WO2011099152A1 - 能動型振動騒音制御装置 - Google Patents

能動型振動騒音制御装置 Download PDF

Info

Publication number
WO2011099152A1
WO2011099152A1 PCT/JP2010/052141 JP2010052141W WO2011099152A1 WO 2011099152 A1 WO2011099152 A1 WO 2011099152A1 JP 2010052141 W JP2010052141 W JP 2010052141W WO 2011099152 A1 WO2011099152 A1 WO 2011099152A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration noise
phase difference
speakers
control
speaker
Prior art date
Application number
PCT/JP2010/052141
Other languages
English (en)
French (fr)
Inventor
晃広 井関
佳樹 太田
快友 今西
健作 小幡
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2010/052141 priority Critical patent/WO2011099152A1/ja
Priority to US13/578,727 priority patent/US9123325B2/en
Priority to JP2011553697A priority patent/JP5318231B2/ja
Publication of WO2011099152A1 publication Critical patent/WO2011099152A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • G10K11/17817Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms between the output signals and the error signals, i.e. secondary path
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17883General system configurations using both a reference signal and an error signal the reference signal being derived from a machine operating condition, e.g. engine RPM or vehicle speed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/02Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/128Vehicles
    • G10K2210/1282Automobiles
    • G10K2210/12821Rolling noise; Wind and body noise

Definitions

  • the present invention relates to a technical field in which vibration noise is actively controlled using an adaptive notch filter.
  • an active vibration noise control device that controls engine sound that can be heard in a passenger compartment of a vehicle with control sound output from a speaker and reduces engine sound at the position of a passenger's ear.
  • the vehicle interior noise having a frequency based on the rotation of the engine output shaft is silenced using an adaptive notch filter.
  • a technique for quieting the passenger compartment has been proposed.
  • Patent Document 2 discloses a technique for correcting an output signal of one speaker with a filter coefficient in order to prevent interference of control sounds from a plurality of speakers, which may occur in the technique described in Patent Document 1. Has been proposed.
  • the coefficient F may become unstable depending on the frequency band. Specifically, when the denominator of the arithmetic expression for obtaining the filter coefficient F becomes a small value, the filter coefficient F tends to become unstable. For this reason, in the technique described in Patent Document 2, depending on the frequency band, the active vibration noise control device may cause a different operation due to the divergence of the error signal.
  • An object of the present invention is to provide an active vibration noise control apparatus capable of stably reducing vibration noise at a predetermined position other than a microphone installation position regardless of the frequency band.
  • the invention according to claim 1 is an active vibration noise control apparatus that cancels vibration noise by outputting control sounds from a plurality of speakers.
  • the active vibration noise control device includes a reference signal generating unit that generates a reference signal based on a vibration noise frequency generated from the vibration noise source, and the plurality of vibration noises generated so as to cancel out the generated vibration noise from the vibration noise source.
  • An adaptive notch filter that generates a control signal to be output to each of the plurality of speakers by using a filter coefficient for the reference signal in order to generate the control sound from the speaker, and the vibration noise and the A microphone that detects an offset error with the control sound and outputs it as an error signal; a reference signal generating unit that generates a reference signal from the reference signal based on a transfer function from the plurality of speakers to the microphone; and Based on the error signal and the reference signal, the filter coefficient used in the adaptive notch filter is updated so that the error signal is minimized.
  • Filter coefficient updating means and control means for selecting one or more speakers from the plurality of speakers and outputting the control sound from only the selected speakers
  • the control means comprises (1) the vibration noise Phase characteristics of the vibration noise from the source to an evaluation point corresponding to the installation position of the microphone, and phase characteristics of the vibration noise from the vibration noise source to a pseudo evaluation point corresponding to a position different from the installation position of the microphone And (2) the phase characteristics of the control sound from the speaker to the evaluation point and the control from the speaker to the pseudo evaluation point for each of the plurality of speakers.
  • a speaker is selected from the plurality of speakers based on the relationship with the second phase difference corresponding to the difference from the phase characteristic of the sound.
  • 1 shows a schematic configuration of an active vibration noise control apparatus according to the present embodiment.
  • 1 is a configuration block diagram of an active vibration noise control apparatus according to the present embodiment.
  • the figure for demonstrating the malfunction of a comparative example is shown.
  • the figure for demonstrating the basic concept of a present Example is shown.
  • An example of the relationship between the phase difference between the first phase difference and the second phase difference and the vibration noise reduction effect at the pseudo evaluation point is shown.
  • positioning of the speaker and microphone in 1st Example is shown.
  • the figure for demonstrating an example of the selection method of the speaker which concerns on 1st Example is shown.
  • An example of the vibration noise reduction effect at the pseudo evaluation point according to the first embodiment will be shown.
  • the block diagram of the configuration of the active vibration noise control apparatus according to the second embodiment is shown.
  • An example of the reduction effect of the vibration noise in the pseudo evaluation point by 2nd Example is shown.
  • An example of the result by a comparative example and 2nd Example is shown.
  • an active vibration noise control apparatus that cancels vibration noise by outputting control sounds from a plurality of speakers generates a reference signal based on the vibration noise frequency generated from the vibration noise source.
  • An adaptive notch filter that generates a control signal to be output to each of the speakers, a microphone that detects an offset error between the vibration noise and the control sound, and outputs the error signal, and from the plurality of speakers to the microphone
  • a reference signal generating means for generating a reference signal from the reference signal on the basis of the transfer function of Filter coefficient updating means for updating the filter coefficient used in the adaptive notch filter so as to minimize the signal, and one or more speakers are selected from the plurality of speakers, and the control sound is selected only from the selected speakers.
  • phase characteristics of the vibration noise from the vibration noise source to an evaluation point corresponding to an installation position of the microphone, and from the vibration noise source to the microphone A first phase difference corresponding to a difference from the phase characteristic of the vibration noise up to a pseudo-evaluation point corresponding to a position different from the installation position, and (2) the evaluation from the speaker for each of the plurality of speakers Based on the relationship between the phase characteristic of the control sound up to a point and the second phase difference corresponding to the difference between the phase characteristic of the control sound from the speaker to the pseudo evaluation point, To select a speaker from among the serial plurality of speakers.
  • the above active vibration noise control device is suitably used to cancel vibration noise (for example, vibration noise from an engine) by outputting control sounds from a plurality of speakers.
  • the reference signal generation means generates a reference signal based on the vibration noise frequency generated from the vibration noise source.
  • the adaptive notch filter generates a control signal to be output to a plurality of speakers by using a filter coefficient with respect to the reference signal.
  • the microphone detects an offset error between the vibration noise and the control sound and outputs it as an error signal.
  • the reference signal generation means generates a reference signal from the reference signal based on transfer functions from a plurality of speakers to the microphone.
  • the filter coefficient updating unit updates the filter coefficient used in the adaptive notch filter so that the error signal is minimized.
  • the control means selects one or more speakers from the plurality of speakers, and outputs the control sound from only the selected speakers. That is, the control means determines the speaker arrangement state by selecting a speaker that outputs a control sound from a plurality of speakers.
  • the control means (1) is the first corresponding to the difference between the phase characteristics of the vibration noise from the vibration noise source to the evaluation point and the phase characteristics of the vibration noise from the vibration noise source to the pseudo evaluation point.
  • a phase difference and (2) a second phase difference corresponding to the difference between the phase characteristic of the control sound from the speaker to the evaluation point and the phase characteristic of the control sound from the speaker to the pseudo evaluation point for each of the plurality of speakers; Based on the relationship, a speaker is selected from a plurality of speakers. Thereby, it becomes possible to stably reduce the vibration noise at the pseudo evaluation point regardless of the frequency band of the vibration noise.
  • the control means has the second phase difference in which an absolute value of a difference from the first phase difference is not more than a predetermined value among the plurality of speakers. Select at least one speaker. Thereby, the phase characteristic of the control sound of the speaker can be appropriately approximated to the phase characteristic of the vibration noise, and the vibration noise at the pseudo evaluation point can be effectively reduced.
  • the control means includes a speaker having the second phase difference larger than the first phase difference, and the first position among the plurality of speakers.
  • a speaker having the second phase difference smaller than the phase difference is selected. Also by this, the phase characteristic of the control sound of the speaker can be appropriately approximated to the phase characteristic of the vibration noise, and the vibration noise at the pseudo evaluation point can be effectively reduced.
  • control means selects at least one speaker having the second phase difference closest to the first phase difference from the plurality of speakers. it can.
  • control unit changes a speaker to be selected according to a frequency band of the vibration noise.
  • the speaker that outputs the control sound can be selected in consideration of the tendency that the first phase difference and the second phase difference change depending on the frequency band of the vibration noise.
  • the speaker selected by the control unit based on the first phase difference and the second phase difference of the speaker selected by the control unit.
  • An amplitude control means for controlling the amplitude of the control signal is further provided.
  • the amplitude control means is configured to make the second phase difference of the control sound obtained by synthesizing the control sounds of the plurality of speakers selected by the control means approach the first phase difference.
  • the amplitude of the control signal is controlled for each of the speakers.
  • FIG. 1 shows a schematic configuration of an active vibration noise control device 50 according to the present embodiment.
  • the active vibration noise control device 50 mainly includes speakers 10 a and 10 b, a microphone 11, and a controller 20.
  • the active vibration noise control device 50 generates a control sound from the speakers 10a and 10b based on the vibration noise frequency, thereby calling the installation position of the microphone 11 (hereinafter referred to as “evaluation point”). The point corresponds to a control point.) Processing for reducing vibration noise at 30 is performed.
  • the active vibration noise control device 50 is mounted on a vehicle and performs processing for reducing engine vibration noise. Specifically, the active vibration noise control device 50 generates control signals y 1 and y 2 for minimizing the error in the controller 20 by feeding back the error signal e detected by the microphone 11, Control sounds corresponding to the control signals y 1 and y 2 are output from the speakers 10a and 10b.
  • the active vibration noise control device 50 performs processing for reducing vibration noise at the evaluation point 30 as described above, and at a predetermined position (hereinafter referred to as “pseudo evaluation point”) different from the installation position of the microphone 11.
  • the processing for reducing the vibration noise at 31 is performed.
  • the active vibration noise control device 50 performs processing for reducing vibration noise at the pseudo evaluation point 31 in consideration of the characteristics of the vibration noise source. Examples of the pseudo evaluation point 31 include a user's ear.
  • FIG. 2 is a block diagram showing an example of the configuration of the active vibration noise control device 50.
  • the active vibration noise control device 50 includes speakers 10a and 10b, a microphone 11, a frequency detector 13, a cosine wave generator 14a, a sine wave generator 14b, adaptive notch filters 15a and 15b, and reference signal generation. Units 16a and 16b and w update units 17a and 17b.
  • the frequency detection unit 13, the cosine wave generation unit 14a, the sine wave generation unit 14b, the adaptive notch filters 15a and 15b, the reference signal generation units 16a and 16b, and the w update units 17a and 17b correspond to the controller 20 described above.
  • components having “a” and “b” at the end of the reference numerals “a” and “b” are appropriately omitted when it is not necessary to distinguish between them.
  • the frequency detector 13 receives vibration noise (for example, engine pulse) and detects the frequency ⁇ 0 of the vibration noise. Then, the frequency detector 13 outputs a signal corresponding to the frequency ⁇ 0 to the cosine wave generator 14a and the sine wave generator 14b.
  • vibration noise for example, engine pulse
  • the cosine wave generator 14a and the sine wave generator 14b generate a reference cosine wave x 0 (n) and a reference sine wave x 1 (n) having the frequency ⁇ 0 detected by the frequency detector 13, respectively.
  • the cosine wave generation unit 14a and the sine wave generation unit 14b are configured such that the reference cosine wave x 0 (n) and the reference sine wave x 1 (n) as represented by the expressions (1) and (2). Is generated.
  • “n” is a natural number and corresponds to the sampling time (hereinafter the same).
  • A” indicates the amplitude
  • indicates the initial phase.
  • x 0 (n) A cos ( ⁇ 0 n + ⁇ ) Equation (1)
  • x 1 (n) Asin ( ⁇ 0 n + ⁇ ) Equation (2)
  • the cosine wave generation unit 14a and the sine wave generation unit 14b convert the reference signal corresponding to the generated reference cosine wave x 0 (n) and the reference sine wave x 1 (n) to the adaptive notch filter 15 and the reference signal, respectively. Output to the generator 16.
  • the cosine wave generator 14a and the sine wave generator 14b correspond to an example of a reference signal generator.
  • the adaptive notch filters 15a and 15b perform filter processing on the reference cosine wave x 0 (n) and the reference sine wave x 1 (n), respectively, and thereby control signals y 1 (n to be output to the speakers 10a and 15b, respectively. ), Y 2 (n). Specifically, the adaptive notch filter 15a generates the control signal y 1 (n) based on the filter coefficients w 01 (n) and w 11 (n) input from the w update unit 17a, and the adaptive notch filter 15b Generates the control signal y 2 (n) based on the filter coefficients w 02 (n) and w 12 (n) input from the w update unit 17b.
  • the adaptive notch filter 15a multiplies the reference cosine wave x 0 (n) by the filter coefficient w 01 (n) and the reference sine wave x 1 (n). Is added to a value obtained by multiplying the filter coefficient w 11 (n) by the control signal y 1 (n).
  • the adaptive notch filter 15b has a value obtained by multiplying the reference cosine wave x 0 (n) by the filter coefficient w 02 (n) and the reference sine wave x 1 (n) as shown in the equation (4). Is added to a value obtained by multiplying the filter coefficient w 12 (n) by the control signal y 2 (n).
  • y 1 (n) w 01 (n) x 0 (n) + w 11 (n) x 1 (n) Equation (3)
  • y 2 (n) w 02 (n) x 0 (n) + w 12 (n) x 1 (n) (4)
  • the speakers 10a and 10b generate control sounds corresponding to the control signals y 1 (n) and y 2 (n) input from the adaptive notch filters 15a and 15b, respectively.
  • the control sound generated from the speakers 10a and 10b is transmitted to the microphone 11.
  • the transfer functions from the speakers 10a and 10b to the microphone 11 are represented by “p 11 ” and “p 12 ”, respectively.
  • the transfer functions p 11 and p 12 are functions defined by the frequency ⁇ 0 and depend on the distance from the speakers 10a and 10b to the microphone 11 and the characteristics of the sound field.
  • the transfer functions p 11 and p 12 are obtained by measuring in advance in the passenger compartment.
  • the microphone 11 detects an offset error between the vibration noise and the control sound generated from the speakers 10a and 10b, and outputs this as an error signal e (n) to the w update units 17a and 17b. Specifically, the microphone 11 outputs an error signal e (n) corresponding to the control signals y 1 (n) and y 2 (n), the transfer functions p 11 and p 12 , and the vibration noise d (n). .
  • the reference signal generators 16a and 16b generate reference signals from the reference cosine wave x 0 (n) and the reference sine wave x 1 (n) based on the transfer functions p 11 and p 12 described above, respectively,
  • the reference signal is output to the w update units 17a and 17b.
  • the reference signal generation unit 16a using the real part c 01 and an imaginary part c 11 of the transfer function p 11
  • the reference signal generator 16b uses the real part c 02 and an imaginary part c 12 of the transfer function p 12 .
  • the reference signal generation unit 16a multiplies the reference cosine wave x 0 (n) by the real part c 01 of the transfer function p 11 and the transfer function p for the reference sine wave x 1 (n).
  • the reference signal generator 16b multiplies the standard cosine wave x 0 (n) by the real part c 02 of the transfer function p 12 and the transfer function p for the reference sine wave x 1 (n). outputs a value obtained by adding the value obtained by multiplying the imaginary part c 12 of the 12 as the reference signal r 02 (n), the reference signal r 02 (n) "[pi / 2" by delaying the signal a reference signal r 12 (n) is output.
  • the reference signal generators 16a and 16b correspond to an example of a reference signal generator.
  • Each of the w updating units 17a and 17b updates the filter coefficients used in the adaptive notch filters 15a and 15b based on an LMS (Least Mean Square) algorithm, and outputs the updated filter coefficients to the adaptive notch filter 15. .
  • the w update units 17a and 17b are based on the error signal e (n) and the reference signals r 01 (n), r 11 (n), r 02 (n), and r 12 (n).
  • the filter coefficients used last time are updated by the adaptive notch filters 15a and 15b so that the error signal e (n) is minimized.
  • the w updating units 17a and 17b correspond to an example of a filter coefficient updating unit.
  • the filter coefficient w before being updated by the w updating unit 17a is expressed as “w 01 (n), w 11 (n)”, and the filter coefficient after being updated by the w updating unit 17a is “w 01 (n + 1), w 11 ( n + 1) ”.
  • the w updating unit 17a obtains updated filter coefficients w 01 (n + 1) and w 11 (n + 1) from the following equations (5) and (6).
  • w 01 (n + 1) w 01 (n) ⁇ 1 ⁇ e (n) ⁇ r 01 (n) Equation (5)
  • w 11 (n + 1) w 11 (n) ⁇ 1 ⁇ e (n) ⁇ r 11 (n) Equation (6)
  • the filter coefficient w before being updated by the w updating unit 17b is expressed as “w 02 (n), w 12 (n)”, and the filter coefficient after being updated by the w updating unit 17b is “w 02 (n + 1), w 12 (n + 1) ”.
  • the w updating unit 17b obtains updated filter coefficients w 02 (n + 1) and w 12 (n + 1) from the following equations (7) and (8).
  • w 02 (n + 1) w 02 (n) ⁇ 2 ⁇ e (n) ⁇ r 02 (n) Equation (7)
  • w 12 (n + 1) w 12 (n) ⁇ 2 ⁇ e (n) ⁇ r 12 (n) Equation (8)
  • ⁇ 1 ” and “ ⁇ 2 ” are coefficients that determine the convergence speed called step size parameter.
  • the coefficient relates to the update rate of the filter coefficient.
  • preset values are used for the step size parameters ⁇ 1 and ⁇ 2 .
  • the active vibration noise control device 50 includes three or more speakers 10.
  • the adaptive notch filters 15a and 15b, the reference signal generators 16a and 16b, and the w update units 17a and 17b are separated from each other. Also good.
  • FIG. 3 shows an example of a result obtained by simulating the active vibration noise control device according to the comparative example.
  • the result using an actual vehicle interior transfer function is shown.
  • FIG. 3A shows an example of the amplitude characteristic of the filter coefficient F.
  • the horizontal axis indicates the frequency [Hz] of vibration noise (in other words, the noise signal; the same applies hereinafter), and the vertical axis indicates the amplitude [dB] of the filter coefficient F.
  • the filter coefficient F is stable (see the broken line region R11).
  • the filter coefficient F is unstable (see the broken line region R12).
  • FIG. 3 (b) and 3 (c) each show an example of the vibration noise reduction effect at the evaluation point when the active vibration noise control device according to the comparative example is used.
  • FIG. 3B and FIG. 3C show examples of results when the vibration noise frequencies are 100 [Hz] and 61 [Hz], respectively.
  • FIGS. 3B and 3C show temporal changes in the noise signal, the control signal, and the error signal, respectively, in order from the top.
  • FIG. 3B shows that the error signal converges when the frequency is 100 [Hz]. That is, it can be said that vibration noise is appropriately reduced.
  • FIG. 3C shows that the error signal diverges when the frequency is 61 [Hz]. That is, it can be said that the vibration noise is not appropriately reduced.
  • the filter coefficient F may become unstable depending on the frequency band. In this case, the error signal diverges. It has been found that the active vibration and noise control device may cause extraneous operation.
  • processing is performed so that the vibration noise is stably reduced at the pseudo evaluation point 31 regardless of the frequency band of the vibration noise.
  • phase difference of the vibration noise (hereinafter referred to as “first phase difference” as appropriate) is the phase characteristics of the vibration noise from the vibration noise source 40 to the evaluation point 30 and the pseudo evaluation from the vibration noise source 40. This corresponds to the difference from the phase characteristics of the vibration noise up to the point 31.
  • phase difference of the control sound (hereinafter referred to as “second phase difference” as appropriate) is the phase characteristic of the control sound from the speaker 10 to the evaluation point 30 and the control sound from the speaker 10 to the pseudo evaluation point 31. This corresponds to a difference from the phase characteristic of.
  • the vibration noise at the evaluation point 30 is reduced, the pseudo evaluation point 31 can be reduced.
  • vibration noise is considered to be reduced. That is, it is considered that the vibration noise can be stably reduced by approximating the phase characteristic of the control sound of the speaker 10 to the phase characteristic of the vibration noise.
  • the active vibration noise control device 50 performs processing while paying attention to the first phase difference and the second phase difference between the evaluation point 30 and the pseudo evaluation point 31.
  • the active vibration noise control device 50 according to the present embodiment is configured so that the speaker is selected from among the plurality of speakers 10 based on the relationship between the first phase difference and the second phase difference for the plurality of speakers 10. 10 is selected, and the control sound is output only from the selected speaker 10. That is, the active vibration noise control device 50 selects the speaker 10 that outputs the control sound from the plurality of speakers 10 so as to generate a second phase difference that approximates the first phase difference in the vibration noise.
  • the arrangement state of the speaker 10 is determined.
  • the active vibration noise control device 50 operates the second phase difference by changing the arrangement state of the speakers 10 to approximate the second phase difference to the first phase difference.
  • the active vibration noise control device 50 selects one speaker 10 or two or more speakers 10 from the plurality of speakers 10.
  • the active vibration noise control device 50 has a second phase difference in which the absolute value of the difference from the first phase difference is not more than a predetermined value among the plurality of speakers 10. Select.
  • the active vibration noise control device 50 sets the first phase difference to the first phase difference. At least the speaker 10 having the closest second phase difference can be selected.
  • the first phase difference and the second phase differences of the plurality of speakers 10 are obtained in advance by measurement, a predetermined arithmetic expression, and the like, and stored in a memory or the like. Specifically, the first phase difference and the second phase differences of the plurality of speakers 10 are stored in a memory or the like for each frequency. Then, the active vibration noise control device 50 can select the speaker 10 using the first phase difference and the second phase difference stored in this way.
  • the “predetermined value” is, for example, a first phase difference that does not increase at the pseudo evaluation point 31 when the active vibration noise control device 50 performs a process for reducing vibration noise.
  • a phase difference from the second phase difference can be used.
  • 60 ° can be used as the “predetermined value”.
  • FIG. 5A shows the phase difference (absolute value) between the first phase difference and the second phase difference on the horizontal axis, and the amplitude of the error signal at the pseudo evaluation point 31 on the vertical axis.
  • the error signal at the pseudo evaluation point 31 is obtained by a predetermined arithmetic expression.
  • the vertical axis in FIG. 5A indicates that the sound is muted when proceeding below “0”, and the sound is increased when proceeding above “0”.
  • reduction of vibration noise is appropriately expressed as “silence”
  • increase of vibration noise is appropriately expressed as “sound increase”.
  • FIGS. 5B, 5C, and 5D show the case where the phase difference (absolute value) between the first phase difference and the second phase difference is 0 °, 60 °, and 180 °, respectively.
  • the relationship between a noise signal (shown by a broken line), a control signal (shown by a one-dot chain line), and an error signal (shown by a solid line) is shown. From these figures, it can be seen that when the phase difference is 0 °, the error signal is almost “0”, and when the phase difference is 60 °, the error signal does not increase or decrease. It can be seen that the error signal increases when the phase difference is 180 °.
  • the vibration noise at the pseudo evaluation point 31 is further reduced as the phase difference (absolute value) between the first phase difference and the second phase difference becomes smaller. Further, when the phase difference (absolute value) between the first phase difference and the second phase difference is 60 ° or less, it can be said that the vibration noise at the pseudo evaluation point 31 does not increase at least. From this, as a preferred example, when the speaker 10 to be operated is selected, 60 ° can be used as the predetermined value used for determining the phase difference between the first phase difference and the second phase difference.
  • vibration noise can be stably reduced at the pseudo evaluation point 31 regardless of the frequency band of vibration noise.
  • the selection of the speaker 10 by the active vibration noise control device 50 corresponds to performing processing equivalent to the phase processing using the filter coefficient F according to the comparative example described above. Compared to the comparative example, the processing load can be reduced.
  • the selection of the speaker 10 as described above is performed by a control unit (not shown in FIG. 2) in the active vibration noise control device 50. That is, the control unit selects one or more speakers 10 from the plurality of speakers 10 based on the relationship between the first phase difference and the second phase difference for the plurality of speakers 10, and only the selected speaker 10 is selected. Control to output the control sound from. In one example, the control unit performs control to turn on and operate the selected speaker 10 and to turn off and stop the speaker 10 that has not been selected. In this case, the adaptive notch filter 15, the reference signal generation unit 16, and the w update unit 17 that perform processing for obtaining the control signal of the speaker 10 that has not been selected may be continuously operated or may be stopped. Such a control unit in the active vibration noise control device 50 corresponds to an example of a control unit.
  • an active vibration noise control device 50 having four speakers 10FL, 10FR, 10RL, 10R and a microphone 11 arranged as shown in FIG. 6 is considered.
  • the active vibration noise control apparatus 50 according to the first embodiment also basically has a basic configuration as shown in FIG. 2 and performs a process for reducing vibration noise at the evaluation point 30. Shall.
  • the active vibration noise control device 50 is installed in, for example, a vehicle interior.
  • the second phase difference in the speaker 10FL is denoted as “P_FL”
  • the second phase difference in the speaker 10FR is denoted as “P_FR”
  • the second phase difference in the speaker 10RL is denoted as “P_RL”
  • the speaker 10RR is expressed as “P_RR”.
  • the first phase difference is denoted as “P_n”.
  • the speakers 10FL, 10FR, 10RL, and 10R are used without being distinguished from each other, they are simply expressed as “speaker 10”.
  • two speakers 10 are selected from the four speakers 10, that is, a speaker pair is selected so that vibration noise is stably reduced at the pseudo evaluation point 31 as shown in FIG. .
  • the active vibration noise control device 50 takes into account the result as shown in FIG. 5 and determines the absolute difference from the first phase difference from the four speakers 10. Two speakers 10 having a second phase difference whose value is 60 ° or less are selected, and control sounds are output only from the two selected speakers 10. In this case, when there are three or more speakers 10 having the second phase difference whose absolute value of the difference from the first phase difference is 60 ° or less, the active vibration noise control device 50 determines the first phase difference.
  • the speaker 10 having the second phase difference with a small absolute value of the difference is preferentially selected. Specifically, the absolute value of the difference between the speaker 10 having the second phase difference with the smallest absolute value of the difference from the first phase difference and the difference between the first phase difference from the three or more speakers 10 is the next. And a speaker 10 having a small second phase difference can be selected.
  • the first phase difference P_n of the vibration noise is “ ⁇ 40 °”
  • the second phase difference P_FL of the speaker 10FL is “0 °”
  • the first phase difference P_FL of the speaker 10FR As an example, the two phase difference P_FR is “ ⁇ 50 °”
  • the second phase difference P_RL of the speaker 10RL is “30 °”
  • the second phase difference P_RR of the speaker 10RR is “25 °”.
  • the speakers 10 having the second phase difference whose absolute value of the difference from the first phase difference P_n is 60 ° or less are the speaker 10FL and the speaker 10FR. Therefore, as shown in the broken line area in FIG. 7B, the speaker 10FL and the speaker 10FR are selected as the speaker pair that outputs the control sound.
  • the result when the speaker 10FL and the speaker 10FR selected as described above are used is compared with the result when the speaker 10RL and the speaker 10RR that are not selected are used.
  • a result in the case of using a 75 [Hz] sine wave as a noise signal is shown.
  • FIG. 8A shows a diagram similar to FIG. FIGS. 8B and 8C respectively show an example of the vibration noise reduction effect at the pseudo evaluation point 31 when the active vibration noise control device 50 according to the first embodiment is used.
  • FIG. 8B shows an example of the result when the control sound is output from only the speaker 10RL and the speaker 10RR (see the broken line region R21 in FIG. 8A).
  • (C) has shown an example of the result at the time of outputting a control sound only from the speaker 10FL and the speaker 10FR (refer broken line area
  • FIGS. 8B and 8C show temporal changes in the noise signal, the control signal, and the error signal, respectively, in order from the top.
  • FIG. 8B shows that the error signal increases when the control sound is output from the speaker 10RL and the speaker 10RR. In other words, it can be said that the sound is increasing.
  • FIG. 8C shows that the error signal is reduced when the control sound is output from the speaker 10FL and the speaker 10FR. In other words, it can be said that the sound is properly muted. From these results, it is understood that vibration noise can be stably reduced at the pseudo evaluation point 31 by outputting the control sound from the speaker 10 selected by the method as described above.
  • the amplitude of the control signal used in each of the plurality of speakers 10 selected as described above is controlled.
  • the second phase difference relating to the control sound obtained by synthesizing the control sounds of the plurality of selected speakers 10 (hereinafter referred to as “synthesized control sound” as appropriate) is the first vibration noise.
  • the amplitude balance of the control signals in the plurality of speakers 10 is changed so as to approach the phase difference, that is, so that the second phase difference of the synthesized control sound approximates the first phase difference.
  • the second phase difference of the synthesized control sound refers to the phase characteristics of the synthesized control sound up to the evaluation point 30 and the synthesized control sound up to the pseudo evaluation point 31 when the control sounds are simultaneously output from the plurality of speakers 10. This corresponds to the difference from the phase characteristic of the control sound.
  • the amplitude of the control signal used in each of the plurality of speakers 10 can be controlled by performing a weighting process when updating the filter coefficient.
  • the step size parameter ⁇ used when updating the filter coefficient of the adaptive notch filter used in each of the plurality of speakers 10 is weighted.
  • a coefficient for weighting the step size parameter ⁇ (hereinafter referred to as “weighting coefficient s”) is used, and the value of the step size parameter ⁇ is changed by setting the weighting coefficient s to various values.
  • weighting coefficient s a coefficient for weighting the step size parameter ⁇
  • the filter coefficient is updated based on the leaky LMS algorithm. Specifically, it is desirable that the w update units 17a and 17b include a leak coefficient (coefficient ⁇ for suppressing the growth of W).
  • FIG. 9 is a block diagram showing a schematic configuration of the active vibration noise control apparatus 51 according to the second embodiment.
  • FIG. 9 illustrates only some of the components included in the active vibration noise control device 51 according to the second embodiment.
  • Components not shown in FIG. 9 are the same as the components included in the active vibration noise control device 50 (see FIG. 2).
  • the same components and signals as those of the active vibration noise control device 50 are denoted by the same reference numerals, and the description thereof is omitted. The same applies to components and signals not specifically described.
  • the active vibration noise control device 51 includes weight coefficient changing units 19a and 19b.
  • the active vibration noise control device 51 includes three or more speakers 10.
  • the weighting factor changing units 19a and 19b set weighting factors s 1 and s 2 for weighting the step size parameter ⁇ used in the w updating units 17a and 17b, respectively. Specifically, the weight coefficient changing units 19a and 19b control the control signal y 1 so that the second phase difference of the synthesized control sound obtained by synthesizing the control sounds of the speakers 10a and 10b approximates the first phase difference of the vibration noise. , to control the amplitude of y 2, sets the weighting coefficients s 1, s 2. In this case, the weight coefficient changing units 19a and 19b set the weight coefficients s 1 and s 2 according to the difference between the second phase difference and the first phase difference of the speakers 10a and 10b.
  • the weighting factors s 1 and s 2 are determined according to the ratio of the difference between the second phase difference and the first phase difference of the speaker 10a and the difference between the second phase difference and the first phase difference of the speaker 10b. Set. In this case, the weighting factor s used in the speaker 10 having the second phase difference close to the first phase difference is set to a larger value than the weighting factor s used in the other speaker 10.
  • the weight coefficient changing units 19a and 19b correspond to an example of amplitude control means.
  • the weight coefficient changing units 19a and 19b are not limited to obtaining the weight coefficients s 1 and s 2 during the operation of the active vibration noise control device 51.
  • the weighting factor changing units 19a and 19b can use the weighting factors s 1 and s 2 obtained in advance by measurement, a predetermined arithmetic expression, or the like.
  • the w updating units 17a and 17b are step size parameters (hereinafter referred to as “ ⁇ 1 ′” and “ ⁇ 2 ′”) weighted by the weighting factors s 1 and s 2 set by the weighting factor changing units 19a and 19b, respectively.
  • the filter coefficient is updated based on the notation.
  • Each of the w updating units 17a and 17b substitutes the step size parameters ⁇ 1 ′ and ⁇ 2 ′ for the step size parameters ⁇ 1 and ⁇ 2 in the above formulas (5) to (8), respectively.
  • Filter coefficients w 01 , w 11 , w 02 , w 12 are obtained.
  • the adaptive notch filters 15a and 15b are control signals used by the speakers 10a and 10b based on the filter coefficients w 01 , w 11 , w 02 , and w 12 updated by the w update units 17a and 17b, respectively.
  • y 1 and y 2 are generated.
  • w 01 (n + 1) (1- ⁇ 01 ) ⁇ w 01 (n) ⁇ 1 ′ ⁇ e (n) ⁇ r 01 (n) Equation (9)
  • the transformation of the equation as shown in equation (9) is similarly applied to equations (6) to (8) for obtaining w 11 (n + 1), w 02 (n + 1), and w 12 (n + 1), respectively. .
  • the vibration noise control device 51 there are four speakers 10FL, 10FR, 10RL, 10R and a microphone 11 arranged as shown in FIG. 6, and an active type designed to reduce vibration noise at the pseudo evaluation point 31 as shown in FIG.
  • the vibration noise control device 51 a case is considered in which the first phase difference and the second phase difference have values as shown in FIG. 7A, and the speaker 10FL and the speaker 10FR are selected as the speaker pair that outputs the control sound. .
  • the weighting coefficient s 1 is used in the speaker 10FL
  • the weighting factor s 2 is used in the speaker 10FR.
  • “0.25: 1” corresponding to “10:40”, which is the inverse ratio of the ratio, is set as the weighting factors s 1 and s 2 , respectively. That is, “s 1 : s 2 0.25: 1”.
  • the second phase difference for the synthesized control sound of the two selected speakers 10FL and 10FR is “ ⁇ 40 °”. That is, the second phase difference of the synthesis control sound matches the first phase difference P_n.
  • the second phase difference for the synthesized control sound of the speakers 10FL and 10FR is “ ⁇ 25”. ° ”.
  • FIGS. 10A and 10B show vibration noise at the pseudo evaluation point 31 when weighting is performed when the filter coefficient is updated as described above and when weighting is not performed, respectively.
  • FIG. 10A and FIG. 10B show temporal changes of the noise signal, the control signal, and the error signal, respectively, in order from the top.
  • a result in the case of using a 75 [Hz] sine wave as a noise signal is shown.
  • Fig.10 (a) has shown the result similar to FIG.8 (c).
  • the error signal is smaller when weighting is performed than when weighting is not performed. That is, it can be said that the vibration noise is further reduced.
  • the silencing effect when weighting is not performed is “ ⁇ 10 [dB]”
  • the silencing effect when weighting is performed is “ ⁇ 16 [dB]”. From these results, it can be seen that according to the second embodiment, the vibration noise at the pseudo evaluation point 31 can be more effectively reduced.
  • FIGS. 11A and 11B show an example of the effect of reducing vibration noise at the pseudo evaluation point 31 according to the comparative example and the second example, respectively.
  • FIG. 11A and FIG. 11B show temporal changes of the noise signal, the control signal, and the error signal, respectively, in order from the top.
  • This frequency corresponds to the frequency at which the filter coefficient F becomes unstable in the comparative example (see FIG. 3).
  • a result of the second embodiment a result of selecting two speakers 10 by the above-described method and controlling the amplitudes of the control signals of the two selected speakers 10 with the weighting factors s 1 and s 2 is obtained.
  • Indicates. Specifically, a case where “s 1 : s 2 1: 0.1” is used as the weighting factors s 1 and s 2 will be described as an example.
  • the weighting factor s for weighting the step size parameter ⁇ is set according to the difference between the first phase difference and the second phase difference of each speaker 10.
  • the weighting factor s is obtained in advance by measurement, a predetermined arithmetic expression, or the like and stored in a memory or the like, and the stored weighting factor s can be used.
  • a weighting factor s that provides an appropriate gain can be stored in advance for two speakers selected based on the first phase difference at the frequency to be controlled.
  • the weighting is performed when the filter coefficient is updated.
  • the method for controlling the amplitude of the control signal It is not limited to examples.
  • the amplitude of the control signal of the plurality of speakers 10 can be controlled by weighting the output gain of each of the plurality of speakers 10. In other words, it is possible to directly weight the control signals used by the plurality of speakers 10. In this example as well, a weighting factor similar to the weighting factor s described above can be used.
  • a speaker having a second phase difference whose absolute value of the difference from the first phase difference is equal to or smaller than a predetermined value is selected from a plurality of speakers.
  • the absolute value of the difference between the first phase difference and the second phase difference is less than or equal to a predetermined value for all of the two or more speakers.
  • the condition hereinafter referred to as “first condition” as appropriate
  • first condition may not be satisfied. That is, in the two or more speakers, as long as at least one speaker satisfies the first condition, the other speakers may not satisfy the first condition. This is because if at least one speaker satisfies the first condition, at the pseudo evaluation point 31, there is a high possibility that at least no sound increase will occur.
  • the selection of the speaker using the first condition is not limited.
  • a speaker having a second phase difference larger than the first phase difference and smaller than the first phase difference instead of the first condition, a speaker having a second phase difference larger than the first phase difference and smaller than the first phase difference.
  • a condition of selecting a speaker having the second phase difference (hereinafter referred to as “second condition” as appropriate) can be used. That is, in another example, in two speakers among a plurality of speakers, a speaker pair in which a first phase difference exists between the second phase differences of the two speakers can be selected. This is because, when a speaker pair satisfying the second condition is selected, the absolute value of the difference between the second phase difference and the first phase difference for the synthesized control sound of the speaker pair is used in the first condition.
  • the selection of the speaker using the second condition can be performed when there is no speaker that satisfies the first condition.
  • the speaker pair having the second phase difference with a small absolute value of the difference from the first phase difference can be preferentially selected.
  • a speaker may be selected using both the first condition and the second condition. That is, a speaker pair that satisfies both the first condition and the second condition can be selected from a plurality of speakers. For example, when there are a plurality of speakers that satisfy the first condition, a speaker pair that satisfies the second condition can be selected from the speaker pairs that combine the speakers.
  • one speaker can be selected from a plurality of speakers using the first condition.
  • 60 ° is used as the predetermined value used in the first condition, but there is no limitation to using 60 ° as the predetermined value.
  • 60 ° is used as the predetermined value from the viewpoint that at least the sound increase is not generated at the pseudo evaluation point 31, but the predetermined value is set according to, for example, the level at which the vibration noise is reduced at the pseudo evaluation point 31. Can be set to various values.
  • the selected speaker can be changed according to the frequency band of vibration noise. This is because the first phase difference and the second phase difference in each of the plurality of speakers tend to change depending on the frequency band of vibration noise.
  • a table in which a phase difference is associated with each frequency band, a table in which a speaker to be selected for each frequency band is associated, and the like are selected. It can be changed accordingly.
  • the present invention is not limited to application to an active vibration and noise control apparatus configured with two or four speakers. Further, the present invention is not limited to the application to the active vibration noise control apparatus 50 configured to include only one microphone. The present invention can also be applied to an active vibration noise control apparatus that includes three speakers, five or more speakers, two or more microphones, and the like.
  • the application of the present invention is not limited to this.
  • the present invention can be applied to various mobile objects such as ships, helicopters, and airplanes in addition to vehicles.
  • the present invention is applied to a closed space such as a room of a moving body having a vibration noise source such as an engine and can be used to actively control vibration noise.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Signal Processing (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

 能動型振動騒音制御装置は、複数のスピーカから制御音を出力させることで振動騒音を打ち消すために好適に利用される。能動型振動騒音制御装置は、振動騒音源から評価点までの振動騒音の位相特性と振動騒音源から疑似評価点までの振動騒音の位相特性との差に相当する第1位相差と、複数のスピーカの各々についての、スピーカから評価点までの制御音の位相特性とスピーカから疑似評価点までの制御音の位相特性との差に相当する第2位相差と、の関係に基づいて、複数のスピーカの中から1以上のスピーカを選択し、選択したスピーカのみから制御音を出力させる。これにより、振動騒音の周波数帯域によらずに、疑似評価点において振動騒音を安定して低減することが可能となる。

Description

能動型振動騒音制御装置
 本発明は、適応ノッチフィルタを用いて振動騒音を能動的に制御する技術分野に関する。
 従来から、車両の車室内で聞こえるエンジン音を、スピーカから出力される制御音で制御し、乗員の耳位置でエンジン音を低減する能動型振動騒音制御装置が知られている。例えば、車室内の振動騒音がエンジンの出力軸の回転に同期して発生することに注目して、エンジン出力軸の回転に基づく周波数の車室内騒音を、適応ノッチフィルタを利用して消音させて、車室内を静粛にする技術が提案されている。
 また、マイクの設置位置以外の位置(例えば耳元)でも、振動騒音を低減することを図った技術が提案されている(例えば特許文献1及び2参照)。具体的には、特許文献2には、特許文献1に記載された技術において生じ得る、複数のスピーカからの制御音の干渉を防止すべく、一方のスピーカの出力信号をフィルタ係数で補正する技術が提案されている。
特開平6-332477号公報 特開2005-84500号公報
 しかしながら、上記した特許文献2に記載された技術では、補償フィルタのフィルタ係数Fを演算式「F=(c01-q・c00)/(q・c10-c11)」で求めているが、このフィルタ係数Fが周波数帯域によっては不安定になる場合があった。具体的には、フィルタ係数Fを求める演算式の分母が小さい値となる場合に、フィルタ係数Fが不安定になる傾向にあった。そのため、特許文献2に記載された技術では、周波数帯域によっては、誤差信号が発散することで、能動型振動騒音制御装置が異質な動作を起こす可能性があった。
 本発明が解決しようとする課題としては、上記のものが一例として挙げられる。本発明は、マイクの設置位置以外の所定位置において、周波数帯域によらずに、振動騒音を安定して低減することが可能な能動型振動騒音制御装置を提供することを目的とする。
 請求項1に記載の発明は、複数のスピーカから制御音を出力させることで振動騒音を打ち消す能動型振動騒音制御装置である。能動型振動騒音制御装置は、振動騒音源から発生された振動騒音周波数に基づいて、基準信号を生成する基準信号生成手段と、前記振動騒音源からの発生振動騒音が相殺されるように前記複数のスピーカから前記制御音を発生させるべく、前記基準信号に対してフィルタ係数を用いることで、前記複数のスピーカの各々に対して出力する制御信号を生成する適応ノッチフィルタと、前記振動騒音と前記制御音との相殺誤差を検出して、誤差信号として出力するマイクと、前記複数のスピーカから前記マイクまでの伝達関数に基づいて、前記基準信号から参照信号を生成する参照信号生成手段と、前記誤差信号及び前記参照信号に基づいて、前記誤差信号が最小となるように、前記適応ノッチフィルタで用いられる前記フィルタ係数を更新するフィルタ係数更新手段と、前記複数のスピーカの中から1以上のスピーカを選択し、選択したスピーカのみから前記制御音を出力させる制御手段と、を備え、前記制御手段は、(1)前記振動騒音源から前記マイクの設置位置に対応する評価点までの前記振動騒音の位相特性と、前記振動騒音源から前記マイクの設置位置とは異なる位置に対応する疑似評価点までの前記振動騒音の位相特性との差に相当する第1位相差と、(2)前記複数のスピーカの各々についての、前記スピーカから前記評価点までの前記制御音の位相特性と前記スピーカから前記疑似評価点までの前記制御音の位相特性との差に相当する第2位相差と、の関係に基づいて、前記複数のスピーカの中からスピーカを選択する。
本実施例に係る能動型振動騒音制御装置の概略構成を示す。 本実施例に係る能動型振動騒音制御装置の構成ブロック図を示す。 比較例の不具合を説明するための図を示す。 本実施例の基本概念を説明するための図を示す。 第1位相差と第2位相差との位相差と、疑似評価点での振動騒音の低減効果との関係の一例を示す。 第1実施例におけるスピーカ及びマイクの配置例を示す。 第1実施例に係るスピーカの選択方法の一例を説明するための図を示す。 第1実施例による疑似評価点での振動騒音の低減効果の一例を示す。 第2実施例に係る能動型振動騒音制御装置の構成ブロック図を示す。 第2実施例による疑似評価点での振動騒音の低減効果の一例を示す。 比較例及び第2実施例による結果の一例を示す。
 本発明の1つの観点では、複数のスピーカから制御音を出力させることで振動騒音を打ち消す能動型振動騒音制御装置は、振動騒音源から発生された振動騒音周波数に基づいて、基準信号を生成する基準信号生成手段と、前記振動騒音源からの発生振動騒音が相殺されるように前記複数のスピーカから前記制御音を発生させるべく、前記基準信号に対してフィルタ係数を用いることで、前記複数のスピーカの各々に対して出力する制御信号を生成する適応ノッチフィルタと、前記振動騒音と前記制御音との相殺誤差を検出して、誤差信号として出力するマイクと、前記複数のスピーカから前記マイクまでの伝達関数に基づいて、前記基準信号から参照信号を生成する参照信号生成手段と、前記誤差信号及び前記参照信号に基づいて、前記誤差信号が最小となるように、前記適応ノッチフィルタで用いられる前記フィルタ係数を更新するフィルタ係数更新手段と、前記複数のスピーカの中から1以上のスピーカを選択し、選択したスピーカのみから前記制御音を出力させる制御手段と、を備え、前記制御手段は、(1)前記振動騒音源から前記マイクの設置位置に対応する評価点までの前記振動騒音の位相特性と、前記振動騒音源から前記マイクの設置位置とは異なる位置に対応する疑似評価点までの前記振動騒音の位相特性との差に相当する第1位相差と、(2)前記複数のスピーカの各々についての、前記スピーカから前記評価点までの前記制御音の位相特性と前記スピーカから前記疑似評価点までの前記制御音の位相特性との差に相当する第2位相差と、の関係に基づいて、前記複数のスピーカの中からスピーカを選択する。
 上記の能動型振動騒音制御装置は、複数のスピーカから制御音を出力させることで振動騒音(例えばエンジンからの振動騒音)を打ち消すために好適に利用される。基準信号生成手段は、振動騒音源から発生する振動騒音周波数に基づいて基準信号を生成する。適応ノッチフィルタは、基準信号に対してフィルタ係数を用いることで複数のスピーカへ出力する制御信号を生成する。マイクは、振動騒音と制御音との相殺誤差を検出して誤差信号として出力し、参照信号生成手段は、複数のスピーカからマイクまでの伝達関数に基づいて基準信号から参照信号を生成する。フィルタ係数更新手段は、誤差信号が最小となるように、適応ノッチフィルタで用いられるフィルタ係数を更新する。そして、制御手段は、複数のスピーカの中から1以上のスピーカを選択し、選択したスピーカのみから制御音を出力させる。つまり、制御手段は、複数のスピーカの中から制御音を出力させるスピーカを選択することにより、スピーカの配置状態を決定する。具体的には、制御手段は、(1)振動騒音源から評価点までの振動騒音の位相特性と、振動騒音源から疑似評価点までの振動騒音の位相特性との差に相当する第1位相差と、(2)複数のスピーカの各々についての、スピーカから評価点までの制御音の位相特性とスピーカから疑似評価点までの制御音の位相特性との差に相当する第2位相差と、の関係に基づいて、複数のスピーカの中からスピーカを選択する。これにより、振動騒音の周波数帯域によらずに、疑似評価点において振動騒音を安定して低減することが可能となる。
 上記の能動型振動騒音制御装置の一態様では、前記制御手段は、前記複数のスピーカの中から、前記第1位相差との差の絶対値が所定値以下である前記第2位相差を有するスピーカを少なくとも1つ選択する。これにより、スピーカの制御音の位相特性を振動騒音の位相特性に適切に近似させることができ、疑似評価点での振動騒音を効果的に低減することが可能となる。
 上記の能動型振動騒音制御装置の他の一態様では、前記制御手段は、前記複数のスピーカの中から、前記第1位相差よりも大きい前記第2位相差を有するスピーカと、前記第1位相差よりも小さい前記第2位相差を有するスピーカとを選択する。これによっても、スピーカの制御音の位相特性を振動騒音の位相特性に適切に近似させることができ、疑似評価点での振動騒音を効果的に低減することが可能となる。
 上記の能動型振動騒音制御装置において好適には、前記制御手段は、前記複数のスピーカの中から、前記第1位相差に最も近い前記第2位相差を有するスピーカを少なくとも1つ選択することができる。
 上記の能動型振動騒音制御装置の他の一態様では、前記制御手段は、前記振動騒音の周波数帯域に応じて、選択するスピーカを変更する。この態様では、振動騒音の周波数帯域によって第1位相差や第2位相差が変化するといった傾向を加味して、制御音を出力させるスピーカを選択することができる。
 上記の能動型振動騒音制御装置の他の一態様では、前記第1位相差、及び前記制御手段によって選択されたスピーカの前記第2位相差に基づいて、前記制御手段によって選択されたスピーカの前記制御信号の振幅を制御する振幅制御手段を更に備える。好適には、前記振幅制御手段は、前記制御手段によって選択された複数のスピーカの前記制御音を合成した制御音についての前記第2位相差が、前記第1位相差に近付くように、当該複数のスピーカの各々について前記制御信号の振幅を制御する。これにより、選択された複数のスピーカの制御音を合成した制御音についての第2位相差を、振動騒音の第1位相差に、効果的に近似させることができる。したがって、疑似評価点での振動騒音を、より効果的に低減することが可能となる。
 以下、図面を参照して本発明の好適な実施例について説明する。
 [基本概念]
 まず、本実施例の基本概念について説明する。ここでは、図1に示すような能動型振動騒音制御装置50を例に挙げて説明する。
 図1は、本実施例に係る能動型振動騒音制御装置50の概略構成を示している。能動型振動騒音制御装置50は、主に、スピーカ10a、10bと、マイク11と、コントローラ20と、を有する。
 基本的には、能動型振動騒音制御装置50は、振動騒音周波数に基づいてスピーカ10a、10bから制御音を発生させることで、マイク11の設置位置(以下、「評価点」と呼ぶ。この評価点は制御点に相当する。)30での振動騒音を低減するための処理を行う。例えば、能動型振動騒音制御装置50は、車両に搭載され、エンジンの振動騒音を低減するための処理を行う。具体的には、能動型振動騒音制御装置50は、マイク11で検出された誤差信号eをフィードバックすることでコントローラ20において当該誤差を最小化するための制御信号y、yを生成し、当該制御信号y、yに対応する制御音をスピーカ10a、10bから出力させる。
 また、能動型振動騒音制御装置50は、上記したように評価点30での振動騒音を低減するための処理を行うと共に、マイク11の設置位置とは異なる所定位置(以下、「疑似評価点」と呼ぶ。)31での振動騒音を低減するための処理を行う。具体的には、能動型振動騒音制御装置50は、振動騒音源の特性を加味して、疑似評価点31での振動騒音を低減するための処理を行う。疑似評価点31としては、例えばユーザの耳元などが挙げられる。
 次に、図2を参照して、上記した本実施例に係る能動型振動騒音制御装置50の具体的な構成について説明する。図2は、能動型振動騒音制御装置50の構成の一例を示すブロック図である。
 能動型振動騒音制御装置50は、スピーカ10a、10bと、マイク11と、周波数検出部13と、余弦波発生部14aと、正弦波発生部14bと、適応ノッチフィルタ15a、15bと、参照信号生成部16a、16bと、w更新部17a、17bと、を有する。周波数検出部13、余弦波発生部14a、正弦波発生部14b、適応ノッチフィルタ15a、15b、参照信号生成部16a、16b、及びw更新部17a、17bは、前述したコントローラ20に相当する。以下の説明では、符号の末尾に「a」及び「b」が付された構成要素について、それらの区別が不要な場合には「a」及び「b」を適宜省略するものとする。
 周波数検出部13は、振動騒音(例えばエンジンパルス)が入力されて、当該振動騒音の周波数ωを検出する。そして、周波数検出部13は、周波数ωに対応する信号を、余弦波発生部14a及び正弦波発生部14bに出力する。
 余弦波発生部14a及び正弦波発生部14bは、それぞれ、周波数検出部13で検出された周波数ωを有する基準余弦波x(n)及び基準正弦波x(n)を生成する。具体的には、余弦波発生部14a及び正弦波発生部14bは、式(1)及び式(2)で表されるような基準余弦波x(n)及び基準正弦波x(n)を生成する。式(1)及び式(2)において、「n」は自然数であり、サンプリング時間に相当する(以下同様とする)。また、「A」は振幅を示し、「φ」は初期位相を示している。
  x(n)=Acos(ωn+φ)  式(1)
  x(n)=Asin(ωn+φ)  式(2)
 そして、余弦波発生部14a及び正弦波発生部14bは、それぞれ、生成した基準余弦波x(n)及び基準正弦波x(n)に対応する基準信号を、適応ノッチフィルタ15及び参照信号生成部16に出力する。このように、余弦波発生部14a及び正弦波発生部14bは基準信号生成手段の一例に相当する。
 適応ノッチフィルタ15a、15bは、基準余弦波x(n)及び基準正弦波x(n)に対してフィルタ処理を行うことで、それぞれ、スピーカ10a、15bに出力する制御信号y(n)、y(n)を生成する。具体的には、適応ノッチフィルタ15aは、w更新部17aから入力されたフィルタ係数w01(n)、w11(n)に基づいて制御信号y(n)を生成し、適応ノッチフィルタ15bは、w更新部17bから入力されたフィルタ係数w02(n)、w12(n)に基づいて制御信号y(n)を生成する。詳しくは、適応ノッチフィルタ15aは、式(3)に示すように、基準余弦波x(n)に対してフィルタ係数w01(n)を乗算した値と、基準正弦波x(n)に対してフィルタ係数w11(n)を乗算した値とを加算することで、制御信号y(n)を求める。同様に、適応ノッチフィルタ15bは、式(4)に示すように、基準余弦波x(n)に対してフィルタ係数w02(n)を乗算した値と、基準正弦波x(n)に対してフィルタ係数w12(n)を乗算した値とを加算することで、制御信号y(n)を求める。
  y(n)=w01(n)x(n)+w11(n)x(n)  式(3)
  y(n)=w02(n)x(n)+w12(n)x(n)  式(4)
 スピーカ10a、10bは、それぞれ、適応ノッチフィルタ15a、15bから入力された制御信号y(n)、y(n)に対応する制御音を発生する。こうしてスピーカ10a、10bから発生された制御音は、マイク11に伝達される。スピーカ10a、10bからマイク11までの伝達関数を、それぞれ「p11」、「p12」で表す。この伝達関数p11、p12は、周波数ωによって規定された関数であり、スピーカ10a、10bからマイク11までの距離や音場の特性に依存している。例えば、伝達関数p11、p12は、車室内で予め測定することで求められる。
 マイク11は、振動騒音とスピーカ10a、10bから発生された制御音との相殺誤差を検出し、これを誤差信号e(n)としてw更新部17a、17bへ出力する。具体的には、マイク11は、制御信号y(n)、y(n)、伝達関数p11、p12、及び振動騒音d(n)に応じた誤差信号e(n)を出力する。
 参照信号生成部16a、16bは、それぞれ、上記した伝達関数p11、p12に基づいて、基準余弦波x(n)及び基準正弦波x(n)から参照信号を生成して、当該参照信号をw更新部17a、17bに出力する。具体的には、参照信号生成部16aは伝達関数p11の実数部c01及び虚数部c11を用い、参照信号生成部16bは伝達関数p12の実数部c02及び虚数部c12を用いる。詳しくは、参照信号生成部16aは、基準余弦波x(n)に対して伝達関数p11の実数部c01を乗算した値と、基準正弦波x(n)に対して伝達関数p11の虚数部c11を乗算した値とを加算した値を参照信号r01(n)として出力すると共に、この参照信号r01(n)を「π/2」だけ遅らせた信号を参照信号r11(n)として出力する。同様に、参照信号生成部16bは、基準余弦波x(n)に対して伝達関数p12の実数部c02を乗算した値と、基準正弦波x(n)に対して伝達関数p12の虚数部c12を乗算した値とを加算した値を参照信号r02(n)として出力すると共に、この参照信号r02(n)を「π/2」だけ遅らせた信号を参照信号r12(n)として出力する。このように、参照信号生成部16a、16bは参照信号生成手段の一例に相当する。
 w更新部17a、17bは、それぞれ、LMS(Least Mean Square)アルゴリズムに基づいて、適応ノッチフィルタ15a、15bで用いられるフィルタ係数の更新を行い、更新後のフィルタ係数を適応ノッチフィルタ15に出力する。具体的には、w更新部17a、17bは、上記した誤差信号e(n)、及び参照信号r01(n)、r11(n)、r02(n)、r12(n)に基づいて、誤差信号e(n)が最小になるように、適応ノッチフィルタ15a、15bで前回用いられたフィルタ係数の更新を行う。このように、w更新部17a、17bはフィルタ係数更新手段の一例に相当する。
 w更新部17aによる更新前のフィルタ係数wを「w01(n)、w11(n)」と表記し、w更新部17aによる更新後のフィルタ係数を「w01(n+1)、w11(n+1)」と表記する。この場合、w更新部17aは、以下の式(5)及び式(6)より、更新後のフィルタ係数w01(n+1)、w11(n+1)を求める。
  w01(n+1)=w01(n)-μ・e(n)・r01(n)  式(5)
  w11(n+1)=w11(n)-μ・e(n)・r11(n)  式(6)
 同様に、w更新部17bによる更新前のフィルタ係数wを「w02(n)、w12(n)」と表記し、w更新部17bによる更新後のフィルタ係数を「w02(n+1)、w12(n+1)」と表記する。この場合、w更新部17bは、以下の式(7)及び式(8)より、更新後のフィルタ係数w02(n+1)、w12(n+1)を求める。
  w02(n+1)=w02(n)-μ・e(n)・r02(n)  式(7)
  w12(n+1)=w12(n)-μ・e(n)・r12(n)  式(8)
 式(5)~(8)において、「μ」及び「μ」はステップサイズパラメータと呼ばれる収束スピードを決める係数である。言い換えると、フィルタ係数の更新速度に関わる係数である。例えば、ステップサイズパラメータμ、μは予め設定された値が用いられる。
 なお、図1及び図2では、説明の便宜上、2つのスピーカ10a、10bのみを図示しているが、実際には、能動型振動騒音制御装置50は3以上のスピーカ10を具備するものとする。また、図2では、適応ノッチフィルタ15a、15b、参照信号生成部16a、16b、及びw更新部17a、17bが分離して構成された図を示しているが、これらをそれぞれ一体に構成しても良い。
 次に、図3を参照して、前述した従来技術(特許文献2に記載の技術であり、以下では「比較例」と呼ぶ。)の不具合について説明する。比較例に係る能動型振動騒音制御装置は、基本的には、評価点だけでなく疑似評価点でも振動騒音が低減されるように処理を行う。具体的には、比較例に係る能動型振動騒音制御装置は、複数のスピーカ(2つのスピーカ)からの制御音の干渉を防止すべく、一方のスピーカの出力信号をフィルタ係数Fで補正する。この場合、当該能動型振動騒音制御装置は、補償フィルタのフィルタ係数Fを演算式「F=(c01-q・c00)/(q・c10-c11)」で求める。
 図3は、比較例に係る能動型振動騒音制御装置をシミュレーションすることで得られた結果の一例を示している。ここでは、実際の車室内の伝達関数を使用した結果を示す。図3(a)は、フィルタ係数Fの振幅特性の一例を示している。具体的には、横軸に振動騒音(言い換えると騒音信号である。以下同様とする。)の周波数[Hz]を示し、縦軸にフィルタ係数Fの振幅[dB]を示している。図3(a)に示すように、例えば周波数が100[Hz]である場合には、フィルタ係数Fが安定していることが見て取れる(破線領域R11参照)。これに対して、例えば周波数が61[Hz]である場合には、フィルタ係数Fが不安定になっていることが見て取れる(破線領域R12参照)。
 図3(b)及び図3(c)は、それぞれ、比較例に係る能動型振動騒音制御装置を用いた場合の評価点における振動騒音の低減効果の一例を示している。具体的には、図3(b)及び図3(c)は、それぞれ、振動騒音の周波数が100[Hz]及び61[Hz]である場合の結果の一例を示している。また、図3(b)及び図3(c)は、それぞれ、上から順に、騒音信号、制御信号、誤差信号の時間変化を示している。図3(b)より、周波数が100[Hz]である場合には、誤差信号が収束していることがわかる。つまり、振動騒音が適切に低減されていると言える。これに対して、図3(c)より、周波数が61[Hz]である場合には、誤差信号が発散していることがわかる。つまり、振動騒音が適切に低減されていないと言える。
 図3に示した結果より、比較例に係る能動型振動騒音制御装置によれば、周波数帯域によってはフィルタ係数Fが不安定になる場合があり、この場合には、誤差信号が発散することで能動型振動騒音制御装置が異質な動作を起こす可能性があることが判明した。本実施例では、このような比較例による不具合を解消すべく、振動騒音の周波数帯域によらずに、疑似評価点31において振動騒音が安定して低減されるように処理を行う。
 次に、図4を参照して、本実施例に係る能動型振動騒音制御装置50が行う処理の基本概念について説明する。
 図4において、振動騒音の位相差(以下、適宜「第1位相差」と表記する。)は、振動騒音源40から評価点30までの振動騒音の位相特性と、振動騒音源40から疑似評価点31までの振動騒音の位相特性との差に相当する。また、制御音の位相差(以下、適宜「第2位相差」と表記する。)は、スピーカ10から評価点30までの制御音の位相特性と、スピーカ10から疑似評価点31までの制御音の位相特性との差に相当する。このような評価点30と疑似評価点31との間における第1位相差と第2位相差とが一致する場合には、評価点30における振動騒音を低減させれば、疑似評価点31においても同時に振動騒音が低減されるものと考えられる。即ち、振動騒音の位相特性にスピーカ10の制御音の位相特性を近似させることで、振動騒音を安定して低減することができるものと考えられる。
 したがって、本実施例に係る能動型振動騒音制御装置50は、評価点30と疑似評価点31との間における第1位相差及び第2位相差に着目して処理を行う。具体的には、本実施例に係る能動型振動騒音制御装置50は、第1位相差と、複数のスピーカ10についての第2位相差との関係に基づいて、複数のスピーカ10の中からスピーカ10を選択し、選択したスピーカ10のみから制御音を出力させる。つまり、能動型振動騒音制御装置50は、振動騒音における第1位相差を近似するような第2位相差を生じさせるべく、複数のスピーカ10の中から制御音を出力させるスピーカ10を選択することにより、スピーカ10の配置状態を決定する。言い換えると、能動型振動騒音制御装置50は、スピーカ10の配置状態を変えることにより第2位相差を操作することで、第2位相差を第1位相差に近似させる。この場合、能動型振動騒音制御装置50は、複数のスピーカ10の中から、1つのスピーカ10又は2以上のスピーカ10を選択する。
 より詳しくは、本実施例に係る能動型振動騒音制御装置50は、複数のスピーカ10の中から、第1位相差との差の絶対値が所定値以下である第2位相差を有するスピーカ10を選択する。この場合において、第1位相差との差の絶対値が所定値以下である第2位相差を有するスピーカ10が複数存在する場合には、能動型振動騒音制御装置50は、第1位相差に最も近い第2位相差を有するスピーカ10を少なくとも選択することができる。
 なお、上記の第1位相差及び複数のスピーカ10の第2位相差は、それぞれ、予め測定や所定の演算式などにより求められて、メモリ等に記憶される。具体的には、第1位相差及び複数のスピーカ10の第2位相差は、それぞれ周波数毎にメモリ等に記憶される。そして、能動型振動騒音制御装置50は、こうして記憶された第1位相差及び第2位相差を用いてスピーカ10の選択を行うことができる。
 なお、上記の「所定値」としては、例えば、能動型振動騒音制御装置50が振動騒音を低減するための処理を行った場合に、疑似評価点31において増音しないような第1位相差と第2位相差との位相差を用いることができる。一例としては、「所定値」として60°を用いることができる。
 次に、図5を参照して、第1位相差と第2位相差との位相差と、疑似評価点31での振動騒音の低減効果との関係の一例を説明する。ここでは、振幅が概ね同一である騒音信号及び制御信号を用いた場合を例に挙げる。
 図5(a)は、横軸に第1位相差と第2位相差との位相差(絶対値)を示し、縦軸に疑似評価点31での誤差信号の振幅を示している。疑似評価点31での誤差信号は、所定の演算式などにより得られる。また、図5(a)の縦軸は、「0」より下に進むと消音することを示しており、「0」より上に進むと増音することを示している。なお、本明細書では、振動騒音が低減することを適宜「消音」と表記し、振動騒音が増大することを適宜「増音」と表記する。
 図5(b)、図5(c)、図5(d)は、それぞれ、第1位相差と第2位相差との位相差(絶対値)が0°、60°、180°である場合の、騒音信号(破線で示す)、制御信号(一点鎖線で示す)、誤差信号(実線で示す)の関係を示している。これらの図より、位相差が0°である場合には誤差信号が概ね「0」になっていることがわかり、位相差が60°である場合には誤差信号が増加も低下もしていないことがわかり、位相差が180°である場合には誤差信号が増加していることがわかる。
 図5より、第1位相差と第2位相差との位相差(絶対値)が小さくなるほど、疑似評価点31での振動騒音が、より低減されると言える。また、第1位相差と第2位相差との位相差(絶対値)が60°以下である場合には、疑似評価点31での振動騒音は、少なくとも増大しないということが言える。このことから、好適な例として、動作させるスピーカ10を選択する場合において、第1位相差と第2位相差との位相差の判定に使用される所定値として60°を用いることができる。
 以上説明した本実施例によれば、振動騒音の周波数帯域によらずに、疑似評価点31において振動騒音を安定して低減することが可能となる。また、能動型振動騒音制御装置50によるスピーカ10の選択は、前述した比較例によるフィルタ係数Fを用いた位相処理などと同等の処理を行っていることに相当するため、本実施例によれば、比較例と比較して、処理の負荷を軽減することが可能となる。
 なお、以上説明したようなスピーカ10の選択は、能動型振動騒音制御装置50内の制御部(図2では図示せず)によって行われる。つまり、当該制御部が、第1位相差と複数のスピーカ10についての第2位相差との関係に基づいて、複数のスピーカ10の中から1以上のスピーカ10を選択し、選択したスピーカ10のみから制御音を出力させる制御を行う。1つの例では、制御部は、選択したスピーカ10をオンにして作動させると共に、選択しなかったスピーカ10をオフにして停止させる制御を行う。この場合、選択しなかったスピーカ10の制御信号を求める処理を行う適応ノッチフィルタ15、参照信号生成部16、及びw更新部17を動作させ続けても良いし、停止させても良い。このような能動型振動騒音制御装置50内の制御部は、制御手段の一例に相当する。
 [第1実施例]
 次に、第1実施例について説明する。第1実施例では、図6に示すように配置された、4つのスピーカ10FL、10FR、10RL、10R及びマイク11を有する能動型振動騒音制御装置50を考える。第1実施例に係る能動型振動騒音制御装置50も、基本的には、図2に示したような基本構成を有しており、評価点30での振動騒音を低減するための処理を行うものとする。当該能動型振動騒音制御装置50は、例えば車室内に設置される。
 以下では、スピーカ10FLにおける第2位相差を「P_FL」と表記し、スピーカ10FRにおける第2位相差を「P_FR」と表記し、スピーカ10RLにおける第2位相差を「P_RL」と表記し、スピーカ10RRにおける第2位相差を「P_RR」と表記する。また、第1位相差を「P_n」と表記する。なお、以下では、スピーカ10FL、10FR、10RL、10Rを区別しないで用いる場合には単に「スピーカ10」と表記する。
 第1実施例では、図6に示すような疑似評価点31において振動騒音が安定して低減されるように、4つのスピーカ10の中から2つのスピーカ10を選択する、つまりスピーカ対を選択する。具体的には、第1実施例に係る能動型振動騒音制御装置50は、図5に示したような結果を考慮して、4つのスピーカ10の中から、第1位相差との差の絶対値が60°以下である第2位相差を有するスピーカ10を2つ選択し、選択された2つのスピーカ10のみから制御音を出力させる。この場合において、第1位相差との差の絶対値が60°以下である第2位相差を有するスピーカ10が3以上存在する場合には、能動型振動騒音制御装置50は、第1位相差との差の絶対値が小さい第2位相差を有するスピーカ10を優先的に選択する。具体的には、3以上のスピーカ10の中から、第1位相差との差の絶対値が最も小さい第2位相差を有するスピーカ10と、第1位相差との差の絶対値がその次に小さい第2位相差を有するスピーカ10とを選択することができる。
 次に、図7を参照して、第1実施例に係るスピーカ10の選択方法の一例について説明する。ここでは、図7(a)に示すように、振動騒音の第1位相差P_nが「-40°」であり、スピーカ10FLの第2位相差P_FLが「0°」であり、スピーカ10FRの第2位相差P_FRが「-50°」であり、スピーカ10RLの第2位相差P_RLが「30°」であり、スピーカ10RRの第2位相差P_RRが「25°」である場合を例に挙げる。
 この例では、第1位相差P_nとの差の絶対値が60°以下である第2位相差を有するスピーカ10は、スピーカ10FL及びスピーカ10FRである。そのため、図7(b)中の破線領域に示すように、制御音を出力させるスピーカ対として、スピーカ10FL及びスピーカ10FRが選択される。
 次に、図8を参照して、上記のように選択されたスピーカ10FL及びスピーカ10FRを使用した場合の結果と、選択されなかったスピーカ10RL及びスピーカ10RRを使用した場合の結果とを比較する。ここでは、75[Hz]の正弦波を騒音信号として用いた場合の結果を示す。
 図8(a)は、図6と同様の図を示している。図8(b)及び図8(c)は、それぞれ、第1実施例に係る能動型振動騒音制御装置50を用いた場合の疑似評価点31での振動騒音の低減効果の一例を示している。具体的には、図8(b)は、スピーカ10RL及びスピーカ10RRのみから制御音を出力させた場合(図8(a)中の破線領域R21参照)の結果の一例を示しており、図8(c)は、スピーカ10FL及びスピーカ10FRのみから制御音を出力させた場合(図8(a)中の破線領域R22参照)の結果の一例を示している。また、図8(b)及び図8(c)は、それぞれ、上から順に、騒音信号、制御信号、誤差信号の時間変化を示している。
 図8(b)より、スピーカ10RL及びスピーカ10RRから制御音を出力させた場合には、誤差信号が増大していることがわかる。つまり、増音していると言える。これに対して、図8(c)より、スピーカ10FL及びスピーカ10FRから制御音を出力させた場合には、誤差信号が低減していることがわかる。つまり、適切に消音されていると言える。このような結果より、上記したような方法により選択されたスピーカ10から制御音を出力させることで、疑似評価点31において振動騒音を安定して低減できることがわかる。
 [第2実施例]
 次に、第2実施例について説明する。第2実施例では、上記のように選択された複数のスピーカ10のそれぞれで用いられる制御信号の振幅を制御する。具体的には、第2実施例では、選択された複数のスピーカ10の制御音を合成した制御音(以下、適宜「合成制御音」と呼ぶ。)に関する第2位相差が振動騒音の第1位相差に近付くように、つまり合成制御音の第2位相差が第1位相差を近似するように、複数のスピーカ10における制御信号の振幅バランスを変更する。なお、合成制御音の第2位相差とは、複数のスピーカ10から制御音を同時出力させた場合の、評価点30までの合成制御音の位相特性と疑似評価点31までの合成制御音の制御音の位相特性との差に相当する。
 1つの例では、フィルタ係数を更新する際に重み付け処理を行うことにより、複数のスピーカ10のそれぞれで用いられる制御信号の振幅を制御することができる。具体的には、複数のスピーカ10のそれぞれで用いられる、適応ノッチフィルタのフィルタ係数を更新する際に用いられるステップサイズパラメータμに対して重み付けを行う。この場合、ステップサイズパラメータμを重み付けするための係数(以下、「重み係数s」と呼ぶ。)を用い、当該重み係数sを種々の値に設定してステップサイズパラメータμの値を変更することによって、複数のスピーカ10のそれぞれにおける制御信号の振幅を制御することができる。
 但し、このステップサイズパラメータμに重み付けを行うことで振幅を制御するためには、好適には、フィルタ係数がリーキーLMSアルゴリズムに基づいて更新されることが望ましい。具体的には、w更新部17a、17bにリーク係数(Wの成長を抑制するための係数λ)が含まれていることが望ましい。
 なお、能動型振動騒音制御装置を安定して動作させるために、重み係数sは1以下の値を用いることが望ましい。
 次に、図9を参照して、第2実施例に係る能動型振動騒音制御装置の一例について説明する。
 図9は、第2実施例に係る能動型振動騒音制御装置51の概略構成を示すブロック図である。図9では、第2実施例に係る能動型振動騒音制御装置51が有する構成要素の一部のみを図示している。図9に図示されていない構成要素は、上記した能動型振動騒音制御装置50(図2参照)が有する構成要素と同様であるものとする。なお、以下の説明では、能動型振動騒音制御装置50の構成要素や信号などと同一のものについては、同一の符号を付し、その説明を省略する。また、特に説明しない構成要素や信号などについては、同様であるものとする。
 第2実施例に係る能動型振動騒音制御装置51は、上記した能動型振動騒音制御装置50と異なり、重み係数変更部19a、19bを有する。なお、図9では、説明の便宜上、2つのスピーカ10a、10bのみを図示しているが、実際には、能動型振動騒音制御装置51は3以上のスピーカ10を具備するものとする。
 重み係数変更部19a、19bは、それぞれ、w更新部17a、17bで用いられるステップサイズパラメータμを重み付けするための重み係数s、sを設定する。具体的には、重み係数変更部19a、19bは、スピーカ10a、10bの制御音を合成した合成制御音の第2位相差が振動騒音の第1位相差に近似するように、制御信号y、yの振幅を制御するべく、重み係数s、sを設定する。この場合、重み係数変更部19a、19bは、スピーカ10a、10bのそれぞれの第2位相差と第1位相差との差に応じて、重み係数s、sを設定する。詳しくは、スピーカ10aの第2位相差と第1位相差との差と、スピーカ10bの第2位相差と第1位相差との差と、の比に応じて、重み係数s、sを設定する。この場合には、第1位相差に近い第2位相差を有するスピーカ10で用いられる重み係数sが、もう一方のスピーカ10で用いられる重み係数sよりも大きな値に設定される。このように、重み係数変更部19a、19bは振幅制御手段の一例に相当する。
 なお、能動型振動騒音制御装置51の動作中に重み係数変更部19a、19bが重み係数s、sを求めることに限定はされない。重み係数変更部19a、19bは、予め測定や所定の演算式などに求められた重み係数s、sを用いることができる。
 w更新部17a、17bは、それぞれ、重み係数変更部19a、19bで設定された重み係数s、sによって重み付けられたステップサイズパラメータ(以下、「μ’」及び「μ’」と表記する。)に基づいて、フィルタ係数の更新を行う。この場合、ステップサイズパラメータμ’は「μ’=μ×s」で表され、ステップサイズパラメータμ’は「μ’=μ×s」で表される。w更新部17a、17bは、それぞれ、前述した式(5)~(8)中のステップサイズパラメータμ、μに、このようなステップサイズパラメータμ’、μ’を代入することで、フィルタ係数w01、w11、w02、w12を求める。そして、適応ノッチフィルタ15a、15bは、それぞれ、w更新部17a、17bで更新されたフィルタ係数w01、w11、w02、w12に基づいて、スピーカ10a、10bの各々で用いられる制御信号y、yを生成する。
 また、このような重み付けを行い、さらにリーキーLMSアルゴリズムに基づいてフィルタ係数を更新する場合は、例えば、更新後のフィルタ係数w01(n+1)を求める前述の式(5)は、式(9)のように変形される。
  w01(n+1)
  =(1-λ01)・w01(n)-μ’・e(n)・r01(n)  式(9)
 式(9)に示すような式の変形は、w11(n+1)、w02(n+1)、w12(n+1)をそれぞれ求めるための式(6)~(8)についても同様に適用される。
 次に、図10を参照して、上記のような重み付けを行った場合の疑似評価点31での振動騒音の低減効果と、上記のような重み付けを行わなかった場合の疑似評価点31での振動騒音の低減効果とを比較する。ここでは、図6に示すように配置された4つのスピーカ10FL、10FR、10RL、10R及びマイク11を有する共に、図6に示すような疑似評価点31での振動騒音の低減を図った能動型振動騒音制御装置51について考える。また、第1位相差及び第2位相差が図7(a)に示したような値を有しており、制御音を出力させるスピーカ対として、スピーカ10FL及びスピーカ10FRが選択された場合を考える。
 ここで、スピーカ10FLにおいて重み係数sが用いられるものとし、スピーカ10FRにおいて重み係数sが用いられるものとする。この場合、スピーカ10FLの第2位相差P_FL(=0°)と第1位相差P_n(=-40°)との差の絶対値は40°であり、スピーカ10FRの第2位相差P_FR(=-50°)と第1位相差P_n(=-40°)との差の絶対値は10°であるため、これらの差の絶対値の比は「40:10」となる。そのため、当該比の逆比である「10:40」に相当する「0.25:1」が、それぞれ重み係数s、sとして設定される。つまり「s:s=0.25:1」となる。このような重み係数s、sを用いた場合には、選択された2つのスピーカ10FL、10FRの合成制御音についての第2位相差は「-40°」となる。つまり、合成制御音の第2位相差が第1位相差P_nに一致することとなる。なお、このような重み付けを行わない場合(重み係数s、sをそれぞれ1に設定する場合に相当する)には、スピーカ10FL、10FRの合成制御音についての第2位相差は「-25°」となる。
 図10(a)及び図10(b)は、それぞれ、上記のようにフィルタ係数を更新する際に重み付けを行った場合及び当該重み付けを行わなかった場合についての、疑似評価点31での振動騒音の低減効果の一例を示している。具体的には、図10(a)及び図10(b)は、それぞれ、上から順に、騒音信号、制御信号、誤差信号の時間変化を示している。ここでは、75[Hz]の正弦波を騒音信号として用いた場合の結果を示す。なお、図10(a)は、図8(c)と同様の結果を示している。
 図10(a)と図10(b)とを比較すると、重み付けを行った場合には、重み付けを行わなかった場合と比較して、誤差信号が小さくなっていることがわかる。つまり、振動騒音が、より低減されていると言える。具体的には、重み付けを行わなかった場合の消音効果は「-10[dB]」であり、重み付けを行った場合の消音効果は「-16[dB]」である。このような結果より、第2実施例によれば、より効果的に、疑似評価点31での振動騒音を低減できることがわかる。
 次に、図11を参照して、前述した比較例による結果と第2実施例による結果とを比較する。
 図11(a)及び図11(b)は、それぞれ、比較例及び第2実施例による疑似評価点31での振動騒音の低減効果の一例を示している。具体的には、図11(a)及び図11(b)は、それぞれ、上から順に、騒音信号、制御信号、誤差信号の時間変化を示している。ここでは、61[Hz]の正弦波を騒音信号として用いた場合の結果を示す。当該周波数は、比較例においてフィルタ係数Fが不安定となった周波数に相当する(図3参照)。また、第2実施例による結果としては、上記したような方法により2つのスピーカ10を選択し、選択した2つのスピーカ10の制御信号の振幅を重み係数s、sによって制御した場合の結果を示す。具体的には、重み係数s、sとして「s:s=1:0.1」を用いた場合を例に挙げる。
 図11(a)と図11(b)とを比較すると、第2実施例によれば、比較例と比較して、疑似評価点31での振動騒音が安定して低減されていることがわかる。
 なお、上記では、ステップサイズパラメータμを重み付けするための重み係数sを、第1位相差と各スピーカ10の第2位相差との差に応じて設定する例を示した。他の例では、予め測定や所定の演算式などにより重み係数sを求めてメモリ等に記憶しておき、記憶された重み係数sを用いることができる。例えば、制御すべき周波数における第1位相差に基づいて選ばれる2つのスピーカに対して、予め適切なゲインになるような重み係数sをそれぞれ記憶させておくことができる。
 なお、上記では、複数のスピーカ10のそれぞれで用いられる制御信号の振幅を制御する方法として、フィルタ係数を更新する際に重み付けを行う例を示したが、制御信号の振幅を制御する方法は当該例に限定されない。他の例では、複数のスピーカ10の各々の出力ゲインに対して重み付けを行うことで、複数のスピーカ10の制御信号の振幅を制御することができる。言い換えると、複数のスピーカ10で用いられる制御信号に対して直接重み付けを行うことができる。この例でも、上記した重み係数sと同様の重み係数を用いることができる。
 [変形例]
 以下で、上記した実施例の変形例について説明する。
 上記した第1実施例及び第2実施例では2つのスピーカを選択する例を示したが、3以上のスピーカを選択しても良い。3以上のスピーカを選択する場合にも、2つのスピーカを選択する場合に用いた方法と同様の方法を用いることができる。また、3以上のスピーカを選択する場合にも、第2実施例で示した方法と同様の方法により、選択された3以上のスピーカ10のそれぞれで用いられる制御信号の振幅を制御することができる。
 また、上記した実施例では、複数のスピーカの中から、第1位相差との差の絶対値が所定値以下である第2位相差を有するスピーカを選択することを述べた。この場合、複数のスピーカの中から2以上のスピーカを選択する場合において、当該2以上のスピーカの全てが、第1位相差と第2位相差との差の絶対値が所定値以下であるといった条件(以下、適宜「第1条件」と呼ぶ。)を満たさなくても良い。つまり、当該2以上のスピーカにおいて、少なくとも1つのスピーカが第1条件を満たせば、その他のスピーカが第1条件を満たさなくても良い。少なくとも1つのスピーカが第1条件を満たせば、疑似評価点31において、少なくとも増音が生じない可能性が高いからである。
 また、第1条件を用いてスピーカを選択することに限定はされない。他の例では、複数のスピーカの中から2つのスピーカを選択する場合において、第1条件の代わりに、第1位相差よりも大きい第2位相差を有するスピーカと、第1位相差よりも小さい第2位相差を有するスピーカとを選択するといった条件(以下、適宜「第2条件」と呼ぶ。)を用いることができる。つまり、他の例では、複数のスピーカの中の2つのスピーカにおいて、当該2つのスピーカのそれぞれの第2位相差の間に第1位相差が存在するようなスピーカ対を選択することができる。こうするのは、第2条件を満たすスピーカ対を選択した場合には、当該スピーカ対の合成制御音についての第2位相差と第1位相差との差の絶対値が、第1条件で用いられる所定値(60°)以下となる可能性が高いからである。即ち、疑似評価点31において少なくとも増音が生じない可能性が高いからである。例えば、第2条件を用いるスピーカの選択は、第1条件を満たすスピーカが存在しない場合に行うことができる。なお、第2条件を用いてスピーカを選択する場合において、第2条件を満たすスピーカ対が複数存在する場合には、第1位相差との差の絶対値が小さい第2位相差を有するスピーカ対を優先的に選択することができる。
 また、上記のように、第1条件の代わりに第2条件を用いてスピーカを選択することに限定はされず、第1条件及び第2条件の両方を用いてスピーカを選択しても良い。つまり、複数のスピーカの中から、第1条件及び第2条件の両方を満たすようなスピーカ対を選択することができる。例えば、第1条件を満たすスピーカが複数存在する場合に、当該スピーカを組み合わせたスピーカ対の中で第2条件を満たすようなスピーカ対を選択することができる。
 また、複数のスピーカの中から2以上のスピーカを選択することに限定はされず、複数のスピーカの中から1つのスピーカのみを選択しても良い。この場合、第1条件を用いて、複数のスピーカの中から1つのスピーカを選択することができる。第1条件を満たすスピーカが複数存在する場合には、第1位相差との差の絶対値が最も小さい第2位相差を有するスピーカを選択することができる。
 また、上記では、第1条件で使用される所定値として60°を用いる実施例を示したが、当該所定値として60°を用いることに限定はされない。上記した実施例では、疑似評価点31において少なくとも増音を生じさせないといった観点から所定値として60°を用いていたが、例えば疑似評価点31で振動騒音を低減させるレベルなどに応じて、所定値を種々の値に設定することができる。
 更に、振動騒音の全ての周波数帯域において同一のスピーカを選択することに限定はされず、他の例では、振動騒音の周波数帯域に応じて、選択するスピーカを変更することができる。こうするのは、振動騒音の周波数帯域によって、第1位相差や複数のスピーカの各々における第2位相差が変化する傾向にあるからである。例えば、周波数帯域ごとに位相差を対応付けたテーブルや、周波数帯域ごとに選択すべきスピーカを対応付けたテーブルなどを用意しておき、このようなテーブルを用いて、選択するスピーカを周波数帯域に応じて変更することができる。
 本発明は、2つ又は4つのスピーカを具備して構成された能動型振動騒音制御装置への適用に限定されない。また、本発明は、1つのマイクのみを具備して構成された能動型振動騒音制御装置50への適用に限定されない。本発明は、3つのスピーカや、5以上のスピーカや、2以上のマイクなどを具備して構成された能動型振動騒音制御装置にも適用することができる。
 上記では本発明を車両に適用する例を示したが、本発明の適用はこれに限定されない。本発明は、車両の他に、船や、ヘリコプターや、飛行機などの種々の移動体に適用することができる。
 本発明は、エンジン等の振動騒音源を有する移動体の室内等の閉空間に適用され、振動騒音を能動的に制御するために利用することができる。
 10a、10b スピーカ
 11 マイク
 13 周波数検出部
 14a 余弦波発生部
 14b 正弦波発生部
 15a、15b 適応ノッチフィルタ
 16a、16b 参照信号生成部
 17a、17b w更新部
 19a、19b 重み係数変更部
 20 コントローラ
 30 評価点
 31 擬似評価点
 50、51 能動型振動騒音制御装置

Claims (7)

  1.  複数のスピーカから制御音を出力させることで振動騒音を打ち消す能動型振動騒音制御装置であって、
     振動騒音源から発生された振動騒音周波数に基づいて、基準信号を生成する基準信号生成手段と、
     前記振動騒音源からの発生振動騒音が相殺されるように前記複数のスピーカから前記制御音を発生させるべく、前記基準信号に対してフィルタ係数を用いることで、前記複数のスピーカの各々に対して出力する制御信号を生成する適応ノッチフィルタと、
     前記振動騒音と前記制御音との相殺誤差を検出して、誤差信号として出力するマイクと、
     前記複数のスピーカから前記マイクまでの伝達関数に基づいて、前記基準信号から参照信号を生成する参照信号生成手段と、
     前記誤差信号及び前記参照信号に基づいて、前記誤差信号が最小となるように、前記適応ノッチフィルタで用いられる前記フィルタ係数を更新するフィルタ係数更新手段と、
     前記複数のスピーカの中から1以上のスピーカを選択し、選択したスピーカのみから前記制御音を出力させる制御手段と、を備え、
     前記制御手段は、(1)前記振動騒音源から前記マイクの設置位置に対応する評価点までの前記振動騒音の位相特性と、前記振動騒音源から前記マイクの設置位置とは異なる位置に対応する疑似評価点までの前記振動騒音の位相特性との差に相当する第1位相差と、(2)前記複数のスピーカの各々についての、前記スピーカから前記評価点までの前記制御音の位相特性と前記スピーカから前記疑似評価点までの前記制御音の位相特性との差に相当する第2位相差と、の関係に基づいて、前記複数のスピーカの中からスピーカを選択することを特徴とする能動型振動騒音制御装置。
  2.  前記制御手段は、前記複数のスピーカの中から、前記第1位相差との差の絶対値が所定値以下である前記第2位相差を有するスピーカを少なくとも1つ選択することを特徴とする請求項1に記載の能動型振動騒音制御装置。
  3.  前記制御手段は、前記複数のスピーカの中から、前記第1位相差よりも大きい前記第2位相差を有するスピーカと、前記第1位相差よりも小さい前記第2位相差を有するスピーカとを選択することを特徴とする請求項1又は2に記載の能動型振動騒音制御装置。
  4.  前記制御手段は、前記複数のスピーカの中から、前記第1位相差に最も近い前記第2位相差を有するスピーカを少なくとも1つ選択することを特徴とする請求項2又は3に記載の能動型振動騒音制御装置。
  5.  前記制御手段は、前記振動騒音の周波数帯域に応じて、選択するスピーカを変更することを特徴とする請求項1乃至4のいずれか一項に記載の能動型振動騒音制御装置。
  6.  前記第1位相差、及び前記制御手段によって選択されたスピーカの前記第2位相差に基づいて、前記制御手段によって選択されたスピーカの前記制御信号の振幅を制御する振幅制御手段を更に備えることを特徴とする請求項1乃至5のいずれか一項に記載の能動型振動騒音制御装置。
  7.  前記振幅制御手段は、前記制御手段によって選択された複数のスピーカの前記制御音を合成した制御音についての前記第2位相差が、前記第1位相差に近付くように、当該複数のスピーカの各々について前記制御信号の振幅を制御することを特徴とする請求項6に記載の能動型振動騒音制御装置。
PCT/JP2010/052141 2010-02-15 2010-02-15 能動型振動騒音制御装置 WO2011099152A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/052141 WO2011099152A1 (ja) 2010-02-15 2010-02-15 能動型振動騒音制御装置
US13/578,727 US9123325B2 (en) 2010-02-15 2010-02-15 Active vibration noise control device
JP2011553697A JP5318231B2 (ja) 2010-02-15 2010-02-15 能動型振動騒音制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/052141 WO2011099152A1 (ja) 2010-02-15 2010-02-15 能動型振動騒音制御装置

Publications (1)

Publication Number Publication Date
WO2011099152A1 true WO2011099152A1 (ja) 2011-08-18

Family

ID=44367452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052141 WO2011099152A1 (ja) 2010-02-15 2010-02-15 能動型振動騒音制御装置

Country Status (3)

Country Link
US (1) US9123325B2 (ja)
JP (1) JP5318231B2 (ja)
WO (1) WO2011099152A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119300A (ja) * 2011-12-07 2013-06-17 Honda Motor Co Ltd 能動型振動騒音制御装置
CN106814609A (zh) * 2017-01-06 2017-06-09 西安交通大学 一种频谱塑形主动控制方法及主动控制系统

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9142207B2 (en) 2010-12-03 2015-09-22 Cirrus Logic, Inc. Oversight control of an adaptive noise canceler in a personal audio device
US8908877B2 (en) 2010-12-03 2014-12-09 Cirrus Logic, Inc. Ear-coupling detection and adjustment of adaptive response in noise-canceling in personal audio devices
CN102918585B (zh) * 2011-04-06 2015-07-22 松下电器产业株式会社 有源噪声控制装置
US9824677B2 (en) 2011-06-03 2017-11-21 Cirrus Logic, Inc. Bandlimiting anti-noise in personal audio devices having adaptive noise cancellation (ANC)
US8958571B2 (en) 2011-06-03 2015-02-17 Cirrus Logic, Inc. MIC covering detection in personal audio devices
US9318094B2 (en) 2011-06-03 2016-04-19 Cirrus Logic, Inc. Adaptive noise canceling architecture for a personal audio device
US8948407B2 (en) 2011-06-03 2015-02-03 Cirrus Logic, Inc. Bandlimiting anti-noise in personal audio devices having adaptive noise cancellation (ANC)
US9325821B1 (en) 2011-09-30 2016-04-26 Cirrus Logic, Inc. Sidetone management in an adaptive noise canceling (ANC) system including secondary path modeling
US9319781B2 (en) 2012-05-10 2016-04-19 Cirrus Logic, Inc. Frequency and direction-dependent ambient sound handling in personal audio devices having adaptive noise cancellation (ANC)
US9123321B2 (en) 2012-05-10 2015-09-01 Cirrus Logic, Inc. Sequenced adaptation of anti-noise generator response and secondary path response in an adaptive noise canceling system
US9318090B2 (en) 2012-05-10 2016-04-19 Cirrus Logic, Inc. Downlink tone detection and adaptation of a secondary path response model in an adaptive noise canceling system
US9532139B1 (en) 2012-09-14 2016-12-27 Cirrus Logic, Inc. Dual-microphone frequency amplitude response self-calibration
US9245519B2 (en) * 2013-02-15 2016-01-26 Bose Corporation Forward speaker noise cancellation in a vehicle
US9369798B1 (en) 2013-03-12 2016-06-14 Cirrus Logic, Inc. Internal dynamic range control in an adaptive noise cancellation (ANC) system
US9414150B2 (en) 2013-03-14 2016-08-09 Cirrus Logic, Inc. Low-latency multi-driver adaptive noise canceling (ANC) system for a personal audio device
US9324311B1 (en) 2013-03-15 2016-04-26 Cirrus Logic, Inc. Robust adaptive noise canceling (ANC) in a personal audio device
US9578432B1 (en) 2013-04-24 2017-02-21 Cirrus Logic, Inc. Metric and tool to evaluate secondary path design in adaptive noise cancellation systems
US20140363009A1 (en) * 2013-05-08 2014-12-11 Max Sound Corporation Active noise cancellation method for motorcycles
US9666176B2 (en) 2013-09-13 2017-05-30 Cirrus Logic, Inc. Systems and methods for adaptive noise cancellation by adaptively shaping internal white noise to train a secondary path
US9369557B2 (en) 2014-03-05 2016-06-14 Cirrus Logic, Inc. Frequency-dependent sidetone calibration
US9319784B2 (en) * 2014-04-14 2016-04-19 Cirrus Logic, Inc. Frequency-shaped noise-based adaptation of secondary path adaptive response in noise-canceling personal audio devices
KR102298430B1 (ko) * 2014-12-05 2021-09-06 삼성전자주식회사 전자 장치 및 그 제어 방법, 그리고 오디오 출력 시스템
WO2017029550A1 (en) 2015-08-20 2017-02-23 Cirrus Logic International Semiconductor Ltd Feedback adaptive noise cancellation (anc) controller and method having a feedback response partially provided by a fixed-response filter
JP6671036B2 (ja) 2016-07-05 2020-03-25 パナソニックIpマネジメント株式会社 騒音低減装置、移動体装置、及び、騒音低減方法
US10755690B2 (en) * 2018-06-11 2020-08-25 Qualcomm Incorporated Directional noise cancelling headset with multiple feedforward microphones
EP4158910B1 (en) * 2020-05-27 2024-07-24 Dolby Laboratories Licensing Corporation Transient multi-tone test signal and method for audio speakers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339191A (ja) * 1995-06-09 1996-12-24 Honda Motor Co Ltd 振動騒音制御装置
JP2005084500A (ja) * 2003-09-10 2005-03-31 Matsushita Electric Ind Co Ltd 能動型振動騒音制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5267320A (en) * 1991-03-12 1993-11-30 Ricoh Company, Ltd. Noise controller which noise-controls movable point
JPH06332477A (ja) 1993-05-25 1994-12-02 Matsushita Electric Ind Co Ltd 消音装置
US20030016833A1 (en) * 2001-07-19 2003-01-23 Siemens Vdo Automotive, Inc. Active noise cancellation system utilizing a signal delay to accommodate noise phase change
US8077873B2 (en) * 2009-05-14 2011-12-13 Harman International Industries, Incorporated System for active noise control with adaptive speaker selection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339191A (ja) * 1995-06-09 1996-12-24 Honda Motor Co Ltd 振動騒音制御装置
JP2005084500A (ja) * 2003-09-10 2005-03-31 Matsushita Electric Ind Co Ltd 能動型振動騒音制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119300A (ja) * 2011-12-07 2013-06-17 Honda Motor Co Ltd 能動型振動騒音制御装置
CN106814609A (zh) * 2017-01-06 2017-06-09 西安交通大学 一种频谱塑形主动控制方法及主动控制系统

Also Published As

Publication number Publication date
JPWO2011099152A1 (ja) 2013-06-13
JP5318231B2 (ja) 2013-10-16
US9123325B2 (en) 2015-09-01
US20120300955A1 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5318231B2 (ja) 能動型振動騒音制御装置
JP4513810B2 (ja) 能動騒音低減装置
JP4074612B2 (ja) 能動型振動騒音制御装置
US8848937B2 (en) Active noise control apparatus
JP5312604B2 (ja) 能動型振動騒音制御装置
JP4289394B2 (ja) 能動騒音低減装置
JP5189679B2 (ja) 能動型振動騒音制御装置
JP5335985B2 (ja) 能動型振動騒音制御装置
JP4881913B2 (ja) 能動型騒音制御装置
US9640165B2 (en) Active vibration noise control apparatus
EP2884488A1 (en) Active noise control system
JP4322916B2 (ja) 能動型振動騒音制御装置
JP6594996B2 (ja) 車両エンジン倍音制御
KR102408323B1 (ko) 엔진 소음 상쇄를 위한 가상 위치 노이즈 신호 추정
WO2018047790A1 (ja) 能動騒音低減装置、移動体装置、及び、能動騒音低減方法
JP5503023B2 (ja) 能動型振動騒音制御装置、能動型振動騒音制御方法及び能動型振動騒音制御プログラム
JP5214340B2 (ja) 車両用能動型振動騒音制御システム
JP7304576B2 (ja) 騒音低減装置、移動体装置、及び、騒音低減方法
JP2021113860A (ja) 騒音制御システム
WO2023188794A1 (ja) 能動騒音低減装置、及び、移動体装置
JP2000172281A (ja) 車室内音制御装置
US20230290328A1 (en) Active noise reduction system
JPH07210178A (ja) 能動型騒音制御装置
JP2018163223A (ja) ノイズキャンセル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845746

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011553697

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13578727

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845746

Country of ref document: EP

Kind code of ref document: A1