WO2011001701A1 - 効果音発生装置 - Google Patents
効果音発生装置 Download PDFInfo
- Publication number
- WO2011001701A1 WO2011001701A1 PCT/JP2010/051767 JP2010051767W WO2011001701A1 WO 2011001701 A1 WO2011001701 A1 WO 2011001701A1 JP 2010051767 W JP2010051767 W JP 2010051767W WO 2011001701 A1 WO2011001701 A1 WO 2011001701A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gain
- sound effect
- sound
- control signal
- signal
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K15/00—Acoustics not otherwise provided for
- G10K15/02—Synthesis of acoustic waves
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K2210/00—Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
- G10K2210/10—Applications
- G10K2210/128—Vehicles
- G10K2210/1282—Automobiles
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K2210/00—Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
- G10K2210/30—Means
- G10K2210/321—Physical
- G10K2210/3213—Automatic gain control [AGC]
Definitions
- the present invention relates to a sound effect generator that generates sound effects such as a simulated engine sound of a vehicle.
- ASC device Active Sound Control
- ASC device Active Sound Control
- JP-A-2006-193002 the pseudo engine sound is increased or decreased according to the sound in the vehicle compartment (for example, see the summary of the same publication and claim 1).
- the present invention has been made in consideration of such problems, and an object thereof is to provide a sound effect generator capable of compensating for variations in performance of the sound effect output means and aging.
- the sound effect generator comprises a traveling state detecting means for detecting a traveling state of a moving object, a waveform data table for storing waveform data for one cycle, and the waveform data table sequentially based on the traveling state.
- Reference signal generation means for generating a reference signal of a predetermined order by reading the waveform data
- acoustic control means for generating a control signal based on the reference signal, and gain for the control signal are made to correspond to the traveling state Holding the stored first gain table, reading out the gain from the first gain table according to the traveling state detected by the traveling state detection means, and outputting the control signal whose gain is adjusted using the gain
- the apparatus further comprises: gain adjustment means; and sound effect output means for outputting a sound effect corresponding to the gain-adjusted control signal.
- Sound effect detection means disposed at an evaluation position in the vicinity of the occupant and detecting the sound effect at the evaluation position; and a gain for the control signal in the first gain table from the sound effect output means
- a second gain table storing prediction gains of the control signal at the evaluation position reflecting the signal transfer characteristics up to the means, the prediction gains, and the actually measured gains of the sound effects detected by the sound effect detection means;
- gain correction means for correcting the gain of the gain-adjusted control signal based on the comparison result of the gain comparison means.
- the traveling state of the moving body (for example, at least one of the engine rotation frequency, the engine rotation frequency change amount, the travel motor rotation frequency, the travel motor rotation frequency change amount, the vehicle speed and the vehicle speed change amount)
- the gain of the control signal that defines the sound effect is corrected based on the comparison result between the prediction gain of the sound effect and the actual measurement gain of the sound effect. Therefore, even if the actual gain of the sound effect fluctuates due to the secular change of the sound effect output means, the output of the sound effect output means when the moving object is in the predetermined traveling state is kept constant, and the secular change is It is possible to compensate.
- the prediction gains are shared by a plurality of sound effect generation devices, it is also possible to compensate for variations in performance of the sound effect output means.
- the gain comparing means is a prediction gain specifying means for specifying the prediction gain of the predetermined order based on the second gain table, and an actual measurement gain detecting means for detecting the actual gain of the predetermined order from the sound at the evaluation position. And may be provided. This makes it possible to specify the prediction gain and the actual measurement gain based on only the predetermined order, and to improve the identification accuracy of the prediction gain and the actual measurement gain as compared with the case where the order is not specified.
- the measured gain detection means is an adaptive notch filter that outputs a second control signal based on the reference signal of the predetermined order, and a removal signal that outputs the removal signal obtained by removing the second control signal from the sound at the evaluation position.
- filter coefficient updating means for sequentially updating the filter coefficients of the adaptive notch filter so that the component of the predetermined order of the removal signal is minimized based on the reference signal of the predetermined order and the removal signal.
- the filter coefficient of the adaptive notch filter may be detected as an actual measurement gain of the predetermined order.
- the gain comparison means compares the predicted gain with the actual measurement gain at a frequency at which the gain of the control signal is set relatively large in the sound control means among the control frequencies of the control signal, or the gain
- the correction means may correct the gain of the control signal at a frequency at which the gain of the control signal is set relatively large in the sound control means. Thereby, the measurement gain can be specified with high accuracy.
- the sound effect generator comprises the traveling state detecting means for detecting the traveling state of the moving body, a waveform data table for storing waveform data for one cycle, and the harmonic reference signal based on the traveling state.
- Reference signal generation means for generating the waveform data sequentially from the waveform data table, acoustic control means for generating a control signal based on the reference signal, and gain for the control signal are made to correspond to the traveling state Gain adjustment means for holding the stored gain table, reading out the gain from the gain table according to the traveling state detected by the traveling state detection means, and outputting the control signal whose gain has been adjusted using the gain;
- Sound effect output means for outputting a sound effect corresponding to the gain-adjusted control signal;
- Sound effect detection means for detecting the sound effect at the evaluation position, the signal transfer characteristic from the sound effect output means to the sound effect detection means, and the sound sound detection means The gain of the sound effect is corrected with the signal transfer characteristic, the actual gain of the sound effect at the time when the sound output means outputs is calculated
- the gain of the control signal that defines the sound effect is corrected based on the comparison result between the gain for the control signal and the measured gain of the sound effect. Therefore, even if the actual gain of the sound effect fluctuates due to the secular change of the sound effect output means, the output of the sound effect output means when the moving object is in the predetermined traveling state is kept constant, and the secular change is It is possible to compensate. In addition, if gain and control characteristics for control signals are shared by a plurality of sound effect generation devices, it is also possible to compensate for variations in performance of the sound effect output means.
- a sound effect generator generates a sound effect as a simulated operation sound of a drive source of a vehicle, and includes control signal generation means for generating a control signal defining the sound effect, and the control signal.
- Sound effect output means for outputting the sound effect corresponding to the sound effect detection means for detecting the sound effect at the evaluation position
- the control signal generation means is for generating the sound effect when the vehicle is in a predetermined traveling state Setting the reference volume which is the reference value of the volume of the vehicle, comparing the measured volume of the sound effect detected by the sound effect detecting means with the reference volume when the vehicle is in the predetermined traveling state, and comparing the comparison result
- the gain of the control signal is corrected based on
- the gain of the control signal defining the sound effect is corrected based on the comparison result between the reference sound volume of the sound effect and the actual measurement sound volume. Therefore, even when the measured sound volume of the sound effect fluctuates due to the secular change of the sound effect output means, the output of the sound effect output means when the vehicle is in a predetermined traveling state is kept constant to compensate for the secular change. Is possible. In addition, if the reference sound volume is shared by a plurality of sound effect generation devices, it is also possible to compensate for variations in performance of the sound effect output means.
- FIG. 1 It is a schematic block diagram of the vehicle carrying the sound-sound production
- FIG. 1 shows a vehicle 10 equipped with an acoustic control ECU 14 (ECU: Electronic Control Unit) having a function of a sound effect generator (ASC device) according to an embodiment of the present invention. It is a figure which shows schematic structure.
- the vehicle 10 is a gasoline vehicle, but may be a vehicle such as an electric vehicle or a fuel cell vehicle.
- the vehicle 10 includes an acoustic system 12, and in addition to the acoustic control ECU 14, the acoustic system 12 includes a sound source 16, an adder 18, an amplifier 20, a speaker 22, and a microphone 24.
- the sound control ECU 14 (hereinafter also referred to as “ECU 14”) has a function as an active noise control device (hereinafter also referred to as “ANC device”) and a function as an ASC device.
- the control signal Sc1 output from the ECU 14 is a noise (engine muffled noise) generated in the vehicle compartment according to the operation (vibration) of the engine, a wheel during traveling of the vehicle 10 and It defines an offset noise that offsets noise (road noise) and the like generated in the passenger compartment due to contact with the road surface.
- the control signal Sc1 defines a sound effect (simulated engine sound) synchronized with the engine booming sound.
- the sound source 16 is composed of an audio device and a navigation device, and outputs an audio signal Sau that defines music and voice for route guidance to the adder 18.
- the adder 18 combines the control signal Sc1 from the ECU 14 and the audio signal Sau from the sound source 16 to generate a control signal Sc2, and outputs the control signal Sc2 to the speaker 22 via the amplifier 20.
- the speaker 22 outputs a control sound CS defined by the control signal Sc2 from the adder 18 to the occupant 26.
- the control sound CS is output as a cancellation sound that cancels out the engine muffled sound
- the control sound as a sound effect (simulated engine sound) CS is output.
- the microphone 24 is disposed at a position (evaluation position) near the ear position of the occupant 26 and detects sound at the position. Then, an electric signal (microphone signal Smic) corresponding to the detected sound is generated and output to the ECU 14.
- the sound detected by the microphone 24 is the residual noise after the cancellation sound cancels the room sound such as the engine boom sound.
- the microphone signal Smic is an error signal indicating residual noise.
- the sound detected by the microphone 24 is a sound obtained by combining room sound such as engine boom sound and a sound effect (simulated engine sound).
- the gain (amplitude) of the control signal Sc1 is corrected using the microphone signal Smic when the ECU 14 is functioning as an ASC device (the details will be described later).
- the ECU 14 is an engine rotational frequency detector 30 (hereinafter also referred to as “fe detector 30"), an ANC circuit 32, an ASC circuit 34, an adder 36, and a digital / analog converter 38 ( Hereinafter, it is also referred to as “D / A converter 38”.
- the fe detector 30 is also referred to as a not-shown fuel injection control device ⁇ hereinafter referred to as “FI ECU” (FI ECU: Fuel Injection Electronic Control Unit) which controls fuel injection of an engine not shown.
- FI ECU Fuel Injection Electronic Control Unit
- the engine rotational frequency fe [Hz] is detected based on the engine pulse Ep from. Then, the detected engine rotational frequency fe is output to the ANC circuit 32 and the ASC circuit 34.
- the ANC circuit 32 reduces the noise, for example, by generating cancellation noise for noise such as engine boom noise and road noise.
- noise for example, those described in US Patent Application Publication No. 2004/0247137 and US Patent No. 7062049 can be used.
- the ASC circuit 34 enhances the acoustic effect in the passenger compartment, such as emphasizing the speed change of the vehicle, by generating a sound effect as a pseudo engine sound.
- the adder 36 combines the output signal (control signal Sc3) from the ANC circuit 32 and the output signal (control signal Sc4) from the ASC circuit 34 to generate a control signal Sc1.
- the control signal Sc1 is digital / analog (D / A) converted by the D / A converter 38. Then, the control signal Sc1 after D / A conversion is output to the adder 18.
- the ASC circuit 34 includes the multipliers 40, 42, 44, the reference signal generators 46a, 46b, 46c, the waveform data table 48, and the first acoustic correction.
- Sound correction means 55 having the first to third sound correction devices 54a to 54c, the second sound correction devices 52a to 52c, and the third sound correction devices 54a to 54c, the adder 56, and the frequency change amount detector 58 (hereinafter referred to Also referred to as “ ⁇ af detector 58 ′ ′), a sound pressure adjuster 60, and a volume corrector 62.
- Components other than the volume corrector 62 have the configurations described in, for example, US Patent Application Publication No. 2006/0215846 and US Patent Application Publication No. 2009/0028353 ((US Patent Application Publication No. 2006/0215846). 12, and FIG. 1) of U.S. Patent Application Publication 2009/0028353 can be applied.
- the multipliers 40, 42, 44 generate harmonic signals having a frequency of a predetermined order (predetermined multiple) of the engine rotational frequency fe. That is, the multiplier 40 generates an O 1 -order (eg, second order) harmonic signal, the multiplier 42 generates an O 2 order (eg, third order) harmonic signal, and the multiplier 44 , O 3 third order (eg, fourth order) harmonic signals are generated.
- the multiplier 40 generates an O 1 -order (eg, second order) harmonic signal
- the multiplier 42 generates an O 2 order (eg, third order) harmonic signal
- the multiplier 44 O 3 third order (eg, fourth order) harmonic signals are generated.
- the reference signal generators 46a to 46c generate reference signals Sr1, Sr2, and Sr3 using the harmonic signals from the multipliers 40, 42, and 44 and the waveform data stored in the waveform data table 48, and 1 Output to the sound correction units 50a to 50c.
- the first acoustic correctors 50a to 50c perform a flattening process to generate a control sound CS as an effect sound having a linear feeling with respect to the acceleration operation at the ear of the occupant 26 (US Patent Application Publication No. 2006/0215846 Paragraph [0069] to [0076]).
- the second acoustic correctors 52a to 52c perform a frequency emphasizing process of emphasizing only a desired frequency in the control sound CS as a sound effect (see paragraphs [0079] to [0082] of the same publication).
- the third acoustic correctors 54a to 54c perform order-based correction processing for correcting the reference signals Sr1 to Sr3 in accordance with the order (see paragraph [0088] of the same publication).
- the reference signals Sr1 to Sr3 passed through the first acoustic correctors 50a to 50c, the second acoustic correctors 52a to 52c, and the third acoustic correctors 54a to 54c are combined by the adder 56 to be a control signal Sc5.
- the ⁇ af detector 58 detects the change amount per unit time of the engine rotation frequency fe (hereinafter also referred to as “frequency change amount ⁇ af”) [Hz / s] based on the engine rotation frequency fe from the fe detector 30. Output to the sound pressure adjuster 60 and the volume corrector 62.
- the sound pressure adjuster 60 functions as a sound pressure adjuster, for example, as shown in FIG. 14 of US Patent Application Publication No. 2006/0215846, a gain table defining the relationship between the frequency change amount ⁇ af and the weighting gain. It stores in advance, sets the gain for the control signal Sc5 from the adder 56 in accordance with the frequency change amount ⁇ af, and adjusts the volume of the sound effect.
- the sound volume corrector 62 performs processing (sound volume stabilization processing) for adjusting the gain (amplitude) of the control signal Sc5 in order to compensate for variations in performance due to individual differences of the speakers 22 as sound effect output means and aging.
- the volume corrector 62 includes a gain correction unit 70, a reference table 72, an actual gain detector 74, and a gain comparator 76.
- the gain correction unit 70 multiplies the control signal Sc5 from the adder 56 via the sound pressure adjuster 60 by the sound volume stabilization coefficient Gs.
- the volume stabilization coefficient Gs (hereinafter also referred to as “factor Gs”) is a coefficient for compensating for variations in performance and aging over time due to individual differences among the speakers 22, and when the vehicle 10 is in a predetermined traveling state, the speakers 22 is used to keep the volume (amplitude) of the control sound CS (sound effect) output from the unit 22 constant.
- the predetermined traveling state indicates a state in which the engine rotational frequency fe and the frequency change amount ⁇ af have predetermined values. The method of setting the coefficient Gs will be described later.
- the prediction gain G1 as a predicted value (reference value) of the gain (amplitude) of a predetermined component of the control sound CS (sound effect) detected by the microphone 24 is
- the prediction gain G1 is stored according to the combination of the engine rotational frequency fe and the frequency change amount ⁇ af, and the prediction gain G1 is output to the gain comparator 76.
- the amplification factor of the amplifier 20 may be multiplied by the prediction gain G1.
- the predetermined component is a component of a predetermined order of the engine rotational frequency fe generated via the multipliers 40, 42, 44 and the like, and in the present embodiment is an O 1 -order component of the engine rotational frequency fe.
- an O 2 order component or an O 3 order component of the engine rotational frequency fe can also be used.
- the target order is set in advance, and the signal transfer function from the speaker 22 to the microphone 24 can also be specified in advance. Therefore, if the engine rotational frequency fe and the frequency change amount ⁇ af are known, the prediction is The gain G1 can be identified. For example, when the gain (amplitude) of the reference signal Sr1 generated by the reference signal generator 46a is 1 and the sound volume stabilization processing in the sound volume corrector 62 is not performed, the control signal Sc5 output from the sound pressure adjuster 60 is Among them, the gain obtained by reflecting the signal transfer function to the gain of the O 1st order component is regarded as the prediction gain G1 (more specifically, when the amplification factor of the amplifier 20 is reflected, the prediction gain G1 can be specified more accurately) ).
- the prediction gain G1 used in the present embodiment is also a prediction value (reference value). It is stored as the square of the gain of. Further, in the present embodiment, in order to compare the predicted gain G1 with the actual measurement gain G2 in the microphone 24 (to match the evaluation position), as described above, the predicted gain G1 has a signal transfer function from the speaker 22 to the microphone 24 It is a value reflected in advance.
- the actual gain detector 74 detects an actual gain G2 as an actual measurement value of the gain (amplitude) of the predetermined component (O first- order component) of the control sound CS (sound effect) detected by the microphone 24.
- FIG. 2 is a block diagram showing the details of the actual measurement gain detector 74.
- the actual measurement gain detector 74 includes a multiplier 80, a cosine wave generator 82, a sine wave generator 84, a first adaptive filter 86, a second adaptive filter 88, and an adder 90. , A first filter coefficient update unit 94, a second filter coefficient update unit 96, and an actual measurement gain calculation unit 98.
- the multiplier 80 generates a harmonic signal Sh of a specific order (in the present embodiment, O 1 order) targeted for the prediction gain G 1 and is similar to the multiplier 40.
- the frequency f1 of the harmonic signal Sh is the same as the frequency of the harmonic signal output from the multiplier 40.
- the cosine wave generation unit 82 generates a cosine wave signal Scos having a frequency of f1 and a gain (amplitude) of 1, and outputs the cosine wave signal Scos to the first adaptive filter 86 and the first filter coefficient update unit 94.
- the cosine wave signal Scos is defined as cos (2 ⁇ f1).
- the sine wave generation unit 84 generates a sine wave signal Ssin having a frequency of f1 and a gain (amplitude) of 1, and outputs the sine wave signal Ssin to the second adaptive filter 88 and the second filter coefficient update unit 96.
- the sine wave signal Ssin is defined as sin (2 ⁇ f1).
- the first adaptive filter 86 multiplies the cosine wave signal S cos by the filter coefficient A 1 and outputs the result to the adder 90.
- the filter coefficient A 1 is updated as needed by the first filter coefficient updating unit 94.
- the second adaptive filter 88 multiplies the sine wave signal S sin by the filter coefficient B 1 and outputs the result to the adder 90.
- the filter coefficient B 1 is updated as needed by the second filter coefficient updating unit 96.
- the adder 90 adds the cosine wave signal Scos output from the first adaptive filter 86 and the sine wave signal Ssin output from the second adaptive filter 88 to generate a control signal Sc6, and subtracts the control signal Sc6. Output to the output unit 92.
- the control signal Sc6 is the one in which only the O 1 -order component is extracted.
- the subtractor 92 generates an error signal e indicating the difference between the microphone signal Smic from the microphone 24 and the control signal Sc6 from the adder 90, and this error signal e is output to the first filter coefficient updating unit 94 and the second filter coefficient. Output to the updating unit 96.
- the first filter coefficient update unit 94 sequentially calculates and updates the filter coefficient A 1 of the first adaptive filter 86.
- the first filter coefficient updating unit 94 calculates the filter coefficient A 1 using adaptive algorithm operation ⁇ eg, least squares method (LMS) algorithm operation ⁇ . That is, based on the cosine wave signal Scos from the cosine wave generator 82 and the error signal e from the subtractor 92 calculates the filter coefficients A 1 to the square e 2 of the error signal e to zero. Specifically, the following equation (1) is used.
- LMS least squares method
- a 1 (n + 1) A 1 (n) ⁇ ⁇ e (n) ⁇ S cos (n) + S cos (n) ⁇ (1)
- ⁇ is a step size parameter. As understood from the equation (1), by adjusting the step size parameter ⁇ , it is possible to adjust the convergence time until the square e 2 of the error signal e becomes minimum.
- the second filter coefficient updating unit 96 sequentially calculates and updates the filter coefficient B 1 of the second adaptive filter 88.
- the second filter coefficient update unit 96 calculates the filter coefficient B 1 using adaptive algorithm operation ⁇ eg, least squares method (LMS) algorithm operation ⁇ . Calculation of the filter coefficients B 1 represents the same as the operation of the filter coefficients A 1.
- LMS least squares method
- the actual measurement gain calculation unit 98 calculates the actual measurement gain G2 based on the filter coefficients A 1 and B 1 and outputs the actual measurement gain G2 to the gain comparator 76. That is, the sum A 1 2 + B 1 2 of the square of the filter coefficient A 1 and the square of the filter coefficient B 1 is calculated as the actual measurement gain G2.
- the sum A 1 2 + B 1 2 indicates the square value of the amplitude of the component of the predetermined order (in the present embodiment, O 1 ) included in the microphone signal Smic.
- the value of the actual measurement gain G2 output to the gain comparator 76 by the actual measurement gain calculation unit 98 may be, for example, a moving average value of the last 10 values.
- the gain comparator 76 compares the predicted gain G1 read from the reference table 72 with the actual measurement gain G2 output from the actual measurement gain calculation unit 98, and the sound volume stabilization coefficient Gs of the gain correction unit 70 according to the comparison result. Adjust the That is, when the prediction gain G1 is larger than the actual measurement gain G2, the control sound CS (sound effect) output from the speaker 22 is not sufficient for the necessary volume (amplitude). Therefore, the gain comparator 76 increases the volume stabilization coefficient Gs to increase the volume (amplitude) of the control sound CS. On the other hand, when the prediction gain G1 is smaller than the actual measurement gain G2, the control sound CS (sound effect) output from the speaker 22 has a volume (amplitude) more than necessary.
- the gain comparator 76 reduces the volume stabilization coefficient Gs to reduce the volume (amplitude) of the control sound CS.
- FIG. 3 shows a flowchart for updating the sound volume stabilization coefficient Gs in the sound volume corrector 62.
- step S1 the volume corrector 62 determines whether it is necessary to update the volume stabilization coefficient Gs. Specifically, a plurality of values (update execution value Vu) of engine rotational speed NE [rpm] (synonymous with engine rotational frequency fe) for determining necessity of updating of the volume stabilization coefficient Gs are set in advance, It is determined whether the engine rotational speed NE of is one of the update execution values Vu.
- FIG. 4 shows an example of the relationship between the volume of room sound when the ECU 14 is operated, the volume of room sound when the ECU 14 is not operated, and the update execution value Vu.
- a plurality of update execution values Vu are described as update execution values Vu1 to Vu4.
- the operation of the ANC circuit 32 and the operation of the ASC circuit 34 in the present embodiment are switched according to the engine speed NE [rpm]. That is, when the engine speed NE is 2200 rpm or less, the ANC circuit 32 is operated, and when the engine speed NE exceeds 2200 rpm, the ASC circuit 34 is operated.
- the solid line in FIG. 4 indicates the volume SVon [dB] of the room sound when the ANC circuit 32 or the ASC circuit 34 is operated.
- the room sound is a combination of an engine booming sound (actual engine sound) and a control sound CS (cancellation sound or sound effect).
- the broken line in FIG. 4 indicates the volume SVoff [dB] of the room sound (engine booming sound) when the ANC circuit 32 and the ASC circuit 34 are not operated.
- the sound volumes SVon and SVoff are both detected as the amplitude of the microphone signal Smic detected by the microphone 24.
- the example of FIG. 4 is a waveform when the vehicle 10 is accelerated (that is, a waveform when the engine rotational speed NE is increasing).
- the difference D between the volume SVon and the volume SVoff is not constant but varies depending on the engine speed NE.
- the difference D becomes relatively large.
- the engine rotational speed NE which becomes these values is set as the update execution values Vu1 to Vu4.
- step S1 when the engine speed NE is not any of the update execution values Vu1 to Vu4 and the coefficient Gs is not updated in step S1 (S1: NO), the current process is finished as it is.
- the engine speed NE is the update execution value Vu and the coefficient Gs is to be updated (S1: YES)
- the process proceeds to step S2.
- step S2 the volume corrector 62 acquires the prediction gain G1. Specifically, based on the engine rotation frequency fe from the fe detector 30 and the rotation frequency change amount ⁇ af from the ⁇ af detector 58, the prediction gain G1 is read from the reference table 72 and is output to the gain comparator 76. In this case, the predicted gain G1 preferably reflects the amplification factor of the amplifier 20. Also, as described above, the prediction gain G1 in the present embodiment reflects the signal transfer function from the speaker 22 to the microphone 24.
- step S3 the volume corrector 62 acquires the measured gain G2. Specifically, it extracts the O 1-order component from the microphone signal Smic from the microphone 24, calculates the square value of the gain of the O 1-order component of (A 1 2 + B 1 2 ). Then, this squared value is output to the gain comparator 76 as the actual measurement gain G2.
- step S4 the gain comparator 76 of the volume corrector 62 compares the predicted gain G1 acquired in step S2 with the actual measurement gain G2 acquired in step S3.
- step S5 the gain comparator 76 updates the sound volume stabilization coefficient Gs in accordance with the comparison result of step S4. Specifically, when the prediction gain G1 is larger than the actual measurement gain G2, the coefficient Gs is increased, and when the prediction gain G1 is smaller than the actual measurement gain G2, the coefficient Gs is decreased and the prediction gain G1 and the actual measurement gain G2 When is equal, the coefficient Gs is maintained as it is.
- the initial value of the coefficient Gs is 1 [times].
- the gain of the control signal Sc5 defining the sound effect is corrected. Therefore, even if the measured gain G2 of the sound effect changes due to the secular change of the speaker 22, the output of the speaker 22 when the vehicle 10 is in a predetermined traveling state is kept constant to compensate for the secular change. Is possible.
- the prediction gain G1 or the reference table 72
- ECUs 14 it is also possible to compensate for variations in the performance of the speakers 22.
- the gain comparator 76 sets the gain of the control sound CS relatively large in the sound correction means 55 (update execution values Vu1 to Vu4
- the gain correction unit 70 corrects the gain of the control sound CS with one of the update execution values Vu1 to Vu4 by comparing the predicted gain G1 with the actual measurement gain G2 in any of the above. As a result, the measurement gain G2 can be identified with high accuracy.
- the vehicle 10 is a gasoline car and the control sound CS as the sound effect output from the speaker 22 is a pseudo engine sound, but the control sound CS is not limited to this as long as it is a pseudo operation sound of the drive source.
- the vehicle 10 is an electric vehicle, it may be a simulated operation noise of a traveling motor, and if the vehicle 10 is a fuel cell vehicle, it may be a simulated operation noise of an air compressor.
- the present invention is not limited to this. For example, it may be performed based on only one of the engine rotation frequency fe and the frequency change amount ⁇ af. Alternatively, it may be performed based on one or both of the vehicle speed V [km / h] of the vehicle 10 and the vehicle speed change amount ⁇ av [km / h / s].
- the vehicle speed V for gain adjustment of the reference signal or control signal as in the configuration described in US Patent Application Publication 2009/0028353 (FIG. 1 of the same publication
- at least at least the vehicle speed V or the vehicle speed change amount ⁇ av It is preferable to use one.
- the vehicle 10 may be performed based on one or both of the rotation frequency [Hz] of the traveling motor and the rotation frequency change amount [Hz / s] of the traveling motor.
- the reference signals Sr1 to Sr3 are synthesized and the sound pressure adjustment processing is performed by the sound pressure adjuster 60
- the sound volume stabilization processing by the sound volume corrector 62 is performed on the control signal Sc5. It is not restricted to this.
- the sound pressure adjustment process by the sound pressure adjusters 60a and 60b and the sound volume stabilization process by the sound volume correctors 62a and 62b are performed.
- the control signals Sc71 and Sc72 of each order component may be synthesized later.
- the ASC circuit 34a has the sound pressure adjusters 60a and 60b and the volume correctors 62a and 62b.
- the sound pressure adjuster 60a performs sound pressure adjustment on the reference signal Sr1 output from the reference signal generator 46a and acoustically corrected by the acoustic correction unit 55, and outputs a control signal Sc71.
- the sound pressure adjuster 60b performs sound pressure adjustment on the reference signal Sr2 output from the reference signal generator 46b and acoustically corrected by the acoustic correction unit 55, and outputs a control signal Sc72.
- the volume corrector 62a has a gain correction unit 70a, a reference table 72a, an actual gain detector 74a, and a gain comparator 76a.
- the volume corrector 62b includes a gain correction unit 70b, a reference table 72b, an actual gain detector 74b, and a gain comparator 76b.
- the configuration of the volume correctors 62a and 62b is basically the same as that of the volume corrector 62, but the measured gain detectors 74a and 74b receive harmonic signals from the multipliers 40 and 42, and the measured gain detector 74a. , 74b itself does not generate harmonic signals.
- volume corrector 62a performs volume stabilization processing on the control signal Sc71 output from the sound pressure adjuster 60a, and the volume corrector 62b transmits the control signal Sc72 output from the sound pressure adjuster 60b. Perform volume stabilization processing. This makes it possible to correct the volume stabilization coefficients Gs1 and Gs2 in accordance with the order.
- control signals Sc71 and Sc72 subjected to the sound volume stabilization processing by the sound volume correctors 62a and 62b are added by the adder 56a to generate a control signal Sc8 and output to the adder 36.
- the time shift (phase difference) of the control sound CS from the speaker 22 to the microphone 24 is compensated by reflecting the signal transfer characteristic from the speaker 22 to the microphone 24 in the prediction gain G1. .
- the predicted gain G1 and the actual measurement gain G2 at the time when the microphone 24 detected the control sound CS were compared.
- the method of compensating for the above-mentioned time lag is not limited to this.
- the signal transfer characteristic may be obtained in advance and compensated by reflecting the signal transfer characteristic on the actual measurement gain G2.
- the predicted gain G1 and the actual measurement gain G2 at the time when the control sound CS is output by the speaker 22 may be compared.
- the predicted gain G1 and the measured gain G2 are compared with the actual measurement gain G2 corrected by the signal transfer function from the evaluation position to the microphone 24.
Landscapes
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Abstract
効果音発生装置(12)の制御信号生成手段(14)は、車両(10)が所定の走行状態における効果音の音量の基準値である基準音量を設定し、車両(10)が前記所定の走行状態のときに効果音検出手段(24)が検出した前記効果音の実測音量と、前記基準音量とを比較し、比較結果に基づいて制御信号(Sc5)のゲインを補正する。
Description
この発明は、車両の擬似エンジン音等の効果音を発生させる効果音発生装置に関する。
車室内の音響効果を高める機器として効果音発生装置{以下、「ASC装置」(ASC:Active Sound Control)ともいう。}が知られている(例えば、米国特許出願公開第2006/0215846号公報、米国特許第5635903号公報及び特開2006-193002号公報)。
米国特許出願公開第2006/0215846号公報では、エンジン回転周波数[Hz]に応じた複数の基準信号(Sr1、Sr2、Sr3)を生成し、これらの基準信号に所定のゲイン補正処理を行った後、これらの基準信号を合成し、効果音を生成するための制御信号(Sc)を出力する。そして、この制御信号に対して、エンジン回転周波数の単位時間当たりの変化量[Hz/s]に応じたゲイン補正処理を行う(例えば、同公報の図12、図14参照)。
米国特許第5635903号公報では、電気車両の始動、走行及び加減速の車両動作状態に対応した擬似音信号を生成すると共に、この擬似音信号のレベルを周囲騒音のレベルに応じて変化させて擬似音の音量を切り替える(例えば、同公報の要約及び請求項1参照)。
特開2006-193002号公報では、車室内の音に応じて擬似エンジン音を増減する(例えば、同公報の要約及び請求項1参照)。
前記各公報では、課題に応じて擬似音(効果音)の調整を行っているが、未だ改善の余地がある。例えば、前記各公報では、効果音出力手段(例えば、スピーカ)の個体差による性能のばらつきや経年変化が考慮されていない。
この発明はこのような課題を考慮してなされたものであり、効果音出力手段の性能上のばらつきや経年変化を補償することが可能な効果音発生装置を提供することを目的とする。
この発明に係る効果音発生装置は、移動体の走行状態を検出する走行状態検出手段と、1周期分の波形データを格納する波形データテーブルと、前記走行状態に基づいて前記波形データテーブルから順次前記波形データを読み込むことで所定次数の基準信号を生成する基準信号生成手段と、前記基準信号に基づいて制御信号を生成する音響制御手段と、前記制御信号用のゲインを前記走行状態に対応させて格納した第1ゲインテーブルを保持し、前記走行状態検出手段が検出した前記走行状態に応じて前記第1ゲインテーブルから前記ゲインを読み出し、当該ゲインを用いてゲイン調整した前記制御信号を出力するゲイン調整手段と、前記ゲイン調整した制御信号に対応する効果音を出力する効果音出力手段とを備えるものであって、さらに、乗員付近における評価位置に配置され、前記評価位置における前記効果音を検出する効果音検出手段と、前記第1ゲインテーブルにおける前記制御信号用のゲインに、前記効果音出力手段から前記効果音検出手段までの信号伝達特性を反映した前記評価位置における前記制御信号の予測ゲインを格納する第2ゲインテーブルを保持し、前記予測ゲインと、前記効果音検出手段が検出した前記効果音の実測ゲインとを比較するゲイン比較手段と、前記ゲイン比較手段の比較結果に基づいて、前記ゲイン調整した制御信号のゲインを補正するゲイン補正手段とを有することを特徴とする。
この発明によれば、移動体の走行状態(例えば、エンジン回転周波数、エンジン回転周波数変化量、走行モータの回転周波数、走行モータの回転周波数変化量、車速及び車速変化量の少なくとも1つ)に基づく効果音の予測ゲインと、効果音の実測ゲインとの比較結果に基づいて、効果音を規定する制御信号のゲインを補正する。従って、例え、効果音出力手段の経年変化により効果音の実測ゲインに変動が生じた場合にも、移動体が所定の走行状態のときの効果音出力手段の出力を一定に保ち、経年変化を補償することが可能となる。また、複数の効果音発生装置で予測ゲインを共通化すれば、効果音出力手段の性能上のばらつきを補償することも可能となる。
前記ゲイン比較手段は、前記第2ゲインテーブルに基づいて前記所定次数の予測ゲインを特定する予測ゲイン特定手段と、前記評価位置での効果音から前記所定次数の実測ゲインを検出する実測ゲイン検出手段とを備えてもよい。これにより、予測ゲイン及び実測ゲインの特定を所定次数のみに基づいて行うことが可能となり、次数を特定しない場合と比較して予測ゲイン及び実測ゲインの特定精度を高めることができる。
前記実測ゲイン検出手段は、前記所定次数の基準信号に基づいて第2制御信号を出力する適応ノッチフィルタと、前記評価位置での効果音から前記第2制御信号を除去した除去信号を出力する除去手段と、前記所定次数の基準信号と前記除去信号とに基づいて前記除去信号の前記所定次数の成分が最小となるように前記適応ノッチフィルタのフィルタ係数を逐次更新するフィルタ係数更新手段とを備え、前記適応ノッチフィルタのフィルタ係数を前記所定次数の実測ゲインとして検出してもよい。
前記ゲイン比較手段は、前記制御信号の制御周波数のうち、前記音響制御手段において前記制御信号のゲインを相対的に大きく設定する周波数で前記予測ゲインと前記実測ゲインとを比較し、又は、前記ゲイン補正手段は、前記音響制御手段において前記制御信号のゲインを相対的に大きく設定する周波数で前記制御信号のゲインを補正してもよい。これにより、実測ゲインの特定を精度よく行うことができる。
この発明に係る効果音発生装置は、移動体の走行状態を検出する走行状態検出手段と、1周期分の波形データを格納する波形データテーブルと、前記走行状態に基づく調波の基準信号を前記波形データテーブルから順次前記波形データを読み込むことにより生成する基準信号生成手段と、前記基準信号に基づいて制御信号を生成する音響制御手段と、前記制御信号用のゲインを前記走行状態に対応させて格納したゲインテーブルを保持し、前記走行状態検出手段が検出した前記走行状態に応じて前記ゲインテーブルから前記ゲインを読み出し、当該ゲインを用いてゲイン調整した前記制御信号を出力するゲイン調整手段と、前記ゲイン調整した制御信号に対応する効果音を出力する効果音出力手段とを備えるものであって、さらに、乗員付近における評価位置に配置され、前記評価位置における前記効果音を検出する効果音検出手段と、前記効果音出力手段から前記効果音検出手段までの信号伝達特性を保持し、前記効果音検出手段が検出した前記効果音のゲインを前記信号伝達特性で補正して前記効果音出力手段が出力した時点での前記効果音の実測ゲインを演算し、前記実測ゲインと前記ゲインテーブルのゲインとを比較するゲイン比較手段と、前記ゲイン比較手段の比較結果に基づいて、前記ゲイン調整した制御信号のゲインを補正するゲイン補正手段とを有することを特徴とする。
この発明によれば、制御信号用のゲインと効果音の実測ゲインとの比較結果に基づいて、効果音を規定する制御信号のゲインを補正する。従って、例え、効果音出力手段の経年変化により効果音の実測ゲインに変動が生じた場合にも、移動体が所定の走行状態のときの効果音出力手段の出力を一定に保ち、経年変化を補償することが可能となる。また、複数の効果音発生装置で制御信号用のゲイン及び信号伝達特性を共通化すれば、効果音出力手段の性能上のばらつきを補償することも可能となる。
この発明に係る効果音発生装置は、車両の駆動源の擬似作動音としての効果音を発生させるものであって、前記効果音を規定する制御信号を生成する制御信号生成手段と、前記制御信号に対応する前記効果音を出力する効果音出力手段と、評価位置において前記効果音を検出する効果音検出手段とを備え、前記制御信号生成手段は、前記車両が所定の走行状態における前記効果音の音量の基準値である基準音量を設定し、前記車両が前記所定の走行状態のときに前記効果音検出手段が検出した前記効果音の実測音量と、前記基準音量とを比較し、比較結果に基づいて前記制御信号のゲインを補正することを特徴とする。
この発明によれば、効果音の基準音量と実測音量との比較結果に基づいて、効果音を規定する制御信号のゲインを補正する。従って、効果音出力手段の経年変化により効果音の実測音量に変動が生じた場合にも、車両が所定の走行状態のときの効果音出力手段の出力を一定に保ち、経年変化を補償することが可能となる。また、複数の効果音発生装置で基準音量を共通化すれば、効果音出力手段の性能上のばらつきを補償することも可能となる。
[A.一実施形態]
1.全体及び各部の構成
(1)全体構成
図1は、この発明の一実施形態に係る効果音発生装置(ASC装置)の機能を有する音響制御ECU14(ECU:Electronic Control Unit)を搭載した車両10の概略的な構成を示す図である。車両10は、ガソリン車であるが、電気自動車、燃料電池車等の車両とすることもできる。
1.全体及び各部の構成
(1)全体構成
図1は、この発明の一実施形態に係る効果音発生装置(ASC装置)の機能を有する音響制御ECU14(ECU:Electronic Control Unit)を搭載した車両10の概略的な構成を示す図である。車両10は、ガソリン車であるが、電気自動車、燃料電池車等の車両とすることもできる。
車両10は、音響システム12を有し、この音響システム12は、音響制御ECU14に加え、音源16と、加算器18と、増幅器20と、スピーカ22と、マイクロホン24とを有する。
音響制御ECU14(以下「ECU14」ともいう。)は、能動型騒音制御装置(以下「ANC装置」ともいう。)としての機能と、ASC装置としての機能を併せ持つ。ECU14がANC装置として機能しているとき、ECU14から出力される制御信号Sc1は、エンジンの作動(振動)に応じて車室内に生ずる騒音(エンジンこもり音)や、車両10の走行中における車輪と路面との接触によって車室内に生ずる騒音(ロードノイズ)等を相殺する相殺音を規定する。また、ECU14がASC装置として機能しているとき、制御信号Sc1は、エンジンこもり音に同期した効果音(擬似エンジン音)を規定する。
音源16は、オーディオ機器やナビゲーション装置からなり、音楽や経路案内用の音声等を規定するオーディオ信号Sauを加算器18に出力する。
加算器18は、ECU14からの制御信号Sc1と音源16からのオーディオ信号Sauとを合成して制御信号Sc2を生成し、増幅器20を介してスピーカ22に出力する。
スピーカ22は、加算器18からの制御信号Sc2が規定する制御音CSを乗員26に対して出力する。これにより、ECU14がANC装置として機能しているとき、エンジンこもり音を打ち消す相殺音として制御音CSが出力され、ECU14がASC装置として機能しているとき、効果音(擬似エンジン音)として制御音CSが出力される。
マイクロホン24は、乗員26の耳位置近傍の位置(評価位置)に配置され、当該位置における音を検出する。そして、検出した音に応じた電気信号(マイクロホン信号Smic)を生成し、ECU14に出力する。ECU14がANC装置として機能しているとき、マイクロホン24が検出する音は、相殺音がエンジンこもり音等の室内音を相殺した後の残留騒音である。この場合、マイクロホン信号Smicは、残留騒音を示す誤差信号である。また、ECU14がASC装置として機能しているとき、マイクロホン24が検出する音は、エンジンこもり音等の室内音と効果音(擬似エンジン音)とを合わせた音である。本実施形態では、ECU14がASC装置として機能しているときのマイクロホン信号Smicを用いて制御信号Sc1のゲイン(振幅)を補正する(詳細は後述する。)。
(2)音響制御ECU14
(i)全体構成
ECU14は、エンジン回転周波数検出器30(以下「fe検出器30」ともいう。)と、ANC回路32と、ASC回路34と、加算器36と、デジタル/アナログ変換器38(以下「D/A変換器38」ともいう。)とを有する。
(i)全体構成
ECU14は、エンジン回転周波数検出器30(以下「fe検出器30」ともいう。)と、ANC回路32と、ASC回路34と、加算器36と、デジタル/アナログ変換器38(以下「D/A変換器38」ともいう。)とを有する。
fe検出器30は、図示しないエンジンの燃料噴射を制御する図示しない燃料噴射制御装置{以下「FI ECU」(FI ECU:Fuel Injection Electronic Control Unit)とも称する。}からのエンジンパルスEpに基づいてエンジン回転周波数fe[Hz]を検出する。そして、検出したエンジン回転周波数feを、ANC回路32及びASC回路34に出力する。
ANC回路32は、例えば、エンジンこもり音やロードノイズ等の騒音に対する相殺音を発生させて前記騒音を低減する。ANC回路32としては、例えば、米国特許出願公開第2004/0247137号公報及び米国特許第7062049号公報に記載のものを用いることができる。
ASC回路34は、擬似エンジン音としての効果音を発生させることで、車両の速度変化を強調する等、車室内の音響効果を高める。
図1に示すように、ANC回路32からの出力信号(制御信号Sc3)と、ASC回路34からの出力信号(制御信号Sc4)とが加算器36で合成されて制御信号Sc1が生成される。制御信号Sc1は、D/A変換器38でデジタル/アナログ(D/A)変換される。そして、D/A変換後の制御信号Sc1は、加算器18に出力される。
(ii)ASC回路34の詳細
図1に示すように、ASC回路34は、倍数器40、42、44と、基準信号生成器46a、46b、46cと、波形データテーブル48と、第1音響補正器50a、50b、50c、第2音響補正器52a、52b、52c及び第3音響補正器54a、54b、54cを有する音響補正手段55と、加算器56と、周波数変化量検出器58(以下「Δaf検出器58」ともいう。)と、音圧調整器60と、音量補正器62とを有する。音量補正器62を除く構成要素は、例えば、米国特許出願公開第2006/0215846号公報や米国特許出願公開第2009/0028353号公報に記載の構成(米国特許出願公開第2006/0215846号公報の図12や、米国特許出願公開第2009/0028353号公報の図1)を適用することができる。
図1に示すように、ASC回路34は、倍数器40、42、44と、基準信号生成器46a、46b、46cと、波形データテーブル48と、第1音響補正器50a、50b、50c、第2音響補正器52a、52b、52c及び第3音響補正器54a、54b、54cを有する音響補正手段55と、加算器56と、周波数変化量検出器58(以下「Δaf検出器58」ともいう。)と、音圧調整器60と、音量補正器62とを有する。音量補正器62を除く構成要素は、例えば、米国特許出願公開第2006/0215846号公報や米国特許出願公開第2009/0028353号公報に記載の構成(米国特許出願公開第2006/0215846号公報の図12や、米国特許出願公開第2009/0028353号公報の図1)を適用することができる。
倍数器40、42、44は、エンジン回転周波数feの所定次数(所定倍)の周波数を有する調波信号を生成する。すなわち、倍数器40は、O1次(例えば、2次)の調波信号を生成し、倍数器42は、O2次(例えば、3次)の調波信号を生成し、倍数器44は、O3次(例えば、4次)の調波信号を生成する。
基準信号生成器46a~46cは、倍数器40、42、44からの調波信号と、波形データテーブル48に格納されている波形データとを用いて基準信号Sr1、Sr2、Sr3を生成し、第1音響補正器50a~50cに出力する。
第1音響補正器50a~50cは、加速操作に対してリニア感のある効果音としての制御音CSを乗員26の耳元で発生させる平坦化処理を行う(米国特許出願公開第2006/0215846号公報の段落[0069]~[0076]参照)。第2音響補正器52a~52cは、効果音としての制御音CSのうち所望の周波数のみを強調する周波数強調処理を行う(同公報の段落[0079]~[0082]参照)。第3音響補正器54a~54cは、基準信号Sr1~Sr3を次数に応じて補正する次数毎補正処理を行う(同公報の段落[0088]参照)。第1音響補正器50a~50c、第2音響補正器52a~52c及び第3音響補正器54a~54cを経た基準信号Sr1~Sr3は、加算器56で合成されて制御信号Sc5とされる。
Δaf検出器58は、fe検出器30からのエンジン回転周波数feに基づいて、エンジン回転周波数feの単位時間当たりの変化量(以下「周波数変化量Δaf」ともいう。)[Hz/s]を検出し、音圧調整器60及び音量補正器62に出力する。
音圧調整器60は、音圧調整器として機能し、例えば、米国特許出願公開第2006/0215846号公報の図14のように、周波数変化量Δafと重み付けゲインとの関係を規定したゲインテーブルを予め記憶しておき、周波数変化量Δafに応じて加算器56からの制御信号Sc5用のゲインを設定し、効果音の音量を調整する。
音量補正器62は、効果音出力手段としてのスピーカ22の個体差による性能のばらつきや経年変化を補償するために制御信号Sc5のゲイン(振幅)を調整する処理(音量安定化処理)を行う。
(iii)音量補正器62の詳細
音量補正器62は、ゲイン補正部70と、基準テーブル72と、実測ゲイン検出器74と、ゲイン比較器76とを有する。
音量補正器62は、ゲイン補正部70と、基準テーブル72と、実測ゲイン検出器74と、ゲイン比較器76とを有する。
ゲイン補正部70は、音圧調整器60を介した加算器56からの制御信号Sc5に対して音量安定化係数Gsを乗算する。音量安定化係数Gs(以下「係数Gs」ともいう。)は、スピーカ22の個体差による性能のばらつきや経年変化を補償するための係数であり、車両10が所定の走行状態であるとき、スピーカ22から出力される制御音CS(効果音)の音量(振幅)を一定に保持するために用いられる。本実施形態において、前記所定の走行状態は、エンジン回転周波数feと周波数変化量Δafが所定の値である状態を指す。係数Gsの設定方法については後述する。
基準テーブル72は、車両10が上記所定の状態であるとき、マイクロホン24が検出する制御音CS(効果音)のうち所定成分のゲイン(振幅)の予測値(基準値)としての予測ゲインG1が格納されており、エンジン回転周波数feと周波数変化量Δafの組合せに応じて予測ゲインG1を特定し、当該予測ゲインG1をゲイン比較器76に出力する。この際、増幅器20の増幅率を予測ゲインG1に乗算してもよい。上記所定成分は、倍数器40、42、44等を介して生成されるエンジン回転周波数feの所定次数の成分であり、本実施形態では、エンジン回転周波数feのO1次の成分である。或いは、エンジン回転周波数feのO2次の成分やO3次の成分を用いることもできる。
上記のように対象とする次数が予め設定されており、また、スピーカ22からマイクロホン24までの信号伝達関数も事前に特定可能であるため、エンジン回転周波数fe及び周波数変化量Δafがわかれば、予測ゲインG1を特定することができる。例えば、基準信号生成器46aで生成される基準信号Sr1のゲイン(振幅)を1とし、音量補正器62における音量安定化処理を行わないとき、音圧調整器60から出力される制御信号Sc5のうちO1次成分のゲインに前記信号伝達関数を反映したものが予測ゲインG1とされる(より詳細には、増幅器20の増幅率を反映すると、より精度よく予測ゲインG1を特定することができる。)。
但し、後述するように、実測ゲイン検出器74が検出する実測ゲインG2は、実際のゲインの二乗値として算出されるため、本実施形態で用いられる予測ゲインG1も、予測値(基準値)としてのゲインの二乗値として記憶されている。また、本実施形態では、マイクロホン24における予測ゲインG1と実測ゲインG2の比較をするため(評価位置を合わせるため)、上述の通り、予測ゲインG1は、スピーカ22からマイクロホン24までの信号伝達関数が予め反映された値となっている。
実測ゲイン検出器74は、マイクロホン24が検出した制御音CS(効果音)のうち前記所定成分(O1次成分)のゲイン(振幅)の実測値としての実測ゲインG2を検出する。
図2は、実測ゲイン検出器74の詳細を示すブロック図である。図2に示すように、実測ゲイン検出器74は、倍数器80と、余弦波生成部82と、正弦波生成部84と、第1適応フィルタ86と、第2適応フィルタ88と、加算器90と、減算器92と、第1フィルタ係数更新部94と、第2フィルタ係数更新部96と、実測ゲイン算出部98とを有する。
倍数器80は、予測ゲインG1の対象とされた特定次数(本実施形態では、O1次)の調波信号Shを生成するものであり、倍数器40と同様のものである。換言すると、調波信号Shの周波数f1は、倍数器40から出力される調波信号の周波数と同じである。
余弦波生成部82は、周波数がf1でありゲイン(振幅)が1の余弦波信号Scosを生成し、第1適応フィルタ86及び第1フィルタ係数更新部94に出力する。なお、余弦波信号Scosは、cos(2πf1)として定義される。正弦波生成部84は、周波数がf1でありゲイン(振幅)が1の正弦波信号Ssinを生成し、第2適応フィルタ88及び第2フィルタ係数更新部96に出力する。なお、正弦波信号Ssinは、sin(2πf1)として定義される。
第1適応フィルタ86は、余弦波信号Scosにフィルタ係数A1を乗算して加算器90に出力する。フィルタ係数A1は、第1フィルタ係数更新部94により随時更新される。第2適応フィルタ88は、正弦波信号Ssinにフィルタ係数B1を乗算して加算器90に出力する。フィルタ係数B1は、第2フィルタ係数更新部96により随時更新される。
加算器90は、第1適応フィルタ86から出力された余弦波信号Scosと第2適応フィルタ88から出力された正弦波信号Ssinとを加算して制御信号Sc6を生成し、この制御信号Sc6を減算器92に出力する。この制御信号Sc6は、O1次の成分のみが抽出されたものとなる。
減算器92は、マイクロホン24からのマイクロホン信号Smicと加算器90からの制御信号Sc6との差を示す誤差信号eを生成し、この誤差信号eを第1フィルタ係数更新部94及び第2フィルタ係数更新部96に出力する。
第1フィルタ係数更新部94は、第1適応フィルタ86のフィルタ係数A1を逐次演算・更新する。第1フィルタ係数更新部94は、適応アルゴリズム演算{例えば、最小二乗法(LMS)アルゴリズム演算}を用いてフィルタ係数A1を演算する。すなわち、余弦波生成部82からの余弦波信号Scosと減算器92からの誤差信号eとに基づいて、誤差信号eの二乗e2をゼロとするようにフィルタ係数A1を演算する。具体的には、以下の式(1)を用いる。
A1(n+1)=A1(n)―μ{e(n)・Scos(n)+Scos(n)} ・・・(1)
上記式(1)において、「μ」はステップサイズパラメータである。式(1)からわかるように、ステップサイズパラメータμを調整することにより、誤差信号eの二乗e2が最小となるまでの収束時間を調整することができる。
第2フィルタ係数更新部96は、第2適応フィルタ88のフィルタ係数B1を逐次演算・更新する。第2フィルタ係数更新部96は、適応アルゴリズム演算{例えば、最小二乗法(LMS)アルゴリズム演算}を用いてフィルタ係数B1を演算する。フィルタ係数B1の演算は、フィルタ係数A1の演算と同様である。
実測ゲイン算出部98は、フィルタ係数A1、B1に基づいて実測ゲインG2を算出し、ゲイン比較器76に出力する。すなわち、実測ゲインG2として、フィルタ係数A1の二乗とフィルタ係数B1の二乗の和A1
2+B1
2を算出する。この和A1
2+B1
2は、マイクロホン信号Smicに含まれる所定次数(本実施形態では、O1)の成分の振幅の二乗値を示す。なお、実測ゲイン算出部98がゲイン比較器76に出力する実測ゲインG2の値は、例えば、直近の10個の値の移動平均値であってもよい。
ゲイン比較器76は、基準テーブル72から読み出した予測ゲインG1と、実測ゲイン算出部98から出力された実測ゲインG2とを比較し、その比較結果に応じてゲイン補正部70の音量安定化係数Gsを調整する。すなわち、予測ゲインG1が実測ゲインG2よりも大きいとき、スピーカ22から出力される制御音CS(効果音)は、必要な音量(振幅)に足りていない。そこで、ゲイン比較器76は、音量安定化係数Gsを大きくして制御音CSの音量(振幅)を増大させる。一方、予測ゲインG1が実測ゲインG2よりも小さいとき、スピーカ22から出力される制御音CS(効果音)は、必要以上の音量(振幅)となっている。そこで、ゲイン比較器76は、音量安定化係数Gsを小さくして制御音CSの音量(振幅)を減少させる。このような処理により、音圧調整器60による音圧調整後の制御信号Sc5のゲイン(振幅)と、スピーカ22から出力される制御音CS(効果音)のゲイン(振幅)との対応関係の変化を抑制することができる。
2.音量補正器62における処理
次に、ASC回路34の音量補正器62における処理について説明する。図3には、音量補正器62において音量安定化係数Gsを更新するフローチャートが示されている。
次に、ASC回路34の音量補正器62における処理について説明する。図3には、音量補正器62において音量安定化係数Gsを更新するフローチャートが示されている。
ステップS1において、音量補正器62は、音量安定化係数Gsの更新を要するかどうかを判定する。具体的には、音量安定化係数Gsの更新の要否を判定するエンジン回転数NE[rpm](エンジン回転周波数feと同義)の値(更新実行値Vu)を予め複数設定しておき、現在のエンジン回転数NEが更新実行値Vuの1つであるかどうかを判定する。
図4には、ECU14を作動させた場合の室内音の音量と、ECU14を作動させない場合の室内音の音量と、更新実行値Vuとの関係の一例が示されている。図4では、複数の更新実行値Vuを更新実行値Vu1~Vu4として記載している。
まず、図4に示すように、本実施形態におけるANC回路32の作動とASC回路34の作動の切替えはエンジン回転数NE[rpm]に応じて行う。すなわち、エンジン回転数NEが2200rpm以下であれば、ANC回路32を作動させ、エンジン回転数NEが2200rpmを超えるときは、ASC回路34を作動させる。
次に、図4中の実線は、ANC回路32又はASC回路34を作動させた場合の室内音の音量SVon[dB]を示す。この室内音は、エンジンこもり音(実際のエンジン音)と制御音CS(相殺音又は効果音)とを合わせたものである。図4中の破線は、ANC回路32及びASC回路34を作動させない場合の室内音(エンジンこもり音)の音量SVoff[dB]を示す。音量SVon、SVoffは、いずれもマイクロホン24で検出されるマイクロホン信号Smicの振幅として検出されたものである。また、図4の例は、車両10を加速させたときの波形(すなわち、エンジン回転数NEが増加していくときの波形)である。
図4からわかるように、ASC回路34の作動領域(エンジン回転数NEが2200rpmを超える領域)では、音量SVonと音量SVoffとの差Dは一定ではなく、エンジン回転数NEによって異なる。例えば、エンジン回転数NEが約3550rpm、約4380rpm、約4850rpm、約5380rpmで、差Dが相対的に大きくなる。本実施形態では、これらの値となるエンジン回転数NEを更新実行値Vu1~Vu4として設定する。これにより、音量安定化係数Gsの更新を精度よく行うことができる。すなわち、差Dが相対的に大きいエンジン回転数NEであれば、マイクロホン24が検出する音において制御音CS(効果音)が占める割合は大きくなる一方、エンジンこもり音が占める割合は小さくなる。このため、制御音CSの音量SVonを検出し易くなる結果、音量SVonに応じる音量安定化係数Gsも精度よく更新することが可能となる。
図3に戻り、ステップS1において、エンジン回転数NEが更新実行値Vu1~Vu4のいずれでもなく係数Gsの更新を行わない場合(S1:NO)、そのまま今回の処理を終える。エンジン回転数NEが更新実行値Vuであり係数Gsの更新を行う場合(S1:YES)、ステップS2に進む。
ステップS2において、音量補正器62は、予測ゲインG1を取得する。具体的には、fe検出器30からのエンジン回転周波数feと、Δaf検出器58からの回転周波数変化量Δafとに基づいて基準テーブル72から予測ゲインG1を読み出し、ゲイン比較器76に出力する。この場合、予測ゲインG1は、増幅器20の増幅率を反映することが好ましい。また、上述の通り、本実施形態における予測ゲインG1は、スピーカ22からマイクロホン24までの信号伝達関数を反映したものである。
ステップS3において、音量補正器62は、実測ゲインG2を取得する。具体的には、マイクロホン24からのマイクロホン信号SmicからO1次成分を抽出し、当該O1次成分のゲインの二乗値(A1
2+B1
2)を演算する。そして、この二乗値を実測ゲインG2としてゲイン比較器76に出力する。
ステップS4において、音量補正器62のゲイン比較器76は、ステップS2で取得した予測ゲインG1と、ステップS3で取得した実測ゲインG2とを比較する。
ステップS5において、ゲイン比較器76は、ステップS4の比較結果に応じて音量安定化係数Gsを更新する。具体的には、予測ゲインG1が実測ゲインG2よりも大きいときは、係数Gsを増加させ、予測ゲインG1が実測ゲインG2よりも小さいときは、係数Gsを減少させ、予測ゲインG1と実測ゲインG2が等しいときは、係数Gsをそのまま維持する。なお、係数Gsの初期値は1[倍]である。
3.本実施形態における効果
以上のように、本実施形態によれば、エンジン回転周波数fe及び周波数変化量Δafに基づく効果音の予測ゲインG1と、効果音の実測ゲインG2との比較結果に基づいて、効果音を規定する制御信号Sc5のゲインを補正する。従って、例え、スピーカ22の経年変化により効果音の実測ゲインG2に変動が生じた場合にも、車両10が所定の走行状態のときのスピーカ22の出力を一定に保ち、経年変化を補償することが可能となる。また、複数の車両10(ECU14)で予測ゲインG1(又は基準テーブル72)を共通化すれば、スピーカ22の性能上のばらつきを補償することも可能となる。
以上のように、本実施形態によれば、エンジン回転周波数fe及び周波数変化量Δafに基づく効果音の予測ゲインG1と、効果音の実測ゲインG2との比較結果に基づいて、効果音を規定する制御信号Sc5のゲインを補正する。従って、例え、スピーカ22の経年変化により効果音の実測ゲインG2に変動が生じた場合にも、車両10が所定の走行状態のときのスピーカ22の出力を一定に保ち、経年変化を補償することが可能となる。また、複数の車両10(ECU14)で予測ゲインG1(又は基準テーブル72)を共通化すれば、スピーカ22の性能上のばらつきを補償することも可能となる。
本実施形態によれば、基準テーブル72に基づいて所定次数(本実施形態ではO1次)の予測ゲインG1を特定し、評価位置での効果音から前記所定次数の実測ゲインG2を検出する。これにより、予測ゲインG1及び実測ゲインG2の特定を所定次数のみに基づいて行うことが可能となり、次数を特定しない場合と比較して予測ゲインG1及び実測ゲインG2の特定精度を高めることができる。
上記実施形態において、ゲイン比較器76は、制御音CS(制御信号Cs5)の制御周波数のうち、音響補正手段55において制御音CSのゲインを相対的に大きく設定する周波数(更新実行値Vu1~Vu4)のいずれかで予測ゲインG1と実測ゲインG2とを比較し、ゲイン補正部70は、更新実行値Vu1~Vu4のいずれかで制御音CSのゲインを補正する。これにより、実測ゲインG2の特定を精度よく行うことができる。
[B.この発明の応用]
なお、この発明は、上記実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下に示す構成を採ることができる。
なお、この発明は、上記実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下に示す構成を採ることができる。
上記実施形態では、車両10はガソリン車であり、スピーカ22から出力される効果音としての制御音CSは擬似エンジン音であったが、駆動源の擬似作動音であればこれに限られない。例えば、車両10が電気自動車であれば、走行モータの擬似作動音であってもよく、車両10が燃料電池車であれば、エアコンプレッサの擬似作動音であってもよい。
上記実施形態では、予測ゲインG1の設定をエンジン回転周波数feと周波数変化量Δafの組合せに応じて行ったが、これに限られない。例えば、エンジン回転周波数feと周波数変化量Δafのいずれか一方のみに基づいて行ってもよい。或いは、車両10の車速V[km/h]及び車速変化量Δav[km/h/s]のいずれか一方又は両方に基づいて行うこともできる。特に、米国特許出願公開第2009/0028353号公報に記載の構成(同公報の図1)のように基準信号又は制御信号のゲイン調整に車速Vを用いる場合、車速V又は車速変化量Δavの少なくとも一方を用いることが好ましい。
或いは、車両10が電気自動車であれば、走行モータの回転周波数[Hz]及び走行モータの回転周波数変化量[Hz/s]のいずれか一方又は両方に基づいて行ってもよい。
上記実施形態では、各基準信号Sr1~Sr3を合成し、音圧調整器60による音圧調整処理を行った後の制御信号Sc5に対して音量補正器62による音量安定化処理を行ったが、これに限られない。例えば、図5の車両10Aの音響システム12aにおける音響制御ECU14aのASC回路34aのように、音圧調整器60a、60bによる音圧調整処理及び音量補正器62a、62bによる音量安定化処理を行った後に各次数成分の制御信号Sc71、Sc72を合成してもよい。
すなわち、ASC回路34aは、音圧調整器60a、60bと音量補正器62a、62bとを有する。音圧調整器60aは、基準信号生成器46aから出力され音響補正手段55により音響補正された基準信号Sr1に対して音圧調整を行って制御信号Sc71を出力する。同様に、音圧調整器60bは、基準信号生成器46bから出力され音響補正手段55により音響補正された基準信号Sr2に対して音圧調整を行って制御信号Sc72を出力する。
音量補正器62aは、ゲイン補正部70a、基準テーブル72a、実測ゲイン検出器74a及びゲイン比較器76aを有する。同様に、音量補正器62bは、ゲイン補正部70b、基準テーブル72b、実測ゲイン検出器74b及びゲイン比較器76bを有する。音量補正器62a、62bの構成は、音量補正器62と基本的に同様であるが、実測ゲイン検出器74a、74bは、倍数器40、42から調波信号を入力し、実測ゲイン検出器74a、74b自体で調波信号の生成は行っていない。また、音量補正器62aは、音圧調整器60aから出力された制御信号Sc71に対して音量安定化処理を行い、音量補正器62bは、音圧調整器60bから出力された制御信号Sc72に対して音量安定化処理を行う。これにより、次数に合わせた音量安定化係数Gs1、Gs2の補正をすることが可能となる。
そして、音量補正器62a、62bにより音量安定化処理が行われた制御信号Sc71、Sc72を加算器56aで加算して制御信号Sc8を生成し、加算器36に出力する。
上記実施形態では、制御音CSがスピーカ22からマイクロホン24に到達するまでの時間的なずれ(位相差)を、スピーカ22からマイクロホン24までの信号伝達特性を予測ゲインG1に反映させることで補償した。換言すると、マイクロホン24が制御音CSを検出した時点の予測ゲインG1と実測ゲインG2を比較した。しかし、上記のような時間的なずれの補償方法はこれに限られない。例えば、前記信号伝達特性を予め取得しておき、実測ゲインG2に当該信号伝達特性を反映させることで補償することもできる。換言すると、制御音CSをスピーカ22が出力した時点の予測ゲインG1と実測ゲインG2を比較してもよい。或いは、スピーカ22とマイクロホン24との間の所定の評価位置における予測ゲインG1と実測ゲインG2を比較することもできる。この場合、スピーカ22から当該評価位置までの信号伝達関数で補正した予測ゲインG1と、当該評価位置からマイクロホン24までの信号伝達関数で補正した実測ゲインG2を比較する。
Claims (6)
- 移動体(10、10A)の走行状態を検出する走行状態検出手段(30、58)と、
1周期分の波形データを格納する波形データテーブル(48)と、
前記走行状態に基づいて前記波形データテーブル(48)から順次前記波形データを読み込むことで所定次数の基準信号を生成する基準信号生成手段(46a、46b、46c)と、
前記基準信号に基づいて制御信号を生成する音響制御手段(55)と、
前記制御信号用のゲインを前記走行状態に対応させて格納した第1ゲインテーブルを保持し、前記走行状態検出手段(30、58)が検出した前記走行状態に応じて前記第1ゲインテーブルから前記ゲインを読み出し、当該ゲインを用いてゲイン調整した前記制御信号を出力するゲイン調整手段(60、60a、60b)と、
前記ゲイン調整した制御信号に対応する効果音を出力する効果音出力手段(22)と
を備える効果音発生装置(12、12a)であって、さらに、
乗員付近における評価位置に配置され、前記評価位置における前記効果音を検出する効果音検出手段(24)と、
前記第1ゲインテーブルにおける前記制御信号用のゲインに、前記効果音出力手段(22)から前記効果音検出手段(24)までの信号伝達特性を反映した前記評価位置における前記制御信号の予測ゲインを格納する第2ゲインテーブル(72、72a、72b)を保持し、前記予測ゲインと、前記効果音検出手段(24)が検出した前記効果音の実測ゲインとを比較するゲイン比較手段(76、76a、76b)と、
前記ゲイン比較手段(76、76a、76b)の比較結果に基づいて、前記ゲイン調整した制御信号のゲインを補正するゲイン補正手段(70、70a、70b)と
を有することを特徴とする効果音発生装置(12、12a)。 - 請求項1記載の効果音発生装置(12、12a)において、
前記ゲイン比較手段(76、76a、76b)は、
前記第2ゲインテーブル(72、72a、72b)に基づいて前記所定次数の予測ゲインを特定する予測ゲイン特定手段(72、72a、72b)と、
前記評価位置での効果音から前記所定次数の実測ゲインを検出する実測ゲイン検出手段(74、74a、74b)と
を備えることを特徴とする効果音発生装置(12、12a)。 - 請求項2記載の効果音発生装置(12、12a)において、
前記実測ゲイン検出手段(74、74a、74b)は、
前記所定次数の基準信号に基づいて第2制御信号を出力する適応ノッチフィルタ(86、88)と、
前記評価位置での効果音から前記第2制御信号を除去した除去信号を出力する除去手段(92)と、
前記所定次数の基準信号と前記除去信号とに基づいて前記除去信号の前記所定次数の成分が最小となるように前記適応ノッチフィルタ(86、88)のフィルタ係数を逐次更新するフィルタ係数更新手段(94、96)と
を備え、
前記適応ノッチフィルタ(86、88)のフィルタ係数を前記所定次数の実測ゲインとして検出する
ことを特徴とする効果音発生装置(12、12a)。 - 請求項1~3のいずれか1項に記載の効果音発生装置(12、12a)において、
前記ゲイン比較手段(76、76a、76b)は、前記制御信号の制御周波数のうち、前記音響制御手段(55)において前記制御信号のゲインを相対的に大きく設定する周波数で前記予測ゲインと前記実測ゲインとを比較し、又は、
前記ゲイン補正手段(70、70a、70b)は、前記音響制御手段(55)において前記制御信号のゲインを相対的に大きく設定する周波数で前記制御信号のゲインを補正する
ことを特徴とする効果音発生装置(12、12a)。 - 移動体(10、10A)の走行状態を検出する走行状態検出手段(30、58)と、
1周期分の波形データを格納する波形データテーブル(48)と、
前記走行状態に基づく調波の基準信号を前記波形データテーブル(48)から順次前記波形データを読み込むことにより生成する基準信号生成手段(46a、46b、46c)と、
前記基準信号に基づいて制御信号を生成する音響制御手段(55)と、
前記制御信号用のゲインを前記走行状態に対応させて格納したゲインテーブルを保持し、前記走行状態検出手段(30、58)が検出した前記走行状態に応じて前記ゲインテーブルから前記ゲインを読み出し、当該ゲインを用いてゲイン調整した前記制御信号を出力するゲイン調整手段(60、60a、60b)と、
前記ゲイン調整した制御信号に対応する効果音を出力する効果音出力手段(22)と
を備える効果音発生装置(12、12a)であって、さらに、
乗員付近における評価位置に配置され、前記評価位置における前記効果音を検出する効果音検出手段(24)と、
前記効果音出力手段(22)から前記効果音検出手段(24)までの信号伝達特性を保持し、前記効果音検出手段(24)が検出した前記効果音のゲインを前記信号伝達特性で補正して前記効果音出力手段(22)が出力した時点での前記効果音の実測ゲインを演算し、前記実測ゲインと前記ゲインテーブルのゲインとを比較するゲイン比較手段(76、76a、76b)と、
前記ゲイン比較手段(76、76a、76b)の比較結果に基づいて、前記ゲイン調整した制御信号のゲインを補正するゲイン補正手段(70、70a、70b)と
を有することを特徴とする効果音発生装置(12、12a)。 - 車両(10、10A)の駆動源の擬似作動音としての効果音を発生させる効果音発生装置(12、12a)であって、
前記効果音を規定する制御信号を生成する制御信号生成手段(14、14a)と、
前記制御信号に対応する前記効果音を出力する効果音出力手段(22)と、
評価位置において前記効果音を検出する効果音検出手段(24)と
を備え、
前記制御信号生成手段(14、14a)は、
前記車両(10、10A)が所定の走行状態における前記効果音の音量の基準値である基準音量を設定し、
前記車両(10、10A)が前記所定の走行状態のときに前記効果音検出手段(24)が検出した前記効果音の実測音量と、前記基準音量とを比較し、
比較結果に基づいて前記制御信号のゲインを補正する
ことを特徴とする効果音発生装置(12、12a)。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/380,679 US8942836B2 (en) | 2009-06-30 | 2010-02-08 | Sound effect generating device |
CN201080027841.1A CN102804259B (zh) | 2009-06-30 | 2010-02-08 | 有源模拟声发生装置 |
EP10793872.2A EP2450878B1 (en) | 2009-06-30 | 2010-02-08 | Sound effect generating device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009155406A JP4967000B2 (ja) | 2009-06-30 | 2009-06-30 | 効果音発生装置 |
JP2009-155406 | 2009-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011001701A1 true WO2011001701A1 (ja) | 2011-01-06 |
Family
ID=43410786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/051767 WO2011001701A1 (ja) | 2009-06-30 | 2010-02-08 | 効果音発生装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8942836B2 (ja) |
EP (1) | EP2450878B1 (ja) |
JP (1) | JP4967000B2 (ja) |
CN (1) | CN102804259B (ja) |
WO (1) | WO2011001701A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107424600B (zh) * | 2016-05-11 | 2020-10-09 | 本田技研工业株式会社 | 主动型效果音产生装置 |
CN116312431A (zh) * | 2023-03-22 | 2023-06-23 | 广州资云科技有限公司 | 电音基调控制方法、装置、计算机设备和存储介质 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9218801B2 (en) * | 2010-09-29 | 2015-12-22 | GM Global Technology Operations LLC | Aural smoothing of a vehicle |
US9031248B2 (en) * | 2013-01-18 | 2015-05-12 | Bose Corporation | Vehicle engine sound extraction and reproduction |
US9959852B2 (en) | 2013-01-18 | 2018-05-01 | Bose Corporation | Vehicle engine sound extraction |
US9167067B2 (en) * | 2013-02-14 | 2015-10-20 | Bose Corporation | Motor vehicle noise management |
WO2014177674A1 (en) * | 2013-05-01 | 2014-11-06 | Jaguar Land Rover Limited | Control system, vehicle and method |
EP2884489B1 (en) | 2013-12-16 | 2020-02-05 | Harman Becker Automotive Systems GmbH | Sound system including an engine sound synthesizer |
JP6539943B2 (ja) * | 2014-02-07 | 2019-07-10 | 日産自動車株式会社 | 車両の付加音量算出方法および付加音量算出装置 |
JP6117145B2 (ja) * | 2014-06-04 | 2017-04-19 | 本田技研工業株式会社 | 能動型効果音発生装置 |
US9812113B2 (en) * | 2015-03-24 | 2017-11-07 | Bose Corporation | Vehicle engine harmonic sound control |
US9693139B1 (en) * | 2016-03-30 | 2017-06-27 | Ford Global Tecghnologies, LLC | Systems and methods for electronic sound enhancement tuning |
JP6465058B2 (ja) * | 2016-03-31 | 2019-02-06 | マツダ株式会社 | 車両用効果音発生装置 |
JP6465059B2 (ja) * | 2016-03-31 | 2019-02-06 | マツダ株式会社 | 車両用効果音発生装置 |
KR101804772B1 (ko) * | 2016-08-25 | 2017-12-05 | 현대자동차주식회사 | 사운드 제어장치, 차량 및 그 제어방법 |
CN107404592A (zh) * | 2017-08-18 | 2017-11-28 | 广东欧珀移动通信有限公司 | 音量调节方法、装置、存储介质及移动终端 |
CN108621931B (zh) * | 2018-04-23 | 2022-07-08 | 上海迪彼电子科技有限公司 | 汽车油门加速匹配引擎声浪的方法及系统 |
EP3807870B1 (en) * | 2018-06-12 | 2023-10-25 | Harman International Industries, Incorporated | System for adaptive magnitude vehicle sound synthesis |
DE102018210783A1 (de) * | 2018-06-29 | 2020-01-02 | Ford Global Technologies, Llc | Verfahren zum Erzeugen eines Geräuschdatensatzes zur Ausgabe über einen Lautsprecher eines Kraftfahrzeugs |
JP7155991B2 (ja) * | 2018-12-17 | 2022-10-19 | トヨタ自動車株式会社 | 報知装置 |
CN112312280B (zh) * | 2019-07-31 | 2022-03-01 | 北京地平线机器人技术研发有限公司 | 一种车内声音播放方法及装置 |
KR102663217B1 (ko) * | 2019-10-17 | 2024-05-03 | 현대자동차주식회사 | 차량의 실내 음향 제어 방법 및 시스템 |
JP7509057B2 (ja) | 2021-03-02 | 2024-07-02 | トヨタ自動車株式会社 | 音発生装置、音発生装置搭載車両、及び音発生方法 |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH069298U (ja) * | 1992-07-08 | 1994-02-04 | 富士重工業株式会社 | デジタルサウンドプロセッサの自動調整装置 |
JPH0960515A (ja) * | 1995-08-24 | 1997-03-04 | Mitsubishi Motors Corp | 排気音質改良装置 |
US5635903A (en) | 1993-12-21 | 1997-06-03 | Honda Giken Kogyo Kabushiki Kaisha | Simulated sound generator for electric vehicles |
JP2000172281A (ja) * | 1998-12-03 | 2000-06-23 | Fuji Heavy Ind Ltd | 車室内音制御装置 |
JP2002354599A (ja) * | 2001-05-25 | 2002-12-06 | Pioneer Electronic Corp | 音響特性調整装置、及び、音響特性調整プログラム |
US20040247137A1 (en) | 2003-06-05 | 2004-12-09 | Honda Motor Co., Ltd. | Apparatus for and method of actively controlling vibratory noise, and vehicle with active vibratory noise control apparatus |
JP2004354657A (ja) * | 2003-05-29 | 2004-12-16 | Matsushita Electric Ind Co Ltd | 能動型騒音低減装置 |
US7062049B1 (en) | 1999-03-09 | 2006-06-13 | Honda Giken Kogyo Kabushiki Kaisha | Active noise control system |
JP2006193002A (ja) | 2005-01-12 | 2006-07-27 | Toyota Motor Corp | エンジン音色制御システム |
US20060215846A1 (en) | 2005-03-22 | 2006-09-28 | Honda Motor Co., Ltd. | Apparatus for producing sound effect for mobile object |
JP2007264485A (ja) * | 2006-03-29 | 2007-10-11 | Honda Motor Co Ltd | 車両用能動音響制御装置 |
JP2007264125A (ja) * | 2006-03-27 | 2007-10-11 | Honda Motor Co Ltd | 車両用効果音発生装置 |
JP2008216783A (ja) * | 2007-03-06 | 2008-09-18 | Honda Motor Co Ltd | 効果音発生装置 |
JP2008213755A (ja) * | 2007-03-07 | 2008-09-18 | Honda Motor Co Ltd | 車両用能動音響制御装置 |
JP2008244766A (ja) * | 2007-03-27 | 2008-10-09 | Clarion Co Ltd | 車載用音響診断装置、車載用音響システム、車載用音響診断装置の制御方法および制御プログラム |
US20090028353A1 (en) | 2007-07-25 | 2009-01-29 | Honda Motor Co., Ltd. | Active sound effect generating apparatus |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5371802A (en) * | 1989-04-20 | 1994-12-06 | Group Lotus Limited | Sound synthesizer in a vehicle |
JP2000280831A (ja) | 1999-03-29 | 2000-10-10 | Honda Motor Co Ltd | 能動型騒音制御装置 |
-
2009
- 2009-06-30 JP JP2009155406A patent/JP4967000B2/ja active Active
-
2010
- 2010-02-08 WO PCT/JP2010/051767 patent/WO2011001701A1/ja active Application Filing
- 2010-02-08 US US13/380,679 patent/US8942836B2/en active Active
- 2010-02-08 CN CN201080027841.1A patent/CN102804259B/zh active Active
- 2010-02-08 EP EP10793872.2A patent/EP2450878B1/en not_active Not-in-force
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH069298U (ja) * | 1992-07-08 | 1994-02-04 | 富士重工業株式会社 | デジタルサウンドプロセッサの自動調整装置 |
US5635903A (en) | 1993-12-21 | 1997-06-03 | Honda Giken Kogyo Kabushiki Kaisha | Simulated sound generator for electric vehicles |
JPH0960515A (ja) * | 1995-08-24 | 1997-03-04 | Mitsubishi Motors Corp | 排気音質改良装置 |
JP2000172281A (ja) * | 1998-12-03 | 2000-06-23 | Fuji Heavy Ind Ltd | 車室内音制御装置 |
US7062049B1 (en) | 1999-03-09 | 2006-06-13 | Honda Giken Kogyo Kabushiki Kaisha | Active noise control system |
JP2002354599A (ja) * | 2001-05-25 | 2002-12-06 | Pioneer Electronic Corp | 音響特性調整装置、及び、音響特性調整プログラム |
JP2004354657A (ja) * | 2003-05-29 | 2004-12-16 | Matsushita Electric Ind Co Ltd | 能動型騒音低減装置 |
US20040247137A1 (en) | 2003-06-05 | 2004-12-09 | Honda Motor Co., Ltd. | Apparatus for and method of actively controlling vibratory noise, and vehicle with active vibratory noise control apparatus |
JP2006193002A (ja) | 2005-01-12 | 2006-07-27 | Toyota Motor Corp | エンジン音色制御システム |
US20060215846A1 (en) | 2005-03-22 | 2006-09-28 | Honda Motor Co., Ltd. | Apparatus for producing sound effect for mobile object |
JP2007264125A (ja) * | 2006-03-27 | 2007-10-11 | Honda Motor Co Ltd | 車両用効果音発生装置 |
JP2007264485A (ja) * | 2006-03-29 | 2007-10-11 | Honda Motor Co Ltd | 車両用能動音響制御装置 |
JP2008216783A (ja) * | 2007-03-06 | 2008-09-18 | Honda Motor Co Ltd | 効果音発生装置 |
JP2008213755A (ja) * | 2007-03-07 | 2008-09-18 | Honda Motor Co Ltd | 車両用能動音響制御装置 |
JP2008244766A (ja) * | 2007-03-27 | 2008-10-09 | Clarion Co Ltd | 車載用音響診断装置、車載用音響システム、車載用音響診断装置の制御方法および制御プログラム |
US20090028353A1 (en) | 2007-07-25 | 2009-01-29 | Honda Motor Co., Ltd. | Active sound effect generating apparatus |
Non-Patent Citations (1)
Title |
---|
See also references of EP2450878A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107424600B (zh) * | 2016-05-11 | 2020-10-09 | 本田技研工业株式会社 | 主动型效果音产生装置 |
CN116312431A (zh) * | 2023-03-22 | 2023-06-23 | 广州资云科技有限公司 | 电音基调控制方法、装置、计算机设备和存储介质 |
CN116312431B (zh) * | 2023-03-22 | 2023-11-24 | 广州资云科技有限公司 | 电音基调控制方法、装置、计算机设备和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
EP2450878A1 (en) | 2012-05-09 |
CN102804259B (zh) | 2015-11-25 |
US8942836B2 (en) | 2015-01-27 |
JP2011013311A (ja) | 2011-01-20 |
CN102804259A (zh) | 2012-11-28 |
EP2450878A4 (en) | 2013-02-20 |
JP4967000B2 (ja) | 2012-07-04 |
US20120101611A1 (en) | 2012-04-26 |
EP2450878B1 (en) | 2014-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011001701A1 (ja) | 効果音発生装置 | |
JP4513810B2 (ja) | 能動騒音低減装置 | |
JP5189307B2 (ja) | 能動型騒音制御装置 | |
US7885417B2 (en) | Active noise tuning system | |
JP4173891B2 (ja) | 移動体用効果音発生装置 | |
US7352869B2 (en) | Apparatus for and method of actively controlling vibratory noise, and vehicle with active vibratory noise control apparatus | |
US9640165B2 (en) | Active vibration noise control apparatus | |
US10276146B2 (en) | Active noise control device | |
WO2011099152A1 (ja) | 能動型振動騒音制御装置 | |
EP2950305A1 (en) | Active noise reduction device, instrument using same, and active noise reduction method | |
JP4881913B2 (ja) | 能動型騒音制御装置 | |
JP5757346B2 (ja) | 能動振動騒音制御装置 | |
KR20160019312A (ko) | 소음제어시스템 및 그 방법 | |
JP2011121534A (ja) | 能動型騒音制御装置 | |
JPWO2014002452A1 (ja) | 能動型騒音低減装置と、これを用いた能動型騒音低減システム、ならびに移動体装置、および能動型騒音低減方法 | |
JP7162242B2 (ja) | 能動騒音低減装置、移動体装置、及び、能動騒音低減方法 | |
JP5238368B2 (ja) | 車両用能動型音響制御システム | |
JP3549120B2 (ja) | 車両用能動振動制御装置 | |
US20230290328A1 (en) | Active noise reduction system | |
JP2011161965A (ja) | 車載用音響装置 | |
JP3405752B2 (ja) | 騒音キャンセル方式 | |
JPH0659684A (ja) | 能動振動制御装置 | |
JP4962095B2 (ja) | 能動型騒音制御装置 | |
JPH0511770A (ja) | 騒音キヤンセル装置 | |
JPH0627975A (ja) | 能動振動騒音制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080027841.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10793872 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13380679 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010793872 Country of ref document: EP |