 上記態様によれば、減圧容器の内部は、調節部によって、放電室、ガス供給部、および、基板が配置された領域と、排気部と連通された領域とに分けられる。そして、放電室等が配置された領域から、排気部と連通された領域に流入する流体の流量は、調節部によって調節される。
 その結果、基板に対するプラズマ処理が行われる放電室等が配置された領域における減圧状態は、排気部および調節部により均一に保たれる。
 本発明の真空処理装置によれば、減圧容器の内部に、基板、ガス供給部および放電室がこの順に配置され、減圧容器におけるガス供給部とともに放電室を間に挟む位置において排気部が連通されているため、製膜される膜の高品質化を図るとともに、大面積化および製膜速度の高速化を図ることができるという効果を奏する。
本発明の第1の実施形態に係る製膜装置の概略構成を説明する模式図である。 図1のプロセス室の構成を説明する部分断面視図である。 図1の第1変換器および第2変換器の構成を説明する模式図である。 図1の製膜装置の別の実施例を説明する模式図である。 図1の製膜装置のさらに別の実施例を説明する模式図である。 本発明の第2の実施形態に係る製膜装置の構成を説明する概略図である。 本発明の第3の実施形態に係る製膜装置の構成を説明する概略図である。 本発明の第4の実施形態に係る製膜装置の構成を説明する概略図である。
〔第1の実施形態〕
 以下、本発明の第1の実施形態に係る製膜装置ついて図1から図3を参照して説明する。
 図1は、本実施形態に係る製膜装置の概略構成を説明する模式図である。図2は、図1のプロセス室の構成を説明する部分断面視図である。
 本実施形態においては、本発明を、面積が1m2以上の大面積な基板に対して、アモルファス太陽電池や微結晶太陽電池や液晶ディスプレイ用TFT(Thin Film Transistor)などに用いられる非晶質シリコン、微結晶シリコンなどの結晶質シリコン、窒化シリコン等からなる膜の製膜処理を行うことが可能な製膜装置(真空処理装置)1に適用する場合について説明する。
 製膜装置1には、図1に示すように、プロセス室(放電室)2と、第1変換器(変換部)3Aと、第2変換器(変換部)3Bと、第1同軸線(同軸線路)4Aと、第1電源(電源)5Aと、第1整合器6Aと、第2同軸線(同軸線路)4Bと、第2電源(電源)5Bと、第2整合器6Bと、真空容器(減圧容器)7と、排気部9と、ガス供給部10と、が主に設けられている。
 プロセス室2は、図1に示すように、内部に配置された基板Sに対してプラズマ処理を施す部分である。
 プロセス室2は、アルミニウムやアルミニウム合金材料などの導電性を有し非磁性または弱磁性を有する材料から形成された部品であって、いわゆるダブルリッジ導波管状に形成されたものである。
 プロセス室2には、図2に示すように、一対のリッジ電極21,21が設けられている。
 一対のリッジ電極21,21は、ダブルリッジ導波管であるプロセス室2におけるリッジ部を構成するものであって、一方のリッジ電極21は他方のリッジ電極21と対向して配置されている。さらに、リッジ電極21には、メッシュやパンチングメタルのように複数の貫通孔が形成されている。
 貫通孔の開口面積は、一対のリッジ電極21,21の間にプラズマが閉じ込められるように設計されていることが望ましい。
 ここで、プロセス室2が延びる方向をL方向(図1における左右方向)、一対のリッジ電極21,21に直交する方向であって、磁力線が延びる方向をE方向(図1における上下方向)、一対のリッジ電極21,21に沿う方向であって、E方向と直交する方向をH方向(図1における紙面に対して直交する方向)とする。
 基板Sとしては透光性ガラス基板を例示することができ、例えば、縦横の大きさが1.4m×1.1mであり、厚さが3.0mmから4.5mmのものを挙げることができる。
 第1変換器3Aおよび第2変換器3Bは、図1に示すように、それぞれ、第1電源5Aおよび第2電源5Bから供給された高周波電力が導入される部分であって、供給された高周波電力をプロセス室2に伝送するものである。
 第1変換器3Aおよび第2変換器3Bは、リッジ導波管の特性を利用して、高周波電力の伝送モードを平行平板モードに変換するものである。
 図3は、図1の第1変換器および第2変換器の構成を説明する模式図である。
 一対のリッジ部31,31の一方、例えば図3における下側のリッジ部31には、第1同軸線4Aにおける内部導体41が電気的に接続されている。一対のリッジ部31,31の他方、例えば図3における上側のリッジ部31には、第1同軸線4Aにおける外部導体42が電気的に接続されている。
 第1同軸線4Aおよび第2同軸線4Bは、図1に示すように、それぞれ、第1電源5Aおよび第2電源5Bから供給された高周波電力を、第1変換器3Aおよび第2変換器3Bに導くものである。
 第1同軸線4Aには、第1電源5Aおよび第1整合器6Aが電気的に接続して設けられている。その一方で、第2同軸線4Bには、第2電源5Bおよび第2整合器6Bが電気的に接続して設けられている。
 第1同軸線4Aおよび第2同軸線4Bには、図3に示すように、内部導体41と、外部導体42とが設けられている。
 内部導体41は、棒状または線状に延びる金属などの導電体から形成されたものである。外部導体42は、内部に内部導体41が配置された円筒状に形成された金属などの導電体から形成されたものである。内部導体41と外部導体42との間には、誘導体(図示せず)が配置されている。
 第1同軸線4Aおよび第2同軸線4Bの構成としては、公知の構成を用いることができ、特に限定するものではない。
 第1電源5Aおよび第2電源5Bは、図1に示すように、プロセス室2に高周波電力を伝送するものである。例えば、周波数が13.56MHz以上、好ましくは30MHzから400MHz(VHF帯からUHF帯)の高周波電力を供給するものであり、それぞれ、供給する高周波電力の位相を調節できるものである。
 従来の同軸線を用いた給電方法と比較して、13.56MHzではダブルリッジ導波管のサイズが大きくなるため、本発明の特徴をより活用するには30MHz以上が好ましい。一方、更に高い周波数になるに従い、プロセス室2が延びる方向に生じる定在波の影響が顕著になるため、400MHz以下が好ましい。
 第1電源5Aは、第1同軸線4Aと電気的に接続され、整合器と第1同軸線4Aを介して第1変換器3Aに高周波電力を供給するものである。その一方で、第2電源5Bは、第2同軸線4Bと電気的に接続され、第2同軸線4Bを介して第2変換器3Bに高周波電力を供給するものである。
 第1変換器3Aおよび第2変換器3Bに供給された高周波電力は、伝送モードが平行平板モードに変換された後にプロセス室2に伝送される。
 電源5としては、公知の高周波電源を用いることができ、特に限定するものではない。
 真空容器7は、図1に示すように、内部にプロセス室2、第1変換器3A、第2変換器3B、後述するガス導入管10B、および、基板Sなどが収納されるものである。
 真空容器7は圧力差に耐えうる構造とされている。例えば、ステンレス鋼(JIS規格におけるSUS材)や、一般構造用圧延材(JIS規格におけるSS材)などから形成されたものや、リブ材などで補強された構成を用いることができる。
 真空容器7には排気部9が接続されている。そのため、真空容器7の内部や、プロセス室2、第1変換器3Aおよび第2変換器3Bの内部は、排気部9により0.1kPaから10kPa程度の真空状態とされる。
 真空容器7の内部には、基板Sが配置される基板支持台71が設けられている。基板支持台71は、図1に示すように、真空容器7の壁面であって、後述する排気部9と連通する開口72が形成された壁面と対向する壁面(図1の下側の壁面)に配置されている。
 基板支持台71は、配置された基板Sの温度および温度分布を調節するものでもある。つまり、基板支持台71は、内部に温度制御された熱媒体を循環したり、または温度制御されたヒータを組み込んだりすることで、自身の温度を制御して、全体が概ね均一な温度を有し、接触している対向電極3の温度を所定の温度に均一化する機能を有する。
 上述の熱媒体は非導電性媒体であり、水素やヘリウムなどの高熱伝導性ガス、フッ素系不活性液体、不活性オイル、及び純水等が熱媒体として使用できる。中でも150℃から250℃の範囲でも圧力が上がらずに制御が容易であることから、フッ素系不活性液体(例えば商品名:ガルデン、F05など)の使用が好適である。
 排気部9は、図1に示すように、プロセス室2、第1変換器3Aおよび第2変換器3Bの内部から気体を排気することにより、真空状態にまで減圧するものである。排気部9は、真空容器7の壁面に形成された開口72と連通されている。
 排気部9としては、公知の真空ポンプなどを用いることができ、特に限定するものではない。
 ガス供給部10は、図1および図2に示すように、プラズマの生成に用いられる基板S表面に製膜する原料ガスを含む母ガス(例えば、SiHガスなど)を、一対のリッジ電極21,21の間に供給するものである。
 ガス供給部10には、ガス供給源10Aと、ガス導入管10Bと、が設けられている。
 ガス供給源10Aは、プロセス室2等から離れた位置に配置され、ガス導入管10Bを介して一対のリッジ電極21,21の間に母ガスを供給するものである。
 ガス導入管10Bは、ガス供給源10Aと接続されているとともに、真空容器壁402Aの内部における基板支持台71とプロセス室2との間に配置されたものである。さらに、ガス導入管10Bは、プロセス室2の一対のリッジ電極21,21に向けて母ガスを噴出させるものでもある。
 次に、上記の構成からなる製膜装置1における基板Sに対するプラズマ処理である製膜処理について説明する。
 基板Sは、図1に示すように、真空容器7の内部における基板支持台71の上に配置される。その後、排気部9に真空容器7の内部から空気などの気体が排気される。真空容器7の内部と、プロセス室2、第1変換器3Aおよび第2変換器3Bの内部とは、一対のリッジ部31,31に形成された貫通孔を介して通じているため、プロセス室2等の内部からも気体が排気される。
 第1電源5Aおよび第2電源5Bから周波数が13.56MHz以上、好ましくは30MHzから400MHzの高周波電力がプロセス室2のリッジ電極21に供給されるとともに、ガス供給部10から一対のリッジ電極21,21の間に、例えばSiHガスなどの母ガスが供給される。
 このとき、排気部の排気量を制御して、プロセス室2等の内部、言い換えると、一対のリッジ電極21,21の間は、0.1kPaから10kPa程度の真空状態に保たれている。
 第1電源5Aから供給された高周波電力は、第1同軸線4Aによって第1整合器6Aを介して第1変換器3Aに伝送される。第1整合器6Aでは高周波電力を伝送する系統におけるインピーダンスなどの値が調節される。第1変換器3Aでは、高周波電力の伝送モードが平行平板モードに変換される。
 第1変換器3Aに供給された高周波電力はプロセス室2に伝送され、一対のリッジ電極21,21の間に電界が形成される。
 第2電源5Bから供給された高周波電力は、第1電源5Aから供給された高周波電力と同様に、第2変換器3Bに伝送されて、伝送モードが平行平板モードに変換される。第2変換器3Bに供給された高周波電力はプロセス室2に伝送されて、一対のリッジ電極21,21の間に電界を形成する。
 プロセス室2には、第1電源5Aから供給された高周波電力と、第2電源5Bから供給された高周波電力により、定在波が形成される。このとき、第1電源5Aおよび第2電源5Bから供給される高周波電力の位相が固定されていると、定在波の位置(位相)が固定され、一対のリッジ電極21,21におけるL方向の電界強度の分布に偏りが生じる。
