WO2011002055A1 - エンジン装置 - Google Patents

エンジン装置 Download PDF

Info

Publication number
WO2011002055A1
WO2011002055A1 PCT/JP2010/061244 JP2010061244W WO2011002055A1 WO 2011002055 A1 WO2011002055 A1 WO 2011002055A1 JP 2010061244 W JP2010061244 W JP 2010061244W WO 2011002055 A1 WO2011002055 A1 WO 2011002055A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
speed
low
forced
control
Prior art date
Application number
PCT/JP2010/061244
Other languages
English (en)
French (fr)
Inventor
康男 野間
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009158143A external-priority patent/JP5580005B2/ja
Priority claimed from JP2009160960A external-priority patent/JP2011017256A/ja
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to EP10794223.7A priority Critical patent/EP2450539B1/en
Priority to US13/261,092 priority patent/US9032718B2/en
Priority to CN201080035087.6A priority patent/CN102472135B/zh
Priority to KR1020117031475A priority patent/KR101666006B1/ko
Publication of WO2011002055A1 publication Critical patent/WO2011002055A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/07595Cooling arrangements for device or operator
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2066Control of propulsion units of the type combustion engines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2095Control of electric, electro-mechanical or mechanical equipment not otherwise provided for, e.g. ventilators, electro-driven fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1838Construction facilitating manufacture, assembly, or disassembly characterised by the type of connection between parts of exhaust or silencing apparatus, e.g. between housing and tubes, between tubes and baffles
    • F01N13/1844Mechanical joints
    • F01N13/1855Mechanical joints the connection being realised by using bolts, screws, rivets or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/0211Arrangements for mounting filtering elements in housing, e.g. with means for compensating thermal expansion or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/0205Circuit arrangements for generating control signals using an auxiliary engine speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/02Tubes being perforated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/18Structure or shape of gas passages, pipes or tubes the axis of inlet or outlet tubes being other than the longitudinal axis of apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/24Concentric tubes or tubes being concentric to housing, e.g. telescopically assembled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/08Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for heavy duty applications, e.g. trucks, buses, tractors, locomotives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine device mounted on a work machine (for example, agricultural machine, construction machine, ship, etc.).
  • a work machine for example, agricultural machine, construction machine, ship, etc.
  • the so-called forced fuel consumption and noise reduction are achieved by automatically lowering the engine speed to a low idle speed by pressing a push button switch disposed in the control section.
  • DPF diesel particulate filter
  • Patent Documents 4 and 5 diesel particulate filter
  • the soot filter regeneration operation occurs when the exhaust gas temperature is equal to or higher than the reproducible temperature (for example, about 300 ° C.).
  • JP-A-9-25838 Japanese Patent Laid-Open No. 5-312082 Japanese Patent Laid-Open No. 9-88650 JP 2000-145430 A Japanese Patent Laid-Open No. 2003-27922
  • an engine serving as a power source, an exhaust gas purifying filter device disposed in an exhaust path of the engine, and a predetermined first engine speed when a preset low-rotation condition is satisfied.
  • An engine device including a control unit that performs low-rotation control for reducing the engine speed to a low number of revolutions, wherein the control unit is configured to satisfy both the low-rotation condition and a preset forced regeneration condition. In order to suppress a decrease in the exhaust gas temperature, the engine speed is maintained at a second low speed higher than the first low speed.
  • the control means when the control means sets the engine speed to the second low speed and then only the forced regeneration condition is eliminated, the engine It is configured to reduce the rotational speed to the first low rotational speed.
  • the control means sets both the low speed condition and the forced regeneration condition after setting the engine speed to the second low speed. When is resolved, the engine speed is returned to the original speed before both conditions are satisfied.
  • the filter device is based on an engine as a power source, a filter device for purifying exhaust gas disposed in an exhaust path of the engine, a clogged state of the filter device, and a driving state of the engine.
  • a forced low rotation operation means for executing forced low rotation control for forcibly reducing the engine speed to a predetermined low speed.
  • the control means is configured to preferentially execute the forced low rotation control when the forced low rotation operation means is turned on regardless of the necessity of the forced regeneration control. Is.
  • the control means when the control means operates the moving system operating means or the working system operating means for the work machine on which the engine apparatus is mounted, The rotation control is stopped, and if the clogged state in the filter device has reached a preset state at this time, the forced regeneration control is executed, while the clogged state in the filter device is set in advance. If the engine speed has not been reached, the engine speed is returned to the original speed before the decrease.
  • the control means has reached a state in which a clogged state in the filter device is set in advance during execution of the forced low rotation control.
  • the notification means connected to the control means notifies the user.
  • the engine as the power source, the exhaust gas purifying filter device disposed in the exhaust path of the engine, and the predetermined engine speed when a preset low speed condition is satisfied.
  • An engine device comprising a control means for executing a low speed control for reducing to a low speed, wherein the control means is configured when both the low speed condition and a preset forced regeneration condition are satisfied. Furthermore, in order to suppress a decrease in exhaust gas temperature, the engine speed is maintained at a second low speed higher than the first low speed, so that the low speed control for reducing the engine output is performed.
  • the filter device If the filter device is clogged to some extent even during execution of the engine, the engine speed is maintained at a second low speed (high idle speed) higher than the first low speed (low idle speed). It will be. For this reason, it is possible to prevent the deterioration of the clogged state of the filter device by suppressing the decrease in the exhaust gas temperature while saving fuel consumption and suppressing noise by the low rotation control. In other words, the progress of the clogging of the filter device can be suppressed without impairing the function of the low rotation control, and therefore, it is possible to enjoy two benefits of saving fuel consumption and exhaust gas purification in the working machine. Since the low-rotation control is executed, there is an effect that it is possible to avoid troubles such as clogging of the filter device and failure.
  • the control means sets the engine speed to the second low speed and then only the forced regeneration condition is eliminated. Since the engine speed is reduced to the first low speed, the effect of reducing fuel consumption by the low speed control can be further improved.
  • the control means sets the low engine speed and the forced regeneration after setting the engine speed to the second low speed.
  • the engine speed is set back to the original speed before both conditions are satisfied, so the operation of starting the work implement and the operation of driving the working unit are performed.
  • the output of the engine can be easily secured. Therefore, when returning from the low rotation control, the engine is started at the first low rotation speed (low idle rotation speed) or the working unit is driven, and the engine is suddenly short due to insufficient output or overload. There is an effect that it is possible to surely prevent problems such as stopping.
  • the engine as a power source, the exhaust gas purifying filter device disposed in the exhaust path of the engine, the filter device based on the clogged state of the filter device and the driving state of the engine
  • An engine device comprising control means for executing forced regeneration control of the device, forcibly low speed operation means for executing forced low speed control for forcibly reducing the engine speed to a predetermined low speed
  • the control means is configured to preferentially execute the forced low rotation control when the forced low rotation operation means is turned on regardless of the necessity of the forced regeneration control.
  • the forced regeneration control for increasing the output of the engine is not performed repeatedly during the execution of the forced low speed control for decreasing the output of the engine.
  • the control means stops the forced low rotation control when operating the moving system operating means or the working system operating means for the work machine on which the engine device is mounted,
  • the forced regeneration control is executed, while when the clogged state in the filter device has not reached the preset state, Since the engine speed is configured to return to the original speed before the decrease, even if the operator forgets the return operation from the forced low speed control, the operation to start the work implement or the work
  • the output of the engine can be easily ensured only by the operation of driving the part. Therefore, when returning from the forced low speed control, the engine is started at a low speed or the working unit is driven, causing the engine to suddenly stop due to insufficient output or overload. There is an effect that it can be surely prevented.
  • control means is connected to the control means when the clogging state in the filter device reaches a preset state during execution of the forced low rotation control. Since the notification means is configured to notify the operator, the operator can grasp whether or not the filter device is clogged even during execution of the forced low rotation control prohibiting the forced regeneration control. In addition, it is possible to call attention to the clogging of the filter device. Since the forced low-rotation control is executed, there is an advantage that troubles such as clogging of the filter device and failure may be avoided.
  • FIGS. 1 to 12 show a first embodiment when the present invention is applied to a combine which is a working machine. 1 to 3, the left side in the forward direction of the traveling machine body 1 is simply referred to as the left side, and the right side in the forward direction is also simply referred to as the right side. For convenience, these are used as a reference for the positional relationship between the four sides and the top and bottom of the combine.
  • the combine includes a traveling machine body 1 supported by a pair of left and right traveling crawlers 2.
  • a six-row mowing device 3 that takes in while harvesting cereals is mounted by a single-acting lifting hydraulic cylinder 4 so as to be movable up and down around the mowing rotation fulcrum shaft 4a.
  • a threshing device 5 having a feed chain 6 and a grain tank 7 for storing grain after threshing are mounted on the traveling machine body 1 side by side.
  • the threshing device 5 is disposed on the left side in the traveling direction of the traveling machine body 1, and the grain tank 7 is disposed on the right side in the traveling direction of the traveling machine body 1.
  • a swivelable grain discharge auger 8 is provided at the rear of the traveling machine body 1.
  • the grain inside the grain tank 7 is configured to be discharged to a truck bed, a container, or the like from a throat throw 9 of the grain discharge auger 8.
  • the threshing device 5 and the grain discharge auger 8 correspond to the working unit.
  • An operation cabin 10 is provided on the right side of the reaping device 3 and on the front side of the grain tank 7.
  • a steering handle 11 and a driver seat 12 are arranged in the driving cabin 10.
  • a step (not shown) in which an operator gets on, a handle column 14 provided with a steering handle 11, and a shift operation provided on a lever column 15 on the left side of the driving seat 12.
  • a main transmission lever 16, a sub transmission lever 17, and a working clutch lever 18 for turning on and off a working clutch (a mowing clutch and a threshing clutch, not shown) are arranged.
  • a diesel engine 70 as a power source is disposed in the traveling machine body 1 below the driver seat 12.
  • left and right track frames 21 are arranged on the lower surface side of the traveling machine body 1.
  • the track frame 21 includes a drive sprocket 22 that transmits the power of the engine 70 to the traveling crawler 2, a tension roller 23 that maintains the tension of the traveling crawler 2, and a plurality of track rollers that hold the ground side of the traveling crawler 2 in a grounded state. 24 and an intermediate roller 25 that holds the non-grounded side of the traveling crawler 2 are provided.
  • the driving sprocket 22 supports the front side of the traveling crawler 2
  • the tension roller 23 supports the rear side of the traveling crawler 2
  • the track roller 24 supports the grounding side of the traveling crawler 2
  • the intermediate roller 25 supports the non-traveling crawler 2. Support the ground side.
  • the output of the diesel engine 70 is transmitted to the transmission case 19, the output of the diesel engine 70 is shifted by the transmission case 19, and the traveling crawler 2 is driven by the transmission output of the transmission case 19.
  • a clipper-type cutting blade device that cuts the stock of uncut grain culm in the field. 222 is provided.
  • a stalk raising apparatus 223 for 6 stalks that raises uncut cereals in the field is arranged.
  • a culm conveying device 224 that conveys the chopped culm harvested by the cutting blade device 222 is arranged.
  • a weeding body 225 for six strips for weeding the uncut grain culm in the field is projected. While the traveling crawler 2 is driven by the diesel engine 70 to move in the field, the reaping device 3 is driven to continuously shave the uncut grain culm on the field.
  • the threshing device 5 includes a handling cylinder 226 for threshing threshing, a rocking sorter 227 that sorts the cereals falling below the handling cylinder 226, and a tang fan 228.
  • the processing cylinder 229 for reprocessing the threshing waste taken out from the rear part of the handling cylinder 226 and the dust exhaust fan 230 for discharging the dust at the rear part of the swing sorter 227 are provided.
  • the rotating shaft of the handling cylinder 226 extends along the conveying direction of the cereal by the feed chain 6 (in other words, the traveling direction of the traveling machine body 1).
  • the stock source side of the corn straw conveyed from the reaping device 3 by the corn straw conveying device 224 is inherited by the feed chain 6 and is nipped and conveyed. Then, the tip side of the cereal cocoon is carried into the handling chamber of the threshing device 5 and threshed by the handling drum 226.
  • first conveyor 231 that takes out the grain (first thing) sorted by the swing sorter 227, and a branch raft is attached.
  • a second conveyor 232 for taking out second items such as grains is provided.
  • the two conveyors 231 and 232 are horizontally installed on the upper surface side of the traveling machine body 1 above the rear part of the traveling crawler 2 in a side view in order of the first conveyor 231 and the second conveyor 232 from the front side in the traveling direction of the traveling machine body 1. .
  • the swing sorter 227 is reciprocally swung back and forth and up and down at a substantially constant speed by the swing drive shaft 242.
  • the cereals that have leaked from the receiving net 237 stretched below the handling cylinder 226 are subjected to rocking sorting (specific gravity sorting) by the feed pan 238 and the chaff sheave 239 of the rocking sorting board 227.
  • the grain being cerealed falls downward from the grain sieve 240 of the oscillating sorter 227. From the grain that has fallen from the Glen Sheave 240, the dust in the grain is removed by the sorting air from the Kara fan 228 and falls first onto the conveyor 231.
  • a whipping cylinder 233 extending in the vertical direction is connected to a terminal portion of the first conveyor 231 that protrudes outward from one side wall (in the embodiment, the right side wall) near the grain tank 7 in the threshing device 5. .
  • the grain taken out first from the conveyor 231 is carried into the grain tank 7 through the whipped cylinder 233 and collected in the grain tank 7.
  • the raising cylinder 233 is erected on the rear side of the grain tank 7 in a backward inclined posture in which the upper end side of the whipping cylinder 233 is inclined backward.
  • the swing sorter 227 causes the second sort such as grain with branch stems to fall onto the second conveyor 232 from the chaff sheave 239 by swing sort (specific gravity sort). It is configured.
  • a tang fan 228 for wind-selecting the second item falling below the chaff sheave 239 is provided.
  • dust and swarf in the grain are removed by the sorting air from the sorting fan 241 and dropped onto the second conveyor 232.
  • the terminal part which protruded outward from the one side wall near the grain tank 7 in the threshing device 5 in the second conveyor 232 crosses the whipping cylinder 233 and passes through a reduction cylinder 236 extending in the front-rear direction, to a feed pan 238.
  • the second item is returned to the upper surface side of the feed pan 238 and re-sorted.
  • an exhaust chain 234 is arranged on the rear end side (feed end side) of the feed chain 6.
  • the slag passed from the rear end side of the feed chain 6 to the sewage chain 234 (the slag from which the grain has been threshed) is discharged to the rear of the traveling machine body 1 in a long state, or the rear side of the threshing device 5 After being cut to a suitable length by the waste cutter 235 provided on the rear, the paper is discharged to the lower rear side of the traveling machine body 1.
  • FIGS. 3 to 7 An overall structure of a common rail type diesel engine 70 will be described with reference mainly to FIGS. 3 to 7.
  • the intake manifold 73 installation side of the diesel engine 70 facing rearward with respect to the traveling machine body 1 is simply referred to as the rear side of the diesel engine 70.
  • the exhaust manifold 71 installation side of the diesel engine 70 facing forward is simply referred to as the front side of the diesel engine 70.
  • an exhaust manifold 71 is disposed on the front side surface of the cylinder head 72 in the diesel engine 70.
  • An intake manifold 73 is disposed on the rear side of the cylinder head 72.
  • the cylinder head 72 is mounted on a cylinder block 75 in which an engine output shaft 74 (crankshaft) and a piston (not shown) are built.
  • the left and right tip ends of the engine output shaft 74 are protruded from both the left and right side surfaces of the cylinder block 75.
  • a cooling fan 76 is provided on the right side surface of the cylinder block 75. A rotational force is transmitted from the right end side of the engine output shaft 74 to the cooling fan 76 via the V belt 77.
  • a flywheel housing 78 is fixed to the left side surface of the cylinder block 75.
  • a flywheel 79 is disposed in the flywheel housing 78.
  • the flywheel 79 is pivotally supported on the left end side of the engine output shaft 74.
  • the flywheel 79 is configured to rotate integrally with the engine output shaft 74.
  • a drive unit such as a traveling crawler 2 as a traveling unit (high load working unit), a reaping device 3 or a threshing device 5 as a high load working unit, a grain discharge auger 8 as a low load working unit, and the like via a flywheel 79.
  • the power of the diesel engine 70 is taken out.
  • an oil pan 81 is arranged on the lower surface of the cylinder block 75.
  • Engine leg mounting portions 82 are respectively provided on the left and right side surfaces of the cylinder block 75 and the left and right side surfaces of the flywheel housing 78. Each engine leg mounting portion 82 is bolted to an engine leg 83 having vibration-proof rubber.
  • the diesel engine 70 is supported in an anti-vibration manner by an engine support chassis 84 formed integrally with the traveling machine body 1 through the engine legs 83.
  • the diesel engine 70 is formed below the driving cabin 10 such that the flywheel 79 is located on the center side of the traveling aircraft body 1 and the cooling fan 77 is located on the right side of the traveling aircraft body 1.
  • the diesel engine 70 is arranged so that the direction of the engine output shaft 74 extends in the left-right direction.
  • an air cleaner 88 is connected to the intake manifold 73 via an EGR device (exhaust gas recirculation device) 91 and a supercharging pipe 108.
  • the EGR device 91 mixes the recirculated exhaust gas of the diesel engine 70 (EGR gas from the exhaust manifold 71) and fresh air (external air from the air cleaner) and supplies the mixture to the intake manifold 73.
  • a recirculation exhaust gas pipe 95 connected to the exhaust manifold 71 via an EGR cooler 94, and an EGR valve 96 communicating the EGR main body case 92 with the recirculation exhaust gas pipe 95.
  • EGR gas (a part of the exhaust gas discharged from the exhaust manifold 71) is supplied from the exhaust manifold 71 into the EGR main body case 92 via the EGR valve 96. .
  • the mixed gas in the EGR main body case 92 is supplied to the intake manifold 73. That is, a part of the exhaust gas discharged from the diesel engine 70 to the exhaust manifold 71 is recirculated from the intake manifold 73 to the diesel engine 70, so that the maximum combustion temperature during high load operation decreases, NOx (nitrogen oxide) emissions are reduced.
  • a turbocharger 100 is attached to the rear side surface of the cylinder head 72.
  • the turbocharger 100 includes a turbine case 101 having a turbine wheel (not shown) and a compressor case 102 having a blower wheel (not shown).
  • An exhaust manifold 71 is connected to the exhaust gas intake pipe 105 of the turbine case 101.
  • a tail pipe 107 is connected to the exhaust gas discharge pipe 103 of the turbine case 101 via a diesel particulate filter 60 (hereinafter referred to as DPF) as a filter device. That is, the exhaust gas discharged from each cylinder of the diesel engine 70 to the exhaust manifold 71 is discharged to the outside from the tail pipe 107 via the turbocharger 100, the DPF 60, and the like.
  • DPF diesel particulate filter 60
  • the supply / discharge side of the air cleaner 88 is connected to the supply / intake side of the compressor case 102 via the supply pipe 104.
  • An intake manifold 73 is connected to the supply / discharge side of the compressor case 102 via a supercharging pipe 108.
  • the intake side of the air cleaner 88 is connected to the precleaner 90 via the intake duct 89. That is, the outside air removed by the pre-cleaner 90 and the air cleaner 88 is sent from the compressor case 102 to the intake manifold 73 via the supercharging pipe 108 and supplied to each cylinder of the diesel engine 70.
  • the DPF 60 as a filter device is for collecting particulate matter (PM) and the like in the exhaust gas, and is disposed above the exhaust manifold 71 in the cylinder head 72. ing.
  • the DPF 60 of the embodiment has a shape that is long in the left-right direction parallel to the engine output shaft 74 in plan view.
  • An exhaust gas intake side of the DPF 60 is connected to the exhaust gas discharge pipe 103 of the turbine case 101, and a tail pipe 107 is connected to the exhaust gas discharge side of the DPF 60.
  • a DPF 60 is a soot that is a filter body having a honeycomb structure and a diesel oxidation catalyst 64 such as platinum in a substantially cylindrical filter case 62, 63 built in a DPF casing 61 made of a heat-resistant metal material.
  • the filter 65 is arranged in series and accommodated.
  • the upper end side of the fixed leg 109 is fixed by welding to one end side (right side) in the longitudinal direction of the DPF casing 61.
  • the lower end side of the fixed leg 109 is bolted to the front side of the cylinder head 72. That is, the DPF 60 described above is stably connected and supported above the exhaust manifold 71 by the fixed leg 109 and the exhaust gas discharge pipe 103 of the turbine case 101.
  • the DPF casing 61 is provided with a pressure sensor 66 as an example of clogging detection means for detecting the clogged state of the DPF 60 (see FIG. 8).
  • the pressure sensor 66 may have a known structure using a piezoresistance effect.
  • the pressure Ps (reference pressure value) on the upstream side of the soot filter 65 when particulate matter is not deposited on the soot filter 65 (when the DPF 60 is new) is stored in a ROM or the like of the fuel injection controller 311 described later.
  • the current pressure P at the same measurement location is detected by the pressure sensor 66, the difference ⁇ P between the reference pressure value Ps and the detected value P of the pressure sensor 66 is obtained, and the soot is based on the pressure difference ⁇ P.
  • the particulate matter accumulation amount of the filter 65 is converted (estimated) (see FIG. 12). Note that pressure sensors may be arranged on the upstream and downstream sides of the DPF 60 with the soot filter 65 interposed therebetween, and the particulate matter accumulation amount of the soot filter 65 may be converted (estimated) from the difference between the detection values of the two. .
  • the exhaust gas of the diesel engine 70 flows from the exhaust gas discharge pipe 103 of the turbine case 101 into the space upstream of the diesel oxidation catalyst 64 in the DPF casing 61, and from the diesel oxidation catalyst 64 to the soot filter 65. In this order, it is purified. Particulate matter in the exhaust gas is collected at this stage without passing through the porous partition walls between the cells in the soot filter 65. Thereafter, exhaust gas that has passed through the diesel oxidation catalyst 64 and the soot filter 65 is discharged to the tail pipe 107.
  • the action of the diesel oxidation catalyst 64 causes NO ( Nitric oxide) is oxidized to unstable NO2 (nitrogen dioxide).
  • NO2 nitrogen dioxide
  • the particulate matter collected on the soot filter 65 is oxidized and removed by O (oxygen) released when NO2 returns to NO, so that the particulate matter collecting ability of the soot filter 65 is recovered (soot).
  • O oxygen
  • a fuel tank 118 is connected to each of the four cylinder injectors 115 provided in the diesel engine 70 via a fuel pump 116 and a common rail system 117.
  • Each injector 115 has an electromagnetic switching control type fuel injection valve 119.
  • the common rail system 117 includes a cylindrical common rail 120.
  • a fuel tank 118 is connected to the suction side of the fuel pump 116 via a fuel filter 121 and a low pressure pipe 122.
  • the fuel in the fuel tank 118 is sucked into the fuel pump 116 via the fuel filter 121 and the low pressure pipe 122.
  • the common rail 120 is connected to the discharge side of the fuel pump 116 via a high-pressure pipe 123.
  • a high-pressure pipe connector 124 is provided in the middle of the cylindrical common rail 120 in the longitudinal direction, and the end of the high-pressure pipe 123 is connected to the high-pressure pipe connector 124 by screwing a high-pressure pipe connector nut 125.
  • injectors 115 for four cylinders are connected to the common rail 120 through four fuel injection pipes 126, respectively.
  • a fuel injection pipe connector 127 for four cylinders is provided in the longitudinal direction of the cylindrical common rail 120, and the end of the fuel injection pipe 126 is connected to the fuel injection pipe connector 127 by screwing a fuel injection pipe connector nut 128. .
  • the fuel in the fuel tank 118 is pumped to the common rail 120 by the fuel pump 116, and high-pressure fuel is stored in the common rail 120.
  • Each fuel injection valve 119 is controlled to open and close, whereby high-pressure fuel in the common rail 120 is injected from each injector 115 to each cylinder of the diesel engine 70. That is, by electronically controlling each fuel injection valve 119, the injection pressure, injection timing, and injection period (injection amount) of the fuel supplied from each injector 115 can be controlled with high accuracy. Therefore, nitrogen oxides (NOx) discharged from the diesel engine 70 can be reduced, and noise vibration of the diesel engine 70 can be reduced.
  • NOx nitrogen oxides
  • a fuel pump 116 is connected to the fuel tank 118 via a pump fuel return pipe 129.
  • a common rail fuel return pipe 131 is connected to the end of the cylindrical common rail 120 in the longitudinal direction via a return pipe connector 130 with a pressure adjusting valve that limits the pressure of fuel in the common rail 120. That is, surplus fuel in the fuel pump 116 and surplus fuel in the common rail 120 are recovered in the fuel tank 118 via the pump fuel return pipe 129 and the common rail fuel return pipe 131.
  • a fastening base 133 is integrally formed on an oil cooler housing 132 provided on one side of the cylinder block 75.
  • the fastening boss 134 is formed integrally with the common rail 120.
  • a fastening boss 134 is fixed to the fastening base 133 by rail mounting bolts 135.
  • the common rail 120 is detachably fastened to one side of the cylinder block 75 via an oil cooler housing 132. That is, the common rail 120 is provided on one side of the cylinder block 75.
  • the common rail 120 is disposed in the vicinity of the corner portion of the intake manifold 73 obliquely below.
  • the common rail 120 is juxtaposed below the intake manifold 73.
  • the fuel injection pipe connector 127 disposed on the upper surface side of the common rail 120 is configured to tilt the common rail 120 so that the fuel injection pipe connector 127 is obliquely upward and outward. Accordingly, a part of the upper surface side of the common rail 120 is covered by the intake manifold 73. Therefore, even when a tool or the like is dropped from above toward the common rail 120 during assembly / disassembly work of the diesel engine 70, the intake manifold 73 Damage due to 120 collisions can be reduced. Further, a screwing operation of the fuel injection pipe connector nut 128 for connecting the fuel injection pipe 126 to the fuel injection pipe connector 127 can be easily executed. Assembling / disassembling workability such as piping of the fuel injection pipe 126 can be improved.
  • the combine of the first embodiment is equipped with a fuel injection controller 311 that operates the fuel injection valve 119 of each cylinder in the diesel engine 70 as an example of a control means.
  • the fuel injection controller 311 includes a CPU that executes various arithmetic processes and controls, a ROM as a storage unit that stores control programs and data, a RAM that temporarily stores control programs and data, an input / output interface, and the like It has.
  • a rail pressure sensor 312 that detects the fuel pressure in the common rail 120, an electromagnetic clutch 313 that rotates or stops the fuel pump 116, and the engine speed of the diesel engine 70 (engine output shaft 74 Engine rotation sensor 314 for detecting the crank type camshaft position), an injection setting device 315 for detecting and setting the number of fuel injections of the injector 115 (the number of fuel injections during the fuel injection period of one stroke), and an accelerator lever or accelerator
  • An accelerator sensor 316 that detects the operating position of an accelerator operating tool (not shown) such as a pedal, a turbo booster sensor 317 that detects the pressure of the turbocharger 100, and an intake air temperature sensor 318 that detects the intake air temperature of the intake manifold 73. And the temperature of the cooling water of the diesel engine 70 A coolant temperature sensor 319 is connected to detect.
  • each fuel injection valve 119 for four cylinders is connected to the output side of the fuel injection controller 311. That is, the high-pressure fuel stored in the common rail 120 is configured to be injected from the fuel injection valve 119 in a plurality of times during one stroke while controlling the fuel injection pressure, the fuel injection timing or the fuel injection period. Yes. For this reason, complete combustion with reduced generation of nitrogen oxides and reduced generation of particulate matter (soot), carbon dioxide, and the like can be performed to improve fuel efficiency.
  • the fuel injection controller 311 is supplied from each injector 115 by electronically controlling each fuel injection valve 119 so that the engine speed becomes the set speed set by the accelerator operating tool. Adjust the fuel. For this reason, the engine speed is held at a value corresponding to the operation position of the accelerator operating tool.
  • a notification device 337 as a notification means is electrically connected to the output side of the fuel injection controller 311.
  • the notification device 337 is a lamp that performs visual notification according to the operation state of the combine, and various blinking data are stored in advance in storage means (ROM) of the fuel injection controller 311.
  • the notification means is not limited to a visual notification lamp, but may be a buzzer, a sound device, or a display means such as a liquid crystal panel that displays characters, symbols, or the like.
  • automatic low rotation that reduces the engine rotation speed to a predetermined first low rotation speed (low idle rotation speed) when an automatic low rotation condition described later is satisfied.
  • the control auto-decel control
  • both the automatic low speed condition and the forced regeneration condition to be described later are satisfied
  • the engine speed is controlled from the low idle speed in order to suppress the exhaust gas temperature from decreasing. It is set to maintain a high second low rotational speed (high idle rotational speed).
  • the automatic low rotation control (automatic deceleration control) is an injection state (injection pressure, fuel injection) of the fuel supplied from each injector 115 by electronically controlling each fuel injection valve 119 when the automatic low rotation condition is satisfied.
  • the engine speed is automatically reduced to the low idle speed (the output of the diesel engine 70 is reduced).
  • the forced regeneration control the diesel engine 70 is controlled by electronically controlling each fuel injection valve 119 based on detection information from the pressure sensor 66 and the exhaust temperature sensor 334 to adjust the injection state of the fuel supplied from each injector 115.
  • the exhaust gas temperature is increased to increase the exhaust gas temperature, and the particulate matter in the DPF 60 (soot filter 65) is forcibly burned.
  • the automatic low rotation conditions in the first embodiment are that the decel switch 335 is entered and operated, the working unit (the threshing device 5 and the grain discharge auger 8) is inactive, and the traveling machine body 1 It is composed of three conditions, that is.
  • the detected value Tex of the exhaust gas temperature is equal to or lower than a reproducible temperature (for example, about 300 ° C.), and the pressure difference ⁇ P between the detected value P of the pressure sensor 66 and the reference pressure value Ps is equal to or greater than the limit pressure difference value ⁇ P0.
  • the forced regeneration condition is established. That is, the forced regeneration condition in the first embodiment is that the detected value Tex of the exhaust gas temperature is equal to or lower than a reproducible temperature (for example, about 300 ° C.), and the detected value P of the pressure sensor 66 and the reference pressure value Ps. This is composed of two conditions that the pressure difference ⁇ P is not less than the limit pressure difference value ⁇ P0.
  • the fuel injection controller 311 of the first embodiment reduces the engine speed from the high idle speed to the low idle speed when only the forced regeneration condition is resolved after the engine speed is set to the high idle speed. On the other hand, when the engine speed is set to the high idle speed and both the low speed condition and the forced regeneration condition are resolved, the engine speed is returned to the original speed before the conditions are satisfied. Has been.
  • the fuel injection controller 311 of the first embodiment reduces the engine speed from the high idle speed to the low idle speed when only the forced regeneration condition is resolved after the engine speed is set to the high idle speed. Therefore, the fuel consumption reduction effect by the automatic low rotation control can be further improved. Further, the fuel injection controller 311 of the first embodiment sets the engine speed before both conditions are satisfied when both the low speed condition and the forced regeneration condition are resolved after the engine speed is set to the high idle speed. Therefore, it is possible to easily secure the output of the diesel engine 70 simply by performing an operation of starting the combine or an operation of driving the working unit (threshing device 5 or the like). Become. Therefore, when returning from the automatic low speed control, the combine engine is started at the low idle speed or the working unit is driven, so that the problem that the diesel engine 70 suddenly stops due to insufficient output or overload is ensured. Can be prevented.
  • step S1 If the condition is satisfied (step S1: YES), then the detected value Tex of the exhaust gas temperature is equal to or lower than the reproducible temperature (for example, about 300 ° C.), and the detected value P of the pressure sensor 66 and the reference pressure value It is determined whether or not the pressure difference ⁇ P with respect to Ps is greater than or equal to the limit pressure difference value ⁇ P0, that is, whether the forced regeneration condition is satisfied (step S2).
  • step S2 If the forced regeneration condition is not satisfied (step S2: NO), the process proceeds to step S7 to be described later to notify that the engine speed of the diesel engine 70 is reduced to the low idle speed (from the original speed). The notification is given by the device 337 for a predetermined time.
  • step S2 YES
  • particulate matter has accumulated to some extent on the soot filter 65, and the soot filter 65 regeneration operation is difficult to proceed.
  • step S3 After notifying over the predetermined time by the alerting
  • step S5 it is determined whether or not the above-described automatic low rotation condition is continuously satisfied (step S5), and if it is satisfied (step S5: YES), whether or not the above-described forced regeneration condition is satisfied. Is determined (step S6). If the forced regeneration condition is not satisfied (step S6: NO), the accumulation state of the particulate matter in the soot filter 65 is alleviated to some extent, so the engine speed of the diesel engine 70 is reduced to the low idle speed.
  • the notification device 337 informs the effect to be performed for a predetermined time (step S7), and then adjusts the fuel injection state from each injector 115 to reduce the engine speed of the diesel engine 70 (from the quasi-low speed). The engine speed is reduced to the idling speed (step S8).
  • step S9 it is determined whether or not the automatic low-rotation condition similar to steps S1 and S5 is continuously satisfied (step S9), and if it is satisfied (step S9: YES), the process returns to the above-described step S2. If the automatic low-rotation condition is not satisfied (step S9: NO), the notification device 337 notifies that the engine rotation speed of the diesel engine 70 is restored to the original rotation speed for a predetermined time (step S10). The fuel injection state from each injector 115 is adjusted, and the engine speed of the diesel engine 70 is returned to the original speed before both conditions (automatic low speed condition and forced regeneration condition) are satisfied (step S11).
  • step S12 if the automatic low rotation condition is not satisfied (step S5: NO), it is then determined whether the forced regeneration condition is satisfied (step S12).
  • the notification device 337 notifies the execution of the forced regeneration control of the DPF 60 over a predetermined time (step S13), and then the forced regeneration control of the DPF 60 is performed.
  • Execute Step S14). That is, the fuel injection state from each injector 115 is adjusted, the output of the diesel engine 70 is increased to increase the exhaust gas temperature, and the particulate matter in the soot filter 65 is forcibly burned.
  • step S15 if the forced regeneration condition is not satisfied (step S15: NO), the notification device 337 informs that the forced regeneration control of the DPF 60 is released over a predetermined time (step S16), and then the fuel from each injector 115.
  • the output of the diesel engine 70 is returned to the original output state before both conditions (automatic low rotation condition and forced regeneration condition) are established (step S17).
  • step S12 if the forced regeneration condition is not satisfied (step S12: NO), the notification device 337 notifies the fact that the process proceeds to step S10 and the engine speed of the diesel engine 70 is returned to the original speed.
  • step S11 the fuel injection state from each injector 115 is adjusted, and the engine speed of the diesel engine 70 is determined based on the conditions before both conditions (automatic low speed condition and forced regeneration condition) are satisfied. It will return to the number of rotations.
  • the engine 70 as a power source, the exhaust gas purification filter device 60 disposed in the exhaust path of the engine 70, and the engine speed when a preset low speed condition is satisfied.
  • a control means 311 for executing a low speed control for reducing the engine speed to a predetermined first low speed (low idle speed), wherein the control means 311 is preset with the low speed condition.
  • the engine speed is set to a second low speed (high speed) higher than the first low speed (low idle speed).
  • the idling speed is maintained, so that the filter device 60 is clogged to some extent even during the execution of the low speed control for reducing the output of the engine 70.
  • Lever will maintain the engine speed high high idle speed than the low idle speed. For this reason, it is possible to prevent deterioration of the clogged state of the filter device 60 by suppressing a decrease in the exhaust gas temperature while saving fuel consumption and suppressing noise by low rotation control. That is, it is possible to suppress the clogging of the filter device 60 within a range that does not impair the function of the low rotation control, and therefore, it is possible to enjoy two benefits of saving fuel consumption and exhaust gas purification in the work machine. Since the low-rotation control is executed, it is possible to avoid the trouble that the filter device 60 becomes clogged and breaks down.
  • the control means 311 is configured to reduce the engine speed to the low idle speed when only the forced regeneration condition is resolved after the engine speed is set to the high idle speed. Therefore, the fuel consumption reduction effect by the low rotation control can be further improved.
  • the control means 311 sets the engine speed to the original speed before both conditions are satisfied when both the low speed condition and the forced regeneration condition are resolved after the engine speed is set to the high idle speed. Since it is comprised so that it may return to rotation speed, the output of the said engine 70 can be ensured easily only by operation which starts a working machine, or operation which drives a working part (threshing apparatus 5 grade
  • FIGS. 13 to 16 show a second embodiment when the present invention is applied to a hydraulic excavator that is a working machine.
  • the left side in the forward direction of the traveling machine body 1 is simply referred to as the left side
  • the right side in the forward direction is also simply referred to as the right side.
  • these are used as a reference for the positional relationship between the upper and lower sides of the hydraulic excavator.
  • the excavator 400 includes a crawler-type traveling device 402 having a pair of left and right traveling crawlers 403, and a revolving machine body 404 provided on the traveling device 402.
  • the swivel body 404 is configured to be horizontally swivelable in all 360 ° directions by a turning hydraulic motor (not shown).
  • An earthwork plate 405 for ground work is attached to the rear portion of the traveling device 402 so as to be movable up and down.
  • a steering unit 406 and a diesel engine 70 are mounted on the left side of the revolving body 404. Since the configurations of the diesel engine 70 and its auxiliary machinery group are basically the same as those in the first embodiment, the same reference numerals as those in the first embodiment are used and detailed descriptions thereof are omitted.
  • a working unit 410 having a boom 411 and a bucket 413 for excavation work is provided on the right side of the revolving machine body 404.
  • the control unit 406 is provided with a control seat 408 on which an operator is seated, operation means for operating the diesel engine 70 and the like, an operation lever 416 as an operation means for the working unit 410, a switch, and the like.
  • a boom cylinder 412 and a bucket cylinder 414 are arranged on a boom 411 that is a component of the working unit 410.
  • a bucket 413 serving as an excavation attachment is pivotally attached to the tip of the boom 411 so as to be inserted and rotated.
  • the boom cylinder 412 or the bucket cylinder 414 is operated to perform earthwork work (ground work such as grooving) by the bucket 413.
  • the basic configuration of the fuel injection controller 311 mounted on the excavator 400 of the second embodiment is the same as that of the first embodiment.
  • a rail pressure sensor 312 that detects the fuel pressure in the common rail 120
  • an electromagnetic clutch 313 that rotates or stops the fuel pump 116, and the engine speed of the diesel engine 70 (engine output shaft 74 Engine rotation sensor 314 for detecting the crank type camshaft position)
  • an injection setting device 315 for detecting and setting the number of fuel injections of the injector 115 (the number of fuel injections during the fuel injection period of one stroke)
  • an accelerator lever or accelerator An accelerator sensor 316 that detects the operating position of an accelerator operating tool (not shown) such as a pedal, a turbo booster sensor 317 that detects the pressure of the turbocharger 100, and an intake air temperature sensor 318 that detects the intake air temperature of the intake manifold 73.
  • each fuel injection valve 119 for four cylinders is connected to the output side of the fuel injection controller 311. That is, the high-pressure fuel stored in the common rail 120 is configured to be injected from the fuel injection valve 119 in a plurality of times during one stroke while controlling the fuel injection pressure, the fuel injection timing or the fuel injection period. Yes.
  • a potentiometer type lever sensor 433 for detecting the operation position of the operation lever 416, an exhaust temperature sensor 334 for detecting the exhaust gas temperature of the exhaust manifold 71, and an engine
  • the decel switch 335 as a selection operation means for selecting whether or not the auto decel control for reducing the rotational speed to the low idle rotational speed, the vehicle speed sensor 336 for detecting the vehicle speed (moving speed) of the excavator 400, and the clogged state of the DPF 60
  • a pressure sensor 66 to be detected is connected to each.
  • a notification device 337 that visually notifies various alarms and the like is electrically connected to the output side of the fuel injection controller 311.
  • Various blinking data of the notification device 337 is stored in advance in storage means (ROM) of the fuel injection controller 311.
  • the fuel injection controller 311 of the second embodiment also performs automatic low rotation control (auto-decel control) for reducing the engine speed to a predetermined first low speed (low idle speed) when a preset automatic low speed condition is satisfied.
  • auto-decel control automatic low rotation control
  • the engine speed is set to a second low speed higher than the low idle speed. It is set to maintain the number (high idle speed).
  • the automatic low rotation condition is satisfied when the working unit 410 (the boom 411 and the bucket 413) remains inactive for a predetermined time under the state where the decel switch 335 is permitted (entered). Is set to hold.
  • the automatic low rotation condition in the second embodiment is that the decel switch 335 is turned on and the working unit 410 (the boom 411 and the bucket 413) is continuously inactive for a predetermined time. It consists of two conditions.
  • the forced regeneration condition in the second embodiment is that the detected value Tex of the exhaust gas temperature is equal to or lower than a reproducible temperature (for example, about 300 ° C.), and the detected value P of the pressure sensor 66 and the reference pressure value Ps. This is composed of two conditions that the pressure difference ⁇ P is not less than the limit pressure difference value ⁇ P0.
  • step S21 If the condition is satisfied (step S21: YES), then the detected value Tex of the exhaust gas temperature is equal to or lower than the reproducible temperature (for example, about 300 ° C.), and the detected value P of the pressure sensor 66 and the reference pressure value It is determined whether or not the pressure difference ⁇ P with respect to Ps is greater than or equal to the limit pressure difference value ⁇ P0, that is, whether the forced regeneration condition is satisfied (step S22).
  • step S22 If the forced regeneration condition is not satisfied (step S22: NO), the process proceeds to step S27 to be described later to notify that the engine speed of the diesel engine 70 is reduced to the low idle speed (from the original speed). The notification is given over a predetermined time by the device 337 (details will be described later).
  • step S22: YES When the forced regeneration condition is satisfied (step S22: YES), particulate matter has accumulated to some extent on the soot filter 65, and the soot filter 65 regeneration operation is difficult to proceed.
  • step S23 After notifying over the predetermined time by the alerting
  • step S25 it is determined whether or not the above-described automatic low rotation condition is continuously satisfied (step S25). If it is satisfied (step S25: YES), whether or not the above-described forced regeneration condition is satisfied. Is determined (step S26). If the forced regeneration condition is not satisfied (step S26: NO), the accumulation state of the particulate matter in the soot filter 65 has been moderated to some extent, so the engine speed of the diesel engine 70 is reduced to the low idle speed.
  • the notification device 337 informs the effect to be performed for a predetermined time (step S27), and then adjusts the fuel injection state from each injector 115 to reduce the engine speed of the diesel engine 70 (from the high idle speed). The engine speed is reduced to the idling speed (step S28).
  • step S29 it is determined whether or not the automatic low rotation conditions similar to steps S21 and S25 are continuously satisfied. If satisfied (step S29: YES), the process returns to the above-described step S22. If the automatic low-rotation condition is not satisfied (step S29: NO), the notification device 337 notifies that the engine speed of the diesel engine 70 is restored to the original speed over a predetermined time (step S30). The state of fuel injection from each injector 115 is adjusted, and the engine speed of the diesel engine 70 is returned to the original speed before both conditions (automatic low speed condition and forced regeneration condition) are satisfied (step S31).
  • step S32 if the automatic low-rotation condition is not satisfied (step S25: NO), it is then determined whether the forced regeneration condition is satisfied (step S32).
  • the notification device 337 notifies the execution of the forced regeneration control of the DPF 60 for a predetermined time (step S33), and then the forced regeneration control of the DPF 60 is performed.
  • Execute Step S34). That is, the fuel injection state from each injector 115 is adjusted, the output of the diesel engine 70 is increased to increase the exhaust gas temperature, and the particulate matter in the soot filter 65 is forcibly burned.
  • step S35 if the forced regeneration condition is not satisfied (step S35: NO), the notification device 337 informs that the forced regeneration control of the DPF 60 is released over a predetermined time (step S36), and then the fuel from each injector 115.
  • the output of the diesel engine 70 is returned to the original output state before both conditions (automatic low rotation condition and forced regeneration condition) are established (step S37).
  • step S32 if the forced regeneration condition is not satisfied (step S32: NO), the notification device 337 notifies that the process proceeds to step S30 and the engine speed of the diesel engine 70 is returned to the original speed.
  • step S31 the fuel injection state from each injector 115 is adjusted, and the engine speed of the diesel engine 70 is determined based on the conditions before both conditions (automatic low speed condition and forced regeneration condition) are satisfied. It will return to the number of rotations.
  • FIGS. 17 to 23 show a third embodiment when the present invention is applied to a hydraulic excavator equipped with an electronic governor type diesel engine. Since the configuration of the hydraulic excavator 400 is basically the same as that of the second embodiment, the same reference numerals as those of the second embodiment are given and detailed description thereof is omitted.
  • an exhaust manifold 571 is disposed on the front side surface of the cylinder head 572 of the diesel engine 570.
  • An intake manifold 573 is disposed on the right side surface of the cylinder head 572.
  • the cylinder head 572 is mounted on a cylinder block 575 having an engine output shaft 574 (crankshaft) and a piston (not shown).
  • the left and right tip portions of the engine output shaft 574 protrude from the left and right side surfaces of the cylinder block 575, respectively.
  • a cooling fan 576 is provided on the right side surface of the cylinder block 575. A rotational force is transmitted from the front end side of the engine output shaft 574 to the cooling fan 576 via the V belt 577.
  • a flywheel housing 578 is fixed to the left side surface of the cylinder block 575.
  • a flywheel 579 is provided in the flywheel housing 578.
  • a flywheel 579 is pivotally supported on the left end side of the engine output shaft 574.
  • the working part of the hydraulic excavator is configured to take out the power of the diesel engine 570 via the flywheel 579.
  • an oil pan 581 is disposed on the lower surface of the cylinder block 575.
  • Lubricating oil is stored in the oil pan 581.
  • Lubricating oil in the oil pan 581 is sucked by an oil pump 656 disposed near the right side surface in the cylinder block 575, and is connected to the diesel engine via an oil filter 657 disposed on the right side surface of the cylinder block 575.
  • 570 is supplied to each lubrication part.
  • the lubricating oil supplied to each lubricating part is then returned to the oil pan 581.
  • Oil pump 656 is configured to be driven by rotation of engine output shaft 574.
  • a fuel injection device 658 for supplying fuel into the combustion chamber in the cylinder block 575 is attached to the rear side of the cylinder block 575 above the oil filter 657 (below the intake manifold 573).
  • the fuel injection device 658 includes an electronic governor and a fuel feed pump (both not shown) for adjusting the fuel injection amount. By driving the fuel feed pump, the fuel in the fuel tank is sent to the fuel injection device 658 via the fuel filter.
  • a cooling water pump 659 for cooling water lubrication is disposed coaxially with the fan shaft 620 of the cooling fan 576 on the right side surface side of the cylinder block 575.
  • the cooling water pump 659 is configured to be driven together with the cooling fan 576 by the rotation of the engine output shaft 574.
  • Cooling water in a radiator (not shown) mounted on the hydraulic excavator is supplied to the cooling water pump 659 via a thermostat case 660 provided on the top of the cooling water pump 659.
  • cooling water is supplied to a water cooling jacket (not shown) formed in the cylinder head 572 and the cylinder block 575 to cool the diesel engine 570.
  • the cooling water that has contributed to the cooling of the diesel engine 570 is returned to the radiator.
  • An alternator 661 is provided on the left side of the cooling water pump 659.
  • Engine leg mounting portions 582 are provided on the front and rear side surfaces of the cylinder block 575 and the front and rear side surfaces of the flywheel housing 578, respectively. Each engine leg mounting portion 582 is bolted to an engine leg body 583 having vibration-proof rubber.
  • the diesel engine 570 is supported in an anti-vibration manner on an engine support chassis 584 of a hydraulic excavator via each engine leg 583.
  • the inlet portion of the intake manifold 573 protrudes upward from the substantially central portion of the intake manifold 573.
  • the inlet portion of the intake manifold 573 is connected to an air cleaner (not shown) via an EGR main body case 592 constituting an EGR device 591 (exhaust gas recirculation device).
  • the fresh air (external air) sucked into the air cleaner is dust-removed and purified by the air cleaner, is sent to the intake manifold 573 via the EGR device 591, and is supplied to each cylinder of the diesel engine 570.
  • the EGR device 591 includes an EGR main body case 592 that mixes a part of exhaust gas of the diesel engine 570 and fresh air and supplies the mixture to the intake manifold 573, and an EGR main body case 592 to the air cleaner.
  • An intake throttle valve 593 that communicates with the exhaust manifold 571, a recirculation exhaust gas pipe 595 connected to the exhaust manifold 571 via an EGR cooler 594, and an EGR valve 596 that communicates the EGR main body case 592 with the recirculation exhaust gas pipe 595. ing.
  • the intake manifold 573 and the intake air intake throttle valve 593 for introducing fresh air are connected via the EGR main body case 592.
  • the EGR main body case 592 communicates with the outlet side of the recirculated exhaust gas pipe 595 extending from the exhaust manifold 571.
  • the EGR main body case 592 is formed in a long cylindrical shape.
  • the intake throttle valve 593 is bolted to one end of the EGR main body case 592 in the longitudinal direction.
  • a downward opening end formed in a part of the EGR main body case 592 opposite to the intake throttle valve 593 is detachably bolted to the inlet of the intake manifold 573.
  • the outlet side of the recirculation exhaust gas pipe 595 is connected to the EGR main body case 592 via the EGR valve 596.
  • the EGR valve 596 adjusts the supply amount of EGR gas to the EGR main body case 592 by adjusting the opening degree.
  • An opening end portion that protrudes obliquely downward from the outer peripheral surface of the EGR valve 596 is connected to a longitudinal midway portion of the EGR main body case 592.
  • the inlet side of the recirculated exhaust gas pipe 595 is connected to the lower surface side of the exhaust manifold 571 via an EGR cooler 594.
  • fresh air is supplied from the air cleaner through the intake throttle member 593 into the EGR main body case 592, while EGR gas (from the exhaust manifold 571 through the EGR valve 596 to the EGR main body case 592 ( A part of the exhaust gas discharged from the exhaust manifold 571) is supplied.
  • EGR gas from the exhaust manifold 571 through the EGR valve 596 to the EGR main body case 592 ( A part of the exhaust gas discharged from the exhaust manifold 571) is supplied.
  • the mixed gas in the EGR main body case 592 is supplied to the intake manifold 573.
  • the intake throttle valve 593 is for increasing the intake pressure of the diesel engine 570. That is, when particulate matter (soot) accumulates on the soot filter 65, the exhaust gas temperature from the diesel engine 570 is raised by increasing the intake pressure of the diesel engine 570 by controlling the operation of the intake throttle valve 593. Thus, the particulate matter (soot) deposited on the soot filter 65 burns. As a result, the particulate matter disappears and the soot filter 65 is regenerated. For this reason, the soot filter 65 can be regenerated by forcibly increasing the intake pressure by the intake throttle valve 593 even if the load is small and the temperature at which the exhaust gas tends to be low (particulate matter is easily deposited) is continuously performed. And the exhaust gas purification ability of the DPF 60 can be properly maintained. Further, a burner or the like for burning the soot deposited on the soot filter 65 becomes unnecessary.
  • one end side of the fixed leg 109 is fixed to the DPF casing 61 by welding.
  • the other end side of the fixed leg 109 is detachably fastened by a bolt 623 to a DPF attachment portion 622 formed on the upper surface of the flywheel housing 578.
  • the above-described DPF 60 is supported by the high-rigidity flywheel housing 578 via both fixed legs 109. Since the configuration of the DPF 60 is basically the same as that of the first and second embodiments, the same reference numerals as those of the first and second embodiments are assigned and detailed description thereof is omitted.
  • the outlet portion of the exhaust manifold 571 protrudes upward from the left end portion side of the exhaust manifold 571.
  • the outlet portion of the exhaust manifold 571 is detachably connected to the exhaust inlet side of the DPF 60 via an exhaust throttle device 626 for adjusting the exhaust pressure of the diesel engine 570.
  • Exhaust gas that has moved into the DPF 60 from the outlet of the exhaust manifold 571 is purified by the DPF 60, then moved from the exhaust discharge side to a tail pipe (not shown), and finally discharged outside the machine. Become.
  • the exhaust gas temperature needs to be equal to or higher than a predetermined temperature (approximately about 300 ° C.).
  • the third embodiment is configured such that the exhaust gas temperature from the diesel engine 570 can be adjusted by using the intake throttle valve 593.
  • the electronic governor controller 611 as the control means mounted on the hydraulic excavator also sets the engine speed to a predetermined first low speed (when the preset automatic low speed condition is satisfied).
  • the engine speed is set to be maintained at a second low speed (high idle speed) higher than the low idle speed, and has a central processing unit (CPU), storage means, and the like.
  • the electronic governor controller 611 includes the fuel injection device 658 of the diesel engine 570, the injection amount detection sensor 666 for detecting the fuel injection amount from the fuel injection device 658, and the operation position of the operation lever 416.
  • a decel switch 335 a vehicle speed sensor 336 for detecting the vehicle speed (moving speed) of the excavator 400, a pressure sensor 66 for detecting a clogged state of the DPF 60, a notification device 337 as a notification means, and an intake throttle capable of rotating forward and reverse A motor drive circuit 668 for the drive motor 667;
  • An angle sensor 669 for detecting a valve opening angle of the intake throttle valve 593 are electrically connected. Note that various blinking data of the notification device 337 is stored in advance in the
  • the travel sensor 432 detects that the travel lever 415 is in a fixed position (the travel device 402 is stopped) and is operated. It is determined whether or not the fixed position of the lever 416 (boom and bucket stop) is continuously detected by the lever sensor 433 for a predetermined time, that is, whether or not the automatic low rotation condition is satisfied (step S41).
  • step S41 If the condition is satisfied (step S41: YES), then, the detected value Tex of the exhaust gas temperature is equal to or lower than the reproducible temperature (for example, about 300 ° C.), and the detected value P of the pressure sensor 66 and the reference It is determined whether or not the pressure difference ⁇ P with respect to the pressure value Ps is greater than or equal to the limit pressure difference value ⁇ P0, that is, whether the forced regeneration condition is satisfied (step S42). ).
  • step S42 If the forced regeneration condition is not satisfied (step S42: NO), the process proceeds to step S37 to be described later to notify that the engine speed of the diesel engine 570 is reduced to the low idle speed (from the original speed). The notification is given over a predetermined time by the device 337 (details will be described later).
  • step S42: YES When the forced regeneration condition is satisfied (step S42: YES), particulate matter has accumulated to some extent on the soot filter 65, and the soot filter 65 regeneration operation is difficult to proceed.
  • step S43 After notifying over the predetermined time by the alerting device 337 that the engine speed of the diesel engine 570 is maintained at the high idle speed (step S43), the lowering of the exhaust gas temperature is suppressed and the DPF 60 In order to prevent the clogging state from deteriorating, the fuel injection state from the fuel injection device 658 is adjusted to maintain the engine speed of the diesel engine 570 at a high idle speed higher than the low idle speed (step S44). ).
  • step S45 it is determined whether or not the above-described automatic low rotation condition is continuously satisfied (step S45). If it is satisfied (step S45: YES), whether or not the above-described forced regeneration condition is satisfied. Is determined (step S46). If the forced regeneration condition is not satisfied (step S46: NO), the accumulation state of the particulate matter in the soot filter 65 is moderated to some extent, so the engine speed of the diesel engine 570 is reduced to the low idle speed.
  • the notification device 337 informs the effect to be performed for a predetermined time (step S47), and then adjusts the fuel injection state from the fuel injection device 658 to adjust the engine speed of the diesel engine 570 (from the quasi-low speed). The rotational speed is reduced to the low idle speed (step S48).
  • step S49 it is determined whether or not the same automatic low rotation conditions as those in steps S41 and S45 are continuously satisfied. If satisfied (step S49: YES), the process returns to step S42 described above. If the automatic low-rotation condition is not satisfied (step S49: NO), the notification device 337 notifies that the engine speed of the diesel engine 570 is restored to the original speed over a predetermined time (step S50). The state of fuel injection from the fuel injection device 658 is adjusted, and the engine speed of the diesel engine 570 is returned to the original speed before both conditions (automatic low speed condition and forced regeneration condition) are satisfied (step S51).
  • step S45 if the automatic low rotation condition is not satisfied (step S45: NO), it is then determined whether the forced regeneration condition is satisfied (step S52).
  • the notification device 337 informs the execution of the forced regeneration control of the DPF 60 for a predetermined time (step S53), and then the engine rotation of the diesel engine 570 is performed.
  • the number is returned to the original number of rotations before both conditions (automatic low rotation condition and forced regeneration condition) are satisfied, and then forced regeneration control of the DPF 60 is executed (step S54). That is, the intake throttle valve 593 is closed by the drive of the intake throttle drive motor 667.
  • step S55 the notification device 337 informs that the forced regeneration control of the DPF 60 is to be released for a predetermined time (step S56), and then the intake throttle drive motor 667
  • the intake throttle valve 593 is opened by driving, and the valve opening / closing angle of the intake throttle valve 593 is returned to the original state before the closing operation (step S57).
  • the load on the diesel engine 570 decreases, and the output (fuel injection amount) of the diesel engine 570 decreases in order to maintain the engine speed.
  • step S52 if the forced regeneration condition is not satisfied (step S52: NO), the notification device 337 informs that the process proceeds to step S50 and the engine speed of the diesel engine 570 is returned to the original speed.
  • step S51 the fuel injection state from the fuel injection device 658 is adjusted, and the engine speed of the diesel engine 570 is set to the value before both conditions (automatic low speed condition and forced regeneration condition) are satisfied. The original rotational speed is restored.
  • FIGS. 24 and 25 show a fourth embodiment when the present invention is applied to a hydraulic excavator equipped with an electronic governor type diesel engine.
  • the configurations of the hydraulic excavator 400 and the diesel engine 570 are basically the same as those of the third embodiment, and therefore, the same reference numerals as those of the third embodiment are given and detailed descriptions thereof are omitted.
  • the electronic governor controller 611 as a control means mounted on the hydraulic excavator turns on the forced low rotation switch 35 (first pressing operation) (forced low rotation)
  • the forced low speed control one-touch decel control
  • the engine speed is set to a second low rotational speed that is higher than the low idle rotational speed in order to suppress a decrease in the exhaust gas temperature. It is set to maintain (high idle speed).
  • the electronic governor controller 611 has a central processing unit (CPU), storage means, and the like (not shown).
  • the electronic governor controller 611 includes the fuel injection device 658 of the diesel engine 570, the injection amount detection sensor 666 for detecting the fuel injection amount from the fuel injection device 658, and the operation position of the travel lever 415.
  • a sensor 336, a pressure sensor 66 for detecting a clogged state of the DPF 60, and A notification device 337 serving as a knowledge unit, a motor drive circuit 668 for forward and reverse rotatable intake throttle driving motor 667, an angle sensor 669 for detecting a valve opening angle of the intake throttle valve 593 are electrically connected. Note that various blinking data of the notification device 337 is stored in advance in the storage unit of the electronic governor controller 611.
  • Step S61 when the forced low rotation switch 35 is pressed for the first time, the position of the traveling lever 415 is fixed (the traveling device 402 is stopped) by the traveling sensor 432. It is determined whether the position of the operation lever 416 is fixed (the boom 411 and the bucket 413 are stopped) is detected by the lever sensor 433, that is, whether the forced low-rotation condition is satisfied. (Step S61).
  • step S61 If the condition is satisfied (step S61: YES), then the detected value Tex of the exhaust gas temperature is equal to or lower than the reproducible temperature (for example, about 300 ° C.), and the detected value P of the pressure sensor 66 and the reference pressure value It is determined whether or not the pressure difference ⁇ P with respect to Ps is greater than or equal to the limit pressure difference value ⁇ P0, that is, whether the forced regeneration condition is satisfied (step S62).
  • step S62: NO If the forced regeneration condition is not satisfied (step S62: NO), the process proceeds to step S67 described later to notify that the engine speed of the diesel engine 570 is reduced to the low idle speed (from the original speed). The notification is given over a predetermined time by the device 337 (details will be described later).
  • step S62: YES When the forced regeneration condition is satisfied (step S62: YES), particulate matter has accumulated to some extent on the soot filter 65, and the soot filter 65 regeneration operation is difficult to proceed.
  • step S63 After notifying over the predetermined time by the alerting device 337 that the engine speed of the diesel engine 570 is maintained at the high idle speed (step S63), the lowering of the exhaust gas temperature is suppressed and the DPF 60 In order to prevent deterioration of the clogging state, the fuel injection state from the fuel injection device 658 is adjusted to maintain the engine speed of the diesel engine 570 at a high idle speed higher than the low idle speed (step S64). ).
  • step S65 it is determined whether or not the second forced low-rotation switch 35 has been pressed or the travel lever 415 or the operation lever 416 is operated, that is, whether or not the forced low-rotation condition has been released ( If it is canceled (step S65: YES), it is determined whether or not the above-mentioned forced regeneration condition is satisfied (step S66). If the forced regeneration condition is not satisfied (step S66: NO), the accumulation state of the particulate matter in the soot filter 65 is moderated to some extent, so that the engine speed of the diesel engine 570 is reduced to the low idle speed.
  • the notification device 337 informs the effect to be performed for a predetermined time (step S67), and then adjusts the fuel injection state from the fuel injection device 658 to adjust the engine speed of the diesel engine 570 (from the high idle speed). The rotational speed is reduced to the low idle speed (step S68).
  • step S69: NO it is determined whether or not the second forced low-rotation switch 35 has been pressed, or whether or not the travel lever 415 or the operation lever 416 has been operated (whether the forced low-rotation condition has not been released) (step). If not canceled (step S69: NO), the process returns to the above-described step S62. If the forced low-rotation condition is canceled (step S69: YES), the notification device 337 notifies that the engine speed of the diesel engine 570 is restored to the original speed over a predetermined time (step S70). Then, by adjusting the fuel injection state from the fuel injection device 658, the engine speed of the diesel engine 570 is returned to the original speed before both conditions (forced low speed condition and forced regeneration condition) are satisfied (step S71). .
  • step S65 whether or not the second forced low-rotation switch 35 has been pressed or the travel lever 415 or the operation lever 416 has been operated (whether or not the forced low-rotation condition has been released) is not satisfied. If so (step S65: NO), it is then determined whether a forced regeneration condition is satisfied (step S72). When the forced regeneration condition is satisfied (step S72: YES), the notification device 337 notifies the execution of the forced regeneration control of the DPF 60 over a predetermined time (step S73), and then the engine rotation of the diesel engine 570 is performed. After the number is returned to the original rotational speed before both conditions (forced low speed condition and forced regeneration condition) are satisfied, the forced regeneration control of the DPF 60 is executed (step S74).
  • the intake throttle valve 593 is closed by the drive of the intake throttle drive motor 667. Then, the load on the diesel engine 570 increases, the output (fuel injection amount) of the diesel engine 570 increases to maintain the engine speed, and as a result, the exhaust gas temperature from the diesel engine 570 increases. Then, the particulate matter in the soot filter 65 is forcibly burned.
  • step S75 if the forced regeneration condition is not satisfied (step S75: NO), the notification device 337 informs that the forced regeneration control of the DPF 60 is released over a predetermined time (step S76), and then the intake throttle drive motor 667 The intake throttle valve 593 is opened by driving, and the valve opening / closing angle of the intake throttle valve 593 is returned to the original state before the closing operation (step S77). As a result, the load on the diesel engine 570 decreases, and the output (fuel injection amount) of the diesel engine 570 decreases in order to maintain the engine speed.
  • step S72 if the forced regeneration condition is not satisfied (step S72: NO), the notification device 337 informs that the process proceeds to step S70 and the engine speed of the diesel engine 570 is returned to the original speed.
  • step S71 the fuel injection state from the fuel injection device 658 is adjusted, and the engine speed of the diesel engine 570 is set to the value before both conditions (automatic low speed condition and forced regeneration condition) are established. The original rotational speed is restored.
  • FIG. 26 and FIG. 27 show a fifth embodiment in the case where the combine is caused to execute forced low rotation control.
  • the basic structure of the fifth embodiment is the same as that of the first embodiment, but differs from the first embodiment in that a forced low-rotation switch 35 is used instead of the decel switch 335 (FIG. 26). reference).
  • the forced low-rotation switch 35 is a return-type push switch (also referred to as a momentary switch).
  • the engine speed is forcibly decreased to a low idle speed by the first pressing operation, and the engine speed is decreased by the second pressing operation. Is set from the low idle speed to the original speed before the decrease.
  • the fuel injection controller 311 of the fifth embodiment performs forced low rotation control when the forced low rotation switch 35 is turned on (first pressing operation) regardless of whether or not forced regeneration control is necessary. Is executed preferentially, the execution of the forced regeneration control is prohibited, and the forced low rotation switch 35 is pushed again, or the main transmission lever 16 or the work clutch lever 18 or the like for the combine is operated,
  • the forced low rotation control is configured to stop.
  • the fuel injection controller 311 stops the forced low rotation control the clogged state in the DPF 60 reaches a preset state (a state in which the DPF 60 is clogged so as to reduce the output of the diesel engine 70). If so, the forced regeneration control is executed, and if the preset state has not been reached, the engine speed is returned from the low idle speed to the original speed before the decrease.
  • the forced low rotation control (one-touch decel control) is supplied from each injector 115 by electronically controlling each fuel injection valve 119 when the forced low rotation switch 35 is turned on (first pressing operation).
  • the fuel injection state injection pressure, injection timing, injection period, etc.
  • the engine speed is automatically reduced to a low idle speed (the output of the diesel engine 70 is reduced).
  • the forced regeneration control the diesel engine 70 is controlled by electronically controlling each fuel injection valve 119 based on detection information from the pressure sensor 66 and the exhaust temperature sensor 334 to adjust the injection state of the fuel supplied from each injector 115.
  • the exhaust gas temperature is increased to increase the exhaust gas temperature, and the particulate matter in the DPF 60 (soot filter 65) is forcibly burned.
  • the forced regeneration control for increasing the output of the diesel engine 70 cannot be performed repeatedly during the execution of the forced low speed control for decreasing the output of the diesel engine 70.
  • the two fuel injection controls force low-rotation control and forced regeneration control
  • the two fuel injection controls that require conflicting operations with the diesel engine 70 can coexist and can be executed efficiently without overlapping each other. Therefore, it is possible to achieve both fuel economy saving and exhaust gas purification by the combine. It eliminates the operator's discomfort due to sudden changes in engine sound.
  • the fuel injection controller 311 of the fifth embodiment operates the main transmission lever 16 or the work clutch lever 18 for the combine to stop the forced low rotation control
  • the clogged state in the DPF 60 is set in advance. If it has reached (the state in which the DPF 60 is clogged to the extent that the output of the diesel engine 70 is reduced), the forced regeneration control is executed. Since it is configured to return to the original rotation speed before the decrease from the number, the operator forgets the return operation from the forced low rotation control (second pressing operation of the forced low rotation switch in the fifth embodiment).
  • the diesel engine only needs to be operated to start the combine and to drive the working unit (threshing device 5 etc.). The output of 70 would be easily ensured. Therefore, when returning from forced low-speed control, the combine engine is started at a low idle speed or the working unit is driven, so that the problem that the diesel engine 70 suddenly stops due to insufficient output or overload is ensured. Can be prevented.
  • the state in which the clogged state in the DPF 60 is set in advance during the execution of the forced low rotation control (the state in which the DPF 60 is clogged to the extent that the output of the diesel engine 70 is reduced).
  • the notification device 337 notifies that the forced regeneration of the DPF 60 (soot filter 65) is necessary. For this reason, even during forced low-rotation control in which forced regeneration control is prohibited, it is possible to grasp whether or not the DPF 60 (soot filter 65) is clogged and to alert the operator to the clogging of the DPF 60. Since forced low rotation control is executed, troubles such as high clogging of the DPF 60 and failure can be avoided.
  • step S101: YES when the forced low rotation switch 35 is pressed for the first time (step S101: YES), the neutral position operation of the main transmission lever 16 (stop of the traveling machine body 1) is performed at the vehicle speed. If detected by the sensor 336 (step S102: YES), forced low rotation control is executed (step S107) on condition that the threshing device 5 and the grain discharge auger 8 are stopped (steps S103 to S106). That is, the fuel injection state from each injector 115 is adjusted to reduce the engine speed of the diesel engine 70 to a low idle speed.
  • the stop of the threshing device 5 is determined by detecting the cutting operation of the work clutch lever 18 by the work clutch sensor 331 (step S103), and the stop of the grain discharge auger 8 is detected by the grain discharge sensor 332. (Step S105). If both are driven, the actuator is forcibly stopped by driving an actuator (not shown) (steps S104 and S106).
  • the detected value Tex of the exhaust gas temperature is equal to or lower than a reproducible temperature (for example, about 300 ° C.), and the pressure difference ⁇ P between the detected value P of the pressure sensor 66 and the reference pressure value Ps is the limit pressure difference value ⁇ P0. It is determined whether or not this is the case (step S108). When the condition is not satisfied (step S108: NO), the particulate matter is not deposited so much on the soot filter 65, so that the second forced low rotation switch 35 is pressed or the main transmission lever is operated. 16 or the operation clutch lever 18 or the like is determined (step S109).
  • step S109 If the condition is satisfied (step S109: YES), the forced low speed control is stopped, the fuel injection state from each injector 115 is adjusted, and the engine speed of the diesel engine 70 is changed from the low idle speed. The original rotational speed before the decrease is returned (step S110).
  • step S108 if the above-mentioned conditions are satisfied (step S108: YES), not only particulate matter is deposited on the soot filter 65, but also the soot filter 65 regeneration operation does not proceed. Then, after notifying the DPF 60 (the soot filter 65) that the forced regeneration is necessary for a predetermined time by the notification device 337 (step S111), is the forced low rotation switch 35 pressed a second time? Alternatively, it is determined whether or not the main transmission lever 16 or the work clutch lever 18 has been operated (step S112). If the condition is satisfied (step S112: YES), the forced low rotation control is stopped and the forced regeneration control of the DPF 60 is executed (step S113).
  • step S114 when the detected value Tex of the exhaust gas temperature exceeds the reproducible temperature and the pressure difference ⁇ P becomes less than the limit pressure difference value ⁇ P0 (step S114), the fuel injection state from each injector 115 is adjusted, and the diesel The engine speed of the engine 70 is returned from the set speed to the original speed before the decrease (step S115).
  • the engine 70 as a power source, the exhaust gas purifying filter device 60 disposed in the exhaust path of the engine 70, the clogged state of the filter device 60, and the driving of the engine 70
  • the engine device includes a control unit 311 that performs forced regeneration control of the filter device 60 based on the state (exhaust gas temperature), and the engine speed is reduced to a predetermined low speed (low idle speed).
  • Compulsory low-rotation operation means 35 for executing forced low-rotation control for forcibly decreasing is provided, and the control means 311 controls the forced low-rotation operation means 35 regardless of whether or not the forced regeneration control is necessary.
  • the forced low rotation control Since the forced low rotation control is preferentially executed when an on / off operation is performed, the forced low rotation control for reducing the output of the engine 70 is executed. During it has never performed in duplicate forced regeneration control to raise the output of the engine 70. For this reason, the two fuel injection controls (forced low-rotation control and forced regeneration control) that require the engine 70 to operate in conflict with each other can coexist, and each control can be executed efficiently without overlapping. Therefore, there is an effect that it is possible to achieve both fuel economy saving and exhaust gas purification by the combine. In addition, there is an advantage that the operator feels uncomfortable due to a sudden change in engine sound.
  • the control means 311 stops the forced low rotation control when operating the moving system operating means 16 or the working system operating means 18 for the work machine on which the engine device is mounted.
  • the filter device If the clogged state in 60 reaches a preset state (a state in which the filter device 60 is clogged so as to reduce the output of the engine 70), the forced regeneration control is executed, while the filter device 60 If the internal clogging state does not reach a preset state, the engine speed is returned to the original speed before the reduction, so that the return operation from the forced low speed control (fifth operation)
  • a preset state a state in which the filter device 60 is clogged so as to reduce the output of the engine 70
  • control means 311 is configured to perform the control means when the clogged state in the filter device 60 has reached a preset state (limit pressure difference value ⁇ P0 or more) during execution of the forced low rotation control. Since the notification means 337 connected to 311 is configured to notify, whether or not the filter device 60 is clogged even during execution of forced low-rotation control prohibiting forced regeneration control. And the operator can be alerted to the clogging of the filter device 60. Since the forced low-rotation control is executed, there is an advantage that troubles such as clogging of the filter device 60 and failure may be avoided.
  • FIGS. 28 and 29 show a sixth embodiment in the case where the excavator 400 performs forced low rotation control.
  • the basic structure of the sixth embodiment is the same as that of the second embodiment, but in this case as well, it differs from the second embodiment in that a forced low-rotation switch 35 is used instead of the decel switch 335. (See FIG. 28).
  • the fuel injection controller 311 of the sixth embodiment also preferentially executes forced low rotation control when the forced low rotation switch 35 is turned on (first pressing operation) regardless of whether or not forced regeneration control is necessary.
  • the forced low rotation control is prohibited, and the forced low rotation switch 35 is pushed again, or the forced low rotation control is stopped when the travel lever 415 or the operation lever 416 is operated. Yes.
  • the fuel injection controller 311 stops the forced low rotation control the clogged state in the DPF 60 reaches a preset state (a state in which the DPF 60 is clogged so as to reduce the output of the diesel engine 70). If so, the forced regeneration control is executed, and if the preset state has not been reached, the engine speed is returned from the low idle speed to the original speed before the decrease.
  • step S131: YES when the forced low rotation switch 35 is pressed for the first time (step S131: YES), the position of the travel lever 415 is fixed (the travel device 402 is stopped). If it is detected at 432 and the position fixing state of the operation lever 416 (stop of the boom 411 and the bucket 413) is detected by the lever sensor 433 (step S132), forced low rotation control is executed (step S132). S133). That is, the fuel injection state from each injector 115 is adjusted to reduce the engine speed of the diesel engine 70 to a low idle speed.
  • step S134 whether or not the detected value Tex of the exhaust gas temperature is equal to or lower than a reproducible temperature (for example, about 300 ° C.), and the pressure difference ⁇ P between the detected value P of the pressure sensor 66 and the reference pressure value Ps is greater than or equal to the limit pressure difference value ⁇ P0. Is determined (step S134). If the condition is not satisfied (step S134: NO), the particulate matter has not accumulated so much in the soot filter 65, so that the second forced low rotation switch 35 is pushed or the travel lever 415 is operated. Alternatively, it is determined whether or not the operation lever 416 or the like has been operated (step S135).
  • step S135 If the condition is satisfied (step S135: YES), the forced low speed control is stopped, the fuel injection state from each injector 115 is adjusted, and the engine speed of the diesel engine 70 is changed from the low idle speed. The original rotational speed before the decrease is returned (step S136).
  • step S134 if the above-described conditions are satisfied (step S134: YES), not only particulate matter is deposited on the soot filter 65, but also the soot filter 65 regeneration operation does not proceed. Then, after notifying the DPF 60 (soot filter 65) that forced regeneration is necessary for a predetermined time by the notification device 337 (step S137), whether the forced low rotation switch 35 has been pressed for the second time. Alternatively, it is determined whether or not the travel lever 415 or the operation lever 416 has been operated (step S138). If the condition is satisfied (step S138: YES), the forced low rotation control is stopped and the forced regeneration control of the DPF 60 is executed (step S139).
  • step S140 when the detected value Tex of the exhaust gas temperature exceeds the reproducible temperature and the pressure difference ⁇ P becomes less than the limit pressure difference value ⁇ P0 (step S140), the fuel injection state from each injector 115 is adjusted, and the diesel The engine rotational speed of the engine 70 is returned from the set rotational speed to the original rotational speed before the decrease (step S141).
  • FIGS. 30 and 31 show a seventh embodiment in the case where a forced low rotation control is executed by a hydraulic excavator 400 equipped with an electronic governor type diesel engine.
  • the basic structure of the seventh embodiment is the same as that of the third embodiment, but in this case as well, it differs from the third embodiment in that a forced low-rotation switch 35 is used instead of the decel switch 335. (See FIG. 30).
  • the electronic governor controller 611 of the seventh embodiment also operates when the forced low rotation switch 35 is turned on (first pressing operation) regardless of whether or not forced regeneration control is necessary.
  • the forced low rotation control is preferentially executed, the forced regeneration control is prohibited from being executed, and the forced low rotation switch 35 is pushed once again, or when the travel lever 415 or the operation lever 416 is operated, the forced low rotation control is forced.
  • the low rotation control is configured to stop.
  • the electronic governor controller 611 stops the forced low rotation control the clogged state in the DPF 60 reaches a preset state (a state in which the DPF 60 is clogged so as to reduce the output of the diesel engine 570). If so, the forced regeneration control is executed, and if the preset state has not been reached, the engine speed is returned from the low idle speed to the original speed before the decrease.
  • step S151 when the forced low rotation switch 35 is pressed for the first time (step S151: YES), the travel lever 415 is in a fixed position (the travel device 402 is stopped). If the sensor 432 detects that the position of the operation lever 416 is fixed (the boom 411, the bucket 413, etc. are stopped) (step S152), forced low rotation control is executed (step S152). Step S153). That is, the fuel injection state from fuel injection device 658 is adjusted to reduce the engine speed of diesel engine 570 to a low idle speed.
  • step S154 whether or not the detected value Tex of the exhaust gas temperature is equal to or lower than a reproducible temperature (for example, about 300 ° C.), and the pressure difference ⁇ P between the detected value P of the pressure sensor 66 and the reference pressure value Ps is greater than or equal to the limit pressure difference value ⁇ P0. Is determined (step S154).
  • step S154: NO since the particulate matter is not so much accumulated on the soot filter 65, the second forced low rotation switch 35 is pushed or the traveling lever 415 is operated.
  • step S155 If the condition is satisfied (step S155: YES), the forced low speed control is stopped, the fuel injection state from the fuel injection device 658 is adjusted, and the engine speed of the diesel engine 570 is set to the low idle speed. To the original rotational speed before the decrease (step S156).
  • step S154 if the above-described conditions are satisfied (step S154: YES), not only particulate matter is deposited on the soot filter 65, but also the soot filter 65 regeneration operation does not proceed. Then, after notifying the DPF 60 (soot filter 65) that the forced regeneration is necessary for a predetermined time by the notification device 337 (step S157), whether the forced low rotation switch 35 has been pressed for the second time. Alternatively, it is determined whether or not the travel lever 415 or the operation lever 416 is operated (step S158).
  • step S158 If the condition is satisfied (step S158: YES), the forced low speed control is stopped, the engine speed of the diesel engine 570 is returned to the original speed before the decrease, and then the forced regeneration control of the DPF 60 is performed. It executes (step S159).
  • the intake throttle valve 593 is closed by the drive of the intake throttle drive motor 667. Then, the load on the diesel engine 570 increases, the output (fuel injection amount) of the diesel engine 570 increases to maintain the engine speed, and as a result, the exhaust gas temperature from the diesel engine 570 increases. Then, the particulate matter in the soot filter 65 is forcibly burned.
  • step S160 when the detected value Tex of the exhaust gas temperature exceeds the reproducible temperature and the pressure difference ⁇ P becomes less than the limit pressure difference value ⁇ P0 (step S160), the intake throttle valve 593 is opened by driving the intake throttle drive motor 667. The valve is operated to return the valve opening / closing angle of the intake throttle valve 593 to the original state before the closing operation (step S161). As a result, the load on the diesel engine 570 decreases, and the output (fuel injection amount) of the diesel engine 570 decreases in order to maintain the engine speed.
  • the present invention is not limited to the above-described embodiment, and can be embodied in various forms.
  • the engine of the working machine to which the present invention is applied may be a common rail type or an electronic governor type.
  • the present invention can be applied to automatic low rotation control (automatic decel control) and forced low rotation control (one-touch decel control). That is, the low rotation control of the present invention is a concept that includes both automatic low rotation control (auto-decel control) and forced low-rotation control (one-touch decel control).
  • the configuration for the forced regeneration control is not limited to the type that controls the fuel injection amount and the exhaust throttle device, and a dummy load using hydraulic equipment or the like may be applied to the engine or the intake throttle may be controlled. .
  • the point is that the exhaust gas temperature may be forcibly increased.
  • the present invention can be applied not only to agricultural machines (combiners, tractors, etc.) and construction machines (hydraulic excavators, forklifts, etc.) but also to generators, ships, etc.
  • the work machine is used as a general term for agricultural machines, construction machines, generators, ships, and the like.
  • the structure of each part is not limited to embodiment of illustration, A various change is possible in the range which does not deviate from the meaning of this invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

 動力源としてのエンジン70と、前記エンジン70の排気経路に配置された排気ガス浄化用のフィルタ装置60と、予め設定された低回転条件の成立時にエンジン回転数を所定の第1低回転数まで低下させる低回転制御を実行する制御手段311とを備えているエンジン装置において、前記制御手段311は、前記低回転条件と予め設定された強制再生条件との両方が成立したときに、排気ガス温度の低下を抑制するために、エンジン回転数を前記第1低回転数より高い第2低回転数に維持するように構成する。

Description

エンジン装置
 本願発明は、作業機(例えば農作業機、建設機械、船舶等)に搭載されるエンジン装置に関するものである。
 従来、コンバインや油圧ショベルといった作業機においては、所定の条件下でエンジン回転数をローアイドル回転数まで自動的に低下させて低燃費化及び低騒音化を図る、いわゆる自動低回転制御(オートデセル制御)の技術が採用されている(特許文献1及び2等参照)。例えば特許文献1には、コンバインにおいて、アイドリング選択スイッチを入り操作した状態のもとで、脱穀装置への動力伝達を継断する脱穀クラッチが切り状態であると共に、走行機体の変速操作を行うための主変速レバーが中立状態になると、エンジン回転数をローアイドル回転数まで低下させることが開示されている。特許文献2には、油圧ショベルの作業部(バケット等)を操作する操作レバーを所定時間継続して操作しない場合に、エンジン回転数をローアイドル回転数まで低下させることが開示されている。
 また、作業機においては、操縦部内に配置された押しボタン式スイッチの押下操作にて、エンジン回転数をローアイドル回転数まで自動的に低下させて低燃費化及び低騒音化を図る、いわゆる強制低回転制御(ワンタッチデセル制御)の技術を採用したものもある(特許文献3等参照)。
 他方、ディーゼルエンジンに関する高次の排ガス規制が適用されるのに伴い、ディーゼルエンジンが搭載される作業機に、排気ガス中の大気汚染物質を浄化処理する排気ガス浄化装置を搭載することが要望されつつある。排気ガス浄化装置としては例えばDPF(ディーゼルパティキュレートフィルタ)が知られている(特許文献4及び5参照)。DPFでは、経年使用にて排気ガス中の粒子状物質がスートフィルタに堆積するため、ディーゼルエンジンの駆動時に粒子状物質を燃焼除去してスートフィルタを再生させている。よく知られているように、スートフィルタ再生動作は、排気ガス温度が再生可能温度(例えば300℃程度)以上で起こるものである。
 排気ガス温度が再生可能温度未満である状態が続くと、粒子状物質がスートフィルタ内に大量に堆積する結果、スートフィルタが目詰まりして排圧が上昇し、エンジントラブルを招来することになる。かかる問題を解消する方策の一例としては、粒子状物質堆積量が所定量に達した場合に、ディーゼルエンジンの出力(回転数や負荷)を高めて、DPFに導かれる排気ガス温度を強制的に上昇させ、DPFに捕集された粒子状物質を燃焼除去する強制再生制御が知られている。
特開平9-25838号公報 特開平5-312082号公報 特開平9-88650号公報 特開2000-145430号公報 特開2003-27922号公報
 前述の通り、自動低回転制御(オートデセル制御)及び強制低回転制御(ワンタッチデセル制御)はエンジンの出力を下げる制御であるのに対して、強制再生制御はエンジンの出力を上げる制御であり、両者は相反する関係にある。しかし、作業機にDPFを搭載する場合は、各低回転制御と強制再生制御とを両立させる必要がある。本願発明はこのような点に鑑みてなされたものであり、低回転制御と強制再生制御との両方を実行できるエンジン装置を提供することを目的とするものである。
 請求項1の発明は、動力源としてのエンジンと、前記エンジンの排気経路に配置された排気ガス浄化用のフィルタ装置と、予め設定された低回転条件の成立時にエンジン回転数を所定の第1低回転数まで低下させる低回転制御を実行する制御手段とを備えているエンジン装置であって、前記制御手段は、前記低回転条件と予め設定された強制再生条件との両方が成立したときに、排気ガス温度の低下を抑制するために、エンジン回転数を前記第1低回転数より高い第2低回転数に維持するように構成されているというものである。
 請求項2の発明は、請求項1に記載したエンジン装置において、前記制御手段は、前記エンジン回転数を前記第2低回転数にしてから、前記強制再生条件だけが解消したときに、前記エンジン回転数を前記第1低回転数まで低下させるように構成されているというものである。
 請求項3の発明は、請求項1又は2に記載したエンジン装置において、前記制御手段は、前記エンジン回転数を前記第2低回転数にしてから、前記低回転条件及び前記強制再生条件の両方が解消したときに、前記エンジン回転数を前記両条件成立前の元の回転数に戻すように構成されているというものである。
 請求項4の発明は、動力源としてのエンジンと、前記エンジンの排気経路に配置された排気ガス浄化用のフィルタ装置と、前記フィルタ装置の詰り状態及び前記エンジンの駆動状態に基づいて前記フィルタ装置の強制再生制御を実行する制御手段とを備えているエンジン装置であって、エンジン回転数を所定の低回転数まで強制的に低下させる強制低回転制御を実行するための強制低回転操作手段を備えており、前記制御手段は、前記強制再生制御の要否に拘らず、前記強制低回転操作手段を入り操作したときに前記強制低回転制御を優先して実行するように構成されているというものである。
 請求項5の発明は、請求項4に記載したエンジン装置において、前記制御手段は、前記エンジン装置が搭載される作業機に対する移動系操作手段又は作業系操作手段を操作したときに、前記強制低回転制御を停止し、このときに前記フィルタ装置内の詰り状態が予め設定された状態に達していれば、前記強制再生制御を実行する一方、前記フィルタ装置内の詰り状態が予め設定された状態に達していなければ、前記エンジン回転数を低下前の元の回転数に戻すように構成されているというものである。
 請求項6の発明は、請求項4又は5に記載したエンジン装置において、前記制御手段は、前記強制低回転制御の実行中において前記フィルタ装置内の詰り状態が予め設定された状態に達しているときに、前記制御手段に接続された報知手段にて報知するように構成されているというものである。
 請求項1の発明によると、動力源としてのエンジンと、前記エンジンの排気経路に配置された排気ガス浄化用のフィルタ装置と、予め設定された低回転条件の成立時にエンジン回転数を所定の第1低回転数まで低下させる低回転制御を実行する制御手段とを備えているエンジン装置であって、前記制御手段は、前記低回転条件と予め設定された強制再生条件との両方が成立したときに、排気ガス温度の低下を抑制するために、エンジン回転数を前記第1低回転数より高い第2低回転数に維持するように構成されているから、前記エンジンの出力を下げる低回転制御の実行中であっても、前記フィルタ装置がある程度詰りつつあれば、エンジン回転数を第1低回転数(ローアイドル回転数)より高い第2低回転数(ハイアイドル回転数)に維持することになる。このため、低回転制御による燃費の節約や騒音の抑制を図りつつ、排気ガス温度の低下を抑制して前記フィルタ装置の詰り状態の悪化を防止できる。つまり、低回転制御の機能を損なわない範囲で、前記フィルタ装置の詰りの進行を抑制でき、従って、作業機での燃費節約と排気ガス浄化という2つの利益を享受することが可能になる。低回転制御を実行したために、前記フィルタ装置の詰りが高じて故障するといったトラブルを回避できるという効果を奏する。
 また、請求項2の発明によると、請求項1に記載したエンジン装置において、前記制御手段は、前記エンジン回転数を前記第2低回転数にしてから、前記強制再生条件だけが解消したときに、前記エンジン回転数を前記第1低回転数まで低下させるように構成されているから、低回転制御による燃費低減効果をより一層向上できるという効果を奏する。
 更に、請求項3の発明によると、請求項1又は2に記載したエンジン装置において、前記制御手段は、前記エンジン回転数を前記第2低回転数にしてから、前記低回転条件及び前記強制再生条件の両方が解消したときに、前記エンジン回転数を前記両条件成立前の元の回転数に戻すように構成されているから、作業機を発進させる操作や、作業部を駆動させる操作をするだけで、前記エンジンの出力を容易に確保できることになる。従って、低回転制御から復帰する際に、前記第1低回転数(ローアイドル回転数)にて作業機を発進させたり作業部を駆動させたりして、前記エンジンが出力不足又は過負荷で急停止するといった不具合を確実に防止できるという効果を奏する。
 請求項4の発明によると、動力源としてのエンジンと、前記エンジンの排気経路に配置された排気ガス浄化用のフィルタ装置と、前記フィルタ装置の詰り状態及び前記エンジンの駆動状態に基づいて前記フィルタ装置の強制再生制御を実行する制御手段とを備えているエンジン装置であって、エンジン回転数を所定の低回転数まで強制的に低下させる強制低回転制御を実行するための強制低回転操作手段を備えており、前記制御手段は、前記強制再生制御の要否に拘らず、前記強制低回転操作手段を入り操作したときに前記強制低回転制御を優先して実行するように構成されているから、前記エンジンの出力を下げる強制低回転制御の実行中に、前記エンジンの出力を上げる強制再生制御を重複して行うことがない。このため、前記エンジンに相反する動作を要求する2つの燃料噴射制御(強制低回転制御と強制再生制御)を共存させた上で、それぞれの制御を重複させることなく効率よく実行できる。従って、作業機での燃費節約と排気ガス浄化とを両立できるという効果を奏する。また、エンジン音の急激な変化によるオペレータの違和感をなくせるという利点もある。
 また、請求項5の発明によると、前記制御手段は、前記エンジン装置が搭載される作業機に対する移動系操作手段又は作業系操作手段を操作したときに、前記強制低回転制御を停止し、このときに前記フィルタ装置内の詰り状態が予め設定された状態に達していれば、前記強制再生制御を実行する一方、前記フィルタ装置内の詰り状態が予め設定された状態に達していなければ、前記エンジン回転数を低下前の元の回転数に戻すように構成されているから、前記強制低回転制御からの復帰操作をオペレータが忘れていたとしても、前記作業機を発進させる操作や、前記作業部を駆動させる操作をするだけで、前記エンジンの出力を容易に確保できることになる。従って、前記強制低回転制御から復帰する際に、低回転数にて前記作業機を発進させたり前記作業部を駆動させたりして、前記エンジンが出力不足又は過負荷で急停止するといった不具合を確実に防止できるという効果を奏する。
 更に、請求項6の発明によると、前記制御手段は、前記強制低回転制御の実行中において前記フィルタ装置内の詰り状態が予め設定された状態に達しているときに、前記制御手段に接続された報知手段にて報知するように構成されているから、強制再生制御を禁止した強制低回転制御の実行中であっても、前記フィルタ装置に詰りが生じているか否かを把握して、オペレータに前記フィルタ装置詰りの注意を喚起できるという効果を奏する。前記強制低回転制御を実行したために、前記フィルタ装置の詰りが高じて故障するといったトラブルを回避できるという利点もある。
第1実施形態におけるコンバインの左側面図である。 コンバインの平面図である。 走行機体に対するディーゼルエンジンの位置関係を示す正面図である。 ディーゼルエンジンの吸気マニホールド設置側の側面図である。 ディーゼルエンジンの排気マニホールド設置側の側面図である。 ディーゼルエンジンのフライホイール設置側の側面図である。 ディーゼルエンジンの平面図である。 DPFの断面説明図である。 コモンレールシステムの平面説明図である。 ディーゼルエンジンの上部側の断面説明図である。 ディーゼルエンジンの燃料系統説明図である。 自動低回転制御のフローチャートである。 第2実施形態における油圧ショベルの側面図である。 油圧ショベルの平面図である。 ディーゼルエンジンの燃料系統説明図である。 自動低回転制御のフローチャートである。 第3実施形態における電子ガバナ式ディーゼルエンジンの排気マニホールド設置側の側面図である。 電子ガバナ式ディーゼルエンジンの吸気マニホールド設置側の側面図である。 電子ガバナ式ディーゼルエンジンの平面図である。 電子ガバナ式ディーゼルエンジンのフライホイール設置側の側面図である。 電子ガバナ式ディーゼルエンジンの冷却ファン設置側の側面図である。 電子ガバナコントローラの機能ブロック図である。 自動低回転制御のフローチャートである。 第4実施形態における電子ガバナ式コントローラの機能ブロック図である。 強制低回転制御のフローチャートである。 第5実施形態におけるディーゼルエンジンの燃料系統説明図である。 強制低回転制御のフローチャートである。 第6実施形態におけるディーゼルエンジンの燃料系統説明図である。 強制低回転制御のフローチャートである。 第7実施形態における電子ガバナコントローラの機能ブロック図である。 強制低回転制御のフローチャートである。
 以下に、本願発明を具体化した実施形態を図面に基づいて説明する。
 (1).第1実施形態
 図1~図12は、作業機であるコンバインに本願発明を適用した場合の第1実施形態を示している。なお、図1~図3までのコンバインに関する説明では、走行機体1の前進方向に向かって左側を単に左側と称し、同じく前進方向に向かって右側を単に右側と称する。これらを便宜的に、コンバインにおける四方及び上下の位置関係の基準としている。
 (1-1).コンバインの全体構造
 まず、図1~図3を参照しながら、作業機の第1実施形態であるコンバインの全体構造について説明する。コンバインは、左右一対の走行クローラ2にて支持された走行機体1を備えている。走行機体1の前部には、穀稈を刈り取りながら取り込む6条刈り用の刈取装置3が、単動式の昇降用油圧シリンダ4によって刈取回動支点軸4a回りに昇降調節可能に装着されている。走行機体1には、フィードチェン6を有する脱穀装置5と、脱穀後の穀粒を貯留する穀粒タンク7とが横並び状に搭載されている。この場合、脱穀装置5が走行機体1の進行方向左側に、穀粒タンク7が走行機体1の進行方向右側に配置されている。走行機体1の後部に旋回可能な穀粒排出オーガ8が設けられている。穀粒タンク7の内部の穀粒が、穀粒排出オーガ8の籾投げ口9からトラックの荷台またはコンテナ等に排出されるように構成されている。脱穀装置5及び穀粒排出オーガ8が作業部に相当するものである。刈取装置3の右側方で且つ穀粒タンク7の前側方には、運転キャビン10が設けられている。
 運転キャビン10内に操縦ハンドル11及び運転座席12を配置している。なお、図2に示すように、運転キャビン10には、オペレータが搭乗するステップ(図示省略)、操縦ハンドル11を設けたハンドルコラム14、運転座席12の左側方のレバーコラム15に設けた変速操作手段としての主変速レバー16、副変速レバー17、作業クラッチ(刈取クラッチ及び脱穀クラッチ、図示省略)を入り切り操作するための作業クラッチレバー18等が配置されている。運転座席12の下方の走行機体1には、動力源としてのディーゼルエンジン70が配置されている。
 図1に示されるように、走行機体1の下面側に左右のトラックフレーム21を配置している。トラックフレーム21には、走行クローラ2にエンジン70の動力を伝える駆動スプロケット22と、走行クローラ2のテンションを維持するテンションローラ23と、走行クローラ2の接地側を接地状態に保持する複数のトラックローラ24と、走行クローラ2の非接地側を保持する中間ローラ25とを設けている。駆動スプロケット22によって走行クローラ2の前側を支持し、テンションローラ23によって走行クローラ2の後側を支持し、トラックローラ24によって走行クローラ2の接地側を支持し、中間ローラ25によって走行クローラ2の非接地側を支持する。ディーゼルエンジン70の出力がミッションケース19に伝達され、ミッションケース19によってディーゼルエンジン70の出力が変速され、ミッションケース19の変速出力によって走行クローラ2が駆動される。
 図1及び図2に示されるように、刈取装置3の刈取回動支点軸4aに連結した刈取フレーム221の下方には、圃場の未刈り穀稈の株元を切断するバリカン式の刈刃装置222が設けられている。刈取フレーム221の前方には、圃場の未刈り穀稈を引起す6条分の穀稈引起装置223が配置されている。穀稈引起装置223とフィードチェン6の前端部(送り始端側)との間には、刈刃装置222によって刈取られた刈取り穀稈を搬送する穀稈搬送装置224が配置されている。なお、穀稈引起装置223の下部前方には、圃場の未刈り穀稈を分草する6条分の分草体225が突設されている。ディーゼルエンジン70にて走行クローラ2を駆動して圃場内を移動しながら、刈取装置3を駆動して圃場の未刈り穀稈を連続的に刈取る。
 図1~図3に示されるように、脱穀装置5には、穀稈脱穀用の扱胴226と、扱胴226の下方に落下する脱粒物を選別する揺動選別盤227及び唐箕ファン228と、扱胴226の後部から取出される脱穀排出物を再処理する処理胴229と、揺動選別盤227の後部の排塵を排出する排塵ファン230とを備えている。なお、扱胴226の回転軸はフィードチェン6による穀稈の搬送方向(換言すると走行機体1の進行方向)に沿って延びている。刈取装置3から穀稈搬送装置224によって搬送された穀稈の株元側はフィードチェン6に受け継がれて挟持搬送される。そして、この穀稈の穂先側が脱穀装置5の扱室内に搬入されて扱胴226にて脱穀される。
 図1及び図2に示されるように、揺動選別盤227の下方側には、揺動選別盤227にて選別された穀粒(一番物)を取出す一番コンベヤ231と、枝梗付き穀粒等の二番物を取出す二番コンベヤ232とが設けられている。両コンベヤ231,232は、走行機体1の進行方向前側から一番コンベヤ231、二番コンベヤ232の順で、側面視において走行クローラ2の後部上方の走行機体1の上面側に横設されている。なお、揺動駆動軸242によって、略一定速度で前後及び上下方向に、揺動選別盤227を往復揺動させるように構成されている。扱胴226の下方に張設された受網237から漏下した脱穀物は、揺動選別盤227のフィードパン238及びチャフシーブ239によって揺動選別(比重選別)される。
 揺動選別盤227にて脱穀物が揺動選別されることによって、脱穀物中の穀粒が揺動選別盤227のグレンシーブ240から下方に落下する。グレンシーブ240から落下した穀粒は、その穀粒中の粉塵が唐箕ファン228からの選別風によって除去され、一番コンベヤ231に落下する。一番コンベヤ231のうち脱穀装置5における穀粒タンク7寄りの一側壁(実施形態では右側壁)から外向きに突出した終端部には、上下方向に延びる揚穀筒233が連通接続されている。一番コンベヤ231から取出された穀粒は、揚穀筒233を介して穀粒タンク7に搬入され、穀粒タンク7に収集される。なお、穀粒タンク7の後面の傾斜に沿わせて、揚穀筒233の上端側が後方に傾斜する後傾姿勢で、穀粒タンク7の後方に揚穀筒233が立設されている。
 また、図1及び図2に示されるように、揺動選別盤227は、揺動選別(比重選別)によってチャフシーブ239から枝梗付き穀粒等の二番物を二番コンベヤ232に落下させるように構成している。チャフシーブ239の下方に落下する二番物を風選する唐箕ファン228を備える。チャフシーブ239から落下した二番物は、その穀粒中の粉塵及び藁屑が選別ファン241からの選別風によって除去され、二番コンベヤ232に落下することになる。二番コンベヤ232のうち脱穀装置5における穀粒タンク7寄りの一側壁から外向きに突出した終端部は、揚穀筒233と交差して前後方向に延びる還元筒236を介して、フィードパン238の上面側に連通接続され、二番物をフィードパン238の上面側に戻して再選別するように構成している。
 一方、フィードチェン6の後端側(送り終端側)には、排藁チェン234が配置されている。フィードチェン6の後端側から排藁チェン234に受け継がれた排藁(穀粒が脱粒された稈)は、長い状態で走行機体1の後方に排出されるか、又は脱穀装置5の後方側に設けた排藁カッタ235にて適宜長さに短く切断されたのち、走行機体1の後方下方に排出される。
 (1-2).ディーゼルエンジンの全体構造
 次に、主として図3~図7を参照しながら、コモンレール式のディーゼルエンジン70の全体構造について説明する。なお、図4~図7までのディーゼルエンジン70に関する説明では、走行機体1に対して後向きになるディーゼルエンジン70の吸気マニホールド73設置側を単にディーゼルエンジン70の後側と称し、同じく走行機体1に対して前向きになるディーゼルエンジン70の排気マニホールド71設置側を単にディーゼルエンジン70の前側と称する。
 図3乃至図7に示す如く、ディーゼルエンジン70におけるシリンダヘッド72の前側面に排気マニホールド71が配置されている。シリンダヘッド72の後側面には吸気マニホールド73が配置されている。シリンダヘッド72は、エンジン出力軸74(クランク軸)とピストン(図示省略)が内蔵されたシリンダブロック75に上載されている。シリンダブロック75の左右両側面から、エンジン出力軸74の左右先端側を突出させている。シリンダブロック75の右側面側には冷却ファン76が設けられている。エンジン出力軸74の右先端側からVベルト77を介して冷却ファン76に回転力を伝達するように構成している。
 図3~図7に示す如く、シリンダブロック75の左側面側にフライホイールハウジング78が固着されている。フライホイールハウジング78内にフライホイール79が配置されている。フライホイール79はエンジン出力軸74の左先端側に軸支されている。フライホイール79は、エンジン出力軸74と一体的に回転するように構成されている。走行部(高負荷作業部)としての走行クローラ2、高負荷作業部としての刈取装置3や脱穀装置5、低負荷作業部としての穀粒排出オーガ8等の駆動部に、フライホイール79を介してディーゼルエンジン70の動力を取り出すように構成している。
 また、シリンダブロック75の下面にはオイルパン81が配置されている。シリンダブロック75の左右側面とフライホイールハウジング78の左右側面とには、機関脚取付部82がそれぞれ設けられている。各機関脚取付部82には、防振ゴムを有する機関脚体83がボルト締結されている。ディーゼルエンジン70は、各機関脚体83を介して、走行機体1に一体形成されたエンジン支持シャーシ84に防振支持される。上記の説明から明らかなように、ディーゼルエンジン70は、フライホイール79が走行機体1の中央側に、冷却ファン77が走行機体1の右側に位置するようにして、運転キャビン10の下方に形成されたエンジンルーム内に配置されている。すなわち、エンジン出力軸74の向きが左右方向に延びるように、ディーゼルエンジン70が配置されている。
 図3、図4及び図7に示すように、吸気マニホールド73には、EGR装置(排気ガス再循環装置)91及び過給管108を介して、エアクリーナ88が連結される。EGR装置91は、ディーゼルエンジン70の再循環排気ガス(排気マニホールド71からのEGRガス)と新気(エアクリーナからの外部空気)とを混合させて吸気マニホールド73に供給するEGR本体ケース(コレクタ)92と、排気マニホールド71にEGRクーラ94を介して接続する再循環排気ガス管95と、再循環排気ガス管95にEGR本体ケース92を連通させるEGRバルブ96とを有する。
 EGR本体ケース92内には外気が供給される一方、排気マニホールド71からEGRバルブ96を介してEGR本体ケース92内にEGRガス(排気マニホールド71から排出される排気ガスの一部)が供給される。外気と排気マニホールド71からのEGRガスとがEGR本体ケース92内で混合された後、EGR本体ケース92内の混合ガスが吸気マニホールド73に供給される。すなわち、ディーゼルエンジン70から排気マニホールド71に排出された排気ガスの一部が、吸気マニホールド73からディーゼルエンジン70に還流されることによって、高負荷運転時の最高燃焼温度が下がり、ディーゼルエンジン70からのNOx(窒素酸化物)の排出量が低減される。
 図4~図7に示す如く、シリンダヘッド72の後側面には、ターボ過給機100が取り付けられている。ターボ過給機100は、タービンホイール(図示省略)を内蔵したタービンケース101と、ブロアホイール(図示省略)を内蔵したコンプレッサケース102とを有する。タービンケース101の排気ガス取入れ管105に排気マニホールド71が接続されている。タービンケース101の排気ガス排出管103には、フィルタ装置としてのディーゼルパティキュレートフィルタ60(以下、DPFという)を介して、テールパイプ107が接続される。すなわち、ディーゼルエンジン70の各気筒から排気マニホールド71に排出された排気ガスは、ターボ過給機100及びDPF60等を経由して、テールパイプ107から外部に放出される。
 一方、コンプレッサケース102の給気取入れ側に、給気管104を介してエアクリーナ88の給気排出側が接続される。コンプレッサケース102の給気排出側に過給管108を介して吸気マニホールド73が接続される。エアクリーナ88の吸気取入れ側は、吸気ダクト89を介してプリクリーナ90に接続される。すなわち、プリクリーナ90及びエアクリーナ88によって除塵された外気は、コンプレッサケース102から過給管108を介して、吸気マニホールド73に送られ、そして、ディーゼルエンジン70の各気筒に供給される。
 図4~図7に示すように、フィルタ装置としてのDPF60は、排気ガス中の粒子状物質(PM)等を捕集するためのものであり、シリンダヘッド72における排気マニホールド71の上方に配置されている。実施形態のDPF60は、平面視でエンジン出力軸74と平行な左右方向に長い形態になっている。タービンケース101の排気ガス排出管103に、DPF60の排気ガス取入れ側が連結され、DPF60の排気ガス排出側に、テールパイプ107が接続されている。
 図8に示すように、DPF60は、耐熱金属材料製のDPFケーシング61に内蔵された略筒型のフィルタケース62,63に、例えば白金等のディーゼル酸化触媒64とハニカム構造のフィルタ体であるスートフィルタ65とを直列に並べて収容した構造になっている。DPFケーシング61の長手方向一端側(右側)は、固定脚体109の上端側が溶接固定されている。固定脚体109の下端側はシリンダヘッド72の前面側にボルト締結されている。つまり、上記したDPF60は、固定脚体109とタービンケース101の排気ガス排出管103とにより、排気マニホールド71の上方に安定的に連結支持されている。
 DPFケーシング61には、DPF60の詰り状態を検出する詰り検出手段の一例として、圧力センサ66が設けられている(図8参照)。圧力センサ66は、例えばピエゾ抵抗効果を利用した周知構造のものでよい。この場合は、スートフィルタ65に粒子状物質が堆積していないとき(DPF60が新品のとき)におけるスートフィルタ65上流側の圧力Ps(基準圧力値)を、後述する燃料噴射コントローラ311のROM等に予め記憶させておき、同じ測定箇所における現在の圧力Pを圧力センサ66にて検出し、基準圧力値Psと圧力センサ66の検出値Pとの差ΔPを求め、当該圧力差ΔPに基づいてスートフィルタ65の粒子状物質堆積量が換算(推定)される(図12参照)。なお、DPF60のうちスートフィルタ65を挟んで上下流側に、それぞれ圧力センサを配置し、両者の検出値の差からスートフィルタ65の粒子状物質堆積量を換算(推定)するようにしてもよい。
 上記の構成において、ディーゼルエンジン70の排気ガスは、タービンケース101の排気ガス排出管103から、DPFケーシング61のうちディーゼル酸化触媒64より上流側の空間に流入し、ディーゼル酸化触媒64からスートフィルタ65の順に通過して浄化処理される。排気ガス中の粒子状物質は、この段階でスートフィルタ65における各セル間の多孔質な仕切り壁を通り抜けできずに捕集される。その後、ディーゼル酸化触媒64及びスートフィルタ65を通過した排気ガスがテールパイプ107に放出される。
 排気ガスがディーゼル酸化触媒64及びスートフィルタ65を通過するに際して、排気ガス温度が再生可能温度(例えば約300℃)を超えていれば、ディーゼル酸化触媒64の作用にて、排気ガス中のNO(一酸化窒素)が不安定なNO2(二酸化窒素)に酸化する。そして、NO2がNOに戻る際に放出するO(酸素)にて、スートフィルタ65に堆積した粒子状物質が酸化除去されることにより、スートフィルタ65の粒子状物質捕集能力が回復する(スートフィルタ65が再生する)ことになる。
 (1-3).コモンレールシステム及びディーゼルエンジンの燃料系統構造
 次に、図3~図7及び図9~図11を参照しながら、コモンレールシステム117とディーゼルエンジン70の燃料系統構造を説明する。図4及び図9に示す如く、ディーゼルエンジン70に設けられた4気筒分の各インジェクタ115に、燃料ポンプ116とコモンレールシステム117とを介して、燃料タンク118が接続されている。各インジェクタ115は、電磁開閉制御型の燃料噴射バルブ119を有する。コモンレールシステム117は、円筒状のコモンレール120を有する。
 図4、図9及び図11に示す如く、燃料ポンプ116の吸入側には、燃料フィルタ121及び低圧管122を介して燃料タンク118が接続される。燃料タンク118内の燃料が、燃料フィルタ121及び低圧管122を介して燃料ポンプ116に吸い込まれる。一方、燃料ポンプ116の吐出側には、高圧管123を介してコモンレール120が接続される。円筒状のコモンレール120の長手方向の中間に高圧管コネクタ124を設け、高圧管コネクタ124に高圧管123の端部が高圧管コネクタナット125の螺着にて連結されている。
 また、コモンレール120には、4本の燃料噴射管126を介して4気筒分の各インジェクタ115がそれぞれ接続されている。円筒状のコモンレール120の長手方向に4気筒分の燃料噴射管コネクタ127を設け、燃料噴射管コネクタ127に燃料噴射管126の端部が燃料噴射管コネクタナット128の螺着にて連結されている。
 上記の構成により、燃料タンク118の燃料が燃料ポンプ116によってコモンレール120に圧送され、高圧の燃料がコモンレール120に蓄えられる。各燃料噴射バルブ119がそれぞれ開閉制御されることによって、コモンレール120内の高圧の燃料が各インジェクタ115からディーゼルエンジン70の各気筒に噴射される。すなわち、各燃料噴射バルブ119を電子制御することによって、各インジェクタ115から供給される燃料の噴射圧力、噴射時期、噴射期間(噴射量)を高精度にコントロールできる。このため、ディーゼルエンジン70から排出される窒素酸化物(NOx)を低減できると共に、ディーゼルエンジン70の騒音振動を低減できる。
 なお、図11に示すように、燃料タンク118にポンプ燃料戻り管129を介して燃料ポンプ116を接続する。円筒状のコモンレール120の長手方向の端部に、コモンレール120内の燃料の圧力を制限する圧力調整バルブ付き戻り管コネクタ130を介して、コモンレール燃料戻り管131を接続する。即ち、燃料ポンプ116の余剰燃料とコモンレール120の余剰燃料が、ポンプ燃料戻り管129とコモンレール燃料戻り管131を介して、燃料タンク118に回収される。
 さらに、図4及び図10に示す如く、シリンダブロック75の一側方に設けたオイルクーラハウジング132に締結台133を一体的に形成する。また、コモンレール120に締結ボス134を一体的に形成する。レール取付ボルト135によって締結台133に締結ボス134が固着されている。シリンダブロック75の一側方にオイルクーラハウジング132を介してコモンレール120が着脱可能に締結されている。即ち、シリンダブロック75の一側方にコモンレール120が設けられている。吸気マニホールド73の斜め下方の角隅部に近接させてコモンレール120が配置されている。
 図4及び図10に示す如く、吸気マニホールド73の斜め下方にコモンレール120を並設している。コモンレール120の上面側に配置された燃料噴射管コネクタ127が斜め上方外向きになる姿勢に、コモンレール120を傾倒させるように構成している。したがって、吸気マニホールド73によってコモンレール120の上面側の一部がカバーされるから、ディーゼルエンジン70等の組立分解作業中に、コモンレール120に向けて上方から工具等を落としても、吸気マニホールド73によってコモンレール120の衝突等による損傷を低減できる。また、燃料噴射管コネクタ127に燃料噴射管126を接続させる燃料噴射管コネクタナット128の螺着操作等が簡単に実行できる。燃料噴射管126の配管等の組立分解作業性を向上できる。
 (1-4).燃料噴射制御を実行するための構造
 次に、図11を参照して、燃料噴射制御を実行するための構造を説明する。第1実施形態のコンバインには、制御手段の一例として、ディーゼルエンジン70における各気筒の燃料噴射バルブ119を作動させる燃料噴射コントローラ311が搭載されている。燃料噴射コントローラ311は、各種演算処理や制御を実行するCPUの他、制御プログラムやデータを記憶させる記憶手段としてのROM、制御プログラムやデータを一時的に記憶させるためのRAM、及び入出力インターフェイス等を備えている。
 燃料噴射コントローラ311の入力側には、コモンレール120内の燃料圧力を検出するレール圧センサ312と、燃料ポンプ116を回転又は停止させる電磁クラッチ313と、ディーゼルエンジン70のエンジン回転数(エンジン出力軸74のクランク型カムシャフト位置)を検出するエンジン回転センサ314と、インジェクタ115の燃料噴射回数(1行程の燃料噴射期間中の燃料噴射回数)を検出及び設定する噴射設定器315と、アクセルレバー又はアクセルペダル等のアクセル操作具(図示省略)の操作位置を検出するアクセルセンサ316と、ターボ過給機100の圧力を検出するターボ昇圧センサ317と、吸気マニホールド73の吸気温度を検出する吸気温度センサ318と、ディーゼルエンジン70の冷却水の温度を検出する冷却水温度センサ319とが接続されている。
 燃料噴射コントローラ311の出力側には、4気筒分の各燃料噴射バルブ119の電磁ソレノイドがそれぞれ接続されている。すなわち、コモンレール120に蓄えられた高圧燃料が、燃料噴射圧力、燃料噴射時期又は燃料噴射期間を制御しながら、1行程中に複数回に分けて燃料噴射バルブ119から噴射されるように構成されている。このため、窒素酸化物の発生を抑え、且つ、粒子状物質(すす)や二酸化炭素等の発生も低減した完全燃焼を実行して、燃費を向上できることになる。なお、アクセル操作具を手動操作した場合、燃料噴射コントローラ311は、エンジン回転数がアクセル操作具による設定回転数となるように、各燃料噴射バルブ119を電子制御して各インジェクタ115から供給される燃料を調節する。このため、エンジン回転数はアクセル操作具の操作位置に応じた値に保持される。
 図11に示す如く、燃料噴射コントローラ311の入力側には、作業クラッチレバー18の入り切り操作(脱穀装置5の駆動又は停止)を検出する作業クラッチセンサ331と、穀粒排出オーガ8の作動の有無(穀粒タンク7の穀粒排出作業の有無)を検出する穀粒排出センサ332と、主変速レバー16の操作位置(前進・中立・後進)を検出するポテンショメータ型の変速センサ333と、排気マニホールド71の排気ガス温度を検出する排気温度センサ334と、エンジン回転数をローアイドル回転数まで低下させるオートデセル制御の可否を選択操作する選択操作手段としてのデセルスイッチ335と、走行機体1の車速(移動速度)を検出する車速センサ336と、DPF60の詰り状態を検出する圧力センサ66とがそれぞれ接続されている。
 また、燃料噴射コントローラ311の出力側には、報知手段としての報知装置337が電気的に接続されている。報知装置337はコンバインの作動状態に応じた視覚的な報知を行うランプであり、各種明滅データは燃料噴射コントローラ311の記憶手段(ROM)に予め記憶されている。なお、報知手段としては視覚的に報知するランプに限らず、ブザーや音声装置、若しくは、文字や記号等を表示する液晶パネルのような表示手段であってもよい。
 第1実施形態の燃料噴射コントローラ311では、燃料噴射制御の一例として、後述する自動低回転条件の成立時にエンジン回転数を所定の第1低回転数(ローアイドル回転数)まで低下させる自動低回転制御(オートデセル制御)を実行すると共に、前記自動低回転条件及び後述する強制再生条件との両方が成立したときに、排気ガス温度の低下を抑制するために、エンジン回転数をローアイドル回転数より高い第2低回転数(ハイアイドル回転数)に維持するように設定されている。
 ここで、自動低回転制御(オートデセル制御)とは、前記自動低回転条件が成立したときに、各燃料噴射バルブ119を電子制御して各インジェクタ115から供給される燃料の噴射状態(噴射圧力、噴射時期及び噴射期間等)を調節することによって、エンジン回転数をローアイドル回転数まで自動的に低下させる(ディーゼルエンジン70の出力を下げる)というものである。強制再生制御とは、圧力センサ66及び排気温度センサ334の検出情報に基づき、各燃料噴射バルブ119を電子制御して各インジェクタ115から供給される燃料の噴射状態を調節することによって、ディーゼルエンジン70の出力を上げて排気ガス温度を上昇させ、DPF60(スートフィルタ65)内の粒子状物質を強制燃焼させるというものである。
 第1実施形態では、デセルスイッチ335を許可(入り)操作した状態のもとで、作業部(脱穀装置5及び穀粒排出オーガ8)が非作動で且つ走行機体1が停止しているときに、前記自動低回転条件が成立する設定になっている。換言すると、第1実施形態での自動低回転条件は、デセルスイッチ335を入り操作することと、作業部(脱穀装置5及び穀粒排出オーガ8)が非作動状態であることと、走行機体1が停止していることとの3つの条件から成り立っている。その上、排気ガス温度の検出値Texが再生可能温度(例えば約300℃)以下で、且つ、圧力センサ66の検出値Pと基準圧力値Psとの圧力差ΔPが限界圧力差値ΔP0以上のときに、前記強制再生条件が成立する設定になっている。つまり、第1実施形態での強制再生条件は、排気ガス温度の検出値Texが再生可能温度(例えば約300℃)以下であることと、圧力センサ66の検出値Pと基準圧力値Psとの圧力差ΔPが限界圧力差値ΔP0以上であることとの2つの条件から成り立っている。
 また、第1実施形態の燃料噴射コントローラ311は、エンジン回転数をハイアイドル回転数にしてから前記強制再生条件だけが解消したときに、エンジン回転数をハイアイドル回転数からローアイドル回転数まで低下させる一方、エンジン回転数をハイアイドル回転数にしてから、前記低回転条件及び前記強制再生条件の両方が解消したときに、エンジン回転数を両条件成立前の元の回転数に戻すように構成されている。
 上記の構成により、ディーゼルエンジン70の出力を下げる自動低回転制御の実行中であっても、DPF60(スートフィルタ65)がある程度詰りつつあれば、エンジン回転数をローアイドル回転数より高いハイアイドル回転数に維持することになる。このため、自動低回転制御による燃費の節約や騒音の抑制を図りつつ、排気ガス温度の低下を抑制してDPF60の詰り状態の悪化を防止できる。つまり、自動低回転制御の機能を損なわない範囲で、DPF60の詰りの進行を抑制でき、従って、コンバインでの燃費節約と排気ガス浄化という2つの利益を享受することが可能になる。自動低回転制御を実行したために、DPF60の詰りが高じて故障するといったトラブルを回避できる。
 また、第1実施形態の燃料噴射コントローラ311は、エンジン回転数をハイアイドル回転数にしてから前記強制再生条件だけが解消したときに、エンジン回転数をハイアイドル回転数からローアイドル回転数まで低下させるように構成されているから、自動低回転制御による燃費低減効果をより一層向上できることになる。更に、第1実施形態の燃料噴射コントローラ311は、エンジン回転数をハイアイドル回転数にしてから、前記低回転条件及び前記強制再生条件の両方が解消したときに、エンジン回転数を両条件成立前の元の回転数に戻すように構成されているから、コンバインを発進させる操作や、作業部(脱穀装置5等)を駆動させる操作をするだけで、ディーゼルエンジン70の出力を容易に確保できることになる。従って、自動低回転制御から復帰する際に、ローアイドル回転数にてコンバインを発進させたり作業部を駆動させたりして、ディーゼルエンジン70が出力不足又は過負荷で急停止するといった不具合を確実に防止できる。
 (1-5).自動低回転制御の説明
 次に、図12のフローチャートを参照しながら、上記した自動低回転制御の一例について説明する。第1実施形態の自動低回転制御は、まず、デセルスイッチ335を入り操作した状態のもとで、作業クラッチレバー18の切り操作(脱穀装置5の停止)が作業クラッチセンサ331にて検出され、穀粒排出オーガ8の停止が穀粒排出センサ332にて検出され、更に、主変速レバー16の中立位置操作(走行機体1の停止)が車速センサ336にて検出されているか否か、すなわち、自動低回転条件が成立しているか否かを判別する(ステップS1)。当該条件が成立していれば(ステップS1:YES)、次いで、排気ガス温度の検出値Texが再生可能温度(例えば約300℃)以下で、且つ、圧力センサ66の検出値Pと基準圧力値Psとの圧力差ΔPが限界圧力差値ΔP0以上か否か、すなわち、強制再生条件が成立しているか否かを判別する(ステップS2)。
 強制再生条件が不成立であれば(ステップS2:NO)、後述するステップS7に移行して、ディーゼルエンジン70のエンジン回転数を(元の回転数から)ローアイドル回転数まで低下させる旨を、報知装置337にて所定時間にわたって報知する。強制再生条件が成立しているときは(ステップS2:YES)、スートフィルタ65に粒子状物質がある程度堆積していて、スートフィルタ65再生動作が進行し難い状態にある。そこで、次に、ディーゼルエンジン70のエンジン回転数をハイアイドル回転数に維持する旨を、報知装置337にて所定時間にわたって報知したのち(ステップS3)、排気ガス温度の低下を抑制してDPF60の詰り状態の悪化を防止するために、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70のエンジン回転数を、ローアイドル回転数より高いハイアイドル回転数に維持する(ステップS4)。
 それから、前述の自動低回転条件が継続して成立しているか否かを判別し(ステップS5)、成立していれば(ステップS5:YES)、前述の強制再生条件が成立しているか否かを判別する(ステップS6)。強制再生条件が不成立であれば(ステップS6:NO)、スートフィルタ65における粒子状物質の堆積状態がある程度緩和されていることになるので、ディーゼルエンジン70のエンジン回転数をローアイドル回転数まで低下させる旨を、報知装置337にて所定時間にわたって報知したのち(ステップS7)、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70のエンジン回転数を(準低回転数から)ローアイドル回転数まで低下させる(ステップS8)。
 次いで、ステップS1、S5と同様の自動低回転条件が継続して成立しているか否かを判別し(ステップS9)、成立していれば(ステップS9:YES)、前述のステップS2に戻る。自動低回転条件が不成立であれば(ステップS9:NO)、ディーゼルエンジン70のエンジン回転数を元の回転数に復帰させる旨を、報知装置337にて所定時間にわたって報知したのち(ステップS10)、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70のエンジン回転数を、両条件(自動低回転条件と強制再生条件)成立前の元の回転数まで戻す(ステップS11)。
 ステップS5に戻り、自動低回転条件が不成立であれば(ステップS5:NO)、次いで、強制再生条件が成立しているか否かを判別する(ステップS12)。強制再生条件が成立しているときは(ステップS12:YES)、DPF60の強制再生制御を実行する旨を、報知装置337にて所定時間にわたって報知したのち(ステップS13)、DPF60の強制再生制御を実行する(ステップS14)。すなわち、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70の出力を上げて排気ガス温度を上昇させ、スートフィルタ65内の粒子状物質を強制燃焼させる。次いで、強制再生条件が不成立になれば(ステップS15:NO)、DPF60の強制再生制御を解除する旨を、報知装置337にて所定時間にわたって報知したのち(ステップS16)、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70の出力を、両条件(自動低回転条件と強制再生条件)成立前の元の出力状態に戻す(ステップS17)。
 ステップS12に戻り、強制再生条件が不成立であれば(ステップS12:NO)、ステップS10に移行して、ディーゼルエンジン70のエンジン回転数を元の回転数に復帰させる旨を、報知装置337にて所定時間にわたって報知したのち、ステップS11において、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70のエンジン回転数を、両条件(自動低回転条件と強制再生条件)成立前の元の回転数まで戻すのである。
 以上の説明から明らかなように、動力源としてのエンジン70と、前記エンジン70の排気経路に配置された排気ガス浄化用のフィルタ装置60と、予め設定された低回転条件の成立時にエンジン回転数を所定の第1低回転数(ローアイドル回転数)まで低下させる低回転制御を実行する制御手段311とを備えているエンジン装置であって、前記制御手段311は、前記低回転条件と予め設定された強制再生条件との両方が成立したときに、排気ガス温度の低下を抑制するために、エンジン回転数を前記第1低回転数(ローアイドル回転数)より高い第2低回転数(ハイアイドル回転数)に維持するように構成されているから、前記エンジン70の出力を下げる低回転制御の実行中であっても、前記フィルタ装置60がある程度詰りつつあれば、エンジン回転数をローアイドル回転数より高いハイアイドル回転数に維持することになる。このため、低回転制御による燃費の節約や騒音の抑制を図りつつ、排気ガス温度の低下を抑制して前記フィルタ装置60の詰り状態の悪化を防止できる。つまり、低回転制御の機能を損なわない範囲で、前記フィルタ装置60の詰りの進行を抑制でき、従って、作業機での燃費節約と排気ガス浄化という2つの利益を享受することが可能になる。低回転制御を実行したために、前記フィルタ装置60の詰りが高じて故障するといったトラブルを回避できるという効果を奏する。
 また、前記制御手段311は、前記エンジン回転数を前記ハイアイドル回転数にしてから、前記強制再生条件だけが解消したときに、前記エンジン回転数を前記ローアイドル回転数まで低下させるように構成されているから、低回転制御による燃費低減効果をより一層向上できるという効果を奏する。
 前記制御手段311は、前記エンジン回転数を前記ハイアイドル回転数にしてから、前記低回転条件及び前記強制再生条件の両方が解消したときに、前記エンジン回転数を前記両条件成立前の元の回転数に戻すように構成されているから、作業機を発進させる操作や、作業部(脱穀装置5等)を駆動させる操作をするだけで、前記エンジン70の出力を容易に確保できることになる。従って、低回転制御から復帰する際に、前記ローアイドル回転数にて作業機を発進させたり作業部を駆動させたりして、前記エンジン70が出力不足又は過負荷で急停止するといった不具合を確実に防止できるという効果を奏する。
 (2).第2実施形態
 図13~図16は、作業機である油圧ショベルに本願発明を適用した場合の第2実施形態を示している。なお、図13及び図14での油圧ショベルに関する説明では、走行機体1の前進方向に向かって左側を単に左側と称し、同じく前進方向に向かって右側を単に右側と称する。これらを便宜的に、油圧ショベルにおける四方及び上下の位置関係の基準としている。
 (2-1).油圧ショベルの全体構造
 図13及び図14を参照しながら、作業機の第2実施形態である油圧ショベルの全体構造について説明する。図13及び図14に示す如く、油圧ショベル400は、左右一対の走行クローラ403を有する履帯式の走行装置402と、走行装置402上に設けられた旋回機体404とを備えている。旋回機体404は、図示しない旋回用油圧モータによって、360°の全方位にわたって水平旋回可能に構成されている。走行装置402の後部には、対地作業用の土工板405が昇降動可能に装着されている。旋回機体404の左側部には、操縦部406とディーゼルエンジン70とが搭載されている。ディーゼルエンジン70及びその補機群の構成は第1実施形態と基本的に同じものなので、第1実施形態と同じ符号を付してその詳細な説明を省略する。旋回機体404の右側部には、掘削作業のためのブーム411及びバケット413を有する作業部410が設けられている。
 操縦部406には、オペレータが着座する操縦座席408と、ディーゼルエンジン70等を出力操作する操作手段や、作業部410用の操作手段としての操作レバー416又はスイッチ等が配置されている。作業部410の構成要素であるブーム411には、ブームシリンダ412とバケットシリンダ414とが配置されている。ブーム411の先端部には、掘削用アタッチメントとしてのバケット413が、掬い込み回動可能に枢着されている。ブームシリンダ412又はバケットシリンダ414を作動させて、バケット413によって土工作業(作溝等の対地作業)を実行するように構成している。
 (2-2).燃料噴射制御を実行するための構造
 次に、図15を参照して、燃料噴射制御を実行するための構造を説明する。第2実施形態の油圧ショベル400に搭載された燃料噴射コントローラ311の基本構成は、第1実施形態のものと同様である。燃料噴射コントローラ311の入力側には、コモンレール120内の燃料圧力を検出するレール圧センサ312と、燃料ポンプ116を回転又は停止させる電磁クラッチ313と、ディーゼルエンジン70のエンジン回転数(エンジン出力軸74のクランク型カムシャフト位置)を検出するエンジン回転センサ314と、インジェクタ115の燃料噴射回数(1行程の燃料噴射期間中の燃料噴射回数)を検出及び設定する噴射設定器315と、アクセルレバー又はアクセルペダル等のアクセル操作具(図示省略)の操作位置を検出するアクセルセンサ316と、ターボ過給機100の圧力を検出するターボ昇圧センサ317と、吸気マニホールド73の吸気温度を検出する吸気温度センサ318と、ディーゼルエンジン70の冷却水の温度を検出する冷却水温度センサ319とが接続されている。
 燃料噴射コントローラ311の出力側には、4気筒分の各燃料噴射バルブ119の電磁ソレノイドがそれぞれ接続されている。すなわち、コモンレール120に蓄えられた高圧燃料が、燃料噴射圧力、燃料噴射時期又は燃料噴射期間を制御しながら、1行程中に複数回に分けて燃料噴射バルブ119から噴射されるように構成されている。
 図15に示す如く、燃料噴射コントローラ311の入力側には、操作レバー416の操作位置を検出するポテンショメータ型のレバーセンサ433と、排気マニホールド71の排気ガス温度を検出する排気温度センサ334と、エンジン回転数をローアイドル回転数まで低下させるオートデセル制御の可否を選択操作する選択操作手段としてのデセルスイッチ335と、油圧ショベル400の車速(移動速度)を検出する車速センサ336と、DPF60の詰り状態を検出する圧力センサ66とがそれぞれ接続されている。また、燃料噴射コントローラ311の出力側には、各種警報等を視覚的に報知する報知装置337が電気的に接続されている。報知装置337の各種明滅データは燃料噴射コントローラ311の記憶手段(ROM)に予め記憶されている。
 第2実施形態の燃料噴射コントローラ311も、予め設定された自動低回転条件の成立時にエンジン回転数を所定の第1低回転数(ローアイドル回転数)まで低下させる自動低回転制御(オートデセル制御)を実行すると共に、前記自動低回転条件及び後述する強制再生条件との両方が成立したときに、排気ガス温度の低下を抑制するために、エンジン回転数をローアイドル回転数より高い第2低回転数(ハイアイドル回転数)に維持するように設定されている。
 第2実施形態では、デセルスイッチ335を許可(入り)操作した状態のもとで、作業部410(ブーム411及びバケット413)が所定時間継続して非作動であるときに、前記自動低回転条件が成立するように設定されている。換言すると、第2実施形態での自動低回転条件は、デセルスイッチ335を入り操作することと、作業部410(ブーム411及びバケット413)が所定時間継続して非作動状態であることとの2つの条件から成り立っている。また、第2実施形態での強制再生条件は、排気ガス温度の検出値Texが再生可能温度(例えば約300℃)以下であることと、圧力センサ66の検出値Pと基準圧力値Psとの圧力差ΔPが限界圧力差値ΔP0以上であることとの2つの条件から成り立っている。
 (2-3).自動低回転制御の説明
 次に、図16のフローチャートを参照しながら、上記した自動低回転制御の一例について説明する。第2実施形態の自動低回転制御は、まず、デセルスイッチ335を入り操作したときに、走行レバー415の位置固定状態(走行装置402の停止)が走行センサ432にて検出され、且つ、操作レバー416の位置固定状態(ブーム及びバケットの停止)がレバーセンサ433にて所定時間継続して検出されているか否か、すなわち、自動低回転条件が成立しているか否かを判別する(ステップS21)。当該条件が成立していれば(ステップS21:YES)、次いで、排気ガス温度の検出値Texが再生可能温度(例えば約300℃)以下で、且つ、圧力センサ66の検出値Pと基準圧力値Psとの圧力差ΔPが限界圧力差値ΔP0以上か否か、すなわち、強制再生条件が成立しているか否かを判別する(ステップS22)。
 強制再生条件が不成立であれば(ステップS22:NO)、後述するステップS27に移行して、ディーゼルエンジン70のエンジン回転数を(元の回転数から)ローアイドル回転数まで低下させる旨を、報知装置337にて所定時間にわたって報知する(詳細は後述する)。強制再生条件が成立しているときは(ステップS22:YES)、スートフィルタ65に粒子状物質がある程度堆積していて、スートフィルタ65再生動作が進行し難い状態にある。そこで、次に、ディーゼルエンジン70のエンジン回転数をハイアイドル回転数に維持する旨を、報知装置337にて所定時間にわたって報知したのち(ステップS23)、排気ガス温度の低下を抑制してDPF60の詰り状態の悪化を防止するために、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70のエンジン回転数を、ローアイドル回転数より高いハイアイドル回転数に維持する(ステップS24)。
 それから、前述の自動低回転条件が継続して成立しているか否かを判別し(ステップS25)、成立していれば(ステップS25:YES)、前述の強制再生条件が成立しているか否かを判別する(ステップS26)。強制再生条件が不成立であれば(ステップS26:NO)、スートフィルタ65における粒子状物質の堆積状態がある程度緩和されていることになるので、ディーゼルエンジン70のエンジン回転数をローアイドル回転数まで低下させる旨を、報知装置337にて所定時間にわたって報知したのち(ステップS27)、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70のエンジン回転数を(ハイアイドル回転数から)ローアイドル回転数まで低下させる(ステップS28)。
 次いで、ステップS21、S25と同様の自動低回転条件が継続して成立しているか否かを判別し(ステップS29)、成立していれば(ステップS29:YES)、前述のステップS22に戻る。自動低回転条件が不成立であれば(ステップS29:NO)、ディーゼルエンジン70のエンジン回転数を元の回転数に復帰させる旨を、報知装置337にて所定時間にわたって報知したのち(ステップS30)、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70のエンジン回転数を、両条件(自動低回転条件と強制再生条件)成立前の元の回転数まで戻す(ステップS31)。
 ステップS25に戻り、自動低回転条件が不成立であれば(ステップS25:NO)、次いで、強制再生条件が成立しているか否かを判別する(ステップS32)。強制再生条件が成立しているときは(ステップS32:YES)、DPF60の強制再生制御を実行する旨を、報知装置337にて所定時間にわたって報知したのち(ステップS33)、DPF60の強制再生制御を実行する(ステップS34)。すなわち、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70の出力を上げて排気ガス温度を上昇させ、スートフィルタ65内の粒子状物質を強制燃焼させる。次いで、強制再生条件が不成立になれば(ステップS35:NO)、DPF60の強制再生制御を解除する旨を、報知装置337にて所定時間にわたって報知したのち(ステップS36)、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70の出力を、両条件(自動低回転条件と強制再生条件)成立前の元の出力状態に戻す(ステップS37)。
 ステップS32に戻り、強制再生条件が不成立であれば(ステップS32:NO)、ステップS30に移行して、ディーゼルエンジン70のエンジン回転数を元の回転数に復帰させる旨を、報知装置337にて所定時間にわたって報知したのち、ステップS31において、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70のエンジン回転数を、両条件(自動低回転条件と強制再生条件)成立前の元の回転数まで戻すのである。
 以上の説明から明らかなように、第2実施形態のように構成した場合も、第1実施形態の場合と同様の作用効果が得られることになる。
 (3).第3実施形態
 図17~図23は、電子ガバナ式のディーゼルエンジンを搭載した油圧ショベルに本願発明を適用した場合の第3実施形態を示している。油圧ショベル400の構成は第2実施形態と基本的に同じものなので、第2実施形態の符号と同じ符号を付して、その詳細な説明を省略する。
 (3-1).電子ガバナ式ディーゼルエンジンの全体構造
 図17~図21を参照しながら、電子ガバナ式のディーゼルエンジン570の全体構造について説明する。なお、ディーゼルエンジン570に関する説明では、油圧ショベル400に対して後向きになるディーゼルエンジン570の吸気マニホールド573設置側を単にディーゼルエンジン570の後側と称し、同じく油圧ショベル400に対して前向きになるディーゼルエンジン570の排気マニホールド571設置側を単にディーゼルエンジン570の前側と称する。
 図17及び図19に示す如く、ディーゼルエンジン570のシリンダヘッド572の前側面に排気マニホールド571が配置されている。シリンダヘッド572の右側面には吸気マニホールド573が配置されている。シリンダヘッド572は、エンジン出力軸574(クランク軸)とピストン(図示省略)を有するシリンダブロック575に上載されている。シリンダブロック575の左右両側面からエンジン出力軸574の左右先端部をそれぞれ突出させている。シリンダブロック575の右側面には冷却ファン576が設けられている。エンジン出力軸574の前端側からVベルト577を介して冷却ファン576に回転力を伝達するように構成している。
 図17、図18及び図20に示す如く、シリンダブロック575の左側面にフライホイールハウジング578を固着している。フライホイールハウジング578内にフライホイール579を設ける。エンジン出力軸574の左先端側にフライホイール579を軸支させている。油圧ショベルの作業部に、フライホイール579を介してディーゼルエンジン570の動力を取り出すように構成している。
 また、シリンダブロック575の下面にはオイルパン581が配置されている。オイルパン581内には潤滑油が貯留されている。オイルパン581内の潤滑油は、シリンダブロック575内における右側面寄りの部位に配置されたオイルポンプ656にて吸引され、シリンダブロック575の右側面に配置されたオイルフィルタ657を介して、ディーゼルエンジン570の各潤滑部に供給される。各潤滑部に供給された潤滑油はその後オイルパン581に戻される。オイルポンプ656はエンジン出力軸574の回転にて駆動するように構成されている。
 シリンダブロック575の後側面のうちオイルフィルタ657の上方(吸気マニホールド573の下方)には、シリンダブロック575内の燃焼室内に燃料を供給するための燃料噴射装置658が取り付けられている。燃料噴射装置658は、燃料噴射量を調整するための電子ガバナ及び燃料フィードポンプ(共に図示省略)を備えている。燃料フィードポンプの駆動にて、燃料タンク内の燃料が燃料フィルタを介して燃料噴射装置658に送り込まれる。
 シリンダブロック575の右側面側には、冷却水潤滑用の冷却水ポンプ659が冷却ファン576のファン軸620と同軸状に配置されている。冷却水ポンプ659はエンジン出力軸574の回転にて冷却ファン576と共に駆動するように構成されている。油圧ショベルに搭載されたラジエータ(図示省略)内の冷却水が、冷却水ポンプ659の上部に設けられたサーモスタットケース660を介して、冷却水ポンプ659に供給される。そして、冷却水ポンプ659の駆動にて、冷却水がシリンダヘッド572及びシリンダブロック575に形成された水冷ジャケット(図示省略)に供給され、ディーゼルエンジン570を冷却する。ディーゼルエンジン570の冷却に寄与した冷却水はラジエータに戻される。なお、冷却水ポンプ659の左側方にはオルタネータ661が設けられている。
 シリンダブロック575の前後側面とフライホイールハウジング578の前後側面とには、機関脚取付部582がそれぞれ設けられている。各機関脚取付部582には、防振ゴムを有する機関脚体583がボルト締結されている。ディーゼルエンジン570は、各機関脚体583を介して、油圧ショベルのエンジン支持シャーシ584に防振支持されている。
 図18に示すように、吸気マニホールド573の入口部は、当該吸気マニホールド573の略中央部から上向きに突出している。そして、吸気マニホールド573の入口部は、EGR装置591(排気ガス再循環装置)を構成するEGR本体ケース592を介してエアクリーナ(図示省略)に連結されている。エアクリーナに吸い込まれた新気(外部空気)は、当該エアクリーナにて除塵・浄化されたのち、EGR装置591を介して吸気マニホールド573に送られ、そして、ディーゼルエンジン570の各気筒に供給される。
 図18及び図19に示すように、EGR装置591は、ディーゼルエンジン570の排気ガスの一部と新気とを混合させて吸気マニホールド573に供給するEGR本体ケース592と、エアクリーナにEGR本体ケース592を連通させる吸気スロットル弁593と、排気マニホールド571にEGRクーラ594を介して接続される再循環排気ガス管595と、再循環排気ガス管595にEGR本体ケース592を連通させるEGRバルブ596とを備えている。
 すなわち、吸気マニホールド573と新気導入用の吸気スロットル弁593とがEGR本体ケース592を介して接続されている。そして、EGR本体ケース592には、排気マニホールド571から延びる再循環排気ガス管595の出口側が連通している。図19に示すように、EGR本体ケース592は長筒状に形成されている。吸気スロットル弁593は、EGR本体ケース592の長手方向の一端部にボルト締結されている。EGR本体ケース592のうち吸気スロットル弁593と反対側の部位に形成された下向きの開口端部が、吸気マニホールド573の入口部に着脱可能にボルト締結されている。
 第3実施形態では、再循環排気ガス管595の出口側が、EGRバルブ596を介してEGR本体ケース592に連結されている。EGRバルブ596は、その開度を調節することにより、EGR本体ケース592へのEGRガスの供給量を調節するものである。EGRバルブ596の外周面から斜め下向きに突出した開口端部がEGR本体ケース592の長手中途部に連結されている。再循環排気ガス管595の入口側は、EGRクーラ594を介して排気マニホールド571の下面側に連結されている。
 上記の構成により、エアクリーナから吸気スロットル部材593を介してEGR本体ケース592内に新気(外部空気)を供給する一方、排気マニホールド571からEGRバルブ596を介してEGR本体ケース592内にEGRガス(排気マニホールド571から排出される排気ガスの一部)を供給する。エアクリーナからの新気と、排気マニホールド571からのEGRガスとが、EGR本体ケース592内で混合された後、EGR本体ケース592内の混合ガスが吸気マニホールド573に供給される。すなわち、ディーゼルエンジン570から排気マニホールド571に排出された排気ガスの一部が、吸気マニホールド573からディーゼルエンジン570に還流されることによって、高負荷運転時の最高燃焼温度が低下し、ディーゼルエンジン570からのNOx(窒素酸化物)の排出量が低減される。
 吸気スロットル弁593は、ディーゼルエンジン570の吸気圧を高めるためのものである。すなわち、粒子状物質(すす)がスートフィルタ65に堆積したときは、吸気スロットル弁593の作動制御にてディーゼルエンジン570の吸気圧を高くすることにより、ディーゼルエンジン570からの排気ガス温度を高温にして、スートフィルタ65に堆積した粒子状物質(すす)が燃焼する。その結果、粒子状物質が消失し、スートフィルタ65が再生することになる。このため、負荷が小さく排気ガスの温度が低くなり易い作業(粒子状物質が堆積し易い作業)を継続して行っても、吸気スロットル弁593による吸気圧の強制上昇にてスートフィルタ65を再生でき、DPF60の排気ガス浄化能力を適正に維持できる。また、スートフィルタ65に堆積したスートを燃やすためのバーナー等も不要になる。
 図17~図19に示す如く、DPFケーシング61には、固定脚体109の一端側が溶接固定されている。固定脚体109の他端側は、フライホイールハウジング578の上面に形成されたDPF取付け部622にボルト623にて着脱可能に締結されている。このため、上記したDPF60は、両固定脚体109を介して、高剛性のフライホイールハウジング578に支持されることになる。なお、DPF60の構成は第1及び第2実施形態と基本的に同じものなので、第1及び第2実施形態と同じ符号を付してその詳細な説明を省略する。
 図17に示すように、排気マニホールド571の出口部は、当該排気マニホールド571の左端部側から上向きに突出している。排気マニホールド571の出口部は、ディーゼルエンジン570の排気圧を調節するための排気絞り装置626を介して、DPF60の排気入口側に着脱可能に連結されている。排気マニホールド571の出口部からDPF60内に移動した排気ガスは、DPF60にて浄化されたのち、排気排出側からテールパイプ(図示省略)に移動して、最終的に機外に排出されることになる。
 (3-2).燃料噴射制御を実行するための構造及びその制御態様
 次に、図22及び図23を参照しながら、燃料噴射制御を実行するための構造とその制御態様とについて説明する。DPF60において、排気ガスの浄化性能を適正状態に維持するには、排気ガス温度が所定温度(概ね300℃程度)以上である必要がある。この点、第3実施形態では、吸気スロットル弁593を利用することによって、ディーゼルエンジン570からの排気ガス温度を調節し得るように構成されている。
 油圧ショベルに搭載された制御手段としての電子ガバナコントローラ611も、第1及び第2実施形態と同様に、予め設定された自動低回転条件の成立時にエンジン回転数を所定の第1低回転数(ローアイドル回転数)まで低下させる自動低回転制御(オートデセル制御)を実行すると共に、前記自動低回転条件及び後述する強制再生条件との両方が成立したときに、排気ガス温度の低下を抑制するために、エンジン回転数をローアイドル回転数より高い第2低回転数(ハイアイドル回転数)に維持するように設定されており、中央演算装置(CPU)や記憶手段等を有している。
 図22に示すように、電子ガバナコントローラ611には、ディーゼルエンジン570の燃料噴射装置658と、燃料噴射装置658からの燃料噴射量を検出する噴射量検出センサ666と、操作レバー416の操作位置を検出するポテンショメータ型のレバーセンサ433と、排気マニホールド571の排気ガス温度を検出する排気温度センサ334と、エンジン回転数をローアイドル回転数まで低下させるオートデセル制御の可否を選択操作する選択操作手段としてのデセルスイッチ335と、油圧ショベル400の車速(移動速度)を検出する車速センサ336と、DPF60の詰り状態を検出する圧力センサ66と、報知手段としての報知装置337と、正逆回転可能な吸気絞り駆動モータ667に対するモータ駆動回路668と、吸気スロットル弁593の弁開閉角度を検出する角度センサ669とが電気的に接続されている。なお、報知装置337の各種明滅データは電子ガバナコントローラ611の記憶手段に予め記憶されている。
 この場合、図23のフローチャートに示すように、まず、デセルスイッチ335を入り操作したときに、走行レバー415の位置固定状態(走行装置402の停止)が走行センサ432にて検出され、且つ、操作レバー416の位置固定状態(ブーム及びバケットの停止)がレバーセンサ433にて所定時間継続して検出されているか否か、すなわち、自動低回転条件が成立しているか否かを判別し(ステップS41)、当該条件が成立していれば(ステップS41:YES)、次いで、排気ガス温度の検出値Texが再生可能温度(例えば約300℃)以下で、且つ、圧力センサ66の検出値Pと基準圧力値Psとの圧力差ΔPが限界圧力差値ΔP0以上か否か、すなわち、強制再生条件が成立しているか否かを判別する(ステップS42)。
 強制再生条件が不成立であれば(ステップS42:NO)、後述するステップS37に移行して、ディーゼルエンジン570のエンジン回転数を(元の回転数から)ローアイドル回転数まで低下させる旨を、報知装置337にて所定時間にわたって報知する(詳細は後述する)。強制再生条件が成立しているときは(ステップS42:YES)、スートフィルタ65に粒子状物質がある程度堆積していて、スートフィルタ65再生動作が進行し難い状態にある。そこで、次に、ディーゼルエンジン570のエンジン回転数をハイアイドル回転数に維持する旨を、報知装置337にて所定時間にわたって報知したのち(ステップS43)、排気ガス温度の低下を抑制してDPF60の詰り状態の悪化を防止するために、燃料噴射装置658からの燃料の噴射状態を調節して、ディーゼルエンジン570のエンジン回転数を、ローアイドル回転数より高いハイアイドル回転数に維持する(ステップS44)。
 それから、前述の自動低回転条件が継続して成立しているか否かを判別し(ステップS45)、成立していれば(ステップS45:YES)、前述の強制再生条件が成立しているか否かを判別する(ステップS46)。強制再生条件が不成立であれば(ステップS46:NO)、スートフィルタ65における粒子状物質の堆積状態がある程度緩和されていることになるので、ディーゼルエンジン570のエンジン回転数をローアイドル回転数まで低下させる旨を、報知装置337にて所定時間にわたって報知したのち(ステップS47)、燃料噴射装置658からの燃料の噴射状態を調節して、ディーゼルエンジン570のエンジン回転数を(準低回転数から)ローアイドル回転数まで低下させる(ステップS48)。
 次いで、ステップS41、S45と同様の自動低回転条件が継続して成立しているか否かを判別し(ステップS49)、成立していれば(ステップS49:YES)、前述のステップS42に戻る。自動低回転条件が不成立であれば(ステップS49:NO)、ディーゼルエンジン570のエンジン回転数を元の回転数に復帰させる旨を、報知装置337にて所定時間にわたって報知したのち(ステップS50)、燃料噴射装置658からの燃料の噴射状態を調節して、ディーゼルエンジン570のエンジン回転数を、両条件(自動低回転条件と強制再生条件)成立前の元の回転数まで戻す(ステップS51)。
 ステップS45に戻り、自動低回転条件が不成立であれば(ステップS45:NO)、次いで、強制再生条件が成立しているか否かを判別する(ステップS52)。強制再生条件が成立しているときは(ステップS52:YES)、DPF60の強制再生制御を実行する旨を、報知装置337にて所定時間にわたって報知したのち(ステップS53)、ディーゼルエンジン570のエンジン回転数を、両条件(自動低回転条件と強制再生条件)成立前の元の回転数まで戻してから、DPF60の強制再生制御を実行する(ステップS54)。すなわち、吸気絞り駆動モータ667の駆動にて吸気スロットル弁593を閉じ作動させる。そうすると、ディーゼルエンジン570の負荷が増大して、エンジン回転数維持のためにディーゼルエンジン570の出力(燃料噴射量)が増大し、その結果、ディーゼルエンジン570からの排気ガス温度が上昇する。そして、スートフィルタ65内の粒子状物質が強制燃焼することになる。次いで、強制再生条件が不成立になれば(ステップS55:NO)、DPF60の強制再生制御を解除する旨を、報知装置337にて所定時間にわたって報知したのち(ステップS56)、吸気絞り駆動モータ667の駆動にて吸気スロットル弁593を開き作動させ、吸気スロットル弁593の弁開閉角度を、閉じ作動前の元の状態にまで戻す(ステップS57)。そうすると、ディーゼルエンジン570の負荷が減少するので、エンジン回転数維持のためにディーゼルエンジン570の出力(燃料噴射量)が減少するのである。
 ステップS52に戻り、強制再生条件が不成立であれば(ステップS52:NO)、ステップS50に移行して、ディーゼルエンジン570のエンジン回転数を元の回転数に復帰させる旨を、報知装置337にて所定時間にわたって報知したのち、ステップS51において、燃料噴射装置658からの燃料の噴射状態を調節して、ディーゼルエンジン570のエンジン回転数を、両条件(自動低回転条件と強制再生条件)成立前の元の回転数まで戻すのである。
 以上の説明から明らかなように、第3実施形態のように構成した場合も、第1及び第2実施形態の場合と同様の作用効果が得られることになる。
 (4).第4実施形態
 図24及び図25は、電子ガバナ式のディーゼルエンジンを搭載した油圧ショベルに本願発明を適用した場合の第4実施形態を示している。第4実施形態において、油圧ショベル400及びディーゼルエンジン570の構成は第3実施形態と基本的に同じものなので、第3実施形態の符号と同じ符号を付して、その詳細な説明を省略する。
 (4-1).燃料噴射制御を実行するための構造及びその制御態様
 油圧ショベルに搭載された制御手段としての電子ガバナコントローラ611は、強制低回転スイッチ35を入り操作(1回目の押し操作)したとき(強制低回転条件が成立したとき)に、エンジン回転数を所定の第1低回転数(ローアイドル回転数)まで低下させる強制低回転制御(ワンタッチデセル制御)を実行すると共に、前記強制低回転条件及び後述する強制再生条件との両方が成立したときに、後述する強制再生条件が成立していれば、排気ガス温度の低下を抑制するために、エンジン回転数をローアイドル回転数より高い第2低回転数(ハイアイドル回転数)に維持するように設定されている。電子ガバナコントローラ611は中央演算装置(CPU)や記憶手段等を有している(図示省略)。
 図24に示すように、電子ガバナコントローラ611には、ディーゼルエンジン570の燃料噴射装置658と、燃料噴射装置658からの燃料噴射量を検出する噴射量検出センサ666と、走行レバー415の操作位置を検出するポテンショメータ型の走行センサ432と、操作レバー416の操作位置を検出するポテンショメータ型のレバーセンサ433と、排気マニホールド571の排気ガス温度を検出する排気温度センサ334と、エンジン回転数を所定の第1低回転数(ローアイドル回転数)まで強制的に低下させる強制低回転制御を実行する強制低回転操作手段としての強制低回転スイッチ35と、油圧ショベル400の車速(移動速度)を検出する車速センサ336と、DPF60の詰り状態を検出する圧力センサ66と、報知手段としての報知装置337と、正逆回転可能な吸気絞り駆動モータ667に対するモータ駆動回路668と、吸気スロットル弁593の弁開閉角度を検出する角度センサ669とが電気的に接続されている。なお、報知装置337の各種明滅データは電子ガバナコントローラ611の記憶手段に予め記憶されている。
 この場合、図25のフローチャートに示すように、まず、強制低回転スイッチ35の1回目の押下操作をしたときに、走行レバー415の位置固定状態(走行装置402の停止)が走行センサ432にて検出され、且つ、操作レバー416の位置固定状態(ブーム411及びバケット413等の停止)がレバーセンサ433にて検出されているか否か、すなわち、強制低回転条件が成立しているか否かを判別する(ステップS61)。当該条件が成立していれば(ステップS61:YES)、次いで、排気ガス温度の検出値Texが再生可能温度(例えば約300℃)以下で、且つ、圧力センサ66の検出値Pと基準圧力値Psとの圧力差ΔPが限界圧力差値ΔP0以上か否か、すなわち、強制再生条件が成立しているか否かを判別する(ステップS62)。
 強制再生条件が不成立であれば(ステップS62:NO)、後述するステップS67に移行して、ディーゼルエンジン570のエンジン回転数を(元の回転数から)ローアイドル回転数まで低下させる旨を、報知装置337にて所定時間にわたって報知する(詳細は後述する)。強制再生条件が成立しているときは(ステップS62:YES)、スートフィルタ65に粒子状物質がある程度堆積していて、スートフィルタ65再生動作が進行し難い状態にある。そこで、次に、ディーゼルエンジン570のエンジン回転数をハイアイドル回転数に維持する旨を、報知装置337にて所定時間にわたって報知したのち(ステップS63)、排気ガス温度の低下を抑制してDPF60の詰り状態の悪化を防止するために、燃料噴射装置658からの燃料の噴射状態を調節して、ディーゼルエンジン570のエンジン回転数を、ローアイドル回転数より高いハイアイドル回転数に維持する(ステップS64)。
 それから、2回目の強制低回転スイッチ35を押し操作したか、若しくは、走行レバー415又は操作レバー416等を操作したか否か、つまり、強制低回転条件が解除されていないかどうかを判別し(ステップS65)、解除されていれば(ステップS65:YES)、前述の強制再生条件が成立しているか否かを判別する(ステップS66)。強制再生条件が不成立であれば(ステップS66:NO)、スートフィルタ65における粒子状物質の堆積状態がある程度緩和されていることになるので、ディーゼルエンジン570のエンジン回転数をローアイドル回転数まで低下させる旨を、報知装置337にて所定時間にわたって報知したのち(ステップS67)、燃料噴射装置658からの燃料の噴射状態を調節して、ディーゼルエンジン570のエンジン回転数を(ハイアイドル回転数から)ローアイドル回転数まで低下させる(ステップS68)。
 次いで、2回目の強制低回転スイッチ35を押し操作したか、若しくは、走行レバー415又は操作レバー416等を操作したか否か(強制低回転条件が解除されていないかどうか)を判別し(ステップS69)、解除されていなければ(ステップS69:NO)、前述のステップS62に戻る。強制低回転条件が解除されていれば(ステップS69:YES)、ディーゼルエンジン570のエンジン回転数を元の回転数に復帰させる旨を、報知装置337にて所定時間にわたって報知したのち(ステップS70)、燃料噴射装置658からの燃料の噴射状態を調節して、ディーゼルエンジン570のエンジン回転数を、両条件(強制低回転条件と強制再生条件)成立前の元の回転数まで戻す(ステップS71)。
 ステップS65に戻り、2回目の強制低回転スイッチ35を押し操作したか、若しくは、走行レバー415又は操作レバー416等を操作したか否か(強制低回転条件が解除されていないかどうか)が不成立であれば(ステップS65:NO)、次いで、強制再生条件が成立しているか否かを判別する(ステップS72)。強制再生条件が成立しているときは(ステップS72:YES)、DPF60の強制再生制御を実行する旨を、報知装置337にて所定時間にわたって報知したのち(ステップS73)、ディーゼルエンジン570のエンジン回転数を、両条件(強制低回転条件と強制再生条件)成立前の元の回転数まで戻してから、DPF60の強制再生制御を実行する(ステップS74)。すなわち、吸気絞り駆動モータ667の駆動にて吸気スロットル弁593を閉じ作動させる。そうすると、ディーゼルエンジン570の負荷が増大して、エンジン回転数維持のためにディーゼルエンジン570の出力(燃料噴射量)が増大し、その結果、ディーゼルエンジン570からの排気ガス温度が上昇する。そして、スートフィルタ65内の粒子状物質が強制燃焼することになる。次いで、強制再生条件が不成立になれば(ステップS75:NO)、DPF60の強制再生制御を解除する旨を、報知装置337にて所定時間にわたって報知したのち(ステップS76)、吸気絞り駆動モータ667の駆動にて吸気スロットル弁593を開き作動させ、吸気スロットル弁593の弁開閉角度を、閉じ作動前の元の状態にまで戻す(ステップS77)。そうすると、ディーゼルエンジン570の負荷が減少するので、エンジン回転数維持のためにディーゼルエンジン570の出力(燃料噴射量)が減少するのである。
 ステップS72に戻り、強制再生条件が不成立であれば(ステップS72:NO)、ステップS70に移行して、ディーゼルエンジン570のエンジン回転数を元の回転数に復帰させる旨を、報知装置337にて所定時間にわたって報知したのち、ステップS71において、燃料噴射装置658からの燃料の噴射状態を調節して、ディーゼルエンジン570のエンジン回転数を、両条件(自動低回転条件と強制再生条件)成立前の元の回転数まで戻すのである。
 以上の説明から明らかなように、第4実施形態のように構成した場合も、第1~第3実施形態の場合と同様の作用効果が得られることになる。
 (5).第5実施形態
 図26及び図27は、コンバインに強制低回転制御を実行させる場合の第5実施形態を示している。第5実施形態の基本的な構造は第1実施形態と共通しているが、デセルスイッチ335に代えて強制低回転スイッチ35を採用した点において、第1実施形態と相違している(図26参照)。強制低回転スイッチ35は復帰形のプッシュスイッチ(モーメンタリスイッチともいう)であり、1回目の押下操作でエンジン回転数をローアイドル回転数まで強制的に低下させ、2回目の押下操作でエンジン回転数をローアイドル回転数から低下前の元の回転数に戻すように設定されている。
 第5実施形態の燃料噴射コントローラ311は、燃料噴射制御の一例として、強制再生制御の要否に拘らず、強制低回転スイッチ35を入り操作(1回目の押し操作)したときに強制低回転制御を優先的に実行して、前記強制再生制御の実行を禁止し、もう一度強制低回転スイッチ35を押し操作するか、若しくは、コンバインに対する主変速レバー16又は作業クラッチレバー18等を操作したときに、強制低回転制御を停止するように構成されている。その上で、燃料噴射コントローラ311は、強制低回転制御を停止したときに、DPF60内の詰り状態が予め設定された状態(ディーゼルエンジン70の出力低下をもたらすほどDPF60が詰まっている状態)に達していれば、強制再生制御を実行する一方、前記予め設定された状態に達していなければ、エンジン回転数をローアイドル回転数から低下前の元の回転数に戻すように構成されている。
 ここで、強制低回転制御(ワンタッチデセル制御)とは、強制低回転スイッチ35を入り操作(1回目の押し操作)したときに、各燃料噴射バルブ119を電子制御して各インジェクタ115から供給される燃料の噴射状態(噴射圧力、噴射時期及び噴射期間等)を調節することによって、エンジン回転数をローアイドル回転数まで自動的に低下させる(ディーゼルエンジン70の出力を下げる)というものである。強制再生制御とは、圧力センサ66及び排気温度センサ334の検出情報に基づき、各燃料噴射バルブ119を電子制御して各インジェクタ115から供給される燃料の噴射状態を調節することによって、ディーゼルエンジン70の出力を上げて排気ガス温度を上昇させ、DPF60(スートフィルタ65)内の粒子状物質を強制燃焼させるというものである。
 上記の構成により、ディーゼルエンジン70の出力を下げる強制低回転制御の実行中に、ディーゼルエンジン70の出力を上げる強制再生制御を重複して行えないことになる。このため、ディーゼルエンジン70に相反する動作を要求する2つの燃料噴射制御(強制低回転制御と強制再生制御)を共存させた上で、それぞれの制御を重複させることなく効率よく実行できる。従って、コンバインでの燃費節約と排気ガス浄化とを両立できる。エンジン音の急激な変化によるオペレータの違和感もなくせる。
 また、第5実施形態の燃料噴射コントローラ311は、コンバインに対する主変速レバー16又は作業クラッチレバー18等を操作して強制低回転制御を停止したときに、DPF60内の詰り状態が予め設定された状態(ディーゼルエンジン70の出力低下をもたらすほどDPF60が詰まっている状態)に達していれば、強制再生制御を実行する一方、前記予め設定された状態に達していなければ、エンジン回転数をローアイドル回転数から低下前の元の回転数に戻すように構成されているから、強制低回転制御からの復帰操作(第5実施形態では強制低回転スイッチの2回目の押下操作)をオペレータが忘れていたとしても、コンバインを発進させる操作や、作業部(脱穀装置5等)を駆動させる操作をするだけで、ディーゼルエンジン70の出力を容易に確保できることになる。従って、強制低回転制御から復帰する際に、ローアイドル回転数にてコンバインを発進させたり作業部を駆動させたりして、ディーゼルエンジン70が出力不足又は過負荷で急停止するといった不具合を確実に防止できる。
 更に、第5実施形態の燃料噴射コントローラ311は、強制低回転制御の実行中において、DPF60内の詰り状態が予め設定された状態(ディーゼルエンジン70の出力低下をもたらすほどDPF60が詰まっている状態)に達しているときに、DPF60(スートフィルタ65)の強制再生が必要な旨を報知装置337にて報知するように構成されている。このため、強制再生制御を禁止した強制低回転制御の実行中であっても、DPF60(スートフィルタ65)に詰りが生じているか否かを把握して、オペレータにDPF60詰りの注意を喚起できる。強制低回転制御を実行したために、DPF60の詰りが高じて故障するといったトラブルを回避できる。
 次に、図27のフローチャートを参照しながら、上記した強制低回転制御の一例について説明する。第5実施形態の強制低回転制御は、強制低回転スイッチ35の1回目の押下操作をしたときに(ステップS101:YES)、主変速レバー16の中立位置操作(走行機体1の停止)が車速センサ336にて検出されていれば(ステップS102:YES)、脱穀装置5及び穀粒排出オーガ8の停止を条件として(ステップS103~S106)、強制低回転制御を実行する(ステップS107)。すなわち、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70のエンジン回転数をローアイドル回転数にまで低下させる。
 ここで、脱穀装置5の停止は、作業クラッチセンサ331による作業クラッチレバー18の切り操作の検出にて判別し(ステップS103)、穀粒排出オーガ8の停止は穀粒排出センサ332にて検出する(ステップS105)。いずれも駆動していれば、アクチュエータ(図示省略)の駆動にて強制的に停止させるように構成されている(ステップS104、S106)。
 ステップS107に次いで、排気ガス温度の検出値Texが再生可能温度(例えば約300℃)以下で、且つ、圧力センサ66の検出値Pと基準圧力値Psとの圧力差ΔPが限界圧力差値ΔP0以上か否かを判別する(ステップS108)。当該条件が不成立のときは(ステップS108:NO)、スートフィルタ65に粒子状物質があまり堆積していないので、次いで、2回目の強制低回転スイッチ35を押し操作したか、若しくは、主変速レバー16又は作業クラッチレバー18等を操作したか否かを判別する(ステップS109)。当該条件が成立していれば(ステップS109:YES)、強制低回転制御を停止し、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70のエンジン回転数をローアイドル回転数から低下前の元の回転数まで戻す(ステップS110)。
 ステップS108に戻り、前述の条件が成立していれば(ステップS108:YES)、スートフィルタ65に粒子状物質が堆積しているだけでなく、スートフィルタ65再生動作が進行しない状態にある。そこで、次に、DPF60(スートフィルタ65)の強制再生が必要な旨を、報知装置337にて所定時間にわたって報知したのち(ステップS111)、強制低回転スイッチ35の2回目の押し操作をしたか、若しくは、主変速レバー16又は作業クラッチレバー18等を操作したか否かを判別する(ステップS112)。当該条件が成立していれば(ステップS112:YES)、強制低回転制御を停止して、DPF60の強制再生制御を実行する(ステップS113)。すなわち、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70のエンジン回転数を設定回転数まで上げて排気ガス温度を上昇させ、スートフィルタ65内の粒子状物質を強制燃焼させる。次いで、排気ガス温度の検出値Texが再生可能温度を超えると共に、圧力差ΔPが限界圧力差値ΔP0未満になれば(ステップS114)、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70のエンジン回転数を設定回転数から低下前の元の回転数まで戻すのである(ステップS115)。
 以上の説明から明らかなように、動力源としてのエンジン70と、前記エンジン70の排気経路に配置された排気ガス浄化用のフィルタ装置60と、前記フィルタ装置60の詰り状態及び前記エンジン70の駆動状態(排気ガス温度)に基づいて前記フィルタ装置60の強制再生制御を実行する制御手段311とを備えているエンジン装置であって、エンジン回転数を所定の低回転数(ローアイドル回転数)まで強制的に低下させる強制低回転制御を実行するための強制低回転操作手段35を備えており、前記制御手段311は、前記強制再生制御の要否に拘らず、前記強制低回転操作手段35を入り操作したときに前記強制低回転制御を優先して実行するように構成されているから、前記エンジン70の出力を下げる強制低回転制御の実行中に、前記エンジン70の出力を上げる強制再生制御を重複して行うことがない。このため、前記エンジン70に相反する動作を要求する2つの燃料噴射制御(強制低回転制御と強制再生制御)を共存させた上で、それぞれの制御を重複させることなく効率よく実行できる。従って、コンバインでの燃費節約と排気ガス浄化とを両立できるという効果を奏する。また、エンジン音の急激な変化によるオペレータの違和感をなくせるという利点もある。
 また、前記制御手段311は、前記エンジン装置が搭載される作業機に対する移動系操作手段16又は作業系操作手段18を操作したときに、前記強制低回転制御を停止し、このときに前記フィルタ装置60内の詰り状態が予め設定された状態(前記エンジン70の出力低下をもたらすほど前記フィルタ装置60が詰まっている状態)に達していれば、前記強制再生制御を実行する一方、前記フィルタ装置60内の詰り状態が予め設定された状態に達していなければ、前記エンジン回転数を低下前の元の回転数に戻すように構成されているから、前記強制低回転制御からの復帰操作(第5実施形態では前記強制低回転操作手段35の2回目の押下操作)をオペレータが忘れていたとしても、作業機を発進させる操作や、作業部(脱穀装置5等)を駆動させる操作をするだけで、前記エンジン70の出力を容易に確保できることになる。従って、前記強制低回転制御から復帰する際に、ローアイドル回転数にて前記作業機を発進させたり前記作業部を駆動させたりして、前記エンジン70が出力不足又は過負荷で急停止するといった不具合を確実に防止できるという効果を奏する。
 更に、前記制御手段311は、前記強制低回転制御の実行中において、前記フィルタ装置60内の詰り状態が予め設定された状態(限界圧力差値ΔP0以上)に達しているときに、前記制御手段311に接続された報知手段337にて報知するように構成されているから、強制再生制御を禁止した強制低回転制御の実行中であっても、前記フィルタ装置60に詰りが生じているか否かを把握して、オペレータに前記フィルタ装置60詰りの注意を喚起できるという効果を奏する。前記強制低回転制御を実行したために、前記フィルタ装置60の詰りが高じて故障するといったトラブルを回避できるという利点もある。
 (6).第6実施形態
 図28及び図29は、油圧ショベル400に強制低回転制御を実行させる場合の第6実施形態を示している。第6実施形態の基本的な構造は第2実施形態と共通しているが、この場合もデセルスイッチ335に代えて強制低回転スイッチ35を採用した点において、第2実施形態と相違している(図28参照)。
 第6実施形態の燃料噴射コントローラ311も、強制再生制御の要否に拘らず、強制低回転スイッチ35を入り操作(1回目の押し操作)したときに強制低回転制御を優先的に実行して、強制再生制御の実行を禁止し、もう一度強制低回転スイッチ35を押し操作するか、若しくは、走行レバー415又は操作レバー416等を操作したときに、強制低回転制御を停止するように構成されている。その上で、燃料噴射コントローラ311は、強制低回転制御を停止したときに、DPF60内の詰り状態が予め設定された状態(ディーゼルエンジン70の出力低下をもたらすほどDPF60が詰まっている状態)に達していれば、強制再生制御を実行する一方、前記予め設定された状態に達していなければ、エンジン回転数をローアイドル回転数から低下前の元の回転数に戻すように構成されている。
 次に、図29のフローチャートを参照しながら、第6実施形態における強制低回転制御の一例について説明する。第6実施形態の強制低回転制御は、強制低回転スイッチ35の1回目の押下操作をしたときに(ステップS131:YES)、走行レバー415の位置固定状態(走行装置402の停止)が走行センサ432にて検出され、且つ、操作レバー416の位置固定状態(ブーム411及びバケット413等の停止)がレバーセンサ433にて検出されていれば(ステップS132)、強制低回転制御を実行する(ステップS133)。すなわち、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70のエンジン回転数をローアイドル回転数にまで低下させる。
 次いで、排気ガス温度の検出値Texが再生可能温度(例えば約300℃)以下で、且つ、圧力センサ66の検出値Pと基準圧力値Psとの圧力差ΔPが限界圧力差値ΔP0以上か否かを判別する(ステップS134)。当該条件が不成立のときは(ステップS134:NO)、スートフィルタ65に粒子状物質が余り堆積していないので、次いで、2回目の強制低回転スイッチ35を押し操作したか、若しくは、走行レバー415又は操作レバー416等を操作したか否かを判別する(ステップS135)。当該条件が成立していれば(ステップS135:YES)、強制低回転制御を停止し、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70のエンジン回転数をローアイドル回転数から低下前の元の回転数まで戻す(ステップS136)。
 ステップS134に戻り、前述の条件が成立していれば(ステップS134:YES)、スートフィルタ65に粒子状物質が堆積しているだけでなく、スートフィルタ65再生動作が進行しない状態にある。そこで、次に、DPF60(スートフィルタ65)の強制再生が必要な旨を、報知装置337にて所定時間にわたって報知したのち(ステップS137)、強制低回転スイッチ35の2回目の押し操作をしたか、若しくは、走行レバー415又は操作レバー416等を操作したか否かを判別する(ステップS138)。当該条件が成立していれば(ステップS138:YES)、強制低回転制御を停止して、DPF60の強制再生制御を実行する(ステップS139)。すなわち、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70のエンジン回転数を設定回転数まで上げて排気ガス温度を上昇させ、スートフィルタ65内の粒子状物質を強制燃焼させる。次いで、排気ガス温度の検出値Texが再生可能温度を超えると共に、圧力差ΔPが限界圧力差値ΔP0未満になれば(ステップS140)、各インジェクタ115からの燃料の噴射状態を調節して、ディーゼルエンジン70のエンジン回転数を設定回転数から低下前の元の回転数まで戻すのである(ステップS141)。
 以上の説明から明らかなように、第6実施形態のように構成した場合も、第5実施形態の場合と同様の作用効果が得られることになる。
 (7).第7実施形態
 図30及び図31は、電子ガバナ式のディーゼルエンジンを搭載した油圧ショベル400に強制低回転制御を実行させる場合の第7実施形態を示している。第7実施形態の基本的な構造は第3実施形態と共通しているが、この場合もデセルスイッチ335に代えて強制低回転スイッチ35を採用した点において、第3実施形態と相違している(図30参照)。
 第7実施形態の電子ガバナコントローラ611も、第5及び第6実施形態と同様に、強制再生制御の要否に拘らず、強制低回転スイッチ35を入り操作(1回目の押し操作)したときに強制低回転制御を優先的に実行して、強制再生制御の実行を禁止し、もう一度強制低回転スイッチ35を押し操作するか、若しくは、走行レバー415又は操作レバー416等を操作したときに、強制低回転制御を停止するように構成されている。その上で、電子ガバナコントローラ611は、強制低回転制御を停止したときに、DPF60内の詰り状態が予め設定された状態(ディーゼルエンジン570の出力低下をもたらすほどDPF60が詰まっている状態)に達していれば、強制再生制御を実行する一方、前記予め設定された状態に達していなければ、エンジン回転数をローアイドル回転数から低下前の元の回転数に戻すように構成されている。
 この場合、図31のフローチャートに示すように、強制低回転スイッチ35の1回目の押下操作をしたときに(ステップS151:YES)、走行レバー415の位置固定状態(走行装置402の停止)が走行センサ432にて検出され、且つ、操作レバー416の位置固定状態(ブーム411及びバケット413等の停止)がレバーセンサ433にて検出されていれば(ステップS152)、強制低回転制御を実行する(ステップS153)。すなわち、燃料噴射装置658からの燃料の噴射状態を調節して、ディーゼルエンジン570のエンジン回転数をローアイドル回転数にまで低下させる。
 次いで、排気ガス温度の検出値Texが再生可能温度(例えば約300℃)以下で、且つ、圧力センサ66の検出値Pと基準圧力値Psとの圧力差ΔPが限界圧力差値ΔP0以上か否かを判別する(ステップS154)。当該条件が不成立のときは(ステップS154:NO)、スートフィルタ65に粒子状物質が余り堆積していないので、次いで、2回目の強制低回転スイッチ35を押し操作したか、若しくは、走行レバー415又は操作レバー416等を操作したか否かを判別する(ステップS155)。当該条件が成立していれば(ステップS155:YES)、強制低回転制御を停止し、燃料噴射装置658からの燃料の噴射状態を調節して、ディーゼルエンジン570のエンジン回転数をローアイドル回転数から低下前の元の回転数まで戻す(ステップS156)。
 ステップS154に戻り、前述の条件が成立していれば(ステップS154:YES)、スートフィルタ65に粒子状物質が堆積しているだけでなく、スートフィルタ65再生動作が進行しない状態にある。そこで、次に、DPF60(スートフィルタ65)の強制再生が必要な旨を、報知装置337にて所定時間にわたって報知したのち(ステップS157)、強制低回転スイッチ35の2回目の押し操作をしたか、若しくは、走行レバー415又は操作レバー416等を操作したか否かを判別する(ステップS158)。当該条件が成立していれば(ステップS158:YES)、強制低回転制御を停止して、ディーゼルエンジン570のエンジン回転数を低下前の元の回転数まで戻してから、DPF60の強制再生制御を実行する(ステップS159)。この場合、吸気絞り駆動モータ667の駆動にて吸気スロットル弁593を閉じ作動させる。そうすると、ディーゼルエンジン570の負荷が増大して、エンジン回転数維持のためにディーゼルエンジン570の出力(燃料噴射量)が増大し、その結果、ディーゼルエンジン570からの排気ガス温度が上昇する。そして、スートフィルタ65内の粒子状物質が強制燃焼することになる。次いで、排気ガス温度の検出値Texが再生可能温度を超えると共に、圧力差ΔPが限界圧力差値ΔP0未満になれば(ステップS160)、吸気絞り駆動モータ667の駆動にて吸気スロットル弁593を開き作動させ、吸気スロットル弁593の弁開閉角度を、閉じ作動前の元の状態にまで戻す(ステップS161)。そうすると、ディーゼルエンジン570の負荷が減少するので、エンジン回転数維持のためにディーゼルエンジン570の出力(燃料噴射量)が減少するのである。
 以上の説明から明らかなように、第7実施形態のように構成した場合も、第5及び第6実施形態の場合と同様の作用効果が得られることになる。
 (8).その他
 本願発明は、前述の実施形態に限らず、様々な態様に具体化できる。例えば本願発明を適用する作業機のエンジンは、コモンレール式でも電子ガバナ式でもよい。また、本願発明は、第1~第4実施形態に例示するように、自動低回転制御(オートデセル制御)にも、強制低回転制御(ワンタッチデセル制御)にも適用できる。つまり、本願発明の低回転制御とは、自動低回転制御(オートデセル制御)と強制低回転制御(ワンタッチデセル制御)との両方を含む概念である。強制再生制御のための構成は、燃料噴射量や排気絞り装置を制御するタイプに限らず、油圧機器等を利用してのダミー負荷をエンジンに掛けたり、吸気スロットルを制御したりしてもよい。要は排気ガス温度を強制上昇させ得る構成になっていればよい。更に、農作業機(コンバインやトラクタ等)や建設機械(油圧ショベルやフォークリフト等)に限らず、発電機又は船舶等にも本願発明を適用できる。作業機は、農作業機、建設機械、発電機、船舶等の総称として使用している。その他、各部の構成は図示の実施形態に限定されるものではなく、本願発明の趣旨を逸脱しない範囲で種々変更が可能である。
60 DPF
64 ディーゼル酸化触媒
65 スートフィルタ
66 圧力センサ
70 コモンレール式のディーゼルエンジン
117 コモンレールシステム
311 制御手段としての燃料噴射コントローラ
331 作業クラッチセンサ
332 穀粒排出センサ
333 変速センサ
334 排気温度センサ
335 デセルスイッチ
336 車速センサ
337 音声装置
433 レバーセンサ
570 電子ガバナ式のディーゼルエンジン
593 吸気スロットル弁
658 燃料噴射装置

Claims (6)

  1.  動力源としてのエンジンと、前記エンジンの排気経路に配置された排気ガス浄化用のフィルタ装置と、予め設定された低回転条件の成立時にエンジン回転数を所定の第1低回転数まで低下させる低回転制御を実行する制御手段とを備えているエンジン装置であって、
     前記制御手段は、前記低回転条件と予め設定された強制再生条件との両方が成立したときに、排気ガス温度の低下を抑制するために、エンジン回転数を前記第1低回転数より高い第2低回転数に維持するように構成されている、
    エンジン装置。
  2.  前記制御手段は、前記エンジン回転数を前記第2低回転数にしてから、前記強制再生条件だけが解消したときに、前記エンジン回転数を前記第1低回転数まで低下させるように構成されている、
    請求項1に記載したエンジン装置。
  3.  前記制御手段は、前記エンジン回転数を前記第2低回転数にしてから、前記低回転条件及び前記強制再生条件の両方が解消したときに、前記エンジン回転数を前記両条件成立前の元の回転数に戻すように構成されている、
    請求項1又は2に記載したエンジン装置。
  4.  動力源としてのエンジンと、前記エンジンの排気経路に配置された排気ガス浄化用のフィルタ装置と、前記フィルタ装置の詰り状態及び前記エンジンの駆動状態に基づいて前記フィルタ装置の強制再生制御を実行する制御手段とを備えているエンジン装置であって、
     エンジン回転数を所定の低回転数まで強制的に低下させる強制低回転制御を実行するための強制低回転操作手段を備えており、
     前記制御手段は、前記強制再生制御の要否に拘らず、前記強制低回転操作手段を入り操作したときに前記強制低回転制御を優先して実行するように構成されている、
    エンジン装置。
  5.  前記制御手段は、前記エンジン装置が搭載される作業機に対する移動系操作手段又は作業系操作手段を操作したときに、前記強制低回転制御を停止し、このときに前記フィルタ装置内の詰り状態が予め設定された状態に達していれば、前記強制再生制御を実行する一方、前記フィルタ装置内の詰り状態が予め設定された状態に達していなければ、前記エンジン回転数を低下前の元の回転数に戻すように構成されている、
    請求項4に記載したエンジン装置。
  6.  前記制御手段は、前記強制低回転制御の実行中において前記フィルタ装置内の詰り状態が予め設定された状態に達しているときに、前記制御手段に接続された報知手段にて報知するように構成されている、
    請求項4又は5に記載したエンジン装置。
PCT/JP2010/061244 2009-07-02 2010-07-01 エンジン装置 WO2011002055A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10794223.7A EP2450539B1 (en) 2009-07-02 2010-07-01 Engine device
US13/261,092 US9032718B2 (en) 2009-07-02 2010-07-01 Engine device
CN201080035087.6A CN102472135B (zh) 2009-07-02 2010-07-01 发动机装置
KR1020117031475A KR101666006B1 (ko) 2009-07-02 2010-07-01 엔진 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009158143A JP5580005B2 (ja) 2009-07-02 2009-07-02 エンジン装置
JP2009-158143 2009-07-02
JP2009-160960 2009-07-07
JP2009160960A JP2011017256A (ja) 2009-07-07 2009-07-07 エンジン装置

Publications (1)

Publication Number Publication Date
WO2011002055A1 true WO2011002055A1 (ja) 2011-01-06

Family

ID=43411123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061244 WO2011002055A1 (ja) 2009-07-02 2010-07-01 エンジン装置

Country Status (5)

Country Link
US (1) US9032718B2 (ja)
EP (1) EP2450539B1 (ja)
KR (1) KR101666006B1 (ja)
CN (1) CN102472135B (ja)
WO (1) WO2011002055A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013000001A (ja) * 2011-06-10 2013-01-07 Kubota Corp 収穫機
US20140297158A1 (en) * 2011-11-28 2014-10-02 Cnh Industrial America Llc Engine control device for a work vehicle
US9387438B2 (en) 2014-02-14 2016-07-12 Tenneco Automotive Operating Company Inc. Modular system for reduction of sulphur oxides in exhaust
US20220074330A1 (en) * 2017-06-15 2022-03-10 Yanmar Power Technology Co., Ltd. Engine

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8276571B2 (en) * 2011-03-03 2012-10-02 New Vision Fuel Technology, Inc. Passive re-induction apparatus, system, and method for recirculating exhaust gas in gasoline and diesel engines
WO2013035425A1 (ja) * 2011-09-07 2013-03-14 日立建機株式会社 建設機械
JP5911392B2 (ja) 2012-07-20 2016-04-27 株式会社クボタ 作業車
JP6071530B2 (ja) 2012-12-25 2017-02-01 日野自動車株式会社 パティキュレートフィルタの自動再生制御装置
KR102138732B1 (ko) * 2013-04-26 2020-07-28 얀마 파워 테크놀로지 가부시키가이샤 작업 차량
US20160290211A1 (en) * 2013-11-22 2016-10-06 Yanmar Co., Ltd. Engine device
CN106103926B (zh) 2014-03-25 2019-02-19 洋马株式会社 发动机装置
EP3208439B1 (en) * 2014-10-15 2018-11-21 Yanmar Co., Ltd. Engine device
JP2016173055A (ja) * 2015-03-17 2016-09-29 ヤンマー株式会社 エンジンの制御装置およびエンジン
CN108397268A (zh) * 2018-02-24 2018-08-14 安徽江淮汽车集团股份有限公司 一种排气主动再生控制系统
CN111918546B (zh) * 2018-03-28 2022-09-20 株式会社久保田 收割机及作业机
US20220279718A1 (en) * 2021-03-04 2022-09-08 Deere & Company State-based mechanism for performing engine regeneration procedure

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312082A (ja) 1992-05-08 1993-11-22 Komatsu Ltd 油圧駆動機械の制御装置
JPH0925838A (ja) 1996-07-18 1997-01-28 Yanmar Agricult Equip Co Ltd 走行作業機におけるエンジン出力制御装置
JPH0988650A (ja) 1995-09-14 1997-03-31 Shin Caterpillar Mitsubishi Ltd 作業機械におけるエンジン回転数切換え装置
JP2000145430A (ja) 1998-11-13 2000-05-26 Ibiden Co Ltd 排気ガス浄化装置
JP2003027922A (ja) 2001-07-13 2003-01-29 Ibiden Co Ltd 排気ガス浄化装置
JP2004340152A (ja) * 2004-06-16 2004-12-02 Yanmar Co Ltd 作業車搭載エンジンの制御機構
JP2009079501A (ja) * 2007-09-25 2009-04-16 Hitachi Constr Mach Co Ltd 建設機械の排気ガス浄化システム
WO2009060719A1 (ja) * 2007-11-06 2009-05-14 Hitachi Construction Machinery Co., Ltd. 作業車両の排気ガス浄化システム
JP2009138689A (ja) * 2007-12-10 2009-06-25 Hitachi Constr Mach Co Ltd 作業車両の排気ガス浄化システム
JP2010065577A (ja) * 2008-09-09 2010-03-25 Hitachi Constr Mach Co Ltd 作業機のエンジン制御システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3829699B2 (ja) * 2001-11-28 2006-10-04 いすゞ自動車株式会社 排ガス浄化システム及びその再生制御方法
JP3879833B2 (ja) * 2002-03-04 2007-02-14 三菱自動車工業株式会社 内燃機関の排気浄化装置
JP4228690B2 (ja) * 2002-12-25 2009-02-25 日産自動車株式会社 内燃機関の排気浄化装置
DE10301035A1 (de) * 2003-01-13 2004-07-22 Hjs Fahrzeugtechnik Gmbh & Co. Verfahren zum Regeln der Ansteuerung einer Heizeinrichtung zum Regenerieren eines in den Abgasstrang einer Brennkraftmaschine eingeschalteten Partikelfilters
CN101614145A (zh) * 2005-02-28 2009-12-30 洋马株式会社 排气气体净化装置和具有该排气气体净化装置的内燃机以及微粒过滤器再生方法
JP3988785B2 (ja) 2006-02-01 2007-10-10 いすゞ自動車株式会社 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP4169076B2 (ja) * 2007-01-25 2008-10-22 いすゞ自動車株式会社 排気ガス浄化システムの制御方法及び排気ガス浄化システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312082A (ja) 1992-05-08 1993-11-22 Komatsu Ltd 油圧駆動機械の制御装置
JPH0988650A (ja) 1995-09-14 1997-03-31 Shin Caterpillar Mitsubishi Ltd 作業機械におけるエンジン回転数切換え装置
JPH0925838A (ja) 1996-07-18 1997-01-28 Yanmar Agricult Equip Co Ltd 走行作業機におけるエンジン出力制御装置
JP2000145430A (ja) 1998-11-13 2000-05-26 Ibiden Co Ltd 排気ガス浄化装置
JP2003027922A (ja) 2001-07-13 2003-01-29 Ibiden Co Ltd 排気ガス浄化装置
JP2004340152A (ja) * 2004-06-16 2004-12-02 Yanmar Co Ltd 作業車搭載エンジンの制御機構
JP2009079501A (ja) * 2007-09-25 2009-04-16 Hitachi Constr Mach Co Ltd 建設機械の排気ガス浄化システム
WO2009060719A1 (ja) * 2007-11-06 2009-05-14 Hitachi Construction Machinery Co., Ltd. 作業車両の排気ガス浄化システム
JP2009138689A (ja) * 2007-12-10 2009-06-25 Hitachi Constr Mach Co Ltd 作業車両の排気ガス浄化システム
JP2010065577A (ja) * 2008-09-09 2010-03-25 Hitachi Constr Mach Co Ltd 作業機のエンジン制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2450539A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013000001A (ja) * 2011-06-10 2013-01-07 Kubota Corp 収穫機
US20140297158A1 (en) * 2011-11-28 2014-10-02 Cnh Industrial America Llc Engine control device for a work vehicle
US9387438B2 (en) 2014-02-14 2016-07-12 Tenneco Automotive Operating Company Inc. Modular system for reduction of sulphur oxides in exhaust
US20220074330A1 (en) * 2017-06-15 2022-03-10 Yanmar Power Technology Co., Ltd. Engine
US11846220B2 (en) * 2017-06-15 2023-12-19 Yanmar Power Technology Inc., Ltd. Engine

Also Published As

Publication number Publication date
EP2450539A4 (en) 2016-01-27
CN102472135A (zh) 2012-05-23
KR101666006B1 (ko) 2016-10-13
CN102472135B (zh) 2015-02-11
EP2450539A1 (en) 2012-05-09
EP2450539B1 (en) 2018-09-05
KR20120030466A (ko) 2012-03-28
US9032718B2 (en) 2015-05-19
US20120124979A1 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
WO2011002055A1 (ja) エンジン装置
JP5580005B2 (ja) エンジン装置
JP5443027B2 (ja) エンジン装置
JP5275857B2 (ja) エンジン装置
JP2010209813A (ja) コンバイン
JP2010209814A (ja) コンバイン
JP5733920B2 (ja) コンバイン
JP5806711B2 (ja) コンバイン搭載用のエンジン装置
JP2011017256A (ja) エンジン装置
WO2014208578A1 (ja) 農作業車
JP6177944B2 (ja) コンバイン
JP2010216336A (ja) エンジン装置
JP5355177B2 (ja) コンバイン
JP5806710B2 (ja) コンバイン搭載用のエンジン装置
JP5524510B2 (ja) コンバイン
JP5856111B2 (ja) エンジン装置
JP5931951B2 (ja) エンジン装置
KR20150133726A (ko) 농작업차
JP2013241938A (ja) コンバイン搭載用のエンジン装置
JP2015004364A (ja) 作業機搭載用エンジン装置
JP2010209809A (ja) 農作業車両
JP5414029B2 (ja) 作業機械
JP2010216334A (ja) エンジン装置
JP2015121098A (ja) 農作業車
JP6143666B2 (ja) 農作業車

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035087.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10309/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117031475

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13261092

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010794223

Country of ref document: EP