WO2013044625A1 - 臂架动作控制方法、系统及臂架末端直线位移控制方法、系统及混凝土泵 - Google Patents

臂架动作控制方法、系统及臂架末端直线位移控制方法、系统及混凝土泵 Download PDF

Info

Publication number
WO2013044625A1
WO2013044625A1 PCT/CN2012/074276 CN2012074276W WO2013044625A1 WO 2013044625 A1 WO2013044625 A1 WO 2013044625A1 CN 2012074276 W CN2012074276 W CN 2012074276W WO 2013044625 A1 WO2013044625 A1 WO 2013044625A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm section
boom
arm
section
signal
Prior art date
Application number
PCT/CN2012/074276
Other languages
English (en)
French (fr)
Inventor
周翔
周继辉
邓侃
Original Assignee
湖南三一智能控制设备有限公司
三一重工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 三一重工股份有限公司 filed Critical 湖南三一智能控制设备有限公司
Publication of WO2013044625A1 publication Critical patent/WO2013044625A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0445Devices for both conveying and distributing with distribution hose with booms
    • E04G21/0463Devices for both conveying and distributing with distribution hose with booms with boom control mechanisms, e.g. to automate concrete distribution

Definitions

  • the invention relates to the technical field of concrete pump truck boom control, in particular to a boom motion control method and a boom motion control system.
  • the invention also relates to a method for controlling the linear displacement of the end of the boom and a linear displacement control system for the end of the boom.
  • the present invention also relates to a concrete pump truck having the above-described boom motion control system and a concrete pump truck having the above-described boom end linear displacement control system.
  • Concrete pump trucks are a common construction equipment that typically includes a pump chassis, a pumping mechanism, and a boom system.
  • the boom system generally includes a fixed table 1, a multi-section arm joint 2, a telescopic cylinder 3, and a link mechanism 4, as shown in FIG. 1, taking a boom system having five arm sections as an example, the head and tail of each arm section.
  • the ends are hinged in sequence, the first end of the first segment of the arm is hinged to the fixed table 1, and the end of the last segment of the arm forms the end 5 of the boom system of the boom system.
  • each of the arm sections is driven to rotate by the telescopic cylinder 3, and when the telescopic cylinder 3 is expanded and contracted, the telescopic cylinder 3 pushes the link mechanism connected with the arm section, and the link mechanism pushes the arm section to rotate, each section
  • the arm section can be rotated about the hinge point of its head end in the plane shown in Fig. 1, and the arm section can be unfolded and collapsed.
  • the operator usually adjusts the position of the boom end of the boom system through the boom operation remote control.
  • the operator operates the five handles of the remote controller through the boom.
  • the movement of each arm section is controlled separately.
  • the first handle controls the expansion and contraction of the telescopic cylinder of the first section of the arm section, thereby controlling the expansion and contraction of the first section of the arm section
  • the second handle controls the second section of the arm section.
  • the telescopic cylinder is telescoped to control the unfolding and folding of the second boom section, and so on.
  • FIG. 2 is a schematic structural view of the second section of the boom system of FIG.
  • the boom operating remote controller controls the second boom section to change the angle
  • the end of the second boom moves the distance d
  • the end of the boom ie, the end of the fifth boom
  • This "amplification” effect makes it difficult for the operator to make precise adjustments to the end of the boom.
  • To achieve precise adjustment of the end of the boom it is necessary to simultaneously
  • the arm section performs the corresponding displacement adjustment, and the displacement of the remaining arm sections is not easy to determine.
  • the smooth movement and precise positioning of the end of the boom are difficult; the operator needs to perform multiple operations, which is labor intensive and fatigue-prone.
  • a boom end positioning technology also referred to as an intelligent boom technology;
  • the machine automatically plans the attitude of each arm section, that is, the operator only needs to give the movement speed command in the x, y, and z directions at the end of the boom through the remote controller, and the attitude of each arm section of the boom system will be
  • the automatic adjustment makes the end of the boom move according to the speed in the x, y, and z directions.
  • This technology makes the concrete pump truck more flexible, more compact and more intuitive in the construction, greatly reducing the operator's hand. Labor intensity.
  • a first object of the present invention is to provide a boom motion control method which can achieve precise adjustment of the boom end of a boom system having a multi-section arm joint.
  • a second object of the present invention is a boom motion control system that can achieve precise adjustment of the boom end of a boom system having a multi-section arm section.
  • a third object of the present invention is to provide a method for controlling linear displacement of a boom end, at the end of the boom
  • the end linear displacement control method can realize the adjustment of the linear displacement of the arm end of the boom system with the multi-section arm joints in a single and accurate manner.
  • a fourth object of the present invention is to provide a linear displacement control system for a boom end, which can linearly and linearly displace a boom end of a boom system having a multi-section arm section. Adjustment.
  • a fifth object of the present invention is to provide a concrete pump truck having the above-described boom motion control system.
  • a sixth object of the present invention is to provide a concrete pump truck having the above-described boom end linear displacement control system.
  • the present invention provides a method for controlling the motion of a boom, comprising the following steps:
  • Step 11 receiving an arm section motion command, and controlling the corresponding arm section to perform an action according to the arm section motion instruction;
  • Step 12 determining whether an operation instruction of the next arm section of the arm section is received, and if an operation instruction of the next arm section is received, proceeding to step 11), if the next section is not received
  • the motion command of the arm section proceeds to step 13);
  • Step 13) controlling the posture of the next arm section and the previous posture are always unchanged.
  • the step 13) is specifically: detecting an angle between the next arm section and a horizontal plane in real time, if the detected angle is deviated from the previous between the next arm section and the horizontal plane The angle is controlled, and the telescopic cylinder of the next arm section is controlled to perform a telescopic movement so that the detected angle is always consistent with the prior angle.
  • the boom motion control method provided by the present invention comprises the following steps: Step 11), receiving an arm section motion instruction, and controlling the corresponding arm section to perform an action according to the arm section motion instruction; Step 12), determining whether the arm section is received If the operation command of the next arm section is received, if the operation command of the next arm section is received, the process proceeds to step 11), and if the action command of the next arm section is not received, the process proceeds to step 13); 13), controlling the posture of the next arm section and the previous posture are always unchanged.
  • the arm section to be adjusted can directly perform the unfolding or folding action after receiving the arm section motion command, and if the next arm section of the arm section is an arm section that does not need adjustment, The attitude of the next section of the arm is always consistent with the previous attitude (the prior attitude refers to the attitude of the boom after the adjustment of the boom system).
  • the motion line displacement at the end of the boom is also d, and it can be seen that when the arm section or the multi-section arm section is adjusted, the line displacement of the end of the boom is adjusted.
  • the arm section line displacement is the same (this method, referred to as "arm follower technology” in this application), does not "magnify” the displacement of the end of the arm frame, only by adjusting one or more arm sections.
  • the end of the boom is stable and precise, and the operator does not need to operate multiple times, and the labor intensity is small.
  • the present invention provides a boom motion control system, including an arm motion signal transmitter, a controller, and an attitude detecting device;
  • the arm motion signal transmitter emits an arm motion command signal
  • the controller receives the arm section motion command signal, controls the corresponding arm section to perform a corresponding action, and determines whether an action command signal of the next arm section of the arm section is received, if the next section is not received
  • An operation command signal of the arm joint the posture detecting device detects the attitude of the next arm section in real time, and the controller controls the movement of the telescopic cylinder of the next arm section so that the next arm section is The posture is always consistent with the previous posture;
  • a signal emitting end of the arm joint motion signal transmitter is connected to an arm joint motion signal receiving end of the controller, and a control signal emitting end of the controller is connected to a telescopic cylinder control end of the next arm section;
  • the attitude signal output end of the attitude detecting device is connected to the attitude signal receiving end of the controller.
  • the arm joint motion signal transmitter is an arm joint operation remote controller.
  • the attitude detecting device is a tilt sensor for detecting an angle between the next arm section and a horizontal plane, and the angle signal output end of the tilt sensor is connected to the attitude signal receiving end of the controller.
  • the boom motion control system comprises an arm motion signal transmitter, a controller and an attitude detecting device; the arm motion signal transmitter emits an arm motion command signal, and the controller receives the arm motion command a signal, controlling the corresponding arm section to perform a corresponding action, and determining whether to receive an action command signal of the next arm section of the arm section, and if the action command signal of the next arm section is not received, the attitude detecting device
  • the attitude of the next arm section is detected in real time, and the controller controls the movement of the telescopic cylinder of the next arm section so that the posture of the next arm section is always consistent with the previous posture.
  • the arm section motion signal transmitter can be used to issue the arm section motion of the corresponding arm section.
  • the controller can directly control the corresponding arm section to expand or collapse, and determine whether the next section of the arm section is an arm section that does not need to be adjusted, the next section If the arm section is an arm section that does not need to be adjusted, the attitude of controlling the next arm section is always consistent with the previous posture.
  • the movement line displacement at the end of the boom is also d, and it can be seen that the changed line displacement of the end of the boom when adjusting an arm section or a multi-section arm section is
  • the adjusted arm pitch has the same displacement, and does not "magnify" the angle and line displacement of the end of the boom. Only by adjusting one or more sections of the arm, the smooth and precise adjustment of the end of the boom can be achieved. No need to operate multiple times, labor intensity is small.
  • the present invention provides a method for controlling the linear displacement of the end of the boom, comprising the following steps:
  • Step 61 inputting a target displacement amount signal at the end of the boom and a specified arm section signal of the required adjustment arm section, and the number of required adjustment arm sections is not less than two;
  • Step 62 calculating the displacement amount of each required adjustment arm section, and issuing an arm section motion instruction corresponding to each required adjustment arm section;
  • Step 63 controlling an arm section corresponding to the arm section motion command to operate; Step 6 4), determining whether an action command of the next arm section of the arm section is received, if the next step is received The operation command of the arm section, proceeds to step 63), if the action command of the next arm section is not received, proceeds to step 65);
  • Step 65 controlling the posture of the next arm section and the previous posture to remain unchanged.
  • the step 65) is specifically: detecting an angle between the next arm section and a horizontal plane in real time, if the detected angle is deviated from the previous between the next arm section and the horizontal plane The angle is controlled, and the telescopic cylinder of the next arm section is controlled to perform a telescopic movement so that the detected angle is always consistent with the prior angle.
  • the number of required adjustment arm segments is two.
  • the end of the boom of the boom system usually needs to go straight, that is, the end of the boom usually needs to be moved in a straight line to complete the concrete pouring operation on the straight line.
  • the target displacement signal at the end of the boom and the specified arm section signal of the required arm section can be directly input.
  • the target displacement amount signal at the end of the boom indicates the linear displacement required to be adjusted at the end of the boom.
  • the number of arm sections to be adjusted is not less than two sections, and the specified arm section signal indicates the arm section to be adjusted; according to the target displacement signal
  • the amount of linear displacement and the arm section to be adjusted are used to calculate the amount of displacement that needs to be adjusted for each arm section to be adjusted.
  • the arm sections that need to be adjusted can be directly controlled to operate according to the corresponding displacement amount, and the required adjustments are judged at the same time. Whether the next arm section of the arm section is a boom to be adjusted, if the next arm section is not a boom to be adjusted, the posture of the next arm section is controlled to be consistent with the previous posture.
  • the method of linear displacement control at the end of the boom only needs to input the target displacement amount at the end of the boom and determine the arm section to be adjusted, and adjust the required arm section to achieve the target displacement according to the input target.
  • Straight line This method of linear displacement control at the end of the boom can realize the straight line at the end of the boom by adjusting at least two arm sections.
  • the control complexity is low, and the algorithm is simple. It can be applied to multi-section arm joints.
  • the method of linear displacement control at the end of the boom can adjust any arm section separately to realize the straight line at the end of the boom, so that the unfolding posture of the boom system is not limited by space, and the corresponding building can be avoided Or other objects, reduce the construction difficulty, and ensure the smooth progress of the construction.