 そこで、第1電源5Aおよび第2電源5Bの少なくとも一方から供給される高周波電力の位相を調節することにより、プロセス室2に形成される定在波の位置の調節が行われる。これにより、一対のリッジ電極21,21におけるL方向の電界強度の分布が時間的に均一化される。
 具体的には、定在波の位置が、時間の経過に伴いL方向に、Sin波状や、三角波状や、階段(ステップ)状に移動するように第1電源5Aおよび第2電源5Bから供給される高周波電力の位相が調節される。
 定在波が移動する範囲や、定在波を移動させる方式(Sin波状、三角波状、階段状等)や位相調整の周期の適正化は、電力の分布や、プラズマからの発光の分布や、プラズマ密度の分布や、製膜された膜に係る特性の分布等に基づいて行われる。膜に係る特性としては、膜厚や、膜質や、太陽電池等の半導体としての特性などを挙げることができる。
 ガス供給部10のガス供給源10Aから供給された母ガスは、ガス導入管10Bからプロセス室2に向って噴出される。母ガスは、リッジ電極21に形成された貫通孔を介して、一対のリッジ電極21,21の間に流入する。
 一対のリッジ電極21,21の間で母ガスが電離されてプラズマが形成される。母ガスが電離されて形成された製膜種は、一対のリッジ電極21,21の間から、貫通孔を介して基板Sに堆積され、アモルファスシリコン層や結晶質シリコン層などの膜が製膜される。
 その一方で、一対のリッジ電極21,21の間で形成されたSiナノクラスターなど、製膜された膜の品質を低下させるものや、製膜に不要なものは、排気部9により真空容器7の内部から排気される。
 言い換えると、排気部9による排気、および、ガス導入管10Bによる母ガスの噴出により、ガス導入管10Bからプロセス室2を介して排気部9に向う気体の流れが形成される。プラズマにより生成されたSiナノクラスターなどは、この気体の流れに乗って真空容器7から排気される。その一方で、プラズマにより生成された製膜種は、気体の流れに関わらず拡散により基板Sに堆積される。
 次に、上記の構成からなる製膜装置1による試験結果について説明する。
 製膜装置1によるアモルファスシリコン(a-Si)層の製膜は、以下の条件の下で行われた。
 つまり、製膜装置1に供給される母ガスは100%のSiHであり、母ガスは10SLM(standard liter/min)の流量で供給されている。
 真空容器7の内部の圧力は10Paに保たれ、第1電源5Aおよび第2電源5Bから60MHzの高周波電力が一対のリッジ電極21,21に供給されている。
 基板Sは、基板支持台71により220℃の温度に保たれている。
 上述の条件の下で行われたa-Si層の製膜試験より、0.7nm/sの製膜速度が得られた。
 CPM(一定光電流法)測定によるa-Si欠陥密度は、製膜直後の初期段階では、2×1015個/ccであり、光劣化後の段階では7×1015個/ccとなった。
 次に、上述のa-Si層を有するa-Si太陽電池のシングルセル効率について説明する。
 ここで、a-Si太陽電池構造は、ガラス/TCO/p層(B-doped a-SiC:H)/バッファー層(a-SiC:H)/i層(a-Si,250nm/n層(P-doped μc-Si)/裏面電極(ZnO/Ag)である。
 a-Si太陽電池の製造直後におけるシングルセル効率である初期効率は10.1%であり、光劣化後の効率は9.4%である。
 上記の構成によれば、ガス供給部10のガス導入管10Bから一対のリッジ電極21,21に向って母ガスが供給されるとともに、排気部9により真空容器7内の気体が排気されるため、真空容器7の内部には、全体として、基板Sからプロセス室2に向う流れが形成される。そのため、一対のリッジ電極21,21の間でプラズマが生成されると同時に生成されるSiナノクラスターなどの異物は、当該流れによって、真空容器7から排気部9に流入する。
 その一方で、生成されたプラズマは電位差により基板Sに向かって移動するため、基板Sにプラズマ処理が施される。
 その結果、母ガス流れの方向を工夫することにより、高品質な膜を製膜することができる。
 リッジ導波管の特性により、一対のリッジ電極21,21の間では電界強度分布が均一になる。リッジ導波管を用いることにより、電界強度分布が均一化された領域を容易に大面積化できる。
 そのため、基板Sに対して均一なプラズマを広い範囲に生成することができ、高品質な膜を大面積で製膜することができるとともに、高速で製膜することができる。
 上述の実施形態では、真空容器7内で基板Sが水平方向(図1の左右方向)に延びて配置される例に適用して説明したが、基板Sは垂直方向や、斜め方向に延びて配置されていてもよく、特に限定するものではない。
 図4は、図1の製膜装置の別の実施例を説明する模式図である。
 ガス導入管10Bの配置位置は、図1および図2に示すように、基板Sとリッジ電極21の間であってもよいし、図4に示すように、第1変換器3Aと基板Sとの間、および、第2変換器3Bと基板Sとの間であってもよく、特に限定するものではない。
 このような位置にガス導入管10Bが配置されている場合には、ガス導入管10Bからそれぞれリッジ電極2に向けて噴出された母ガスは、リッジ電極2の間に流入する。ガス供給源10Bのリッジ電極2に向う面には、ガス供給のための噴出孔がH方向に沿って複数設けられている。
 その後は、上述の実施形態と同様に、Siナノクラスターなどは、リッジ電極21に形成された貫通孔から排気部9により真空容器7の内部から排気され、製膜種は拡散により基板Sへ向かい、基板S上に非晶質シリコンや結晶質シリコン薄膜が形成される。
 図5は、図1の製膜装置の別の実施例を説明する模式図である。
 ガス導入管10Bは、図5に示すように、第1変換器3Aの内部、および、第2変換器3Bの内部に配置され、一対のリッジ電極2の間に向けて母ガスが噴出される構成であってもよく、特に限定するものではない。
 この場合、第1変換器3Aと基板Sとの間、および、第2変換器3Bと基板Sとの間にキャリアガス供給部10Cから供給されたキャリアガスを、それぞれリッジ電極2に向って噴出させるキャリアガス導入管10Dが配置されていることが望ましい。
 このようにすることで、キャリアガス導入管10Dから噴出されたキャリアガスは、排気部9に向うガス流れにのってリッジ電極2の間に流入する。同時に、ガス導入管10Bから噴出された母ガスは、リッジ電極2の間に流入する。
 その後は、上述の実施形態と同様に、Siナノクラスターなどは、リッジ電極21に形成された貫通孔から排気部9により真空容器7の内部から排気され、製膜種は拡散により基板Sへ向かい、基板S上に非晶質シリコンや結晶質シリコン薄膜が形成される。
〔第2の実施形態〕
 次に、本発明の第2の実施形態について図6を参照して説明する。
 本実施形態の製膜装置の基本構成は、第1の実施形態と同様であるが、第1の実施形態とは、プロセス室、第1変換器および第2変換器の構成が異なっている。よって、本実施形態においては、図6を用いてプロセス室などの周辺のみを説明し、その他の構成要素等の説明を省略する。
 図6は、本実施形態に係る製膜装置の構成を説明する概略図である。
 第1の実施形態と同一の構成要素には、同一の符号を付してその説明を省略する。
 製膜装置(真空処理装置)101には、図6に示すように、プロセス室2と、第1変換器(変換部)103Aと、第2変換器(変換部)103Bと、第1同軸線4Aと、第1電源5Aと、第1整合器6Aと、第2同軸線4Bと、第2電源5Bと、第2整合器6Bと、真空容器(減圧容器)107と、排気部9と、ガス供給部10と、が主に設けられている。
 第1変換器103Aおよび第2変換器103Bは、図6に示すように、それぞれ、第1電源5Aおよび第2電源5Bから供給された高周波電力が導入される部分であって、供給された高周波電力をプロセス室2に伝送するものである。
 第1変換器103Aおよび第2変換器103Bは、リッジ導波管の特性を利用して、高周波電力の伝送モードを平行平板モードに変換するものである。
 第1変換器103Aおよび第2変換器103Bは、第1の実施形態の第1変換器3Aおよび第2変換器3Bと比較して、真空容器107の外側に配置されている点や、その内部が減圧されず大気圧となっている点が異なっている。
 第1変換器103Aとプロセス室2との間、および、第2変換器103Bとプロセス室2との間には、真空窓(窓部)104が配置されている。
 真空窓104は、プロセス室2の内部における真空状態を保つとともに、第1変換器103Aとプロセス室2との間、および、第2変換器103Bとプロセス室2との間における高周波電力の伝送を阻害しないものである。
 真空窓104を形成する材料としては石英ガラスなど、真空窓として一般的に用いられる材料から形成されたものを用いることができ、特に限定するものではない。
 真空容器107は、図6に示すように、内部にプロセス室2、ガス導入管10B、および、基板Sなどが収納されるものである。つまり、第1変換器103Aおよび第2変換器103Bが収納されていない点で第1の実施形態における真空容器7と異なっている。
 真空容器107は真空容器107の内部と外部の圧力差に耐えうる構造とされている。例えば、ステンレス鋼(JIS規格におけるSUS材)や、一般構造用圧延材(JIS規格におけるSS材)などから形成されたものや、リブ材などで補強された構成を用いることができる。
 真空容器107には排気部9と接続される開口72が設けられている。そのため、真空容器107の内部や、プロセス室2の内部は、排気部9により0.1kPaから10kPa程度の真空状態とされる。
 上記の構成からなる製膜装置101における基板Sに対するプラズマ処理である製膜処理については、第1の実施形態と同様であるため、その説明を省略する。
 上記の構成によれば、プロセス室2が真空容器107の内部に配置されているため、プロセス室2自体が圧力差に耐える強度を備える必要がない。そのため、プロセス室2自体が当該圧力差に耐える強度を備える場合と比較して、プロセス室2の構成を簡素にすることができ、プロセス室2の構成の自由度を高くすることができる。
 プロセス室2、第1変換器103Aおよび第2変換器103Bの全体を真空容器107の内部に配置した場合と比較して、真空容器107の容積を小さくできる。そのため、真空容器107の内部における真空状態の維持が容易となる。
 その一方で、第1変換器103Aおよび第2変換器103Bは大気圧状態の下に置かれるため、真空状態の下に置かれるプロセス室2と比較して放電が発生しにくくなる。そのため、プラズマを生成する一対のリッジ電極21,21の間でのみ放電を発生させやすくなる。
〔第3の実施形態〕
 次に、本発明の第3の実施形態について図7を参照して説明する。
 本実施形態の製膜装置の基本構成は、第2の実施形態と同様であるが、第2の実施形態とは、真空容器の構成が異なっている。よって、本実施形態においては、図7を用いて真空容器の構成のみを説明し、その他の構成要素等の説明を省略する。
 図7は、本実施形態に係る製膜装置の構成を説明する概略図である。
 第2の実施形態と同一の構成要素には、同一の符号を付してその説明を省略する。
 製膜装置(真空処理装置)201には、図7に示すように、プロセス室2と、第1変換器103Aと、第2変換器103Bと、第1同軸線4Aと、第1電源5Aと、第1整合器6Aと、第2同軸線4Bと、第2電源5Bと、第2整合器6Bと、真空容器(減圧容器)207と、排気部9と、ガス供給部10と、が主に設けられている。
 真空容器207は、図7に示すように、内部にプロセス室2、ガス導入管10B、および、基板Sなどが収納されるものである。
 真空容器207は圧力差に耐えうる構造とされている。例えば、ステンレス鋼(JIS規格におけるSUS材)や、一般構造用圧延材(JIS規格におけるSS材)などから形成されたものや、リブ材などで補強された構成を用いることができる。
 真空容器207には排気部9と接続される開口72が設けられているとともに、排気調整板(調節部)209が設けられている。
 排気調整板209は、真空容器207におけるプロセス室2や基板Sが配置されている領域の圧力条件を均一にするものである。
 排気調整板209は複数の貫通孔が形成された板状の部材であり、例えば、パンチングメタルやメッシュなどを排気調整板209として用いることができる。
 排気調整板209は、プロセス室2と開口72との間に配置されている。これにより、真空容器207の内部は、開口72と連通する領域(図7の上側の領域)と、プロセス室2や基板Sが配置される領域(図7の下側の領域)とに分割されている。
 上記の構成からなる製膜装置201における基板Sに対するプラズマ処理である製膜処理については、第2の実施形態と同様であるため、その説明を省略する。
 上記の構成によれば、排気調整板209によって、真空容器207の内部は、プロセス室2、ガス導入管10B、および、基板Sなどが配置された領域と、排気部9と連通された領域とに分けられる。そして、プロセス室2等が配置された領域から、排気部9と連通された領域に流入する母ガス等の流量は、排気調整板209によって調節される。すると、プロセス室2等が配置された領域における圧力分布が均一化される。
 その結果、基板Sに対するプラズマ処理が行われるプロセス室2等が配置された領域における真空状態は、排気部9および排気調整板209により均一に保つことができる。
〔第4の実施形態〕
 次に、本発明の第4の実施形態について図8を参照して説明する。
 本実施形態の製膜装置の基本構成は、第2の実施形態と同様であるが、第2の実施形態とは、基板の搬入搬出に関する構成が異なっている。よって、本実施形態においては、図8を用いて基板の搬入搬出に関する構成のみを説明し、その他の構成要素等の説明を省略する。
 図8は、本実施形態に係る製膜装置の構成を説明する概略図である。
 第2の実施形態と同一の構成要素には、同一の符号を付してその説明を省略する。
 製膜装置(真空処理装置)301には、図8に示すように、プロセス室2と、第1変換器103Aと、第2変換器103Bと、第1同軸線4Aと、第1電源5Aと、第1整合器6Aと、第2同軸線4Bと、第2電源5Bと、第2整合器6Bと、真空容器(減圧容器)307と、排気部9と、ガス供給部10と、が主に設けられている。
 真空容器307は、図8に示すように、内部にプロセス室2、ガス導入管10B、および、基板Sなどが収納されるものである。
 真空容器307は圧力差に耐えうる構造とされている。例えば、ステンレス鋼(JIS規格におけるSUS材)や、一般構造用圧延材(JIS規格におけるSS材)などから形成されたものや、リブ材などで補強された構成を用いることができる。
 真空容器307の壁面であって、基板Sが延びる方向(H方向)と交差する部分には、基板Sが真空容器307に搬入、または、真空容器307から搬出される一対のスリット(開口部)308,308が設けられている。
 一対のスリット308,308は、真空容器307の壁面に略長方形状に形成された貫通孔であって、基板Sが搬入または搬出される孔である。
 本実施形態では、第1の実施形態と同様な基板Sや、さらに長尺に形成された基板Sを用いることができる。
 基板Sの材料として透光性ガラス基板の他に、巻き取りが可能な柔軟性を有する材料を用いることができる。この場合には、本実施形態の製膜装置301を用いてロール・ツー・ロール方式の製膜処理を行うことができる。
 上記の構成からなる製膜装置301における基板Sに対するプラズマ処理である製膜処理については、第2の実施形態と同様であるため、その説明を省略する。
 上記の構成によれば、一対のスリット308,308の一方から、一対のリッジ電極21,21の間に基板Sを搬入させて、基板Sに対して製膜処理などのプラズマ処理を施すことができる。さらに、製膜処理が施された基板Sを一対のスリット308,308の他方から搬出させることができる。
 これにより、基板Sの搬入、基板Sへの製膜処理、基板Sの搬出を連続して行うことができる。そのため、一対のリッジ電極21,21よりも大きな面積を有する基板Sに対して連続して製膜処理を施すことができ、生産性の向上を図ることができる。
 一対のリッジ電極21,21の間に形成されたプラズマの分布が不均一であっても、基板Sを移動させながら製膜処理を行うにより、基板Sには均一な製膜処理が施され、均一な膜が製膜されることになる。
 その一方で、プラズマが形成される一対のリッジ電極21,21の間と、基板Sが移動する領域とは分離されているため、基板Sの移動のよるプラズマの乱れが生じることがない。そのため、基板Sに対して均一な製膜処理を施すことができる。
 本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、上記の実施の形態においては、この発明をプラズマCVD法による製膜装置に適用して説明したが、この発明は製膜装置に限られることなく、プラズマエッチングなどのプラズマ処理を行う装置など、その他各種の装置に適用できるものである。
 1,101,201,301 製膜装置(真空処理装置)
 2 プロセス室(放電室)
 3A,103A 第1変換器(変換部)
 3B,103B 第2変換器(変換部)
 4A 第1同軸線(同軸線路)
 4B 第2同軸線(同軸線路)
 5A 第1電源(電源)
 5B 第2電源(電源)
 7,107,207,307 真空容器(減圧容器)
 21 リッジ電極
 41 内部導体
 42 外部導体
 104 真空窓(窓部)
 209 排気調整板(調節部)
 308 一対のスリット(開口部)
 S 基板

Claims (5)

  1.  互いに対向して配置され、間にプラズマを生成するリッジ電極を有するリッジ導波管からなる放電室と、
     前記リッジ電極に向かって前記プラズマの形成に用いられる母ガスを供給するガス供給部と、
     前記プラズマによる処理が施される基板と、
     少なくとも前記放電室、前記ガス供給部および前記基板を内部に収納する減圧容器と、
     該減圧容器における前記基板とともに前記放電室を間に挟む位置に連通され、前記減圧容器内部の圧力を低減させる排気部と、
    が設けられ、
     前記放電室には、前記ガス供給部および前記排気部により、前記基板から遠ざかる方向への流れが形成される真空処理装置。
  2.  高周波電力を前記放電室に供給する電源と、
     内部導体および外部導体からなり、前記電源から前記放電室へ前記高周波電力を導く同軸線路と、
     リッジ部を有するリッジ導波管からなり、前記放電室が延びる方向に隣接して配置され、前記同軸線路から前記放電室へ前記高周波電力を導く変換部と、
    がさらに設けられ、
     前記減圧容器の内部には前記変換部も収納されている請求項1記載の真空処理装置。
  3.  高周波電力を前記放電室に供給する電源と、
     内部導体および外部導体からなり、前記電源から前記放電室へ前記高周波電力を導く同軸線路と、
     リッジ部を有するリッジ導波管からなり、前記放電室が延びる方向に隣接して配置され、前記同軸線路から前記放電室へ前記高周波電力を導く変換部と、
    がさらに設けられ、
     前記変換部は前記減圧容器の外部に配置され、前記放電室と前記変換部との間には、前記減圧容器の内部の減圧状態を保つ窓部が設けられている請求項1記載の真空処理装置。
  4.  前記減圧容器は、前記基板を相対移動可能に配置するとともに、前記基板を前記減圧容器に出入りさせる一対の開口部が設けられている請求項1から3のいずれかに記載の真空処理装置。
  5.  前記減圧容器の内部における、前記放電室と、前記排気部と連通する開口と、の間には、前記排気部に排気される流体の流量を調節する調節部が設けられている請求項1から4のいずれかに記載の真空処理装置。
PCT/JP2010/052186 2009-07-08 2010-02-15 真空処理装置 WO2011004621A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/203,757 US20110308735A1 (en) 2009-07-08 2010-02-15 Vacuum processing apparatus
EP10796932A EP2453466A1 (en) 2009-07-08 2010-02-15 Vacuum processing apparatus
CN201080012376.4A CN102356452B (zh) 2009-07-08 2010-02-15 真空处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009161947A JP5517509B2 (ja) 2009-07-08 2009-07-08 真空処理装置
JP2009-161947 2009-07-08

Publications (1)

Publication Number Publication Date
WO2011004621A1 true WO2011004621A1 (ja) 2011-01-13

Family

ID=43429046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052186 WO2011004621A1 (ja) 2009-07-08 2010-02-15 真空処理装置

Country Status (5)

Country Link
US (1) US20110308735A1 (ja)
EP (1) EP2453466A1 (ja)
JP (1) JP5517509B2 (ja)
CN (1) CN102356452B (ja)
WO (1) WO2011004621A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017717A1 (ja) * 2010-08-06 2012-02-09 三菱重工業株式会社 真空処理装置及びプラズマ処理方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9170440B2 (en) 2008-07-01 2015-10-27 Duke University Polymer optical isolator
US8009942B2 (en) * 2008-07-01 2011-08-30 Duke University Optical isolator
JP5517827B2 (ja) * 2010-08-17 2014-06-11 三菱重工業株式会社 真空処理装置およびプラズマ処理方法
JP5517826B2 (ja) * 2010-08-17 2014-06-11 三菱重工業株式会社 真空処理装置およびプラズマ処理方法
JP5822658B2 (ja) * 2011-10-31 2015-11-24 三菱重工業株式会社 真空処理装置
JP5839937B2 (ja) * 2011-10-31 2016-01-06 三菱重工業株式会社 真空処理装置
JP5432395B1 (ja) * 2013-02-28 2014-03-05 三井造船株式会社 成膜装置及び成膜方法
JP7184254B2 (ja) * 2018-12-06 2022-12-06 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
CN113675547A (zh) * 2021-08-18 2021-11-19 电子科技大学 一种紧凑型双脊波导窗

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129555A (ja) * 1995-10-26 1997-05-16 Mitsubishi Heavy Ind Ltd プラズマ化学蒸着装置
JPH09186150A (ja) * 1995-10-31 1997-07-15 Balzers & Leybold Deutsche Holding Ag 化学蒸着法により基板を被覆する装置
JP2006019593A (ja) 2004-07-02 2006-01-19 Mitsubishi Heavy Ind Ltd アモルファス太陽電池の成膜装置、及び、その製造方法
JP2007214296A (ja) * 2006-02-08 2007-08-23 National Institute For Materials Science プラズマプロセス装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1550853A (en) * 1975-10-06 1979-08-22 Hitachi Ltd Apparatus and process for plasma treatment
DE3918256A1 (de) * 1989-06-05 1990-12-06 Standard Elektrik Lorenz Ag Vorrichtung zur abscheidung von dielektrischen schichten
JPH0329555A (ja) * 1989-06-27 1991-02-07 Nec Corp 議事内容蓄積方式
JP2961103B1 (ja) * 1998-04-28 1999-10-12 三菱重工業株式会社 プラズマ化学蒸着装置
US6250250B1 (en) * 1999-03-18 2001-06-26 Yuri Maishev Multiple-cell source of uniform plasma
JP4371543B2 (ja) * 2000-06-29 2009-11-25 日本電気株式会社 リモートプラズマcvd装置及び膜形成方法
CN101552230B (zh) * 2003-02-06 2011-05-25 株式会社半导体能源研究所 半导体制造装置
JP4393844B2 (ja) * 2003-11-19 2010-01-06 東京エレクトロン株式会社 プラズマ成膜装置及びプラズマ成膜方法
US20060162661A1 (en) * 2005-01-22 2006-07-27 Applied Materials, Inc. Mixing energized and non-energized gases for silicon nitride deposition
KR100688837B1 (ko) * 2005-05-12 2007-03-02 삼성에스디아이 주식회사 결정질 실리콘 증착을 위한 화학기상증착장치
US20130084408A1 (en) * 2010-08-06 2013-04-04 Mitsubishi Heavy Industries, Ltd. Vacuum processing apparatus and plasma processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129555A (ja) * 1995-10-26 1997-05-16 Mitsubishi Heavy Ind Ltd プラズマ化学蒸着装置
JPH09186150A (ja) * 1995-10-31 1997-07-15 Balzers & Leybold Deutsche Holding Ag 化学蒸着法により基板を被覆する装置
JP2006019593A (ja) 2004-07-02 2006-01-19 Mitsubishi Heavy Ind Ltd アモルファス太陽電池の成膜装置、及び、その製造方法
JP2007214296A (ja) * 2006-02-08 2007-08-23 National Institute For Materials Science プラズマプロセス装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K. KOGA, H. SATO, W.M. NAKAMAURA, H. MIYAHARA, H. MATSUZAKI, M. SHIRATANI: "Effects of hydrogen dilution on a-Si:H deposition using silane hollow discharge", PROCEEDINGS OF THE 25TH SYMPOSIUM ON PLASMA PROCESSING, 23 January 2008 (2008-01-23), pages 93 - 94
W.M. NAKAMURA, D. SHIMOKAWA, H. MIYAHARA, K. KOGA, M. SHIRATANI: "Spatial Profile of Deposition Rate of a-Si:H Films in Multi-Hollow Discharge Plasma Chemical Vapor Deposition", TRANSACTIONS OF THE MATERIALS RESEARCH SOCIETY OF JAPAN, vol. 32, no. 2, 2007, pages 469 - 472

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017717A1 (ja) * 2010-08-06 2012-02-09 三菱重工業株式会社 真空処理装置及びプラズマ処理方法

Also Published As

Publication number Publication date
CN102356452B (zh) 2014-01-01
US20110308735A1 (en) 2011-12-22
JP5517509B2 (ja) 2014-06-11
CN102356452A (zh) 2012-02-15
EP2453466A1 (en) 2012-05-16
JP2011018753A (ja) 2011-01-27

Similar Documents

Publication Publication Date Title
JP5517509B2 (ja) 真空処理装置
JP5259189B2 (ja) シリコン系薄膜光電変換装置の製造方法
JP4553891B2 (ja) 半導体層製造方法
US5514217A (en) Microwave plasma CVD apparatus with a deposition chamber having a circumferential wall comprising a curved moving substrate web and a microwave applicator means having a specific dielectric member on the exterior thereof
JP5199962B2 (ja) 真空処理装置
WO2007148569A1 (ja) プラズマ処理装置、プラズマ処理方法、および光電変換素子
JP2007262541A (ja) 微結晶シリコン膜形成方法及び太陽電池
US20100323125A1 (en) Atomic layer deposition apparatus and atomic layer deposition method
JP5378416B2 (ja) プラズマ処理装置
JP2007266094A (ja) プラズマcvd装置及びプラズマcvdによる半導体薄膜の成膜方法
JP4158726B2 (ja) 薄膜製造装置
JP4119820B2 (ja) プラズマcvd装置および光電変換装置の製造方法
JP5053595B2 (ja) Dlc膜の形成方法及びdlc膜の製造装置
JP2009123906A (ja) プラズマ処理装置
JP2008004813A (ja) シリコン系薄膜光電変換素子の製造方法、製造装置およびシリコン系薄膜光電変換素子
WO2022173543A1 (en) Method and apparatus of low temperature plasma enhanced chemical vapor deposition of graphene
JP2007227522A (ja) 光電変換装置の製造装置および光電変換装置の製造方法
JP2008004815A (ja) プラズマ処理方法およびその方法を用いて製造された光電変換素子
JP4302010B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP2011109141A (ja) プラズマcvd装置及びプラズマcvd装置を用いたシリコン系膜の製造方法
JP4906822B2 (ja) 薄膜形成装置および薄膜形成方法
JP2722115B2 (ja) マイクロ波プラズマcvd法により大面積の機能性堆積膜を連続的に形成する方法及び装置
JP5308733B2 (ja) 非一体型カソード電極及びプラズマcvd装置
JP2001291882A (ja) 薄膜の製造方法
JP4981387B2 (ja) 薄膜製造装置及び太陽電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012376.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10796932

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13203757

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010796932

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE