WO2011001745A1 - 押出発泡成形用の成形材料及びその製造方法,並びに前記成形材料を使用して製造した木質発泡成形体,前記木質発泡成形体の製造方法並びに製造装置 - Google Patents

押出発泡成形用の成形材料及びその製造方法,並びに前記成形材料を使用して製造した木質発泡成形体,前記木質発泡成形体の製造方法並びに製造装置 Download PDF

Info

Publication number
WO2011001745A1
WO2011001745A1 PCT/JP2010/058102 JP2010058102W WO2011001745A1 WO 2011001745 A1 WO2011001745 A1 WO 2011001745A1 JP 2010058102 W JP2010058102 W JP 2010058102W WO 2011001745 A1 WO2011001745 A1 WO 2011001745A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding
extrusion
die
foam
extruder
Prior art date
Application number
PCT/JP2010/058102
Other languages
English (en)
French (fr)
Inventor
武恭 菊池
和正 守田
東 浩二
中村 雄一郎
Original Assignee
Wpcコーポレーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wpcコーポレーション株式会社 filed Critical Wpcコーポレーション株式会社
Priority to US13/377,710 priority Critical patent/US20120088853A1/en
Priority to RU2011149974/05A priority patent/RU2530047C9/ru
Priority to EP10793916A priority patent/EP2450174A1/en
Priority to BRPI1010114A priority patent/BRPI1010114A2/pt
Priority to SG2011090875A priority patent/SG176733A1/en
Priority to AU2010267329A priority patent/AU2010267329A1/en
Priority to CA2766890A priority patent/CA2766890C/en
Priority to CN201080028906.4A priority patent/CN102470597B/zh
Publication of WO2011001745A1 publication Critical patent/WO2011001745A1/ja
Priority to HK12107381.8A priority patent/HK1166758A1/xx

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • B29B7/603Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/20Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/362Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using static mixing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/39Plasticisers, homogenisers or feeders comprising two or more stages a first extruder feeding the melt into an intermediate location of a second extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/41Intermeshing counter-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/53Screws having a varying channel depth, e.g. varying the diameter of the longitudinal screw trunk
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/484Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws with two shafts provided with screws, e.g. one screw being shorter than the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0027Cutting off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92019Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/926Flow or feed rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/297Feeding the extrusion material to the extruder at several locations, e.g. using several hoppers or using a separate additive feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/385Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2711/00Use of natural products or their composites, not provided for in groups B29K2601/00 - B29K2709/00, for preformed parts, e.g. for inserts
    • B29K2711/14Wood, e.g. woodboard or fibreboard
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2397/00Characterised by the use of lignin-containing materials
    • C08J2397/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2497/00Characterised by the use of lignin-containing materials

Definitions

  • the present invention relates to a molding material for extrusion foam molding mainly composed of a thermoplastic resin and wood powder, a manufacturing method thereof, a wood foam molded body manufactured using the molding material, a manufacturing method thereof, and a manufacturing apparatus. About.
  • a molded product (woody molded product) obtained by molding a molded dough obtained by melt-kneading thermoplastic resin and wood powder into a desired shape is a resin molded product that has the texture of wood but is not easily spoiled. Since it also has the characteristics as a body, it is widely used as a building material for wood decks installed outdoors, for example.
  • FIG. 1 An example of an extrusion molding apparatus used when manufacturing this type of woody molded body by extrusion molding is as shown in FIG.
  • the extrusion molding apparatus 641 includes a cylindrical barrel 643 and an extruder 642 provided with a screw 645 rotatably provided inside the barrel 643, and a drive source (not shown) for driving the screw 645 of the extruder 642 to rotate. ) And a die 650 for introducing and molding a molding dough 625a extruded from an outlet 643a provided in the barrel 643 of the extruder 642.
  • a wood molded body (plate material) using the extrusion molding apparatus 641 having such a configuration
  • necessary materials such as wood powder, thermoplastic resin, pigment, and reinforcing agent are blended at a predetermined blending ratio.
  • the mixed material is supplied into the barrel 643 via a hopper 644 provided in the barrel 643 of the extruder, and the screw 645 of the extruder is rotated by a drive source, whereby the mixed material is heated and kneaded while being heated and kneaded.
  • a molding chamber is formed by extruding the extruded dough 625a by applying an extruding force in the distal direction and extruding it into a molding chamber 650a formed in the die 650 from an outlet 643a provided in the barrel 643 on the distal end side of the screw 645.
  • a woody molded body having a cross-sectional shape that matches the cross-sectional shape of 650a can be manufactured (for example, see Patent Document 1).
  • the molding dough 625a melt-kneaded by the extruder 642 as described above is desired in the die 650.
  • the product is cooled and solidified to be molded into a target product.
  • how to obtain a product with stable quality while improving productivity is an important point.
  • a foaming agent is added to the raw material in order to foam the melt-plasticized molding dough 625a into a wooden molded body (referred to as “woody foam molded body” in the present application)
  • the foaming agent is foamed. It becomes more difficult to control the flow of the forming dough 625a, such as a pulsation occurs in the forming dough 625a due to a sudden change in the pressure or flow of the forming dough 625a in the extruder 642 or the die 650.
  • a material obtained by simply adding a foaming agent to the above-described raw material composed of wood powder, thermoplastic resin, pigment, reinforcing agent, etc. is used as a mixed raw material and is extruded by a known extrusion molding apparatus 641 described with reference to FIG.
  • the foaming agent when the foaming agent generates foaming gas and the foaming gas expands to generate bubbles by heating at the time of melt kneading in the barrel 643 of the extruder 642, the generated bubbles are It becomes easy to concentrate on the central part of the molding dough.
  • a countermeasure by changing the structure on the extrusion molding device 641 side is conceivable.
  • a breaker plate having a screen made of a plurality of meshes at the entrance of the die 650. 652 is disposed, and the molding dough 625a is pushed out into the molding chamber 650a of the die 650 through the mesh of the breaker plate 652, thereby imparting resistance to the molding dough 625a, thereby increasing the internal pressure of the barrel 643.
  • the wood foam molded body is molded by the extrusion molding apparatus 641 having such a configuration, it is molded in the molding chamber 650a as in the case of using the known extrusion molding apparatus 641 shown in FIG.
  • the phenomenon that air bubbles tend to concentrate at the center (core) of the foam molded product is unavoidable, and the generation of internal voids G shown in FIG. 9 is inevitable, and it is difficult to obtain a high-strength wood foam molded product. there were.
  • the present invention was made to eliminate the above-described drawbacks of the prior art, and by reexamining the composition on the raw material side, a molding for extrusion foam molding that can obtain a high-quality wood foam molded article.
  • the purpose is to provide material.
  • Another object of the present invention is to provide a high-quality woody foam molded body having no defects, which is produced using the molding material.
  • an object of the present invention is to provide an extrusion molding apparatus and an extrusion molding method suitable for performing extrusion foam molding using the molding material for extrusion foam molding.
  • the molding material for extrusion foam molding of the present invention is a molding material for producing a wood foam molded article by adding a foaming agent and performing extrusion foam molding. It is characterized in that it contains 1 to 5 wt% of alkane having a molecular weight of 300 to 1000 g / mol, which is mainly composed of wood flour and thermoplastic resin such as polypropylene and polyethylene.
  • the molding material having the above-described configuration can be formed as pellets obtained by granulating to a predetermined particle size after melt-kneading each component in a uniformly dispersed state (claims 2 and 5).
  • the molding material can be configured such that the blending ratio of the wood powder and the thermoplastic resin is 45 to 50 wt% with respect to 50 to 55 wt% of the wood powder (claims 3 and 6).
  • thermoplastic resin and the alkane in addition to the wood powder, the thermoplastic resin and the alkane, a filler and / or a reinforcing agent and / or a pigment may be included (claims 4 and 7).
  • the present invention also relates to a wood foam molded body obtained by extruding one of the above molding materials together with a foaming agent into a predetermined shape by an extrusion molding apparatus (Claim 8), and a method for producing the same.
  • any one of the above-mentioned molding materials is introduced into a screw type extruder 12 provided in the extrusion molding apparatus 11 together with a foaming agent, and the decomposition temperature of the foaming agent or higher is reached. Melt kneading at temperature, The molding dough 25a extruded from the extruder 12 is introduced into the molding chamber 31 of the molding die 30 while maintaining the pressurized state.
  • the molding die 30 is introduced into the molding chamber 31, the pressure of the molding fabric 25 a is released to foam the molding fabric 25 a, and the molding fabric 25 a is passed through the molding chamber 31 of the molding die 30. It cools and solidifies, forming in the shape corresponding to the cross-sectional shape of the forming chamber 31 (Claim 9).
  • an outlet of the extruder 12 (an outlet 13a of the barrel 13) and an inlet 30a of the molding die 30 are provided between the extruder 12 and the molding die 30 of the extrusion molding device 11.
  • An extrusion die 20 that communicates with each other is provided, While giving resistance to the molding dough 25a introduced into the extrusion die 20 from the outlet 13a of the extruder 12 to increase the pressure of the forming dough 25a in the extruder 12, While the flow passage area of the extrusion die 20 is narrowed from the inlet 20a side to the outlet 20b side of the extrusion die 20, the pressure of the molding dough 25a introduced from the extruder 12 to the extrusion die 20 is maintained.
  • an extrusion molding apparatus for producing a wood foam molded article by the above method is as follows: A screw type extruder 12 for introducing a molding material mainly composed of a thermoplastic resin and wood powder together with a foaming agent, and melt-kneading at a temperature equal to or higher than the decomposition temperature of the foaming agent; An extrusion die 20 that communicates with the outlet 13a of the extruder 12 and introduces the molding dough extruded by the extruder 12; The molding dough 25a that communicates with the outlet 20b of the extrusion die 20 and passes through the extrusion die 20 is introduced into the molding chamber 31 formed therein, and the molding dough 25a that moves in the molding chamber 31 is molded into the molding chamber 31.
  • a forming die 30 that cools and solidifies while forming into a shape corresponding to the internal shape of the chamber 31;
  • a mesh-shaped breaker plate 22 having a large number of holes is provided,
  • the extrusion die 20 is provided with a resistor 26 for reducing the flow area in the extrusion die 20 from the inlet 20a side to the outlet 20b side of the extrusion die 20 (claim 11). .
  • the flow path area in the outlet of the extrusion die is a small area with respect to the inlet of the molding die (claim 12).
  • the extrusion molding apparatus 11 forms the outlet 20b of the extrusion die 20 in the same shape as the inlet 30a of the molding chamber 31 of the molding die 30,
  • An end portion (mandrel portion 26c) of the resistor 26 on the side of the forming die is formed in a cross-sectional shape having a slightly smaller similar shape to the outlet shape of the extrusion die, and inside the outlet 20b of the extrusion die 20 It can be set as the structure arrange
  • the screw type extruder of the extrusion molding apparatus 11 is a twin screw extruder (claim 14).
  • the MFR (melt flow rate) of the thermoplastic resin is preferably in the range of 0.5 to 10 (g / 10 minutes) (claims 15 and 16).
  • thermoplastic resin may be a resin of polypropylene (PP), polyethylene (PE), ABS resin, vinyl chloride (PVC) or a mixture thereof (claims 17 and 18).
  • Molding material for extrusion foam molding containing 1 to 5 wt% of alkane having a molecular weight of 300 to 1000 g / mol as a molding material for extrusion foam molding by the extrusion molding apparatus 11 as a main component.
  • the addition of the alkane described above facilitates the mixing and dissolution of the foaming gas with respect to the thermoplastic resin during the melt-kneading of the mixed material in the barrel 13 of the extruder 12, while suppressing the incorporation of the foaming gas with respect to the wood flour. It was possible to disperse the foaming gas uniformly in the molded dough.
  • the addition of alkane reduces the contact resistance between the metal surface and the molded fabric, and can smoothly move the molded fabric in which the foamed gas is dispersed in a uniform state. It is possible to introduce the molding dough 25a into the molding die 30 while maintaining the dispersed state.
  • extrusion foam molding using the above molding material can produce a high-quality wood foam molded body with uniform air bubble generation inside, while improving productivity during extrusion molding. It was.
  • the molding material is a pellet obtained by granulation to a predetermined particle size after melt-kneading in a state where each component is uniformly dispersed, the molding material can be handled easily and Contamination of the work environment could be reduced as compared with the case where each component including such as was handled individually.
  • each constituent component excluding the foaming agent is melt-kneaded in a uniformly dispersed state in advance, when the melt-kneading is performed in the extruder 12, a uniform melt-kneaded state in which each component is not biased is further increased. It was easy to obtain.
  • the above-described effects of adding alkane can be reliably obtained. It was.
  • the pressure of the molding dough 25a in the extruder 12 is increased by applying resistance to the molding dough 25a at the outlet 13a portion of the extruder 12, and the extrusion die.
  • the molding dough 25a flowing in the extrusion die 20 is maintained in a pressurized state by narrowing the flow path area of 20 from the inlet 20a side to the outlet 20b side of the extrusion die 20,
  • the pre-foaming prevention effect obtained by the addition of alkane which suppresses foaming of the molding dough 25a was able to be exhibited to the maximum extent.
  • the molding in the barrel 13 of the extruder 12 described above is performed. It was possible to reliably increase the pressure of the dough 25a and maintain the pressure in the extrusion die 20, thereby maximizing the effects of the addition of alkane, such as improving the dispersibility of the foaming gas and preventing prefoaming.
  • the outlet of the extrusion die is formed in the same shape as the inlet of the molding chamber of the molding die, and the end (mandrel portion 26c) of the resistor 26 on the molding die 30 side is shaped into the shape of the outlet 20b of the extrusion die 20.
  • the foaming gas is dispersed in the molding dough 25b when passing through a narrow space formed between them. Further, the distribution of air bubbles in the wood foam molded body obtained by the synergistic effect with the above-described action of alkane was made more uniform.
  • the dispersion state of each component accompanying the melt kneading of the molded dough in the extruder 12 can be made even more uniform, and the mixing and dissolution of the foaming gas into the thermoplastic resin obtained by the addition of alkane can be further accelerated.
  • Explanatory drawing of a bending strength test method Explanatory drawing of the conventional extrusion molding apparatus. Explanatory drawing of the generation
  • the molding material for extrusion foam molding of the present invention is used as a molding material when molding, for example, a plate-like wood molded body into a foamed state (wood foam molded body) by extrusion molding.
  • a foaming agent By adding a foaming agent during extrusion molding, it is possible to produce a homogeneous wood foam molded body using an extrusion molding apparatus that has been considered impossible or difficult in the past. .
  • This extrusion foaming molding material (hereinafter simply referred to as “molding material”) has a molecular weight of 300 to 1000 g / mol, preferably 350 to 800 g / mol, based on wood powder and thermoplastic resin as main components.
  • molding material has a molecular weight of 300 to 1000 g / mol, preferably 350 to 800 g / mol, based on wood powder and thermoplastic resin as main components.
  • 400 to 600 g / mol alkane (C n H 2n + 2 ) is blended so as to be 1 to 5 wt% of the total amount.
  • thermoplastic resin and alkane In addition to the wood powder, thermoplastic resin and alkane, fillers such as talc, pigments for coloring, reinforcing agents, and other auxiliary materials can be added to the molding material.
  • thermoplastic resins such as polypropylene (PP), polyethylene (PE), ABS resin, and vinyl chloride can be used as the thermoplastic resin that is one of the main components of the molding material described above.
  • thermoplastic resins may be used alone, or a plurality of thermoplastic resins may be mixed and used.
  • these thermoplastic resins are collected in a state where a plurality of thermoplastic resins are mixed.
  • polypropylene (PP) is used among the thermoplastic resins described above.
  • the types of polypropylene include homopolymers, random copolymers, and block copolymers.
  • any of these polypropylenes can be used, and for example, the container recycling method (so-called “container”).
  • the container recycling method so-called “container”.
  • Any of the polypropylene recovered in accordance with the “Re-method”) or a mixture of various polypropylenes can be used.
  • thermoplastic resin used in the present invention is preferably one having an MFR (melt flow rate) in the range of 0.5 to 10 (g / 10 minutes), for example, a plurality of thermoplastic resins having different MFRs. May be mixed to obtain an MFR resin that falls within the above numerical range.
  • Wood flour is the other main component of wood molding materials.
  • waste wood such as unused wood, used building waste, and sawdust generated during wood processing Etc. may be obtained by crushing using a crusher, cutter or mill.
  • the type of wood used is not particularly limited, and there is no structural problem even if multiple types of wood are mixed, but considering the finish of the final wood foam molded product, it is somewhat It is preferable to use a complete set.
  • the wood flour to be used various types can be used as long as the particle size is 1000 ⁇ m or less, and preferably the particle size is 150 to 200 ⁇ m.
  • the wood flour is preferably dried before blending with other raw materials from the viewpoint of improving familiarity with the thermoplastic resin and preventing the generation of water vapor during heating and kneading, and preferably contains 1 wt% or less of moisture. Use what has been dried.
  • a preferable blending ratio of this wood powder and the above-mentioned thermoplastic resin is wood powder / thermoplastic resin, which is 50 to 55 wt% / 45 to 50 wt%.
  • Alkane As the alkane (C n H 2n + 2 ) added to the molding material in the present invention, various types can be used as long as the molecular weight is 300 to 1000 g / mol. Alkanes with a molecular weight of less than 300 g / mol have a low melting point and boiling point and are difficult to handle. On the other hand, alkanes with a molecular weight of more than 1000 g / mol cannot obtain the desired effect, as is apparent from the test results described below. In other words, when the lower limit is 300 g / mol or less, the boiling point is low because it approaches the fluid (50 ° C. or less), and when it is 300 g / mol or more, petroleum wax (solid) is formed. When it becomes a fluid, the dispersibility in the resin (PP) is lowered, and it is deposited on the surface, and the desired effect cannot be obtained.
  • the lower limit is 300 g / mol or less
  • the boiling point is low because it approaches
  • the preferred molecular weight range of the alkane to be added is 350 to 800 g / mol, more preferably 400 to 600 g / mol.
  • the addition amount of this alkane is 1 to 5 wt% with respect to the whole molding material to be obtained. If the amount is less than 1 wt%, the effect cannot be obtained, and if it exceeds 5 wt%, alkane is raised on the surface and the expansion ratio is lowered.
  • thermoplastic resin and alkane are added to the above molding materials in an amount of 5 to 30 wt% of the total amount. can do.
  • the talc mentioned as an example of the above-mentioned filler is added to improve the strength of the finally obtained wood composite board, and is added in an amount of 5 to 25 wt% with respect to the total weight of the molding material.
  • the amount of talc added is small relative to this amount, the strength cannot be improved. Conversely, if the amount added is too large, brittleness will occur and the strength will decrease.
  • talc to be added a relatively wide range of particles can be used, and preferably an average particle size of about 5 to 30 ⁇ m is used.
  • the pigment is added to color the finally obtained wooden synthetic board, and various pigments can be added in various formulations according to the color to be obtained in the final product.
  • a reinforcing agent as an additive material.
  • polypropylene is used as a thermoplastic resin as a main raw material
  • maleic acid-modified polypropylene is added as this reinforcing agent.
  • the bondability between the wood flour and the resin is improved.
  • This reinforcing agent has no effect if the addition amount is too small, but the effect increases as the addition is increased, but the cost increases, so about 0.3 to 2.0 wt% as an example with respect to the entire molding material to be obtained. Is preferable.
  • the fillers, pigments, and reinforcing agents such as wood powder, thermoplastic resin, alkane, and talc added as necessary, which make up the molding materials described above, should be uniformly stirred beforehand. It is preferable to prepare a mixed material, and more preferably, after these components are heated and kneaded in advance so that each component is in a uniformly dispersed state, the kneaded material obtained by the melt kneading It is preferable to granulate to a diameter to make a pellet.
  • the pelletization accompanying the melt kneading of the molding material can be performed by a known granulating apparatus such as a pelletizer or a hensil mixer.
  • a pelletizer or a hensil mixer As an example, in the present embodiment, the pellet manufacturing apparatus 40 shown in FIG. It was used.
  • a pellet manufacturing apparatus 40 shown in FIG. 1 has a quantitative supply device 41 that supplies each component of a molding material by a loss-in-weight method and the like, and a raw material supplied by the quantitative supply device 41 at a rate of about 170 to 180 ° C.
  • a screw-type extruder 42 that is melt-kneaded and extruded at a temperature of 50 ° C., and is provided with a die nozzle 43 formed with a large number of small holes at the tip of a barrel 42a of the extruder 42, and is extruded into a circular string shape through the die nozzle 43.
  • the melted material (strand) is extruded into hot water, and pellets are produced by an underwater hot cut method in which a predetermined length cuts with the cutter blade 44a of the cutter 44.
  • extruder 42 various known ones can be used, but a twin screw extruder is preferably used.
  • the twin-screw extruder is an extruder having two screws that rotate with a screw thread and a screw groove being engaged with each other, and in this embodiment, a screw that rotates in different directions is used. .
  • the twin screw extruder has a unique kneading effect due to the forced meshing force and screw meshing due to the above-mentioned screw meshing structure, which is very effective in dispersing the raw materials, and has a low rotational speed. Since the necessary pushing force can be secured, the temperature rise of the material due to friction can be suppressed. Therefore, it is easy to control the material temperature by a heater (not shown) provided on the outer periphery of the cylinder of the extruder.
  • the pellets can be suitably manufactured.
  • the pellets of the molding material obtained as described above are dehydrated by a centrifuge 45, and then the dehydrated pellets are collected and used as a molding material for a wood foam molded body to be described later.
  • the molding material for extrusion foam molding obtained as described above is subjected to extrusion foam molding together with a foaming agent to become a wood foam molded body of a predetermined shape.
  • the produced pellets of the molding material are sufficiently dried using a dryer 47 or the like as shown in FIG. 2 as necessary.
  • the pellets are preferably dried until the moisture content is 0.2 wt% or less.
  • a drying method is not particularly limited, in the present embodiment, as an example, it was dried to the above water content in a hot dryer at a temperature of 120 ° C. over 2 hours.
  • Foaming agent types include volatile foaming agents that are gas or liquid, generally volatile foaming agents (gas-based) such as CO 2 , N 2 , Freon, and propane, and degradable foaming agents. Any of these foaming agents may be used, and various commercially available products may be used. In this embodiment, a degradable foaming agent is used.
  • Decomposable foaming agents include inorganic compounds, azo compounds, sulfonyl hydrazide compounds, nitroso compounds, azide compounds, etc., but they can be easily dispersed to thermoplastic resins that are the main raw materials of molding materials. Any foaming agent may be used as long as it does not dissolve and does not give unnecessary coloration or the like to the obtained wood foam molded article.
  • a pellet-shaped foaming agent called a “master batch” in which a foaming agent is added to the carrier resin at a high concentration is commercially available, and such a foaming agent may be used.
  • a master batch was used in which the carrier resin was PE and the foaming agent was sodium bicarbonate belonging to the inorganic compound system.
  • the foaming agent is added in an amount necessary depending on the amount of gas generated by the foaming agent to be used, the foaming degree of the foamed molded product to be produced, etc.
  • the preferred amount of foaming agent (master batch) in this embodiment is an example.
  • the total of the molding material and foaming agent is 0.3 to 3 wt% with 100 wt%.
  • the molding material to which the foaming agent has been added in this manner is then continuously introduced into a screw type extruder 12 provided in the extrusion molding apparatus 11 and melt-kneaded while being heated, and is extruded by the extruder 12.
  • a screw type extruder 12 provided in the extrusion molding apparatus 11 and melt-kneaded while being heated, and is extruded by the extruder 12.
  • the molded dough 25a is introduced into the extrusion die 20
  • it is introduced into the molding die 30 following the extrusion die 20, molded into a predetermined shape, and cooled and solidified to obtain a wood foam molded body having a desired shape. Obtainable.
  • Extrusion Molding Equipment Various types of extrusion molding equipment can be used for the production of the wood foam molding.
  • the known extrusion molding equipment described with reference to FIG. It is also possible to use the extrusion molding apparatus described with reference to FIG.
  • the pressure of the molding dough 25a in the extruder 12 is maximized. And the pressure of the forming dough 25a introduced into the forming die 30 from the extruder 12 is maintained while maintaining the pressure of the forming dough 25a, and the pressure of the forming dough 25a is suddenly released in the forming die 30. It is preferable to use the extrusion molding apparatus 11 having a structure capable of achieving the above.
  • the extrusion molding apparatus 11 shown in FIG. 2 includes a quantitative supply device 14 that supplies the molding material pellets obtained by the above-described process and the foaming agent master batch respectively in a fixed amount, and through the quantitative supply device 14.
  • a screw-type extruder 12 which melts and kneads the supplied molding material pellets and foaming agent together, and an extrusion die 20 for introducing the extruded dough 25a extruded by the extruder 12, and the extrusion die 20 are
  • the molding dough 25a that has passed through is formed into a predetermined shape and is cooled and solidified, and a take-up machine 50 that takes the extruded dough (woody foam molded body) that has been cooled and solidified through the shaping die 30 is provided. Yes.
  • the above-mentioned fixed-quantity supply apparatus 14 is provided with a molding material feeder 14a for supplying the pellets of the molding material of the present invention obtained as described above to the extruder 12 in a fixed quantity, and by this molding material feeder 14a, the extruder 12
  • a foaming agent feeder 14b is provided in the present embodiment for merging the foaming agent as a master batch by a fixed amount.
  • the hoppers provided in the feeders 14a and 14b, respectively.
  • the pellets of the molding material and the foaming agent can be supplied to the extruder 12 at a predetermined blending ratio by the rotation of the conveying screw by the motor M provided at the lower portion of the hopper. It is like that.
  • the extruder 12 into which the molding material and the foaming agent are charged is melt-plasticized by heating and kneading the mixed material of the pellets of the molding material and the foaming agent, and the melt-plasticized molding dough 25a is obtained.
  • a screw-type extruder 12 including a screw 15 to be extruded In this embodiment, an example in which a biaxial screw extruder 12 is applied as the extrusion molding apparatus 11 has been described. However, various types such as a single screw type, a multi-screw type, and a screw extruder that combines them are used. A screw extruder may be used.
  • the twin screw extruder has a forced pushing force and a unique kneading effect due to the meshing structure of the screw 15, which is very advantageous for dispersing the raw material and reduces the rotational speed.
  • the material temperature is controlled by a heater (not shown) provided on the outer periphery of the barrel 13 of the extruder 12.
  • a twin-screw type screw extruder is used as the extruder 12 of the extrusion molding apparatus 11.
  • a biaxial screw extruder 12 shown in FIG. 2 includes a barrel 13, a pair of screws 15 rotatably provided in the barrel 13, and a drive source including a reduction gear, a motor, and the like that rotationally drives the screws 15. M, and an extrusion die 20 and a forming die 30 to be described later are provided on the tip side of the barrel 13 (front in the extrusion direction, right side in FIG. 2).
  • the barrel 13 has an opening 13a opened at the front end in the extrusion direction, and is formed in a cylindrical shape whose rear end (rear in the extrusion direction, left side in FIG. 2) is closed. 13 is provided with a raw material charging port 13b penetrating through the inside and outside, and the mixed material of the molding material and the foaming agent is charged by the above-described quantitative supply device 14 through this charging port 13b.
  • a heating means such as a band heater is provided on the outer peripheral portion of the barrel 13 so as to wind or wrap the barrel 13 over the entire length of the barrel 13. The mixed material supplied to the inside is heated.
  • the barrel 13 is divided into a plurality of zones (for example, a melting zone 131, a foaming agent decomposition zone 132, and a foaming gas mixing zone 133), and the temperature can be individually controlled for each of the zones 131 to 133 by heating means. It is configured.
  • Each of the screws 15 is composed of a round bar-shaped rotating shaft and a screw constituting a screw thread portion of the screw 15 provided integrally in a spiral around the rotating shaft.
  • a rotating shaft (left side in FIG. 2) provided at the rear end of each screw 15 protrudes rearward from the rear end of the barrel 13, and the protruding portion is connected to a motor M as a drive source.
  • 15 is configured as a biaxial conical screw having a tapered shape toward the distal end side, in which the inclined screw thread and the screw groove formed in 15 are meshed and rotated in a symmetric state.
  • the part of the screw 15 located in the barrel 13 is arranged in the melting zone 131 to melt and knead the heated raw material, and is arranged in the foaming agent decomposition zone 132 to promote the decomposition of the foaming agent. It is constituted by a decomposition promoting part 152 and a dispersion promoting part 153 arranged in the foaming gas mixing zone 133 to promote the dispersion of the foaming gas, and the tooth profile of the screw is formed in a shape corresponding to the above function in each part. .
  • the screw 15 is rotated by the operation of the drive source M, whereby the mixed material supplied into the barrel 13 via the quantitative supply device 14 is heated and kneaded, and the tip of the screw 15 is moved along the groove between the screws of the screw 15. It is pushed out of the barrel 13 from the front end side of the screw 15 by a pressing force that is fed in the direction and becomes a molding dough 25a in a melt plasticized state and applied to the forming dough 25a.
  • the wood powder added to the molding material is a porous material, it has the property of easily taking in the foaming gas generated by the decomposition of the foaming agent as compared with the resin material.
  • the alkane in the mixing zone 133 of the foaming gas is formed by the foaming gas generated by the decomposition of the foaming agent being thermoplastic. While accelerating the action of being mixed and dissolved in the resin, it plays a role of suppressing the intake of foaming gas into the wood powder.
  • the extrusion die 20 is to introduce the molding dough 25a extruded from the barrel 13 of the extruder 12 into a pressurizing state while being introduced into a molding die 30 described later. It is detachably attached to the tip end side of 13 by a bolt or the like via an adapter 16.
  • the extrusion die 20 includes an inlet 20a having a shape that matches the shape of the outlet 13a of the barrel 13 of the extruder 12, and an outlet 20b having a shape that matches the shape of the inlet 30a of the molding die 30 described later.
  • the width in the vertical direction of the flow path 21 decreases from the inlet 20a side to the outlet 20b side.
  • the width of the flow path 21 gradually increases from the inlet 20a side toward the outlet 20b side in the lateral cross section (see FIG.
  • a breaker plate 22 is fitted and attached to the adapter 16 attached to the inlet 20 a side of the extrusion die 20, and a molding that flows in the flow path 21 is formed in the flow path 21 of the extrusion die 20.
  • a resistor 26 is provided that provides resistance to the fabric 25a and rectifies the flow of the molded fabric 25a.
  • the breaker plate 22 is formed in a disk shape in which a large number of small holes 22a are formed in a mesh shape.
  • the adapter 16 In order to attach the breaker plate 22 to the adapter 16, the adapter 16 has an attachment hole 16a having substantially the same diameter as the outer periphery of the breaker plate 22 from the end face of the adapter 16 on the extrusion die 20 side toward the extruder 12 side.
  • the above-described breaker plate 22 is inserted into the mounting hole 16a from the extrusion die 20 side, and the fixing ring 17 is further inserted into the mounting hole 16a from the extrusion die 20 side. It is attached at a predetermined position inside.
  • the small hole 22a of the breaker plate 22 and the inner periphery of the fixing ring 17 form a part of the flow path of the molding dough 25a in the adapter 16.
  • the resistor 26 formed in the flow path 21 of the extrusion die 20 applies pressure to the flow of the molding dough 25a in the extrusion die 20 to pressurize the forming dough 25a in the extrusion die 20.
  • the pressure of the molding dough 25a suddenly increases when it is introduced into the molding die 30 to be described later by passing through the extrusion die 20 by maintaining such a pressurized state.
  • the molded dough 25a is easily foamed at the outlet 20b portion of the extrusion die 20 (the inlet 30a portion of the molding die 30).
  • the resistor 26 is provided on the side of the inlet 20a of the extrusion die 20 as shown in FIGS. 3 (A) and 3 (B) and FIGS. 5 (A) to (C). And a main body formed in a rectangular parallelepiped shape extending the end of the tongue-like doped portion 26a that gradually increases in width and thickness from the outlet 20b side, and is fixed at a predetermined position in the extrusion die 20
  • a bridge portion 26b provided with a rib 26d for reducing the thickness and width from the bridge portion 26b toward the outlet 20b of the extrusion die 20 and then reaching the outlet 20b of the extrusion die 20 with a constant width and thickness.
  • a mandrel portion 26c is provided.
  • the rectangle forming the contour of the end surface 26e of the mandrel portion 26c on the outlet 20b side of the extrusion die 20 has a slightly smaller similar shape to the rectangle drawn by the inner periphery of the outlet 20b of the extrusion die 20.
  • the mandrel portion 26c is arranged in the center of the outlet 20b of the extrusion die 20 to form a relatively narrow gap ⁇ formed between the inner wall of the outlet 20b of the extrusion die 20 and the outer periphery of the mandrel portion 26c.
  • the forming dough 25a is introduced into the forming die 30.
  • the resistor 26 including the doped portion 26a, the bridge portion 26b, and the mandrel portion 26c in the extrusion die 20
  • the molding dough 25a passing through the extrusion die 20 is extruded by the resistor 26.
  • 20 flows along the inner wall of the flow path 21 and is converged into a relatively thin flow when passing through the gap between the inner periphery of the outlet 20b of the extrusion die 20 and the outer periphery of the mandrel portion 26c. Uniform dispersion of the foaming gas is promoted.
  • the passage area in the outlet 20b of the extrusion die 20 formed in the same shape as the inlet 30a of the molding die 30 described later is sufficiently small with respect to the inlet 30a of the molding die 30 due to the presence of the mandrel portion 26c. Because of the area, the pressure of the molding dough 25a introduced into the forming die 30 through the outlet 20b of the extrusion die 20 is suddenly released, and the release of this pressure triggers the inside of the forming dough 25a. The foaming gas begins to expand rapidly.
  • the alkane added to the molding material reduces the resistance between the extrusion die 20 and the inner surface of the flow path, homogenizes the molding dough 25 a, and has the effect of moving smoothly. And has the effect of maintaining a homogenized state.
  • the molding dough 25a that has passed through the extrusion die 20 is introduced into the molding die 30 and molded into a predetermined shape determined by the shape of the molding chamber 31 formed in the molding die 30. At the same time, it is cooled and solidified to form a wood foam molded article.
  • the molding die 30 is formed by an assembly of a plurality of molds as shown in FIG. 2, and includes a first molding die 301 in which the inlet 30 a is communicated with the outlet 20 b of the extrusion die 20.
  • the second molding die 302 disposed on the outlet side of the first molding die 301 with a predetermined spacing, and the predetermined spacing on the outlet side of the second molding die 302
  • the third forming die 303 arranged through the seventh die 307 is continuously arranged (see FIG. 2).
  • Each of the molding dies 301 to 307 is formed with a molding chamber 31 having a cross-sectional shape corresponding to the shape of the outlet 20b of the extrusion die 20 described above.
  • the first to third molding dies are used.
  • the first to third molding dies 301 to 303 are reached. Accordingly, the temperature of the extruded dough 25a is gradually lowered and solidified to obtain a desired foamed molded product.
  • the flow path of the cooling medium is not provided in the thickness of the fourth to seventh molding dies 304 to 307.
  • the molding dough 25a introduced from the extrusion die 20 is introduced into the first molding die 301 of the molding die 20 formed as described above, it is extruded into the first molding die 301 by the configuration of the extrusion die 20 described above.
  • the formed dough 25a is suddenly released in pressure, and the foaming gas generated by the foaming agent decomposed during melt-kneading in the extruder 12 rapidly expands at this position to foam the formed dough 25a. .
  • the molding chamber 25 in the first molding die 301 is filled with the molded fabric 25a thus foamed, and is molded into a shape corresponding to the shape of the molding chamber 31, and is cooled and solidified.
  • the molded dough that has been molded and cooled by the first molding die 301 to become a wood foam molded body passes through the first molding die 301 by taking-up by the take-up machine 50, and then the second molding die 302, the third molding die 303. .., And is sequentially cooled down to the seventh molding die 307 to complete the production of the wood foam molded body.
  • the alkane added to the molding material has the role of improving the slipperiness of the molded fabric or the wood foam molded body against the inner wall of the molding chamber 31 of the molding die 30 and maintaining the surface smoothness of the produced wood foam molded body. Fulfill.
  • the composition of the molding material of Comparative Example 6 is included in the category of the molding material of the present application, but the molding material of Comparative Examples 6 and 7 is a foaming agent as described later. It was described as “Comparative Example” because extrusion was carried out without adding.
  • Comparative Examples 8 to 10 a foaming agent was added.
  • Examples 1 to 5 and Comparative Examples 1 to 7 are both Wood flour is kaneki fuel (existing) "A-100" (particle size 50-200 ⁇ m),
  • HDPE high density polyethylene
  • Talc is Fuji Talc Industrial Co., Ltd. “SP-40” (average particle size 23 ⁇ m), Toda Kogyo Co., Ltd. “Brown 710” (silver oxide), The reinforcing agent is Sanyo Chemical Co., Ltd. “Umex 1010” (maleic acid modified PP), The foaming agent is Eiwa Kasei Co., Ltd. “Polyslen EE405F” (master batch obtained by adding sodium bicarbonate to carrier resin PE).
  • Examples 1, 3, and 6 are Mitsui Chemicals, Inc. “Mitsui High Wax 100P”
  • Examples 2, 4, 5, and 7 are Nippon Seiwa Co., Ltd. “155 ° F. Wax”
  • Comparative Examples 2 and 9 are Mitsui Chemicals, Inc. “Mitsui High Wax 200P”
  • Comparative Examples 3 and 7 are Mitsui Chemicals, Inc. “Mitsui High Wax 410P”
  • Comparative Example 4 is Mitsui Chemicals, Inc. “Mitsui High Wax 100P”, In Comparative Examples 5, 6, 8, and 10, Nippon Seiwa Co., Ltd. “155 ° F. Wax” was used.
  • the extruder is a bi-directional screw (65 ⁇ ) rotating in a different direction, and melted and kneaded at a temperature of 170 to 180 ° C with this extruder to extrude a strand with a diameter of about 4mm. Cut every time.
  • the pellets of the obtained molding material were dehydrated by a centrifuge, and the water content was dehydrated to 2% or less.
  • Comparative Examples 8 to 10 are obtained by adding a foaming agent.
  • the extruder used was a counter-rotating conical twin-screw extruder “T-58” manufactured by Cincinnati Extrusion.
  • the pellets of the molding material obtained by pre-kneading Prior to charging into the extruder, the pellets of the molding material obtained by pre-kneading are dried at 120 ° C. for 2 hours or more by a hot dryer, and the moisture content is dried to 0.2% or less. At the same time, it was put into an extruder.
  • the extrusion temperature (set temperature of the extruder to the extrusion die) was 180 to 190 ° C.
  • the molding die first to third molding dies was a 90 ° C. water-cooled jacket.
  • the deaeration vent was opened to the atmosphere without performing vacuuming via the deaeration vent provided in the cylinder of the extruder.
  • the wood foam molded body formed into a plate shape having a width of 145 mm and a thickness of 25 mm was continuously formed in the length direction.
  • Measurements and observations Measurements related to changes in the state of the molding dough
  • a predetermined position on the inlet side of the extrusion die [Fig. ) At the position indicated by arrow X], and the extrusion rate per hour in the extrusion molding apparatus when the extruder is driven at the maximum output is the maximum extrusion rate (kg / Hr).
  • the maximum extrusion rate (kg / Hr).
  • the target value was set to 70 (kg / Hr), and the case where the maximum extrusion amount equal to or greater than this target value was obtained was evaluated as “ ⁇ ”, and the case where it was less than the target value was evaluated as “ ⁇ ”.
  • the density of these was set as a target value from 0.80 to 0.85 g / cm 3 , and “ ⁇ ” was evaluated for those included in this range, and “ ⁇ ” was evaluated for those outside the numerical range.
  • the weight of the plate was measured by cutting the plate material molded to a width of 145 mm and a thickness of 25 mm as described above into a length of 2000 mm. What deviated more was evaluated as "x".
  • the bending strength of the plate is as follows.
  • the manufactured plate is cut into a length of 500 mm, placed on a table placed at an interval of 400 mm, and placed at an intermediate position of the table.
  • the load applied to the side was increased and the load when the plate broke was measured.
  • 155 kg was set as a target value, a value less than this target value was evaluated as “ ⁇ ”, and a value higher than the target value was evaluated as “ ⁇ ”.
  • the surface property of the plate material was observed with the naked eye, and the presence or absence, size, etc., of the state of occurrence of wrinkles due to uneven flow of resin on the surface of the plate material were confirmed.
  • Test results Table 2 shows the results of measurements, observations and evaluations on the above items.
  • the maximum extrusion amount is a high value of 70 (kg / Hr) or more and no foaming agent is added. It was confirmed that the maximum extrusion amount equal to or greater than that of Comparative Example 6 (75 kg / Hr) and Comparative Example 7 (65 kg / Hr) was obtained.
  • Example 6 had almost the same evaluation as Example 1 except for the strength.
  • Example 7 had almost the same evaluation as Example 2 except for the strength (the same is true in the following discussion, and is omitted).
  • Comparative Example 8 when the alkane of the present invention is used in an amount exceeding the amount of the present invention, the foaming rate is lowered to inhibit foaming, which is not preferable.
  • Comparative Example 9 had almost the same evaluation as Comparative Example 2 except for strength.
  • Comparative Example 10 had almost the same evaluation as Comparative Example 5 except for the strength (the same applies to the following discussion, and is omitted).
  • the pressure in the extrusion die is increased by the increase in the volume of the formed dough due to pre-foaming. It should have risen to the same extent as the measurement result (8.0 MPa) of Comparative Example 1 in which no measurement was performed.
  • the pressure in the extrusion die measured in Examples 1 to 7 is not only smaller than the pressure of Comparative Example 1 (8.0 MPa), but also other Comparative Examples (Comparative Compared to Examples 2 to 5, 7, 9, 10), this is because the alkane having the predetermined molecular weight of the present application is added in the predetermined addition amount of the present application, and the extruder or the extrusion die. This means that the pre-foaming of the foaming gas inside is suppressed.
  • Example 1 and Comparative Example 6 in which the composition of the molding material is substantially the same and only the presence or absence of the addition of the foaming agent is compared, the maximum extrusion amount is 75 (kg / kg) in both Example 1 and Comparative Example 6. Hr).
  • Example 1 although the foaming agent was added and extrusion molding was performed, no decrease in the maximum extrusion amount was observed.
  • Example 1 the density of the molded fabric in a fluidized state (molded fabric before passing through the extrusion die) is maintained at the same level as that of Comparative Example 6, that is, the pre-foaming is suppressed. At the same time, it can be seen that the foaming of the molding dough is abruptly carried out in a relatively short time after the exit of the extrusion die and the cooling of the molding dough by the molding die is started.
  • foaming gas generated by thermal decomposition of the foaming agent does not contribute to foaming of the resin part by being taken into the wood powder, which is a porous material.
  • the addition of alkane promotes the incorporation of the foaming gas into the resin part, not on the wood flour side, resulting in low density and high foaming compared to the comparative example. It is thought that it is possible to produce wood foam molded products with a high rate.
  • the alkane dissolves not only in the wood powder but also in the molten resin, which makes it easier to incorporate the foaming gas into the molten resin. Is considered to have been realized.
  • the foamability was improved by the addition of alkane.
  • the obtained foamed molded product was reduced in weight (see “weight” in Table 2) and the amount of raw material used was reduced. It has been obtained.
  • Example 1 in which an alkane having a molecular weight of 900 g / mol, which is close to the upper limit of 1000 g / mol, is added is not practically problematic.
  • the molecular weight of the alkane to be added is 800 g / mol, more surely 600 g / mol, in order to completely prevent such soot generation.
  • the upper limit is preferably mol.
  • the pre-foaming of the molding dough in the extruder and the extrusion die can be suppressed by adding the predetermined alkane of the present application, which is relatively high. Since the maximum extrusion amount could be realized, the productivity of the wood foam molding could be improved.
  • Extruder 12 (Screw) Extruder 13 Barrel 13a Outlet (Barrel 13) 13b slot (for barrel 13) 131 Melting Zone 132 Foaming Agent Decomposition Zone 133 Foaming Gas Mixing Zone 14 Metering Feed Device 14a Molding Material Feeder 14b Foaming Agent Feeder 15 Screw (of Extruder 12) 151 Melting and kneading part 152 Decomposition promoting part 153 Dispersion promoting part 16 Adapter 16a Mounting hole 17 Fixing ring 20 Extrusion die 20a Inlet (of the extrusion die 20) 20b outlet (extrusion die 20) 21 Channel (of extrusion die 20) 22 Breaker plate 22a Small hole 25a Molding fabric 26 Resistor 26a Dopedo part 26b Bridge part 26c Mandrel part 26d Rib 26e End face 30 Molding die 30a Entrance (of molding die 30) 30b outlet (for forming die 30) DESCRIPTION OF SYMBOLS 31 Molding chamber 32 Flow path of cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 高品質な木質発泡成形体を得ることのできる押出発泡成形用の成形材料を得ることにより,欠陥のない高品質な木質発泡成形体を効率的に生産する。木粉と熱可塑性樹脂を主成分とし,分子量が300~1000g/molのアルカンを1~5wt%含む構成材料を,各構成成分が均一に分散された状態となるまで溶融混練した後に所定の粒径に造粒したペレットとして形成された成形材料を得る。次いで,この成形材料を発泡剤と共に押出成形装置によって所定の形状に押出成形して木質発泡成形体を得る。押出成形に際し,押出機12より押し出された成形生地25aを加圧された状態を維持しながら成形ダイ30の成形室31内に導入し,該成形ダイ30の成形室31に対する導入時に前記成形生地25aの圧力を開放して成形生地25aの発泡を生じさせることが好ましい。

Description

押出発泡成形用の成形材料及びその製造方法,並びに前記成形材料を使用して製造した木質発泡成形体,前記木質発泡成形体の製造方法並びに製造装置
 本発明は,熱可塑性樹脂と木粉とを主成分とした押出発泡成形用の成形材料とその製造方法,及び前記成形材料を使用して製造された木質発泡成形体及びその製造方法並びに製造装置に関する。
 熱可塑性樹脂と木粉を共に溶融混練して得た成形生地を所望の形状に成形して得られる成形体(木質成形体)は,木材の風合いを持ちつつも,腐敗し難い等といった樹脂成形体としての特性をも併せ持つことから,例えば屋外に設置されるウッドデッキ用の建築材料等として広く使用されている。
 この種の木質成形体を押出成形によって製造する際に使用される押出成形装置の一例を示せば図8に示す通りである。
 この押出成形装置641は,円筒状のバレル643とこのバレル643内部に回転可能に設けられるスクリュ645を備えた押出機642と,前記押出機642のスクリュ645を回転駆動させる駆動源(図示せず)を有すると共に,この押出機642のバレル643に設けた出口643aより押し出された成形生地625aを導入して成形するダイ650を備えている。
 このような構成の押出成形装置641を用いて木質成形体(板材)を成形するには,例えば,木粉,熱可塑性樹脂,顔料,強化剤等の必要な材料を所定の配合比で配合したものを混合原料として押出機のバレル643に設けられたホッパ644を介してバレル643内に供給し,駆動源によって押出機のスクリュ645を回転駆動させることで混合原料を加熱混練しながらスクリュ645の先端方向に押出し力を加えて圧送し,溶融可塑化した成形生地625aをスクリュ645先端側においてバレル643に設けた出口643aよりダイ650内に形成された成形室650a内に押し出すことにより,成形室650aの断面形状に合致した断面形状の木質成形体を製造することができるようになっている(例えば,特許文献1参照。)
特開平8-118452号公報
 ここで,熱可塑性樹脂と木粉とを主成分とする混合原料を押出成形によって所定の形状に成形する場合,前述したように押出機642で溶融混練された成形生地625aをダイ650内で所望の形状に成形すると共に冷却固化されて目的の製品に成形することとなるが,この工程において生産性を向上させながら,如何にして品質の安定した製品を得るかが重要なポイントとなる。
 しかし,木粉を多量に含む木質成形体の製造にあっては,成形生地625aの流れを制御することが難しく,生産性の向上と品質の安定した製品の製造を両立させることが難しいものとなっている。
 特に,溶融可塑化した成形生地625aを発泡させ木質成形体(本願において「木質発泡成形体」という。)とするために原料中に発泡剤を添加した場合には,発泡剤の発泡に伴って押出機642やダイ650内における成形生地625aの圧力や流れに急激な変化が生じる等して成形生地625aに脈動が生じる等,成形生地625aの流れを制御することが更に困難となり,成形生地625a内における発泡ガスの偏在に伴う気泡の偏在や巣の発生,成形生地625aの脈動に伴う表面における皺の発生等,最終的に得られる木質発泡成形品に欠陥が生じ易くなることから,品質にバラツキのない安定した製品を製造することが一層困難になる。
 一例として,前述した木粉,熱可塑性樹脂,顔料,強化剤等から成る原料に単純に発泡剤を添加したものを混合原料として,図8を参照して説明した既知の押出成形装置641によって押出成形を行う場合,押出機642のバレル643内での溶融混練時の加熱によって発泡剤が発泡ガスを発生すると共に発泡ガスが膨張して気泡を発生させると,このようにして発生した気泡は,成形生地の中心部に集中し易いものとなる。
 そして,このように成形生地625aの中心部に気泡が集中した状態でダイ650内に形成された成形室650a内でこの成形生地625aが冷却・固化されると,木質発泡成形体の幅方向中央部(芯部)に更に気泡が集中してしまい,所謂「巣」以上の大きな内部空隙Gによる内部欠陥を生ずることとなるため,木質発泡成形体の幅方向中央が長手方向にわたり,厚み方向両方向に中央部が膨出し,断面方形を維持することができず,製品にはならないものであり,さらに強度においても当然これが低下することとなり,未発泡と同等の高い品質を有する発泡成形品を製造することは,商業ベースでは不可能もしくは実験レベルでも非常に困難であった(図9)。尚,図9において,成形板の同図下辺は,強度維持のため,長手方向にわたり,鋸歯状の溝条が形成されている。
 このような問題の解消のために,例えば押出成形装置641側の構造変更による対処も考えられ,例えば,図10に示すように,ダイ650の入口部に複数のメッシュから成るスクリーンを成すブレーカプレート652を配置し,ブレーカプレート652のメッシュを介して成形生地625aをダイ650の成形室650a内に押し出すことにより成形生地625aに抵抗を与え,これによりバレル643の内圧を高めることで,バレル643の内部での発泡ガスの膨張を抑制し,押出機642のバレル643内で発泡ガスの分散状態をより均一なものとした後にダイ650に成形生地625aを導入することを試みた。
 しかし,このような構成の押出成形装置641によって木質発泡成形体を成形しても,前掲の図8に示した既知の押出成形装置641を使用した場合と同様,成形室650a内に成形される発泡成形品の中心部(芯部)に気泡が集中し易いという現象は避けられず,図9に示す内部空隙Gの発生が不可避であり,高強度の木質発泡成形体を得ることが困難であった。
 以上のように,押出成形によって欠陥のない高品質の木質発泡成形体を得ようとすれば,押出成形時における成形生地625aの流れと,成形生地625aに対する発泡ガスの拡散を均一に行うと共に,発泡ガスによる成型生地625aの膨張を適切な時期に行わせることが必要となるが,押出成形装置側の構造変更のみによってはこのような制御を完全に行うことは難しい。
 そこで,本発明は,上記従来技術における欠点を解消するために成されたものであり,原料側の組成を見直すことにより,高品質な木質発泡成形体を得ることのできる押出発泡成形用の成形材料を提供することを目的とする。
 また,本発明の別の目的は,前記成形材料を使用して製造された,欠陥のない高品質の木質発泡成形体を提供することを目的とする。
 更に本発明は,前記押出発泡成形用の成形材料を使用した押出発泡成形を行うに適した押出成形装置,押出成形方法を提供することを目的とする。
 以下に,課題を解決するための手段を,発明を実施するための形態における符号を付して記載する。この符号は,特許請求の範囲の記載と発明を実施するための形態の記載との対応を明らかにするためのものであり,言うまでもなく,本願発明の特許請求の範囲の技術的範囲の解釈に制限的に用いられるものではない。
 上記課題を解決するために,本発明押出発泡成形用の成形材料は,発泡剤を添加して押出発泡成形を行うことにより木質発泡成形体を製造するための成形材料において,
 木粉とポリプロピレン,ポリエチレン等の熱可塑性樹脂を主成分とし,分子量が300~1000g/molのアルカンを1~5wt%含むことを特徴とする(請求項1)。
 前記構成の成形材料は,各構成成分を均一に分散された状態に溶融混練した後に所定粒径に造粒して得たペレットとして形成することができる(請求項2,5)。
 更に,前記成形材料は,前記木粉と前記熱可塑性樹脂の配合比を,木粉50~55wt%に対し,樹脂が45~50wt%として構成することができる(請求項3,6)。
 更に,前記木粉,熱可塑性樹脂及びアルカンに加え,充填材及び/又は強化剤及び/又は顔料を含むものとしても良い(請求項4,7)。
 また,本発明は,上記いずれかの成形材料を発泡剤と共に押出成形装置によって所定の形状に押出成形して得た木質発泡成形体(請求項8),及びその製造方法にも関する。
 この木質発泡成形体の製造方法は,前述したいずれかの成形材料を,発泡剤と共に前記押出成形装置11に設けられたスクリュ式の押出機12内に導入して前記発泡剤の分解温度以上の温度で溶融混練し,
 前記押出機12より押し出された成形生地25aを加圧された状態に維持しながら成形ダイ30の成形室31内に導入し,
 該成形ダイ30の成形室31に対する導入時に前記成形生地25aの圧力を開放して前記成形生地25aを発泡させると共に,該成形ダイ30の成形室31内を通過する過程で前記成形生地25aを前記成形室31の断面形状に対応した形状に成形しながら冷却固化させることを特徴とする(請求項9)。
 この木質発泡成形体の製造方法としては,前記押出成形装置11の前記押出機12と前記成形ダイ30間に,前記押出機12の出口(バレル13の出口13a)と前記成形ダイ30の入口30a間を連通する押出ダイ20を設け,
 前記押出機12の出口13aから押出ダイ20内に導入される成形生地25aに抵抗を与えて前記押出機12内における成形生地25aの圧力を高めると共に,
 前記押出ダイ20の流路面積を該押出ダイ20の入口20a側から出口20b側に向かって狭めることにより,前記押出機12から前記押出ダイ20に導入された成形生地25aの圧力を維持しつつ前記成形ダイ30の成形室31内に導入し,
 該押出ダイ20を通過した成形生地25aを前記押出ダイ20の出口20bを通過した際に圧力開放して前記成形ダイ30の入口30a部分において前記成形生地25aを発泡させるものとしても良い(請求項10)。
 更に,上記方法により木質発泡成形体の製造を行うための押出成形装置は,
 熱可塑性樹脂及び木粉を主成分とする成形材料を発泡剤と共に導入して前記発泡剤の分解温度以上の温度で溶融混練するスクリュ式の押出機12と,
 前記押出機12の出口13aに連通して前記押出機12によって押し出された成形生地を導入する押出ダイ20と,
 前記押出ダイ20の出口20bに連通して前記押出ダイ20を通過した成形生地25aを内部に形成された成形室31に導入すると共に,該成形室31内を移動する前記成形生地25aを前記成形室31の内部形状に対応した形状に成形しながら冷却固化する成形ダイ30を備え,
 前記押出機12の出口13a部分に,多数の孔が形成されたメッシュ状のブレーカプレート22を設けると共に,
 前記押出ダイ20内に,前記押出ダイ20の入口20a側から出口20b側に向かって該押出ダイ20内の流路面積を減少させる抵抗体26を設けたことを特徴とする(請求項11)。
 また,前記押出ダイの出口内の流路面積を,前記成形ダイの入口に対して小さな面積とすれば好適である(請求項12)。
 更に,前記押出成形装置11は,前記押出ダイ20の前記出口20bを前記成形ダイ30の成形室31の入口30aと同一形状に形成し,
 前記抵抗体26の前記成形ダイ側の端部(マンドレル部26c)を,前記押出ダイの出口形状に対して僅かに小さい相似形を有する断面形状に形成すると共に,前記押出ダイ20の出口20b内の中心に配置した構成とすることができる(請求項13)。
 また,前記押出成形装置11の前記スクリュ式の押出機は,これを二軸押出機とすることが好ましい(請求項14)。
 前記熱可塑性樹脂のMFR(メルトフローレート)が0.5~10(g/10分)範囲が好ましい(請求項15,16)。
 また,前記熱可塑性樹脂がポリプロピレン(PP),ポリエチレン(PE),ABS樹脂,塩化ビニル(PVC)の一種又はそれらの混合である樹脂を用いることができる(請求項17,18)。
 以上説明した構成により,本願発明にあっては,以下の顕著な効果を得ることができた。
 押出成形装置11による押出発泡成形を行う際の成形材料として,木粉と熱可塑性樹脂を主成分とし,且つ,分子量が300~1000g/molのアルカンを1~5wt%含む押出発泡成形用の成形材料を使用することにより,高品質の木質発泡成形体を得ることができた。
 すなわち,前述したアルカンの添加により,押出機12のバレル13内における混合材料の溶融混練に際し,熱可塑性樹脂に対する発泡ガスの混合溶解が促進される一方,木粉に対する発泡ガスの取り込みが抑制され,成形生地内に発泡ガスを均一な状態に分散させることができた。
 また,アルカンの添加は,金属表面と成形生地との接触抵抗を軽減させ,均一な状態に発泡ガスが分散された前記成形生地の移動を円滑に行わせることができ,均一な状態に発泡ガスが分散された状態を維持したまま成形生地25aを成形ダイ30に導入することが可能となった。
 しかも,アルカンを添加したことにより,成形生地25aの圧力開放が行われる迄は,熱可塑性樹脂中に取り込まれた発泡ガスが膨張を開始することを抑制することができ,成形ダイ30内に導入される前に成形生地25aが事前に発泡を開始することを防止できた。
 その結果,上記成形材料を使用した押出発泡成形により,内部における気泡の発生状態が均一で,高品質な木質発泡成形体を得ることができる一方,押出成形時における生産性を向上させることができた。
 前述した成形材料が,各構成成分が均一に分散された状態に溶融混練した後に所定粒径に造粒して得たペレットである場合には,成形材料の取り扱いが容易となると共に,粉体等を含む各構成成分を個別に取り扱う場合に比較して作業環境の汚染を少なくすることができた。
 また,発泡剤を除く各構成成分が事前に均一な分散状態に溶融混練されていることから,押出機12内で溶融混練する際に,各成分に偏りのない均一な溶融混練状態をより一層得やすいものとすることができた。
 なお,前記木粉と前記熱可塑性樹脂の配合比が,木粉50~55wt%に対し,樹脂が45~50wt%とする場合には,前述したアルカンの添加による効果を確実に得ることができた。
 また,前記成形材料に予め充填材,強化剤,顔料を含めておくこと,特にこれらの原料を事前に溶融混練してペレットとしておくことにより,押出機12による溶融混練等に際して各成分の分散状態を均一化させることがより一層容易なものとなった。
 前記成形材料を使用した木質発泡成形体の製造方法において,前記押出機12の出口13a部分において成形生地25aに抵抗を与えて前記押出機12内における成形生地25aの圧力を高めると共に,前記押出ダイ20の流路面積を押出ダイ20の入口20a側から出口20b側に向かって狭めることにより,押出ダイ20内を流れる成形生地25aを加圧された状態に維持した場合には,加圧状態における成形生地25aの発泡を抑制するアルカンの添加によって得られる事前発泡防止効果を最大限発揮させることができた。
 その結果,押出機12や押出ダイ20内における発泡ガスの分散を均一に行うことができると共に,成形生地25aの押出量(重量)を増加させて生産性を向上させることができた。
 更に,押出機12の出口13a部分にブレーカプレート22を設け,押出ダイ20内に抵抗体26を設けた木質発泡成形体の製造装置にあっては,前述した押出機12のバレル13内における成形生地25aの圧力上昇と,押出ダイ20内における圧力維持を確実に行うことができ,これにより発泡ガスの分散性向上や事前発泡の防止といったアルカン添加による作用を最大限に引き出すことができた。
 特に,押出ダイの出口を前記成形ダイの成形室の入口と同一形状に形成し,抵抗体26の成形ダイ30側の端部(マンドレル部26c)を,前記押出ダイ20の出口20bの形状に対して僅かに小さい相似形として押出ダイ20の出口20b内の中心に配置した構成にあっては,両者間に形成された狭い間隔を通過する際に,成形生地25b内における発泡ガスの分散が更に均一化されるものとなり,前述したアルカンの作用との相乗効果によって得られる木質発泡成形体内における気泡の分布を更に均一なものとすることができた。
 なお,前述したスクリュ式の押出機12として,二軸押出機を採用した木質発泡成形体の押出成形装置11にあっては,押出機12内における成形生地の溶融混練に伴う各成分の分散状態をより一層均一な状態とすることができ,アルカンの添加によって得られる,熱可塑性樹脂に対する発泡ガスの混合溶解を更に加速させることができた。
本発明の成形材料の製造に使用したペレット製造装置の説明図。 本発明の成形材料の押出発泡成形に使用した押出成形装置の説明図。 押出ダイの(A)は縦方向断面図,(B)は横方向断面図。 ブレーカプレートの(A)は正面図,(B)は(A)のB-B線断面図。 抵抗体の(A)は平面図,(B)は側面図,(C)は正面図。 成形ダイ(第1成形ダイ)の(A)は縦方向断面図,(B)は横方向断面図。 曲げ強度試験方法の説明図。 従来の押出成形装置の説明図。 木質発泡成形体における空隙及び反りの発生状態の説明図。 ブレーカプレートを設けた押出成形装置の説明図。
押出発泡成形用の成形材料
 本発明の押出発泡成形用の成形材料は,押出成形によって例えば板状の木質成形体を発泡させた状態(木質発泡成形体)として成形する際の成形材料として使用するものであり,押出成形を行う際に発泡剤を添加して使用することで,従来不可能乃至は困難とされていた押出成形装置による均質な木質発泡成形体の製造を可能にしたものである。
 この押出発泡成形用の成形材料(以下,単に「成形材料」という。)は,主成分である木粉と熱可塑性樹脂に,分子量が300~1000g/mol,好ましくは350~800g/mol,より好ましくは400~600g/molのアルカン(C2n+2)を,全体量の1~5wt%となるように配合したものである。
 この成形材料中には,前記木粉,熱可塑性樹脂及びアルカンの他,タルク等の充填材,着色用の顔料,強化剤,その他の副資材を添加することもできる。
熱可塑性樹脂
 前述した成形材料の主成分の一方である熱可塑性樹脂は,ポリプロピレン(PP),ポリエチレン(PE),ABS樹脂,塩化ビニル等の各種の熱可塑性樹脂を使用可能である。
 また,これらの熱可塑性樹脂は,そのうちの一種を単独で使用しても良く,又は複数種類を混合して使用することも可能であり,例えば複数種の熱可塑性樹脂が混在した状態で回収された廃棄プラスチック等を原料として使用することも可能であるが,本実施形態にあっては前述した熱可塑性樹脂のうち,ポリプロピレン(PP)を使用している。
 ここで,ポリプロピレン(PP)の種類としては,ホモポリマー,ランダムコポリマー,ブロックコポリマーが挙げられるが,本発明においてはこれらのいずれのポリプロピレン共に使用可能であり,また,例えば容器リサイクル法(所謂「容リ法」)に従って回収されたポリプロピレンや,各種ポリプロピレンが混在したもの等,いずれであっても使用可能である。
 本発明で使用する熱可塑性樹脂は,好ましくはMFR(メルトフローレート)が0.5~10(g/10分)範囲にあるものを使用することが好ましく,例えばMFRの異なる複数の熱可塑性樹脂を混合して,上記数値範囲内となるMFRの樹脂を得るものとしても良い。
木粉
 成形材料の主成分の他方である木粉は,一般に市販されている各種の木粉の他,例えば未使用の木材,使用済みの建築廃材,木材加工の際に発生したおが屑等の廃材等をクラッシャ,カッタ,ミルを使用して破砕する等して得ても良い。
 使用する木材の品種は特に限定されず,複数の品種の木材が混在していても構造上は問題が無いが,最終的に得られる木質発泡成形体の仕上がりを考慮すれば,ある程度,色目の揃ったものを使用することが好ましい。
 使用する木粉は,粒径1000μm以下のものであれば各種のものを使用することができ,好ましくは粒径150~200μmのものを使用する。
 木粉は,熱可塑性樹脂との馴染みの向上や加熱混練時における水蒸気の発生防止等の観点から,他原料との配合前に乾燥されていることが好ましく,好ましくは含有水分量が1wt%以下に乾燥されているものを使用する。
 この木粉と,前述の熱可塑性樹脂との好ましい配合比は,木粉/熱可塑性樹脂で,50~55wt%/45~50wt%である。
アルカン
 本発明で成形材料に添加するアルカン(C2n+2)は,分子量が300~1000g/molのものであれば各種のものを使用することができる。分子量300g/mol未満のアルカンでは融点及び沸点が低く取り扱いが難しくなる一方,分子量1000g/molを越えるアルカンでは,後述する試験結果からも明らかなように所望の効果が得られない。言い換えると,下限値,300g/mol以下では,流体に近づくため沸点も低くなり(50℃以下),300g/mol以上だと石油ワックス(個体)となる。流体になると,樹脂(PP)への分散性が低下し,表面に析出し所期の効果が得られない。
 なお,添加するアルカンの好ましい分子量の範囲は,350~800g/mol,より好ましくは400~600g/molである。
 このアルカンの添加量は,得られる成形材料の全体に対し1~5wt%となるように添加する。1wt%より少ないと効果が得られず,5wt%より多くなるとアルカンが表面に浮き出てしまい発泡倍率が低下する。
その他の添加材料
 上記成形材料に対しては,前述の木粉,熱可塑性樹脂及びアルカンの他,タルク等の充填材,着色用の顔料,及び強化剤等を全体量の5~30wt%程度添加することができる。
 このうち,前述の充填材の例として挙げたタルクは,最終的に得られる木質合成板の強度を向上するために添加するものであり,成形材料の全重量に対し,5~25wt%添加することができ,この量に対してタルクの添加量が少ないと強度の向上が得られず,また,逆に添加量が多すぎると脆さが出てかえって強度が低下する。
 添加するタルクの粒径としては,比較的広範囲のものを使用することができ,好ましくは,平均粒径5~30μm程度のものを使用する。
 顔料は,最終的に得られる木質合成板に着色を行うために添加するものであり,最終製品で得ようとする色に対応して,各種の顔料を各種の配合で添加することができる。
 一例としてブラウン系の着色を施すために酸化銀系の顔料を使用した本実施形態にあっては,顔料を成形材料の全体に対し3wt%程度添加した。
 更に,添加材料として強化剤を添加することも可能であり,前述したように,主原料たる熱可塑性樹脂としてポリプロピレンを使用した本実施形態にあっては,この強化剤としてマレイン酸変性ポリプロピレンを添加して,木粉と樹脂間の結合性を向上させている。
 この強化剤は,添加量が少なすぎると効果がない一方,多く入れれば入れる程効果は増大するもののコストが嵩むため,得られる成形材料の全体に対し一例として0.3~2.0wt%程度の添加が好ましい。
成形材料の製造
 前述の成形材料を構成する,木粉,熱可塑性樹脂,アルカン,及び必要に応じて添加されるタルク等の充填剤,顔料,強化剤は,これを予め均一に攪拌する等して混合材料としておくことが好ましく,より好ましくは,予めこれらの構成材料を加熱しながら各成分が均一な分散状態となるように溶融混練した後,溶融混練によって得られた混練材料を所定の粒径に造粒してペレットにしておくことが好ましい。
 このように成形材料の溶融混練を伴うペレット化は,ペレタイザーやヘンシルミキサー等の既知の造粒装置によって行うことができ,一例として本実施形態にあっては,図1に示すペレット製造装置40を使用した。
 図1に示すペレット製造装置40は,成形材料の各構成成分を,ロスインウエイト方式等によって定量供給する定量供給装置41と,前記定量供給装置41によって定量供給された原料を170~180℃程の温度で溶融混練して押し出すスクリュ式の押出機42を備え,この押出機42のバレル42a先端に多数の小孔が形成されたダイノズル43を設け,このダイノズル43を介して丸紐状に押し出された溶融材料(ストランド)を熱水中に押し出すと共に,所定の長さ毎にカッタ44のカッタ刃44aで切断する,水中(アンダーウォーター)ホットカット法によってペレットを製造するものである。
 この押出機42としては,既知の各種のものを使用することができるが,好ましくは二軸押出機を使用する。
 二軸押出機は,ネジ山とネジ溝とが違いに噛み合って回転する2本のスクリュを有する押出機で,本実施形態にあっては,スクリュが異方向に回転するものを使用している。
 二軸押出機は,前述したスクリュの噛み合い構造により,強制的な押出力とスクリュの噛み合いによる独特な混練効果を持っており,原料の分散に非常に有効であると共に,回転数を小さくしても必要な押出力を確保することができるために,摩擦による材料の温度上昇を抑えることができることから,押出機のシリンダ外周に設けたヒータ(図示せず)による材料温度の制御を行い易く,好適にペレット製造を行うことができるものとなっている。
 以上のようにして得られた成形材料のペレットは,遠心分離機45によって脱水した後,脱水後のペレットを回収して,後述する木質発泡成形体の成形材料として使用する。
木質発泡成形体の製造
成形材料(ペレット)の乾燥
 以上のようにして得られた押出発泡成形用の成形材料は,発泡剤と共に押出発泡成形を経て,所定形状の木質発泡成形体となる。
 このような発泡成形を行うに先立ち,製造された成形材料のペレットは,必要に応じて図2に示すように乾燥機47等を使用してこれを十分に乾燥させておく。
 ペレットの乾燥は,含水率が0.2wt%以下となる迄乾燥させることが好ましい。乾燥方法は特に限定されないが,一例として本実施形態にあっては,120℃の温度の熱間乾燥機に2時間以上かけて,上記含水率に乾燥させた。
発泡剤
 発泡剤の種類としては,気体又は液体である揮発性発泡剤を含む,一般に揮発性発泡剤(ガス系)であるCO,N,フロン,プロパン等と分解性発泡剤とがあり,このうちのいずれの発泡剤を使用するものとしても良く,市販されている各種のものを使用することができる。本実施形態にあっては,分解性発泡剤を使用している。
 分解性発泡剤としては,無機化合物系,アゾ化合物系,スルホニルヒドラジド化合物系,ニトロソ化合物系,アジド化合物系等が存在するが,成形材料の主原料である熱可塑性樹脂に対し容易に分散乃至は溶解すると共に,得られる木質発泡成形品に不要な着色等を与えるものでなければいずれの発泡剤を使用しても良い。
 また,キャリア樹脂に発泡剤を高濃度に添加した,所謂「マスタバッチ」と呼ばれるペレット状の発泡剤も市販されており,このような発泡剤を使用しても良い。
 本実施形態にあっては,キャリア樹脂をPE,発泡剤を無機化合物系に属する重炭酸ナトリウムとしたマスタバッチを使用した。
 発泡剤は,使用する発泡剤のガス発生量,製造する発泡成形体の発泡度等に応じて必要な量,添加するが,一例として本実施形態における発泡剤(マスタバッチ)の好ましい添加量は,成形材料と発泡剤の合計を100wt%として0.3~3wt%てある。
 このようにして発泡剤が添加された成形材料は,その後,押出成形装置11に設けられたスクリュ式の押出機12に連続して導入して加熱しながら溶融混練し,この押出機12により押し出された成形生地25aを,押出ダイ20に導入した後,この押出ダイ20に続く成形ダイ30に導入して所定の形状に成形すると共に冷却,固化することにより,所望形状の木質発泡成形体を得ることができる。
押出成形装置
 木質発泡成形体の製造に使用する押出成形装置としては,各種のものを使用することができ,例えば図8を参照して説明した既知の押出成形装置や,これを改良した図10を参照して説明した押出成形装置を使用することもできる。
 もっとも,アルカンの添加によって得られる発泡ガスの分散性の向上や,成形ダイ30内に対する導入前の事前発泡の防止の効果を最大限に引き出すためには,押出機12内における成形生地25aの圧力を高め,かつ,押出機12から成形ダイ30に導入される成形生地25aの圧力を維持した状態で成形ダイ30に導入して,成形ダイ30内で急激に成形生地25aの圧力開放を行うことができる構造を備えた押出成形装置11の使用が好ましい。
 このように,本発明の成形材料を使用した押出成形に適した押出成形装置11の構成例を図2~6を参照して説明する。
 図2に示す押出成形装置11は,前述の工程によって得た成形材料のペレットと,発泡剤のマスタバッチとをそれぞれ定量ずつ供給する定量供給装置14を備えると共に,この定量供給装置14を介して供給された成形材料のペレットと発泡剤とを,共に溶融混練して押し出すスクリュ式の押出機12と,前記押出機12によって押し出された押出生地25aを導入する押出ダイ20,前記押出ダイ20を通過した成形生地25aを所定の形状に成形すると共に冷却して固化する成形ダイ30,及び成形ダイ30を通過して冷却固化された押出生地(木質発泡成形体)を引き取る引取機50を備えている。
定量供給装置
 前述の定量供給装置14は,前述のようにして得られた本発明の成形材料のペレットを定量ずつ押出機12に供給する成形材料フィーダ14aと,この成形材料フィーダ14aによって押出機12に向かって搬送される成形材料に本実施形態にあってはマスタバッチである発泡剤を定量ずつ合流させる発泡剤フィーダ14bが設けられており,前記各フィーダ14a,14bに設けたホッパ内にそれぞれ成形材料と発泡剤を投入しておくことで,このホッパの下部に設けられたモータMによる搬送スクリュの回転によって,成形材料のペレットと発泡剤とが所定の配合比で押出機12に供給できるようになっている。
   押出機
 このようにして,成形材料及び発泡剤が投入される押出機12は,成形材料のペレットと発泡剤との混合材料を加熱混練して溶融可塑化し,この溶融可塑化した成形生地25aを押し出すスクリュ15を備えるスクリュ式の押出機12である。なお,本実施形態においては押出成形装置11として2軸型のスクリュ押出機12を適用した例について説明しているが,1軸型,多軸型,それらを組み合わせたスクリュ押出機等の各種のスクリュ押出機を使用しても良い。
 もっとも,前述したように二軸スクリュ押出機は,スクリュ15の噛み合い構造による強制的な押出力と独特な混練効果を持っており,原料の分散に非常に有利であると共に,回転数を小さくしても必要な押出力を確保することができるために,摩擦による材料の温度上昇を抑えることができることから,押出機12のバレル13外周に設けたヒータ(図示せず)等による材料温度の制御を行い易い等の利点があることから,好ましくは,押出成形装置11の押出機12として,二軸型のスクリュ押出機を使用する。
 図2に示す2軸型のスクリュ押出機12は,バレル13と,該バレル13内に回転可能に設けられる一対のスクリュ15と,該スクリュ15を回転駆動させる減速機,モータ等からなる駆動源Mとを備え,バレル13の先端側(押出方向前方,図2中紙面右側)に後述する押出ダイ20及び成形ダイ30が設けられている。
 バレル13は,押出方向先端が開放されて出口13aを形成しており,後端(押出方向後方,図2中紙面左側)が閉塞された筒状に形成されており,後端の上部にバレル13の内外を貫通する原料の投入口13bが設けられ,この投入口13bを介して前述の定量供給装置14による成形材料と発泡剤との混合材料の投入が行われる。
 バレル13の外周部には,バンドヒータ等の加熱手段(図示せず)がバレル13の全長に亘ってバレル13を巻回ないしは外環するように設けられており,この加熱手段によってバレル13の内部に供給された混合材料が加熱される。
 バレル13は,全長が複数のゾーン(例えば,溶融ゾーン131,発泡剤の分解ゾーン132,発泡ガスの混合ゾーン133)に分けられ,加熱手段により各ゾーン131~133毎に個別に温度制御が可能に構成されている。
 スクリュ15のそれぞれは,丸棒状の回転軸と,該回転軸の周囲に螺旋状に一体に設けられる,スクリュ15のネジ山部分を構成するスクリュとから構成されている。各スクリュ15の後端に設けた回転軸(図2中紙面左側)はバレル13の後端から後方に突出し,その突出している部分が駆動源であるモータMに連結され,駆動源により各スクリュ15に形成された傾斜したネジ山とネジ溝とが対称の状態で噛合回転する,先端側に向かって先細りの形状を成す二軸コニカルスクリュとして構成されている。
 スクリュ15のバレル13内に位置する部分は,溶融ゾーン131に配置されて加熱された原料を溶融混練する溶融混練部151と,発泡剤の分解ゾーン132に配置されて発泡剤の分解を促進する分解促進部152と,発泡ガスの混合ゾーン133に配置されて発泡ガスの分散を促進する分散促進部153によって構成され,スクリュの歯形が,各部分において上記機能に対応した形状に形成されている。
 駆動源Mの作動によってスクリュ15を回転駆動させることにより,定量供給装置14を介してバレル13内に供給された混合材料が加熱混練されながらスクリュ15のスクリュ間の溝に沿ってスクリュ15の先端方向に圧送され,溶融可塑化状態の成形生地25aとなって成形生地25aに対して加えられる押出力により,スクリュ15の先端側からバレル13外に押し出される。
 ここで,成形材料中に添加されている木粉は,多孔質材料であることから,樹脂材料に比較して発泡剤の分解によって発生した発泡ガスを取り込み易い性質を有する。
 一方,木粉に対して発泡ガスが取り込まれると,溶融樹脂側に取り込まれる発泡ガスが不足して,樹脂部分に気泡が形成され難くなり,最終的に得られる木質発泡成形体の発泡度が低下する。
 しかし,前述した分子量のアルカンを前述の添加量で添加した本発明の成形材料を使用する場合には,発泡ガスの混合ゾーン133においてこのアルカンは,発泡剤の分解によって発生した発泡ガスが熱可塑性樹脂に対して混合溶解される作用を加速させる一方,木粉に対する発泡ガスの取り込みを抑制する役割を果たすものとなっている。
  押出ダイ
 押出ダイ20は,押出機12のバレル13より押し出された成形生地25aを加圧された状態に維持しつつ,後述の成形ダイ30に対して導入するものであり,押出機12のバレル13の先端側にアダプタ16を介してボルト等によって着脱可能に取り付けられている。
 この押出ダイ20は,前記押出機12のバレル13の出口13a形状と一致した形状の入口20aと,後述する成形ダイ30の入口30a形状と一致した形状の出口20bを備えており,図3(A),(B)に示すように,縦方向の断面(図3(A)参照)において,流路21の上下方向における幅が入口20a側から出口20b側に向かって減少する形状に形成されていると共に,横方向の断面(図3(B)参照)において,入口20a側から出口20b側に向かって流路21の幅が徐々に広がった後,出口20b近くにおいて僅かに狭まった後,後述する成形ダイ30の入口30aの幅と同一幅となるように形成され,これにより,押出機12のバレル13の出口13aと,成形ダイ30の入口30a間を連通することができるようになっている。
 この押出ダイ20の入口20a側に取り付けられた前述のアダプタ16には,ブレーカプレート22が嵌合装着されていると共に,押出ダイ20の流路21内には,この流路21内を流れる成形生地25aに対して抵抗を与えると共に,成形生地25aの流れを整流する抵抗体26が配置されている。
 このうちのブレーカプレート22は,図4(A),(B)に示すように,多数の小孔22aがメッシュ状に形成された円盤状に形成されている。
 アダプタ16に対して前記ブレーカプレート22を取り付けるために,アダプタ16には,押出ダイ20側におけるアダプタ16の端面から押出機12側に向かってブレーカプレート22の外周と略同一径を成す取付穴16aが形成されており,この取付孔16a内に押出ダイ20側より前述のブレーカプレート22を挿入すると共に,押出ダイ20側よりさらにこの取付穴16a内に固定リング17を挿入することで,アダプタ16内の所定の位置に取り付けられている。
 従って,図示の例では,このブレーカプレート22の小孔22aと前記固定リング17の内周が,アダプタ16内における成形生地25aの流路の一部を形成している。
 このようにして,押出機12の出口13aと押出ダイ20の入口20a間にブレーカプレート22を取り付けたことにより,押出機12より押し出される成形生地25aは,ブレーカプレート22に形成された小孔22aを通過した後に押出ダイ20内に導入されるものとなっており,押出機12によって押し出されようとする押出生地25aは,このブレーカプレート22に形成された小孔22aを通過する際に抵抗を受けることから,押出機12のバレル13内の成形生地25aに対して圧力をかけることができるようになっている。
 また,押出ダイ20の流路21内に形成された前述の抵抗体26は,押出ダイ20内の成形生地25aの流れに抵抗を与えることにより,押出ダイ20内の成形生地25aを加圧された状態に維持することができるようになっており,このような加圧状態の維持により押出ダイ20を通過して後述する成形ダイ30内に導入されたとき,成形生地25aの圧力が急激に開放されて押出ダイ20の出口20b部分(成形ダイ30の入口30a部分)において成形生地25aが発泡し易いようになっている。
 このような圧力の開放を可能とするために,抵抗体26は,図3(A),(B),及び図5(A)~(C)に示すように,押出ダイ20の入口20a側から出口20b側に向かって徐々に幅及び厚みを増加する舌片状のドーピード部26aの端部を延長する直方体状に形成された本体を有すると共に,押出ダイ20内の所定の位置に固定するためのリブ26dが設けられたブリッジ部26bと,前記ブリッジ部26bから押出ダイ20の出口20bに向かって僅かに厚み及び幅を狭めた後一定の幅及び厚みで押出ダイ20の出口20bに至るマンドレル部26cを備えている。
 押出ダイ20の出口20b側におけるマンドレル部26cの端面26e〔図5(C)参照〕の輪郭を成す矩形は,押出ダイ20の出口20bの内周が描く矩形に対して僅かに小さい相似形を成し,このマンドレル部26cを,押出ダイ20の出口20b内の中央に配置することで,押出ダイ20の出口20b内壁と,マンドレル部26c外周間に形成される,比較的狭い隙間δ〔図3(A),(B)参照〕を通って成形生地25aが成形ダイ30に導入されるように構成されている。
 以上のように,ドーピード部26a,ブリッジ部26b及びマンドレル部26cを備えた抵抗体26を押出ダイ20内に配置することで,押出ダイ20を通過する成形生地25aは,抵抗体26によって押出ダイ20の流路21の内壁に沿った流れとなり,押出ダイ20の出口20b内周とマンドレル部26cの外周間の隙間を通過する際に比較的細い流れに集束されることで,成形生地25a内の発泡ガスの均一な分散が助長される。
 そして,このマンドレル部26cの存在によって,後述する成形ダイ30の入口30aと同形状に形成された押出ダイ20の出口20b内における流路面積は,成形ダイ30の入口30aに対して十分に小さな面積となっていることから,押出ダイ20の出口20bを通過して成形ダイ30に導入された成形生地25aは,その圧力が急激に開放され,この圧力の開放を契機として成形生地25a内の発泡ガスが急激に膨張を開始する。
 なお,この押出ダイ20内を通過するに際し,成形材料中に添加したアルカンは押出ダイ20の流路内面との間の抵抗を軽減させて成形生地25aを均質化させて円滑に移動させる効果を有すると共に,均質化された状態を維持する効果を有する。
 また,前述したように加圧された状態下において発泡ガスが成形生地25a内に溶け込んだ状態を維持し,後述する成形ダイ30に対する導入による圧力開放前に発泡ガスが膨張を開始することを阻止する作用を有している。
  成形ダイ
 以上のように,押出ダイ20を通過した成形生地25aは,成形ダイ30内に導入されて,成形ダイ30内に形成された成形室31の形状によって決定される所定の形状に成形されると共に冷却固化され木質発泡成形体となる。
 この成形ダイ30は,本実施形態において図2に示すように複数の金型の集合体によって形成されており,押出ダイ20の出口20bに入口30aを連通させた第1の成形ダイ301を備えると共に〔図6(A),(B)参照〕,この第1の成形ダイ301の出口側に所定間隔を介して配置された第2成形ダイ302,第2成形ダイ302の出口側に所定間隔を介して配置された第3成形ダイ303と,図示の実施形態にあっては,第7成形ダイ307までを連続して配置した構成としている(図2参照)。
 個々の成形ダイ301~307には,前述した押出ダイ20の出口20b形状に対応した断面形状の成形室31が形成されていると共に,本実施形態にあっては,第1~第3成形ダイ301~303の肉厚内に冷却媒体の流路32を設け,この冷却媒体の流路32内に冷却水等の冷却媒体を導入することで,第1から第3成形ダイ301~303に至るに従って,徐々に押出生地25aの温度を低下させて固化して,所望の発泡成形体が得られるように構成されている。
 なお,本実施形態にあっては,第4~第7成形ダイ304~307の肉厚内には,冷却媒体の流路を設けていない。
 以上のように形成された成形ダイ20の第1成形ダイ301内に,押出ダイ20より導入された成形生地25aを導入すると,前述した押出ダイ20の構成により,第1成形ダイ301内に押し出された成形生地25aは,急激に圧力が開放されて,押出機12内での溶融混練の際に分解した発泡剤によって発生した発泡ガスがこの位置で急激に膨張して成形生地25aを発泡させる。
 このようにして発泡した成形生地25aによって第1成形ダイ301内の成形室31が埋め尽くされて,成形室31の形状に対応した形状に成形されると共に冷却,固化される。
 第1成形ダイ301で成形,冷却されて木質発泡成形体となった成形生地は,引取機50による引取りによって第1成形ダイ301を通過した後,第2成形ダイ302,第3成形ダイ303・・・と,第7成形ダイ307迄を順次通過する際に冷却されて,木質発泡成形体の製造が完了する。
 なお,成形材料中に添加したアルカンは,成形ダイ30の成形室31内壁に対する成形生地乃至は木質発泡成形体の滑り性を向上させ,製造された木質発泡成形体の表面平滑性を保持する役割を果たす。
 その結果,発泡成形体の表面に,発泡に伴って発生する成形生地25aの脈動等の不安定な流れの発生に伴う皺の形成等を好適に防止することができるものとなっている。
 次に,本発明の成形材料(実施例1~7)を使用して木質合成発泡体を製造した製造実施例及びこれにより得られた木質発泡成形体と,比較例の成形材料(比較例1~10)を使用した製造実施例及びこれにより得られた成形体との比較試験結果を以下に示す。
 試験の目的
 アルカンの添加の有無及び添加するアルカンの分子量,及び添加量の変化が,木質発泡成形体の成形性及び得られた木質発泡成形体の物性等に与える影響を確認し,添加するアルカンの最適な分子量及び添加量の範囲を求める。
 製造条件
   成形材料の成分
 各実施例及び比較例で使用した成形材料の成分を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお,上記の成形材料中,比較例6の成形材料の組成は,本願の成形材料の範疇に含まれるものであるが,比較例6,7の成形材料に対しては後述するように発泡剤を添加せずに押出成形を行ったことから「比較例」として記載した。
 比較例8~10は,発泡剤を添加した。
  上記表1において,実施例1~5,比較例1~7共に,
  木粉は,カネキ燃料(有)「A-100」(粒径50~200μm),
  樹脂は,OG・PP(MFR=1.0)とボトルキャップ再生PP(MFR=10.0)を1:1の割合で混合して得たブロックPP(MFR=5),実施例6,7及び比較例9,10に用いたPEは,日本ポリエチレン(株)の高密度ポリエチレン(HDPE)「HY430」で混合比は,PP:PE=1:1で,実施例6,7でアルカンの分子量のみが異なり,比較例9,10において,アルカンの分子量及び配合比をそれぞれ異にしている。
  タルクは,富士タルク工業(株)「SP-40」(平均粒径23μm),
  顔料は,戸田工業(株)「ブラウン710」(酸化銀系),
  強化剤は,三洋化成(株)「ユーメックス1010」(マレイン酸変成PP),
  発泡剤は,永和化成(株)「ポリスレン EE405F」(キャリア樹脂PEに重炭酸ナトリウムを添加したマスタバッチ)である。
 尚,アルカンについては,
  実施例1,3,6は,三井化学(株)「三井ハイワックス 100P」,
  実施例2,4,5,7は,日本精蝋(株)「155°Fワックス」,
  比較例2,9は,三井化学(株)「三井ハイワックス 200P」,
  比較例3,7は,三井化学(株)「三井ハイワックス 410P」,
  比較例4は,三井化学(株)「三井ハイワックス 100P」,
  比較例5,6,8,10は,日本精蝋(株)「155°Fワックス」をそれぞれ使用した。
  予備混合条件
 上記原料を,それぞれ図1を参照して説明したペレット製造装置によって溶融混練した後,ペレット化した。
 押出機は,異方向回転2軸平行スクリュー(65φ)であり,この押出機で170~180℃の温度で溶融混練し,直径約4mmのストランドを押し出し,これを水中ホットカット方式にて約6mm毎に切断した。
 得られた成形材料のペレットを,遠心分離機にかけて脱水し,含水率を2%以下に脱水した。
  押出発泡成形条件
 図2~6を参照して説明した押出成形装置により,予備混練で得た成形材料のペレットを押出成形した。
 実施例1~7,及び比較例1~5については,いずれも発泡剤として,永和化成(株)「ポリスレン EE405F」(キャリア樹脂であるPEに重炭酸ナトリウムを添加したマスタバッチ)を,成形材料と発泡剤を合わせた総重量に対し0.5wt%となるように添加した後,押出成形を行った。
 比較例6,7では,発泡剤を添加することなく,成形材料のペレットのみを使用して押出成形を行った。
 比較例8~10は,発泡剤を添加したものである。
 使用した押出機は,シンシナティ・エクストルージョン(Cincinnati Extrusion)社製の異方向回転コニカル2軸スクリュ押出機「T-58」を使用した。
 押出機に対する投入に先立ち,予備混練により得られた成形材料のペレットを熱間乾燥機により120℃で2時間以上乾燥し,含水率を0.2%以下に乾燥させた後,前述の発泡剤と共に押出機に投入した。
 押出温度(押出機~押出ダイの設定温度)を180~190℃とし,成型ダイ(第1~第3成形ダイ)を90℃の水冷ジャケットとした。
 また,成形の際,押出機のシリンダに設けられている脱気孔ベントを介した真空引きを行わず,脱気孔ベントを大気開放した状態とした。
 以上のようにして,幅145mm,厚み25mmの板状に形成された木質発泡成型体を長さ方向に連続して成形した。
 測定及び観察事項
   成形生地の状態変化に関連した測定
 使用するアルカンの分子量,添加量の変化に伴う成形生地の状態変化を確認するために,押出ダイの入口側における所定の位置〔図3(A)中に矢印Xで示した位置〕における成形生地の圧力を測定すると共に,押出機を最大出力で駆動した際の押出成形装置における1時間当たりの押出量を最大押出量(kg/Hr)すなわち,モータ最大トルクの90%になるスクリュ回転数で運転した時の量として測定した。
 最大押出量については,目標値を70(kg/Hr)と設定し,この目標値以上の最大押出量が得られた場合を「○」,目標値未満の場合を「×」として評価した。
  製造された成形体(板材)の物性等に関する測定
 使用するアルカンの分子量,添加量の変化が最終的に得られる成形体(板材)に与える影響を確認するために,得られた成形体(板材)の密度,重量,曲げ強度,表面平滑性をそれぞれ測定乃至は確認をした。
 このうちの密度は,0.80~0.85g/cmを目標値として設定し,この範囲に含まれるものを「○」,前記数値範囲より外れるものを「×」とそれぞれ評価した。
 板の重量は,前述した幅145mm,厚み25mmに成型された板材を,長さ2000mmに切断して測定し,目標値として設定した58~62kgの範囲にあるものを「○」,上記数値範囲より外れるものを「×」とそれぞれ評価した。
 板の曲げ強度は,図7に示すように,製造した板材を長さ500mmにカットし,400mmの間隔で配置された載置台上に載置し,載置台の中間位置に置いて板材の表面側にかける荷重を増加させていき,板材が破断した際の荷重を測定した。この曲げ強度において,155kgを目標値として設定し,この目標値未満のものを「×」,目標値以上のものを「○」とそれぞれ評価した。
 板材の表面性の観察は,肉眼による観察によって行い,板材の表面に樹脂の流れむらによる皺の発生状態の有無,大小等を確認した。
試験結果
 上記事項に関し,測定,観察及び評価を行った結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 考察
  成形生地の圧力及び最大押出量に基づく考察
 実施例1~7の成形材料を使用して押出発泡成形を行った例では,発泡剤の添加を行っていない比較例6,7とアルカン配合比が範囲より高い比較例8を除けば,比較例1~5,9,10のいずれとの比較においても押出ダイ内における成形生地の圧力が低い値を示していることが確認された。
 その一方で,実施例1~7の成形材料を使用して押出発泡成形では,最大押出量がいずれも70(kg/Hr)以上という高い数値を示しており,発泡剤の添加を行っていない比較例6(75kg/Hr),比較例7(65kg/Hr)と同等以上の最大押出量が得られていることが確認された。
 実施例6は,実施例1に対して強度を除きほぼ同じ評価となった。実施例7は,実施例2に対して強度を除きほぼ同じ評価となった(以下の考察においても,同様であるので,省略する)。
 また,比較例8において本発明のアルカンを本発明の使用量以上使用した場合は発泡率が低下して発泡を阻害するため好ましくない。
 比較例9は,比較例2に対して強度を除きほぼ同じ評価となった。比較例10は,比較例5に対して強度を除きほぼ同じ評価となった(以下の考察においても,同様であるので,省略する)。
 以上の点から,実施例1~7の成形材料を使用した押出成形では,本願所定の分子量のアルカンを,本願所定の添加量で添加することが,発泡剤の分解によって発生した発泡ガスが押出機のバレルや押出ダイ内で膨張(事前発泡)することを抑制する効果があると共に,押出ダイを出て圧力の開放がされたときに発泡ガスの膨張を助長する効果があることが確認できた。
 すなわち,原料に添加したアルカンが,押出機や押出ダイ内での事前発泡を抑制する機能を果たしていないと仮定すれば,事前発泡による成形生地の体積増大によって,押出ダイ内の圧力はアルカンの添加を行っていない比較例1の測定結果(8.0MPa)と同程度に上昇しているはずである。
 しかし,実施例1~7において測定された押出ダイ内の圧力は,いずれも比較例1の圧力(8.0MPa)に比較して小さなものとなっているだけでなく,その他の比較例(比較例2~5,7,9,10)と比較しても小さなものとなっており,このことは,本願所定の分子量のアルカンを本願所定の添加量で添加することで,押出機や押出ダイ内における発泡ガスの事前発泡が抑制されることを意味している。
 また,事前発泡が生じて押出機や押出ダイ内で成形生地内に既に気泡が形成されているとすれば,押出機や押出ダイ内を通過する押出生地の密度は低下する。そのため,押出機や押出ダイ内を通過する成形生地の流量(単位時間当たりに通過する生地の体積)が発泡の前後で大幅に変化しないとすれば,最大押出量(重量)は減少しなければならない。
 しかし,成形材料の組成を略同一とし,発泡剤の添加の有無のみが異なる実施例1と比較例6を比較すると,実施例1,比較例6共に,最大押出量はいずれも75(kg/Hr)であり,実施例1では発泡剤を添加して押出成形を行っているにも拘わらず,最大押出量の減少が見られない。
 そうすると,実施例1では,流動状態にある成形生地(押出ダイを通過する前の成形生地)の密度は,比較例6と同程度の密度に維持されていること,すなわち,事前発泡が抑制されていると共に,成形生地の発泡は,押出ダイの出口を出た後,成形ダイによる成形生地の冷却が開始される迄の比較的短い時間に急激に行われていることが判る。
 このように,本願所定の分子量のアルカンを,本願所定の添加量で添加した場合には,押出機や押出ダイ内における圧力維持と,その後の圧力開放との組み合わせにより,押出機のバレルや押出ダイ内での事前発泡の抑制と,発泡開始のタイミングの制御が可能であることが確認された。
   発泡成形体(板材)の物性等に基づく考察
   密度に基づく考察
 実施例1~7で得られた発泡成形体(板材)は,発泡剤の添加を行っていない比較例6,7に対してのみでなく,実施例1~7と同量の発泡剤を添加している比較例1~5,8~10のいずれと比較しても低密度,高発泡倍率となっている。
 このことから,本願所定の分子量のアルカンを,本願所定の添加量で添加する場合には,前述したように,成形生地の発泡タイミングを制御することができるだけでなく,発泡の促進をも行うことができることが判る。
 ここで,発泡が阻害される要因としては,発泡剤の熱分解によって発生した発泡ガスが,多孔質物質である木粉中に取り込まれることにより樹脂部分の発泡に貢献しないものとなることが考えられるが,実施例1~7に記載の構成では,アルカンの添加が,木粉側にではなく,樹脂部分に対する発泡ガスの取り込みを促進することが,比較例に比較して低密度かつ高い発泡率の木質発泡成形品の製造を可能にしているものと考えられる。
 但し,本願所定の分子量を有するアルカンを添加した場合であっても,その添加量が0.5wt%と,本願所定の添加量の下限(1wt%)を下回る比較例4,5では,低密度かつ高い発泡率の木質発泡成形品を得られないものとなっているが,これはアルカンの添加量が1wt%以下では,アルカンは主に木粉に吸収されてしまい,樹脂側に対する発泡ガスの取り込みに貢献しないためと考えられる。
 一方,アルカンの添加量が1wt%以上になると,アルカンは木粉のみならず溶融樹脂にも溶け込み,これにより溶融樹脂に発泡ガスを取り込み易くなるために,前述した通りの高い発泡倍率での発泡が実現されたものと考えられる。
 このように,実施例1~7では,アルカンの添加によって発泡性が向上される結果,得られた発泡成形品の軽量化(表2の「重量」参照)と,原料の使用量の減少が得られるものとなっている。
   強度に基づく考察
 アルカンを添加することなく押出成形により得た発泡成形体である比較例1の発泡成形品の曲げ強度である220(kg)に対し,実施例1~7の成形材料を使用して得た発泡成形体では,曲げ強度に僅かな低下が見られる。
 しかし,アルカンの添加によって生じる曲げ強度の低下は極めてわずかなものであると共に,実用上,必要十分な強度であるとして設定した前述の評価基準値(JIS A
5741「プラスチックデッキ材」に準拠し,5kg大きくした荷重155kg)に対しても大幅に高い数値を示していることから,必要な強度は確保されている。
  表面性に基づく考察
 実施例1~7の成形材料を使用して行った押出発泡成形により得られた木質発泡成形体の表面は,いずれも大きな皺の発生がない,良好な表面状態で成形されていることが確認できた。
 これに対し,アルカンの添加量が本願所定の範囲内にある場合であっても,分子量が1000g/molを越える比較例2,3,9では,表面に大きな皺の発生が確認された。
 また,アルカンの分子量が本願所定の範囲内のものを使用した場合であっても,その添加量が1wt%を下回る比較例4,5にあっては,得られた木質発泡成形体の表面に皺の発生が確認された。
 上記の結果から,本願所定の分子量を有するアルカンを,本願所定の添加量で添加した場合には,成形ダイの成形室内面に対する成形生地の接触抵抗が低減される等して円滑な移動が行われ,その結果,前述した皺の発生等を好適に防止し得たものと考えられる。従って,分子量300~1000g/molのアルカンを,1~5wt%で添加することが,このような皺の発生防止に対して有効であることが確認できた。
 なお,上記分子量の範囲に属するアルカンを添加した場合であっても,分子量が上限値である1000g/molに近い,900g/molのアルカンを添加した実施例1では,実用上問題のない程度ではあるものの,表面に僅かな皺の発生が確認されていることから,このような皺の発生を完全に防止しようとすれば,添加するアルカンの分子量は,800g/mol,より確実には600g/molを上限とすることが好ましい。 
  その他
   発泡状態の均一性
 なお,得られた木質発泡成形体の切断面を肉眼によって観察したところ,実施例1~7の成形材料を使用して得られた木質発泡成形体では,従来技術として説明したような木質発泡成形体の中央部に対する気泡の集中や空隙の発生を確認できなかっただけでなく,気泡の発生が断面全体に微細かつ均一に行われていた。
 一方,比較例1~5,9,10でも,従来技術として説明した図9に示す内部空隙Gのような重大な欠陥は確認できなかったものの,気泡の発生状態には偏りが見られた。
 以上の結果から,比較例1~5,9,10の成形材料を使用して製造された木質発泡成形体にあっても,ブレーカプレートや抵抗体を設けたことにより,中央部に巨大な空隙が形成されるといった致命的な欠陥の発生は防止できたものの,比較例1のようにアルカンを添加せず,又は比較例2~5のように添加したアルカンの分子量乃至は添加量が本願所定の範囲より外れたものにあっては,溶融樹脂に対する発泡ガスの混合溶解を加速させて発泡ガスの分散状態を均一化すると共に,このような均一化された状態を保持する機能が十分に発揮されていないためにこのような相違が発生したものと考えられる。
 従って,分子量300~1000g/molのアルカンの1~5wt%の添加が,このような発泡ガスの樹脂に対する混合溶解を加速させ,発泡ガスを均一な分散状態とするために有効であることが確認できた。
  生産性
 前述したように,実施例1~7の成形材料を使用した押出成形では,本願所定のアルカンの添加により押出機や押出ダイにおける成形生地の事前発泡を抑制することができ,比較的高い最大押出量を実現することができたことから,木質発泡成形体の生産性をも向上させることができるものであった。
 ここで,各実施例及び比較例における木質発泡成形体の1時間あたりの製造長さを,表2の測定結果を使用して,次式,
 〔最大押出量(kg/Hr)/木質発泡成形体の重量(kg/2m)〕×2000(mm)
によって求めると,下記の表3に示す通りとなる。
Figure JPOXMLDOC01-appb-T000003
 上記の表3より明らかなように,実施例1~7では,1時間あたり22.73~25.91mの発泡成形体(板材)の製造が可能であるのに対し,比較例では,最低値である比較例7(但し,未発泡)で14.91mm,最大値である比較例8をとっても21.41mであり,いずれも1時間あたり22mを越える生産性を実現したものは存在していない。
 このように,本願所定の分子量のアルカンを,本願所定の添加量で添加する場合には,高品質の木質発泡成形体の製造を,生産性の向上と両立させて行うことができることが確認された。
 11 押出成形装置
 12 (スクリュ)押出機
 13 バレル
 13a 出口(バレル13の)
 13b 投入口(バレル13の)
 131 溶融ゾーン
 132 発泡剤分解ゾーン
 133 発泡ガス混合ゾーン
 14 定量供給装置
 14a 成形材料フィーダ
 14b 発泡剤フィーダ
 15 スクリュ(押出機12の)
 151 溶融混練部
 152 分解促進部
 153 分散促進部
 16 アダプタ
 16a 取付穴
 17 固定リング
 20 押出ダイ
 20a 入口(押出ダイ20の)
 20b 出口(押出ダイ20の)
 21 流路(押出ダイ20の)
 22 ブレーカプレート
 22a 小孔
 25a 成形生地
 26 抵抗体
 26a ドーピード部
 26b ブリッジ部
 26c マンドレル部
 26d リブ
 26e 端面
 30 成形ダイ
 30a 入口(成形ダイ30の)
 30b 出口(成形ダイ30の)
 31 成形室
 32 冷却媒体の流路
 40 ペレット製造装置
 41 定量供給装置
 42 押出機
 42a バレル
 43 ダイノズル
 44 カッタ
 44a カッタ刃
 45 遠心分離機
 47 乾燥機
 50 引取機
 625a 成形生地
 641 押出成形装置
 642 押出機
 643 バレル
 643a 出口(バレル643の)
 644 ホッパ
 645 スクリュ
 650 ダイ
 650a 成形室
 652 ブレーカプレート
 G (内部)空隙
 X 圧力測定位置

Claims (18)

  1.  発泡剤を添加して押出発泡成形を行うことにより木質発泡成形体を製造するための成形材料において,
     木粉と熱可塑性樹脂を主成分とし,分子量が300~1000g/molのアルカンを1~5wt%含むことを特徴とする押出発泡成形用の成形材料。
  2.  各構成成分が均一に分散された状態に溶融混練した後に所定粒径に造粒して得たペレットとして形成されていることを特徴とする請求項1記載の押出発泡成形用の成形材料。
  3.  前記木粉と前記熱可塑性樹脂の配合比が,木粉50~55wt%に対し,樹脂が45~50wt%である請求項1又は2記載の押出発泡成形用の成形材料。
  4.  充填材及び/又は強化剤及び/又は顔料を更に含むことを特徴とする請求項1~3いずれか1項記載の押出発泡成形用の成形材料。
  5.  発泡剤を添加して押出発泡成形を行うことにより木質発泡成形体を製造するための成形材料において,
     木粉,熱可塑性樹脂,及び分子量が300~1000g/molのアルカンを,前記アルカンが全体の1~5wt%となるよう配合し,
     該配合物を各構成成分が均一な分散状態となるまで溶融混練後,所定の粒径に造粒してペレット化したことを特徴とする押出発泡成形用の成形材料の製造方法。
  6.  前記木粉と前記熱可塑性樹脂の配合比を,木粉50~55wt%に対し,樹脂を45~50wt%としたことを特徴とする請求項5記載の押出発泡成形用の成形材料の製造方法。
  7.  充填材及び/又は強化剤及び/又は顔料を前記木粉,前記熱可塑性樹脂及び前記アルカンと共に溶融混練したことを特徴とする請求項5又は6記載の押出発泡成形用の成形材料の製造方法。
  8.  請求項1~4いずれか1項記載の成形材料を発泡剤と共に押出成形装置によって所定の形状に押出成形して得た木質発泡成形体。
  9.  請求項1~4いずれか1項記載の成形材料を,発泡剤と共に前記押出成形装置に設けられたスクリュ式の押出機内に導入して前記発泡剤の分解温度以上の温度で溶融混練し,
     前記押出機より押し出された成形生地を加圧された状態に維持しながら成形ダイの成形室内に導入し,
     該成形ダイの成形室に対する導入時に前記成形生地の圧力を開放して前記成形生地を発泡させると共に,該成形ダイの成形室内を通過する過程で前記成形生地を前記成形室の断面形状に対応した形状に成形しながら冷却固化させることを特徴とする木質発泡成形体の製造方法。
  10.  前記押出成形装置の前記押出機と前記成形ダイ間に,前記押出機の出口と前記成形ダイの入口間を連通する押出ダイを設け,
     前記押出機の出口から押出ダイ内に導入される成形生地に抵抗を与えて前記押出機内における成形生地の圧力を高めると共に,
     前記押出ダイの流路面積を該押出ダイの入口側から出口側に向かって狭めることにより,前記押出機から前記押出ダイに導入された成形生地の圧力を維持しつつ前記成形ダイの成形室内に導入し,
     該押出ダイを通過した成形生地を前記押出ダイの出口を通過した際に圧力開放して前記成形ダイの入口部分において前記成形生地を発泡させたことを特徴とする請求項9記載の木質発泡成形体の製造方法。
  11.  熱可塑性樹脂及び木粉を主成分とする成形材料を発泡剤と共に導入して前記発泡剤の分解温度以上の温度で溶融混練するスクリュ式の押出機と,
     前記押出機の出口に連通して前記押出機によって押し出された成形生地を導入する押出ダイと,
     前記押出ダイの出口に連通して前記押出ダイを通過した成形生地を内部に形成された成形室に導入すると共に,該成形室内を移動する前記成形生地を前記成形室の内部形状に対応した形状に成形しながら冷却固化する成形ダイを備え,
     前記押出機の出口部分に,多数の孔が形成されたメッシュ状のブレーカプレートを設けると共に,
     前記押出ダイ内に,前記押出ダイの入口側から出口側に向かって該押出ダイ内の流路面積を減少させる抵抗体を設けたことを特徴とする木質発泡成形体の押出成形装置。
  12.  前記押出ダイの出口内の流路面積を,前記成形ダイの入口に対して小さな面積としたことを特徴とする請求項11記載の木質発泡成形体の押出成形装置。
  13.  前記押出ダイの前記出口を前記成形ダイの成形室の入口と同一形状に形成し,
     前記抵抗体の前記成形ダイ側の端部を,前記押出ダイの出口形状に対して僅かに小さい相似形を有する断面形状に形成すると共に,前記押出ダイの出口内の中心に配置したことを特徴とする請求項11記載の木質発泡成形体の押出成形装置。
  14.  前記スクリュ式の押出機が,二軸押出機である請求項11又は13記載の木質発泡成形体の押出成形装置。
  15.  前記熱可塑性樹脂のMFR(メルトフローレート)が0.5~10(g/10分)範囲である請求項1又は2記載の押出発泡成形用の成形材料。
  16.  前記熱可塑性樹脂のMFR(メルトフローレート)が0.5~10(g/10分)範囲である請求項11記載の木質発泡成形体の押出成形装置。
  17.  前記熱可塑性樹脂がポリプロピレン(PP),ポリエチレン(PE),ABS樹脂,塩化ビニル(PVC)の一種又はそれらの混合である請求項1又は2記載の押出発泡成形用の成形材料。
  18.  前記熱可塑性樹脂がポリプロピレン(PP),ポリエチレン(PE),ABS樹脂,塩化ビニル(PVC)の一種又はそれらの混合である請求項11記載の木質発泡成形体の押出成形装置。
PCT/JP2010/058102 2009-07-02 2010-05-13 押出発泡成形用の成形材料及びその製造方法,並びに前記成形材料を使用して製造した木質発泡成形体,前記木質発泡成形体の製造方法並びに製造装置 WO2011001745A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US13/377,710 US20120088853A1 (en) 2009-07-02 2010-05-13 Molding material for extrusion foam molding, process for producing same, woody molded foam produced from the molding material, and process and apparatus for producing the woody molded foam
RU2011149974/05A RU2530047C9 (ru) 2009-07-02 2010-05-13 Формовочный материал для экструзионного формования со вспениванием, способ его получения, формованный древесно-наполненный пенопласт, полученный из указанного формовочного материала, и способ и устройство для получения такого пенопласта
EP10793916A EP2450174A1 (en) 2009-07-02 2010-05-13 Molding material for extrusion foam molding, process for producing same, woody molded foam produced from the molding material, and process and apparatus for producing the woody molded foam
BRPI1010114A BRPI1010114A2 (pt) 2009-07-02 2010-05-13 material de moldagem de espuma por extrusão e método para a sua fabricação; produto de madeira sintética espumada e método para a sua fabricação aparelho de extrusão para um produto de madeira sintética espumada de material de moldagem para extrusão de espuma de moldagem
SG2011090875A SG176733A1 (en) 2009-07-02 2010-05-13 Molding material for extrusion foam molding, process for producing same, woody molded foam produced from the molding material, and process and apparatus for producing the woody molded foam
AU2010267329A AU2010267329A1 (en) 2009-07-02 2010-05-13 Molding material for extrusion foam molding, process for producing same, woody molded foam produced from the molding material, and process and apparatus for producing the woody molded foam
CA2766890A CA2766890C (en) 2009-07-02 2010-05-13 Molding material for extrusion foam molding, process for producing same, woody molded foam produced from the molding material, and process and apparatus for producing the woody molded foam
CN201080028906.4A CN102470597B (zh) 2009-07-02 2010-05-13 挤出发泡成形用成形材料及其制造方法、使用所述成形材料制造的木质发泡成形体以及所述木质发泡成形体的制造方法和制造装置
HK12107381.8A HK1166758A1 (en) 2009-07-02 2012-07-26 Molding material for extrusion foam molding, process for producing same, woody molded foam produced from the molding material, and process and apparatus for producing the woody molded foam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009158202A JP4436435B1 (ja) 2009-07-02 2009-07-02 押出発泡成形用の成形材料及びその製造方法,並びに前記成形材料を使用して製造した木質発泡成形体,前記木質発泡成形体の製造方法並びに製造装置
JP2009-158202 2009-07-02

Publications (1)

Publication Number Publication Date
WO2011001745A1 true WO2011001745A1 (ja) 2011-01-06

Family

ID=42193823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058102 WO2011001745A1 (ja) 2009-07-02 2010-05-13 押出発泡成形用の成形材料及びその製造方法,並びに前記成形材料を使用して製造した木質発泡成形体,前記木質発泡成形体の製造方法並びに製造装置

Country Status (13)

Country Link
US (1) US20120088853A1 (ja)
EP (1) EP2450174A1 (ja)
JP (1) JP4436435B1 (ja)
KR (1) KR20120036946A (ja)
CN (1) CN102470597B (ja)
AU (1) AU2010267329A1 (ja)
BR (1) BRPI1010114A2 (ja)
CA (1) CA2766890C (ja)
HK (1) HK1166758A1 (ja)
MY (1) MY159034A (ja)
RU (1) RU2530047C9 (ja)
SG (1) SG176733A1 (ja)
WO (1) WO2011001745A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2796262A4 (en) * 2011-12-20 2015-05-27 Wpc Corp SYNTHETIC WOOD POWDER
JP2018024252A (ja) * 2012-05-29 2018-02-15 コーニング インコーポレイテッド 湾曲面を備える押出ダイ
JP2019178265A (ja) * 2018-03-30 2019-10-17 株式会社ユポ・コーポレーション 合成紙の製造方法
JP2021505698A (ja) * 2017-12-08 2021-02-18 サソール ワックス ゲーエムベーハーSasol Wax Gmbh ワックス組成物を含む木材プラスチック複合組成物、木材プラスチック複合組成物を製造する方法、および木材プラスチック複合組成物を製造するための潤滑剤としてのワックス組成物の用途

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5457933B2 (ja) * 2010-04-28 2014-04-02 Wpcコーポレーション株式会社 押出成形用複合ペレットの製造方法,及び前記方法で製造された押出成形用の複合ペレット
CN102869484A (zh) * 2010-04-28 2013-01-09 Wpc株式会社 挤出成型用复合颗粒的制造方法和用所述方法制造的挤出成型用复合颗粒
DE102012104375A1 (de) * 2012-05-22 2013-11-28 Rehau Ag + Co Verfahren und Vorrichtung zur Herstellung eines WPC-Compounds
JP5956862B2 (ja) * 2012-07-20 2016-07-27 ハンディテクノ株式会社 木質合成建材製造用ペレットの製造装置及び製造方法
KR101446041B1 (ko) 2013-06-19 2014-10-01 (주) 콘즈 기포 무늬 합성수지 성형물 압출 장치 및 그 압출 방법
JP5619239B1 (ja) * 2013-08-27 2014-11-05 株式会社日本製鋼所 ベント式二軸混練押出装置及び方法
CN107257820B (zh) * 2014-12-22 2021-05-14 巴斯夫欧洲公司 纤维增强的各向异性泡沫体
CN105216255A (zh) * 2015-10-16 2016-01-06 陈元文 一种热塑性塑料薄壁熔体连续直接模压成型方法
FR3061062A1 (fr) * 2016-12-22 2018-06-29 Compagnie Generale Des Etablissements Michelin Installation d’extrusion comportant une tete d’extrusion perfectionnee
JP6777553B2 (ja) * 2017-01-11 2020-10-28 マクセル株式会社 発泡成形体の製造方法及び製造装置
RU2661230C1 (ru) * 2017-08-16 2018-07-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный университет" Биоразлагаемый полимерный композиционный материал на основе смеси полиэтилена низкого давления и вторичного полипропилена
KR102128817B1 (ko) * 2018-07-17 2020-07-08 (주)금강기연 초고농축 발포 마스터배치 제조시스템
JP7164170B2 (ja) * 2018-10-31 2022-11-01 株式会社経営総合研究所 コンクリート型枠用せき板の押出成形方法及びコンクリート型枠用せき板の押出成形装置
CN109466040B (zh) * 2018-11-30 2024-04-12 洛阳艾佳模具制造有限公司 一种带钢衬的双层材料异型材挤出模具
CN109776848B (zh) * 2019-01-08 2020-06-30 恒天纤维集团有限公司 聚乳酸聚合熔体直接制备聚乳酸发泡制品的方法及装置
EP3708936B1 (de) * 2019-03-15 2024-04-17 Polymetrix AG Verfahren zum recycling von polyolefinen
CN110706869A (zh) * 2019-09-26 2020-01-17 江苏通光强能输电线科技有限公司 一种多芯电缆纵向阻水缆芯的生产装置
CN113910485B (zh) * 2021-11-16 2023-10-13 江苏越升科技股份有限公司 一种生物可降解聚合物珠粒、制备方法及设备
CN117283852B (zh) * 2023-11-24 2024-02-09 江苏君华特种高分子材料股份有限公司 一种peek挤出机挤出压力检测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08118452A (ja) 1994-10-24 1996-05-14 Ain Eng Kk 中空樹脂成形板の押出成形方法及び装置
JP2001071367A (ja) * 1999-09-08 2001-03-21 Sekisui Chem Co Ltd 熱可塑性樹脂成形体の製造方法
JP2002187990A (ja) * 2000-12-20 2002-07-05 Kanegafuchi Chem Ind Co Ltd 塩化ビニル壁紙を再利用した樹脂組成物及びそれを用いた木質複合成形品
JP2005307033A (ja) * 2004-04-22 2005-11-04 Asahi Kasei Chemicals Corp 木質合成樹脂組成物及びその成形体
WO2007052543A1 (ja) * 2005-11-04 2007-05-10 Unitika Ltd. 生分解性樹脂発泡シート、生分解性樹脂発泡体および生分解性樹脂成形容器
JP2009126013A (ja) * 2007-11-21 2009-06-11 Umg Abs Ltd 木目調樹脂成形品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO178771C (no) * 1993-09-15 1996-05-29 Polynor Partners As Fremgangsmåte for fremstilling av produkt av lett celleplast med lukkede celler
US6153293A (en) * 1999-02-04 2000-11-28 Dahl; Michael E. Extruded wood polymer composite and method of manufacture
JP2000225638A (ja) * 1999-02-08 2000-08-15 Asahi Chem Ind Co Ltd 発泡成形体の製造方法
JP2001062901A (ja) * 1999-08-31 2001-03-13 Sekisui Chem Co Ltd 複合ペレット及び複合成形体の製造方法
US6716522B2 (en) * 2000-01-26 2004-04-06 Sekisui Chemical Co., Ltd. Molded article from thermoplastic composite material and method for producing the same
JP2001252966A (ja) * 2000-03-09 2001-09-18 Sekisui Chem Co Ltd 熱可塑性複合材料からなる役物成形体の製造方法
US6380272B1 (en) * 2000-08-23 2002-04-30 Kuei Yung Wang Chen Manufacturing method for structural members from foamed plastic composites containing wood flour
JP2002284938A (ja) * 2001-01-17 2002-10-03 Sekisui Chem Co Ltd 木質様成形体及びその製造方法
US20030096094A1 (en) * 2001-11-19 2003-05-22 Hayduke John A. Wood composite material
US7446138B2 (en) * 2005-04-29 2008-11-04 Board Of Trustees Of Michigan State University Wood particle filled polyvinyl chloride composites and their foams

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08118452A (ja) 1994-10-24 1996-05-14 Ain Eng Kk 中空樹脂成形板の押出成形方法及び装置
JP2001071367A (ja) * 1999-09-08 2001-03-21 Sekisui Chem Co Ltd 熱可塑性樹脂成形体の製造方法
JP2002187990A (ja) * 2000-12-20 2002-07-05 Kanegafuchi Chem Ind Co Ltd 塩化ビニル壁紙を再利用した樹脂組成物及びそれを用いた木質複合成形品
JP2005307033A (ja) * 2004-04-22 2005-11-04 Asahi Kasei Chemicals Corp 木質合成樹脂組成物及びその成形体
WO2007052543A1 (ja) * 2005-11-04 2007-05-10 Unitika Ltd. 生分解性樹脂発泡シート、生分解性樹脂発泡体および生分解性樹脂成形容器
JP2009126013A (ja) * 2007-11-21 2009-06-11 Umg Abs Ltd 木目調樹脂成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Polythlene EE405F", EIWA CHEMICAL IND. CO., LTD

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2796262A4 (en) * 2011-12-20 2015-05-27 Wpc Corp SYNTHETIC WOOD POWDER
US9505932B2 (en) 2011-12-20 2016-11-29 Beijing Shengsheng Culture Limited Liability Company Synthetic wood meal
JP2018024252A (ja) * 2012-05-29 2018-02-15 コーニング インコーポレイテッド 湾曲面を備える押出ダイ
JP2021505698A (ja) * 2017-12-08 2021-02-18 サソール ワックス ゲーエムベーハーSasol Wax Gmbh ワックス組成物を含む木材プラスチック複合組成物、木材プラスチック複合組成物を製造する方法、および木材プラスチック複合組成物を製造するための潤滑剤としてのワックス組成物の用途
JP7372240B2 (ja) 2017-12-08 2023-10-31 サソール ワックス ゲーエムベーハー ワックス組成物を含む木材プラスチック複合組成物、木材プラスチック複合組成物を製造する方法、および木材プラスチック複合組成物を製造するための潤滑剤としてのワックス組成物の用途
JP2019178265A (ja) * 2018-03-30 2019-10-17 株式会社ユポ・コーポレーション 合成紙の製造方法

Also Published As

Publication number Publication date
HK1166758A1 (en) 2012-11-09
SG176733A1 (en) 2012-01-30
JP2011012183A (ja) 2011-01-20
CN102470597A (zh) 2012-05-23
CA2766890A1 (en) 2011-01-06
RU2530047C2 (ru) 2014-10-10
RU2011149974A (ru) 2013-08-10
MY159034A (en) 2016-12-15
KR20120036946A (ko) 2012-04-18
EP2450174A1 (en) 2012-05-09
CN102470597B (zh) 2015-02-25
JP4436435B1 (ja) 2010-03-24
BRPI1010114A2 (pt) 2016-03-15
CA2766890C (en) 2014-08-05
RU2530047C9 (ru) 2015-04-10
AU2010267329A1 (en) 2012-01-12
US20120088853A1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP4436435B1 (ja) 押出発泡成形用の成形材料及びその製造方法,並びに前記成形材料を使用して製造した木質発泡成形体,前記木質発泡成形体の製造方法並びに製造装置
EP2565004B1 (en) Method of manufacturing composite pellets for extrusion, and composite pellets thus produced
JP5457933B2 (ja) 押出成形用複合ペレットの製造方法,及び前記方法で製造された押出成形用の複合ペレット
KR100216396B1 (ko) 열가소성 수지발포체 및 그 제조방법
KR101009364B1 (ko) 압출 성형 장치
JP2680045B2 (ja) 発泡可能な合成物質混合物を造るための押出機ライン
JP7164170B2 (ja) コンクリート型枠用せき板の押出成形方法及びコンクリート型枠用せき板の押出成形装置
JP3581025B2 (ja) 無架橋ポリプロピレン系樹脂発泡シートの製造方法及び無架橋ポリプロピレン系樹脂発泡シート
JPH1076560A (ja) 熱可塑性樹脂発泡体およびその製造方法
JP6621149B2 (ja) コンクリート型枠用せき板の押出成形方法及びコンクリート型枠用せき板の押出成形装置
JP2011062936A (ja) 押出成形装置
JP5588758B2 (ja) 押出成形用複合ペレット及び押出成形用複合ペレットの前処理方法
AU2004245248A1 (en) Continuous method for producing solid, hollow or open profiles
JP4999096B2 (ja) 熱可塑性樹脂発泡体
US20240025090A1 (en) Co-injection molding of foam articles
JP2014065793A (ja) 発泡剤組成物粒状体およびその製造方法
CN105922538A (zh) 用于聚合物的发泡工艺的挤出机螺杆以及具有这样的螺杆的挤出机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080028906.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793916

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010793916

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010267329

Country of ref document: AU

Ref document number: 9143/CHENP/2011

Country of ref document: IN

Ref document number: 2010793916

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13377710

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2766890

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127000322

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2010267329

Country of ref document: AU

Date of ref document: 20100513

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011149974

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1010114

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1010114

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111222