  • the present invention provides a boom end linear displacement control system including an arm section motion signal transmitter, a controller and an attitude detecting device; the arm section motion signal transmitter input arm end a target displacement amount signal and a specified arm section signal of the required adjustment arm section, and the number of the required adjustment arm sections is not less than two; the controller receives the target displacement amount signal and the specified arm section signal a calculation unit of the controller calculates a displacement amount of each required adjustment arm section, and issues an arm section motion instruction corresponding to each required adjustment arm section, and the control unit of the controller receives the arm section Actuating and controlling the corresponding arm section to perform corresponding actions, the determining unit of the controller determines whether the control unit receives an action command signal of the next arm section of the arm section, if the next arm is not received An operation command signal of the section, the attitude detecting means detects the attitude of the next arm section in real time, and the control unit controls the telescopic cylinder of the next arm section Acting such that the posture of the next section of the arm
  • a signal transmitting end of the arm joint motion signal transmitter and an arm motion signal of the controller The receiving end is connected, the control signal emitting end of the controller is connected to the telescopic cylinder control end of the next arm section, and the attitude signal output end of the attitude detecting device is connected to the attitude signal receiving end of the controller.
  • the boom motion signal transmitter is an arm section operation remote controller
  • the arm section operation remote controller includes a universal handle and an analog handle corresponding to each arm section of the boom system, and the universal handle is used to generate a simulation target corresponding to the target displacement amount of the boom end a displacement amount signal, the analog handle is for outputting the specified arm section signal.
  • the attitude detecting device is a tilt sensor for detecting an angle between the next arm section and a horizontal plane, and the angle signal output end of the tilt sensor is connected to the attitude signal receiving end of the controller.
  • the target displacement signal at the end of the boom and the specified arm section signal of the required arm section can be directly input through the arm section motion signal transmitter, and the target displacement amount signal at the end of the boom represents the boom.
  • the amount of linear displacement required to be adjusted at the end since at least two arm sections need to be adjusted due to the straight line at the end of the boom, the number of arm sections to be adjusted is not less than two sections, and the specified arm section signal indicates the arm section to be adjusted;
  • the controller receives the target displacement amount signal and the specified arm section signal, and according to the linear displacement amount indicated by the target displacement signal and the arm section to be adjusted, the calculation unit of the controller calculates each required adjustment
  • the amount of displacement that the arm section needs to adjust the control unit of the controller can directly control the arm sections that need to be adjusted to operate according to the corresponding displacement amount, and the judgment unit of the controller determines the next section of the arm section to be adjusted. Whether the arm section is a boom to be adjusted, if the next arm section is not a boom
  • This type of boom end linear displacement control system only needs to input the target displacement amount at the end of the boom and determine the arm section to be adjusted, and adjust the required arm section to achieve the target displacement according to the input target.
  • Straight line The linear displacement control system at the end of the boom can realize the straight line at the end of the boom by adjusting at least two arm sections.
  • the control complexity is low, and the algorithm is simple. It can be applied to multi-section arm joints.
  • such a beam end linear displacement control system which can adjust any arm section separately to realize the straight line at the end of the boom, so that the unfolding posture of the boom system is not limited by space, and the corresponding building can be avoided Or other objects, reduce the construction difficulty, and ensure the smooth progress of the construction.
  • the present invention provides a boom motion control
  • the concrete pump truck of the system since the above-mentioned boom motion control system has the above technical effects, the concrete pump truck having the boom motion control system should also have corresponding technical effects.
  • the present invention provides a concrete pump truck having the above-mentioned beam end linear displacement control system. Since the above-mentioned boom end linear displacement control system has the above technical effects, there is a linear displacement of the arm end end.
  • the concrete pump truck of the control system should also have the corresponding technical effects.
  • Figure 1 is a schematic structural view of a typical boom system
  • FIG. 2 is a schematic structural view of the second arm section of the boom system of FIG. 1;
  • FIG. 3 is a flow chart of a specific implementation manner of a boom motion control method according to the present invention.
  • Figure 4 is a schematic structural view of the second arm section of the boom system
  • Figure 5 is a schematic view showing the structure of the second section and the third section of the boom system
  • FIG. 6 is a schematic block diagram of a specific embodiment of a boom motion control system provided by the present invention.
  • FIG. 7 is a flow chart of a specific implementation manner of a method for controlling linear displacement of a boom end according to the present invention.
  • Figure 8 is a schematic view showing the structure of the boom end of the boom system in a straight line
  • Figure 9 is a schematic view showing the structure of the boom end of the boom system in a horizontal direction
  • Figure 10 is the end of the boom provided by the present invention.
  • Figure 11 is a schematic view showing the structure of a specific embodiment of the arm section motion signal transmitter; wherein, in Figures 1-11:
  • Controller 11 arm section motion signal transmitter 12, attitude detecting device 13, arm section 14, lower arm section 15;
  • the controller 21 the arm joint motion signal transmitter 22, the attitude detecting device 23, the arm joint 24, the next arm section 25, the universal handle 22-1, and the analog handle 22-2.
  • FIG. 3 is a flow chart of a specific implementation manner of a boom motion control method according to the present invention.
  • the boom motion control method provided by the present invention includes the following steps.
  • Step S101 Receive an arm section motion command, and control the corresponding arm section to perform the motion according to the arm section motion instruction.
  • the operator can issue one or more arm section motion commands of the single arm section through the transmitter, the controller receives the arm section motion command, and controls the arm section motion command corresponding to the arm section motion command.
  • the arm section is operated according to the arm section motion command.
  • the arm section motion command may be an instruction indicating a telescopic cylinder extension amount or a contraction amount corresponding to the corresponding arm section, and the arm section is controlled.
  • the corresponding telescopic cylinder operates.
  • Step S102 determining whether an operation instruction of the next arm section of the arm section is received, and if an operation instruction of the next arm section is received, proceeding to step S101, if the next arm section is not received
  • the operation command proceeds to step S103.
  • step S103 After receiving the arm section motion command, it is determined whether the arm section motion command of the next arm section of the arm section needs to be received. If the arm section motion command of the next boom is not received, the next section of the arm section is indicated. If the adjustment is not needed, the process proceeds to step S103; if the arm section operation command of the next boom is received, indicating that the next arm section needs to be adjusted, the process proceeds to step S101, and the next arm section is controlled to press the corresponding arm section operation command. Take action.
  • Step S103 Controlling the posture of the next arm section and the previous posture are always unchanged. If the next section of the arm does not need to be actuated, then the attitude and the previous attitude of the next section will remain unchanged.
  • the prior attitude refers to the angle between the lower arm section and the horizontal direction before the boom system is adjusted, that is, before the arm section motion command is received.
  • the displacement of the movement line at the end of the boom is also d, and it can be seen that when the arm section or the multi-section arm section is adjusted, the line displacement of the end of the boom is adjusted.
  • the line displacement of the arm section is the same (this method, referred to as "arm follower technology" in this application), does not "magnify” the line displacement at the end of the boom, only by adjusting one or more arm sections. It can realize the smooth and precise adjustment of the end of the boom, and the operator does not need to operate multiple times, and the labor intensity is small.
  • the boom motion control method can control the boom system only when one boom moves, as shown in FIG. 4, taking the second boom section as an example, when the second boom section needs to be adjusted,
  • the operator issues an arm section motion command of the second section of the arm section, receives the arm section motion command, determines that the arm section motion command that needs to be operated by the third section arm section is not received, and controls the posture and the previous posture of the third section arm section. It remains the same, and the line displacement at the end of the boom is the same as the line displacement of the second boom section.
  • the boom motion control method can also control the boom system when two or more booms are operated, as shown in FIG. 5, taking the second section and the third section of the arm section as an example.
  • the control control When receiving the arm section motion command of the arm section of the second section arm section, controlling the second section arm section to operate according to the arm section motion command, and determining that the arm section motion command of the third section arm section is received, the control control The two-section arm section is operated according to the corresponding arm section motion command, and it is judged that the arm section motion command of the fourth section arm section is not received, and the posture of the fourth section arm section and the previous posture are always kept unchanged, and the end of the boom is visible.
  • the changed line displacement is the same as the line displacement of the second section arm section and the third section arm section.
  • two or more arm sections When two or more arm sections are controlled, two or more arm sections may be non-adjacent arm sections, and the control process thereof is similar to the above embodiment, and will not be described in detail herein, but also in the present invention. Within the scope of protection.
  • the posture of the next arm section and the previous posture are always kept unchanged, and specifically: detecting an angle between the next arm section and a horizontal plane in real time, if the detected clip is The angle deviates from a previous angle between the next arm section and the horizontal plane, and then the telescopic cylinder of the next arm section is controlled to perform a telescopic movement so that the detected angle is opposite to the preceding angle Always consistent.
  • the present invention also provides a boom motion control system, which is described in the following embodiments.
  • FIG. 6 is a schematic block diagram of a specific embodiment of a boom motion control system according to the present invention.
  • the boom motion control system includes an arm motion signal transmitter 12, a controller 11 and an attitude detecting device 13; and a signal emitting end of the arm motion signal transmitter 12
  • the arm section action signal receiving end of the controller 11 is connected, the controller
  • the control signal emitting end of the 11 is connected to the telescopic cylinder control end of the next arm section 15; the attitude signal output end of the attitude detecting means 13 is connected to the attitude signal receiving end of the controller 11.
  • the arm joint motion signal transmitter 12 sends an arm joint motion command signal
  • the controller 11 receives the arm joint motion command signal, controls the corresponding arm joint 14 to perform a corresponding action, and determines whether to receive the arm joint 14
  • the posture detecting device 13 detects the posture of the next arm section 15 in real time, and the controller 11 controls the movement of the telescopic cylinder of the next arm section 15 such that the posture of the next arm section 15 is always consistent with the previous posture.
  • the boom motion control system provided by the invention comprises an arm motion signal transmitter 12 and a controller
  • the arm joint motion signal transmitter 12 sends an arm joint motion command signal
  • the controller 11 receives the arm joint motion command signal, controls the corresponding arm joint to perform corresponding actions, and determines whether to receive the
  • the posture detecting means 13 detects the next arm section 15 in real time. In the posture, the controller 11 controls the movement of the telescopic cylinder of the next arm section 15 such that the posture of the next arm section 15 is always consistent with the previous posture.
  • the arm section motion signal is issued by the arm section motion signal transmitter 12, and after receiving the arm section motion command, the controller 11 can directly control the corresponding arm section to expand or collapse, and simultaneously judge If the next arm section 15 of the arm section 14 is an arm section that does not need to be adjusted, if the next section of the arm section 15 is an arm section that does not need to be adjusted, the attitude of the next section of the arm section 15 is controlled. Always consistent with the previous posture.
  • the motion line displacement at the end of the boom is also d, and it can be seen that when the arm section or the multi-section arm section is adjusted, the end of the boom is Changing the line displacement is the same as the line displacement of the adjusted arm section, and does not "magnify" the displacement of the end line of the boom. Only by adjusting one or more arm sections, the smooth and precise adjustment of the end of the boom can be achieved. The operator does not need to operate multiple times, and the labor intensity is small.
  • the arm joint motion signal transmitter 12 is an arm joint operation remote controller, and an arm joint operation command of the arm joint to be adjusted is sent to the controller 11 through the arm joint operation remote controller.
  • the attitude detecting device 13 is a tilting sensor for detecting an angle between the next arm section 15 and a horizontal plane, and the tilting sensor may be mounted on the lower arm section 15, the tilting sensor The angled signal output terminal is connected to the attitude signal receiving end of the controller 11. The tilt sensor detects the angle between the next arm section 15 and the horizontal plane in real time, and controls the angle if the detected angle deviates from the previous angle between the next arm section 15 and the horizontal plane. The telescopic cylinder of the next arm section 15 is telescopically moved so that the detected included angle is always consistent with the preceding angle.
  • the invention also provides a method for controlling the linear displacement of the end of the boom.
  • the following embodiment introduces the method of linear displacement control of the end of the boom in combination with the attached drawings.
  • FIG. 7 is a flow chart of a specific implementation manner of a method for controlling linear displacement of a boom end according to the present invention.
  • the method for controlling the linear displacement of the end of the boom includes the following steps.
  • Step S201 input a target displacement amount signal at the end of the boom and a specified arm section signal of the required adjustment arm section, and the number of the required adjustment arm sections is not less than two.
  • the displacement of the two arm sections in the vertical direction refers to the displacement of the end point of the arm section relative to the front end point of the arm section in the vertical direction.
  • the equal size and the opposite direction are required to ensure linear displacement of the two arm sections in the horizontal direction;
  • the end of the boom is to be linearly displaced in the vertical direction, that is, straight in the vertical direction, the displacement of the two arm sections in the horizontal direction (the displacement of the arm section in the horizontal direction refers to the arm section)
  • the displacement of the end point relative to the front end point of the arm section in the horizontal direction needs to be equal in magnitude and opposite in direction to ensure linear displacement of the two arm sections in the horizontal direction.
  • the end of the boom is not limited to linear displacement in the horizontal direction or the vertical direction, and linear displacement can be performed in the specified direction.
  • the corresponding amount of displacement can be obtained by the corresponding calculations.
  • the number of arm segments to be adjusted is not less than two. If the end of the boom is linearly displaced in the horizontal direction, the linear displacement of the end of the boom in the horizontal direction is the horizontal displacement of the arm segments to be adjusted in each section. The vector sum, and the displacement vector of the arm section to be adjusted in each section in the vertical direction is zero; likewise, if the end of the boom is linearly displaced in the vertical direction, the linear displacement of the end of the boom in the vertical direction The amount is the displacement vector sum of the arm segments required to be adjusted in each section in the vertical direction, and the displacement vector sum of the arm segments required to be adjusted in each section in the horizontal direction is zero.
  • step S202 the displacement amount of each required adjustment arm section is calculated, and an arm section motion command corresponding to each required adjustment arm section is issued. Calculate the amount of displacement that each arm section needs to adjust in the vertical or horizontal direction as needed.
  • Step S203 Control an arm section corresponding to the arm section operation command to operate.
  • the arm section operation command may be an instruction indicating a telescopic cylinder extension amount or a contraction amount corresponding to the corresponding arm section, and the telescopic cylinder corresponding to the arm section is controlled to operate.
  • Step S204 determining whether an operation instruction of the next arm section of the arm section is received, and if an operation instruction of the next arm section is received, proceeding to step 203, if the next arm section is not received
  • the action instruction proceeds to step 205.
  • step S205 After receiving the arm section motion command, it is determined whether the arm section motion command of the next arm section of the arm section needs to be received. If the arm section motion command of the next boom is not received, the next section of the arm section is indicated. If the adjustment is not needed, the process proceeds to step S205; if the arm section operation command of the next boom is received, indicating that the next section of the arm needs to be adjusted, the process proceeds to step S103, and the next section of the arm section is controlled according to the corresponding arm section operation command. Take action.
  • Step S205 controlling the posture of the next arm section and the previous posture are always unchanged.
  • the prior attitude refers to the angle between the next arm section and the horizontal direction before the boom system is adjusted, that is, before the arm section motion command is received.
  • the end of the boom of the boom system usually needs to go straight, that is, the end of the boom usually needs to be moved in a straight line to complete the concrete pouring operation on the straight line.
  • the target displacement signal at the end of the boom and the specified arm section signal of the required arm section can be directly input.
  • the target displacement amount signal at the end of the boom indicates the linear displacement required to be adjusted at the end of the boom. Since the end of the boom needs to adjust at least two arm sections, the number of arm sections to be adjusted is not less than two sections, and the specified arm section signal indicates the arm section to be adjusted; according to the target displacement signal.
  • the amount of linear displacement and the arm section to be adjusted are used to calculate the amount of displacement that needs to be adjusted for each arm section to be adjusted.
  • the arm sections that need to be adjusted can be directly controlled to operate according to the corresponding displacement amount, and the required adjustments are judged at the same time. Whether the next arm section of the arm section is a boom that needs to be adjusted, if the next arm section is not a boom to be adjusted, then the lower one is controlled.
  • the posture of one arm section is always consistent with the previous posture.
  • the method of linear displacement control at the end of the boom only needs to input the target displacement amount at the end of the boom and determine the arm section to be adjusted, and adjust the required arm section to achieve the target displacement according to the input target.
  • Straight line This method of linear displacement control at the end of the boom can realize the straight line at the end of the boom by adjusting at least two arm sections.
  • the control complexity is low, and the algorithm is simple. It can be applied to multi-section arm joints.
  • the method of linear displacement control at the end of the boom can adjust any arm section separately to realize the straight line at the end of the boom, so that the unfolding posture of the boom system is not limited by space, and the corresponding building can be avoided Or other objects, reduce the construction difficulty, and ensure the smooth progress of the construction.
  • the arm end linear displacement control method can control the arm frame end of the boom system to linearly shift in the vertical direction, as shown in FIG. 8; the arm end linear displacement control method can control the boom end of the boom system Perform a linear displacement in the horizontal direction as shown in Figure 9.
  • step S205 may specifically: detecting an angle between the next arm section and a horizontal plane in real time, if the detected angle deviates from a prior clip between the next arm section and a horizontal plane. An angle, the telescopic cylinder of the next arm section is controlled to perform a telescopic movement such that the detected included angle is always consistent with the prior angle.
  • the present invention also provides a linear displacement control system for the end of the boom.
  • the following embodiment introduces the single-arm linear displacement control system of the boom at the same time.
  • FIG. 10 is a schematic block diagram of a specific embodiment of a beam end linear displacement control system according to the present invention.
  • the arm end linear displacement control system comprises an arm section motion signal transmitter 22, a controller 21 and an attitude detecting device 23; the signal emitting end of the arm section motion signal transmitter 22 is The arm joint motion signal receiving end of the controller 21 is connected, and the control signal emitting end of the controller 21 is connected to the telescopic cylinder control end of the next arm section 25, and the attitude signal output of the attitude detecting device 23 is The terminal is connected to the attitude signal receiving end of the controller 21.
  • the arm section motion signal transmitter 22 inputs a target displacement amount signal at the end of the boom and a specified arm section signal of the required adjustment arm section, and the number of the required adjustment arm sections is not less than two; Receiving the target displacement amount signal and the specified arm section signal, the calculation unit of the controller 21 calculates the displacement amount of each required adjustment arm section, and issues each required adjustment arm section Corresponding arm motion command, the control unit of the controller 21 receives the arm motion command and controls the corresponding arm segment 24 to perform a corresponding action, and the determining unit of the controller 21 determines whether the control unit receives the When the operation command signal of the next arm section 25 of the arm joint 24 does not receive the operation command signal of the next arm section 25, the posture detecting means 23 detects the posture of the next arm section 25 in real time. The control unit controls the movement of the telescopic cylinder of the next arm section 25 such that the posture of the next arm section 25 is always consistent with the previous posture.
  • the target displacement amount signal at the end of the boom and the specified arm section signal of the required arm section can be directly input through the arm section motion signal transmitter 22, and the target displacement amount signal at the end of the boom represents the arm.
  • the controller 21 receives the target displacement amount signal and the specified arm section signal, and the calculation unit of the controller 21 calculates the required amount according to the linear displacement amount indicated by the target displacement signal and the arm section to be adjusted.
  • the control unit of the controller 21 can directly control each of the arm sections to be adjusted to operate according to the corresponding displacement amount, and the judging unit of the controller 21 judges each arm to be adjusted. Whether the next arm section 25 of the section 24 is a boom to be adjusted, if the next section of the arm section 25 is not a boom to be adjusted, the control unit controls The next section of the arm section 25 of the posture and the previous posture remains consistent.
  • This type of boom end linear displacement control system only needs to input the target displacement amount at the end of the boom and determine the arm section to be adjusted, and adjust the required arm section to achieve the target displacement according to the input target.
  • Straight line The linear displacement control system at the end of the boom can realize the straight line at the end of the boom by adjusting at least two arm sections.
  • the control complexity is low, and the algorithm is simple. It can be applied to multi-section arm joints.
  • such a beam end linear displacement control system which can adjust any arm section separately to realize the straight line at the end of the boom, so that the unfolding posture of the boom system is not limited by space, and the corresponding building can be avoided Or other objects, reduce the construction difficulty, and ensure the smooth progress of the construction.
  • the arm joint motion signal transmitter 22 is an arm joint operation remote controller, and the arm joint operation remote controller sends an arm joint motion command to the controller 21 to be adjusted by the arm joint operation remote controller.
  • the arm section operation remote controller may include a universal handle 22-1 and an analog handle 22-2 corresponding to each arm section of the boom system. As shown in FIG. 11, the universal handle 22-1 And a simulated target displacement amount signal corresponding to a target displacement amount of the boom end, wherein the analog handle 22-2 is configured to output the specified arm section signal.
  • the number of the analog handles 22-2 may be the same as the number of the arm sections to be adjusted, and one analog handle 22-2 corresponds to one arm section, and the boom section of the five-section arm section is taken as an example.
  • the operation remote controller may include an analog handle 22-2 corresponding to the five-section arm section, respectively. Controlling the corresponding analog handle 22-2 action indicates that the arm joint operation corresponding to the analog handle 22-2 needs to be adjusted.
  • the universal handle 22-1 can be operated in two or more directions, and the direction in which the universal handle 22-1 operates indicates the direction in which the end of the boom needs to move, and the universal handle 22-1 simulates the displacement amount of the movement in the preset direction. Indicates the amount of displacement required for the end of the boom to move in this direction.
  • the attitude detecting device 23 is a tilting sensor for detecting an angle between the next arm section 25 and a horizontal plane, and the tilting sensor can be mounted on the next arm section 25, and the angle signal of the tilting angle sensor is The output terminal is connected to the attitude signal receiving end of the controller 21.
  • the tilt sensor detects the angle between the next arm section 25 and the horizontal plane in real time, and controls the angle if the detected angle deviates from the previous angle between the next arm section 25 and the horizontal plane.
  • the telescopic cylinder of the next arm section 25 is telescopically moved so that the detected included angle is always consistent with the preceding angle.
  • the present invention also provides a concrete pump truck having the above-described boom motion control system. Since the above-described boom motion control system has the above technical effects, the concrete pump truck having the boom motion control system should also have corresponding technical effects. , no more detailed description here.
  • the invention provides a concrete pump truck having the above-mentioned linear displacement control system of the arm end. Since the above-mentioned linear displacement control system of the boom end has the above technical effects, the concrete pump truck with the linear displacement control system of the boom end should also be With the corresponding technical effects, we will not go into details here.

Abstract

一种臂架动作控制方法、系统及臂架末端直线位移控制方法、系统及混凝土泵,该臂架动作控制方法包括以下步骤:步骤11),接收臂节(14、24)动作指令,并控制相应臂节(14、24)按所述臂节动作指令进行动作;步骤12),判断是否收到所述臂节(14、24)的下一节臂节(15、25)的动作指令,若收到所述下一节臂节(15、25)的动作指令,进入步骤11),若未收到所述下一节臂节(15、25)的动作指令,进入步骤13);步骤13),控制所述下一节臂节(15、25)的姿态与在先姿态始终保持不变。

Description

臂架动作控制方法、 系统及臂架末端直线位移控制方法、 系统及混凝土泵 本申请要求于 2011 年 09 月 28 日提交中国专利局、 申请号为 201110302721.4、 发明名称为"臂架动作控制方法、 系统及臂架末端直线位 移控制方法、 系统及混凝土泵"的中国专利申请的优先权,其全部内容通过 引用结合在本申请中。
技术领域
本发明涉及混凝土泵车臂架控制技术领域, 尤其涉及一种臂架动作控 制方法及一种臂架动作控制系统。 本发明还涉及一种臂架末端直线位移控 制方法及臂架末端直线位移控制系统。 本发明还涉及一种具有上述臂架动 作控制系统的混凝土泵车及一种具有上述臂架末端直线位移控制系统的混 凝土泵车。
背景技术
混凝土泵车是一种常见的建筑施工设备, 其通常包括泵车底盘、 泵送 机构、 臂架系统。
其中, 臂架系统通常包括固定台 1、 多节臂节 2、 伸缩油缸 3、 连杆机 构 4, 如图 1所示, 以具有 5节臂节的臂架系统为例, 各臂节的首尾端依 次铰接, 第一节臂节的首端与固定台 1铰接, 最后一节臂节的末端形成臂 架系统的臂架末端 5 , 混凝土泵车在施工过程中, 臂架末端 5对准施工区 域,对施工区域进行混凝土浇注操作;每节臂节通过伸缩油缸 3驱动旋转, 伸缩油缸 3伸缩时, 伸缩油缸 3推动与臂节连接的连杆机构, 连杆机构推 动臂节旋转, 每节臂节可在图 1所示平面内绕其首端的铰接点旋转, 实现 臂节的展开和收拢。
现有技术中, 通常操作手通过臂架操作遥控器对臂架系统的臂架末端 的位置进行调节, 以 5节的臂架系统为例, 操作手通过臂架操作遥控器的 5 个手柄, 对每节臂节的动作单独进行控制, 比如第一个手柄控制第一节 臂节的伸缩油缸的伸缩, 从而控制第一节臂节的展开和收拢, 第二个手柄 控制第二节臂节的伸缩油缸的伸缩, 从而控制第二节臂节的展开和收拢, 依次类推。
这种臂架系统调节方法存在以下问题, 以下以图 2为例进行说明, 图 2为图 1中臂架系统第二节臂节动作时的结构示意图。 如图 2所示, 当臂架操作遥控器控制第二节臂节变化 Θ角度时, 第二 节臂架的末端动作 d的距离, 而臂架末端 (即第五节臂架的末端)将会大 幅度移动, 这就是所谓的"放大"作用, 这种"放大"作用导致操作手很难做 到对臂架末端的精确调节, 如要实现臂架末端进行精确调节, 还需同时对 其余臂节进行相应位移量的调整, 其余臂节的位移量不易确定, 臂架末端 的平稳移动和精确定位难度较大;操作手需要进行多次操作, 劳动强度大, 易疲劳。
为了解决上述技术问题, 随着臂架技术发展, 现有技术中出现了一种 臂架末端定位技术(又称为智能臂架技术;),其在给定泵车臂架末端位置的 情况下, 机器自动规划每节臂节的姿态, 也就是说, 操作手只需通过遥控 器给出臂架末端的 x、 y、 z方向的移动速度指令, 臂架系统每节臂节的姿 态就会自动调节, 使得臂架末端按照 x、 y、 z方向的速度去运动, 这种技 术使得混凝土泵车在施工时对臂架的操控更加灵活、 更加筒单、 更加直观 形象, 大大降低了操作手的劳动强度。
这种臂架末端定位技术, 臂架的规划存在不确定性, 控制算法复杂, 其仅适用于臂节数量较少的臂架系统的控制, 对于臂架数量较多的臂架系 统, 随着臂节数量的增加, 其控制复杂程度越来越高, 算法越来越复杂, 从而使得这种臂架末端定位技术很难应用在臂架数量较多的臂架系统中。
在混凝土泵车施工过程中,有时臂架系统展开的姿态受到空间的限制, 为了避开相应的建筑物或其他物体, 通常需要对一节或多节臂架的姿态进 行调整, 而上述臂架末端定位技术, 操作手无法对其中的一节或多节臂节 的姿态进行单独调整,从而增加了施工难度,甚至造成施工无法顺利进行。 因此, 如何较为筒单地实现对具有多节臂节的臂架系统的臂架末端的精确 调整, 成为领域技术人员亟待解决的技术难题。
发明内容
本发明的第一个目的是提供一种臂架动作控制方法, 该臂架动作控制 方法可筒单地实现对具有多节臂节的臂架系统的臂架末端的精确调整。
本发明的第二个目的是一种臂架动作控制系统, 该臂架动作控制系统 可筒单地实现对具有多节臂节的臂架系统的臂架末端的精确调整。
本发明的第三个目的是提供一种臂架末端直线位移控制方法, 臂架末 端直线位移控制方法可筒单、 准确地实现对具有多节臂节的臂架系统的臂 架末端的直线位移的调整。
本发明的第四个目的是提供一种臂架末端直线位移控制系统, 臂架末 端直线位移控制系统可筒单、 准确地实现对具有多节臂节的臂架系统的臂 架末端的直线位移的调整。
本发明第五个目的是提供一种具有上述臂架动作控制系统的混凝土泵 车。
本发明第六个目的是提供一种具有上述臂架末端直线位移控制系统的 混凝土泵车。
为了实现上述第一个目的, 本发明提供了一种臂架动作控制方法, 包 括以下步骤:
步骤 11 ), 接收臂节动作指令, 并控制相应臂节按所述臂节动作指令 进行动作;
步骤 12 ), 判断是否收到所述臂节的下一节臂节的动作指令, 若收到 所述下一节臂节的动作指令, 进入步骤 11 ), 若未收到所述下一节臂节的 动作指令, 进入步骤 13 );
步骤 13 ) , 控制所述下一节臂节的姿态与在先姿态始终保持不变。 优选的, 所述步骤 13 )具体为: 实时检测所述下一节臂节与水平面之 间的夹角, 若所检测到的夹角偏离所述下一节臂节与水平面之间的在先夹 角, 则控制所述下一节臂节的伸缩油缸进行伸缩动作, 以使得所检测到的 夹角与所述在先夹角始终保持一致。
本发明提供的臂架动作控制方法包括以下步骤: 步骤 11 ), 接收臂节 动作指令, 并控制相应臂节按所述臂节动作指令进行动作; 步骤 12 ), 判 断是否收到所述臂节的下一节臂节的动作指令, 若收到所述下一节臂节的 动作指令, 进入步骤 11 ), 若未收到所述下一节臂节的动作指令, 进入步 骤 13 ); 步骤 13 ), 控制所述下一节臂节的姿态与在先姿态始终保持不变。
混凝土泵车在施工过程中, 需要单独调整臂架系统的一节臂节或多节 臂节时, 或者需要通过调整臂架系统的一节臂节或多节臂节来调整臂架系 统的臂架末端的位置时, 需要调节的臂节接收到臂节动作指令后可直接进 行展开或收拢动作, 同时若该臂节的下一节臂节为不需要调节的臂节时, 该下一节臂节的姿态始终与在先姿态始终保持一致(在先姿态是指臂架系 统在调整前, 所述下一节臂架的姿态)。
这样, 若需要调节的臂架运动线位移为 d, 则臂架末端的运动线位移 也为 d, 可见对一节臂节或多节臂节调整时, 臂架末端的线位移与所调整 的臂节线位移相同 (这种方法, 本申请中称为 "臂架随动技术"), 不会"放 大"对臂架末端线位移,仅通过调节一节或多节臂节,便可实现臂架末端的 平稳一定和精确调节, 操作手不需多次操作, 劳动强度较小。
为了实现上述第二个目的, 本发明提供了一种臂架动作控制系统, 包 括臂节动作信号发射器、 控制器及姿态检测装置; 所述臂节动作信号发射 器发出臂节动作指令信号, 所述控制器接收所述臂节动作指令信号, 控制 相应臂节进行相应动作, 并判断是否接收到所述臂节的下一节臂节的动作 指令信号, 若未接收到所述下一节臂节的动作指令信号, 所述姿态检测装 置实时检测所述下一节臂节的姿态, 所述控制器控制所述下一节臂节的伸 缩油缸动作, 使得所述下一节臂节的姿态与在先姿态始终保持一致;
所述臂节动作信号发射器的信号发出端与所述控制器的臂节动作信号 接收端连接, 所述控制器的控制信号发出端与所述下一节臂节的伸缩油缸 控制端连接; 所述姿态检测装置的姿态信号输出端与所述控制器的姿态信 号接收端连接。
优选的, 所述臂节动作信号发射器为臂节操作遥控器。
优选的, 所述姿态检测装置为用于检测所述下一节臂节与水平面夹角 的倾角传感器, 所述倾角传感器的夹角信号输出端与所述控制器的姿态信 号接收端连接。
本发明提供的臂架动作控制系统包括臂节动作信号发射器、 控制器及 姿态检测装置; 所述臂节动作信号发射器发出臂节动作指令信号, 所述控 制器接收所述臂节动作指令信号, 控制相应臂节进行相应动作, 并判断是 否接收所述臂节的下一节臂节的动作指令信号, 若未接收到所述下一节臂 节的动作指令信号, 所述姿态检测装置实时检测所述下一节臂节的姿态, 所述控制器控制所述下一节臂节的伸缩油缸动作, 使得所述下一节臂节的 姿态与在先姿态始终保持一致。
混凝土泵车在施工过程中, 需要单独调整臂架系统的一节臂节或多节 臂节时, 或者需要通过调整臂架系统的一节臂节或多节臂节来调整臂架系 统的臂架末端的位置时, 可通过臂节动作信号发射器发出相应臂节的臂节 动作指令, 控制器接收到臂节动作指令后, 可直接控制相应臂节进行展开 或收拢动作, 同时判断若该臂节的下一节臂节是否为不需要调节的臂节, 所述下一节臂节若为不需要调节的臂节, 则控制所述下一节臂节的姿态始 终与在先姿态始终保持一致。
这样, 若需要调节的臂架运动线位移为 d, 则臂架末端的运动线位移 也为 d, 可见对一节臂节或多节臂节调整时, 臂架末端的所改变的线位移 与所调整的臂节线位移相同, 不会"放大"对臂架末端的角度、 线位移, 仅 通过调节一节或多节臂节, 便可实现臂架末端的平稳一定和精确调节, 操 作手不需多次操作, 劳动强度较小。
为了实现上述第三个目的, 本发明提供了一种臂架末端直线位移控制 方法, 包括以下步骤:
步骤 61 ), 输入臂架末端的目标位移量信号及所需调节臂节的指定臂 节信号, 所述所需调节臂节的数量不少于两个;
步骤 62 ), 计算每个所需调节臂节的位移量, 并发出与每个所需调节 臂节相对应的臂节动作指令;
步骤 63 ) , 控制与所述臂节动作指令相对应的臂节进行动作; 步骤 64 ), 判断是否收到所述臂节的下一节臂节的动作指令, 若收到 所述下一节臂节的动作指令, 进入步骤 63 ), 若未收到所述下一节臂节的 动作指令, 进入步骤 65 );
步骤 65 ) , 控制所述下一节臂节的姿态与在先姿态始终保持不变。 优选的, 所述步骤 65 )具体为: 实时检测所述下一节臂节与水平面之 间的夹角, 若所检测到的夹角偏离所述下一节臂节与水平面之间的在先夹 角, 则控制所述下一节臂节的伸缩油缸进行伸缩动作, 以使得所检测到的 夹角与所述在先夹角始终保持一致。
优选的, 所述所需调整臂节的数量为两个。
混凝土泵车在施工过程中, 臂架系统的臂架末端通常需要走直线, 即 臂架末端通常需要一条直线上进行移动, 以完成在该直线上进行的混凝土 浇注作业。 当臂架末端需要走直线时, 可直接输入臂架末端的目标位移量信号及 所需调节臂节的指定臂节信号, 臂架末端的目标位移量信号表示臂架末端 需要调整的直线位移量, 由于臂架末端走直线至少需要调整两节臂节, 所 以所需调节的臂节的数量不少于两节,指定臂节信号表示需要调节的臂节; 根据所述目标位移信号所表示的直线位移量及所需要调节的臂节, 计算出 所需要调节的各臂节所需要调节的位移量, 可直接控制各所需调节的臂节 按相应的位移量进行动作, 同时判断各所需调整的臂节的下一节臂节是否 为需要调节的臂架, 若所述下一节臂节不是需要调节的臂架, 则控制该下 一节臂节的姿态与在先姿态始终保持一致。
这种臂架末端直线位移控制方法, 只需输入臂架末端的目标位移量及 确定所需调节的臂节, 便通过调节所需调节的臂节来实现臂架末端按照所 输入的目标位移量走直线; 这种臂架末端直线位移控制方法, 至少可通过 调节两节臂节便可实现臂架末端走直线,控制复杂程度较低,算法较筒单, 可应用在具有多节臂节的臂架系统中; 这种臂架末端直线位移控制方法, 可单独调节任意臂节来实现臂架末端走直线, 可使得臂架系统的展开姿态 不受空间的限制, 可避开相应的建筑物或其他物体, 减小施工难度, 保证 施工的顺利进行。
为了实现上述第四个目的, 本发明提供了一种臂架末端直线位移控制 系统, 包括臂节动作信号发射器、 控制器及姿态检测装置; 所述臂节动作 信号发射器输入臂架末端的目标位移量信号及所需调节臂节的指定臂节信 号, 且所述所需调节臂节的数量不少于两个; 所述控制器接收所述目标位 移量信号及所述指定臂节信号, 所述控制器的计算单元计算每个所需调节 臂节的位移量, 并发出与每个所需调节臂节相对应的臂节动作指令, 所述 控制器的控制单元接收所述臂节动作指令并控制相应臂节进行相应动作, 所述控制器的判断单元判断所述控制单元是否接收所述臂节的下一节臂节 的动作指令信号, 若未接收到所述下一节臂节的动作指令信号, 所述姿态 检测装置实时检测所述下一节臂节的姿态, 所述控制单元则控制所述下一 节臂节的伸缩油缸动作, 使得所述下一节臂节的姿态与在先姿态始终保持 一致;
所述臂节动作信号发射器的信号发出端与所述控制器的臂节动作信号 接收端连接, 所述控制器的控制信号发出端与所述下一节臂节的伸缩油缸 控制端连接, 所述姿态检测装置的姿态信号输出端与所述控制器的姿态信 号接收端连接。
优选的, 所述臂架动作信号发射器为臂节操作遥控器;
优选的, 所述臂节操作遥控器包括万向手柄、 与臂架系统中每个臂节 相对应的模拟手柄, 所述万向手柄用于发出与臂架末端目标位移量相对应 的模拟目标位移量信号, 所述模拟手柄用于输出所述指定臂节信号。
优选的, 所述姿态检测装置为用于检测所述下一节臂节与水平面夹角 的倾角传感器, 所述倾角传感器的夹角信号输出端与所述控制器的姿态信 号接收端连接。
当臂架末端需要走直线时, 可通过臂节动作信号发射器直接输入臂架 末端的目标位移量信号及所需调节臂节的指定臂节信号, 臂架末端的目标 位移量信号表示臂架末端需要调整的直线位移量, 由于臂架末端走直线至 少需要调整两节臂节, 所以所需调节的臂节的数量不少于两节, 指定臂节 信号表示需要调节的臂节; 所述控制器接收所述目标位移量信号及所述指 定臂节信号, 根据所述目标位移信号所表示的直线位移量及所需要调节的 臂节, 所述控制器的计算单元计算出所需要调节的各臂节所需要调节的位 移量, 控制器的控制单元可直接控制各所需调节的臂节按相应的位移量进 行动作, 同时控制器的判断单元判断各所需调整的臂节的下一节臂节是否 为需要调节的臂架, 若所述下一节臂节不是需要调节的臂架, 控制单元则 控制该下一节臂节的姿态与在先姿态始终保持一致。
这种臂架末端直线位移控制系统, 只需输入臂架末端的目标位移量及 确定所需调节的臂节, 便通过调节所需调节的臂节来实现臂架末端按照所 输入的目标位移量走直线; 这种臂架末端直线位移控制系统, 至少可通过 调节两节臂节便可实现臂架末端走直线,控制复杂程度较低,算法较筒单, 可应用在具有多节臂节的臂架系统中; 这种臂架末端直线位移控制系统, 可单独调节任意臂节来实现臂架末端走直线, 可使得臂架系统的展开姿态 不受空间的限制, 可避开相应的建筑物或其他物体, 减小施工难度, 保证 施工的顺利进行。
为了实现上述第五个目的, 本发明提供了一种具有上述臂架动作控制 系统的混凝土泵车, 由于上述的臂架动作控制系统具有上述技术效果, 具 有该臂架动作控制系统的混凝土泵车也应具备相应的技术效果。
为了实现上述第六个目的, 本发明提供了一种具有上述臂架末端直线 位移控制系统的混凝土泵车, 由于上述的臂架末端直线位移控制系统具有 上述技术效果, 具有该臂架末端直线位移控制系统的混凝土泵车也应具备 相应的技术效果。
附图说明
图 1为一种典型的臂架系统的结构示意图;
图 2为图 1中臂架系统第二节臂节动作时的结构示意图;
图 3为本发明所提供的臂架动作控制方法的一种具体实施方式的流程 图;
图 4为臂架系统第二节臂节动作时的结构示意图;
图 5为臂架系统第二节、 第三节臂节动作时的结构示意图;
图 6为本发明所提供的臂架动作控制系统的一种具体实施方式的原理 框图;
图 7为本发明所提供的臂架末端直线位移控制方法的一种具体实施方 式的流程图;
图 8为臂架系统的臂架末端在竖直方向走直线的结构示意图; 图 9为臂架系统的臂架末端在水平方向走直线的结构示意图; 图 10 为本发明所提供的臂架末端直线位移控制系统的一种具体实施 方式的原理框图;
图 11图 10中臂节动作信号发射器的一种具体实施方式的结构示意图; 其中, 图 1-图 11中:
固定台 1、 臂节 2、 伸缩油缸 3、 连杆机构 4、 臂架末端 5;
控制器 11、 臂节动作信号发射器 12、 姿态检测装置 13、 臂节 14、 下 一节臂节 15;
控制器 21、 臂节动作信号发射器 22、 姿态检测装置 23、 臂节 24、 下一节 臂节 25、 万向手柄 22-1、 模拟手柄 22-2。
具体实施方式
下面结合附图对本发明的内容进行描述, 以下的描述仅是示范性和解 释性的, 不应对本发明的保护范围有任何的限制作用。
请参看图 3 , 图 3为本发明所提供的臂架动作控制方法的一种具体实 施方式的流程图。
如图 3所示, 本发明所提供的臂架动作控制方法包括以下步骤。
步骤 S101 , 接收臂节动作指令, 并控制相应臂节按所述臂节动作指令 进行动作。 需要对臂架系统进行调节时, 操作人员可通过发射器发出一个 或多个单个臂节的臂节动作指令, 控制器接收所述臂节动作指令, 并控制 与所述臂节动作指令相对应的臂节按所述臂节动作指令进行动作, 具体的 方案中, 所述臂节动作指令可以为表示相应臂节所对应的伸缩油缸伸出量 或收缩量的指令, 控制所述臂节所对应的伸缩油缸进行动作。
步骤 S102, 判断是否收到所述臂节的下一节臂节的动作指令, 若收到 所述下一节臂节的动作指令, 进入步骤 S101 , 若未收到所述下一节臂节的 动作指令, 进入步骤 S103。
收到臂节动作指令后, 判断是否收到该臂节的下一节臂节需要动作的 臂节动作指令, 若未收到下一节臂架的臂节动作指令, 说明下一节臂节不 需要调整, 则进入步骤 S103; 若收到下一节臂架的臂节动作指令, 说明下 一节臂节需要调整, 则进入步骤 S101 , 控制下一节臂节按相应的臂节动作 指令进行动作。
步骤 S103 , 控制所述下一节臂节的姿态与在先姿态始终保持不变。 若 下一节臂节不需要动作, 则控制该下一节臂节的姿态与在先姿态始终保持 不变。
在先姿态是指臂架系统在调整前, 也即在接收臂节动作指令前, 所述 下一节臂节与水平方向的夹角。
混凝土泵车在施工过程中, 需要单独调整臂架系统的一节臂节或多节 臂节时, 或者需要通过调整臂架系统的一节臂节或多节臂节来调整臂架系 统的臂架末端的位置时, 需要调节的臂节接收到臂节动作指令后可直接进 行展开或收拢动作, 同时若该臂节的下一节臂节为不需要调节的臂节时, 该下一节臂节的姿态始终与在先姿态始终保持一致。
这样, 若需要调节的臂架运动线位移为 d, 则臂架末端运动线位移也 为 d, 可见对一节臂节或多节臂节调整时, 臂架末端的线位移与所调整的 臂节的线位移相同 (这种方法, 本申请中称为 "臂架随动技术"), 不会"放 大"对臂架末端的线位移,仅通过调节一节或多节臂节,便可实现臂架末端 的平稳一定和精确调节, 操作手不需多次操作, 劳动强度较小。
这种臂架动作控制方法,可仅在一节臂架动作时对臂架系统进行控制, 如图 4所示, 以第二节臂节动作为例, 当第二节臂节需要调整时, 操作人 员发出第二节臂节的臂节动作指令, 接收该臂节动作指令, 判断没有接收 到第三节臂节需要动作的臂节动作指令, 控制第三节臂节的姿态与在先姿 态始终保持不变, 可见, 臂架末端的线位移与第二节臂节的线位移相同。
这种臂架动作控制方法, 还可在两节或多节臂架动作时, 对臂架系统 进行控制, 如图 5所示, 以第二节臂节、 第三节臂节动作为例, 当接收到 第二节臂节的臂节的臂节动作指令, 控制第二节臂节按所述臂节动作指令 动作, 并判断接收到第三节臂节的臂节动作指令, 控制控制第二节臂节按 相应臂节动作指令动作, 判断未收到第四节臂节的臂节动作指令, 控制第 四节臂节的姿态与在先姿态始终保持不变, 可见, 臂架末端的所改变线位 移与第二节臂节、 第三节臂节复合的线位移相同。
对两个或多节臂节动作控制时,两个或多个臂节可以为不相邻的臂节, 其控制过程与上述实施例类似, 在此不再做详细介绍, 也应在本发明的保 护范围内。
优选方案中, 控制所述下一节臂节的姿态与在先姿态始终保持不变, 可具体为: 实时检测所述下一节臂节与水平面之间的夹角, 若所检测到的 夹角偏离所述下一节臂节与水平面之间的在先夹角, 则控制所述下一节臂 节的伸缩油缸进行伸缩动作, 以使得所检测到的夹角与所述在先夹角始终 保持一致。
本发明还提供了一种臂架动作控制系统, 以下实施例对其进行筒单介 绍。
请参看图 6, 图 6为本发明所提供的臂架动作控制系统的一种具体实 施方式的原理框图。
如图 6所示, 本实施例提供的臂架动作控制系统, 包括臂节动作信号 发射器 12、 控制器 11 及姿态检测装置 13; 所述臂节动作信号发射器 12 的信号发出端与所述控制器 11 的臂节动作信号接收端连接, 所述控制器 11 的控制信号发出端与所述下一节臂节 15的伸缩油缸控制端连接; 所述 姿态检测装置 13的姿态信号输出端与所述控制器 11的姿态信号接收端连 接。
所述臂节动作信号发射器 12发出臂节动作指令信号, 所述控制器 11 接收所述臂节动作指令信号,控制相应臂节 14进行相应动作, 并判断是否 接收所述臂节 14的下一节臂节 15的动作指令信号, 若未接收到所述下一 节臂节 15的动作指令信号, 所述姿态检测装置 13实时检测所述下一节臂 节 15的姿态, 所述控制器 11控制所述下一节臂节 15的伸缩油缸动作,使 得所述下一节臂节 15的姿态与在先姿态始终保持一致。
本发明提供的臂架动作控制系统包括臂节动作信号发射器 12、控制器
11及姿态检测装置 13; 所述臂节动作信号发射器 12发出臂节动作指令信 号, 所述控制器 11接收所述臂节动作指令信号,控制相应臂节进行相应动 作, 并判断是否接收所述臂节 14的下一节臂节 15的动作指令信号, 若未 接收到所述下一节臂节 15的动作指令信号, 所述姿态检测装置 13实时检 测所述下一节臂节 15的姿态,所述控制器 11控制所述下一节臂节 15的伸 缩油缸动作, 使得所述下一节臂节 15的姿态与在先姿态始终保持一致。
混凝土泵车在施工过程中, 需要单独调整臂架系统的一节臂节或多节 臂节时, 或者需要通过调整臂架系统的一节臂节或多节臂节来调整臂架系 统的臂架末端的位置时,可通过臂节动作信号发射器 12发出相应臂节的臂 节动作指令,控制器 11接收到臂节动作指令后, 可直接控制相应臂节进行 展开或收拢动作, 同时判断若该臂节 14的下一节臂节 15是否为不需要调 节的臂节,所述下一节臂节 15若为不需要调节的臂节, 则控制所述下一节 臂节 15的姿态始终与在先姿态始终保持一致。
这样, 若需要调节的臂架运动角度为 θ、运动线位移为 d, 则臂架末端 的运动线位移也为 d, 可见对一节臂节或多节臂节调整时, 臂架末端的所 改变线位移与所调整的臂节的线位移相同,不会"放大"对臂架末端线位移, 仅通过调节一节或多节臂节, 便可实现臂架末端的平稳一定和精确调节, 操作手不需多次操作, 劳动强度较小。
具体的方案中,所述臂节动作信号发射器 12为臂节操作遥控器,通过 臂节操作遥控器向控制器 11发出需要调整的臂节的臂节动作指令。 优选方案中, 所述姿态检测装置 13为用于检测所述下一节臂节 15与 水平面夹角的倾角传感器,倾角传感器可安装在所述下一节臂节 15上,所 述倾角传感器的夹角信号输出端与所述控制器 11的姿态信号接收端连接。 倾角传感器实时检测所述下一节臂节 15与水平面之间的夹角,若所检测到 的夹角偏离所述下一节臂节 15与水平面之间的在先夹角,则控制所述下一 节臂节 15的伸缩油缸进行伸缩动作,以使得所检测到的夹角与所述在先夹 角始终保持一致。
本发明还提供了一种臂架末端直线位移控制方法, 以下实施例结合附 图对这种臂架末端直线位移控制方法进行筒单介绍。
请参看图 7, 图 7为本发明所提供的臂架末端直线位移控制方法的一 种具体实施方式的流程图。
如图 7所示, 本实施例提供的臂架末端直线位移控制方法, 包括以下 步骤。
步骤 S201 ,输入臂架末端的目标位移量信号及所需调节臂节的指定臂 节信号, 所述所需调节臂节的数量不少于两个。
以具有两节臂节的臂架系统为例, 若臂架末端要在水平方向上直线位 移, 也即在水平方向上走直线, 则两节臂节在竖直方向上的位移 (臂节在 竖直方向的位移, 是指该臂节的末端点相对于该臂节的前端点在竖直方向 的位移) 需要大小相等且方向相反, 才可保证两节臂节在水平方向上直线 位移; 同样, 若臂架末端要在竖直方向上直线位移, 也即在竖直方向上走 直线, 则两节臂节在水平方向上的位移 (臂节在水平方向的位移, 是指该 臂节的末端点相对于该臂节的前端点在水平方向的位移)需要大小相等且 方向相反, 才可保证两节臂节在水平方向上直线位移。
当然, 可以理解臂架末端并不局限在水平方向或竖直方向直线位移, 还可在指定方向进行直线位移, 可通过相应的计算, 得出各节臂节所需要 调整的位移量。
因此, 所需调整的臂节的数量不少于两个, 臂架末端若在水平方向直 线位移, 臂架末端在水平方向的直线位移量为各节所需调节的臂节在水平 方向的位移矢量和,且各节所需调节的臂节在竖直方向的位移矢量和为零; 同样, 臂架末端若在竖直方向直线位移, 臂架末端在竖直方向的直线位移 量为各节所需调节的臂节在竖直方向的位移矢量和, 且各节所需调节的臂 节在水平方向的位移矢量和为零。
步骤 S202, 计算每个所需调节臂节的位移量, 并发出与每个所需调节 臂节相对应的臂节动作指令。 根据需要, 计算各臂节需要在竖直方向或水 平方向调整的位移量。
步骤 S203 , 控制与所述臂节动作指令相对应的臂节进行动作。 具体方 案中, 所述臂节动作指令可以为表示相应臂节所对应的伸缩油缸伸出量或 收缩量的指令, 控制所述臂节所对应的伸缩油缸进行动作。
步骤 S204, 判断是否收到所述臂节的下一节臂节的动作指令, 若收 到所述下一节臂节的动作指令, 进入步骤 203 , 若未收到所述下一节臂节 的动作指令, 进入步骤 205。
收到臂节动作指令后, 判断是否收到该臂节的下一节臂节需要动作的 臂节动作指令, 若未收到下一节臂架的臂节动作指令, 说明下一节臂节不 需要调整, 则进入步骤 S205; 若收到下一节臂架的臂节动作指令, 说明下 一节臂节需要调整, 则进入步骤 S103 , 控制下一节臂节按相应的臂节动作 指令进行动作。
步聚 S205 , 控制所述下一节臂节的姿态与在先姿态始终保持不变。 在先姿态是指臂架系统在调整前, 也即在接收臂节动作指令前, 所述下一 节臂节与水平方向的夹角。
混凝土泵车在施工过程中, 臂架系统的臂架末端通常需要走直线, 即 臂架末端通常需要一条直线上进行移动, 以完成在该直线上进行的混凝土 浇注作业。
当臂架末端需要走直线时, 可直接输入臂架末端的目标位移量信号及 所需调节臂节的指定臂节信号, 臂架末端的目标位移量信号表示臂架末端 需要调整的直线位移量, 由于臂架末端走直线至少需要调整两节臂节, 所 以所需调节的臂节的数量不少于两节,指定臂节信号表示需要调节的臂节; 根据所述目标位移信号所表示的直线位移量及所需要调节的臂节, 计算出 所需要调节的各臂节所需要调节的位移量, 可直接控制各所需调节的臂节 按相应的位移量进行动作, 同时判断各所需调整的臂节的下一节臂节是否 为需要调节的臂架, 若所述下一节臂节不是需要调节的臂架, 则控制该下 一节臂节的姿态与在先姿态始终保持一致。
这种臂架末端直线位移控制方法, 只需输入臂架末端的目标位移量及 确定所需调节的臂节, 便通过调节所需调节的臂节来实现臂架末端按照所 输入的目标位移量走直线; 这种臂架末端直线位移控制方法, 至少可通过 调节两节臂节便可实现臂架末端走直线,控制复杂程度较低,算法较筒单, 可应用在具有多节臂节的臂架系统中; 这种臂架末端直线位移控制方法, 可单独调节任意臂节来实现臂架末端走直线, 可使得臂架系统的展开姿态 不受空间的限制, 可避开相应的建筑物或其他物体, 减小施工难度, 保证 施工的顺利进行。
该臂架末端直线位移控制方法, 可控制臂架系统的臂架末端在竖直方 向进行直线位移, 如图 8所示; 该臂架末端直线位移控制方法, 可控制臂 架系统的臂架末端在水平方向进行直线位移, 如图 9所示。
优选方案中,步骤 S205具体可以为: 实时检测所述下一节臂节与水平 面之间的夹角, 若所检测到的夹角偏离所述下一节臂节与水平面之间的在 先夹角, 则控制所述下一节臂节的伸缩油缸进行伸缩动作, 以使得所检测 到的夹角与所述在先夹角始终保持一致。
本发明还提供了一种臂架末端直线位移控制系统, 以下实施例结合附 图对这种臂架末端直线位移控制系统进行筒单介绍。
请参看图 10, 图 10为本发明所提供的臂架末端直线位移控制系统的 一种具体实施方式的原理框图。
如图 10所示,本发明提供的臂架末端直线位移控制系统, 包括臂节动 作信号发射器 22、 控制器 21及姿态检测装置 23; 所述臂节动作信号发射 器 22的信号发出端与所述控制器 21的臂节动作信号接收端连接, 所述控 制器 21的控制信号发出端与所述下一节臂节 25的伸缩油缸控制端连接, 所述姿态检测装置 23的姿态信号输出端与所述控制器 21的姿态信号接收 端连接。
所述臂节动作信号发射器 22输入臂架末端的目标位移量信号及所需 调节臂节的指定臂节信号, 且所述所需调节臂节的数量不少于两个; 所述 控制器 21接收所述目标位移量信号及所述指定臂节信号, 所述控制器 21 的计算单元计算每个所需调节臂节的位移量, 并发出与每个所需调节臂节 相对应的臂节动作指令,所述控制器 21的控制单元接收所述臂节动作指令 并控制相应臂节 24进行相应动作, 所述控制器 21的判断单元判断所述控 制单元是否接收所述臂节 24的下一节臂节 25的动作指令信号, 若未接收 到所述下一节臂节 25的动作指令信号, 所述姿态检测装置 23实时检测所 述下一节臂节 25的姿态, 所述控制单元则控制所述下一节臂节 25的伸缩 油缸动作, 使得所述下一节臂节 25的姿态与在先姿态始终保持一致。
当臂架末端需要走直线时,可通过臂节动作信号发射器 22直接输入臂 架末端的目标位移量信号及所需调节臂节的指定臂节信号, 臂架末端的目 标位移量信号表示臂架末端需要调整的直线位移量, 由于臂架末端走直线 至少需要调整两节臂节, 所以所需调节的臂节的数量不少于两节, 指定臂 节信号表示需要调节的臂节;所述控制器 21接收所述目标位移量信号及所 述指定臂节信号, 根据所述目标位移信号所表示的直线位移量及所需要调 节的臂节,所述控制器 21的计算单元计算出所需要调节的各臂节所需要调 节的位移量,控制器 21的控制单元可直接控制各所需调节的臂节按相应的 位移量进行动作, 同时控制器 21的判断单元判断各所需调整的臂节 24的 下一节臂节 25是否为需要调节的臂架, 若所述下一节臂节 25不是需要调 节的臂架,控制单元则控制该下一节臂节 25的姿态与在先姿态始终保持一 致。
这种臂架末端直线位移控制系统, 只需输入臂架末端的目标位移量及 确定所需调节的臂节, 便通过调节所需调节的臂节来实现臂架末端按照所 输入的目标位移量走直线; 这种臂架末端直线位移控制系统, 至少可通过 调节两节臂节便可实现臂架末端走直线,控制复杂程度较低,算法较筒单, 可应用在具有多节臂节的臂架系统中; 这种臂架末端直线位移控制系统, 可单独调节任意臂节来实现臂架末端走直线, 可使得臂架系统的展开姿态 不受空间的限制, 可避开相应的建筑物或其他物体, 减小施工难度, 保证 施工的顺利进行。
具体的方案中,所述臂节动作信号发射器 22为臂节操作遥控器,通过 臂节操作遥控器向控制器 21发出需要调整的臂节的臂节动作指令。
优选的方案中, 所述臂节操作遥控器可包括万向手柄 22-1、 与臂架系 统中每个臂节相对应的模拟手柄 22-2, 如图 11所示, 所述万向手柄 22-1 用于发出与臂架末端目标位移量相对应的模拟目标位移量信号, 所述模拟 手柄 22-2用于输出所述指定臂节信号。
具体的方案中,模拟手柄 22-2的数量可以与需要调节的臂节的数量相 同, 一个模拟手柄 22-2对应一节臂节, 以五节臂节的臂架系统为例, 该臂 节操作遥控器可以包括分别与五节臂节相对应的模拟手柄 22-2。 控制相应 的模拟手柄 22-2动作, 表示需要调整与该模拟手柄 22-2相对应的臂节动 作。
万向手柄 22-1可在两个或多个方向动作, 万向手柄 22-1动作的方向 表示臂架末端需要运动的方向,万向手柄 22-1在预设方向模拟移动的位移 量, 表示, 需要臂架末端在该方向上需要移动的位移量。
优选方案中, 所述姿态检测装置 23为用于检测所述下一节臂节 25与 水平面夹角的倾角传感器,倾角传感器可安装下一节臂节 25上,所述倾角 传感器的夹角信号输出端与所述控制器 21的姿态信号接收端连接。倾角传 感器实时检测所述下一节臂节 25与水平面之间的夹角,若所检测到的夹角 偏离所述下一节臂节 25与水平面之间的在先夹角,则控制所述下一节臂节 25的伸缩油缸进行伸缩动作, 以使得所检测到的夹角与所述在先夹角始终 保持一致。
本发明还提供了一种具有上述臂架动作控制系统的混凝土泵车, 由于 上述的臂架动作控制系统具有上述技术效果, 具有该臂架动作控制系统的 混凝土泵车也应具备相应的技术效果, 在此不再做详细介绍。
本发明提供了一种具有上述臂架末端直线位移控制系统的混凝土泵 车, 由于上述的臂架末端直线位移控制系统具有上述技术效果, 具有该臂 架末端直线位移控制系统的混凝土泵车也应具备相应的技术效果, 在此不 再做详细介绍。
以上所述仅是发明的优选实施方式的描述, 应当指出, 由于文字表达 的有限性, 而在客观上存在无限的具体结构, 对于本技术领域的普通技术 人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。
--

Claims

权 利 要 求
1、 一种臂架动作控制方法, 其特征在于, 包括以下步骤:
步骤 11 ), 接收臂节动作指令, 并控制相应臂节按所述臂节动作指令 进行动作;
步骤 12 ), 判断是否收到所述臂节的下一节臂节的动作指令, 若收到 所述下一节臂节的动作指令, 进入步骤 11 ), 若未收到所述下一节臂节的 动作指令, 进入步骤 13 );
步骤 13 ) , 控制所述下一节臂节的姿态与在先姿态始终保持不变。
2、根据权利要求 1所述的臂架动作控制方法, 其特征在于, 所述步骤 13 )具体为: 实时检测所述下一节臂节与水平面之间的夹角, 若所检测到 的夹角偏离所述下一节臂节与水平面之间的在先夹角, 则控制所述下一节 臂节的伸缩油缸进行伸缩动作, 以使得所检测到的夹角与所述在先夹角始 终保持一致。
3、 一种臂架动作控制系统, 其特征在于, 包括臂节动作信号发射器、 控制器及姿态检测装置;所述臂节动作信号发射器发出臂节动作指令信号, 所述控制器接收所述臂节动作指令信号, 控制相应臂节进行相应动作, 并 判断是否接收所述臂节的下一节臂节的动作指令信号, 若未接收到所述下 一节臂节的动作指令信号, 所述姿态检测装置实时检测所述下一节臂节的 姿态, 所述控制器控制所述下一节臂节的伸缩油缸动作, 使得所述下一节 臂节的姿态与在先姿态始终保持一致;
所述臂节动作信号发射器的信号发出端与所述控制器的臂节动作信号 接收端连接, 所述控制器的控制信号发出端与所述下一节臂节的伸缩油缸 控制端连接; 所述姿态检测装置的姿态信号输出端与所述控制器的姿态信 号接收端连接。
4、根据权利要求 3所述的臂架动作控制系统, 其特征在于, 所述臂节 动作信号发射器为臂节操作遥控器。
5、根据权利要求 3所述的臂架动作控制系统, 其特征在于, 所述姿态 检测装置为用于检测所述下一节臂节与水平面夹角的倾角传感器, 所述倾 角传感器的夹角信号输出端与所述控制器的姿态信号接收端连接。
6、 一种臂架末端直线位移控制方法, 其特征在于, 包括以下步骤: 步骤 61 ), 输入臂架末端的目标位移量信号及所需调节臂节的指定臂 节信号, 所述所需调节臂节的数量不少于两个;
步骤 62 ), 计算每个所需调节臂节的位移量, 并发出与每个所需调节 臂节相对应的臂节动作指令;
步骤 63 ), 控制与所述臂节动作指令相对应的臂节进行动作; 步骤 64 ), 判断是否收到所述臂节的下一节臂节的动作指令, 若收到 所述下一节臂节的动作指令, 进入步骤 63 ), 若未收到所述下一节臂节的 动作指令, 进入步骤 65 );
步骤 65 ) , 控制所述下一节臂节的姿态与在先姿态始终保持不变。
7、 根据权利要求 6所述的臂架末端直线位移控制方法, 其特征在于, 所述步骤 65 )具体为: 实时检测所述下一节臂节与水平面之间的夹角, 若 所检测到的夹角偏离所述下一节臂节与水平面之间的在先夹角, 则控制所 述下一节臂节的伸缩油缸进行伸缩动作, 以使得所检测到的夹角与所述在 先夹角始终保持一致。
8、 根据权利要求 6所述的臂架末端直线位移控制方法, 其特征在于, 所述所需调整臂节的数量为两个。
9、 一种臂架末端直线位移控制系统, 其特征在于, 包括臂节动作信号 发射器、 控制器及姿态检测装置; 所述臂节动作信号发射器输入臂架末端 的目标位移量信号及所需调节臂节的指定臂节信号, 且所述所需调节臂节 的数量不少于两个; 所述控制器接收所述目标位移量信号及所述指定臂节 信号, 所述控制器的计算单元计算每个所需调节臂节的位移量, 并发出与 每个所需调节臂节相对应的臂节动作指令, 所述控制器的控制单元接收所 述臂节动作指令并控制相应臂节进行相应动作, 所述控制器的判断单元判 断所述控制单元是否接收所述臂节的下一节臂节的动作指令信号, 若未接 收到所述下一节臂节的动作指令信号, 所述姿态检测装置实时检测所述下 一节臂节的姿态, 所述控制单元则控制所述下一节臂节的伸缩油缸动作, 使得所述下一节臂节的姿态与在先姿态始终保持一致;
所述臂节动作信号发射器的信号发出端与所述控制器的臂节动作信号 接收端连接, 所述控制器的控制信号发出端与所述下一节臂节的伸缩油缸 控制端连接, 所述姿态检测装置的姿态信号输出端与所述控制器的姿态信 号接收端连接。
10、根据权利要求 9所述的臂架末端直线位移控制系统,其特征在于, 所述臂架动作信号发射器为臂节操作遥控器;
11、根据权利要求 10所述的臂架末端直线位移控制系统,其特征在于, 所述臂节操作遥控器包括万向手柄、 与臂架系统中每个臂节相对应的模拟 手柄, 所述万向手柄用于发出与臂架末端目标位移量相对应的模拟目标位 移量信号, 所述模拟手柄用于输出所述指定臂节信号。
12、根据权利要求 9所述的臂架末端直线位移控制系统,其特征在于, 所述姿态检测装置为用于检测所述下一节臂节与水平面夹角的倾角传感 器, 所述倾角传感器的夹角信号输出端与所述控制器的姿态信号接收端连 接。
13、 一种混凝土泵车, 其特征在于, 该混凝土泵车具有权利要求 3-5 任一项所述的臂架动作控制系统。
14、 一种混凝土泵车, 其特征在于, 该混凝土泵车具有权利要求 9-12 任一项所述的臂架末端直线位移控制系统。
PCT/CN2012/074276 2011-09-28 2012-04-18 臂架动作控制方法、系统及臂架末端直线位移控制方法、系统及混凝土泵 WO2013044625A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110302721.4 2011-09-28
CN201110302721.4A CN102393754B (zh) 2011-09-28 2011-09-28 臂架动作控制方法、系统及臂架末端直线位移控制方法、系统及混凝土泵车

Publications (1)

Publication Number Publication Date
WO2013044625A1 true WO2013044625A1 (zh) 2013-04-04

Family

ID=45861089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074276 WO2013044625A1 (zh) 2011-09-28 2012-04-18 臂架动作控制方法、系统及臂架末端直线位移控制方法、系统及混凝土泵

Country Status (2)

Country Link
CN (1) CN102393754B (zh)
WO (1) WO2013044625A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393754B (zh) * 2011-09-28 2014-04-16 三一重工股份有限公司 臂架动作控制方法、系统及臂架末端直线位移控制方法、系统及混凝土泵车
CN102661049B (zh) * 2012-06-01 2015-02-11 中联重科股份有限公司 臂架防干涉装置和方法及包含该装置的臂架、泵车
CN103206090B (zh) * 2012-12-27 2016-08-10 徐工集团工程机械股份有限公司江苏徐州工程机械研究院 一种混凝土泵车智能臂架控制及其变形补偿的方法
CN103365301B (zh) * 2013-06-20 2017-02-08 三一汽车制造有限公司 臂架移动控制方法和装置、混凝土泵车
CN109025307B (zh) * 2018-08-20 2020-09-15 长沙湾流智能科技有限公司 臂架的动作控制方法、臂架动作控制系统及工程机械
CN112828934B (zh) * 2021-01-04 2022-05-20 中联重科股份有限公司 确定臂架姿态的方法和装置、监控方法和装置及工程机械
CN112936242B (zh) * 2021-01-29 2022-07-26 中联重科股份有限公司 判断臂架操作安全性的方法、装置及工程机械
CN113445752B (zh) * 2021-05-25 2022-03-25 中联重科股份有限公司 臂架末端运动的控制方法、装置、系统、介质及工程机械

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204578A (ja) * 1999-01-19 2000-07-25 Yanmar Diesel Engine Co Ltd クレーン仕様型バックホーの作業角度制御装置
CN1678806A (zh) * 2002-08-27 2005-10-05 粉刷师股份公司 操纵折弯杆的设备
CN1975070A (zh) * 2006-12-31 2007-06-06 三一重工股份有限公司 一种智能臂架控制装置
CN101525944A (zh) * 2009-03-31 2009-09-09 北京易斯路电子有限公司 混凝土泵车智能臂架控制系统及其控制方法
CN201406841Y (zh) * 2009-03-31 2010-02-17 北京易斯路电子有限公司 混凝土泵车智能臂架控制系统
WO2010089212A1 (de) * 2009-02-03 2010-08-12 Putzmeister Concrete Pumps Gmbh Vorrichtung zur verteilung von beton mit einem knickmast
CN102360228A (zh) * 2011-09-28 2012-02-22 三一重工股份有限公司 一种臂架动作控制系统及混凝土泵车
CN102393754A (zh) * 2011-09-28 2012-03-28 三一重工股份有限公司 臂架动作控制方法、系统及臂架末端直线位移控制方法、系统及混凝土泵车

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4120905B2 (ja) * 1999-03-31 2008-07-16 石川島建機株式会社 ブーム付コンクリートポンプ車の運転制御装置
JP2010013880A (ja) * 2008-07-04 2010-01-21 Yutaka Shoji:Kk コンクリート圧送用ブーム機構
JP2011074712A (ja) * 2009-10-01 2011-04-14 Ihi Construction Machinery Ltd ブーム付きコンクリートポンプ車の残留コンクリート処理方法及び装置
CN101893900B (zh) * 2010-06-29 2012-07-04 三一重工股份有限公司 工程机械及其臂架控制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204578A (ja) * 1999-01-19 2000-07-25 Yanmar Diesel Engine Co Ltd クレーン仕様型バックホーの作業角度制御装置
CN1678806A (zh) * 2002-08-27 2005-10-05 粉刷师股份公司 操纵折弯杆的设备
CN1975070A (zh) * 2006-12-31 2007-06-06 三一重工股份有限公司 一种智能臂架控制装置
WO2010089212A1 (de) * 2009-02-03 2010-08-12 Putzmeister Concrete Pumps Gmbh Vorrichtung zur verteilung von beton mit einem knickmast
CN101525944A (zh) * 2009-03-31 2009-09-09 北京易斯路电子有限公司 混凝土泵车智能臂架控制系统及其控制方法
CN201406841Y (zh) * 2009-03-31 2010-02-17 北京易斯路电子有限公司 混凝土泵车智能臂架控制系统
CN102360228A (zh) * 2011-09-28 2012-02-22 三一重工股份有限公司 一种臂架动作控制系统及混凝土泵车
CN102393754A (zh) * 2011-09-28 2012-03-28 三一重工股份有限公司 臂架动作控制方法、系统及臂架末端直线位移控制方法、系统及混凝土泵车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIU, YANFENG ET AL.: "Research on Electro-hydraulic Control Technology for-Boom of Intelligent Pump Car", MACHINE TOOL & HYDRAULICS, vol. 38, no. 13, July 2010 (2010-07-01), pages 103 - 107 *

Also Published As

Publication number Publication date
CN102393754A (zh) 2012-03-28
CN102393754B (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
WO2013044625A1 (zh) 臂架动作控制方法、系统及臂架末端直线位移控制方法、系统及混凝土泵
CN102897696B (zh) 举高消防车臂架控制系统及控制方法,举高消防车
WO2013107124A1 (zh) 一种机械臂操控系统、方法及工程机械
RU2344923C1 (ru) Интеллектуальное устройство управления стрелой
EP2386387B1 (en) Engineering vehicle arm support controller control system engineering vehicle and control method
US6862509B2 (en) Device for operating the articulated mast of a large manipulator
WO2011069362A1 (zh) 混凝土泵车位置检测装置和方法及混凝土泵车
WO2013107123A1 (zh) 一种机械臂控制系统、方法及工程机械
WO2013113193A1 (zh) 一种工程机械及其控制方法、控制系统
WO2013044627A1 (zh) 一种臂架动作控制系统及混凝土泵车
JP2010228905A (ja) 作業機の遠隔操作装置及び遠隔操作方法
CN109467010B (zh) 用于借助起重机移动负载的方法
CN103233581B (zh) 一种混凝土臂架泵车的控制方法
KR20190089047A (ko) 빠르게 접히고 펼쳐질 수 있는 관절형 마스트를 갖는 대형 조작기
WO2015165346A1 (zh) 一种工程机械和臂架控制系统
CN103572967B (zh) 一种臂架控制设备、系统、方法和工程机械
JP2006256824A (ja) 遠隔操作装置
CN106625629B (zh) 隧道多臂架、多关节作业设备的末端臂架姿态多模式自动控制装置及方法
WO2022160859A1 (zh) 混凝土泵车臂架控制系统、方法及混凝土泵车
JP7400391B2 (ja) 型枠装置及び型枠自動設置システム
JP2007126231A (ja) 作業機の遠隔操作装置
CN109025307B (zh) 臂架的动作控制方法、臂架动作控制系统及工程机械
JP2010076621A (ja) ボーディングブリッジ
CN218715195U (zh) 臂架系统及作业机械
JPH08385B2 (ja) 長尺据付物用建設作業ロボットに於ける重量軽減装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837217

Country of ref document: EP

Kind code of ref document: A1