WO2011003324A1 - 工程车辆臂架控制器、控制系统、工程车辆、及控制方法 - Google Patents

工程车辆臂架控制器、控制系统、工程车辆、及控制方法 Download PDF

Info

Publication number
WO2011003324A1
WO2011003324A1 PCT/CN2010/074237 CN2010074237W WO2011003324A1 WO 2011003324 A1 WO2011003324 A1 WO 2011003324A1 CN 2010074237 W CN2010074237 W CN 2010074237W WO 2011003324 A1 WO2011003324 A1 WO 2011003324A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch screen
touch
boom
coordinate system
display
Prior art date
Application number
PCT/CN2010/074237
Other languages
English (en)
French (fr)
Inventor
吴智勇
周继辉
吴罕奇
Original Assignee
湖南三一智能控制设备有限公司
三一重工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 三一重工股份有限公司 filed Critical 湖南三一智能控制设备有限公司
Priority to ES10796701T priority Critical patent/ES2406258T3/es
Priority to EP10796701A priority patent/EP2386387B1/en
Publication of WO2011003324A1 publication Critical patent/WO2011003324A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/409Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using manual input [MDI] or by using control panel, e.g. controlling functions with the panel; characterised by control panel details, by setting parameters
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36168Touchscreen

Definitions

  • the invention relates to an engineering vehicle boom control technology, in particular to an engineering vehicle boom controller; the invention also provides an engineering vehicle boom control system using the engineering vehicle boom controller, using the engineering vehicle The engineering vehicle of the boom control system; the invention also provides a method for controlling the boom of the engineering vehicle.
  • the boom is a working mechanism comprising at least two segments that are sequentially hinged by a horizontal hinge axis, said respective segments being rotatable by a considerable angle about the hinge axis.
  • the arm frame is fixed on the machine base through the turntable, and the arm frame as a whole is driven by the turntable, and can be rotated 360 degrees around the vertical axis perpendicular to the horizontal plane.
  • These booms are generally used as actuators in construction.
  • the boom of a concrete pump truck is used to support the conveying pipe and to control the movement of the hose at the end of the conveying pipe by the movement of the boom so that the concrete can be pumped to the desired position. Therefore, the movement control of the boom of the concrete pump truck is mainly the control of the end motion trajectory, which is very important for realizing the construction requirements.
  • Figure 1 shows a structural view of a typical four-barrel boom concrete pump truck.
  • the pump truck includes a turntable 1, a rod section 2, a hydraulic cylinder 3 for controlling rotation of the rod section 2 relative to the other rod sections, a connecting rod 4 for connecting adjacent rod sections, and a connecting piece.
  • the pump truck shown in Fig. 1 comprises four section rods 2, correspondingly comprising four hydraulic cylinders 3, and three connecting rods 4.
  • Turntable 1 Connect the boom 2 to the pump base.
  • the entire boom is rotated by controlling the turntable 1 to rotate clockwise or counterclockwise.
  • the unfolding and gathering of the segment segments 2 are performed by the corresponding hydraulic cylinders 3.
  • the movement speed of the corresponding rod section 2 can be controlled, and by controlling the movement speed of each of the rod sections 2, the control of the movement path of the end of the boom can be finally obtained.
  • FIG. 2 is a structural diagram of a control system of a concrete pump truck boom provided by the prior art.
  • the control system includes: a remote controller 11, a boom sensor 12, a receiver 13, a controller 14, - - Drive mechanism 15.
  • the remote controller 11 receives the amount of control provided by the operator, and transmits the received control amount to the receiver 13 by wireless or wire.
  • the remote control 11 is controlled by a spherical control handle.
  • the boom sensor 12 includes various sensors that reflect the actual state of the boom, which sensors detect real-time status parameters of the boom.
  • One of the main real-time status parameters is to determine the spatial position of each segment of the boom.
  • the angle sensor installed at the tip end of each pole segment 2 and the angle sensor between the boom and the turntable are used to realize the sensing measurement of the spatial position of each pole segment of the boom.
  • the receiver 13 collects the amount of control from the remote controller 11 and the real-time status parameters from the boom sensor 12, and transmits it to the controller 14.
  • the controller 14 Based on the control command obtained from the receiver 13 and the real-time status parameter, the controller 14 calculates a control command value corresponding to each of the hydraulic cylinders 3 by a predetermined control algorithm and delivers it to the drive mechanism 15.
  • the drive mechanism 15 supplies the hydraulic cylinder 3 with a drive current or a drive voltage corresponding to the control command in accordance with the received control command value.
  • the operator controls the movement of the boom end by manipulating the spherical joystick of the remote controller 11.
  • the tilting direction of the joystick indicates the desired direction of movement of the end of the boom
  • the angle of inclination indicates the desired speed of the end of the boom.
  • the operator determines the desired position of the end of the boom by personal experience and visual means. The boom is moved to a desired position by operating the handle of the remote controller 11.
  • the remote control operation using the above-described joystick type remote controller 11 is that the control of the spherical joystick is not easy, and the range of the tilt angle adjustment is limited, and the range of the movement speed of the end of the boom is large, which is required due to the limited tilt of the joystick.
  • the sensitivity of the operating handle is too high, and it is difficult to accurately adjust the moving speed of the end of the boom.
  • the tilting direction of the spherical handle is also difficult to accurately control, and it is also difficult to accurately control the direction of movement of the end of the boom.
  • the present invention provides an engineering vehicle boom controller, which provides a more suitable manipulation device, which enables the operator's operation intention to be more accurately reflected, thereby realizing - -
  • the present invention also provides an engineering vehicle boom control system using the engineering vehicle boom controller, an engineering vehicle using the engineering vehicle boom control system, and an engineering vehicle boom control method.
  • the invention provides an engineering vehicle boom controller, comprising a touch screen composed of a display and a touch sensor, a display driving unit, a display control unit and a control instruction forming unit;
  • the touch screen displays a manipulation sensing flag and receives an external touch to form a touch sensing signal capable of reflecting a position of the touch point on the touch screen;
  • the display driving unit provides a display driving to the touch screen according to a display control instruction of the display control unit, and controls display content of the touch screen, the display content including a shape of the manipulation sensing flag and a position on the touch screen;
  • the display control unit receives a touch sensing signal from the touch screen, obtains a position of the touch point on the display screen, determines whether the touch point position has a coincident portion with a current steering sensing flag position, and if so, sets the steering sensing flag
  • the state is activated; when the manipulation sensing flag is in an active state, if the touch sensing signal disappears, the reset steering sensing flag is in a sleep state; when the steering sensing flag is in an active state, providing a corresponding display to the display driving unit a control command, the display control command causing the manipulation sensing flag to be displayed at a touch point position reflected by the touch sensing signal;
  • control instruction forming unit When the control instruction forming unit receives the touch sensing signal from the touch screen and the manipulation sensing flag status signal from the display driving unit, when the manipulation sensing flag is in an active state, the position of the touch point indicated on the touch screen according to the touch sensing signal According to the predetermined correspondence relationship, a control command reflecting the desired movement speed and movement direction of the boom end is formed, and is sent out in a wired or wireless manner.
  • the manipulation sensing flag is displayed in a geometric state of the touch screen in a sleep state.
  • the manipulation sensing mark is a dot having a certain area.
  • the correspondence between the position of the touch point on the touch screen and the moving direction of the arm end is realized in the following manner: the display position of the sensing mark is controlled as the coordinate origin in the sleep state, and the mutually perpendicular X is set in a predetermined direction.
  • a shaft, a Y-axis, a touch screen rectangular coordinate system is formed on the touch plane of the touch screen; and an initial position at which the end of the boom starts to move is set as an origin on the moving plane of the end of the corresponding boom, and two on the moving plane
  • the direction of motion perpendicular to each other is the actual moving rectangular coordinate system of the X-axis and the Y-axis on the moving plane of the end of the boom; the desired boom end motion One by one
  • the direction of the line connecting the origin of the rectangular coordinate system of the touch screen to the position of the touch point on the touch screen corresponds to a direction in which the X and Y axes have the same angular relationship on the actual moving rectangular coordinate system.
  • the touch screen is square or rectangular; the X axis of the rectangular coordinate system of the touch screen is parallel to the upper and lower frame lines of the touch screen, and the positive direction is directed to the right of the touch screen; the Y axis is parallel to the left and right frame lines of the touch screen, and the positive direction is directed Above the touch screen.
  • the desired boom end moving speed is determined according to the distance between the position of the touch point on the touch screen and the origin of the touch screen rectangular coordinate system, and the greater the distance, the higher the speed.
  • the correspondence between the coordinate position of the touch point on the touch screen and the moving direction of the boom end is realized in the following manner: the display position of the sensing mark is controlled as a pole in the sleep state, and the polar axis is formed in a predetermined direction.
  • a touch screen polar coordinate system an actual moving polar coordinate system with an initial position at which the end of the boom starts to move as an origin and a predetermined moving direction on the moving plane as a polar axis is set on a moving plane of the end of the corresponding boom;
  • the desired direction of movement of the end of the boom is obtained by: obtaining a polar angle value of the touch point on the touch screen polar coordinate system, and taking the same polar angle value on the actual moving polar coordinate system, the polar angle value
  • the direction of motion represented is the desired direction of movement of the end of the boom.
  • the touch screen is square or rectangular; the polar axis of the rectangular coordinate system of the touch screen is parallel to the upper and lower frame lines of the touch screen, and the positive direction is directed to the right of the touch screen.
  • the desired boom end moving speed is determined according to the pole diameter value of the touch point in the touch screen polar coordinate system, and the larger the pole diameter value, the higher the speed.
  • the present invention also provides an engineering vehicle boom control system using the engineering vehicle boom control device controller provided by the present invention.
  • the present invention also provides an engineering vehicle using the engineering vehicle boom control system provided by the present invention.
  • the engineering vehicle is a concrete pump truck or a crane.
  • the invention also provides a method for controlling a boom of an engineering vehicle, the method comprising:
  • the touch screen displays a manipulation sensing flag and receives an external touch to form a touch sensing signal capable of reflecting the position of the touch point on the touch screen;
  • the flag status signal is sensed, when the manipulation sensing flag is in an active state, the position of the touch point on the touch screen according to the touch sensing signal is formed according to a predetermined correspondence relationship to reflect a desired arm end moving speed and a moving direction.
  • the control commands are sent out in a wired or wireless manner.
  • the manipulation sensing flag when the manipulation sensing flag is in an active state, if the touch sensing signal disappears, the reset steering sensing flag is in a sleep state.
  • the manipulation sensing flag is displayed in a geometric state of the touch screen in a sleep state.
  • the correspondence between the position of the touch point on the touch screen and the direction of movement of the end of the boom is achieved in the following manner:
  • the display position of the sensing flag is controlled as the coordinate origin in the sleep state, and the X-axis and the Y-axis perpendicular to each other are set in a predetermined direction, and a rectangular coordinate system of the touch screen is formed on the touch plane of the touch screen; on the moving plane of the end of the corresponding arm frame And setting an initial position where the end of the boom starts to move as an origin, and two mutually perpendicular movement directions on the moving plane are an X-axis and a Y-axis of an actual moving rectangular coordinate system on a moving plane of the end of the boom;
  • the desired direction of movement of the end of the boom is a line connecting the origin of the rectangular coordinate system of the touch screen to the position of the touch point on the touch screen, corresponding to the actual moving rectangular coordinate system and the X
  • the direction in which the Y-axis has the same angular relationship is the desired direction of movement of the end of the boom.
  • the correspondence between the coordinate position of the touch point on the touch screen and the direction of movement of the boom end is achieved in the following manner:
  • the display position of the sensing flag is controlled to be a pole in a sleep state, and the polar axis is formed in a predetermined direction to form a touch screen polar coordinate system; and an initial position at which the end of the arm frame starts to move is set on a moving plane corresponding to the end of the arm frame
  • An actual moving polar coordinate system having an origin, a predetermined moving direction on the moving plane as a polar axis; the desired arm end moving direction is obtained by: obtaining a pole of the touch point on a touch screen polar coordinate system An angle value, taking the same polar angle on the actual moving polar coordinate system
  • the direction of motion represented by the polar angle value is the desired direction of movement of the end of the boom.
  • the engineering vehicle boom controller uses a touch screen as a manipulation input device, and the operator controls the manipulation sensing flag on the touch screen to control the running direction and the moving speed of the end of the boom.
  • the operator's manipulation of the manipulation sensing sign on the touch screen of the controller realizes the imitation of the prior art joystick manipulation mode. Since the touch operation on the touch screen is simpler and more convenient than controlling the joystick, the expression of the moving direction and the moving speed is more accurate. Therefore, the controller provides a more accurate control of the moving speed and the moving direction of the end of the boom. possibility.
  • the control signal generated by the touch screen is a digital signal, while the prior art joystick is generally an analog signal and requires analog to digital conversion. Therefore, the internal structure of the controller is simpler.
  • the touch screen is smaller in size than the joystick, the weight is lighter than the joystick, and the touch screen is easy to integrate with other parts, these make the controller easier to manufacture in a portable form.
  • the touch screen touch surface and the actual boom end motion plane correspond to each other by a Cartesian coordinate system or a polar coordinate system, so that the operator's expectation is accurately expressed by controlling the touch position on the coordinate system.
  • the speed of motion and the direction of motion provide the possibility to accurately control the speed and direction of motion of the end of the boom.
  • Figure 1 is a structural view of a typical four-barrel boom concrete pump truck
  • FIG. 2 is a structural diagram of a control system of a concrete pump truck boom provided by the prior art
  • FIG. 3 is a structural diagram of a construction vehicle boom controller provided by an embodiment of the present invention
  • FIG. 4 is a flow chart showing a manner of establishing a touch screen rectangular coordinate system and implementing the predetermined correspondence relationship through the coordinate system;
  • FIG. 5 is a flow chart showing a manner of establishing a touch screen polar coordinate system and implementing the predetermined correspondence relationship through the coordinate system;
  • FIG. 6 is a flow chart of a method for controlling a boom of an engineering vehicle according to an embodiment of the present invention. detailed description
  • FIG. 3 the figure shows a construction vehicle boom controller provided by an embodiment of the present invention.
  • the boom controller mainly includes a touch screen, and the related control unit further includes various other manipulation buttons. Since the present invention only relates to the improvement of the touch screen instead of the joystick, the following introduction only involves And a functional unit that controls the movement of the end of the boom through the touch screen.
  • the engineering vehicle boom controller provided in this embodiment includes a touch screen 31 composed of a display and a touch sensor, a display driving unit 32, a display control unit 33, and a control command forming unit 34.
  • the touch screen 31 displays a manipulation sensing flag and receives an external touch to form a touch sensing signal capable of reflecting the position of the touch point on the touch screen.
  • the touch screen 31 is an electronic device commonly used by those skilled in the art and will not be described in detail herein.
  • the display driving unit 32 provides a display driving to the touch screen 31 according to the display control instruction of the display control unit 33, and controls the display content of the touch screen 31, the display content including the shape of the manipulation sensing flag and the touch screen.
  • the shape of the manipulation sensing mark is a dot shape having a certain area, and the area of the dot needs to be easily touched by a finger.
  • the steering indicator can be used in other shapes, such as a cross.
  • the position of the manipulation sensing flag on the touch screen is determined based on the position information contained in the display control command outputted in real time by the display control unit 33.
  • the display control unit 33 receives the touch sensing signal from the touch screen 31, obtains the position of the touch point on the display screen, determines whether the touch point position has a coincident portion with the current steering sensing flag position, and if so, sets the manipulation The state of the sensing flag is activated; when the sensing flag is activated, if the touch sensing signal disappears, the reset sensing flag is in a sleep state; when the steering sensor flag is in an active state, providing corresponding to the display driving unit Display control command, the display control command causes the manipulation sensing flag to be displayed at a touch point position reflected by the touch sensing signal; if the manipulation sensing flag is in a sleep state, outputting a corresponding display control command, the display control command causing the The manipulation sensing mark is displayed at a predetermined position on the touch screen.
  • the position is the origin of the touch screen coordinates.
  • the former solution is more reasonable.
  • the former scheme is used, and the display position is selected at the geometric center of the touch screen.
  • the touch screen 31 has a touch signal sensing sensor capable of generating a touch sensing signal when the touch screen is touched, and the touch sensing signal includes position information of the touch point on the touch screen.
  • the position of the manipulation sensing flag is determined by the display control command issued by the display control unit 33, and therefore, the display control unit 33 can obtain the manipulation sensing flag from the display control command issued by itself. The specific location of one by one; after learning the above information, it is possible to judge whether the touch point cooperates with the manipulation sensing flag.
  • the controller requires the operator to directly touch the manipulation sensing flag to perform the manipulation.
  • the flag is an active state, and the control manipulation sensing flag moves as the touch point moves, that is, the manipulation sensing flag is displayed on the touch point position reflected by the touch sensing signal, so that the operator can obtain good and timely steering signal feedback.
  • the touch sensing signal disappears, it indicates that the operator does not touch the touch screen surface, and in order to avoid the manipulation error, the state of the manipulation sensing flag is immediately reset to the sleep state, so that when the operator touches the touch screen at a position away from the manipulation sensing flag, the manipulation is performed.
  • the sensing sign does not move.
  • the control process provided by the display control unit 33 described above realizes the imitation of the joystick, avoiding a sudden change in the moving speed and the moving direction in the subsequent control process.
  • the control instruction forming unit 34 receives the touch sensing signal from the touch screen 31 and the manipulation sensing flag status signal in the display driving signal provided by the display control unit 33, and the touch point indicated according to the touch sensing signal when the manipulation sensing flag is in an active state On the coordinate position on the touch screen, according to a predetermined correspondence relationship, a control command reflecting the desired movement speed and movement direction of the boom end is formed and transmitted outward.
  • the control command forming unit 34 needs to form a control command reflecting the operator's desired movement speed and direction of movement of the boom end, and the operator's expectation of the speed and direction of movement of the boom end is derived from the controller operator's manipulation of the sensing flag.
  • Touch manipulation which is called manipulation of the manipulation sensing flag, is because the operator actually operates in the following manner: the operator first touches the manipulation sensing flag to make the manipulation sensing flag active; and then, the operator keeps Touching the touch screen and moving to a certain angle and direction on the touch screen, the manipulation of the sensing sign will move with it.
  • the operator can embody the manipulation intention of the end of the boom by controlling the position of the manipulation sensing mark on the touch screen or the relative position of the manipulation sensing flag and the original display position when the mouse is sleeping. If the operator is out of the touch screen during operation, the manipulation sensing flag is reset to the sleep state and returns to the original display position. In this way, the continuity of the operator's operation can be ensured and misoperations can be avoided. It should be noted that, when the manipulation sensing flag is in an active state, the display control unit 33 controls the manipulation sensing flag to move along with the touch point position, and at this time, the touch point position and the manipulation of the flag position are consistent. Intuitively from the operator, the operator controls the sensing of the sensor logo by touch. - -
  • the touch screen coordinate system is established on the touch screen, and the moving direction of the touch point on the touch screen coordinate system corresponds to a pre-established coordinate system on the moving plane of the arm end to realize the touch point on the touch screen coordinate system.
  • the corresponding direction of the moving direction to the actual moving direction of the end of the boom; in addition, the desired value of the moving speed of the end of the boom is obtained by the distance between the end point of the touch point moving track and the original position of the steering sensing mark, and finally a corresponding control command is formed.
  • One of the two methods is to establish a touch screen rectangular coordinate system on the touch screen, and the other is to establish a touch screen polar coordinate system on the touch screen. The following are explained separately.
  • Step S401 The original position of the sensing flag is manipulated as a coordinate origin, and the X-axis and the Y-axis perpendicular to each other are set in a predetermined direction, and a rectangular coordinate system of the touch screen is formed on the touch plane of the touch screen.
  • the original position of the manipulation sensing flag is the original position when the sensing flag is in a sleep state.
  • the display control unit 33 controls the display of the sensing flag at a predetermined position while the manipulation sensing flag is in a sleep state. Specifically, it is displayed at the geometric center of the touch screen.
  • the setting of mutually perpendicular X and Y axes in a predetermined direction includes determining a positive direction in which the X axis is located, and determining a positive direction in which the Y axis is located.
  • the commonly used touch screens are mostly square or rectangular.
  • a recommended method for setting the rectangular coordinate system of the touch screen is: the X axis is parallel to the upper and lower frame lines of the touch screen, and the positive direction is directed to the right of the touch screen; the Y axis is parallel to the left and right frames of the touch screen. Line, which points forward to the top of the touch screen.
  • Step S402 on the moving plane of the end of the corresponding boom, set an initial position where the end of the boom starts to move as an origin, and two mutually perpendicular motion directions on the moving plane are the X-axis and the Y-axis.
  • the starting point of the motion is used as the origin of the actual rectangular coordinate system.
  • the directions of the X-axis and the Y-axis can be set based on a certain reference direction of the construction vehicle.
  • a preferred solution is to finally form an actual moving Cartesian coordinate system that is convenient to correspond to the rectangular coordinate system of the touch screen in a plan view.
  • Step S403 connecting a line direction of the origin of the rectangular coordinate system of the touch screen to a position of the touch point on the touch screen, corresponding to a direction in which the X and Y axes have the same angular relationship on the actual moving rectangular coordinate system. Above, this direction is the desired direction of movement of the end of the boom.
  • Step S404 determining a moving speed of the end of the boom by a distance between a touch point on the touch screen and an origin of the rectangular coordinate system of the touch screen.
  • the larger the distance, the higher the desired moving speed, and the distance and The expected speed of movement is proportional.
  • step S501 the original position of the sensing mark is manipulated as a pole, and the polar axis is set in a predetermined direction, and a touch screen polar coordinate system is formed on the touch plane of the touch screen.
  • the poles are placed at the geometric center of the rectangle or square, and the polar axis is set parallel to the upper and lower lines of the touch screen, which is directed to the right of the touch screen.
  • Step S502 On the moving plane of the end of the corresponding boom, an actual moving pole coordinate system with the initial position at which the end of the boom starts to move as the origin and the predetermined moving direction on the moving plane as the polar axis is set.
  • Step S503 Obtain a polar angle value of the touch point on a touch screen polar coordinate system.
  • Step S504 taking the same polar angle value on the actual moving polar coordinate system, and the polar angle value can determine the desired arm end moving direction.
  • Step S505 Determine a desired boom end moving speed by using a pole diameter value of the touch point, and the larger the value, the greater the moving speed of the boom end.
  • the polar diameter of the touch point is proportional to the speed of movement of the end of the boom.
  • the controller provided by the embodiment of the invention can be disposed at the distal end of the engineering vehicle boom, and realizes the control of the boom by remote remote control, such as a handheld remote controller, a remote operation console, and the like. At this time, just - -
  • the display is disposed on a corresponding remote controller, and the control command forming unit forms a remote control command to transmit outward by wire or wireless.
  • the controller may also be disposed at a proximal end of the engineering vehicle boom, such as an engineering vehicle operating room or the like. At this time, it is only necessary to set the display on the console of the work vehicle operating room.
  • the controller provided in the above embodiment is used in the engineering vehicle boom control system to obtain the corresponding engineering vehicle boom control system.
  • the boom control system can utilize various control systems of the prior art as long as the controller with the touch screen is used in the engineering vehicle boom control system provided by the present invention.
  • the construction vehicle is specifically a concrete pump truck or a crane.
  • the present invention also provides an engineering vehicle boom control method.
  • FIG. 6 there is shown a flow chart of a method for controlling a boom of a construction vehicle according to an embodiment of the present invention.
  • the control method includes the following steps:
  • Step S601 The touch screen displays a manipulation sensing flag, and receives an external touch to form a touch sensing signal capable of reflecting a position of the touch point on the touch screen;
  • manipulation sensing mark is a dot having a certain area
  • Step S602 Receive a touch sensing signal from the touch screen, obtain a position of the touch point on the display screen, determine whether the touch point position has a coincident portion with the current steering sensing flag position, and if yes, set the state of the steering sensing flag. For activation, transmitting a corresponding display control instruction, the display control instruction causing the manipulation sensing flag to be displayed at a touch point position reflected by the touch sensing signal;
  • the manipulation sensing flag when the manipulation sensing flag is in an active state, if the touch sensing signal disappears, the reset operation sensing flag is in a sleep state; and the manipulation sensing flag is displayed in a geometric center of the touch screen in a sleep state;
  • Step S603 providing a display driving to the touch screen according to the display control instruction, and controlling display content of the touch screen, the display content including a shape of the manipulation sensing flag and a position on the touch screen;
  • Step S604 When receiving the touch sensing signal from the touch screen and manipulating the sensing flag status signal, when the steering sensing flag is in an active state, the touch point indicated according to the touch sensing signal is - -
  • the position on the touch screen forms a control command reflecting the desired movement speed and movement direction of the boom end according to the predetermined correspondence relationship, and is sent out in a wired or wireless manner.
  • step S604 the correspondence between the position of the touch point on the touch screen and the moving direction of the arm end can be realized in the following manner: the display position of the sensing flag is controlled as the coordinate origin in the sleep state, and is predetermined The direction is set to be perpendicular to the X-axis and the Y-axis, and a touch-screen rectangular coordinate system is formed on the touch plane of the touch screen; on the moving plane corresponding to the end of the boom, an initial position at which the end of the boom starts to move is set as an origin, Two mutually perpendicular directions of motion on the plane of motion are the actual moving Cartesian coordinate system of the X-axis and the Y-axis on the plane of motion of the end of the boom; the desired direction of motion of the end of the boom is a right angle of the touch screen The direction of the line between the origin of the coordinate system and the position of the touch point on the touch screen corresponds to the direction in which the actual moving rectangular coordinate system has the same angular relationship with the X
  • the desired boom end moving speed is determined according to the distance between the position of the touch point on the touch screen and the origin of the touch screen rectangular coordinate system, and the greater the distance, the higher the speed.
  • step S604 the correspondence between the coordinate position of the touch point on the touch screen and the moving direction of the boom end can be realized in the following manner: the display position of the sensing flag is controlled to be a pole in the sleep state, and The predetermined direction is a polar axis, and a touch screen polar coordinate system is formed. On the moving plane of the end of the corresponding boom, an initial position at which the end of the boom starts to move is set as an origin, and the moving direction is obtained as follows: The polar angle value of the touch point on the touch screen polar coordinate system takes the same polar angle value on the actual moving polar coordinate system, and the moving direction represented by the polar angle value is the desired arm end moving direction.

Description

一 一 工程车辆臂架控制器、 控制系统、 工程车辆、 及控制方法 本申请要求于 2009 年 07 月 06 日提交中国专利局、 申请号为 200910158819.X, 发明名称为"工程车辆臂架控制器、 控制系统、 工程车辆、 及控制方法"的中国专利申请的优先权,其全部内容通过弓 )用结合在本申请中。 技术领域
本发明涉及一种工程车辆臂架控制技术,尤其是涉及一种工程车辆臂架控 制器; 本发明还提供一种使用该工程车辆臂架控制器的工程车辆臂架控制系 统、使用该工程车辆臂架控制系统的工程车辆; 本发明还提供一种工程车辆臂 架控制方法。
背景技术
许多工程车辆都具有臂架。臂架是包括至少两个通过水平铰接轴依次铰接 的杆段组成的工作机构,所述的各个杆段能够绕铰接轴旋转相当的角度。同时, 该臂架整体通过转台固定在机座上,臂架整体在转台的带动下, 可以绕垂直于 水平面的竖轴进行 360度的旋转。这些臂架一般作为施工中的执行机构。例如, 混凝土泵车的臂架用于支撑输送管道, 并通过臂架运动,控制输送管道末端软 管的运动轨迹, 使混凝土能够被泵送到需要的位置。 因此, 混凝土泵车的臂架 运动控制, 主要是末端运动轨迹的控制, 对于实现施工要求就显得非常重要。
图 1示出一种典型的四杆段臂架混凝土泵车结构图。所述泵车包括转台 1、 杆段 2、 用于控制杆段 2相对其他杆段旋转的液压油缸 3、 用于连接相邻杆段 的连杆 4、 及连接件。 图 1所示泵车包括四节杆段 2, 对应的包括四个液压油 缸 3、 以及三个连杆 4。
转台 1连接臂架 2与泵车底座。通过控制转台 1顺时针或逆时针转动,使 整个臂架转动。 各节杆段 2的展开和收拢均靠与之对应的液压油缸 3来完成。 通过控制各个液压油缸 3内的液压油流量, 可以控制对应杆段 2的运动速度, 并且通过对各个杆段 2 的运动速度控制, 最终获得对臂架末端运动轨迹的控 制。
图 2为现有技术提供的一种混凝土泵车臂架的控制系统结构图。
所述控制系统包括: 遥控器 11、 臂架传感器 12、 接收器 13、 控制器 14、 - - 驱动机构 15。
遥控器 11接收操作人员提供的控制量, 并将接收到的控制量通过无线或 有线的方式发送给接收器 13。 现有技术下, 遥控器 11釆用球形控制手柄进行 控制。
所述臂架传感器 12包括各种反映臂架实际状态的传感器, 这些传感器检 测获得臂架的实时状态参数。其中一个主要的实时状态参数是确定臂架各个杆 段的空间位置。一般釆用安装在各个杆段 2首端的角度传感器以及臂架和转台 之间的角度传感器, 实现对臂架各个杆段空间位置的感应测量。
接收器 13收集来自遥控器 11的控制量以及来自臂架传感器 12的实时状 态参数, 并发送到控制器 14。
控制器 14根据从接收器 13获得的控制指令以及实时状态参数,通过预定 的控制算法,计算得到对应各个液压油缸 3的控制指令值, 并将其下发至驱动 机构 15。
驱动机构 15按照接收到的控制指令值, 向所述液压油缸 3提供对应该控 制指令的驱动电流或者驱动电压。
釆用上述控制装置对泵车臂架进行控制时,由操作员通过操纵所述遥控器 11 的球形操纵杆控制臂架末端的运动。 一般釆用操纵杆的倾斜方向表示所期 望的臂架末端的运动方向, 以倾角角度大小表示所期望的臂架末端运动速度, 操作员凭个人经验和目视方式确定臂架末端的期望位置, 通过操作遥控器 11 的手柄控制臂架移动至期望位置。
在使用上述操纵杆式的遥控器 11进行遥控操作是,由于球形操纵杆控制不 易, 并且其倾斜角度调节范围有限, 而臂架末端运动速度的变化范围较大, 由 于有限的操纵杆倾角变化需要对应臂架末端运动速度的大范围变化,造成操作 手柄的灵敏度过高, 难以对臂架末端的运动速度进行准确调节。 另外, 球形手 柄的倾斜方向同样难以准确控制,也会造成难以臂架末端的运动方向进行准确 控制。
发明内容
针对上述缺陷, 本发明提供一种工程车辆臂架控制器, 该控制器提供了更 为合适的操纵设备, 能够使操作者的操作意图得到更为准确的反映,从而实现 - -
对臂架末端运动角度和运动速度的准确控制。本发明同时提供使用这种工程车 辆臂架控制器的工程车辆臂架控制系统、使用该工程车辆臂架控制系统的工程 车辆、 以及一种工程车辆臂架控制方法。
本发明提供一种工程车辆臂架控制器,包括由显示器和触摸感应器构成的 触摸屏、 显示驱动单元、 显示控制单元、 控制指令形成单元;
所述触摸屏显示操纵感应标志, 并接收外部的触摸, 形成能够反映触摸点 在触摸屏上位置的触摸感应信号;
所述显示驱动单元根据所述显示控制单元的显示控制指令,向所述触摸屏 提供显示驱动,控制所述触摸屏的显示内容, 该显示内容包括所述操纵感应标 志的形状以及在触摸屏上的位置;
所述显示控制单元接收来自触摸屏的触摸感应信号,获得触摸点在显示屏 上的位置, 判断该触摸点位置是否与当前的操纵感应标志位置具有重合部分, 若是,则设定所述操纵感应标志的状态为激活;在操纵感应标志为激活状态时, 如果触摸感应信号消失, 则复位操纵感应标志为休眠状态; 当所述操纵感应标 志处于激活状态时, 向所述显示驱动单元提供相应的显示控制指令, 该显示控 制指令使所述操纵感应标志显示在触摸感应信号反映的触摸点位置上;
所述控制指令形成单元接收来自触摸屏的触摸感应信号以及来自显示驱 动单元的操纵感应标志状态信号时, 当所述操纵感应标志处于激活状态时,根 据触摸感应信号表示的触摸点在触摸屏上的位置,依据预定的对应关系, 形成 反映所期望的臂架末端运动速度和运动方向的控制指令,并以有线或者无线方 式向外发送。
优选地, 所述操纵感应标志在休眠状态下, 显示在触摸屏的几何中心。 优选地, 所述操纵感应标志为具有一定面积的圓点。
优选地,以下述方式实现触摸点在触摸屏上的位置与臂架末端运动方向之 间的对应关系: 以休眠状态下操纵感应标志的显示位置为坐标原点, 并以预定 的方向设置互相垂直的 X轴、 Y轴, 在触摸屏的触摸平面上形成触摸屏直角 坐标系; 在对应臂架末端的运动平面上,设置以所述臂架末端开始运动的初始 位置为原点、 以该运动平面上的两个相互垂直的运动方向为 X轴、 Y轴的位 于臂架末端运动平面上的实际运动直角坐标系;所述所期望的臂架末端运动方 一 一
向,是将所述触摸屏直角坐标系的原点到所述触摸点在触摸屏上的位置之间的 连线方向,对应到所述实际运动直角坐标系上与 X、 Y轴具有同样角度关系的 方向上, 就是所期望的臂架末端运动方向。
优选地, 所述触摸屏为正方形或者长方形; 所述触摸屏直角坐标系的 X 轴平行于触摸屏上下框线, 其正向指向触摸屏右方; 所述 Y轴平行于触摸屏 左右框线, 其正向指向触摸屏上方。
优选地, 所述所期望的臂架末端运动速度,是根据所述触摸点在触摸屏上 的位置到所述触摸屏直角坐标系的原点之间的距离确定,该距离越大则速度越 高。
优选地,以下述方式实现触摸点在触摸屏上的坐标位置与臂架末端运动方 向之间的对应关系: 以休眠状态下操纵感应标志的显示位置为极点, 并以预定 的方向为极轴, 形成触摸屏极坐标系; 在对应臂架末端的运动平面上, 设置以 所述臂架末端开始运动的初始位置为原点、以该运动平面上的预定运动方向为 极轴的实际运动极坐标系; 所述所期望的臂架末端运动方向通过如下方式获 得: 获得所述触摸点在触摸屏极坐标系上的极角值,在所述实际运动极坐标系 上取同样的极角值,该极角值所代表的运动方向即为所期望的臂架末端运动方 向。
优选地, 所述触摸屏为正方形或者长方形; 所述触摸屏直角坐标系的极轴 平行于触摸屏上下框线, 其正向指向触摸屏右方。
优选地, 所述所期望的臂架末端运动速度,是根据所述触摸点在触摸屏极 坐标系的极径值确定, 该极径值越大则速度越高。
本发明还提供一种工程车辆臂架控制系统,釆用本发明提供的工程车辆臂 架控制装置控制器。
本发明还提供一种工程车辆, 釆用本发明提供的工程车辆臂架控制系统。 优选地, 所述工程车辆为混凝土泵车或者起重机。
本发明还提供一种工程车辆臂架的控制方法, 所述方法包括:
触摸屏显示操纵感应标志, 并接收外部的触摸, 形成能够反映触摸点在触 摸屏上位置的触摸感应信号;
接收来自触摸屏的触摸感应信号, 获得触摸点在显示屏上的位置, 判断该 触摸点位置是否与当前的操纵感应标志位置具有重合部分, 若是, 则设定所述 操纵感应标志的状态为激活,发送相应的显示控制指令, 该显示控制指令使所 述操纵感应标志显示在触摸感应信号反映的触摸点位置上;
根据所述显示控制指令, 向所述触摸屏提供显示驱动,控制所述触摸屏的 显示内容, 该显示内容包括所述操纵感应标志的形状以及在触摸屏上的位置; 接收来自触摸屏的触摸感应信号以及操纵感应标志状态信号时,当所述操 纵感应标志处于激活状态时,根据触摸感应信号表示的触摸点在触摸屏上的位 置,依据预定的对应关系, 形成反映所期望的臂架末端运动速度和运动方向的 控制指令, 并以有线或者无线方式向外发送。
优选地, 在操纵感应标志为激活状态时, 如果触摸感应信号消失, 则复位 操纵感应标志为休眠状态。
优选地, 所述操纵感应标志在休眠状态下, 显示在触摸屏的几何中心。 优选地,以下述方式实现触摸点在触摸屏上的位置与臂架末端运动方向之 间的对应关系:
以休眠状态下操纵感应标志的显示位置为坐标原点,并以预定的方向设置 互相垂直的 X轴、 Y轴, 在触摸屏的触摸平面上形成触摸屏直角坐标系; 在 对应臂架末端的运动平面上, 设置以所述臂架末端开始运动的初始位置为原 点、 以该运动平面上的两个相互垂直的运动方向为 X轴、 Y轴的位于臂架末 端运动平面上的实际运动直角坐标系; 所述所期望的臂架末端运动方向,是将 所述触摸屏直角坐标系的原点到所述触摸点在触摸屏上的位置之间的连线方 向,对应到所述实际运动直角坐标系上与 X、 Y轴具有同样角度关系的方向上, 就是所期望的臂架末端运动方向。
优选地,以下述方式实现触摸点在触摸屏上的坐标位置与臂架末端运动方 向之间的对应关系:
以休眠状态下操纵感应标志的显示位置为极点, 并以预定的方向为极轴, 形成触摸屏极坐标系; 在对应臂架末端的运动平面上,设置以所述臂架末端开 始运动的初始位置为原点、以该运动平面上的预定运动方向为极轴的实际运动 极坐标系; 所述所期望的臂架末端运动方向通过如下方式获得: 获得所述触摸 点在触摸屏极坐标系上的极角值, 在所述实际运动极坐标系上取同样的极角 一 一
值, 该极角值所代表的运动方向即为所期望的臂架末端运动方向。
本发明提供的工程车辆臂架控制器使用触摸屏作为操控输入设备,操作者 控制触摸屏上的操纵感应标志控制臂架末端的运行方向和运动速度。操纵者对 该控制器触摸屏上的操纵感应标志的操控,实现了对现有技术下操纵杆操控方 式的模仿。 由于在触摸屏上进行触摸操作比控制操纵杆更为简单方便,对运动 方向和运动速度的表达更为精确, 因此, 该种控制器为更准确的控制臂架末 端的运动速度和运动方向提供了可能性。 另外, 由触摸屏产生的控制信号为数 字信号, 而现有技术的操纵杆则一般为模拟信号, 需要进行模数转换。 因此, 该控制器的内部结构更简单。 此外, 由于触摸屏体积较操纵杆小, 重量比操纵 杆轻, 并且触摸屏易于与其他部分集成, 这些都使该控制器更容易制作为便于 携带的形式。
本发明的优选实施例中,提供了釆用直角坐标系或者极坐标系实现触摸屏 触摸表面和实际的臂架末端运动平面对应, 这样,通过控制在坐标系上的触摸 位置, 准确表达操作者期望的运动速度和运动方向, 为准确控制臂架末端的运 动速度和运动方向提供了可能。
附图说明
图 1是一种典型的四杆段臂架混凝土泵车结构图;
图 2是现有技术提供的一种混凝土泵车臂架的控制系统结构图; 图 3是本发明实施例提供的工程车辆臂架控制器结构图;
图 4 是建立触摸屏直角坐标系并通过该坐标系实现所述预定的对应关系 的方式流程图;
图 5 是建立触摸屏极坐标系并通过该坐标系实现所述预定的对应关系的 方式流程图;
图 6是本发明实施例提供的工程车辆臂架控制方法流程图。 具体实施方式
请参看图 3 , 该图示出本发明实施例提供的工程车辆臂架控制器, 该臂架 控制器主要包括一个触摸屏, 以及与相关的控制单元还包括其他各种操纵按 钮。 由于本发明仅仅涉及触摸屏替代操纵杆的改进, 所以, 以下介绍中仅仅涉 及该控制器通过触摸屏控制臂架末端运动的功能单元。
如图 3所述, 本实施例提供的工程车辆臂架控制器, 包括由显示器和触摸 感应器构成的触摸屏 31、 显示驱动单元 32、 显示控制单元 33、 控制指令形成 单元 34。
所述触摸屏 31显示操纵感应标志, 并接收外部的触摸, 形成能够反映触 摸点在触摸屏上位置的触摸感应信号。 触摸屏 31是本领域技术人员常用的电 子设备, 在此不做详细介绍。
所述显示驱动单元 32根据所述显示控制单元 33的显示控制指令,向所述 触摸屏 31提供显示驱动,控制所述触摸屏 31的显示内容, 该显示内容包括所 述操纵感应标志的形状以及在触摸屏上的位置。本实施例中操纵感应标志的形 状釆用具有一定面积的圓点形状, 该圓点的面积需要便于手指触摸操控。 实际 上, 操纵感应标志完全可以釆用其他形状, 例如十字形。 所述操纵感应标志在 触摸屏上的位置则根据显示控制单元 33实时输出的显示控制指令包含的位置 信息确定。
所述显示控制单元 33接收来自触摸屏 31的触摸感应信号,获得触摸点在 显示屏上的位置,判断该触摸点位置是否与当前的操纵感应标志位置具有重合 部分, 若是, 则设定所述操纵感应标志的状态为激活; 在操纵感应标志为激活 状态时, 如果触摸感应信号消失, 则复位操纵感应标志为休眠状态; 当所述操 纵感应标志处于激活状态时, 向所述显示驱动单元提供相应的显示控制指令, 该显示控制指令使所述操纵感应标志显示在触摸感应信号反映的触摸点位置 上; 如果操纵感应标志为休眠状态, 则输出相应的显示控制指令, 该显示控制 指令使所述操纵感应标志在触摸屏上预定的位置显示。 当然,也可以使其停留 在休眠前所处的位置上,下次激活时,则以该位置为触摸屏坐标的原点。显然, 前一种方案更加合理。 在本实施例中, 使用前一种方案, 并且该显示位置选择 在触摸屏的几何中心。
所述触摸屏 31具有触摸信号感应传感器, 能够在触摸屏被触摸产生触摸 感应信号, 该触摸感应信号包括触摸点在触摸屏上的位置信息。 另外, 所述操 纵感应标志的位置是由该显示控制单元 33发出的显示控制指令确定的,因此, 该显示控制单元 33能够从自身发出的显示控制指令中获得所述操纵感应标志 一 一 的具体位置; 获悉上述信息后, 就可以对触摸点是否与操纵感应标志重合作出 判断。 为了实现与使用操纵杆同样的操纵效果, 该控制器需要操作者直接触摸 操纵感应标志才能进行操纵, 因此, 需要对当前触摸点与操纵感应标志是否重 合作出判断, 在重合时, 则设置操纵感应标志为激活状态, 控制操纵感应标志 随着触摸点的移动而移动,即将操纵感应标志显示在触摸感应信号反映的触摸 点位置上, 这样, 可以使操纵者获得良好及时的操纵信号反馈。 一旦触摸感应 信号消失, 则说明操纵者没有触摸触摸屏表面, 为了避免操纵失误, 则立刻将 操纵感应标志的状态复位为休眠状态, 这样, 当操纵者在远离操纵感应标志的 位置触摸触摸屏时, 操纵感应标志不会移动。 上述显示控制单元 33提供的控 制过程, 实现了对操纵杆的模仿, 避免了在后续的控制过程中, 运动速度和运 动方向发生突变。
所述控制指令形成单元 34接收来自触摸屏 31的触摸感应信号以及显示控 制单元 33提供的显示驱动信号中的操纵感应标志状态信号, 在操纵感应标志 处于激活状态时,根据触摸感应信号表示的触摸点在触摸屏上的坐标位置,依 据预定的对应关系 ,形成反映所期望的臂架末端运动速度和运动方向的控制指 令, 并向外发送。
控制指令形成单元 34需要形成反映操作者对臂架末端运动速度和运动方 向的期望的控制指令,而操作者对臂架末端运动速度和运动方向的期望则来自 控制器操作者对操纵感应标志的触摸操控, 之所以称为对操纵感应标志的操 控,是因为操作者实际上是以如下方式进行操作: 操作者首先触摸所述操纵感 应标志, 使操纵感应标志处于激活状态; 继而, 操作者保持对触摸屏的触摸并 向触摸屏上的一定角度和方向移动, 操纵感应标志就会随之移动。 这样, 操作 者就可以通过控制操纵感应标志在触摸屏上的位置、或者该操纵感应标志与其 休眠时的原始显示位置的相对位置,体现自己对臂架末端的操纵意图。操纵者 在操作过程中如果脱离了触摸屏, 则操纵感应标志就会复位到休眠状态, 并且 回到原始显示位置。 这样, 可以确保操作者操作的连续性, 避免出现误操作。 需要说明, 在所述操纵感应标志处于激活状态时, 显示控制单元 33会控制操 纵感应标志随着触摸点位置移动, 此时,触摸点位置和操纵该应标志位置是一 致的。 从操作者直观来说, 就是操作者通过触摸方式控制操纵感应标志。 - -
如何将触摸点(或者称为操纵感应标志位置)在触摸屏上的位置、 或者该 操纵感应标志与其休眠时的原始显示位置的相对位置,依据预定转化为反映操 作者对臂架末端的移动方向和移动速度的期望的控制指令, 是一个关键问题。 这种转化方式无疑有多种, 但是, 对于操作者而言, 这种转化过程需要比较直 观,使其能够方便地将对操纵感应标志的控制与臂架末端的实际运动状态建立 直观的联系。在此提供两种依据预定的对应关系, 形成反映所期望的臂架末端 运动速度和运动方向的控制指令的转化方式。这两种方式都是在触摸屏上建立 触摸屏坐标系,以触摸点在该触摸屏坐标系上的运动方向对应到臂架末端运动 平面上预先建立的坐标系上,以实现触摸点在触摸屏坐标系上的移动方向到臂 架末端实际运动方向的对应关系; 另外, 以触摸点移动轨迹终点与操纵感应标 志原始位置的距离, 获得对臂架末端运动速度的期望值, 最终形成相应的控制 指令。 这两种方式中, 一种是在触摸屏上建立触摸屏直角坐标系, 另一种是在 触摸屏上建立触摸屏极坐标系。 以下分别予以说明。
所述建立触摸屏直角坐标系并通过该坐标系实现所述预定的对应关系的 方式如下。 请参见图 4.
步骤 S401 , 以操纵感应标志的原始位置为坐标原点, 并以预定的方向设 置互相垂直的 X轴、 Y轴, 在触摸屏的触摸平面上形成触摸屏直角坐标系。
所述操纵感应标志的原始位置, 在本实施例中, 就是操纵感应标志休眠状 态时的原始位置。 如前所述, 所述显示控制单元 33会在操纵感应标志处于休 眠状态时, 控制其在预定位置显示。 具体来说, 是在触摸屏的几何中心显示。 所述以预定方向设置互相垂直的 X、 Y轴, 包括确定 X轴所在的正方向, 以 及确定 Y轴所在的正方向。 常用的触摸屏多为正方形或者长方形, 一种推荐 的触摸屏直角坐标系的设置方法是: 所述 X轴平行于触摸屏上下框线, 其正 向指向触摸屏右方; 所述 Y轴平行于触摸屏左右框线, 其正向指向触摸屏上 方。
步骤 S402 , 在对应臂架末端的运动平面上, 设置以所述臂架末端开始运 动的初始位置为原点、 以该运动平面上的两个相互垂直的运动方向为 X轴、 Y 轴的位于臂架末端运动平面上的实际运动直角坐标系。
由于实际控制操作中,总是以臂架末端的开始运动的初始位置作为下一步 - -
运动的起始点, 为了转换方便, 就以该点作为实际运动直角坐标系的原点。 所 述 X轴、 Y轴的方向, 可以以工程车辆的某一个基准方向为标准进行设置。 优选方案是最终形成一个从俯视上看,与所述触摸屏直角坐标系便于对应的实 际运动直角坐标系。
步骤 S403 , 将所述触摸屏直角坐标系的原点到所述触摸点在触摸屏上的 位置之间的连线方向,对应到所述实际运动直角坐标系上与 X、 Y轴具有同样 角度关系的方向上, 该方向就是所期望的臂架末端运动方向。
步骤 S404 , 以触摸屏上触摸点与触摸屏直角坐标系的原点之间的距离确 定所述臂架末端的运动速度, 优选的方案中, 该距离越大, 则期望的运动速度 越高, 并且距离和期望的运动速度成正比。
通过上述对应关系的确立,最终使所述触摸点在触摸屏直角坐标系上的位 置, 反映了操作者所期望的臂架末端运动速度和运动方向。
所述建立触摸屏极坐标系并通过该坐标系实现所述预定的对应关系的方 式如下。 请参见图 5。
步骤 S501 , 以操纵感应标志的原始位置为极点, 并以预定的方向设置极 轴, 在触摸屏的触摸平面上形成触摸屏极坐标系。
对于大多数长方形或者正方形的触摸屏,所述极点设置在长方形或者正方 形的几何中心, 极轴设置为平行于触摸屏上下框线, 其正向指向触摸屏右方。
步骤 S502 , 在对应臂架末端的运动平面上, 设置以所述臂架末端开始运 动的初始位置为原点、以该运动平面上的预定运动方向为极轴的实际运动极坐 标系。
步骤 S503 , 获得所述触摸点在触摸屏极坐标系上的极角值。
步骤 S504 , 在所述实际运动极坐标系上取同样的极角值, 该极角值即可 确定所期望的臂架末端运动方向。
步骤 S505 , 以所述触摸点的极径值确定所期望的臂架末端运动速度, 该 数值越大, 则臂架末端的运动速度越大。 优选方式下, 触摸点的极径值与臂架 末端运动速度成正比。
本发明实施例提供的控制器, 可以设置在工程车辆臂架的远端, 通过远端 遥控的方式实现对臂架的控制, 例如手持遥控器、 远端操作台等。 此时, 只需 - -
将所述显示器设置在对应的远端控制器上,所述控制指令形成单元形成遥控指 令, 通过有线或无线形式向外发送。
所述控制器还可以设置在工程车辆臂架的近端, 例如工程车辆操作室等。 此时, 只需将所述显示器设置在工程车辆操作室的操作台上。
将上述实施例提供的控制器用于工程车辆臂架控制系统中,即可获得相应 的工程车辆臂架控制系统。对于本发明的保护范围而言, 该臂架控制系统可以 釆用现有技术下的各种控制系统,只要使用该具有触摸屏的控制器就属于本发 明提供的工程车辆臂架控制系统。
将上述工程车辆臂架控制系统用于工程车辆 ,则获得使用具有上述待触摸 屏的控制器的臂架控制系统的工程车辆。该工程车辆具体为混凝土泵车或者起 重机。
对应于本发明提供的工程车辆臂架控制器,本发明还提供了一种工程车辆 臂架控制方法。 参见图 6 , 该图示出本发明实施例提供的工程车辆臂架控制方 法流程图。 所述控制方法包括以下步骤:
步骤 S601 : 触摸屏显示操纵感应标志, 并接收外部的触摸, 形成能够反 映触摸点在触摸屏上位置的触摸感应信号;
其中, 所述操纵感应标志为具有一定面积的圓点;
步骤 S602: 接收来自触摸屏的触摸感应信号, 获得触摸点在显示屏上的 位置,判断该触摸点位置是否与当前的操纵感应标志位置具有重合部分,若是, 则设定所述操纵感应标志的状态为激活,发送相应的显示控制指令, 该显示控 制指令使所述操纵感应标志显示在触摸感应信号反映的触摸点位置上;
其中, 在操纵感应标志为激活状态时, 如果触摸感应信号消失, 则复位操 纵感应标志为休眠状态; 所述操纵感应标志在休眠状态下,显示在触摸屏的几 何中心;
步骤 S 603 : 根据所述显示控制指令, 向所述触摸屏提供显示驱动, 控制 所述触摸屏的显示内容,该显示内容包括所述操纵感应标志的形状以及在触摸 屏上的位置;
步骤 S604: 接收来自触摸屏的触摸感应信号以及操纵感应标志状态信号 时, 当所述操纵感应标志处于激活状态时,根据触摸感应信号表示的触摸点在 - -
触摸屏上的位置,依据预定的对应关系, 形成反映所期望的臂架末端运动速度 和运动方向的控制指令, 并以有线或者无线方式向外发送。
优选地, 步骤 S604中, 可以釆用下述方式实现触摸点在触摸屏上的位置 与臂架末端运动方向之间的对应关系:以休眠状态下操纵感应标志的显示位置 为坐标原点, 并以预定的方向设置互相垂直的 X轴、 Y轴, 在触摸屏的触摸 平面上形成触摸屏直角坐标系; 在对应臂架末端的运动平面上,设置以所述臂 架末端开始运动的初始位置为原点、以该运动平面上的两个相互垂直的运动方 向为 X轴、 Y轴的位于臂架末端运动平面上的实际运动直角坐标系; 所述所 期望的臂架末端运动方向,是将所述触摸屏直角坐标系的原点到所述触摸点在 触摸屏上的位置之间的连线方向, 对应到所述实际运动直角坐标系上与 X、 Y 轴具有同样角度关系的方向上, 就是所期望的臂架末端运动方向。
其中, 所述所期望的臂架末端运动速度,是根据所述触摸点在触摸屏上的 位置到所述触摸屏直角坐标系的原点之间的距离确定, 该距离越大则速度越 高。
优选地, 步骤 S604中, 还可以釆用下述方式实现触摸点在触摸屏上的坐 标位置与臂架末端运动方向之间的对应关系:以休眠状态下操纵感应标志的显 示位置为极点, 并以预定的方向为极轴, 形成触摸屏极坐标系; 在对应臂架末 端的运动平面上,设置以所述臂架末端开始运动的初始位置为原点、 以该运动 动方向通过如下方式获得: 获得所述触摸点在触摸屏极坐标系上的极角值,在 所述实际运动极坐标系上取同样的极角值,该极角值所代表的运动方向即为所 期望的臂架末端运动方向。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种工程车辆臂架控制器, 其特征在于, 包括由显示器和触摸感应器 构成的触摸屏、 显示驱动单元、 显示控制单元、 控制指令形成单元;
所述触摸屏显示操纵感应标志, 并接收外部的触摸, 形成能够反映触摸点 在触摸屏上位置的触摸感应信号;
所述显示驱动单元根据所述显示控制单元的显示控制指令,向所述触摸屏 提供显示驱动,控制所述触摸屏的显示内容, 该显示内容包括所述操纵感应标 志的形状以及在触摸屏上的位置;
所述显示控制单元接收来自触摸屏的触摸感应信号,获得触摸点在显示屏 上的位置, 判断该触摸点位置是否与当前的操纵感应标志位置具有重合部分, 若是,则设定所述操纵感应标志的状态为激活;在操纵感应标志为激活状态时, 如果触摸感应信号消失, 则复位操纵感应标志为休眠状态; 当所述操纵感应标 志处于激活状态时, 向所述显示驱动单元提供相应的显示控制指令, 该显示控 制指令使所述操纵感应标志显示在触摸感应信号反映的触摸点位置上;
所述控制指令形成单元接收来自触摸屏的触摸感应信号以及来自显示驱 动单元的操纵感应标志状态信号时, 当所述操纵感应标志处于激活状态时,根 据触摸感应信号表示的触摸点在触摸屏上的位置,依据预定的对应关系, 形成 反映所期望的臂架末端运动速度和运动方向的控制指令,并以有线或者无线方 式向外发送。
2、 根据权利要求 1所述的工程车辆臂架控制器, 其特征在于, 所述操纵 感应标志在休眠状态下, 显示在触摸屏的几何中心。
3、 根据权利要求 1所述的工程车辆臂架控制器, 其特征在于, 所述操纵 感应标志为具有一定面积的圓点。
4、 根据权利要求 1 - 3任一项所述的工程车辆臂架控制器, 其特征在于, 以下述方式实现触摸点在触摸屏上的位置与臂架末端运动方向之间的对应关 系: 以休眠状态下操纵感应标志的显示位置为坐标原点, 并以预定的方向设置 互相垂直的 X轴、 Y轴, 在触摸屏的触摸平面上形成触摸屏直角坐标系; 在 对应臂架末端的运动平面上, 设置以所述臂架末端开始运动的初始位置为原 点、 以该运动平面上的两个相互垂直的运动方向为 X轴、 Y轴的位于臂架末 端运动平面上的实际运动直角坐标系; 所述所期望的臂架末端运动方向,是将 所述触摸屏直角坐标系的原点到所述触摸点在触摸屏上的位置之间的连线方 向,对应到所述实际运动直角坐标系上与 X、Y轴具有同样角度关系的方向上, 就是所期望的臂架末端运动方向。
5、 根据权利要求 4所述的工程车辆臂架控制器, 其特征在于, 所述触摸 屏为正方形或者长方形; 所述触摸屏直角坐标系的 X轴平行于触摸屏上下框 线, 其正向指向触摸屏右方; 所述 Υ轴平行于触摸屏左右框线, 其正向指向 触摸屏上方。
6、 根据权利要求 4所述的工程车辆臂架控制器, 其特征在于, 所述所期 望的臂架末端运动速度,是根据所述触摸点在触摸屏上的位置到所述触摸屏直 角坐标系的原点之间的距离确定, 该距离越大则速度越高。
7、 根据权利要求 1-3任一项所述的工程车辆臂架控制器, 其特征在于, 以下述方式实现触摸点在触摸屏上的坐标位置与臂架末端运动方向之间的对 应关系: 以休眠状态下操纵感应标志的显示位置为极点, 并以预定的方向为极 轴, 形成触摸屏极坐标系; 在对应臂架末端的运动平面上, 设置以所述臂架末 端开始运动的初始位置为原点、以该运动平面上的预定运动方向为极轴的实际 运动极坐标系; 所述所期望的臂架末端运动方向通过如下方式获得: 获得所述 触摸点在触摸屏极坐标系上的极角值,在所述实际运动极坐标系上取同样的极 角值, 该极角值所代表的运动方向即为所期望的臂架末端运动方向。
8、 根据权利要求 7所述的工程车辆臂架控制器, 其特征在于, 所述触摸 屏为正方形或者长方形; 所述触摸屏直角坐标系的极轴平行于触摸屏上下框 线, 其正向指向触摸屏右方。
9、 根据权利要求 7所述的工程车辆臂架控制器, 其特征在于, 所述所期 望的臂架末端运动速度, 是根据所述触摸点在触摸屏极坐标系的极径值确定, 该极径值越大则速度越高。
10、 一种工程车辆臂架控制系统, 其特征在于, 釆用权利要求 1至权利要 求 9任一项所述的工程车辆臂架控制装置控制器。
11、 一种工程车辆, 其特征在于, 釆用权利要求 10所述工程车辆臂架控 制系统。
12、 根据权利要求 11所述的工程车辆, 其特征在于, 所述工程车辆为混 凝土泵车或者起重机。
13、 一种工程车辆臂架的控制方法, 其特征在于, 所述方法包括: 触摸屏显示操纵感应标志, 并接收外部的触摸, 形成能够反映触摸点在触 摸屏上位置的触摸感应信号;
接收来自触摸屏的触摸感应信号, 获得触摸点在显示屏上的位置, 判断该 触摸点位置是否与当前的操纵感应标志位置具有重合部分, 若是, 则设定所述 操纵感应标志的状态为激活,发送相应的显示控制指令, 该显示控制指令使所 述操纵感应标志显示在触摸感应信号反映的触摸点位置上;
根据所述显示控制指令, 向所述触摸屏提供显示驱动,控制所述触摸屏的 显示内容, 该显示内容包括所述操纵感应标志的形状以及在触摸屏上的位置; 接收来自触摸屏的触摸感应信号以及操纵感应标志状态信号时,当所述操 纵感应标志处于激活状态时,根据触摸感应信号表示的触摸点在触摸屏上的位 置,依据预定的对应关系, 形成反映所期望的臂架末端运动速度和运动方向的 控制指令, 并以有线或者无线方式向外发送。
14、 根据权利要求 13所述的方法, 其特征在于, 在操纵感应标志为激活 状态时, 如果触摸感应信号消失, 则复位操纵感应标志为休眠状态。
15、 根据权利要求 14所述的方法, 其特征在于, 所述操纵感应标志在休 眠状态下, 显示在触摸屏的几何中心。
16、 根据权利要求 13-15任一项所述的方法, 其特征在于, 以下述方式实 现触摸点在触摸屏上的位置与臂架末端运动方向之间的对应关系:
以休眠状态下操纵感应标志的显示位置为坐标原点,并以预定的方向设置 互相垂直的 X轴、 Y轴, 在触摸屏的触摸平面上形成触摸屏直角坐标系; 在 对应臂架末端的运动平面上, 设置以所述臂架末端开始运动的初始位置为原 点、 以该运动平面上的两个相互垂直的运动方向为 X轴、 Y轴的位于臂架末 端运动平面上的实际运动直角坐标系; 所述所期望的臂架末端运动方向,是将 所述触摸屏直角坐标系的原点到所述触摸点在触摸屏上的位置之间的连线方 向,对应到所述实际运动直角坐标系上与 X、 Y轴具有同样角度关系的方向上, 就是所期望的臂架末端运动方向。
17、 根据权利要求 13-15任一项所述的方法, 其特征在于, 以下述方式实 现触摸点在触摸屏上的坐标位置与臂架末端运动方向之间的对应关系:
以休眠状态下操纵感应标志的显示位置为极点, 并以预定的方向为极轴, 形成触摸屏极坐标系; 在对应臂架末端的运动平面上,设置以所述臂架末端开 始运动的初始位置为原点、以该运动平面上的预定运动方向为极轴的实际运动 极坐标系; 所述所期望的臂架末端运动方向通过如下方式获得: 获得所述触摸 点在触摸屏极坐标系上的极角值, 在所述实际运动极坐标系上取同样的极角 值, 该极角值所代表的运动方向即为所期望的臂架末端运动方向。
PCT/CN2010/074237 2009-07-06 2010-06-22 工程车辆臂架控制器、控制系统、工程车辆、及控制方法 WO2011003324A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES10796701T ES2406258T3 (es) 2009-07-06 2010-06-22 Controlador de soporte de brazo de vehículo de obras públicas, sistema de control para vehículo de obras públicas y procedimiento de control
EP10796701A EP2386387B1 (en) 2009-07-06 2010-06-22 Engineering vehicle arm support controller control system engineering vehicle and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910158819XA CN101604153B (zh) 2009-07-06 2009-07-06 工程车辆臂架控制器、控制系统、工程车辆、及控制方法
CN200910158819.X 2009-07-06

Publications (1)

Publication Number Publication Date
WO2011003324A1 true WO2011003324A1 (zh) 2011-01-13

Family

ID=41469916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074237 WO2011003324A1 (zh) 2009-07-06 2010-06-22 工程车辆臂架控制器、控制系统、工程车辆、及控制方法

Country Status (4)

Country Link
EP (1) EP2386387B1 (zh)
CN (1) CN101604153B (zh)
ES (1) ES2406258T3 (zh)
WO (1) WO2011003324A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8850892B2 (en) 2010-02-17 2014-10-07 Viking At, Llc Smart material actuator with enclosed compensator
US10689831B2 (en) 2018-03-27 2020-06-23 Deere & Company Converting mobile machines into high precision robots
US11162241B2 (en) 2018-03-27 2021-11-02 Deere & Company Controlling mobile machines with a robotic attachment
CN114415687A (zh) * 2022-01-21 2022-04-29 北谷电子有限公司 一种单手柄控制器的控制方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604153B (zh) * 2009-07-06 2011-06-29 三一重工股份有限公司 工程车辆臂架控制器、控制系统、工程车辆、及控制方法
WO2012062374A1 (en) * 2010-11-12 2012-05-18 Abb Technology Ag A control system and an operating device for controlling an industrial robot comprising a touch -screen
CN102205937B (zh) * 2011-03-28 2013-02-13 徐州重型机械有限公司 高空作业工程机械及其臂架装置
CN102354120B (zh) * 2011-05-27 2013-04-24 东南大学 混凝土泵车智能臂架系统的仿真实验装置及方法
CN102360222B (zh) * 2011-07-14 2014-03-26 中联重科股份有限公司 控制工程机械的机械臂的方法、装置和遥控器
CN102360221B (zh) * 2011-07-14 2013-09-18 中联重科股份有限公司 工程机械以及控制工程机械的机械臂的方法、装置和系统
DE102011120651A1 (de) 2011-12-09 2013-06-13 Westfalia-Automotive Gmbh Steuergerät und Anhängekupplung zur Kommunikation mit einem Bediengerät
CN103192396B (zh) * 2012-01-09 2015-07-22 中联重科股份有限公司 混凝土泵送设备及其末端软管的运动控制系统与方法
CN102566598B (zh) * 2012-02-03 2015-04-01 三一汽车制造有限公司 一种工程机械及其控制方法、控制系统
CN103809595A (zh) * 2014-01-26 2014-05-21 三一汽车制造有限公司 工程机械的操控方法、操控终端、控制装置及操控系统
CN104977927A (zh) 2014-04-14 2015-10-14 科沃斯机器人科技(苏州)有限公司 表面处理机器人系统
JP6292617B2 (ja) * 2014-04-16 2018-03-14 キャタピラー エス エー アール エル 作業機械用タッチパネルモニタの入力制御方法
CN104032959B (zh) * 2014-04-29 2017-01-18 三一汽车制造有限公司 一种工程机械和臂架控制系统
AT515719A1 (de) * 2014-05-09 2015-11-15 Keba Ag Bedieneinrichtung und Steuersystem
DE102015108473A1 (de) * 2015-05-28 2016-12-01 Schwing Gmbh Großmanipulator mit schnell ein- und ausfaltbarem Knickmast
CN105022398B (zh) * 2015-07-15 2018-07-06 珠海磐磊智能科技有限公司 触摸屏控制器及行驶装置的控制方法
CN108319195B (zh) * 2018-01-29 2021-01-22 宁波极呈光电有限公司 应用于显示装置的信号采集器及工作方法
CN108789453A (zh) * 2018-08-17 2018-11-13 成都跟驰科技有限公司 带有折叠机械臂的汽车的触屏控制系统
CN112095708A (zh) * 2020-09-23 2020-12-18 三一重机有限公司 挖掘机触控控制方法、系统及挖掘机
CN113445752B (zh) * 2021-05-25 2022-03-25 中联重科股份有限公司 臂架末端运动的控制方法、装置、系统、介质及工程机械
CN114753640B (zh) * 2022-04-01 2023-04-07 中联重科股份有限公司 臂架末端运动规划方法、装置、控制系统及工程机械

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030208301A1 (en) * 2000-01-18 2003-11-06 Tmsuk Co., Ltd. Robot remote controlling apparatus and robot apparatus
CN1745987A (zh) * 2004-09-10 2006-03-15 中国科学院自动化研究所 一种移动机械手控制系统
CN1843710A (zh) * 2005-04-07 2006-10-11 精工爱普生株式会社 移动控制装置及方法、位置指挥装置及方法、控制程序
CN1853876A (zh) * 2005-04-25 2006-11-01 Lg电子株式会社 能够指定移动区域的机器人系统
WO2008129818A1 (ja) * 2007-03-30 2008-10-30 Sega Corporation ロボットのモーション編集装置及びそのプログラム
JP2009006410A (ja) * 2007-06-26 2009-01-15 Fuji Electric Systems Co Ltd 遠隔操作支援装置および遠隔操作支援プログラム
CN101604153A (zh) * 2009-07-06 2009-12-16 三一重工股份有限公司 工程车辆臂架控制器、控制系统、工程车辆、及控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4014662B2 (ja) * 1995-09-18 2007-11-28 ファナック株式会社 ロボット教示操作盤
DE69618606T2 (de) * 1995-09-19 2002-09-12 Yaskawa Denki Kitakyushu Kk Prozessor für robotersprache
ITMI20060818A1 (it) * 2006-04-24 2007-10-25 Cifa Spa Sistema perfezionato per la sorveglianza e il controllo del funzionamento di macchinari semoventi a braccio articolato,quali pompe per calcestruzzo
CN100583007C (zh) * 2006-12-21 2010-01-20 财团法人工业技术研究院 具有表面显示信息与互动功能的可动装置
CN101034294A (zh) * 2007-03-23 2007-09-12 乔磊 两轴定位控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030208301A1 (en) * 2000-01-18 2003-11-06 Tmsuk Co., Ltd. Robot remote controlling apparatus and robot apparatus
CN1745987A (zh) * 2004-09-10 2006-03-15 中国科学院自动化研究所 一种移动机械手控制系统
CN1843710A (zh) * 2005-04-07 2006-10-11 精工爱普生株式会社 移动控制装置及方法、位置指挥装置及方法、控制程序
CN1853876A (zh) * 2005-04-25 2006-11-01 Lg电子株式会社 能够指定移动区域的机器人系统
WO2008129818A1 (ja) * 2007-03-30 2008-10-30 Sega Corporation ロボットのモーション編集装置及びそのプログラム
JP2009006410A (ja) * 2007-06-26 2009-01-15 Fuji Electric Systems Co Ltd 遠隔操作支援装置および遠隔操作支援プログラム
CN101604153A (zh) * 2009-07-06 2009-12-16 三一重工股份有限公司 工程车辆臂架控制器、控制系统、工程车辆、及控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8850892B2 (en) 2010-02-17 2014-10-07 Viking At, Llc Smart material actuator with enclosed compensator
US10689831B2 (en) 2018-03-27 2020-06-23 Deere & Company Converting mobile machines into high precision robots
US11162241B2 (en) 2018-03-27 2021-11-02 Deere & Company Controlling mobile machines with a robotic attachment
CN114415687A (zh) * 2022-01-21 2022-04-29 北谷电子有限公司 一种单手柄控制器的控制方法

Also Published As

Publication number Publication date
EP2386387A4 (en) 2012-04-04
CN101604153B (zh) 2011-06-29
EP2386387A1 (en) 2011-11-16
EP2386387B1 (en) 2013-03-27
CN101604153A (zh) 2009-12-16
ES2406258T3 (es) 2013-06-06

Similar Documents

Publication Publication Date Title
WO2011003324A1 (zh) 工程车辆臂架控制器、控制系统、工程车辆、及控制方法
JP5526881B2 (ja) ロボットシステム
WO2013107124A1 (zh) 一种机械臂操控系统、方法及工程机械
WO2013114737A1 (ja) 機器の表示装置および表示装置を設けた機器
KR20110112375A (ko) 건설장비의 원격제어시스템 및 원격제어방법
KR20100086931A (ko) 제어 장치, 입력 장치, 제어 시스템, 제어 방법 및 핸드헬드 장치
JP2012104107A (ja) 画像内のセレクタ記号を制御する表示システム
CN103108170A (zh) 一种视频监控云台控制方法和装置
JP2009243073A (ja) 作業車両
CN103366659A (zh) 显示控制方法及相关设备
CN102662404A (zh) 一种云台控制装置及云台的控制方法
JP2018095449A (ja) 遠隔操作端末
WO2013044625A1 (zh) 臂架动作控制方法、系统及臂架末端直线位移控制方法、系统及混凝土泵
CN103200304A (zh) 一种移动终端智能光标控制系统及方法
US20170254050A1 (en) System and method for operating implement system of machine
JP2006307436A (ja) 旋回系作業機械
WO2019124043A1 (ja) 建設機械
WO2015165346A1 (zh) 一种工程机械和臂架控制系统
JP4640191B2 (ja) 監視カメラシステム及び監視カメラの方向制御方法
JP2011156913A (ja) 建設機械の操作装置
CN111941392A (zh) 机器人操作装置、机器人及机器人操作方法
JP2014164346A5 (ja) 機器管理システムおよび携帯端末
JP2017071992A (ja) ショベル操作装置及びショベル操作方法
JP2016078142A (ja) ロボット装置の制御方法、およびロボット装置
JP2016153573A (ja) 建設機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10796701

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010796701

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE