JP4393844B2 - プラズマ成膜装置及びプラズマ成膜方法 - Google Patents

プラズマ成膜装置及びプラズマ成膜方法 Download PDF

Info

Publication number
JP4393844B2
JP4393844B2 JP2003389469A JP2003389469A JP4393844B2 JP 4393844 B2 JP4393844 B2 JP 4393844B2 JP 2003389469 A JP2003389469 A JP 2003389469A JP 2003389469 A JP2003389469 A JP 2003389469A JP 4393844 B2 JP4393844 B2 JP 4393844B2
Authority
JP
Japan
Prior art keywords
plasma
excitation gas
plasma excitation
gas supply
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003389469A
Other languages
English (en)
Other versions
JP2005150612A (ja
Inventor
拓 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2003389469A priority Critical patent/JP4393844B2/ja
Priority to PCT/JP2004/017162 priority patent/WO2005050723A1/ja
Priority to US10/579,777 priority patent/US7658799B2/en
Priority to KR1020067011706A priority patent/KR100812829B1/ko
Publication of JP2005150612A publication Critical patent/JP2005150612A/ja
Application granted granted Critical
Publication of JP4393844B2 publication Critical patent/JP4393844B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means

Description

本発明は,基板上に成膜するプラズマ成膜装置及びプラズマ成膜方法に関する。
例えば半導体装置や液晶表示装置の製造プロセスにおいては,例えば基板の表面に導電性の膜や絶縁膜を形成する成膜処理が行われている。この成膜処理には,基板上にプラズマを用いて成膜するプラズマ成膜処理が採用されている。
上記プラズマ成膜処理は,通常プラズマ成膜装置で行われ,このプラズマ処理装置には,従来より,マイクロ波電界によりプラズマを発生させて成膜するプラズマ成膜装置が多用されている。このマイクロ波によるプラズマ成膜装置によれば,高密度のプラズマにより,基板への成膜処理を短時間で効率的に行うことができる。
上述のプラズマ成膜装置は,通常処理容器内の底部に,基板を載置する載置台を備え,処理容器の天井部に,処理容器内にマイクロ波を供給するラジアルラインスロットアンテナを備えている。そして,基板に成膜処理を施す際には,天井部のラジアルラインスロットアンテナから処理容器内に供給されたマイクロ波によって,処理容器内のプラズマ励起用ガスをプラズマ化し,そのプラズマ中の荷電粒子により例えば処理容器内の原料ガスを解離させ,当該解離されて生成されたラジカルなどにより基板上に所定の膜を堆積させている。
ところで,近年,マイクロ波によるプラズマ成膜装置には,ラジアルラインスロットアンテナと載置台との間に,処理容器内を上側のプラズマ生成領域と下側の原料ガス解離領域とに分割する格子状の構造体が設けられたものが提案されている(例えば,特許文献1参照。)。このプラズマ成膜装置では,プラズマ生成領域にプラズマ励起用ガスを供給する供給口がラジアルラインスロットアンテナと同じ処理容器の天井部に設けられている。当該プラズマ励起用ガスの供給口に通じる通路は,ラジアルラインスロットアンテナの下部を通過している。また,原料ガス解離領域に原料ガスを供給する供給口は,前記構造体の下面に設けられている。そして,成膜時には,処理容器の天井部からプラズマ生成領域内に供給されたマイクロ波によって,同じく天井部からプラズマ生成領域内に供給されたプラズマ励起用ガスがプラズマ化する。当該プラズマ中の荷電粒子が格子状の構造体を通過し,原料ガス解離領域において原料ガスを解離させて,基板上に膜が形成される。このプラズマ成膜装置によれば,プラズマ生成領域と原料ガス解離領域とが分けられているので,例えば解離したラジカルが処理容器上部のラジアルラインスロットアンテナなどに付着してマイクロ波が減衰することを抑制することができ,またプラズマ中の多量の荷電粒子が直接基板に衝突して基板や基板上の膜を破壊することを抑制できる。
しかしながら,上述のプラズマ成膜装置では,プラズマ励起用ガスの供給口やその供給口に通じるプラズマ励起用ガスの通路がラジアルラインスロットアンテナの直下に配置されているため,その供給口や通路内の供給前のプラズマ励起用ガスにマイクロ波が照射され,一部のプラズマ励起用ガスが通路内でプラズマ化する。このため,高エネルギの荷電粒子がプラズマ励起用ガスの通路内や供給口付近の内壁に衝突し,その内壁が破損することがあった。それ故,上述のプラズマ成膜装置では,メンテナンスや部品の取り替えを頻繁に行う必要が生じ,装置稼働率の低下やコストの増大を招いていた。また,プラズマ励起用ガスが通路内等でプラズマ化した結果,プラズマ生成領域に供給されるプラズマ励起用ガスの量が不十分になり,プラズマ生成領域において適正にプラズマが生成されず,基板上の成膜に影響を及ぼすことがあった。
特開2002−399330号公報
本発明は,かかる点に鑑みてなされたものであり,プラズマ励起用ガスが処理容器内に供給される前にプラズマ化することを防止し,プラズマ生成領域である高周波供給部側の領域内でプラズマを適正に生成させるプラズマ成膜装置とプラズマ成膜方法を提供することをその目的とする。
上記目的を達成するために,本発明は,基板上にプラズマを用いて成膜するプラズマ成膜装置であって,基板を収容し処理する処理容器と,前記処理容器内において基板を載置する載置部と,前記載置部に載置された基板に対向する位置に設けられ,前記処理容器内にプラズマ生成用の高周波を供給する高周波供給部と,前記高周波供給部と前記載置部との間に設けられ,前記処理容器内を,前記高周波供給部側の領域と前記載置部側の領域に区画する平板状の構造体と,前記高周波供給部側の領域に対し,少なくとも前記高周波供給部の中央部下方からプラズマ励起用ガスを供給するプラズマ励起用ガス供給口と,を備え,前記構造体には,前記載置部側の領域に膜の原料ガスを供給する原料ガス供給口と,前記高周波供給部側の領域で生成されたプラズマを前記載置部側の領域に通過させる開口部が形成されていることを特徴とする。
本発明によれば,処理容器内でプラズマが生成される高周波供給部側の領域に対し下方からプラズマ励起用ガスを供給することができる。こうすることにより,処理容器内に供給される前のプラズマ励起用ガスが高周波供給部による上方からの高周波によってプラズマ化することが防止できる。この結果,荷電粒子によってプラズマ励起用ガス供給口付近やそれに連通する供給通路内が破損することが防止できる。また,高周波供給部側の領域に十分な量のプラズマ励起用ガスを供給することができ,載置部上の基板が適正に成膜される。
前記プラズマ励起用ガス供給口は,複数形成されていてもよく,前記プラズマ励起用ガス供給口は,前記高周波供給部側の領域に対し均等にプラズマ励起用ガスを供給できるように配置されていてもよい。高周波供給部側の領域内にプラズマ励起用ガスが不均一に供給された場合,プラズマ励起用ガス濃度が不均一になり,生成されるプラズマの分布が偏る。高周波供給部側の領域内のプラズマの分布が偏ると,構造体を通過したプラズマによって解離させられるラジカルの濃度も載置部側の領域内において不均一になる。この結果,載置台上の基板面内における成膜速度がばらつき,基板面内の成膜が不均一に行われてしまう。本発明によれば,プラズマ励起用ガスを高周波供給部側の領域に均等に供給できるので,基板上の成膜を基板面内において均一に行うことができる。なお,ここで言う「プラズマ励起用ガス」は,プラズマを生成するために用いられるガスを示す。また,
上記プラズマ成膜装置は,前記高周波供給部側の領域に側方からプラズマ励起用ガスを供給する他のプラズマ励起用ガス供給口をさらに備えていてもよい。かかる場合,高周波供給部側の領域に対し側方からもプラズマ励起用ガスを供給できるので,例えば側方からのプラズマ励起用ガスの供給流量と下方からのプラズマ励起用ガスの供給流量を調整して,高周波供給部側の領域内のプラズマ励起用ガスの濃度を均一にすることができる。この結果,高周波供給部側の領域内に均等にプラズマが生成され,当該プラズマによって載置部側の領域に原料ガスのラジカルが均等に生成される。そして,当該ラジカルによって載置部の基板上に基板面内において均一な膜を形成できる。
前記プラズマ励起用ガス供給口は,平面から見て前記高周波供給部側の領域の中央部に形成されていてもよく,かかる場合,上記他のプラズマ励起用ガス供給口による側方からの供給では届きにくい高周波供給部側の領域の中央部にも十分にプラズマ励起用ガスが供給され,プラズマ励起用ガスの濃度を均一にできる。なお,前記「高周波供給部側の領域の中央部」には,高周波供給部側の領域の中心部のみならず,中心部から所定距離の範囲内にある中心部付近の領域も含まれる。
前記プラズマ励起用ガス供給口は,前記高周波供給部側の領域の下側から上方に向けて形成されていてもよい。また,前記構造体の上面には,プラズマ励起用ガスが通流するプラズマ励起用ガス供給管が前記構造体の上面に沿って配置されており,前記プラズマ励起用ガス供給口は,前記プラズマ励起用ガス供給管に形成されていてもよい。かかる場合,前記構造体の上面に配置されたプラズマ励起用ガス供給管から前記高周波供給部側の領域に向けてプラズマ励起用ガスを供給することができる。また,前記プラズマ励起用ガス供給管は,前記構造体の上面において平面から見て格子状に配置されていてもよい。
前記構造体には,原料ガスの供給源に連通するガス供給管が平面から見て格子状に配置され,前記原料ガス供給口は,前記ガス供給管に複数形成されており,前記ガス供給管は,プラズマ励起用ガスの供給源にも連通しており,前記原料ガス供給口は,前記プラズマ励起用ガス供給口としての機能を有していてもよい。かかる場合,プラズマ励起用ガス供給口から供給されるプラズマ励起用ガスの供給系と原料ガスの供給系とが併用されるので,ガスの供給系を簡素化することができる。
前記プラズマ成膜装置は,前記高周波供給部側の領域内のプラズマ励起用ガスの濃度分布を検出するためのセンサをさらに備えていてもよい。かかる場合,このセンサによる検出結果に基づいて,高周波供給部側の領域内のプラズマ励起用ガスの濃度が均一になるように,前記プラズマ励起用ガス供給口からの供給流量を調節することができる。したがって,高周波供給部側の領域のプラズマ励起用ガス濃度をより正確かつ迅速に均一にすることができる。
本発明は,基板を収容し処理する処理容器と,前記処理容器内において基板を載置する載置部と,前記載置部に載置された基板に対向する位置に設けられ,前記処理容器内にプラズマ生成用の高周波を供給する高周波供給部と,前記高周波供給部と前記載置部との間に設けられ,前記処理容器内を,前記高周波供給部側の領域と前記載置部側の領域に区画し,前記載置部側の領域に膜の原料ガスを供給する原料ガス供給口と,前記高周波供給部側の領域で生成されたプラズマを前記載置部側の領域に通過させる開口部が形成された平板状の構造体と,を備え,前記高周波供給部側の領域がプラズマ励起用ガスからプラズマを生成するプラズマ生成領域であるプラズマ成膜装置を用いたプラズマ成膜方法であって,前記プラズマ生成領域に対し少なくとも前記高周波供給部の中央部下方からプラズマ励起用ガスを供給し,前記中央部下方からのプラズマ励起用ガスの供給流量を調整することによって,前記プラズマ生成領域内のプラズマ励起用ガスの濃度を均一に制御することを特徴とする。
なお,前記プラズマ生成領域内のプラズマ励起用ガスの濃度を均一に制御する際に,前記プラズマ生成領域に対し側方からプラズマ励起用ガスをさらに供給し,前記側方からのプラズマ励起用ガスの供給流量をさらに調整してもよい。
かかる場合,高周波供給部側の領域に対し側方と下方からプラズマ励起用ガスが供給されるので,上方からの高周波によってプラズマ励起用ガスが供給前にプラズマ化することがなく,プラズマ生成領域に十分な量のプラズマ励起用ガスを供給することができる。また,側方からのプラズマ励起用ガスの供給流量と下方からのプラズマ励起用ガスの供給流量の調整し,プラズマ生成領域内のプラズマ励起用ガスの濃度を均一に制御できるので,その後プラズマ生成領域内に偏り無くプラズマを生成させ,プラズマ生成領域に対向する載置部上の基板に対し,基板面内において均等に成膜することができる。
本発明によれば,基板面内における成膜を均一かつ適正に行うことができる。
以下,本発明の実施の形態について説明する。図1は,本発明の実施の形態にかかるプラズマ成膜装置1の縦断面の様子を模式的に示している。このプラズマ成膜装置1は,ラジアルラインスロットアンテナを用いてプラズマを発生させるCVD(chemical vapor deposition)装置である。
プラズマ成膜装置1は,例えば上面が開口した有底円筒状の処理容器2を備えている。処理容器2は,例えばアルミニウム合金により形成されている。処理容器2は,接地されている。処理容器2の底部のほぼ中央部には,例えば基板Wを載置するための載置部としての載置台3が設けられている。
載置台3には,例えば電極板4が内蔵されており,電極板4は,処理容器2の外部に設けられた直流電源5に接続されている。この直流電源5により載置台3の表面に静電気力を生じさせて,基板Wを載置台3上に静電吸着することができる。なお,電極板4には,例えば図示しないバイアス用高周波電源に接続されていてもよい。
処理容器2の上部開口には,例えば気密性を確保するためのOリングなどのシール材10を介して,石英ガラスなどからなる誘電体窓11が設けられている。この誘電体窓11によって処理容器2内が閉鎖されている。誘電体窓11の上部には,プラズマ生成用のマイクロ波を供給する高周波供給部としてのラジアルラインスロットアンテナ12が設けられている。
ラジアルラインスロットアンテナ12は,下面が開口した略円筒状のアンテナ本体20を備えている。アンテナ本体20の下面の開口部には,多数のスロットが形成された円盤状のスロット板21が設けられている。アンテナ本体20内のスロット板21の上部には,低損失誘電体材料により形成された遅相板22が設けられている。アンテナ本体20の上面には,マイクロ波発振装置23に通じる同軸導波管24が接続されている。マイクロ波発振装置23は,処理容器2の外部に設置されており,ラジアルラインスロットアンテナ12に対し,所定周波数,例えば2.45GHzのマイクロ波を発振できる。かかる構成により,マイクロ波発振装置23から発振されたマイクロ波は,ラジアルラインスロットアンテナ12内に伝搬され,遅相板22で圧縮され短波長化された後,スロット板21で円偏波を発生させ,誘電体窓11から処理容器2内に向けて放射される。
処理容器2内の載置台3とラジアルラインスロットアンテナ12との間には,例えば略平板形状の構造体としての原料ガス供給構造体30が設けられている。原料ガス供給構造体30は,外形が平面から見て少なくとも基板Wの直径よりも大きい円形状に形成されている。この原料ガス供給構造体30によって,処理容器2内は,ラジアルラインスロットアンテナ12側のプラズマ生成領域R1と,載置台3側の原料ガス解離領域R2とに区画されている。
原料ガス供給構造体30は,図2に示すように同一平面上で略格子状に配置された一続きの原料ガス供給管31により構成されている。原料ガス供給管31は,軸方向から見て縦断面が方形に形成されている。原料ガス供給管31同士の隙間には,多数の開口部32が形成されている。原料ガス供給構造体30の上側のプラズマ生成領域R1で生成されたプラズマは,この開口部32を通過して載置台3側の原料ガス解離領域R2に進入できる。
原料ガス供給構造体30の原料ガス供給管31の下面には,図1に示すように多数の原料ガス供給口33が形成されている。これらの原料ガス供給口33は,原料ガス供給構造体30面内において均等に配置されている。原料ガス供給管31には,処理容器2の外部に設置された原料ガス供給源34に連通するガス管35が接続されている。原料ガス供給源34には,例えば原料ガスとしてのフッ素添加カーボン系のガス,例えばCガスが封入されている。原料ガス供給源34からガス管35を通じて原料ガス供給管31に導入された原料ガスは,各原料ガス供給口33から下方の原料ガス解離領域R2に向けて供給される。
プラズマ生成領域R1の外周面を覆う処理容器2の内周面には,プラズマの原料となるプラズマ励起用ガスを供給する他のプラズマ励起用ガス供給口としての第1のプラズマ励起用ガス供給口40が形成されている。第1のプラズマ励起用ガス供給口40は,例えば処理容器2の内周面に沿って複数箇所に形成されている。第1のプラズマ励起用ガス供給口40には,例えば処理容器2の側壁部を貫通し,処理容器2の外部に設置された第1のプラズマ励起用ガス供給源41に通じる第1のプラズマ励起用ガス供給管42が接続されている。第1のプラズマ励起用ガス供給管42には,バルブ43,マスフローコントローラ44が設けられている。かかる構成によって,処理容器2内のプラズマ生成領域R1内には,側方から所定流量のプラズマ励起用ガスを供給することができる。本実施の形態においては,第1のプラズマ励起用ガス供給源41に,プラズマ励起用ガスとしての希ガスである,例えばアルゴン(Ar)ガスが封入されている。
原料ガス供給構造体30の上面には,例えば当該原料ガス供給構造体30と同様の構成を有する略平板形状のプラズマ励起用ガス供給構造体50が積層され配置されている。プラズマ励起用ガス供給構造体50は,例えば図3に示すように格子状に配置された第2のプラズマ励起用ガス供給管51により構成されている。第2のプラズマ励起用ガス供給管51の上面には,図1に示すように複数の第2のプラズマ励起用ガス供給口52が形成されている。これらの複数の第2のプラズマ励起用ガス供給口52は,プラズマ励起用ガス供給構造体50面内において均等に配置されている。これにより,プラズマ生成領域R1に対し下側から上方に向けてプラズマ励起用ガスを供給できる。
格子状のプラズマ励起用ガス供給管51同士の隙間には,開口部53が形成されており,プラズマ生成領域R1で生成されたプラズマは,プラズマ励起用ガス供給構造体50と原料ガス供給構造体30を通過して下方の原料ガス解離領域R2に進入できる。
第2のプラズマ励起用ガス供給管51には,処理容器2の外部に設置された第2のプラズマ励起用ガス供給源54に連通するガス管55が接続されている。ガス管55には,バルブ56,マスフローコントローラ57が設けられており,第2のプラズマ励起用ガス供給口52からプラズマ生成領域R1に対し,所定流量のプラズマ励起用ガスを供給できる。本実施の形態において,第2のプラズマ励起用ガス供給源54には,前記第1のプラズマ励起用ガス供給源41と同じアルゴンガスが封入されている。
処理容器2の底部の載置台3を挟んだ両側には,処理容器2内の雰囲気を排気するための排気口60が設けられている。排気口60には,ターボ分子ポンプなどの排気装置61に通じる排気管62が接続されている。この排気口60からの排気により,処理容器2内を所定の圧力に維持できる。
次に,以上のように構成されたプラズマ成膜装置1の作用について説明する。例えばプラズマ成膜装置1の立ち上げ時に,第1のプラズマ励起用ガス供給口40から供給されるプラズマ励起用ガスの流量と第2のプラズマ励起用ガス供給口53から供給されるプラズマ励起用ガスの流量が,プラズマ生成領域R内に供給されるプラズマ励起用ガスの濃度が均一になるように調整される。この流量調整では,例えば排気装置61を稼動させ,処理容器2内に実際の成膜処理時と同じような気流を形成した状態で,各プラズマ励起用ガス供給口40,53から適当な流量に設定されたプラズマ励起用ガスが供給される。そして,その流量設定で,実際に試験用の基板に成膜が施され,その成膜が基板面内で均一に行われたか否かが検査される。プラズマ生成領域R1内のプラズマ励起用ガスの濃度が均一の場合に,基板面内の成膜が均一に行われるので,検査の結果,成膜が基板面内において均一に行われていない場合には,各プラズマ励起用ガスの流量の設定が変更され,再度試験用の基板に成膜が施される。これを繰り返して,成膜が基板面内において均一に行われプラズマ生成領域R1内のプラズマ励起用ガスの濃度が均一になるように,各プラズマ励起用ガス供給口40,53からの流量が設定される。
上述したように各プラズマ励起用ガス供給口40,53の流量が設定された後,プラズマ成膜装置1における基板Wの成膜処理が開始される。先ず,基板Wが処理容器2内に搬入され,載置台3上に吸着保持される。続いて,排気装置61により処理容器2内の排気が開始され,処理容器2内の圧力が所定の圧力,例えば13.3Pa(100mTorr)に減圧され,その状態が維持される。
処理容器2内が減圧されると,プラズマ生成領域R1内に,側方の第1のプラズマ励起用ガス供給口40と下方の第2のプラズマ励起用ガス供給口53から,プラズマ励起用ガスであるアルゴンガスが供給される。このとき,プラズマ生成領域R1内のプラズマ励起用ガスの濃度は,プラズマ生成領域R1内において均等に維持される。ラジアルラインスロットアンテナ12からは,直下のプラズマ生成領域R1に向けて,例えば2.45GHzのマイクロ波が放射される。このマイクロ波の放射によって,プラズマ生成領域R1内においてプラズマ励起用ガスがプラズマ化される。このとき,プラズマは,プラズマ生成領域R1内において偏り無く生成される。
プラズマ生成領域R1内で生成されたプラズマは,プラズマ励起用ガス供給構造体50と原料ガス供給構造体30を通過して下方の原料ガス解離領域R2内に進入する。原料ガス解離領域R2には,原料ガス供給構造体30の各原料ガス供給口33から,原料ガスであるCガスが供給されている。Cガスは,上方から進入したプラズマ粒子により解離され,その解離されたラジカルによって,基板W上には,フッ素添加カーボン膜が堆積し成長する。
その後,フッ素添加カーボン膜の成長が進んで,基板W上に所定厚さのフッ素カーボン膜が形成されると,マイクロ波の放射や,原料ガス,プラズマ励起用ガスの供給が停止され,その後基板Wは,処理容器2から搬出されて一連のプラズマ成膜処理が終了する。
以上の実施の形態によれば,第1のプラズマ励起用ガス供給口40によりプラズマ生成領域R1の側方からプラズマ励起用ガスを供給できるので,従来のように上方からのマイクロ波によってプラズマ励起用ガスが例えばプラズマ励起用ガス供給管内でプラズマ化することがなく,プラズマ励起用ガス供給管内のプラズマ粒子による破損を防止できる。また,第1のプラズマ励起用ガス供給管42を通るプラズマ励起用ガスがプラズマ生成領域R1内に適正に供給されるので,プラズマ生成領域R1内に十分な量のプラズマを生成できる。また,原料ガス供給構造体30の上面に,プラズマ励起用ガス供給構造体50を設けて,プラズマ生成領域R1に対し下方からもプラズマ励起用ガスを供給できるようにしたので,側方と下方からのプラズマ励起用ガスの供給流量を調整して,プラズマ生成領域R1内のプラズマ励起用ガスの濃度を均一になるように制御することができる。この結果,プラズマ生成領域R1内において偏り無くプラズマが生成され,原料ガス解離領域R2においても原料ガスが均等に解離し,基板W上に基板面内において均一な厚みの膜を形成できる。
プラズマ励起用ガス供給構造体50には,格子状に第2のプラズマ励起用ガス供給管51が配置され,その第2のプラズマ励起用ガス供給管51の上面に第2のプラズマ励起用ガス供給口53が複数設けられたので,プラズマ生成領域R1に対し下方から十分なプラズマ励起用ガスを供給し,当該プラズマ励起用ガスの供給によってプラズマ生成領域R1内のプラズマ励起用ガスの濃度を均一にすることができる。
以上の実施の形態では,複数の第2のプラズマ励起用ガス供給口53をプラズマ励起用ガス供給構造体50の全面に渡って形成していたが,第2のプラズマ励起用ガス供給口53をプラズマ励起用ガス供給構造体50の中央部にのみ形成してもよい。例えば第2のプラズマ励起用ガス供給口53を,プラズマ励起用ガス供給構造体50の図4の点線で囲まれた中央領域Hに形成してもよい。この中央領域Hは,例えばプラズマ励起用ガス供給構造体50の外周部よりも内側の領域である。かかる場合,側方の第1のプラズマ励起用ガス供給口40からでは届きにくいプラズマ生成領域R1の中央部にプラズマ励起用ガスを集中的に供給できるので,プラズマ生成領域R1内のプラズマ励起用ガスの濃度を容易に均一にすることできる。
以上の実施の形態で記載したプラズマ成膜装置1は,プラズマ生成領域R1内のプラズマ励起用ガスの濃度分布を検出するセンサをさらに備えていてもよい。かかる場合,例えば図5に示すように処理容器2のプラズマ生成領域R1内に複数の濃度センサ70が設けられる。この濃度センサ70は,プラズマ励起用ガスの濃度を検出できる。濃度センサ70は,例えばプラズマ生成領域R1内の少なくとも中央部と外周部に設けられる。濃度センサ70の検出結果は,例えばマスフローコントローラ44,57を制御する制御部71に出力される。制御部71は,濃度センサ70の検出結果に基づいて,マスフローコントローラ44,57を制御して,第1のプラズマ励起用ガス供給口40と第2のプラズマ励起用ガス供給口53からのプラズマ励起用ガスの各供給流量を調整できる。そして,例えば第1のプラズマ励起用ガス供給口40と第2のプラズマ励起用ガス供給口53からの供給流量を調整する際には,各濃度センサ70によりプラズマ生成領域R1内のプラズマ励起用ガス濃度の分布が検出される。そして,当該検出結果に基づいて,制御部71により,プラズマ生成領域R1内のプラズマ励起用ガスの濃度が均一になるように各供給流量が変更される。かかる場合,第1のプラズマ励起用ガス供給口40と第2のプラズマ励起用ガス供給口53からのプラズマ励起用ガスの供給流量の調整が濃度センサ70によって行われるので,当該調整を迅速かつ正確に行うことができる。なお,この濃度センサ70を用いた流量調整は,プラズマ成膜装置1の立ち上げ時に行われる流量設定時に行ってもよいし,プラズマ成膜装置1の稼働中に行われてもよい。
以上の実施の形態では,処理容器2内にプラズマ励起用ガス供給構造体50を設けて,プラズマ生成領域R1にプラズマ励起用ガスを供給していたが,このプラズマ励起用ガスの供給を原料ガス供給構造体30を利用して行ってもよい。
図6は,かかる一例を示すものであり,原料ガス供給構造体30の原料ガス供給管31に通じるガス管35には,原料ガス供給源34に加えて,プラズマ励起用ガス供給源80が接続される。これによって,プラズマ励起用ガスと原料ガスの供給系が同一系統になり,原料ガス供給口33が第2のプラズマ励起用ガス供給口としての機能も有する。この場合,原料ガス供給管31を通じて原料ガス供給口33から吐出されたプラズマ励起用ガスがプラズマ生成領域R1に下から流入するので,当該原料ガス供給口33と第1のプラズマ励起用ガス供給口40からのプラズマ励起用ガスの各供給流量を調整することによって,プラズマ生成領域R1におけるプラズマ励起用ガスの濃度を均一に制御することができる。なお,この場合,図7に示すように原料ガス供給管31の上面と下面にガスの供給口90を設けるようにしてもよい。
また,上記実施の形態では,プラズマ生成領域R1内に対し側方からプラズマ励起用ガスを供給する第1のプラズマ励起用ガス供給口40と,下方から供給する第2のプラズマ励起用ガス供給口53が処理容器2に設けられていたが,図8に示すように第2のプラズマ励起用ガス供給口53のみが設けられていてもよい。かかる場合,例えば第2のプラズマ励起用ガス供給口53は,プラズマ励起用ガス供給構造体50を構成する第2のプラズマ励起用ガス供給管51に複数形成され,プラズマ励起用ガス供給構造体50面内において均等に配置される。この場合においても,プラズマ励起用ガスが処理容器2内に供給される前にプラズマ化することがないので,プラズマ生成領域R1内において適正にプラズマが生成される。また,プラズマ励起用ガスがプラズマ生成領域R1に対して均等に供給されるので,プラズマ生成領域R1内においてプラズマを偏り無く生成できる。なお,排気口60の位置などに起因して処理容器2内に偏った気流が形成される場合には,プラズマ生成領域R1内に均等にプラズマ励起用ガスが供給されるように,複数の第2のプラズマ励起用ガス供給口53の配置を変更してもよい。
以上,本発明の実施の形態の一例について説明したが,本発明はこの例に限らず種々の態様を採りうるものである。例えば以上の実施の形態では,基板W上にフッ素カーボン膜の絶縁膜を形成していたが,本発明は,他の種類の絶縁膜や電極膜などの他の膜を形成する場合にも適用できる。
本発明は,プラズマを用いて基板上に成膜する際に有用である。
本実施の形態にかかるプラズマ成膜装置の構成の概略を示す縦断面の説明図である。 原料ガス供給構造体の平面図である。 プラズマ励起用ガス供給構造体の平面図である。 第2のプラズマ励起用ガス供給口の形成される位置を説明するためのプラズマ励起用ガス供給構造体の平面図である。 濃度センサを設けたプラズマ成膜装置の構成の概略を示す縦断面の説明図である。 原料ガス供給管にプラズマ励起用ガス供給源を連通させた場合のプラズマ成膜装置の構成の概略を示す縦断面の説明図である。 上面と下面にガスの供給口を設けた原料ガス供給管を示す縦断面の説明図である。 第2のプラズマ励起用ガス供給口のみを備えたプラズマ成膜装置の構成の概略を示す縦断面の説明図である。
符号の説明
1 プラズマ成膜装置
2 処理容器
3 載置台
12 ラジアルラインスロットアンテナ
30 原料ガス供給構造体
40 第1のプラズマ励起用ガス供給口
50 プラズマ励起用ガス供給構造体
53 第2のプラズマ励起用ガス供給口
R1 プラズマ生成領域
R2 原料ガス解離領域
W 基板

Claims (12)

  1. 基板上にプラズマを用いて成膜するプラズマ成膜装置であって,
    基板を収容し処理する処理容器と,
    前記処理容器内において基板を載置する載置部と,
    前記載置部に載置された基板に対向する位置に設けられ,前記処理容器内にプラズマ生成用の高周波を供給する高周波供給部と,
    前記高周波供給部と前記載置部との間に設けられ,前記処理容器内を,前記高周波供給部側の領域と前記載置部側の領域に区画する平板状の構造体と,
    前記高周波供給部側の領域に対し,少なくとも前記高周波供給部の中央部下方からプラズマ励起用ガスを供給するプラズマ励起用ガス供給口と,を備え,
    前記構造体には,前記載置部側の領域に膜の原料ガスを供給する原料ガス供給口と,前記高周波供給部側の領域で生成されたプラズマを前記載置部側の領域に通過させる開口部が形成されていることを特徴とする,プラズマ成膜装置。
  2. 前記プラズマ励起用ガス供給口は,複数形成されていることを特徴とする,請求項1に記載のプラズマ成膜装置。
  3. 前記プラズマ励起用ガス供給口は,前記高周波供給部側の領域に対し均等にプラズマ励起用ガスを供給できるように配置されていることを特徴とする,請求項2に記載のプラズマ成膜装置。
  4. 前記高周波供給部側の領域に側方からプラズマ励起用ガスを供給する他のプラズマ励起用ガス供給口をさらに備えたことを特徴とする,請求項1又は2のいずれかに記載のプラズマ成膜装置。
  5. 前記プラズマ励起用ガス供給口は,平面から見て前記高周波供給部側の領域の中央部に形成されていることを特徴とする,請求項4に記載のプラズマ成膜装置。
  6. 前記プラズマ励起用ガス供給口は,前記高周波供給部側の領域の下側から上方に向けて形成されていることを特徴とする,請求項1,2,3,4又は5のいずれかに記載のプラズマ成膜装置。
  7. 前記構造体の上面には,プラズマ励起用ガスが通流するプラズマ励起用ガス供給管が前記構造体の上面に沿って配置されており,
    前記プラズマ励起用ガス供給口は,前記プラズマ励起用ガス供給管に形成されていることを特徴とする,請求項1,2,3,4,5又は6のいずれかに記載のプラズマ成膜装置。
  8. 前記プラズマ励起用ガス供給管は,前記構造体の上面において平面から見て格子状に配置されていることを特徴とする,請求項7に記載のプラズマ成膜装置。
  9. 前記構造体には,原料ガスの供給源に連通するガス供給管が平面から見て格子状に配置され,
    前記原料ガス供給口は,前記ガス供給管に複数形成されており,
    前記ガス供給管は,プラズマ励起用ガスの供給源にも連通しており,
    前記原料ガス供給口は,前記プラズマ励起用ガス供給口としての機能を有することを特徴とする,請求項1,2,3,4,5又は6のいずれかに記載のプラズマ成膜装置。
  10. 前記高周波供給部側の領域内のプラズマ励起用ガスの濃度分布を検出するためのセンサをさらに備えたことを特徴とする,請求項1,2,3,4,5,6,7,8又は9のいずれかに記載のプラズマ成膜装置。
  11. 基板を収容し処理する処理容器と,前記処理容器内において基板を載置する載置部と,前記載置部に載置された基板に対向する位置に設けられ,前記処理容器内にプラズマ生成用の高周波を供給する高周波供給部と,前記高周波供給部と前記載置部との間に設けられ,前記処理容器内を,前記高周波供給部側の領域と前記載置部側の領域に区画し,前記載置部側の領域に膜の原料ガスを供給する原料ガス供給口と,前記高周波供給部側の領域で生成されたプラズマを前記載置部側の領域に通過させる開口部が形成された平板状の構造体と,を備え,前記高周波供給部側の領域がプラズマ励起用ガスからプラズマを生成するプラズマ生成領域であるプラズマ成膜装置を用いたプラズマ成膜方法であって,
    前記プラズマ生成領域に対し少なくとも前記高周波供給部の中央部下方からプラズマ励起用ガスを供給し,前記中央部下方からのプラズマ励起用ガスの供給流量を調整することによって,前記プラズマ生成領域内のプラズマ励起用ガスの濃度を均一に制御することを特徴とする,プラズマ成膜方法。
  12. 前記プラズマ生成領域内のプラズマ励起用ガスの濃度を均一に制御する際に,前記プラズマ生成領域に対し側方からプラズマ励起用ガスをさらに供給し,前記側方からのプラズマ励起用ガスの供給流量をさらに調整することを特徴とする,請求項11に記載のプラズマ成膜方法。
JP2003389469A 2003-11-19 2003-11-19 プラズマ成膜装置及びプラズマ成膜方法 Expired - Fee Related JP4393844B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003389469A JP4393844B2 (ja) 2003-11-19 2003-11-19 プラズマ成膜装置及びプラズマ成膜方法
PCT/JP2004/017162 WO2005050723A1 (ja) 2003-11-19 2004-11-18 プラズマ成膜装置及びプラズマ成膜方法
US10/579,777 US7658799B2 (en) 2003-11-19 2004-11-18 Plasma film-forming apparatus and plasma film-forming method
KR1020067011706A KR100812829B1 (ko) 2003-11-19 2004-11-18 플라즈마 성막 장치 및 플라즈마 성막 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003389469A JP4393844B2 (ja) 2003-11-19 2003-11-19 プラズマ成膜装置及びプラズマ成膜方法

Publications (2)

Publication Number Publication Date
JP2005150612A JP2005150612A (ja) 2005-06-09
JP4393844B2 true JP4393844B2 (ja) 2010-01-06

Family

ID=34616250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003389469A Expired - Fee Related JP4393844B2 (ja) 2003-11-19 2003-11-19 プラズマ成膜装置及びプラズマ成膜方法

Country Status (4)

Country Link
US (1) US7658799B2 (ja)
JP (1) JP4393844B2 (ja)
KR (1) KR100812829B1 (ja)
WO (1) WO2005050723A1 (ja)

Families Citing this family (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853857B2 (ja) 2005-06-15 2012-01-11 東京エレクトロン株式会社 基板の処理方法,コンピュータ読み取り可能な記録媒体及び基板処理装置
US20070281106A1 (en) * 2006-05-30 2007-12-06 Applied Materials, Inc. Process chamber for dielectric gapfill
US8207010B2 (en) * 2007-06-05 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing photoelectric conversion device
US8021975B2 (en) 2007-07-24 2011-09-20 Tokyo Electron Limited Plasma processing method for forming a film and an electronic component manufactured by the method
US8197913B2 (en) 2007-07-25 2012-06-12 Tokyo Electron Limited Film forming method for a semiconductor
JP5216446B2 (ja) * 2007-07-27 2013-06-19 株式会社半導体エネルギー研究所 プラズマcvd装置及び表示装置の作製方法
WO2010027841A2 (en) * 2008-08-27 2010-03-11 Ovshinsky Innovation High speed deposition of materials having low defect density
JP5517509B2 (ja) * 2009-07-08 2014-06-11 三菱重工業株式会社 真空処理装置
JP5648349B2 (ja) * 2009-09-17 2015-01-07 東京エレクトロン株式会社 成膜装置
WO2011055644A1 (en) 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5909484B2 (ja) * 2010-04-28 2016-04-26 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 短寿命種のためのプラズマ源を組み込んだプロセスチャンバ蓋の設計
FI20105905A0 (fi) * 2010-08-30 2010-08-30 Beneq Oy Suutinpää ja laite
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
JP2014026773A (ja) * 2012-07-25 2014-02-06 Tokyo Electron Ltd プラズマ処理装置
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US9982343B2 (en) * 2012-12-14 2018-05-29 Applied Materials, Inc. Apparatus for providing plasma to a process chamber
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9738976B2 (en) * 2013-02-27 2017-08-22 Ioxus, Inc. Energy storage device assembly
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
JP2015135782A (ja) * 2014-01-20 2015-07-27 東京エレクトロン株式会社 マイクロ波処理装置及びマイクロ波処理方法
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US20150371828A1 (en) * 2014-06-24 2015-12-24 Applied Materials, Inc. Low cost wide process range microwave remote plasma source with multiple emitters
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) * 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
JP6671230B2 (ja) * 2016-04-26 2020-03-25 東京エレクトロン株式会社 プラズマ処理装置およびガス導入機構
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
TWI716818B (zh) 2018-02-28 2021-01-21 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221556A (en) * 1987-06-24 1993-06-22 Epsilon Technology, Inc. Gas injectors for reaction chambers in CVD systems
US4859277A (en) 1988-05-03 1989-08-22 Texas Instruments Incorporated Method for measuring plasma properties in semiconductor processing
JPH1022279A (ja) * 1996-07-02 1998-01-23 Toshiba Mach Co Ltd 誘導結合型プラズマcvd装置
US6152071A (en) * 1996-12-11 2000-11-28 Canon Kabushiki Kaisha High-frequency introducing means, plasma treatment apparatus, and plasma treatment method
US6028014A (en) 1997-11-10 2000-02-22 Lsi Logic Corporation Plasma-enhanced oxide process optimization and material and apparatus therefor
JP3366301B2 (ja) * 1999-11-10 2003-01-14 日本電気株式会社 プラズマcvd装置
JP2001164371A (ja) 1999-12-07 2001-06-19 Nec Corp プラズマcvd装置およびプラズマcvd成膜法
JP5010781B2 (ja) * 2001-03-28 2012-08-29 忠弘 大見 プラズマ処理装置
US6480074B1 (en) * 2001-04-27 2002-11-12 Nokia Mobile Phones Ltd. Method and system for wafer-level tuning of bulk acoustic wave resonators and filters by reducing thickness non-uniformity

Also Published As

Publication number Publication date
US20080213504A1 (en) 2008-09-04
KR100812829B1 (ko) 2008-03-11
US7658799B2 (en) 2010-02-09
KR20060103334A (ko) 2006-09-28
WO2005050723A1 (ja) 2005-06-02
JP2005150612A (ja) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4393844B2 (ja) プラズマ成膜装置及びプラズマ成膜方法
JP3317209B2 (ja) プラズマ処理装置及びプラズマ処理方法
TW323387B (ja)
US7048869B2 (en) Plasma processing apparatus and a plasma processing method
TWI469238B (zh) 電漿蝕刻處理裝置及電漿蝕刻處理方法
JP5514310B2 (ja) プラズマ処理方法
KR100753692B1 (ko) 가스 공급 장치, 기판 처리 장치 및 공급 가스설정 방법
TWI541893B (zh) Process apparatus and method for plasma etching process
EP2479781B1 (en) Plasma etching method
JP2007048982A (ja) プラズマ処理装置の制御方法およびプラズマ処理装置
JP4922705B2 (ja) プラズマ処理方法および装置
US20130299091A1 (en) Plasma processing apparatus
CN113439327B (zh) 等离子体处理装置以及等离子体处理装置的工作方法
JP5941653B2 (ja) シリコン窒化膜の成膜方法及びシリコン窒化膜の成膜装置
EP2080817B1 (en) Method and apparatus for chamber cleaning by in-situ plasma excitation
JP2008235611A (ja) プラズマ処理装置及びプラズマ処理方法
JP2010059509A (ja) 成膜または表面処理装置および方法
JP4410117B2 (ja) ガス設定方法,ガス設定装置,エッチング装置及び基板処理システム
JP2007273773A (ja) プラズマ処理装置およびプラズマ処理装置のクリーニング方法
KR20200051505A (ko) 배치대 및 기판 처리 장치
JP2005159049A (ja) プラズマ成膜方法
JP5005999B2 (ja) プラズマ処理装置およびプラズマ処理装置の使用方法
JP4638833B2 (ja) プラズマ成膜装置およびプラズマ成膜装置のクリーニング方法
JP3699416B2 (ja) プラズマ処理装置
JP2010077489A (ja) 基板処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091014

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151023

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees