WO2011001509A1 - 誤接続検出装置 - Google Patents

誤接続検出装置 Download PDF

Info

Publication number
WO2011001509A1
WO2011001509A1 PCT/JP2009/061950 JP2009061950W WO2011001509A1 WO 2011001509 A1 WO2011001509 A1 WO 2011001509A1 JP 2009061950 W JP2009061950 W JP 2009061950W WO 2011001509 A1 WO2011001509 A1 WO 2011001509A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage
circuit
rectifier circuit
wire
Prior art date
Application number
PCT/JP2009/061950
Other languages
English (en)
French (fr)
Inventor
博文 堀野
壮寛 小林
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to BRPI0924634A priority Critical patent/BRPI0924634B1/pt
Priority to RU2012102902/07A priority patent/RU2497257C2/ru
Priority to CN200980159458.9A priority patent/CN102428619B/zh
Priority to KR1020117026351A priority patent/KR101554060B1/ko
Priority to EP09846802.8A priority patent/EP2451039B1/en
Priority to PCT/JP2009/061950 priority patent/WO2011001509A1/ja
Priority to JP2011520701A priority patent/JP5520949B2/ja
Publication of WO2011001509A1 publication Critical patent/WO2011001509A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • H02H11/004Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of incorrect phase sequence; with switching for obtaining correct phase sequence
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage

Definitions

  • This invention relates to an erroneous connection detection device for detecting an erroneous connection of a device connected to a three-phase four-wire AC power supply generally used outside of Japan.
  • phase lines L1, L2, L3 and one neutral line N It has three phase lines L1, L2, L3 and one neutral line N, and outputs, for example, 400V AC as the interphase voltage of each of the phase lines L1, L2, L3, and is neutral with the phase lines L1, L2, L3.
  • the power terminal of an electric device such as an air conditioner is connected to the phase lines L1, L2, L3 and the neutral line N of the three-phase four-wire AC power source.
  • the air conditioner to be connected has a 400V system load such as an inverter or a compressor motor that consumes a large amount of power and operates with each phase voltage 400V of the phase lines L1, L2, L3, and any of the phase lines L1, L2, L3.
  • a 230V system load such as a fan motor or a control circuit which is connected between the neutral line n and is operated by the line voltage 230V (for example, Patent Document 1).
  • ⁇ Incorrect connection may occur when wiring between each phase line and power supply terminal.
  • this incorrect connection there is a method of putting a color for identification on each phase line and power supply terminal, but even if the color is worn, the incorrect connection due to human error is completely eliminated. It cannot be prevented.
  • the number of lines is larger than that of a three-phase three-wire type or a single-phase two-wire type AC power source, and erroneous connection is likely to occur.
  • the present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide an erroneous connection detection device excellent in safety capable of automatically detecting an erroneous connection to a three-phase four-wire AC power supply.
  • the erroneous connection detection device is a rectifier circuit connected to each phase line of the three-phase four-wire AC power supply in a device having a load that operates according to the voltage of each phase line of the three-phase four-wire AC power supply. And determination means for determining a connection error to the three-phase four-wire AC power source based on the rectified output of the rectifier circuit.
  • the erroneous connection detection device of the present invention can automatically detect an erroneous connection to a three-phase four-wire AC power source, thereby ensuring safety.
  • FIG. 1 is a block diagram showing the configuration of the first embodiment.
  • FIG. 2 is a diagram showing a comparison between a waveform at the time of normal connection and a waveform at the time of incorrect connection of the DC voltage output from the rectifier circuit of the first embodiment.
  • FIG. 3 is a diagram showing a comparison between a waveform when the DC voltage output from the rectifier circuit of the first embodiment is normally connected and a waveform when the phase is lost.
  • FIG. 4 is a block diagram illustrating a configuration of the second embodiment.
  • FIG. 5 is a diagram showing a comparison between a waveform at the time of normal connection and a waveform at the time of incorrect connection of the DC voltage output from the rectifier circuit of the second embodiment.
  • FIG. 6 is a diagram showing a comparison between a waveform when the DC voltage output from the rectifier circuit according to the second embodiment is normally connected and a waveform when the phase is lost.
  • FIG. 7 is a block diagram showing the configuration of the third embodiment.
  • FIG. 8 is a block diagram showing the configuration of the fourth embodiment.
  • FIG. 9 is a block diagram showing the configuration of the fifth embodiment.
  • FIG. 10 is a block diagram showing the configuration of the sixth embodiment.
  • reference numeral 1 denotes a three-phase four-wire AC power supply having three phase lines L1, L2, and L3 and one neutral line N, and an AC voltage of 400V as an interphase voltage between the phase lines L1, L2, and L3. And an AC voltage of 230 V is output as the line voltage between the phase lines L1, L2, L3 and the neutral line N.
  • the power supply terminal 3 of an electric device (for example, an air conditioner) A is wired to the phase lines L1, L2, L3 and the neutral line N of the three-phase four-wire AC power supply 1 via the fuses 2, respectively.
  • the power supply terminal 3 has three phase terminals R, S, T to which the phase lines L1, L2, L3 are connected, and one neutral terminal n to which the neutral line N is connected.
  • the three-phase lines in the electric device A will be referred to as phase lines L1 ′, L2 ′, L3 ′, and the neutral lines will be referred to as neutral lines N ′.
  • the 400V system load 100 in the electric device A is connected to the phase terminals R, S, and T of the power supply terminal 3 through the phase lines L1 ′, L2 ′, and L3 ′.
  • 400V system load 100 has an inverter, a compressor motor, etc. which operate by voltage between each phase (three-phase alternating current voltage) 400V.
  • the 230V system load 200 in the electric device A is connected to the phase terminal R and the neutral terminal n of the power supply terminal 3 via the phase line L1 ′ and the neutral line N ′.
  • 230V system load 200 has a fan motor, a control circuit, etc. which operate by one line voltage (single phase AC voltage) 230V. The control circuit controls the operation / stop of the fan motor operating at 230V and the inverter operating at 400V.
  • the voltage detection circuit 10 is connected to the internal phase lines L1 ′, L2 ′, and L3 ′ of the electric device A.
  • the voltage detection circuit 10 includes a full-wave rectifier circuit 11 formed by a bridge connection of nine diodes D connected to the phase lines L1 ′, L2 ′, and L3 ′ via three input resistors r.
  • a series circuit of a resistor 12 and a resistor 13 to which a direct current voltage (DC voltage) output from is applied, a series circuit of a Zener diode 14 and a resistor 15 to which a voltage generated at the resistor 13 is applied, and a voltage generated at the resistor 15 are A light emitting diode 16a to be applied, a series circuit of a resistor 17, a phototransistor 16b and a resistor 18, and an NPN transistor 19 having a base and an emitter connected to both ends of the resistor 18 are provided.
  • the voltage detection circuit 10 applies a DC voltage Vdd of 5 V output from a power supply circuit 30 described later to the series circuit of the resistor 17, the phototransistor 16 b and the resistor 18, and the DC voltage Vdd via the resistor 20.
  • the voltage is applied between the collector and the emitter of the transistor 19, and the collector voltage of the transistor 19 is used as an output.
  • the light emitting diode 16a and the phototransistor 16b constitute a photocoupler 16.
  • the configuration from the resistor 12 to the resistor 20 excluding the full-wave rectifier circuit 11 determines whether the output voltage of the full-wave rectifier circuit 11 is equal to or higher than a predetermined value Vs. Functions as a means.
  • the output voltage of the full-wave rectifier circuit 11 is applied to the timer circuit (second determination means) 31, the Zener diode 32, and the capacitor 33 through the resistor 21, respectively.
  • the output terminal (collector of the transistor 19) of the voltage detection circuit 10 is connected to the reset terminal (Reset) of the timer circuit 31, and the switch 40 described later is connected to the output terminal (Out) of the timer circuit 31.
  • the Zener diode 32 and the capacitor 33 constitute a power supply circuit 30, and one end of each element is connected to the output end of the full-wave rectifier circuit 11, and the other end is connected to the neutral line N ′. For this reason, the terminal voltage of the capacitor 33 is fixed to the Zener voltage of the Zener diode 32.
  • the DC voltage Vdd is formed by the parallel circuit of the capacitor 33 and the Zener diode 32.
  • This DC voltage Vdd serves as an operating power supply for the timer circuit 31. Since the voltage Vdd of the DC power supply uses the Zener voltage of the Zener diode 32 and the output is about 5 V, a rated output is possible even if an incorrect wiring occurs. It should be noted that since a DC voltage of 400 V or more is applied to the capacitor 33 and the Zener diode 32 during incorrect wiring, it is necessary to use an element with a high rated voltage. Similarly, since a DC voltage of 400 V or more is applied to each circuit element in the voltage detection circuit 10 at the time of incorrect wiring, it is necessary to use an element with a high rated voltage.
  • the timer circuit 31 is generally an IC composed of a semiconductor logic circuit, but may be composed of a combination of an IC, a charge / discharge circuit composed of a resistor and a capacitor.
  • the timer circuit 31 repeats the time t every time a reset signal is received from the voltage detection circuit 10, outputs an off signal (zero voltage) until the time t has not reached the predetermined time t1, and the reset signal from the voltage detection circuit 10 When the time t reaches the predetermined time t1 without receiving the signal, an ON signal having a predetermined voltage is output. That is, when the timer circuit 31 receives the reset signal from the voltage detection circuit 10 and receives the next reset signal while the time t does not reach the predetermined time t1, the timer circuit 31 continues to output the off signal (zero voltage).
  • the fixed time t1 is set to a time of about one cycle of the voltage of the three-phase four-wire AC power supply 1.
  • a switch (first switch) 40 is inserted and connected to a neutral line N ′ that is a current path between the neutral terminal n of the power supply terminal 3 and the 230V system load 200.
  • the switch 40 is, for example, a relay contact or a semiconductor switch element, and closes when an on signal is supplied from the timer circuit 31 and opens when an off signal is supplied from the timer circuit 31. Therefore, there is a possibility that a DC voltage of 400V or more is supplied to the 230V system load 200 at the time of incorrect wiring, but since this switch 40 is opened before that, no overvoltage is applied to the 230V system load 200. . Therefore, various devices included in the 230V system load 200 are protected from destruction due to overvoltage.
  • the timer circuit 31 is supplied with the DC voltage Vdd output from the power supply circuit 30 when the output voltage of the full-wave rectifier circuit 11 is generated, starts operation, and outputs an OFF signal for a predetermined time t1.
  • the switch 40 is kept open by this off signal, and no voltage is supplied to the 230V system load 200.
  • the timer circuit 31 When the fixed time t1 has passed without the voltage detection circuit 10 issuing a reset signal, the timer circuit 31 outputs an ON signal under the determination that the connection to the three-phase four-wire AC power supply 1 is not an error.
  • the switch 40 is closed by this ON signal, and the line voltage 230V between the phase terminal R and the neutral terminal n is supplied to the 230V system load 200 via the phase line L1 ′ and the neutral line N ′.
  • the 230V system load 200 operates, and the 400V system load 100 is driven and controlled by the control circuit of the 230V system load 200.
  • phase lines L1, L2, L3 and the neutral line N of the three-phase four-wire AC power source 1 are not correctly wired to the power supply terminal 3 of the electrical device A, for example, the phase line L3 is wired to the neutral terminal n
  • the neutral line N is wired to the phase terminal T
  • a line voltage 230V lower than the phase voltage 400V is generated between the phase terminals S and T and between the phase terminals R and T, respectively.
  • An interphase voltage 400V higher than the line voltage 230V is generated between the terminal R and the neutral terminal n.
  • a line voltage 230V lower than the respective phase voltage 400V is generated, and the phase line L1 ′ and the neutral line N ′ are generated.
  • the interphase voltage 400V higher than the line voltage 230V is generated.
  • 400 V between the phase terminals R and S, 230 V between the phase terminals S and T, and 230 V between the phase terminals R and T are input to the full-wave rectifier circuit 11 of the voltage detection circuit 10, as shown by a broken line in FIG.
  • the full-wave rectifier circuit 11 outputs a DC voltage having a waveform whose level changes with the predetermined value Vs interposed therebetween.
  • the voltage detection circuit 10 issues a reset signal.
  • the timer circuit 31 receives the reset signal from the voltage detection circuit 10 and outputs an off signal, and opens or keeps the switch 40 open.
  • the reset signal is generated once every 180 degrees (1/4 cycle). For this reason, each time the timer circuit 31 receives a reset signal from the voltage detection circuit 10, it starts measuring time t. Since this time t reaches the predetermined time t1 (approximately one cycle), it receives the next reset signal. The output of the off signal is continued. Therefore, the switch 40 remains open, and the excessive interphase voltage 400V between the phase terminal R and the neutral terminal n of the power supply terminal 3 is not supplied to the 230V system load 200. Therefore, destruction of the control circuit of the 230V system load 200 is prevented.
  • the misconnection can be automatically detected and the safety of the 230V system load 200 can be ensured.
  • the power supply of the timer circuit 31 and the voltage detection circuit 10 for controlling on / off of the switch 40 is all supplied by the power supply circuit 30 using the output of the full-wave rectification circuit 11 of the voltage detection circuit 10. Therefore, a separate power source for driving these circuits is not required, and the circuit is simplified.
  • the power supply line L3 ′ in the electric device A connected to the power supply terminal T becomes open, and the phase terminal of the power supply terminal 3
  • the interphase voltage between T and S and between the phase terminals R and T that is, between the power supply lines L3 ′ and L2 ′ and between the power supply lines L3 ′ and L1 ′ in the device A becomes zero.
  • the 400V load 100 cannot be properly operated.
  • a full-wave rectifier circuit 11 outputs a DC voltage having a waveform that greatly changes from the normal level to the zero level across the predetermined value Vs.
  • the voltage detection circuit 10 issues a reset signal.
  • the reset signal is generated once every 180 degrees (1/4 cycle) in the same manner as in the case of erroneous connection. For this reason, each time the timer circuit 31 receives a reset signal of the voltage detection circuit 10, the timer circuit 31 starts the time t. Since the time t reaches the predetermined time t1 (one cycle), the timer circuit 31 receives the next reset signal. Continue to output the off signal. Accordingly, the switch 40 remains open, and the energization to the 230V system load 200 is cut off. Thus, the 230V system load 200 does not operate, and unnecessary drive control for the 400V system load 100 is prevented.
  • phase loss can be automatically detected, and inappropriate operation of the 400V system load 100 and the 230V system load 200 can be prevented.
  • the predetermined value Vs is lower than the lowest voltage output from the full-wave rectifier circuit 11 during normal connection and higher than the lowest voltage output from the full-wave rectifier circuit 11 during incorrect connection.
  • the output of the full-wave rectifier circuit 11 temporarily becomes 0, but by selecting a capacitor having a sufficient capacity for the capacitor 33 constituting the power supply circuit 30, the full-wave rectifier circuit 11 Even if the output temporarily decreases, it is possible to maintain sufficient power for operating each circuit to which the power supply circuit 30 supplies power.
  • the erroneous connection detection device is applied to each phase line of the three-phase four-wire AC power supply in a device having a load that operates by the voltage of each phase line of the three-phase four-wire AC power supply.
  • the erroneous connection detection device includes a first load that operates according to a voltage of each phase line of a three-phase four-wire AC power supply, and one of the phase lines of the three-phase four-wire AC power supply and a neutral In a device having a second load that operates by a voltage between the line and the rectifier circuit connected to each phase line of the three-phase four-wire AC power supply, and whether or not the output voltage of the rectifier circuit is equal to or higher than a predetermined value.
  • a first determination unit that generates a reset signal when the determination result is less than a predetermined value, and operates according to the output voltage of the rectifier circuit, and repeats timing every time the first determination unit issues a reset signal.
  • An off signal is output before a predetermined time is reached, a timer means for outputting an on signal when the time reaches a predetermined time without the first determination means issuing a reset signal, and a neutral line N ′ for the power supply terminal Communication with the second load It is inserted and connected to the road, closed in response to the OFF signal of the timer means, at the time of erroneous connection by providing a switch for opening in response to the ON signal can prevent destruction of the second load.
  • the voltage detection circuit 50 is connected to the phase lines L1 ′, L2 ′, L3 ′ in the electric device A.
  • the voltage detection circuit 50 includes a half-wave rectifier circuit 51 including a bridge connection of three input resistors r and three diodes D, and a resistor to which a DC voltage (DC voltage) output from the half-wave rectifier circuit 51 is applied.
  • a comparison circuit 56 for comparing the voltage is provided, and the comparison of the comparison circuit 56 determines whether or not the output voltage of the half-wave rectification circuit 51 is equal to or higher than a predetermined value Vs. That is, when the output voltage of the half-wave rectifier circuit 51 is equal to or higher than the predetermined value Vs, the output voltage of the comparison circuit 56 is at a low level. When the output voltage of the half-wave rectifier circuit 51 is less than the predetermined value Vs, the output voltage of the comparison circuit 56 is at a high level. This high-level collector voltage is supplied to the timer circuit 31 as a reset signal.
  • the DC output voltage is 1 ⁇ 2 compared to the case where the full-wave rectifier circuit is used. For this reason, even in the case of incorrect connection, the voltage applied to each circuit element in the power supply circuit 30 and the voltage detection circuit 10 becomes low, and an inexpensive element having a low rated voltage can be employed.
  • the operation will be described.
  • the interphase voltage 400V AC generated in the internal phase lines L1 ′, L2 ′, L3 ′ of the electric device A via the phase terminals R, S, T of the power supply terminal 3 is half-waved by the half-wave rectifier circuit 51 of the voltage detection circuit 50.
  • the half-wave rectifier circuit 51 outputs a DC voltage having a waveform indicated by a solid line in FIG. This output voltage is higher than the predetermined value Vs. Therefore, the voltage detection circuit 50 does not issue a reset signal.
  • the timer circuit 31 starts a time measuring operation when the output voltage of the half-wave rectifier circuit 51 is equal to or higher than the set value V2, and outputs an off signal for a predetermined time t1.
  • the switch 40 is kept open by this off signal, and no voltage is supplied to the 230V system load 200.
  • the timer circuit 31 When the fixed time t1 has passed without the voltage detection circuit 50 issuing a reset signal, the timer circuit 31 outputs an ON signal under the determination that the connection to the three-phase four-wire AC power supply 1 is not an error.
  • the switch 40 is closed by this ON signal, and the line voltage 230V between the phase terminal R and the neutral terminal n of the power supply terminal 3 is supplied to the 230V system load 200.
  • the 230V system load 200 operates, and the 400V system load 100 is driven and controlled by the control circuit of the 230V system load 200.
  • the AC 400V between the phase lines L1 ′ and L2 ′, the AC 230V between the phase lines L3 ′ and L2 ′, and the AC 230V between the phase lines L3 ′ and L2 ′ are half-wave rectified by the voltage detection circuit 50.
  • a half-wave rectifier circuit 51 outputs a DC voltage having a waveform that changes to a zero level across the normal level and the predetermined value Vs, as shown by a broken line in FIG. When the output voltage is less than the predetermined value Vs, the voltage detection circuit 50 issues a reset signal.
  • the timer circuit 31 is reset every time it receives a reset signal from the voltage detection circuit 50 and continues to output an off signal.
  • the switch 40 is opened by this OFF signal, and an excessive AC voltage of 400 V between the phase terminal R and the neutral terminal n of the power supply terminal 3 is not supplied to the 230 V system load 200. Therefore, destruction of the 230V system load 200 is prevented.
  • a half-wave rectifier circuit 51 outputs a DC voltage having a waveform that changes from a normal level to a zero level across a predetermined value Vs.
  • the voltage detection circuit 50 issues a reset signal.
  • the timer circuit 31 receives the reset signal of the voltage detection circuit 10, outputs an OFF signal, and opens the switch 40. Since the voltage detection circuit 10 always outputs a reset signal once during one cycle of the AC power supply, the timer circuit 31 maintains the switch 40 in the open state. As a result, energization to the 230V system load 200 is interrupted. Thus, the 230V system load 200 does not operate, so that unnecessary drive control for the 400V system load 100 is also prevented.
  • the half-wave rectifier circuit 51 since the half-wave rectifier circuit 51 is used, as shown in FIG. 5, the period during which the output of the half-wave rectifier circuit 51 is “0 V” at the time of incorrect connection is 120 degrees in electrical angle, as shown in FIG. At the time of phase loss, a period of “0 V” occurs in electrical angle of 60 degrees. For this reason, it is possible to set the reference voltage Vs used for determination of normality or abnormality (misconnection, phase loss) to a low value, and it is possible to suppress the power consumption of the circuit for generating the reference voltage Vs.
  • the capacitor constituting the power supply circuit 30 is more than in the case of using the full-wave rectifier circuit 11 in the first embodiment. It is necessary to increase the capacity of 33.
  • the switch circuit 41 is employed in place of the switch 40 of the first and second embodiments.
  • the switch circuit 41 includes a switch element 42, a resistor 43, and a full-wave rectification type diode bridge 44 including four diodes D.
  • As the switch element 42 an FET or IGBT capable of controlling conduction of a relatively large current with a very small current is used. By adopting an FET or IGBT that can be turned on / off with a small current, the power consumption of these elements is reduced, and the current capacity of the DC voltage Vdd for driving the elements can be reduced. The capacity can be reduced.
  • the output voltage of the half-wave rectifier circuit 51 is equal to or higher than the predetermined value Vs, so that the output voltage of the comparator circuit 56 is at a low level and the transistor 57 is kept off.
  • the operating voltage Vdd is applied to the timer circuit 31, the timer circuit 31 operates, and the timer circuit 31 outputs an ON signal when a predetermined time t1 or more has elapsed.
  • the switch element 42 is turned on by this ON signal, and the neutral line N ′ becomes conductive through the switch element 42, the resistor 43, and the two diodes D of the diode bridge 44.
  • a DC voltage having a waveform that changes to a zero level across the normal level and the predetermined value Vs is output from the half-wave rectifier circuit 51, and the output voltage is less than the predetermined value Vs.
  • the output voltage of the comparison circuit 56 becomes a high level, and the transistor 57 is turned on.
  • the transistor 57 is turned on, the operating voltage Vdd for the timer circuit 31 is removed by bypass through the transistor 57, and the timer circuit 31 is turned off (off).
  • the output of the timer circuit 31 is turned off, the switch element 42 is turned off, and the neutral line N ′ is turned off.
  • the timer circuit 31 When the output voltage of the half-wave rectifier circuit 51 is equal to or higher than the predetermined value Vs, the timer circuit 31 operates. However, the transistor 57 is turned on again and the timer circuit 31 is turned off before the predetermined time t1 elapses. The state continues, and the neutral line N ′ remains in a non-conductive state. Similarly, at the time of phase loss, the timer circuit 31 is deactivated, the switch element 42 is maintained in the off state, and the neutral line N ′ is deactivated.
  • the diode bridge 44 may be a half-wave rectification type when the load requires a direct current instead of an alternating current.
  • the voltage detection circuit 50 has a half-wave rectification circuit 51, a resistor 57, and a current detection unit 58, and the output voltage of the half-wave rectification circuit 51 is applied to the current detection unit 59 via the resistor 58. Then, a reset signal that is an output of the current detection unit 59 is supplied to the timer circuit 31. The current detector 59 generates a reset signal when the current based on the output voltage of the half-wave rectifier circuit 51 is less than the set value.
  • the output voltage of the half-wave rectifier circuit 51 is equal to or higher than the predetermined value Vs. Thereby, the timer circuit 31 outputs an ON signal, and the switch 40 is turned ON.
  • a relay contact 201 is connected in parallel to the switch 40 as a second switch.
  • a current limiting resistor rr is connected in series on the line between the switch 40 and the 230V system load 200.
  • a relay drive circuit 202 is provided in the 230V system load 200. The relay drive circuit 202 operates by energizing the 230V system load 200 and closes the relay contact 201. When the 230V system load 200 is not energized, the relay drive circuit 202 stops operating and opens the relay contact 201.
  • the timer circuit 31 outputs an ON signal and the switch 40 is turned ON.
  • the switch 40 is turned on, AC 230V is supplied to the 230V system load 200 via the current limiting resistor rr. Therefore, the control circuit in the 230V system load 200 starts operation first, operates the relay drive circuit 202, and the relay contact 201 is closed. Subsequently, the control circuit in the 230V system load 200 turns on an electrical component, such as a fan motor, that consumes a large amount of power in the 230V system load 200. As a result, the entire 230V load 200 is energized through the parallel circuit of the relay contact 201. At this time, a current flows through the 230V load 200 via the switch 40 and the current limiting resistor rr. However, since a current limiting resistor exists in the middle, most of the current flows through the relay contact 201.
  • FIG. 10 A sixth embodiment of the present invention will be described.
  • an electric device A provided with a plurality of 230 V system loads 200 for example, an outdoor unit of an air conditioner, is provided with a plurality of fans serving as 230 V system loads.
  • the electric device A in the figure includes three 230V loads 200a, 200b, and 200c inside.
  • 230V system loads 200a, 200b, and 200c are connected to the phase lines L1 ′, L2 ′, and L3 ′ in the device A as one of the power supply paths, respectively, and the other of the power supply paths is connected to the same neutral line N via the switch 40. It is connected to the.
  • Other configurations and operations are the same as those in the first embodiment. Therefore, the description is omitted.
  • each 230V system load 200a, 200b, 200c is distributed to the phase lines L1, L2, L3, and it is possible to prevent a large current from flowing in a specific phase line, and 230V system load Harmonics generated from 200a, 200b, and 200c are also dispersed and reduced in each phase line.
  • any 230V system loads 200a, 200b, and 200c are commonly connected to the neutral line N ′ via the switch 40, the switch 40 is opened in the same way as in the first embodiment in the case of erroneous connection or phase loss.
  • the operation of the 230V system loads 200a, 200b, and 200c can be stopped collectively, and the configuration is simple.
  • the configuration of the detection / protection circuit for erroneous connection or phase loss is the same as that of the first embodiment, but the circuit of any of the second to fifth embodiments is employed. May be.
  • the erroneous connection detection device of the present invention includes the first load that operates according to the voltage of each phase line of the three-phase four-wire AC power supply, and one of the phase lines of the three-phase four-wire AC power supply.
  • Rectifier circuit connected to each phase line of a three-phase four-wire AC power source in a device having a second load that operates with a voltage between the rectifier line and whether the output voltage of the rectifier circuit is equal to or higher than a predetermined value
  • a first determination unit that determines whether the connection to the three-phase four-wire AC power supply is not an error when the determination result of the first determination unit continues for a predetermined time in a state where the determination result of the first determination unit is equal to or greater than a predetermined value;
  • a second determination unit that determines that the connection to the three-phase four-wire AC power supply is incorrect when the determination result of the determination unit does not continue for a certain period of time.
  • the rectifier circuit can be either a full-wave rectifier circuit or a half-wave rectifier circuit.
  • a switch that is inserted and connected to a current path between the neutral line N ′ of the power supply terminal and the second load, and is closed when the determination result of the second determination means is not an error, and opened when the error is an error.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

 前記3相4線式交流電源(1)の各相ライン(L1,L2,L3)の電圧を全波整流回路(11)で整流し、この全波整流回路(11)の出力電圧が所定値以上か否かを判定する。この判定結果が所定値以上の状態を一定時間継続する場合に、3相4線式交流電源(1)への接続が誤りでないと判定し、上記判定結果が所定値以上の状態を一定時間継続しないとき3相4線式交流電源(1)への接続が誤りであると判定する。

Description

誤接続検出装置
 この発明は、日本以外で一般的に用いられている3相4線式交流電源に接続される機器の誤接続を検出する誤接続検出装置に関する。
 3つの相ラインL1,L2,L3および1つの中性ラインNを有し、相ラインL1,L2,L3のそれぞれ相間電圧として例えば交流400Vを出力するとともに、相ラインL1,L2,L3と中性ラインNのそれぞれ線間電圧として例えば交流230Vを出力する3相4線式交流電源がある。
 この3相4線式交流電源の相ラインL1,L2,L3および中性ラインNに電気機器たとえば空気調和機の電源端子が接続される。接続される空気調和機は、相ラインL1,L2,L3の各相間電圧400Vにより動作する消費電力の大きいインバータや圧縮機モータ等の400V系負荷を有するとともに、相ラインL1,L2,L3のいずれか1つと中性ラインnとの間に接続されその線間電圧230Vにより動作するファンモータや制御回路等の230V系負荷を有する(例えば特許文献1)。
 3相4線式交流電源の各相ラインと電気機器の電源端子との配線接続は、電気機器の設置時に手作業によって行われる。
特開平6-319293号公報
 各相ラインと電源端子との配線接続に際し、誤接続が生じることがある。この誤接続を防ぐ手段として、各相ラインおよび電源端子に識別用の色を着けておく方法があるが、たとえ色が着いていても、作業員の人為的なミスによる誤接続を完全には防止できない。とくに、3相4線式交流電源の場合、3相3線式や単相2線式の交流電源に比べてライン数が多いこともあって、誤接続が生じ易い。
 誤接続が生じると、相間電圧400Vが電気機器の230V系負荷に印加され、230V系負荷に含まれている制御回路が破壊されてしまう。この結果、400V系負荷に対する駆動制御も不可能となる。
 この発明は、上記の事情を考慮したもので、3相4線式交流電源への誤接続を自動的に検出できる安全性にすぐれた誤接続検出装置を提供することを目的とする。
 この発明の誤接続検出装置は、3相4線式交流電源の各相ラインの電圧により動作する負荷を有する機器おいて、前記3相4線式交流電源の各相ラインに接続される整流回路と、この整流回路の整流出力に基づき前記3相4線式交流電源への接続誤りを判定する判定手段と、を備える。
 この発明の誤接続検出装置は、3相4線式交流電源への誤接続を自動的に検出でき、これにより安全を確保できる。
図1は、第1の実施形態の構成を示すブロック図である。 図2は、第1の実施形態の整流回路から出力される直流電圧の正常接続時の波形と誤接続時の波形とを対比して示す図である。 図3は、第1の実施形態の整流回路から出力される直流電圧の正常接続時の波形と欠相時の波形とを対比して示す図である。 図4は、第2の実施形態の構成を示すブロック図である。 図5は、第2の実施形態の整流回路から出力される直流電圧の正常接続時の波形と誤接続時の波形とを対比して示す図である。 図6は、第2の実施形態の整流回路から出力される直流電圧の正常接続時の波形と欠相時の波形とを対比して示す図である。 図7は、第3の実施形態の構成を示すブロック図である。 図8は、第4の実施形態の構成を示すブロック図である。 図9は、第5の実施形態の構成を示すブロック図である。 図10は、第6の実施形態の構成を示すブロック図である。
 [1]以下、この発明の第1の実施形態について説明する。 
 図1において、1は3相4線式交流電源で、3つの相ラインL1,L2,L3および1つの中性ラインNを有し、相ラインL1,L2,L3のそれぞれの相間電圧として交流400Vを出力するとともに、相ラインL1,L2,L3と中性ラインNのそれぞれ線間電圧として交流230Vを出力する。
 この3相4線式交流電源1の相ラインL1,L2,L3および中性ラインNに、それぞれヒューズ2を介して電気機器(例えば空気調和機)Aの電源端子3が配線接続される。電源端子3は、相ラインL1,L2,L3が接続される3つの相端子R,S,T、および中性ラインNが接続される1つの中性端子nを有する。以下、説明のため、電気機器A内の3相ラインを相ラインL1´,L2´,L3´、中性ラインを中性ラインN´と名づけて説明する。
 この電源端子3の相端子R,S,Tに、相ラインL1´,L2´,L3´を介して電気機器A内の400V系負荷100が接続される。400V系負荷100は、各相間電圧(3相交流電圧)400Vにより動作するインバータや圧縮機モータ等を有する。また、電源端子3の相端子Rおよび中性端子nに、相ラインL1´および中性ラインN´を介して同電気機器A内の230V系負荷200が接続される。230V系負荷200は、1つの線間電圧(単相交流電圧)230Vにより動作するファンモータや制御回路等を有する。制御回路は、230Vにより動作するファンモータ及び400Vにより動作するインバータの運転/停止を制御する。
 そして、電気機器Aの内部相ラインL1´,L2´,L3´に電圧検出回路10が接続される。 
 電圧検出回路10は、3個の入力抵抗rを介して相ラインL1´,L2´,L3´に接続された9個のダイオードDのブリッジ接続による全波整流回路11、この全波整流回路11から出力される直流電圧(DC電圧)が印加される抵抗12と抵抗13の直列回路、この抵抗13に生じる電圧が印加されるツェナーダイオード14と抵抗15の直列回路、この抵抗15に生じる電圧が印加される発光ダイオード16a、抵抗17とフォトトランジスタ16bと抵抗18の直列回路、この抵抗18の両端にベース・エミッタ間が接続されたNPN型トランジスタ19を有する。さらに、電圧検出回路10は、後述する電源回路30から出力される5Vの直流電圧Vddを抵抗17とフォトトランジスタ16bと抵抗18の直列回路に印加するとともに、同直流電圧Vddを抵抗20を介してトランジスタ19のコレクタ・エミッタ間に印加し、トランジスタ19のコレクタ電圧を出力とする。なお、上記発光ダイオード16aとフォトトランジスタ16bとでフォトカプラ16が構成されている。
 この電圧検出回路10の構成要素のうち、全波整流回路11を除く抵抗12から抵抗20までの構成が、全波整流回路11の出力電圧が所定値Vs以上か否かを判定する第1判定手段として機能する。
 すなわち、全波整流回路11の出力電圧が所定値Vs以上のとき、ツェナーダイオード14を通して電流が流れ、発光ダイオード16aが発光してフォトトランジスタ16bがオンする。フォトトランジスタ16bがオンすると、トランジスタ19もオンし、トランジスタ19のコレクタ電圧が低レベルとなる。一方、全波整流回路11の出力電圧が所定値Vs未満のとき、ツェナーダイオード14を通して電流が流れないため、発光ダイオード16aが発光せず、フォトトランジスタ16bがオフする。フォトトランジスタ16bがオフすると、トランジスタ19もオフし、トランジスタ19のコレクタ電圧が高レベルとなる。この高レベルのコレクタ電圧がリセット信号として出力される。
 また、全波整流回路11の出力電圧が抵抗21を介してタイマ回路(第2判定手段)31、ツェナーダイオード32、およびコンデンサ33にそれぞれ印加される。タイマ回路31のリセット端子(Reset)に電圧検出回路10の出力端(トランジスタ19のコレクタ)が接続され、タイマ回路31の出力端子(Out)に後述のスイッチ40が接続される。上記ツェナーダイオード32とコンデンサ33は、電源回路30を構成し、各素子の一端がそれぞれ全波整流回路11の出力端に接続され、他端が中性ラインN´に接続されている。このため、コンデンサ33の端子電圧はツェナーダイオード32のツェナー電圧に固定される。したがって、コンデンサ33とツェナーダイオード32の並列回路によって直流電圧Vddが形成される。この直流電圧Vddはタイマ回路31の動作電源となる。この直流電源の電圧Vddはツェナーダイオード32のツェナー電圧を用い、かつ出力が5V程度であるため、誤配線が生じても、定格の出力が可能である。なお、誤配線時には、コンデンサ33とツェナーダイオード32に400V以上の直流電圧が加わるため、定格電圧の高い素子を用いる必要がある。同様に、電圧検出回路10内の各回路素子にも誤配線時には400V以上の直流電圧が加わるため、定格電圧の高い素子を用いる必要がある。また、タイマ回路31は、一般的には半導体論理回路から構成されるICが用いられるが、IC及び抵抗とコンデンサからなる充放電回路を組み合わせて構成してもよい。
 タイマ回路31は、電圧検出回路10からリセット信号を受けるごとに計時tを繰り返し、この計時tが一定時間t1に達しないうちはオフ信号(零電圧)を出力し、電圧検出回路10からリセット信号を受けないまま上記計時tが一定時間t1に達すると、所定電圧のオン信号を出力する。すなわち、タイマ回路31は、電圧検出回路10からリセット信号を受け取って計時tが一定時間t1に達しない間に次のリセット信号を受け取るとオフ信号(零電圧)の出力を継続する。ここで、一定時間t1は、3相4線式交流電源1の電圧の1周期程度の時間に設定されている。
 そして、電源端子3の中性端子nと230V系負荷200との間の通電路である中性ラインN´に、スイッチ(第1スイッチ)40が挿入接続される。スイッチ40は、例えばリレー接点や半導体スイッチ素子であり、タイマ回路31からオン信号が供給されると閉じ、タイマ回路31からオフ信号が供給されると開く。したがって、誤配線時に230V系負荷200に対して400V以上の直流電圧が供給される可能性があるが、その前にこのスイッチ40が開くため230V系負荷200には過電圧が印加されることはない。このため、230V系負荷200に含まれる各種機器は過電圧による破壊から保護される。
 次に、作用を説明する。 
 (1)正常接続時 
 図1のように、電源端子3に3相4線式交流電源1の相ラインL1,L2,L3および中性ラインNが正しく配線接続されていれば、電源端子3の相端子R,S,Tの相互間にそれぞれ相間電圧400Vが生じ、電源端子3の相端子Rと中性端子nとの間に線間電圧230Vが生じる。そして、各相間電圧400Vが400V系負荷100に供給される。また、各相間電圧400Vが電圧検出回路10の全波整流回路11で全波整流され、全波整流回路11から図2に実線で示す波形の直流電圧が出力される。この出力電圧は、所定値Vsより高い。したがって、電圧検出回路10はリセット信号を発しない。
 タイマ回路31は、全波整流回路11の出力電圧が生ずることで電源回路30から出力される直流電圧Vddが供給され、動作を開始し、一定時間t1はオフ信号を出力する。このオフ信号によりスイッチ40の開状態が保たれ、230V系負荷200に電圧が供給されない。
 電圧検出回路10がリセット信号を発しないまま、一定時間t1が経過すると、3相4線式交流電源1への接続が誤りでないとの判定の下に、タイマ回路31がオン信号を出力する。このオン信号によりスイッチ40が閉じ、相端子Rと中性端子nとの間の線間電圧230Vが、相ラインL1´および中性ラインN´を介して230V系負荷200に供給される。これにより、230V系負荷200が動作し、その230V系負荷200の制御回路によって400V系負荷100が駆動制御される。
 (2)誤接続時 
 電気機器Aの電源端子3に3相4線式交流電源1の相ラインL1,L2,L3および中性ラインNとが正しく配線接続されていない場合、例えば相ラインL3が中性端子nに配線接続され、中性ラインNが相端子Tに配線接続されているような場合、相端子S,T間および相端子R,T間にそれぞれ相間電圧400Vより低い線間電圧230Vが生じるとともに、相端子Rと中性端子nとの間に線間電圧230Vより高い相間電圧400Vが生じる。このため、電気機器Aの内部相ラインL2´,L3´間と相ラインL1´,L3´間はそれぞれの相間電圧400Vより低い線間電圧230Vが生じ、相ラインL1´と中性ラインN´との間に線間電圧230Vより高い相間電圧400Vが生じる。すると、相端子R,S間の400V、相端子S,T間の230V、相端子R,T間の230Vが電圧検出回路10の全波整流回路11に入力され、図2に破線で示すように、所定値Vsを挟んでレベル変化する波形の直流電圧が全波整流回路11から出力される。この出力電圧が所定値Vs未満のとき、電圧検出回路10がリセット信号を発する。タイマ回路31は、電圧検出回路10のリセット信号を受けてオフ信号を出力し、スイッチ40を開くか、開いたままに維持する。
 図2に示すように、リセット信号は、180度(1/4周期)毎に1回発生する。このため、タイマ回路31は、電圧検出回路10のリセット信号を受けるごとに、計時tを開始するが、この計時tが一定時間t1(ほぼ1周期)に達する前に次のリセット信号を受けるため、オフ信号の出力を継続する。したがって、スイッチ40は開いたままとなり、電源端子3の相端子Rと中性端子nとの間の過剰な相間電圧400Vが230V系負荷200に供給されない。したがって、230V系負荷200の制御回路の破壊が未然に防止される。
 このように、誤接続があれば、その誤接続を自動的に検出できるとともに、230V系負荷200の安全を確保することができる。
 また、上記回路では、スイッチ40をオン、オフを制御するためのタイマ回路31及び電圧検出回路10の電源はすべて電圧検出回路10の全波整流回路11の出力を用いた電源回路30でまかなうように構成しているため、これらの回路を駆動するための別電源が不要となり、回路が簡素化されている。
 (3)欠相 
 図1のように電源端子3に3相4線式交流電源1の相ラインL1,L2,L3および中性ラインNが正しく配線接続されている場合でも、過電流等により、相ラインL1,L2,L3上の各ヒューズ2のいずれかが溶断することがある。この場合、各相間電圧400Vの2相分が欠けてしまういわゆる欠相となる。
 例えば、3相4線式交流電源1の相ラインL3上のヒューズ2が溶断すると、電源端子Tに接続されている電気機器A内の電源ラインL3´が欠相となり、電源端子3の相端子T,S間および相端子R,T間、すなわち、機器A内の電源ラインL3´、L2´間及び電源ラインL3´、L1´間のそれぞれの相間電圧が零となる。こうなると、400V系負荷100の適切な動作が不可能となる。
 この欠相時、図3に破線で示すように、所定値Vsを挟んで正常時レベルから零レベルまで大きく変化する波形の直流電圧が全波整流回路11から出力される。この出力電圧が所定値Vs未満のとき、電圧検出回路10がリセット信号を発する。
 図3に示すように、誤接続時とほぼ同様にリセット信号は、180度(1/4周期)毎に1回発生する。このため、タイマ回路31は、電圧検出回路10のリセット信号を受けるごとに、計時tを開始するが、この計時tが一定時間t1(1周期)に達する前に次のリセット信号を受けるため、オフ信号の出力を継続する。したがって、スイッチ40は開いたままとなり、230V系負荷200への通電が遮断される。こうして、230V系負荷200が動作しなくなり、400V系負荷100に対する不要な駆動制御が防止される。
 このように、欠相についても自動的に検出できて、400V系負荷100および230V系負荷200の不適切な動作を防ぐことができる。
 なお、所定値Vsは、図2に示すように正常接続時の全波整流回路11から出力される最低電圧よりも低く、誤接続時の全波整流回路11から出力される最低電圧よりも高い値に設定しなければならない。なお、欠相時には、全波整流回路11の出力が一時的に0となるが、電源回路30を構成するコンデンサ33に十分な容量を持つコンデンサを選定しておくことで全波整流回路11の出力が一時的に低下してもこの電源回路30が電力を供給する各回路を動作させるに十分な電力を保持させておくことが可能である。
 以上のように、本実施形態の誤接続検出装置は、3相4線式交流電源の各相ラインの電圧により動作する負荷を有する機器おいて、3相4線式交流電源の各相ラインに接続される整流回路と、この整流回路の整流出力に基づき3相4線式交流電源への接続誤りを判定する判定手段(第1判定手段と第2判定手段の組み合わせからなる)とを備えることで、簡単な回路構成で誤配線を検出することができる。さらに同時に欠相も検出することができる。
 より具体的には、誤接続検出装置は、3相4線式交流電源の各相ラインの電圧により動作する第1負荷、および前記3相4線式交流電源の各相ラインの1つと中性ラインとの間の電圧により動作する第2負荷を有する機器において、3相4線式交流電源の各相ラインに接続される整流回路と、この整流回路の出力電圧が所定値以上か否かを判定し、この判定結果が所定値未満の場合にリセット信号を発する第1判定手段と、整流回路の出力電圧により動作し、第1判定手段がリセット信号を発するごとに計時を繰り返し、この計時が一定時間に達しないうちはオフ信号を出力し、第1判定手段がリセット信号を発しないまま前記計時が一定時間に達するとオン信号を出力するタイマ手段と、電源端子の中性ラインN´と第2負荷との間の通電路に挿入接続され、タイマ手段のオフ信号に応じて閉じ、オン信号に応じて開くスイッチとを備えることで誤接続時には第2負荷の破壊を防止できる。
 [2]この発明の第2の実施形態について説明する。 
 図4に示すように、電気機器Aにおける相ラインL1´,L2´,L3´に電圧検出回路50が接続される。電圧検出回路50は、3個の入力抵抗rおよび3個のダイオードDのブリッジ接続からなる半波整流回路51、この半波整流回路51から出力される直流電圧(DC電圧)が印加される抵抗52と抵抗53の直列回路、半波整流回路51の出力電圧から作られる5Vの直流電圧Vddが印加される抵抗54と抵抗55の直列回路、この抵抗55に生じる基準電圧と上記抵抗53に生じる電圧とを比較する比較回路56を有し、この比較回路56の比較により、半波整流回路51の出力電圧が所定値Vs以上か否かを判定する。 
 すなわち、半波整流回路51の出力電圧が所定値Vs以上のとき、比較回路56の出力電圧が低レベルとなる。半波整流回路51の出力電圧が所定値Vs未満のときには、比較回路56の出力電圧が高レベルとなる。この高レベルのコレクタ電圧がリセット信号としてタイマ回路31に供給される。
 このように半波整流回路51を用いた場合、その直流出力電圧は全波整流回路を用いた場合に比べ1/2となる。このため、誤接続の場合でも電源回路30及び電圧検出回路10内の各回路素子に加わる電圧が低くなり、定格電圧の低い、安価な素子を採用することができる。
 他の構成は第1の実施形態と同じである。よって、その説明は省略する。
 作用について説明する。 
 (1)正常接続時 
 電源端子3の相端子R,S,Tを経由した電気機器Aの内部相ラインL1´,L2´,L3´に生じる各相間電圧400V交流が電圧検出回路50の半波整流回路51で半波整流され、半波整流回路51から図5に実線で示す波形の直流電圧が出力される。この出力電圧は、所定値Vsより高い。したがって、電圧検出回路50はリセット信号を発しない。
 タイマ回路31は、半波整流回路51の出力電圧が設定値V2以上であることにより計時動作を開始し、一定時間t1はオフ信号を出力する。このオフ信号によりスイッチ40の開状態が保たれ、230V系負荷200に電圧が供給されない。
 電圧検出回路50がリセット信号を発しないまま、一定時間t1が経過すると、3相4線式交流電源1への接続が誤りでないとの判定の下に、タイマ回路31がオン信号を出力する。このオン信号によりスイッチ40が閉じ、電源端子3の相端子Rと中性端子nとの間の線間電圧230Vが230V系負荷200に供給される。これにより、230V系負荷200が動作し、その230V系負荷200の制御回路によって400V系負荷100が駆動制御される。
 (2)誤接続時 
 例えば、相ラインL3が電源端子3の中性端子nに配線接続され、中性ラインNが電源端子3の相端子Tに配線接続されたような誤接続に際しては、相端子S,T間および相端子R,T間にそれぞれ相間電圧400V交流より低い線間電圧230V交流が生じるとともに、相端子Rと中性端子nとの間に線間電圧230Vより高い相間電圧400V交流が生じる。
 電気機器A内では、相ラインL1´、L2´間の交流400V、相ラインL3´、L2´間の交流230V、相ラインL3´、L2´間の交流230Vが電圧検出回路50の半波整流回路51に入力され、図5に破線で示すように、正常時レベルと所定値Vsを挟んで零レベルまで変化する波形の直流電圧が半波整流回路51から出力される。この出力電圧が所定値Vs未満のとき、電圧検出回路50がリセット信号を発する。
 タイマ回路31は、電圧検出回路50のリセット信号を受けるごとに、リセットされオフ信号出力を継続する。このオフ信号によりスイッチ40が開き、電源端子3の相端子Rと中性端子nとの間の過剰な相間電圧400Vの交流が230V系負荷200に供給されない。したがって、230V系負荷200の破壊が未然に防止される。
 (3)欠相 
 相ラインL3のヒューズ2が溶断してR端子が欠相になると、電源端子3の相端子R,S間および相端子R,T間のそれぞれ相間電圧が零となって、400V系負荷100が適切に動作しなくなる。
 この欠相時、図6に破線で示すように、所定値Vsを挟んで正常時レベルから零レベルまで変化する波形の直流電圧が半波整流回路51から出力される。この出力電圧が所定値Vs未満のとき、電圧検出回路50がリセット信号を発する。
 タイマ回路31は、電圧検出回路10のリセット信号を受け、がオフ信号を出力し、スイッチ40を開く。電圧検出回路10は交流電源の1周期中に必ず1回はリセット信号を出力するため、タイマ回路31は、スイッチ40を開状態に維持する。この結果、230V系負荷200への通電が遮断される。こうして、230V系負荷200が動作しないことにより、400V系負荷100に対する不要な駆動制御も防止される。
 この実施形態では、半波整流回路51を用いたため、図5に示すように誤接続時には半波整流回路51の出力が「0V」となる期間が電気角で120度、図6に示すように欠相時には「0V」となる期間が電気角で60度生じる。このため、正常か異常(誤接続、欠相)の判定に用いる基準電圧Vsを低い値に設定することができ、基準電圧Vsを発生させるための回路の消費電力を抑えることができる。
 但し、この場合には、半波整流回路51の出力が「0V」となる期間が長いため、第1の実施形態における全波整流回路11を用いた場合よりも、電源回路30を構成するコンデンサ33の容量を大きくしておくことが必要となる。
 [3]この発明の第3の実施形態について説明する。 
 図7に示すように、電圧検出回路50において、比較回路56の出力端にNPN型トランジスタ57のベースが接続され、そのトランジスタ57のコレクタ・エミッタ間がタイマ回路31の電源端子に並列接続される。これに伴い、タイマ回路31のリセット端子への入力がなくなっている。なお、比較回路56の電源は電源回路31の直流電圧Vddが用いられる。
 さらに、第1および第2の実施形態のスイッチ40に代えてスイッチ回路41が採用される。スイッチ回路41は、スイッチ素子42、抵抗43、および4個のダイオードDからなる全波整流方式のダイオードブリッジ44を有する。スイッチ素子42として、非常に小さい電流で比較的大きな電流の導通を制御することが可能なFETやIGBTを用いている。小さい電流でオン、オフ動作可能なFETやIGBTを採用することで、これらの素子の消費電力が小さくなり、素子を駆動するための直流電圧Vddの電流容量を小さくすることができ、コンデンサ33の容量を小さくすることができる。
 正常接続時は、半波整流回路51の出力電圧が所定値Vs以上となるので、比較回路56の出力電圧が低レベルとなり、トランジスタ57がオフ状態を維持する。これにより、タイマ回路31に動作用電圧Vddが印加され、タイマ回路31が動作して、一定時間t1以上経過した時点でタイマ回路31がオン信号を出力する。このオン信号によりスイッチ素子42がオンし、中性ラインN´がスイッチ素子42、抵抗43、およびダイオードブリッジ44の2つのダイオードDを通して導通状態となる。
 誤接続時は、図5に破線で示すように正常時レベルと所定値Vsを挟んで零レベルまで変化する波形の直流電圧が半波整流回路51から出力され、その出力電圧が所定値Vs未満のときに比較回路56の出力電圧が高レベルとなり、トランジスタ57がオンする。トランジスタ57がオンすると、タイマ回路31に対する動作用電圧Vddがトランジスタ57を通してバイパス除去され、タイマ回路31が非動作状態(オフ)となる。これにより、タイマ回路31の出力がオフ信号となり、スイッチ素子42がオフ状態となり中性ラインN´が非導通状態となる。半波整流回路51の出力電圧が所定値Vs以上の時にはタイマ回路31が動作するが、一定時間t1経過する前に再びトランジスタ57がオンし、タイマ回路31がオフするため、スイッチ素子42はオフ状態を継続し、中性ラインN´が非導通状態のままとなる。欠相時も同様に、タイマ回路31が非動作状態となり、スイッチ素子42がオフ状態を維持して中性ラインN´が非導通状態となる。
 他の構成および作用については、第1および第2の実施形態と同じである。よって、その説明は省略する。
 なお、ダイオードブリッジ44としては、負荷が交流電流でなく直流電流を必要とする場合には、半波整流方式のものを用いてもよい。
 [4]この発明の第4の実施形態について説明する。 
 図8に示すように、電圧検出回路50が半波整流回路51、抵抗57、および電流検出部58を有し、半波整流回路51の出力電圧が抵抗58を介して電流検出部59に印加され、その電流検出部59の出力であるリセット信号がタイマ回路31に供給される。電流検出部59は、半波整流回路51の出力電圧に基づく電流が設定値未満のとき、リセット信号を発する。
 正常接続時は、半波整流回路51の出力電圧が所定値Vs以上となるので、電流検出部59に流れる電流が設定値以上となり、電流検出部59がリセット信号を発しない。これにより、タイマ回路31がオン信号を出力し、スイッチ40がオンする。
 誤接続時および欠相時は、半波整流回路51の出力電圧が所定値Vs未満のときに電流検出部59に流れる電流が設定値未満となり、電流検出部59がリセット信号を発する。これにより、タイマ回路31の出力がオフ信号となり、スイッチ40がオフする。
 他の構成および作用については、第1および第2の実施形態と同じである。よって、その説明は省略する。
 [5]この発明の第5の実施形態について説明する。 
 図9に示すように、スイッチ40に対し、第2スイッチとしてリレー接点201が並列接続される。また、スイッチ40と230V系負荷200間のライン上に電流制限抵抗rrが直列に接続される。また、230V系負荷200にリレー駆動回路202が設けられる。リレー駆動回路202は、230V系負荷200への通電により動作してリレー接点201を閉じ、230V系負荷200への非通電時は動作停止してリレー接点201を開く。
 正常接続時、タイマ回路31がオン信号を出力し、スイッチ40がオンする。スイッチ40がオンすると、電流制限抵抗rrを介して230V系負荷200に交流230Vが供給される。そこで、230V系負荷200中の制御回路が、最初に動作を開始し、リレー駆動回路202を動作させ、リレー接点201が閉じる。続いて、230V系負荷200中の制御回路は230V系負荷200の中でも消費電力が大きい電気部品、例えば、ファンモータ等をオンさせる。この結果、リレー接点201の並列回路を通して230V系負荷200全体に対する通電が行われる。この際、スイッチ40と電流制限抵抗rrを介して230V系負荷200に電流が流れるが、途中に電流制限抵抗が存在するため、ほとんどの電流はリレー接点201を介して流れる。
 このような構成を採用することで、スイッチ40には大電流が流れないので、小形で、かつ駆動時に電流消費が少ないスイッチ40を採用することができる。したがって、スイッチ40を駆動する直流電圧Vddの電流を少なくでき、電源回路30のコンデンサ33の容量を小さくすることができる。
 他の構成および作用については、第1および第2の実施形態と同じである。よって、その説明は省略する。
 [6]この発明の第6の実施形態について説明する。 
 図10に示すように、本実施形態では、複数の230V系負荷200を備えた電気機器A、例えば、空気調和機の室外機では230V系負荷となる複数のファンを設ける場合があり、このような場合に好適な接続である。図中の電気機器Aは、内部に3つの230V系負荷200a,200b,200cを備えている。230V系負荷200a,200b,200cは電力供給路の一方としてそれぞれ機器A内の相ラインL1´、L2´,L3´に接続され、電源供給路の他方はスイッチ40を介して同じ中性ラインN´に接続されている。他の構成および作用については、第1の実施形態と同じである。よって、その説明は省略する。
 このように接続することで各230V系負荷200a,200b,200cでの消費電流は相ラインL1、L2,L3に分散され、特定の相ラインに大電流が流れることを防止できるとともに、230V系負荷200a,200b,200cから発生する高調波も各相ラインに分散され低減される。
 そして、いずれの230V系負荷200a,200b,200cもスイッチ40を介して中性ラインN´に共通接続されているため、誤接続や欠相時には第1の実施形態と同様にスイッチ40が開放され、230V系負荷200a,200b,200cの動作を一括して停止させることができ、構成が簡単である。
 なお、この第6の実施の形態では、誤接続や欠相の検出・保護回路の構成を第1の実施形態と同じとしたが、第2から第5のいずれの実施形態の回路を採用しても良い。
 以上のように、本発明の誤接続検出装置は、3相4線式交流電源の各相ラインの電圧により動作する第1負荷、および3相4線式交流電源の各相ラインの1つと中性ラインとの間の電圧により動作する第2負荷を有する機器おいて、3相4線式交流電源の各相ラインに接続される整流回路と、この整流回路の出力電圧が所定値以上か否かを判定する第1判定手段と、この第1判定手段の判定結果が所定値以上の状態を一定時間継続する場合に3相4線式交流電源への接続が誤りでないと判定し、第1判定手段の判定結果が所定値以上の状態を一定時間継続しないとき3相4線式交流電源への接続が誤りであると判定する第2判定手段とを備えている。
 また、前記整流回路は、全波整流回路または半波整流回路のいずれかを用いることができる。さらに、電源端子の中性ラインN´と前記第2負荷との間の通電路に挿入接続され、第2判定手段の判定結果が誤りでない場合に閉じ、誤りである場合に開くスイッチを備えることで誤接続検出及び第2負荷の保護が可能となる。 
 3相4線式交流電源を使用する各種機器の安全運転が可能となる。
 1…3相4線式交流電源、2…ヒューズ、3…電源端子、L1,L2,L3…相ライン、N…中性ライン、L1´、L2´,L3´…電気機器内の相ライン、N´…電気機器内の中性ライン、10…電圧検出回路(第1判定手段)、11…全波整流回路、16…フォトカプラ、19…NPN型トランジスタ、31…タイマ回路(第2判定手段)、40…スイッチ、100…400V系負荷、200…230V系負荷、A…電気機器(空気調和機)

Claims (6)

  1. 3相4線式交流電源の各相ラインの電圧により動作する負荷を有する機器おいて、
     前記3相4線式交流電源の各相ラインに接続される整流回路と、
     この整流回路の整流出力に基づき前記3相4線式交流電源への接続誤りを判定する判定手段と、
     を備えることを特徴とする誤接続検出装置。
  2. 3相4線式交流電源の各相ラインの電圧により動作する第1負荷、および前記3相4線式交流電源の各相ラインの1つと中性ラインとの間の電圧により動作する第2負荷を有する機器おいて、
     前記3相4線式交流電源の各相ラインに接続される整流回路と、
     この整流回路の出力電圧が所定値以上か否かを判定する第1判定手段と、
     この第1判定手段の判定結果が所定値以上の状態を一定時間継続する場合に前記3相4線式交流電源への接続が誤りでないと判定し、前記第1判定手段の判定結果が所定値以上の状態を一定時間継続しないとき前記3相4線式交流電源への接続が誤りであると判定する第2判定手段と、
     を備えることを特徴とする誤接続検出装置。
  3. 前記整流回路は、全波整流回路または半波整流回路であることを特徴とする請求項1または請求項2記載の誤接続検出装置。
  4. 前記中性ラインと前記第2負荷との間の通電路に挿入接続され、前記第2判定手段の判定結果が誤りでない場合に閉じ、誤りである場合に開くスイッチ、
     をさらに備えることを特徴とする請求項3記載の誤接続検出装置。
  5. 3相4線式交流電源の各相ラインの電圧により動作する第1負荷、および前記3相4線式交流電源の各相ラインの1つと中性ラインとの間の電圧により動作する第2負荷を有する機器において、
     前記3相4線式交流電源の各相ラインに接続される整流回路と、
     この整流回路の出力電圧が所定値以上か否かを判定し、この判定結果が所定値未満の場合にリセット信号を発する第1判定手段と、
     前記整流回路の出力電圧により動作し、前記第1判定手段がリセット信号を発するごとに計時を繰り返し、この計時が一定時間に達しないうちはオフ信号を出力し、前記第1判定手段がリセット信号を発しないまま前記計時が一定時間に達するとオン信号を出力するタイマ手段と、
     前記中性ラインNと前記第2負荷との間の通電路に挿入接続され、前記タイマ手段のオフ信号に応じて閉じ、オン信号に応じて開くスイッチと、
     を備えることを特徴とする誤接続検出装置。
  6. 前記第1判定手段、前記タイマ手段及び前記スイッチは、前記整流回路の整流出力を電源とすることを特徴とする請求項5記載の誤接続検出装置。
PCT/JP2009/061950 2009-06-30 2009-06-30 誤接続検出装置 WO2011001509A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BRPI0924634A BRPI0924634B1 (pt) 2009-06-30 2009-06-30 instrumento de detecção de erro de conexão de uma estrutura
RU2012102902/07A RU2497257C2 (ru) 2009-06-30 2009-06-30 Устройство детектирования ошибок подключения
CN200980159458.9A CN102428619B (zh) 2009-06-30 2009-06-30 误连接检测装置
KR1020117026351A KR101554060B1 (ko) 2009-06-30 2009-06-30 오접속 검출 장치
EP09846802.8A EP2451039B1 (en) 2009-06-30 2009-06-30 Connection-error detection apparatus
PCT/JP2009/061950 WO2011001509A1 (ja) 2009-06-30 2009-06-30 誤接続検出装置
JP2011520701A JP5520949B2 (ja) 2009-06-30 2009-06-30 誤接続検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/061950 WO2011001509A1 (ja) 2009-06-30 2009-06-30 誤接続検出装置

Publications (1)

Publication Number Publication Date
WO2011001509A1 true WO2011001509A1 (ja) 2011-01-06

Family

ID=43410607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061950 WO2011001509A1 (ja) 2009-06-30 2009-06-30 誤接続検出装置

Country Status (7)

Country Link
EP (1) EP2451039B1 (ja)
JP (1) JP5520949B2 (ja)
KR (1) KR101554060B1 (ja)
CN (1) CN102428619B (ja)
BR (1) BRPI0924634B1 (ja)
RU (1) RU2497257C2 (ja)
WO (1) WO2011001509A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014222955A (ja) * 2013-05-13 2014-11-27 アイシン精機株式会社 電源回路
CN107798090A (zh) * 2017-10-23 2018-03-13 云南电网有限责任公司电力科学研究院 一种现场安全作业管控文档生成方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037749B (zh) * 2013-03-04 2017-04-12 大族激光科技产业集团股份有限公司 一种交流供电控制系统
DE102018124124B3 (de) * 2018-09-28 2019-10-10 Sma Solar Technology Ag Verfahren und Vorrichtung zur Identifikation einer Zuordnung von Phasenleitungen zu Anschlüssen eines schieflastfähigen elektrischen Gerätes
CN112798983B (zh) * 2020-12-30 2022-03-01 珠海格力电器股份有限公司 一种检测内外机连接线的方法及装置
CN114994572A (zh) * 2022-06-02 2022-09-02 合肥美的暖通设备有限公司 相线零线反接的检测方法、装置、存储介质和变频空调

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319293A (ja) 1993-03-12 1994-11-15 Toshiba Corp 空気調和機の安全装置
JPH10170581A (ja) * 1996-12-06 1998-06-26 Daikin Ind Ltd 誤配線検出装置
JP2000354324A (ja) * 1999-04-06 2000-12-19 Toshiba Corp 過電流保護リレー、電圧保護リレー

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3242383A (en) * 1965-07-14 1966-03-22 Henry L Opad Monitoring circuit for detecting phase failure in a multi-phase electric power supply circuit
US4199798A (en) * 1978-03-13 1980-04-22 Eaton Corporation Phase balance monitoring system incorporating voltage and phase sequence monitoring
SU1693560A1 (ru) * 1989-01-26 1991-11-23 Специальное Проектно-Конструкторское И Технологическое Бюро Реле И Автоматики Устройство контрол фаз трехфазной системы напр жений
RU1822507C (ru) * 1990-12-19 1993-06-15 Ю. Г. Саушкин Сигнализатор асимметрии фазных напр жений многофазной сети
FR2731838B1 (fr) * 1995-03-16 1997-06-06 Schneider Electric Sa Appareil electrique de protection differentielle a circuit test
JP5255747B2 (ja) * 2005-07-05 2013-08-07 株式会社日立産機システム 欠相検出回路及び電気機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319293A (ja) 1993-03-12 1994-11-15 Toshiba Corp 空気調和機の安全装置
JPH10170581A (ja) * 1996-12-06 1998-06-26 Daikin Ind Ltd 誤配線検出装置
JP2000354324A (ja) * 1999-04-06 2000-12-19 Toshiba Corp 過電流保護リレー、電圧保護リレー

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2451039A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014222955A (ja) * 2013-05-13 2014-11-27 アイシン精機株式会社 電源回路
CN107798090A (zh) * 2017-10-23 2018-03-13 云南电网有限责任公司电力科学研究院 一种现场安全作业管控文档生成方法及装置

Also Published As

Publication number Publication date
BRPI0924634B1 (pt) 2019-10-22
EP2451039B1 (en) 2014-12-31
RU2012102902A (ru) 2013-08-10
KR101554060B1 (ko) 2015-09-17
EP2451039A1 (en) 2012-05-09
JPWO2011001509A1 (ja) 2012-12-10
RU2497257C2 (ru) 2013-10-27
CN102428619B (zh) 2014-07-09
CN102428619A (zh) 2012-04-25
KR20120024592A (ko) 2012-03-14
EP2451039A4 (en) 2013-07-03
JP5520949B2 (ja) 2014-06-11
BRPI0924634A2 (pt) 2016-03-08

Similar Documents

Publication Publication Date Title
JP5520949B2 (ja) 誤接続検出装置
JP5099039B2 (ja) ロボットのコントローラ
US9640978B2 (en) Protection circuit for an inverter as well as inverter system
KR20190072893A (ko) 압축기 보호 기능을 가지는 공기 조화기
US9843279B2 (en) Phase current detection system
JPH07255124A (ja) 相順配線保護装置
CN109417290B (zh) 保护电路及配线器具
JPH11149320A (ja) 電源回路の保護手段
JP2004266894A (ja) 3相4線式欠相保護付き回路遮断器
JP2005010066A (ja) 3相欠相検出回路及びこの3相欠相検出回路を用いた空気調和機
JP4623560B2 (ja) 漏電遮断器
JP2005117788A (ja) 三相欠相検出回路及びこの三相欠相検出回路を用いた空気調和機
JP2007252170A (ja) 電動機駆動装置
JP5999141B2 (ja) 電力変換装置
AU2003269604A1 (en) Non-linear dummy load for monitored ac loads
US11742163B2 (en) Welding detection device and welding detection method
JP5267529B2 (ja) 冷凍装置の電力制御基板
JP3775251B2 (ja) 多出力電源回路および多出力電源供給方法
JP2003319554A (ja) 誤配線保護装置および誤配線保護装置を搭載した機器
TWI483538B (zh) 馬達驅動裝置
JP2023059438A (ja) 過電圧保護回路
US20070127179A1 (en) Burnout protection switch
JP2005304145A (ja) モータの駆動装置
JP2011101470A (ja) 電源回路
JP2021100351A (ja) モータ駆動装置およびモータ駆動装置の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159458.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846802

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520701

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117026351

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 9327/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009846802

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012102902

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924634

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924634

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111229