WO2010150908A1 - 複写機部材用高撥水性ポリイミド及びポリアミド酸組成物 - Google Patents
複写機部材用高撥水性ポリイミド及びポリアミド酸組成物 Download PDFInfo
- Publication number
- WO2010150908A1 WO2010150908A1 PCT/JP2010/060967 JP2010060967W WO2010150908A1 WO 2010150908 A1 WO2010150908 A1 WO 2010150908A1 JP 2010060967 W JP2010060967 W JP 2010060967W WO 2010150908 A1 WO2010150908 A1 WO 2010150908A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyamic acid
- polyimide
- dianhydride
- general formula
- copying machine
- Prior art date
Links
- 0 NN(C(*1(C(N2C3CCCCC3)=O)C2=O)=O)C1=O Chemical compound NN(C(*1(C(N2C3CCCCC3)=O)C2=O)=O)C1=O 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Nc1ccccc1 Chemical compound Nc1ccccc1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- WPFASWCWIDNSSX-UHFFFAOYSA-N O=C(c(c1c(c(F)c2Oc(c(F)c(c(Oc(c(F)c(c(C(O3)=O)c4F)C3=O)c4F)c3F)F)c3F)F)c2F)OC1=O Chemical compound O=C(c(c1c(c(F)c2Oc(c(F)c(c(Oc(c(F)c(c(C(O3)=O)c4F)C3=O)c4F)c3F)F)c3F)F)c2F)OC1=O WPFASWCWIDNSSX-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/02—Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
- G03G15/0208—Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus
- G03G15/0216—Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus by bringing a charging member into contact with the member to be charged, e.g. roller, brush chargers
- G03G15/0233—Structure, details of the charging member, e.g. chemical composition, surface properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1039—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1046—Polyimides containing oxygen in the form of ether bonds in the main chain
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1057—Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
- C08G73/1064—Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/06—Apparatus for electrographic processes using a charge pattern for developing
- G03G15/08—Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
- G03G15/0806—Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer on a donor element, e.g. belt, roller
- G03G15/0818—Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer on a donor element, e.g. belt, roller characterised by the structure of the donor member, e.g. surface properties
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/14—Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
- G03G15/16—Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
- G03G15/1665—Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer by introducing the second base in the nip formed by the recording member and at least one transfer member, e.g. in combination with bias or heat
- G03G15/167—Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer by introducing the second base in the nip formed by the recording member and at least one transfer member, e.g. in combination with bias or heat at least one of the recording member or the transfer member being rotatable during the transfer
- G03G15/1685—Structure, details of the transfer member, e.g. chemical composition
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/20—Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
- G03G15/2003—Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
- G03G15/2014—Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
- G03G15/2053—Structural details of heat elements, e.g. structure of roller or belt, eddy current, induction heating
- G03G15/2057—Structural details of heat elements, e.g. structure of roller or belt, eddy current, induction heating relating to the chemical composition of the heat element and layers thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/75—Details relating to xerographic drum, band or plate, e.g. replacing, testing
- G03G15/751—Details relating to xerographic drum, band or plate, e.g. replacing, testing relating to drum
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/05—Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
- G03G5/0528—Macromolecular bonding materials
- G03G5/0557—Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
- G03G5/0571—Polyamides; Polyimides
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
- G03G5/147—Cover layers
- G03G5/14708—Cover layers comprising organic material
- G03G5/14713—Macromolecular material
- G03G5/14747—Macromolecular material obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- G03G5/14765—Polyamides; Polyimides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
Definitions
- the present invention relates to a highly water-repellent polyimide and a polyamic acid composition for copying machine members. More specifically, the present invention relates to a polyimide and polyamic acid composition that can exhibit strength, heat resistance, moisture absorption resistance, releasability (peelability), dielectric properties, and water repellency, and is useful for copying machine members.
- Polyimide is known to be obtained by imidizing polyamic acid synthesized with acid dianhydride and diamine compound as reaction raw materials, but derived from its imide ring, it has high strength and excellent heat resistance And has excellent dielectric characteristics and electrical characteristics, etc., and is used in various applications such as electrical / electronic parts, mechanical parts, and optical parts. In recent years, it is also expected to have various performances depending on the application. For example, when polyimide is used as a protective film or a release material for parts used in a wet atmosphere, the surface has water repellency. And having releasability (peelability).
- Patent Documents 1 and 2 disclose a method of forming a polyimide using a diamine having a fluorine atom or a fluorine-substituted alkyl group in the molecule.
- Patent Document 1 discloses a diamine having one, two, or four benzene rings and having a fluorine atom or a fluorine-substituted alkyl group.
- Patent Document 2 discloses a benzene ring. And diamines having a fluorine-substituted alkyl group are disclosed.
- Patent Document 3 As a transfer belt, specific carbon black is dispersed in an organic polar solvent, and water is added thereto.
- a polyimide formed from a carbon black-dispersed polyamic acid solution obtained by preparing a carbon black dispersion and then dissolving and polymerizing an acid dianhydride component and a diamine component in the dispersion is disclosed.
- Patent Document 4 discloses a material in which a fluorinated polyimide is a main component and a fluororesin is dispersed and mixed as a fixing film.
- Patent Laid-Open No. 11-21350 pages 2 and 3) Japanese Patent No. 3425854 (pages 2 and 3) JP 2002-292656 A (page 2, pages 4-5) Patent No. 3069041 (first page, etc.)
- a fluorine substituent is introduced into the main skeleton of the polyimide, or a fluorinated alkyl group is introduced.
- a technique for imparting water repellency to polyimide is employed.
- various physical properties such as heat resistance, moisture absorption, water repellency, and releasability possessed by polyimide can be fully exhibited, and polyimide that is particularly excellent in water repellency and moisture absorption is inexpensive and easily available industrially.
- the present invention has been made in view of the above situation, and is inexpensive and excellent in various physical properties such as strength, heat resistance, moisture absorption resistance, releasability (peelability), dielectric characteristics, electrical characteristics, and optical characteristics. And it aims at providing the polyamic acid composition useful as a polyimide which can exhibit high level water repellency, and its raw material. Furthermore, the object is to provide a polyimide that can provide a polyimide composition that can control the surface resistance as well as the above physical properties, and a polyamic acid composition that is useful as a raw material. is there.
- the present inventors have made various studies on highly water-repellent polyimide, and if the polyimide has a certain amount of ether bonds and / or thioether bonds in the molecule, the water repellency is remarkably improved and flexibility is imparted.
- At least one compound of acid dianhydride and diamine compound forming a polyamic acid which is a raw material of polyimide has an ether bond and / or a thioether bond in the molecule, and the polyimide is
- the sum of the ether bonds and thioether bonds in the polymerization repeating unit derived from the acid dianhydride and diamine compound is 2 or more, flexibility is imparted or improved, and the water repellency and moisture absorption resistance are remarkably excellent.
- such a polyimide can be obtained by using a cheap and industrially easier-to-obtain compound, but not only has excellent water repellency and moisture absorption resistance, but also has high strength, heat resistance and chemical resistance.
- the polyamic acid composition containing the above has found that it is possible to provide a polyimide composition capable of controlling the surface resistance value within a certain range while sufficiently exhibiting the above various physical properties, and solves the above-mentioned problems in an excellent manner.
- the present inventors have arrived at the present invention.
- the present invention is a highly water-repellent polyimide for copying machine members obtained by using one or more acid dianhydrides and diamine compounds, and at least of the acid dianhydrides and diamine compounds.
- One type of compound has an ether bond and / or a thioether bond in the molecule, and the total of ether bonds and thioether bonds in the polymerization repeating unit derived from the acid dianhydride and diamine compound constituting the polyimide is 2
- This is a highly water-repellent polyimide for copying machine members characterized by the above.
- the present invention also provides a polyamic acid composition for forming a highly water-repellent polyimide for copying machine members, wherein the polyamic acid composition uses one or more acid dianhydrides and diamine compounds, respectively. And at least one compound of the acid dianhydride and diamine compound having an ether bond and / or a thioether bond in the molecule, and the acid dianhydride constituting the polyamic acid. And a polyamic acid composition for forming a highly water-repellent polyimide for copying machine members, wherein the total of ether bonds and thioether bonds in the polymerization repeating unit derived from the product and the diamine compound is 2 or more.
- high water-repellent polyimide for copying machine members and the polyamic acid composition for forming high water-repellent polyimide for copying machine members of the present invention are not limited to copying machine member applications, but include electrical / electronic parts, machine parts, optical parts, It can be used for various purposes.
- the present invention is described in detail below.
- the highly water-repellent polyimide for copying machine members of the present invention (hereinafter also simply referred to as “polyimide”) is obtained by using an acid dianhydride and a diamine compound. It is obtained by imidizing a polyamic acid obtained by reacting an anhydride with a diamine compound.
- the acid dianhydride and diamine compound which are the raw material components, can be used alone or in combination of two or more, but at least one of the acid dianhydride and diamine compound is ether in the molecule. It has a bond and / or a thioether bond.
- At least one kind of acid dianhydride and / or diamine compound forming polyimide (and polyamic acid) uses a compound having an ether bond and / or a thioether bond in the molecule.
- a compound having an ether bond and / or a thioether bond in the molecule may be used, or a compound corresponding to an acid dianhydride
- Both a part or all of the compounds and a part or all of the compounds corresponding to the diamine compound may be compounds having an ether bond and / or a thioether bond in the molecule.
- a particularly preferred form is a form in which one or more compounds each having an ether bond in the molecule are used as the acid dianhydride and the diamine compound.
- the sum total of the ether bond and the thioether bond in the polymerization repeating unit derived from an acid dianhydride and a diamine compound is 2 or more.
- the sum of ether bonds and thioether bonds contained in the polymerization repeating unit derived from acid dianhydride and the polymerization repeating unit derived from diamine compound constituting polyimide (and polyamic acid) is 2 or more. is there.
- sufficient flexibility is imparted to the obtained polyimide, and the water repellency is remarkably improved. More preferably, it is 3 or more, More preferably, it is 4 or more.
- the sum of ether bonds and thioether bonds represents the sum of the number of ether bonds and the number of thioether bonds. This is because the polyimide and polyamic acid of the present invention require both ether bonds and thioether bonds as essential. For example, when the polyimide and polyamic acid of the present invention have an ether bond and no thioether bond, the total of the ether bond and thioether bond of the polyimide and polyamic acid Is the total number of ether bonds.
- an ether bond or thioether bond is present in the polymerization repeating unit. Any of these may exist and the sum total may be 2 or more, or both an ether bond and a thioether bond may exist and the sum of both may be 2 or more.
- a highly water-repellent polyimide for copying machine members obtained by using one or more acid dianhydrides and diamine compounds, and at least one of the acid dianhydrides and diamine compounds.
- This compound has an ether bond in the molecule, and has high water repellency for copying machine members in which the total of ether bonds in the polymerization repeating unit derived from the acid dianhydride and diamine compound constituting the polyimide is 3 or more.
- Polyimide is also one preferred embodiment of the present invention.
- An acid, and at least one compound of the acid dianhydride and the diamine compound has an ether bond in the molecule, and is a polymerization repeating unit derived from the acid dianhydride and the diamine compound constituting the polyamic acid.
- a polyamic acid composition for forming a highly water-repellent polyimide for copying machine members having a total sum of ether bonds of 3 or more is also a preferred embodiment of the present invention.
- the ether bond is a bond represented by —O—, but the number of ether bonds in the present invention includes the acid anhydride group (—C (O) —O—C) possessed by the acid dianhydride. The number of —O— moiety in (O) -part) is not included.
- the number of ether bonds and thioether bonds is the number of ether bonds and / or thioether bonds in a compound having an ether bond and / or thioether bond in the molecule, and the number of ether bonds and / or thioether bonds in the molecule. It can be calculated from the reaction molar ratio. Although the example of the calculation method is shown below, it is not limited only to the following forms. (1) An acid dianhydride having two ether bonds in one molecule and a diamine compound having no ether bond and thioether bond in the molecule are reacted at a molar ratio of 1/1 to obtain a polyamic acid composition.
- a polyamic acid composition is obtained by reacting an acid dianhydride having no ether bond and thioether bond in the molecule with a diamine compound having two ether bonds in one molecule at a molar ratio of 1/1. Is also calculated in the same way, and becomes two.
- An acid dianhydride having one ether bond in one molecule and a diamine compound having two ether bonds in one molecule are reacted at a molar ratio of 1/1 to obtain a polyamic acid composition to obtain a polyimide.
- the case is calculated in the same way and becomes 3.
- the ether bond and / or thioether bond of at least one of the acid dianhydride and diamine compound is preferably a bond that does not disappear due to the reaction between the acid dianhydride and the diamine compound and the imidization reaction. That is, the polyimide preferably includes a structural unit having an ether bond and / or a thioether bond derived from an acid dianhydride and / or a diamine compound in the main chain skeleton.
- Such a polyimide has the following general formula (1):
- X represents a diamine compound residue and is a divalent organic group.
- Y represents an acid dianhydride residue and is a tetravalent organic group.
- K is a general formula (1).
- the number of repeating structural units represented by the formula (1) represents a number of 1 or more, and the total of ether bonds and thioether bonds contained in X and Y is 2 or more). Preferably there is. More preferably, in the general formula (1), the total number of ether bonds and thioether bonds contained in X and Y is 3 or more, and still more preferable in the general formula (1).
- the total number of ether bonds and thioether bonds contained in is 4 or more. This makes it possible to more fully exhibit the effect of the present invention that the water repellency is remarkably high.
- it is also preferable that all ether bonds and / or thioether bonds contained in X and Y are ether bonds.
- the polyimide is obtained by imidizing a polyamic acid obtained by reacting an acid dianhydride and a diamine compound.
- the polyamic acid is represented by the following general formula (2);
- X represents a diamine compound residue and is a divalent organic group.
- Y represents a tetravalent organic group.
- K is the number of repeating structural units represented by the general formula (2). And a number of 1 or more, and the total of ether bonds and thioether bonds contained in X and Y is preferably 2 or more. More preferably, in the general formula (2), the total number of ether bonds and thioether bonds contained in X and Y is 3 or more, and still more preferable in the general formula (2). The total number of ether bonds and thioether bonds contained in is 4 or more. In the general formula (2), it is also preferable that all ether bonds and / or thioether bonds contained in X and Y are ether bonds.
- k is preferably 1 to 1000, and if it exceeds 1000, the viscosity becomes too high, and the polyamic acid is mixed with other components such as carbon black and fluorine resin to obtain a polyamic acid composition.
- the compatibility between the polyamic acid and the other components may not be sufficient, but may be diluted with a solvent or the like as necessary. More preferably, it is 2 to 500.
- the molecular weight of the polyamic acid is preferably 1,000 to 1,000,000 as a weight average molecular weight. If it is less than 1000, there is a possibility that better heat resistance or the like cannot be imparted, and if it exceeds 1,000,000, the polyamic acid may be gelled in the polyamic acid composition. More preferably, it is 5000 to 700,000, and further preferably 10,000 to 500,000. In particular, when the weight average molecular weight of the polyamic acid is 10,000 to 200,000, it is possible to improve the wear resistance of a polyimide film produced using a polyimide made from such a polyamic acid as a raw material.
- the weight average molecular weight can be measured by a gel permeation chromatograph (GPC) using a standard polystyrene calibration curve, as in Examples described later.
- Polyamic acid can be obtained by equimolar polymerization of an acid dianhydride and a diamine compound. During the polymerization reaction, the water present in the reaction system contains a part of the acid diacid. Reacts with an anhydride to open the acid dianhydride to form a phthalic acid structure. Those having the phthalic acid structure are difficult to react with a diamine compound at a low temperature, so that the polymerization is terminated.
- a phthalic acid group and an amino group are present with equal probability at the terminal portion of the synthesized polyamic acid.
- each of the two carboxylic acids at the terminal portion reacts with the amino group at the terminal portion of another polyamic acid to form two amide bonds.
- a crosslinked structure having an amide bond is formed.
- the crosslink density increases as the molecular weight of the polyamic acid decreases.
- a polyamic acid or a polyamic acid composition containing carbon black is used as a raw material for obtaining a polyimide film.
- the existing functional group for example, carboxylic acid or hydroxyl group
- the degree of grafting increases as the number of amines or carboxylic acids at the end of the polyamic acid increases. Therefore, the lower the molecular weight of the synthesized polyamic acid, the higher the grafting rate.
- the carbon black particles slide off from the polymer matrix in the polyimide film and wear occurs.
- the highly grafted polyamic acid and carbon black suppress the slipping of the carbon black particles due to polishing, resulting in improved wear resistance. Due to the effects (i) and / or (ii), it is considered that when a polyimide film is produced using a polyamic acid having a weight average molecular weight of 10,000 to 200,000 as a raw material, the wear resistance of the film is increased. .
- the weight average molecular weight of the polyamic acid is 10,000 or less, the resulting polyamic acid has a very low viscosity, which may make it difficult to produce a polyimide film.
- the total molecular weight of oxygen and sulfur related to the ether bond and / or thioether bond represents the sum of the number of oxygen atoms related to the ether bond and the number of sulfur atoms related to the thioether bond.
- the polyimide and polyamic acid of the present invention have both an ether bond and a thioether bond, for example, the polyimide and the polyamic acid of the present invention have an ether bond and no thioether bond.
- the total molecular weight of oxygen and sulfur related to the ether bond and / or thioether bond of the polyimide and polyamic acid is the sum of the number of oxygen atoms related to the ether bond.
- the polyamic acid can be obtained by using one or more acid dianhydrides and diamine compounds, and the structure of the polyamic acid varies depending on the acid dianhydride and diamine compound used.
- the polyamic acid of the present invention there are three preferred forms, and hereinafter, the first to third preferred forms will be described in order.
- an acid dianhydride used as a raw material the compound represented by following General formula (3) is suitable, and any of aromatic type and aliphatic type
- Y in the following general formula (3) corresponds to Y in the above general formulas (1) and (2), and represents a tetravalent organic group.
- a tetravalent organic group For example, linear or branched chain or ring
- An organic group bonded by for example, an oxygen atom, a nitrogen atom, a sulfur atom, etc. is preferable.
- the acid dianhydrides as the acid dianhydride having an ether bond and / or a thioether bond in the molecule, for example, the following compounds are suitable. 4,4'-oxydiphthalic anhydride, 3,3 ', 4,4'-biphenyl ether tetracarboxylic dianhydride, 2,3', 3,4'-biphenyl ether tetracarboxylic dianhydride, 4, 4'-bis (3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride, 4,4'-bis (3,4-dicarboxyphenoxy) diphenylsulfone dianhydride, 4,4'-bis (3,4 -Dicarboxyphenoxy) diphenylpropane dianhydride, 5,5'-bis (trifluoromethyl) -3,3 ', 4,4'-tetracarboxylic diphenyl ether dianhydride, 1,4-bis (3,4 -bis (3
- A represents a hydrogen atom or a fluorine atom.
- Q represents a divalent organic group.
- M represents an oxygen atom or a sulfur atom. is there.
- the form in which the acid dianhydride used in the present invention includes at least the compound represented by the general formula (4) is also one of the preferred embodiments of the present invention.
- M is particularly preferably an oxygen atom.
- the form in which the acid dianhydride used in the present invention includes at least the compound represented by the above general formula (4) and M in the general formula (4) representing an oxygen atom is also suitable for the present invention. It is one of the embodiments.
- Examples of the divalent organic group represented by Q include, for example, a divalent aliphatic organic group that may include a straight chain, branched chain, or ring; an aromatic organic group; two or more aliphatic groups, A divalent organic group in which an aromatic group is bonded by a carbon atom; a divalent organic group in which two or more aliphatic groups or aromatic groups are bonded by an atom other than a carbon atom (for example, an oxygen atom, a nitrogen atom, a sulfur atom, etc.) An organic group etc. are mentioned.
- a divalent aliphatic organic group derived from cyclic alkyl, chain alkyl, olefin, glycol or the like divalent derived from benzene, biphenyl, biphenyl ether, bisphenylbenzene, bisphenoxybenzene or the like
- Aromatic organic group a divalent organic group in which these aliphatic organic groups or aromatic organic groups are bonded by a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, or the like is preferable.
- the divalent organic group represented by (in the formula, * part is bonded to M in the general formula (4)).
- the above general formulas (5-2) and (5-4) are particularly preferable.
- the divalent organic group represented by Q may also have at least one halogen atom (preferably a fluorine atom) or a halogenated alkyl group (halogen-substituted alkyl group). Thereby, it may become easy to obtain a polyimide excellent in various physical properties such as heat resistance, chemical resistance, water repellency, dielectric properties, electrical properties, and optical properties.
- a group having a benzene ring having at least one fluorine atom or halogenated alkyl group is preferable.
- the halogenated alkyl group is more preferably an alkyl fluorine group having 1 to 20 carbon atoms (eg, methyl trifluoride group). Particularly preferred is a group having a benzene ring that is fully substituted with a fluorine atom or an alkyl fluorine group having 1 to 20 carbon atoms.
- Specific examples of the compound represented by the general formula (4) include compounds represented by the following formulas (6-1) to (6-5) (1,4-bis (3,4-dicarboxy). Trifluorophenoxy) tetrachlorobenzene dianhydride, 1,4-bis (3,4-dicarboxytrifluorophenoxy) benzene dianhydride, 1,4-bis (3,4-dicarboxyphenoxy) benzene acid Anhydride, 1,4-bis (3,4-dicarboxyphenoxy) tetrafluorobenzene dianhydride, 1,4-bis (3,4-dicarboxytrifluorophenoxy) tetrafluorobenzene dianhydride); 2,2-bis ⁇ 4- (3,4-dicarboxyphenoxy) phenyl ⁇ propane dianhydride, 2,2-bis ⁇ 4- (3,4-dicarboxytrifluorophenoxy) phenyl ⁇ Compounds represented by the following formula (6-6) such as lopan dianhydr
- Z in the following formulas (6-6) to (6-9) are the same or different and each represents a hydrogen atom or a fluorine atom.
- Z may be the same in each organic group, may be different, may be the same in each benzene ring, and may be different. It is particularly preferred to use one or more of these acid dianhydrides represented by (6-1) to (6-9).
- an acid dianhydride having no ether bond in the molecule may be appropriately selected, and an acid having no ether bond in the molecule
- the dianhydride the following compounds are suitable.
- X in the general formula (7) corresponds to X in the general formulas (1) and (2) and represents a divalent organic group, and includes, for example, a straight chain, a branched chain, or a ring.
- a divalent aliphatic organic group derived from cyclic alkyl, chain alkyl, olefin, glycol or the like divalent derived from benzene, biphenyl, biphenyl ether, bisphenylbenzene, bisphenoxybenzene or the like
- Aromatic organic group a divalent organic group in which these aliphatic organic groups or aromatic organic groups are bonded by a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, or the like is preferable.
- the divalent organic group represented by X is also a fluorine atom and / or a halogenated alkyl group (halogen-substituted alkyl group) in which at least a part of hydrogen atoms constituting a C—H bond that should be included if not substituted Also referred to as an alkyl group.) May be substituted.
- a halogenated alkyl group halogen-substituted alkyl group in which at least a part of hydrogen atoms constituting a C—H bond that should be included if not substituted Also referred to as an alkyl group.
- the halogenated alkyl group preferably has 1 to 20 carbon atoms, and the halogen atom it contains is a fluorine atom.
- An alkyl fluorine group having 1 to 20 carbon atoms (also referred to as a fluorine-substituted alkyl group) is more preferable.
- the divalent organic group represented by X is in a form having at least one fluorine atom or a halogenated alkyl group, it is particularly preferable that all hydrogen atoms of the C—H bond are fluorine atoms and / or carbons.
- the alkyl fluorine group of 1 to 20 is substituted. As described above, if all of the C—H bonds of the divalent organic group are substituted with a fluorine atom and / or an alkyl fluorine group having 1 to 20 carbon atoms, the above-described effects can be further enhanced.
- divalent organic group represented by X include the following general formulas (8-a) to (8-i);
- Z ′ is the same or different and is a hydrogen atom (that is, unsubstituted), an alkyl group or an aryl group optionally substituted with a substituent, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom or an iodine atom).
- Z ′ may be the same or different in each organic group, and may be the same or different in each benzene ring.
- R may be the same or different and each represents a fluorine atom or a hydrogen atom
- X ′ represents an oxygen atom, a nitrogen atom, a carbon atom, —S—, or —SO 2 —.
- ' May be the same or different.' Is preferred.
- the general formula (8-d) in which Z ′ is all hydrogen atoms, is particularly preferable.
- the organic groups represented by the general formulas (8-a) to (8-i) may also have at least one fluorine atom or a halogenated alkyl group (halogen-substituted alkyl group). That is, at least one of the groups represented by Z ′ of each organic group may be a fluorine atom or a halogenated alkyl group. Thereby, it may become easy to obtain a polyimide excellent in various physical properties such as heat resistance, chemical resistance, water repellency, dielectric properties, electrical properties, and optical properties.
- each benzene ring of each organic group has at least one fluorine atom.
- halogenated alkyl group is more preferably an alkyl fluorine group having 1 to 20 carbon atoms (eg, methyl trifluoride group).
- Z ′ of each organic group is a fluorine atom or an alkyl fluorine group having 1 to 20 carbon atoms.
- the divalent organic group represented by X is a group represented by the general formula (8-a), (8-b), (8-c), or (8-d).
- the diamine compound include 2,3,5,6-tetrafluoro-1,4-diaminobenzene, 1,3-diamino-2,4,5,6-tetrafluorobenzene (4FMPD), 4 , 4′-diamino-2,2′-bis (trifluoromethyl) biphenyl (TFMB), bis (4-aminophenyl) ether (ODA), 2,2-bis [4- (4-aminophenoxy) phenyl] hexa Fluoropropane (HFBAPP), 4,4′-bis (4-aminophenoxy) biphenyl (BAPB), 1,4-bis (4-aminophenoxy) benzene (TPE-Q), bis (2,3,5,6) -Tetrafluoro-4-aminophenyl)
- the diamine compound having an ether bond and / or a thioether bond in the molecule it is preferable to use one having an ether bond and / or a thioether bond among the diamine compounds represented by the general formula (7). It is.
- the mixing ratio of these raw materials is as follows.
- the total amount of the diamine compound is preferably set to 0.6 to 1.4 mol with respect to mol. This makes it possible to obtain a polyamic acid composition and a polyimide that are superior in heat resistance, moisture absorption resistance, and the like. More preferably, it is 0.75 to 1.25 mol.
- the reaction step between the acid dianhydride and the diamine compound is preferably performed in an organic solvent.
- the organic solvent is not particularly limited as long as the reaction between the diamine compound, which is a raw material of polyamic acid, and the acid dianhydride can proceed efficiently and is inert to these raw materials.
- polar solvents such as sulfoxide, acetone, methyl ethyl ketone, isobutyl ketone, and methanol
- nonpolar solvents such as toluene and xylene.
- organic solvents may be used alone or as a mixture of two or more.
- the amount of the organic solvent is not particularly limited as long as the polymerization reaction for obtaining the polyamic acid can proceed efficiently.
- the organic solvent and the polyamic acid raw materials (acid dianhydride and diamine compound) It is preferable to set the total amount of the polyamic acid raw materials to 1 to 60% by mass with respect to the total amount of 100% by mass. More preferably, it is 3 to 50% by mass.
- the reaction conditions are not particularly limited as long as the raw material of the polyamic acid can sufficiently react.
- the polymerization reaction temperature is preferably set to ⁇ 20 to 80 ° C. More preferably, it is 0 to 50 ° C.
- the polymerization reaction time is preferably 1 hour to 10 days, more preferably 1 day to 7 days.
- a commonly used method that is, generally an acid as a reaction raw material is used.
- examples thereof include a method in which an additive (for example, water) for ring-opening a part of the dianhydride is added during polyamic acid polymerization, a method for controlling the temperature during polyamic acid polymerization, and the like.
- the method of adding water at the time of polyamic acid polymerization is particularly preferable because it can be industrially inexpensively performed.
- B 1 represents CF 3 or CN.
- B 2 is the same or different and represents H, F, Cl, Br or I.
- R 1 represents a halogen-substituted alkyl group having 1 to 20 carbon atoms.
- X 1 is the same or different and represents O or S.
- X 2 represents O or S.
- n represents the number of B 2 and is an integer of 0 to 2.
- the diamine compound represented by the general formula (9) has three benzene rings, and one or all of the hydrogen atoms of the one benzene ring are a cyano group or a methyl trifluoride group, a halogen atom.
- O oxygen atom
- S sulfur atom
- Such a diamine compound is an unprecedented novel compound, but is useful as a raw material for polyimide having excellent heat resistance, chemical resistance, water repellency, dielectric properties, electrical properties, optical properties, and the like.
- a halogen-substituted alkoxy group or a halogen-substituted alkylthio group not only controls the refractive index but also exhibits moisture absorption resistance and excellent water repellency.
- one benzene ring is bonded to the other two benzene rings having an amino group by an ether bond or a thioether bond, so that flexibility is imparted and water repellency is further significantly improved. Become. Therefore, it is suitably used for applications that require water repellency.
- the form in which the diamine compound used in the present invention includes the compound represented by the general formula (9) is also one of the preferred embodiments of the present invention.
- the diamine compound represented by the general formula (9) is a novel compound that has not been obtained so far, it is not limited to use as a raw material for polyamic acid and polyimide, but for various uses (for example, optical material use, etc.) ) Can also be used.
- the diamine compound represented by the general formula (9) is also one aspect of the present invention.
- R 1 represents a halogen-substituted alkyl group.
- the halogen-substituted alkyl group is a group in which at least a part of hydrogen atoms bonded to carbon atoms constituting the alkyl group is substituted with a halogen atom.
- the structure is not particularly limited, and may be any structure of a linear, branched, or cyclic alkyl group. Further, the halogen-substituted alkyl group may have an ether bond.
- the halogen atom is preferably a fluorine atom (F), a chlorine atom (Cl), a bromine atom (Br), or an iodine atom (I), and may be substituted with two or more of these atoms.
- chlorine atoms (Cl) and fluorine atoms (F) are preferable from the viewpoint of refractive index control, and fluorine atoms (F) are more preferable from the viewpoint of improving solubility and water repellency.
- R 1 is a fluorine-substituted alkyl group having 1 to 20 carbon atoms is also a preferred embodiment of the present invention.
- At least one halogen-substituted alkoxy group or halogen-substituted alkylthio group comprising such a halogen-substituted alkyl group and an oxygen atom (O) or a sulfur atom (S) is present.
- O oxygen atom
- S sulfur atom
- the number of carbon atoms constituting the halogen-substituted alkyl group is suitably 1-20, but it is preferably 2-18, more preferably 3-15, considering solubility, water repellency and the like.
- the total number of halogen atoms bonded to carbon atoms is preferably larger than the total number of hydrogen atoms bonded to carbon atoms. If the total number of halogen atoms is less than the total number of hydrogen atoms, water repellency may not be exhibited sufficiently.
- the total number of hydrogen atoms contained when the halogen-substituted alkyl group is unsubstituted is 100%
- the total number of halogen atoms contained in the halogen-substituted alkyl group is preferably more than 50%.
- the total number of halogen atoms is more preferably 60% or more, and even more preferably 70% or more.
- Examples of the group particularly suitable as the halogen-substituted alkyl group include groups represented by the following chemical formulas. CF 3 - (CF 2) 7 - (CH 2) 2 - CF 3 — (CF 2 ) 9 — (CH 2 ) 2 — CF 3 — (CF 2 ) 2 —CH 2 — CF 3 — (CF 2 ) 3 —CH 2 — CHF 2- (CF 2 ) 7 -CH 2- (CF 3 ) 2 —CF (CF 2 ) 2 — (CH 2 ) 2 — CF 3 CH 2- HCF 2 CH 2- F (CF 2 ) 2 CH 2- CHF 2 CF 2 CH 2- (CF 3 ) 2 CH— CF 3 CH 2 CH 2- H (CF 2 ) 2 CH 2- Cl (CF 2 ) 2 CH 2- (CF 3 ) C (CH 3 ) H—
- m represents the number of substitutions of the group represented by the R 1 X 2 group (halogen-substituted alkoxy group or halogen-substituted alkylthio group), and is an integer of 1 to 3, From the viewpoint of obtaining water-repellent polyimide, it is preferable that m is large. More preferably, it is 2 to 3, and more preferably 3.
- B 2 is the same or different and represents H, F, Cl, Br, or I. From the viewpoint of further improving heat resistance, water repellency, moisture absorption resistance, dielectric properties, and the like. It is preferred that at least one of B 2 is a halogen atom (F, Cl, Br or I). Among them, two B 2 in the above general formula (9) preferably each a halogen atom. Of the halogen atoms, a chlorine atom (Cl) and a fluorine atom (F) are preferable, and a fluorine atom (F) is more preferable. As a result, the water repellency and moisture absorption resistance can be further improved, and the material becomes more useful for various applications. Particularly preferably, the two B 2 in the general formula (9) are both fluorine atoms (F), and the form in which the B 2 is F (fluorine atoms) is also present. It is one of the preferred embodiments of the invention.
- Preferred forms such as the halogen atom and the number of carbon atoms contained in the halogen-containing alkyl alcohol or halogen-containing alkyl thiol are the same as those for R 1 described above.
- B 1 , B 2 , R 1 , X 1 , X 2 and m are the same as the symbols in the general formula (9).
- n1 represents the number of B 2 in the compound represented by the general formula (10) and is 5.
- n2 represents the number of B 2 in the compound represented by the general formula (11a) and is an integer of 2 to 4.
- n3 represents the number of B 2 in the compound represented by the general formula (11b), and is 3.
- the reaction molar ratio between the halogen-containing alkyl alcohol and / or the halogen-containing alkyl thiol and the compound represented by the general formula (10) is, for example,
- the total amount of the halogen-containing alkyl alcohol and the halogen-containing alkyl thiol is preferably set to 0.3 to 10 mol with respect to 1 mol of the compound represented by the general formula (10). This makes it possible to obtain the compound to be used in the reaction step (a-2) in a high yield while sufficiently reducing the generation of by-products.
- the molar ratio of the preparation is determined by the target compound (that is, the diamine compound represented by the general formula (9) to be obtained is a halogen-substituted alkoxy group or a halogen-substituted group represented by R 1 X 2. It is preferably changed depending on whether it is a diamine compound having one alkylthio group, a diamine compound having two alkylthio groups, or a diamine compound having three alkylthio groups.
- a halogen-containing compound is included with respect to 1 mol of the compound represented by the general formula (10). It is preferable to carry out the reaction so that the total amount of alkyl alcohol and halogen-containing alkylthiol is 0.3 to 2 mol, more preferably 0.5 to 1.5 mol.
- the total amount of halogen-containing alkyl alcohol and halogen-containing alkylthiol is 1 to 3 mol. It is preferable to carry out the reaction so that the amount is more preferably 1.5 to 2.5 mol.
- the total amount of halogen-containing alkyl alcohol and halogen-containing alkyl thiol is 2 to 10 mol. It is preferable to carry out the reaction so that it is more preferably 3 to 8 mol.
- the reaction step (a-1) is preferably performed in a solvent.
- the solvent include acetonitrile, N-methylpyrrolidone (NMP), N-methyl-2-pyrrolidinone, dimethylacetamide (DMAc), dimethylformamide (DMF), dimethylsulfoxide (DMSO), nitrobenzene, nitromethane, acetone, methyl ethyl ketone,
- One or more polar solvents such as methyl isobutyl ketone and nonpolar solvents such as toluene and xylene can be used.
- the amount of the solvent used is not particularly limited as long as the reaction can proceed efficiently.
- the concentration of the compound represented by the general formula (10) in the solvent is 3 to 40% by mass. It is preferable to set to. More preferably, it is 5 to 30% by mass.
- the reaction step (a-1) is also preferably performed in the presence of a catalyst, and a basic catalyst is suitable as the catalyst.
- the basic catalyst is preferably a basic substance capable of capturing hydrogen halide (HF or the like) that may be generated by the reaction.
- HF hydrogen halide
- potassium carbonate, calcium carbonate, sodium carbonate, sodium fluoride, hydroxide potassium carbonate, calcium carbonate, sodium carbonate, sodium fluoride, hydroxide
- sodium, potassium hydroxide, calcium hydroxide, potassium fluoride, triethylamine, tributylamine, pyridine and the like can be used.
- the amount of the catalyst used is not particularly limited as long as the reaction can proceed efficiently. For example, it is 0.3 to 10 mol with respect to 1 mol of the total amount of halogen-containing alkyl alcohol and halogen-containing alkyl thiol. Is preferred. More preferably, it is 0.5 to 8 mol.
- the reaction conditions in the reaction step (a-1) are not particularly limited, and may be appropriately selected depending on the type and amount of the raw material compound and other various conditions.
- the reaction temperature is preferably ⁇ 20 to 200 ° C., more preferably 0 to 150 ° C.
- the reaction time is preferably 1 hour or longer, more preferably 2 to 72 hours. By performing the reaction under these conditions, the compound represented by the general formula (11a) can be obtained in high yield.
- the reaction step (a-1) may be performed under normal pressure or under pressure.
- the compound represented by the general formula (11a) is preferably obtained.
- the compound represented by the general formula (11a) is a compound that is reacted with aminophenol and / or aminothiophenol in the reaction step (a-2).
- the reaction molar ratio between the compound represented by the general formula (11a) and aminophenol and / or aminothiophenol is represented by, for example, the general formula (11a). It is preferable to set the total amount of aminophenol and aminothiophenol to 2 mol or more per 1 mol of the compound. More preferably, the amount is from 2 to 10 moles, whereby the target product (diamine compound represented by the above general formula (9)) can be obtained in high yield while sufficiently reducing the generation of by-products. become. More preferably, it is 2 to 5 mol.
- the reaction step (a-2) is preferably performed in the presence of a catalyst or a solvent, and the specific form and preferred form thereof are described above. Just as you did.
- the amount of catalyst used in the reaction step (a-2) is, for example, preferably 0.5 to 10 mol, more preferably 1 mol of the compound represented by the general formula (11a). 0.5 to 5 moles.
- the amount of the solvent used is preferably set so that the concentration of the compound represented by the general formula (11a) in the solvent is 1 to 40% by mass. More preferably, it is 3 to 30% by mass.
- the reaction conditions for the reaction step (a-2) are not particularly limited, and may be appropriately selected depending on the type and amount of the raw material compound and other various conditions.
- the reaction temperature is preferably ⁇ 20 to 200 ° C., more preferably 0 to 150 ° C.
- the reaction time is preferably 1 hour or longer, more preferably 2 to 72 hours.
- the reaction step (a-2) may be performed under normal pressure or under pressure.
- the said manufacturing method (a) it does not specifically limit about processes other than the reaction mentioned above.
- it is cooled, and then the solvent is distilled off after removing the precipitated salt, or the solvent is distilled off, or the solvent is distilled off and then extracted with an organic solvent.
- the reaction product and other components may be separated by a method such as using a column chromatograph, but the reaction step (a-2) is carried out as it is after the reaction step (a-1) is completed. Can also be done.
- the reaction solution is cooled as necessary. Thereafter, the precipitated salt is removed and the solvent is distilled off, followed by distillation.
- reaction product and other components may be separated by a method such as using a column chromatograph.
- purification methods such as recrystallization, reprecipitation, and sublimation purification can be used.
- the reaction molar ratio between aminophenol and / or aminothiophenol and the compound represented by the general formula (10) is, for example, the general formula (10) It is preferable to set so that the total amount of aminophenol and aminothiophenol is 2 mol or more with respect to 1 mol of the compound represented by 10). More preferably, the amount is from 2 to 10 mol, which makes it possible to obtain the compound to be used in the reaction step (b-2) in a high yield while sufficiently reducing the generation of by-products. More preferably, it is 2 to 5 mol.
- the reaction step (b-1) is preferably carried out in the presence of a catalyst or a solvent, as in the case of the reaction step (a-2).
- the specific form and preferred form thereof have been described above. It is as follows.
- the amount of catalyst used in the reaction step (b-1) is, for example, preferably 0.5 to 10 moles, more preferably 1 mole relative to 1 mole of the compound represented by the general formula (10). 0.5 to 5 moles.
- the amount of the solvent used is preferably set so that the concentration of the compound represented by the general formula (10) in the solvent is 1 to 40% by mass. More preferably, it is 3 to 30% by mass.
- the reaction conditions for the reaction step (b-1) are not particularly limited, and may be appropriately selected depending on the type and amount of the raw material compound and other various conditions.
- the reaction temperature and reaction time are preferably set in the same manner as in the reaction step (a-2) described above. Moreover, you may carry out under a normal pressure and may carry out under pressure.
- the reaction step (b-1) the compound represented by the general formula (11b) is preferably obtained.
- the compound represented by the general formula (11b) is a compound that is reacted with a halogen-containing alkyl alcohol and / or a halogen-containing alkyl thiol in the reaction step (b-2).
- the reaction molar ratio between the compound represented by the general formula (11b) and the halogen-containing alkyl alcohol and / or the halogen-containing alkyl thiol is, for example, the general formula (11b). It is preferable to set the total amount of halogen-containing alkyl alcohol and halogen-containing alkyl thiol to 0.3 to 10 mol with respect to 1 mol of the represented compound. This makes it possible to obtain the target product (diamine compound represented by the general formula (9)) in high yield while sufficiently reducing the generation of by-products.
- the molar ratio of the preparation is determined by the target compound (that is, the diamine compound represented by the general formula (9) to be obtained is a halogen-substituted alkoxy group or a halogen-substituted group represented by R 1 X 2. It is preferably changed depending on whether it is a diamine compound having one alkylthio group, a diamine compound having two alkylthio groups, or a diamine compound having three alkylthio groups.
- the total amount of halogen-containing alkyl alcohol and halogen-containing alkyl thiol is 0.3 to 2 mol with respect to 1 mol of the compound represented by the general formula (11a). It is preferable to carry out the reaction so that the amount is more preferably 0.5 to 1.5 mol.
- the total amount of the halogen-containing alkyl alcohol and the halogen-containing alkyl thiol is 1 to 3 mol, more preferably 1.5 to 2.5 mol. It is preferred to carry out the reaction.
- the reaction is carried out so that the total amount of the halogen-containing alkyl alcohol and the halogen-containing alkyl thiol is 2 to 10 mol, more preferably 3 to 8 mol. Is preferred.
- the reaction step (b-2) is preferably performed in the presence of a catalyst or a solvent, and the specific form and preferred form thereof are described above. Just as you did.
- the amount of the catalyst used in the reaction step (b-2) is preferably 0.3 to 10 mol with respect to 1 mol of the total amount of halogen-containing alkyl alcohol and halogen-containing alkyl thiol, for example. More preferably, it is 0.5 to 8 mol.
- the amount of the solvent used is preferably set so that the concentration of the compound represented by the general formula (11a) in the solvent is 1 to 40% by mass. More preferably, it is 3 to 30% by mass.
- the reaction conditions for the reaction step (b-2) are not particularly limited, and may be appropriately selected depending on the type and amount of the raw material compound and other various conditions.
- the reaction temperature and reaction time are preferably set in the same manner as in the reaction step (a-1) described above. Moreover, you may carry out under a normal pressure and may carry out under pressure.
- it does not specifically limit about processes other than the reaction mentioned above, For example, it is suitable to perform the isolation
- the diamine compound used as a raw material has the structure represented by the general formula (9), it has flexibility, moisture absorption resistance and water repellency. Although it is remarkably excellent in physical properties such as the above, the effects of the present invention can also be exhibited as a diamine compound having the following constitution.
- a diamine compound obtained by using a compound having a hydroxyl group (—OH), specifically, in the general formula (9), one or both of the two benzene rings present at both ends are benzene rings.
- a diamine compound having a structure having two or more benzene rings derived from a compound having two or more and having an amino group and a hydroxyl group is also one preferred embodiment of the present invention.
- Examples of the acid dianhydride used in the second preferred form of the polyamic acid of the present invention include the following general formula (12):
- Y represents a tetravalent organic group
- the organic group represented by Y includes a linear or branched chain or a ring.
- a group containing a benzene ring is preferable, and a group containing a halogen atom and / or a halogen-substituted alkyl group is preferable.
- Preferred forms of the halogen-substituted alkyl group and the halogen atom are the same as in the general formula (9).
- the acid dianhydride is not particularly limited, and any of aromatic and aliphatic compounds can be used. Two or more kinds of acid dianhydrides may be mixed and used.
- the aromatic tetracarboxylic acid anhydride for example, the following compounds are suitable.
- Difluoropyromellitic dianhydride dichloropyromellitic dianhydride, trifluoromethylpyromellitic dianhydride, 1,4-di (trifluoromethyl) pyromellitic dianhydride, di (heptafluoropropyl) pyro Mellitic dianhydride, pentafluoroethyl pyromellitic dianhydride, bis ⁇ 3,5-di (trifluoromethyl) phenoxy ⁇ pyromellitic dianhydride, 5,5'-bis (trifluoromethyl) -3 , 3 ', 4,4'-tetracarboxybiphenyl dianhydride, 1,2', 5,5'-tetrakis (trifluoromethyl) -3,3 ', 4,4'-tetracarboxybiphenyl dianhydride 5,5'-bis (trifluoromethyl) -3,3 ', 4,4'-tetracarboxylic di
- aliphatic tetracarboxylic dianhydride the following compound etc. are suitable, for example.
- aromatic tetracarboxylic acid anhydrides are preferable.
- aromatic tetracarboxylic acid anhydride for example, an organic group represented by Y in the general formula (12) is a group represented by the following general formulas (13-1) to (13-3): A certain form is mentioned.
- R 2 and R 3 are the same or different and each represents a hydrogen atom (H), a halogen atom or a halogen-substituted alkyl group.
- T is a group or structure represented by the following formula (wherein R 4 and R 5 are the same or different and each represents a hydrogen atom (H), a halogen atom or a halogen-substituted alkyl group).
- aromatic tetracarboxylic anhydrides 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride, 2,3 ′, 3,4′-biphenyl ether tetracarboxylic dianhydride, 4,4'-bis (3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride, 4,4'-bis (3,4-dicarboxyphenoxy) diphenylsulfone dianhydride, 4,4'-bis (3 , 4-Dicarboxyphenoxy) diphenylpropane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propanoic acid Dianhydride, 5,5'-bis (trifluoromethyl) -3,3 ', 4,4'-tetracarboxylic diphenyl ether dianhydride,
- the polyamic acid has a structure derived from these acid dianhydrides, it is possible to obtain a polyimide having further excellent solubility in organic solvents, heat resistance, moisture absorption resistance, water repellency, releasability, and the like. It becomes possible.
- the form in which the acid dianhydride is a compound represented by the following general formula (14) and / or (15) is also a preferred embodiment of the present invention.
- reaction process of the acid dianhydride of the 2nd suitable form in the polyamic acid of this invention and a diamine compound can be performed similarly to the 1st suitable form in the polyamic acid of this invention.
- the polyamic acid of the second preferred form is represented by the following general formula (16);
- Y represents a tetravalent organic group.
- B 1 represents CF 3 or CN.
- B 2 is the same or different and represents H, F, Cl, Br or I.
- R 1 represents Represents a halogen-substituted alkyl group having 1 to 20 carbon atoms
- X 1 is the same or different and represents O or S.
- X 2 represents O or S.
- n represents the number of B 2 and 0.
- M represents the number of substitutions of the group represented by R 1 X 2 and is an integer of 1 to 3.
- n + m 3. It can be expressed as a thing.
- polyamic acid has a structure derived from the diamine compound represented by the general formula (9), it is excellent in various physical properties such as heat resistance, chemical resistance, dielectric properties, electrical properties, and optical properties, Moreover, it is useful as a raw material that can provide a polyimide that is remarkably excellent in water repellency.
- the polyamic acid in the present invention is in a form having a repeating unit represented by the general formula (16).
- the second preferred form of the polyamic acid is synthesized using at least the diamine compound represented by the general formula (9) and the acid dianhydride represented by the general formula (12). Any general diamine compound that is usually used can be used in combination, that is, copolymerized within a range in which the characteristics of the diamine compound represented by the general formula (9) are sufficiently exhibited.
- the second preferred form of the polyamic acid is a diamine compound represented by the general formula (9), a commonly used diamine compound, and an acid represented by the general formula (12). It may be obtained by copolymerizing a dianhydride.
- the total usage-amount of all the diamine compounds shall be 100 mol%, it is suitable to use 5 mol% or more of diamine compounds represented by the said General formula (9). More preferably, it is 25 mol% or more, more preferably 50 mol% or more, and most preferably 100 mol%.
- a more preferable form of the polyamic acid of the second preferred form is a more preferred form of the diamine compound represented by the general formula (9) and the acid dianhydride represented by the general formula (12). It can obtain by synthesizing using the thing of.
- the polyamic acid in the present invention is in a form where R 1 in the general formula (16) is a fluorine-substituted alkyl group having 1 to 20 carbon atoms, and B 2 in the general formula (16) is A form that is F (fluorine atom) is also one of the preferred embodiments of the present invention.
- the polyamic acid of the third preferred form has a structure derived from the compound represented by the general formula (17), so that it has solubility in organic solvents, heat resistance, moisture absorption resistance, water repellency, release properties. Excellent in moldability and the like.
- the same diamine compound as used in the first preferred form of the polyamic acid of the present invention can be used.
- the blending ratio of the raw materials is 4,4 ′-[(2,3,5,6-tetrafluoro-1,4-phenylene).
- the diamine compound is preferably set to 0.01 to 3 moles. This makes it possible to obtain a polyamic acid (and a polyamic acid composition) that is superior in heat resistance, moisture absorption resistance, and the like. More preferably, it is 0.5 to 2 mol.
- Other conditions in the polymerization reaction step can be the same as those in the polymerization reaction step for obtaining the polyamic acid of the first preferred form of the present invention.
- the third preferred form of polyamic acid is represented by the following general formula (18):
- X represents a divalent organic group
- a polyamic acid has a structure derived from the compound represented by the general formula (17), so that it has excellent solubility in organic solvents, heat resistance, moisture absorption resistance, water repellency, releasability, and the like. It will be.
- the polyamic acid in the present invention is in a form having a repeating unit represented by the general formula (18).
- a polyamic acid composition containing the polyamic acid of the present invention is also one aspect of the present invention.
- a polyamic acid having a weight average molecular weight of 200,000 or more is particularly used as the polyamic acid.
- the polyamic acid composition (or polyamic acid) preferably has a water content of 1000 ppm or less.
- the said polyamic acid composition can contain components (other components) other than the said polyamic acid according to a desired use.
- the other components include carbon black, fluorine resin, dispersant, organic solvent, inorganic filler, mold release agent, cup link agent, flame retardant, and the like. It is preferable that at least one of the resins is included.
- a polyamic acid composition further containing carbon black and / or a fluorine-based resin is also a preferred embodiment of the present invention. It is preferable that the fluororesin is dispersed in the composition.
- the water content is preferably 1000 ppm or less.
- polymerization of polyamic acid it is preferable not to mix a water
- Examples of the carbon black include those marketed as conductive carbon black, but are not particularly limited.
- furnace black which is produced by continuously pyrolyzing a gas or liquid raw material in a reaction furnace, particularly ketjen black using ethylene heavy oil as a raw material, and by burning the raw material gas, the flame is channeled.
- Channel black that is rapidly cooled and deposited on the bottom of the steel, thermal black obtained by periodically repeating combustion and thermal decomposition using gas as a raw material, particularly acetylene black using acetylene gas as a raw material, and carbon nanotubes Can also be used.
- ketjen black, acetylene black, and carbon nanotubes having highly developed crystallites and structures are suitable. Moreover, these may be used independently and may be used as a 2 or more types of mixture.
- the fluororesin is not particularly limited as long as it is a polymer containing a structural unit derived from an olefin containing a fluorine atom (fluoroolefin).
- fluoroolefin examples include vinylidene fluoride (PVDF), hexafluoropropylene, and tetrafluoroethylene.
- fluororesin examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA), tetrafluoroethylene-hexafluoropropylene resin (FEP), Tetrafluoroethylene-ethylene copolymer (ETFE), trifluorochloroethylene resin (PCTFE), trifluoroethylene chloride-ethylene copolymer (ECTFE), perfluorocyclic polymer, vinyl fluoride resin (PVF), etc. Is preferred. Moreover, these can use 1 type (s) or 2 or more types.
- the mass ratio of polyamic acid and carbon black and / or fluorine resin can be appropriately selected from desired surface resistance and water repellency.
- the total amount (solid content) of carbon black and fluororesin is preferably 0.5 to 50 parts by weight with respect to 100 parts by weight of polyamic acid (solid content). If the amount is less than 0.5 parts by weight, sufficient water repellency and releasability may not be obtained, and the surface resistance value may not be more controlled. If the amount exceeds 50 parts by weight, the mechanical strength is further increased. There is a risk that it will not be possible.
- the amount is more preferably 1 to 40 parts by weight, still more preferably 1 to 30 parts by weight. Particularly preferred is 2 to 20 parts by weight.
- the polyamic acid composition containing carbon black and / or fluorine resin is also preferably in a form in which carbon black and / or fluorine resin is dispersed in the composition.
- the carbon black and / or fluorine-based resin can be uniformly dispersed in the composition, so that not only the heat resistance and water repellency are excellent, but also the surface resistance value (electricity)
- the surface resistance value electricality
- Examples of a method for preparing such a polyamic acid composition containing carbon black and / or fluorine resin include (I) Acid dianhydride which is a raw material of polyamic acid in the presence of carbon black and / or fluorine resin. And (II) a polyamic acid raw material and a diamine compound are polymerized to obtain a polyamic acid, and then the polyamic acid is mixed with carbon black and / or Or the method etc. which mix with a fluororesin are mentioned.
- the carbon black and / or the fluororesin may be used as a dispersion in which these are dispersed in an organic solvent, if necessary.
- a dispersion liquid in which carbon black or a fluorine-based resin is dispersed in an organic solvent in the polymerization reaction step in the above (I) or the mixing step with the polyamic acid in the above (II).
- the organic solvent is not particularly limited as long as it is a solvent that can disperse or dissolve carbon black or a fluorine-based resin.
- an organic solvent that can be used in a polymerization reaction step described later can be suitably used.
- a dispersant is preferably used when carbon black is dispersed in an organic solvent, or when carbon black is directly mixed with polyamic acid.
- a dispersing agent For example, anionic, nonionic, or cationic surfactant, a polymeric dispersing agent etc. are mentioned, 1 type (s) or 2 or more types can be used. Among these, it is preferable to use a polymer dispersant from the viewpoint of dispersion performance.
- polymer dispersant examples include a polycarboxylic acid polymer dispersant having a plurality of carboxyl groups in the molecule, a polyamine polymer dispersant having a plurality of amino groups in the molecule, and a plurality of amides in the molecule.
- a polymer dispersant having a group and a polymer dispersant containing a plurality of polycyclic aromatic compounds in the molecule are suitable, and one or more of these can be used.
- the polycarboxylic acid polymer dispersant include copolymers of (meth) acrylic acid and (meth) acrylic ester, amides of various amines such as maleic anhydride copolymer and alkylamine, and alcohols. And comb-like polymers obtained by grafting polycarboxylic acid polyesters such as poly (meth) acrylic acid copolymers and polyalkylene glycols.
- (meth) acrylic acid means acrylic acid or methacrylic acid.
- polyamine polymer dispersant examples include comb polymers obtained by grafting a polyester to a polyamine such as polyalkyleneamine, polyallylamine, and N, N-dimethylaminoethyl methacrylate.
- polymer dispersant having a plurality of amide groups in the molecule include, for example, a polyamide, polyvinyl pyrrolidone, poly N, N-dimethylacrylamide copolymer obtained by a condensation reaction, polyester and polyalkylene glycol.
- examples include grafted comb polymers.
- the polymer dispersant containing the polycyclic aromatic compound examples include copolymers of vinyl monomers having a pyrene or quinacridone skeleton and various monomers.
- the amount of the dispersant added is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the dispersion target (polyamic acid composition) from the viewpoint of suitably dispersing. Is preferred. More preferably, it is 0.5 to 10 parts by weight.
- the polymerization reaction step for obtaining the polyamic acid in the above preparation method is as described above, but when carbon black and / or fluorine resin is dispersed in an organic solvent and the polymerization reaction is performed in the presence of the dispersion. Further, an organic solvent may be further added to carry out the polymerization reaction, or the organic solvent in the dispersion may be used as a polymerization solvent. Further, in this case, the amount of the organic solvent in the polymerization reaction step, including the amount of the organic solvent in the carbon black and / or fluororesin dispersion, is the total amount of the organic solvent used as described above. It is preferable to set so.
- the polyamic acid and the polyamic acid composition are excellent in heat resistance, moisture absorption resistance, water repellency, releasability (peelability), durability (mechanical strength), dielectric properties, electrical properties, and the like.
- polyimides obtained from this material can be suitably applied to various uses such as electrical / electronic parts, mechanical parts, optical parts, etc., but are particularly useful for copying machine member applications (belt applications for image forming and recording devices).
- the polyamic acid composition is a belt forming composition for an image forming / recording apparatus is also a preferred form of the present invention.
- such polyamic acid or polyamic acid composition provides a polyimide composition which is excellent in heat resistance, water repellency, releasability, durability (mechanical strength, etc.) and has sufficiently small variation in electric resistance value.
- the third preferred form of the polyamic acid of the present invention and the polyamic acid composition containing the polyamic acid can provide a polyimide composition that is excellent in the above-mentioned various physical properties and whose surface resistance can be controlled.
- the polyamic acid composition containing the polyamic acid having the repeating unit represented by the general formula (18) and the carbon black and / or the fluorine-based resin is also one of preferred forms of the present invention. is there.
- the polyimide or polyimide composition of the present invention can be obtained, but the polyimide obtained by imidizing the polyamide of the present invention is the polyimide of the present invention.
- One of the preferred embodiments is a polyimide composition obtained by imidizing the polyamic acid composition of the present invention.
- the polyimide obtained by imidizing the polyamic acid of the second preferred form of the present invention as the polyimide is represented by the following general formula (19);
- Y represents a tetravalent organic group.
- B 1 represents CF 3 or CN.
- B 2 is the same or different and represents H, F, Cl, Br or I.
- R 1 represents Represents a halogen-substituted alkyl group having 1 to 20 carbon atoms
- X 1 is the same or different and represents O or S.
- X 2 represents O or S.
- n represents the number of B 2 and 0.
- M represents the number of substitutions of the group represented by R 1 X 2 and is an integer of 1 to 3.
- n + m 3. It can be expressed as a thing.
- the polyimide of this invention is a form which has a repeating unit represented by the said General formula (19).
- the present invention is also a polyimide composition comprising the polyimide of the present invention.
- an imidized polyamic acid is referred to as “polyimide”
- an imidized polyamic acid composition is referred to as “polyimide composition”.
- the polyimide of the present invention may be in the form of a film or sheet, or may be a molded body, but is preferably in the form of a film in order to make it more suitable for a copying machine member.
- the said imidation reaction should just be performed by a normal method, for example, these can also be performed by heating and / or drying under reduced pressure, and you may carry out chemical imidation by the method used normally.
- a dehydrating cyclization reagent In the chemical imidization step, it is also preferable to use a dehydrating cyclization reagent.
- the dehydrating cyclization reagent can be used without particular limitation as long as it has an action of chemically dehydrating and cyclizing polyamic acid to form a polyimide.
- Examples of such a dehydrating cyclization reagent include trimethylamine, triethylamine, tripropylamine, tributylamine, pyridine, 1,4-diazabicyclo [2,2,2] octane (abbreviated as “DABCO”), 1,8 -Diazabicyclo [5,4,0] undec-7-ene, 1,5-diazabicyclo [4,3,0] non-5-ene, N, N, N ', N'-tetramethyldiaminomethane, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethyl-1,3-propanediamine, N, N, N ′, N′-tetramethyl-1,4-phenylene Diamine, N, N, N ′, N′-tetramethyl-1,6-hexanediamine, N, N, N ′, N′-tetraethylmethylenediamine
- tertiary amine pyridine, DABCO and N, N, N ′, N′-tetramethyldiaminomethane are preferable, and DABCO is particularly preferable.
- carboxylic acid anhydride acetic anhydride or trifluoroacetic anhydride is preferable, and acetic anhydride is more preferable.
- the heat treatment may be performed in an organic solvent or in the absence of an organic solvent. It is preferred to do so.
- the polyamic acid or the polyamic acid composition the form of the solution obtained by the reaction for obtaining the polyamic acid described above may be used as it is, or the polyamic acid or the polyamic acid composition may be used. After separating as a solid, it may be redissolved in an organic solvent and heat treated.
- the polar solvent and nonpolar solvent which were mentioned above are employ
- the air preferably nitrogen, In an inert gas atmosphere such as helium or argon, the heating temperature is preferably set to 70 to 400 ° C. More preferably, it is 250 to 350 ° C.
- the heating time is preferably 0.5 to 5 hours, more preferably 1 to 2 hours. Note that the heat treatment may be performed stepwise or continuously.
- the reduced-pressure drying treatment step is usually cooled to room temperature or under heating, preferably 1.33 ⁇ 10 ⁇ 1 Pa (1 ⁇ 10 ⁇ 1 Torr) or more and less than 1.01 ⁇ 10 6 Pa (760 Torr) It is preferable to carry out by drying under a certain reduced pressure.
- the room temperature cooling or drying under reduced pressure is preferably 2 to 24 hours, and may be performed continuously or stepwise.
- Examples of the method for applying the polyamic acid or the polyamic acid composition to a substrate or film include casting (casting method), spin coating (rotary coating method), roll coating, spray coating, bar coating, flexographic printing, and dip coating. It can carry out by the usual methods, such as.
- the polyamic acid or polyamic acid composition to be subjected to the heat treatment preferably has a solid content concentration of 3 to 80% by mass. If it is out of this range, the composition cannot be spread uniformly during the heat treatment, and the thickness may vary. More preferably, it is 5 to 60% by mass.
- the thickness of the polyimide obtained as described above is not particularly limited, and may be set as appropriate according to the use to be used. The thickness is preferably 5 to 50 ⁇ m, more preferably 1 to 30 ⁇ m.
- the polyimide of the present invention is particularly excellent in water repellency due to the use of a material having a specific number of ether bonds and / or thioether bonds as the acid dianhydride and / or diamine compound as the raw material.
- the water repellency can be evaluated by the contact angle of the surface with water.
- the contact angle with respect to water can be set to 70 ° or more. More preferably, it is 75 ° or more, more preferably 80 ° or more, particularly preferably 85 ° or more, and most preferably 90 ° or more.
- the embodiment in which the polyimide has a contact angle with water (also referred to as a contact angle with water) of 90 ° or more is also a preferred embodiment of the present invention. This makes it particularly useful for copying machine member applications.
- the contact angle with water can be measured with a contact angle meter “CA-X” manufactured by Kyowa Interface Chemical Co., Ltd.
- the polyimide is also excellent in flexibility due to the use of a material having a specific number of ether bonds and / or thioether bonds as the acid dianhydride and / or diamine compound as the raw material.
- the tensile modulus can be 81 MPa or less, and the embodiment in which the polyimide has a tensile modulus of 81 MPa or less is also a preferred embodiment of the present invention. This further improves the use of copying machine members. More preferably, it is 30 MPa or less, More preferably, it is 15 MPa or less.
- the tensile modulus (MPa) can be measured by a dynamic viscoelasticity measuring method as will be described later.
- the polyimide of the present invention has the above-described configuration, is inexpensive, has excellent physical properties such as strength, heat resistance, moisture absorption resistance, releasability (peelability), dielectric characteristics, electrical characteristics, and optical characteristics, and has high properties. It can exhibit a level of water repellency. Moreover, the specific thing among the polyimides of this invention is not only excellent in the said physical property, but can control a surface resistance value. Accordingly, these polyimides are extremely useful for copying machine applications, and are particularly suitable as coating films for transfer belts, fixing belts, and inkjet print printer heads.
- Pentafluorodecanoxy-2,3,5,6-tetrafluorobenzonitrile (p-substituted product) obtained in Synthesis Example 1 and pentafluorodecanoxy-3,4,5,6-tetrafluoro 2 is a measurement chart of 1 H-NMR of a mixture of benzonitrile (o-substituted product).
- the contact angle with water was measured with a contact angle meter (Kyowa Interface Chemical Co., Ltd .: CA-X).
- the surface resistance value was measured with a super insulation meter (digital super insulation meter: DSM-8104, manufactured by Toa DKK Corporation).
- the elastic modulus (MPa) was measured by the following dynamic viscoelasticity measuring method, and the weight average molecular weight (Mw) of the polyamic acid was measured by the following GPC measuring method.
- ⁇ Dynamic viscoelasticity measuring method> Apparatus: Dynamic viscoelasticity RSA III manufactured by TA Instruments Measurement method: A 20 ⁇ m film was produced in a 5 ⁇ 40 mm strip, and the elongation and stress at 200 ° C. were measured to calculate the tensile modulus.
- the resulting crude product was distilled under reduced pressure at 113 to 118 ° C./0.1 mmHg to give 8.92 g of white solid (yield 70%).
- the product obtained is pentafluorodecanoxy-2,3,5,6-tetrafluorobenzonitrile (p-substituted product) / pentafluorodecanoxy-3,4,5,6-tetrafluorobenzonitrile.
- 1 H-NMR and 19 F-NMR charts of the obtained substance are shown in FIGS. 1 and 2, respectively.
- the ratio of the p-substituted product / o-substituted product in the obtained product is shown in (i), (j) and (k), (l), (m) of the 19 F-NMR chart shown in FIG. ) And (n) peak area ratio.
- 1 H-NMR and 19 F-NMR measurements were carried out by the following apparatus and conditions. [ 1 H-NMR and 19 F-NMR measurements] Using Unity Plus 400 (manufactured by Varian), a solvent CDCl 3 was used, and 1 H-NMR (400 MHz) and 19 F-NMR (376 MHz) spectra were measured for structural analysis.
- 1 H-NMR and 19 F-NMR of the obtained diamine compound were measured. The results are shown below. In 1 H-NMR, tetramethylsilane was used as a reference substance, and in 19 F-NMR, hexafluorobenzene was used as a reference substance.
- Synthesis example 3 In a 300 ml three-necked reaction vessel, 12.00 g (18.83 mmol) of heptadecafluorodecanoxytetrafluorobenzonitrile obtained in Synthesis Example 1, 4.71 g (37.62 mmol) of 4-aminobenzenethiol, 7. 8 g (56.44 mmol) and 170 g of acetonitrile were charged, heated to 40 ° C., and reacted for 14 hours. After allowing to cool, the reaction solution was filtered to remove inorganic salts, and concentrated using an evaporator. The concentrate was dissolved in ethyl acetate and washed twice with water.
- 1 H-NMR and 19 F-NMR of the obtained diamine compound were measured. The results are shown below. In 1 H-NMR, tetramethylsilane was used as a reference substance, and in 19 F-NMR, hexafluorobenzene was used as a reference substance.
- Example 1 In a three-necked flask with a volume of 50 ml, 0.384 g (1.9 mmol) of bis (4-aminophenyl) ether, 1,4-bis (3,4-dicarboxytrifluorophenoxy) tetrafluorobenzene dianhydride (also known as : 4,4 ′-[(2,3,5,6-tetrafluoro-1,4-phenylene) bis (oxy)] bis (3,5,6-trifluorophthalic anhydride) 1.116 g (1 0.9 millimoles) and 13.5 g of N-methylpyrrolidone were stirred in a nitrogen atmosphere at room temperature for 5 days to obtain polyamic acid (solid content concentration: 10% by mass).
- bis (4-aminophenyl) ether 1,4-bis (3,4-dicarboxytrifluorophenoxy) tetrafluorobenzene dianhydride (also known as : 4,4 ′-[(2,3,5,6-
- Table 1 shows the molecular weight Mw.
- the polyamic acid thus obtained solid content concentration: 10% by mass
- a spin coater manufactured by Mikasa
- baking was performed at 320 ° C. for 1 hour in a nitrogen atmosphere.
- the obtained film polyimide film
- the contact angle with water and an elasticity modulus were evaluated.
- the results are shown in Table 1.
- Example 2 In a 50 ml three-necked flask, 0.581 g (1.6 mmol) of 4,4′-bis (4-aminophenoxy) biphenyl and 1,4-bis (3,4-dicarboxytrifluorophenoxy) tetrafluorobenzene acid After charging 0.919 g (1.6 mmol) of dianhydride and 13.5 g of N-methylpyrrolidone, a polyamic acid (solid content concentration: 10% by mass) was obtained in the same manner as in Example 1. Next, a polyimide film was formed in the same manner as in Example 1 using this polyamic acid.
- Table 1 shows the evaluation results of the molecular weight Mw of the polyamic acid, the contact angle with water of the film, and the elastic modulus.
- 4,4′-bis (4-aminophenoxy) biphenyl is a diamine compound having two ether bonds in one molecule, and 1,4-bis (3,4-dicarboxytrifluorophenoxy) tetrafluoro
- Example 3 In a 50 ml three-necked flask, 0.501 g (1.7 mmol) of 1,4-bis (4-aminophenoxy) benzene and 1,4-bis (3,4-dicarboxytrifluorophenoxy) tetrafluorobenzene acid were added. After 0.999 g (1.7 mmol) of anhydride and 13.5 g of N-methylpyrrolidone were charged, a polyamic acid (solid content concentration: 10% by mass) was obtained in the same manner as in Example 1. Next, a polyimide film was formed in the same manner as in Example 1 using this polyamic acid.
- Table 1 shows the evaluation results of the molecular weight Mw of the polyamic acid, the contact angle with water of the film, and the elastic modulus.
- 1,4-bis (4-aminophenoxy) benzene is a diamine compound having two ether bonds in one molecule.
- Example 4 In a three-necked flask with a volume of 50 ml, 1.170 g (6.5 mmol) of 1,3-diamino-2,4,5,6-tetrafluorobenzene, 1,4-bis (3,4-dicarboxytrifluorophenoxy) After charging 3.780 g (6.5 mmol) of tetrafluorobenzene dianhydride and 10.1 g of N-methylpyrrolidone, polyamic acid (solid content concentration: 33 mass%) was added in the same manner as in Example 1. Obtained. Next, a polyimide film was formed in the same manner as in Example 1 using this polyamic acid.
- Table 1 shows the evaluation results of the molecular weight Mw of the polyamic acid, the contact angle with water of the film, and the elastic modulus.
- 1,3-diamino-2,4,5,6-tetrafluorobenzene is a diamine compound having no ether bond
- Example 5 In a 50 ml three-necked flask, 0.595 g (2.0 mmol) of 1,4-bis (4-aminophenoxy) benzene and 0.905 g of 2,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (2. 0 millimoles) and 13.5 g of N-methylpyrrolidone were charged, and polyamic acid (solid content concentration: 10% by mass) was obtained in the same manner as in Example 1. Next, a polyimide film was formed in the same manner as in Example 1 using this polyamic acid. Table 1 shows the evaluation results of the molecular weight Mw of the polyamic acid and the contact angle with water of the film.
- Example 6 In a three-necked flask with a volume of 50 ml, 0.486 g of the diamine compound obtained in Synthesis Example 2 and 0.174 g of 1,4-bis (4-aminophenoxy) benzene (total amount: 1.2 mmol), 4,4 ′ After charging 0.529 g (1.2 mmol) of-(hexafluoroisopropylidene) diphthalic anhydride and 13.5 g of N-methylpyrrolidone, the polyamic acid (solid content concentration: 10 was added in the same manner as in Example 1. Mass%). Next, a polyimide film was formed in the same manner as in Example 1 using this polyamic acid.
- Table 1 shows the evaluation results of the molecular weight Mw of the polyamic acid and the contact angle with water of the film.
- Example 7 In a three-necked flask with a capacity of 50 ml, 1.31 g (1.6 mmol) of the diamine compound obtained in Synthesis Example 2 and 1,4-bis (3,4-dicarboxytrifluorophenoxy) tetrafluorobenzene dianhydride 0 .94 g (1.6 mmol) and N-methylpyrrolidone 12.8 g were charged.
- the polyamic acid solid content concentration: 15 mass%) was obtained by stirring at room temperature for 5 days in nitrogen atmosphere. This reaction formula is shown below. Further, Table 2 shows the molecular weight Mw of the obtained polyamic acid.
- a polyimide film was formed in the same manner as in Example 1 using the obtained polyamic acid (solid content concentration: 15% by mass).
- Table 2 shows the evaluation results of the contact angle with water and the elastic modulus of the film.
- Example 8 In a 50 ml three-necked flask, 0.889 g (1.0 mmol) of the diamine compound obtained in Synthesis Example 3 and 1,4-bis (3,4-dicarboxytrifluorophenoxy) tetrafluorobenzene dianhydride After charging 611 g (1.0 mmol) and N-methylpyrrolidone 13.5 g, a polyamic acid (solid content concentration: 10% by mass) was obtained in the same manner as in Example 1. Next, a polyimide film was formed in the same manner as in Example 1 using this polyamic acid. Table 2 shows the evaluation results of the molecular weight Mw of the polyamic acid and the contact angle with water of the film.
- Example 9 In a 50 ml three-necked flask, 0.971 g (1.2 mmol) of the diamine compound obtained in Synthesis Example 2 and 0.529 g (1) of 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride 0.2 mmol) and 13.5 g of N-methylpyrrolidone were charged, and polyamic acid (solid content concentration: 10% by mass) was obtained in the same manner as in Example 1. Next, a polyimide film was formed in the same manner as in Example 1 using this polyamic acid. Table 2 shows the evaluation results of the molecular weight Mw of the polyamic acid and the contact angle with water of the film.
- Example 10 In a 50 ml three-necked flask, 0.174 g of 1,4-bis (4-aminophenoxy) benzene and 0.486 g of the diamine compound obtained in Synthesis Example 2 (total amount: 1.2 mmol), 2,2- After charging 0.529 g (1.2 mmol) of bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride and 13.5 g of N-methylpyrrolidone, the polyamic acid ( Solid content concentration: 10% by mass) was obtained. Next, a polyimide film was formed in the same manner as in Example 1 using this polyamic acid. Table 2 shows the evaluation results of the molecular weight Mw of the polyamic acid and the contact angle with water of the film.
- Example 11 In a 50 ml three-necked flask, 0.157 g of 1,4-bis (4-aminophenoxy) benzene and 0.438 g of the diamine compound obtained in Synthesis Example 2 (total amount: 1.1 mmol), 1,4-bis After charging 0.625 g (1.1 mmol) of bis (3,4-dicarboxytrifluorophenoxy) tetrafluorobenzene dianhydride and 13.5 g of N-methylpyrrolidone, the same procedure as in Example 1 was performed. Polyamic acid (solid content concentration: 10% by mass) was obtained. Next, a polyimide film was formed in the same manner as in Example 1 using this polyamic acid. Table 2 shows the evaluation results of the molecular weight Mw of the polyamic acid and the contact angle with water of the film.
- Example 12 In a 50 ml three-necked flask, 1.09 g (0.0037 mol) of 1,4-bis (4-aminophenoxy) benzene, 4,4 ′-((1,4-phenylene) bis (oxy)) bis (3, 5,6-trifluorophthalic anhydride) 1.91 g (0.0037 mol) and 12 g of N-methylpyrrolidone were charged. A polyamic acid (solid content concentration: 10% by mass) was obtained by stirring for 5 days at room temperature in a nitrogen atmosphere. Table 3 shows the molecular weight Mw of the obtained polyamic acid.
- a polyimide film was formed in the same manner as in Example 1 using the obtained polyamic acid (solid content concentration: 10% by mass). The contact angle with water about the film was evaluated. The evaluation results are shown in Table 3.
- Example 13 In a 50 ml three-necked flask, 0.534 g (0.0018 mol) of 1,4-bis (4-aminophenoxy) benzene, 5,5 ′-(4,4 ′-(propane-2,2′-diyl) bis 0.961 g (0.0018 mol) of (1,4-phenylene)) bis (oxy) bisphthalic anhydride and 13.5 g of N-methylpyrrolidone were charged. A polyamic acid (solid content concentration: 10% by mass) was obtained by stirring for 5 days at room temperature in a nitrogen atmosphere. Table 3 shows the molecular weight Mw of the obtained polyamic acid.
- a polyimide film was formed in the same manner as in Example 1 using the obtained polyamic acid (solid content concentration: 10% by mass). The contact angle with water about the film was evaluated. The evaluation results are shown in Table 3.
- 1,4-bis (4-aminophenoxy) benzene is a diamine compound having two ether bonds in one molecule, and is 5,5 ′-(4,4 ′-(propane-2,2′-diyl).
- Example 14 In a 50 ml three-necked flask, 1.456 g (0.005 mol) of 1,4-bis (4-aminophenoxy) benzene, 1.545 g (0.005 mol) of 4,4′-oxydiphthalic anhydride, and N -Charged 27 g of methylpyrrolidone.
- a polyamic acid solid content concentration: 10% by mass
- Table 3 shows the molecular weight Mw of the obtained polyamic acid.
- Example 15 PTFE-dispersed NMP solution (KDa1000AS, dispersion medium: NMP (N-methylpyrrolidone), particle size 300 nm) is added to 10 g of the polyamic acid obtained in Example 3 (solid content concentration: 10% by mass). When 63 g was mixed, a uniform solution was obtained and a PTFE-dispersed polyamic acid composition was obtained.
- This PTFE polyamic acid composition is formed on a Si wafer by using a spin coater (Mikasa) so that the film thickness after baking is 5 ⁇ m, and baking is performed at 320 ° C. for 1 hour in a nitrogen atmosphere. went. It was 110 degrees when the contact angle measurement with water was performed about the obtained film (polyimide film).
- Example 16 When 1.55 g of the carbon dispersion (1) obtained in Preparation Example 1 was mixed with 10 g of the polyamic acid (solid content concentration: 10% by mass) obtained in Example 3, a uniform solution was obtained, and the carbon-dispersed polyamic acid composition was obtained. The product was obtained (solid content concentration of polyamic acid: 8.6% by mass).
- This carbon-dispersed polyamic acid composition was formed on a Si wafer using a spin coater (manufactured by Mikasa) so that the film thickness after firing was 5 ⁇ m, and fired in a nitrogen atmosphere at 320 ° C. for 1 hour. Went. In this way, a polyimide film was obtained.
- Example 17 PTFE dispersion was added to the carbon-dispersed polyamic acid composition obtained by mixing 0.51 g of the carbon dispersion (1) obtained in Preparation Example 1 with 10 g of the polyamic acid (solid content concentration: 10% by mass) obtained in Example 3.
- An NMP solution (Kitamura Co., Ltd., KD-1000AS, PTFE solid content concentration: 40% by mass, dispersion medium: NMP (N-methylpyrrolidone), particle size 300 nm) 1.07 g was mixed, and a rotating and rotating stirrer (Sinky Corporation) The product was agitated and removed with a product manufactured by: (Nentaro Awatake).
- the obtained composition (polyamic acid composition) was formed on a Si substrate using a spin coater (manufactured by Mikasa Co., Ltd.) so that the thickness after firing was 5 ⁇ m. Firing was performed in a nitrogen atmosphere for 1 hour. In this way, a polyimide film was obtained.
- Example 18 To 10 g of the polyamic acid obtained in Example 7 (solid content concentration: 15% by mass), PTFE-dispersed NMP solution (manufactured by Kitamura Co., Ltd., KD-1000AS, dispersion medium: NMP (N-methylpyrrolidone), particle size 300 nm) When 42 g was mixed, a uniform solution was obtained, and a PTFE-dispersed polyamic acid composition was obtained.
- This PTFE polyamic acid composition is formed on a Si wafer by using a spin coater (Mikasa) so that the film thickness after baking is 5 ⁇ m, and baking is performed at 320 ° C. for 1 hour in a nitrogen atmosphere. went. It was 110 degrees when the contact angle measurement with water was performed about the obtained film (polyimide film).
- Example 19 When 3.96 g of the carbon dispersion (1) obtained in Preparation Example 1 was mixed with 10 g of the polyamic acid (solid content concentration: 15% by mass) obtained in Example 7, a uniform solution was obtained, and the carbon-dispersed polyamic acid composition was obtained. A product was obtained (polyamide acid solid content concentration: 12% by mass).
- This carbon-dispersed polyamic acid composition was formed on a Si wafer using a spin coater (manufactured by Mikasa) so that the film thickness after firing was 5 ⁇ m, and fired in a nitrogen atmosphere at 320 ° C. for 1 hour. Went. In this way, a polyimide film was obtained.
- Example 20 PTFE dispersion was added to the carbon-dispersed polyamic acid composition obtained by mixing 3.96 g of the carbon dispersion (1) obtained in Preparation Example 1 with 10 g of the polyamic acid (solid content concentration: 15% by mass) obtained in Example 7.
- NMP solution Korean Co., Ltd., KD-1000AS, PTFE solid content concentration: 40 mass%, dispersion medium: NMP (N-methylpyrrolidone), particle size 300 nm) 0.94 g (PTFE solid content relative to polyamic acid solid content 25 mass%) was mixed, and the stirring and removal method was performed with a rotation and revolution type stirring device (Sinky Corp .: Foaming Netaro).
- the obtained composition (polyamic acid composition) was formed on a Si substrate using a spin coater (manufactured by Mikasa Co., Ltd.) so that the thickness after firing was 5 ⁇ m. Firing was performed in a nitrogen atmosphere for 1 hour. In this way, a polyimide film was obtained.
- Example 21 PTFE-dispersed NMP solution (Kitamura Co., Ltd., KD-1000AS, dispersion medium: NMP (N-methylpyrrolidone), particle size: 300 nm) was added to 10 g of the polyamic acid obtained in Example 12 (solid content concentration: 10% by mass). When 67 g was mixed, a uniform solution was obtained, and a PTFE-dispersed polyamic acid composition was obtained.
- This PTFE polyamic acid composition is formed on a Si wafer by using a spin coater (Mikasa) so that the film thickness after baking is 5 ⁇ m, and baking is performed at 320 ° C. for 1 hour in a nitrogen atmosphere. went.
- Example 22 When 0.75 g of the carbon dispersion (1) obtained in Preparation Example 1 was mixed with 10 g of the polyamic acid (solid content concentration: 10% by mass) obtained in Example 12, a uniform solution was obtained, and the carbon-dispersed polyamic acid composition The product was obtained (solid content concentration of polyamic acid: 8.6% by mass).
- This carbon-dispersed polyamic acid composition was formed on a Si wafer using a spin coater (manufactured by Mikasa) so that the film thickness after firing was 5 ⁇ m, and fired in a nitrogen atmosphere at 320 ° C. for 1 hour. Went. In this way, a polyimide film was obtained. When the surface resistance value of the obtained film was measured, it was 2.57 ⁇ 10 7 ⁇ / ⁇ . Further, when the contact angle of the obtained film with water was measured, it was 79 °.
- Table 4 The composition and evaluation results are shown in Table 4.
- Example 23 PTFE was added to the carbon-dispersed polyamic acid composition obtained by mixing 0.75 g of the carbon dispersion (1) obtained in Preparation Example 1 with 10 g of the polyamic acid (solid content concentration: 10% by mass) obtained in Example 12.
- Dispersed NMP solution Kitamura Co., Ltd., KD-1000AS, dispersion medium: NMP (N-methylpyrrolidone), particle size: 300 nm
- rotation revolving type stirrer (Sinky Co., Ltd .: Defoaming Foam) Stirring was removed.
- the obtained composition (polyamic acid composition) was formed on a Si substrate using a spin coater (manufactured by Mikasa Co., Ltd.) so that the thickness after firing was 5 ⁇ m. Firing was performed in a nitrogen atmosphere for 1 hour. In this way, a polyimide film was obtained.
- the surface resistance value of the obtained film was measured, it was 4.16 ⁇ 10 7 ⁇ / ⁇ . Further, when the contact angle of the obtained film with water was measured, it was 86 °.
- Table 4 The composition and evaluation results are shown in Table 4.
- Example 24 PTFE-dispersed NMP solution (Kitamura Co., Ltd., KD-1000AS, dispersion medium: NMP (N-methylpyrrolidone), particle size: 300 nm)
- NMP N-methylpyrrolidone
- This PTFE polyamic acid composition is formed on a Si wafer by using a spin coater (Mikasa) so that the film thickness after baking is 5 ⁇ m, and baking is performed at 320 ° C. for 1 hour in a nitrogen atmosphere. went.
- the surface resistance value of the obtained film was measured, it was 2.55 ⁇ 10 16 ⁇ / ⁇ .
- the contact angle measurement with water was performed about the obtained film (polyimide film), it was 98 degrees.
- Table 4 The composition and evaluation results are shown in Table 4.
- Example 25 When 0.75 g of the carbon dispersion (1) obtained in Preparation Example 1 was mixed with 10 g of the polyamic acid (solid content concentration: 10% by mass) obtained in Example 13, a uniform solution was obtained, and the carbon-dispersed polyamic acid composition The product was obtained (solid content concentration of polyamic acid: 8.6% by mass).
- This carbon-dispersed polyamic acid composition was formed on a Si wafer using a spin coater (manufactured by Mikasa) so that the film thickness after firing was 5 ⁇ m, and fired in a nitrogen atmosphere at 320 ° C. for 1 hour. Went. In this way, a polyimide film was obtained.
- Example 26 PTFE was added to the carbon-dispersed polyamic acid composition obtained by mixing 0.75 g of the carbon dispersion (1) obtained in Preparation Example 1 with 10 g of the polyamic acid (solid content concentration: 10% by mass) obtained in Example 13.
- Dispersed NMP solution Kitamura Co., Ltd., KD-1000AS, dispersion medium: NMP (N-methylpyrrolidone), particle size: 300 nm
- NMP N-methylpyrrolidone
- particle size 300 nm
- the obtained composition (polyamic acid composition) was formed on a Si substrate using a spin coater (manufactured by Mikasa Co., Ltd.) so that the thickness after firing was 5 ⁇ m. Firing was performed in a nitrogen atmosphere for 1 hour. In this way, a polyimide film was obtained.
- the surface resistance value of the obtained film was measured, it was 3.48 ⁇ 10 16 ⁇ / ⁇ . Moreover, it was 88 degrees when the contact angle measurement with the water of the obtained film was performed.
- Table 4 The composition and evaluation results are shown in Table 4.
- Example 27 In a 200 ml three-necked flask, 4.73 g (26 mmol) of 1,3-diamino-2,4,5,6-tetrafluorobenzene, 4,4 ′-[(2,3,5,6-tetrafluoro-1 , 4-phenylene) bis (oxy)] bis (3,5,6-trifluorophthalic anhydride) 15.28 g (26 mmol), carbon dispersion (1) 52.8 g and N-methylpyrrolidone 28.2 g Was charged.
- a carbon-dispersed polyamic acid composition (1) (polyamide acid solid content concentration: 20.0%) was obtained.
- the obtained carbon-dispersed polyamic acid composition (1) was formed on a Si wafer using a spin coater (manufactured by Mikasa Co., Ltd.) so that the film thickness after firing was 5 ⁇ m. Firing was performed in a nitrogen atmosphere.
- the surface resistance value of the obtained film (polyimide film 1) was measured, it was 1.95 ⁇ 10 6 ⁇ / ⁇ , and the contact angle measurement with water was 80 °.
- Table 4 The composition and evaluation results are shown in Table 4.
- Example 28 In a 200 ml three-necked flask, 2.84 g (16 mmol) of 1,3-diamino-2,4,5,6-tetrafluorobenzene, 4,4 ′-[(2,3,5,6-tetrafluoro-1 , 4-phenylene) bis (oxy)] bis (3,5,6-trifluorophthalic anhydride) 9.17 g (16 mmol) and 28.0 g N-methylpyrrolidone were charged.
- the polyamic acid solution (a) solid content concentration of polyamic acid: 30.0%
- Example 30 0.22 g to 10 g of the carbon-dispersed polyamic acid composition (2) obtained by mixing 63.3 g of the carbon dispersion (1) obtained in Preparation Example 1 with 40 g of the polyamic acid solution (a) obtained in Example 28.
- PTFE manufactured by Daikin Industries, Ltd .: Lubron
- a rotation and revolution type stirring device manufactured by Shinky Corp .: Nembaro Foam
- the obtained composition (polyamic acid composition (4)) was formed on a Si substrate using a spin coater (manufactured by Mikasa Co., Ltd.) so that the thickness after firing was 5 ⁇ m, Baking was performed at 320 ° C. for 1 hour in a nitrogen atmosphere.
- the surface resistance value of the obtained film (polyimide film 4) was measured, it was 8.68 ⁇ 10 5 ⁇ / ⁇ , and the contact angle measurement with water was 100 °.
- Table 4 The composition and evaluation results are shown in Table 4.
- Example 31 Carbon black dispersion, dispersion added during polymerization
- Example 31 In a 200 ml three-necked flask, 5.32 g (17 mmol) of 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl, 4,4 ′-[(2,3,5,6-tetrafluoro- 1.68 g (17 mmol) of 1,4-phenylene) bis (oxy)] bis (3,5,6-trifluorophthalic anhydride), 39.6 g of the carbon dispersion (1) obtained in Preparation Example 1 and 46.2 g of N-methylpyrrolidone was charged.
- a carbon-dispersed polyamic acid composition (5) (polyamide acid solid content concentration: 15.0%) was obtained.
- the obtained carbon-dispersed polyamic acid composition (5) was formed on a Si wafer using a spin coater (manufactured by Mikasa) so that the film thickness after firing was 5 ⁇ m, Firing was performed in a nitrogen atmosphere for 1 hour.
- the surface resistance value of the obtained film (polyimide film 5) was measured, it was 2.10 ⁇ 10 6 ⁇ / ⁇ , and the contact angle measurement with water was 80 °.
- Table 4 The composition and evaluation results are shown in Table 4.
- Example 32 Carbon black dispersion, mixed after polymerization
- a polyamic acid solution (b) polyamide acid solid content concentration: 15.0%
- Example 33 Carbon was not added to 10 g of the polyamic acid solution (b) prepared in Example 32, but 0.17 g of PTFE (Daikin Kogyo Co., Ltd .: Lubron) was added, and a revolving revolving stirrer (Sinky Co., Ltd .: bubble milling) Taro) was carried out with stirring. Thereafter, the obtained composition (polyamic acid composition (7)) was formed on a Si substrate using a spin coater (manufactured by Mikasa) so that the thickness after firing was 5 ⁇ m, Baking was performed at 320 ° C. for 1 hour in a nitrogen atmosphere. When the surface resistance value of the obtained film (polyimide film 7) was measured, it was 3.17 ⁇ 10 17 ⁇ / ⁇ , and the contact angle measurement with water was 100 °. The composition and evaluation results are shown in Table 4.
- Example 34 0.13 g to 10 g of the carbon-dispersed polyamic acid composition (6) obtained by mixing 63.3 g of the carbon dispersion (1) obtained in Preparation Example 1 with 40 g of the polyamic acid solution (b) obtained in Example 32.
- PTFE manufactured by Daikin Industries, Ltd .: Lubron
- a rotation and revolution type stirring device manufactured by Shinky Corporation: Foaming Netaro
- the obtained composition (polyamic acid composition (8)) was formed on a Si substrate using a spin coater (manufactured by Mikasa Co., Ltd.) so that the thickness after firing was 5 ⁇ m, Baking was performed at 320 ° C. for 1 hour in a nitrogen atmosphere.
- the surface resistance value of the obtained film (polyimide film 8) was measured, it was 3.52 ⁇ 10 5 ⁇ / ⁇ , and the contact angle measurement with water was 100 °.
- Table 4 The composition and evaluation results are shown in Table 4.
- Example 35 When 40 g of the polyamic acid solution (a) prepared in Example 28 was mixed with 3.33 g of a PTFE-dispersed NMP solution (manufactured by Kitamura Co., Ltd., KD-1000AS, dispersion medium: NMP (N-methylpyrrolidone), particle size: 300 nm). Thus, a uniform solution was obtained, and a PTFE-dispersed polyamic acid composition (9) was obtained (polyamide acid solid content concentration: 29%).
- a PTFE-dispersed NMP solution manufactured by Kitamura Co., Ltd., KD-1000AS, dispersion medium: NMP (N-methylpyrrolidone), particle size: 300 nm.
- This PTFE-dispersed polyamic acid composition (9) was formed on a Si wafer using a spin coater (manufactured by Mikasa Co., Ltd.) so that the film thickness after firing was 5 ⁇ m, and a nitrogen atmosphere at 320 ° C. for 1 hour. Baking was performed below. When the surface resistance value of the obtained film (polyimide film 9) was measured, it was 4.56 ⁇ 10 17 ⁇ / ⁇ , and the contact angle measurement with water was 108 °. The composition and evaluation results are shown in Table 4.
- Example 36 The polyamic acid solution (a) prepared in Example 28 was formed on a Si substrate using a spin coater (manufactured by Mikasa) so that the thickness after firing was 5 ⁇ m, without adding carbon. Baked in a nitrogen atmosphere at 320 ° C. for 1 hour. When the surface resistance value of the obtained film (polyimide film 10) was measured, it was 1.89 ⁇ 10 17 ⁇ / ⁇ , and the contact angle measurement with water was 80 °. The composition and evaluation results are shown in Table 4.
- Example 37 The polyamic acid solution (b) prepared in Example 32 was formed on a Si substrate using a spin coater (manufactured by Mikasa) so that the thickness after firing was 5 ⁇ m, without adding carbon. Baked in a nitrogen atmosphere at 320 ° C. for 1 hour. When the surface resistance value of the obtained film (polyimide film 11) was measured, it was 1.57 ⁇ 10 17 ⁇ / ⁇ , and the contact angle measurement with water was 80 °. The composition and evaluation results are shown in Table 4.
- TPE-Q 1,4-bis (4-aminophenoxy) benzene 4FMPD: 1,3-diamino-2,4,5,6-tetrafluorobenzene
- TFMB 4,4′-diamino2,2′-bis ( Trifluoromethyl) biphenyl CB: carbon black
- PTFE polytetrafluoroethylene
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Fixing For Electrophotography (AREA)
- Electrophotography Configuration And Component (AREA)
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
Abstract
Description
更に本発明者等は、上述したポリイミドの原料となるポリアミド酸の中でも、特定の全フッ素化酸二無水物及びジアミン化合物を用いて得られるフッ素化ポリアミド酸と、カーボンブラック及び/又はフッ素系樹脂とを含むポリアミド酸組成物は、上記各種物性を充分に発揮しつつ、表面抵抗値を一定の範囲にコントロールできるポリイミド組成物を与えることが可能となることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
本発明はまた、複写機部材用高撥水性ポリイミドを形成するためのポリアミド酸組成物であって、上記ポリアミド酸組成物は、酸二無水物とジアミン化合物とを各々1種又は2種以上用いて得られるポリアミド酸を含み、上記酸二無水物及びジアミン化合物のうち少なくとも1種の化合物は、分子内にエーテル結合及び/又はチオエーテル結合を有するものであり、上記ポリアミド酸を構成する酸二無水物及びジアミン化合物由来の重合繰り返し単位中のエーテル結合及びチオエーテル結合の総和が2以上であることを特徴とする複写機部材用高撥水性ポリイミド形成用ポリアミド酸組成物でもある。
なお、本発明の複写機部材用高撥水性ポリイミド及び複写機部材用高撥水性ポリイミド形成用ポリアミド酸組成物は、複写機部材用途に限らず、電気・電子部品や機械部品、光学部品等の種々の用途に用いることができるものである。
以下に本発明を詳述する。
ここで、エーテル結合及びチオエーテル結合の総和とは、エーテル結合の数とチオエーテル結合の数との合計を表すが、これは、本発明のポリイミド及びポリアミド酸がエーテル結合とチオエーテル結合の両方を必須として有していることを必ずしも意味せず、例えば、本発明のポリイミド及びポリアミド酸がエーテル結合を有しチオエーテル結合を有していない場合には、該ポリイミド及びポリアミド酸のエーテル結合及びチオエーテル結合の総和は、エーテル結合の数の合計となる。すなわち、上記ポリイミド及びポリアミド酸において、酸二無水物及びジアミン化合物由来の重合繰り返し単位中のエーテル結合及びチオエーテル結合の総和は、2以上であれば、重合繰り返し単位中には、エーテル結合又はチオエーテル結合のいずれかだけが存在しその総和が2以上であっても良いし、エーテル結合とチオエーテル結合との両方が存在しその両者の総和が2以上であっても良い。
これらの中でも、酸二無水物とジアミン化合物とを各々1種又は2種以上用いて得られる複写機部材用の高撥水性ポリイミドであって、上記酸二無水物及びジアミン化合物のうち少なくとも1種の化合物は、分子内にエーテル結合を有するものであり、上記ポリイミドを構成する酸二無水物及びジアミン化合物由来の重合繰り返し単位中のエーテル結合の総和が3以上である複写機部材用高撥水性ポリイミドもまた、本発明の好適な実施形態の1つである。そしてまた、複写機部材用高撥水性ポリイミドを形成するためのポリアミド酸組成物であって、上記ポリアミド酸は、酸二無水物とジアミン化合物とを各々1種又は2種以上用いて得られるポリアミド酸を含み、上記酸二無水物及びジアミン化合物のうち少なくとも1種の化合物は、分子内にエーテル結合を有するものであり、上記ポリアミド酸を構成する酸二無水物及びジアミン化合物由来の重合繰り返し単位中のエーテル結合の総和が3以上である複写機部材用高撥水性ポリイミド形成用ポリアミド酸組成物もまた、本発明の好適な実施形態の1つである。
なお、上記エーテル結合とは-O-で表される結合であるが、本発明でいうエーテル結合の数には、酸二無水物が有する酸無水物基(-C(O)-O-C(O)-部分)中の-O-部分の数は含まないものとする。
(1)1分子内にエーテル結合を2個有する酸二無水物と、分子内にエーテル結合及びチオエーテル結合を有さないジアミン化合物とを、モル比1/1で反応させてポリアミド酸組成物を得、ポリイミドを得る場合、エーテル結合及びチオエーテル結合の総和は、2×1+0×1=2個となる。分子内にエーテル結合及びチオエーテル結合を有さない酸二無水物と、1分子内にエーテル結合を2個有するジアミン化合物とを、モル比1/1で反応させてポリアミド酸組成物を得、ポリイミドを得る場合も同様に計算され、2個となる。
(2)1分子内にエーテル結合を2個有する酸二無水物と、1分子内にエーテル結合を1個有するジアミン化合物とを、モル比1/1で反応させてポリアミド酸組成物を得、ポリイミドを得る場合、エーテル結合及びチオエーテル結合の総和は、2×1+1×1=3個となる。1分子内にエーテル結合を1個有する酸二無水物と、1分子内にエーテル結合を2個有するジアミン化合物とを、モル比1/1で反応させてポリアミド酸組成物を得、ポリイミドを得る場合も同様に計算され、3個となる。
(3)1分子内にエーテル結合を2個有する酸二無水物aと、分子内にエーテル結合及びチオエーテル結合を有さない酸二無水物bと、1分子内にエーテル結合を1個有するジアミン化合物とを、モル比0.5/0.5/1.0で反応させてポリアミド酸組成物を得、ポリイミドを得る場合、エーテル結合及びチオエーテル結合の総和は、2×0.5+0×0.5+1×1=2個となる。
(4)1分子内にエーテル結合を2個有する酸二無水物と、1分子内にエーテル結合を1個有するジアミン化合物aと、1分子内にエーテル結合を2個有するジアミン化合物bとを、モル比1/0.5/0.5で反応させてポリアミド酸組成物を得、ポリイミドを得る場合、エーテル結合及びチオエーテル結合の総和は、2×1.0+1×0.5+2×0.5=3.5個となる。
なお、上記のように、全ての酸二無水物、ジアミン化合物各々の和がそれぞれ等モルとなるように、原料成分の反応モル比を設定するものとする。
なお、kは、1~1000であることが好適であり、1000を超えると、粘度が高くなり過ぎて、上記ポリアミド酸をカーボンブラックやフッ素系樹脂といった他の成分と混合して、ポリアミド酸組成物とした場合に、ポリアミド酸と他の成分との相溶性が充分とはならないおそれがあるが、必要に応じて、溶媒等で希釈すればよい。より好ましくは、2~500である。
特に、上記ポリアミド酸の重量平均分子量を1万~20万とすると、そのようなポリアミド酸を原料としたポリイミドを用いて作製されるポリイミドフィルムの耐摩耗性を高めることが可能となり好ましい。
上記重量平均分子量は、後述する実施例と同様に、ゲルパーミエーションクロマトグラフ(GPC)により、標準ポリスチレンの検量線を用いて測定することができる。
(ii)ポリイミドフィルムとしてカーボンブラックを含むものを作製する場合には、ポリイミドフィルムを得るための原料として、ポリアミド酸、カーボンブラックを含むポリアミド酸組成物が用いられることとなるが、カーボンブラック表面に存在する官能基(例えば、カルボン酸や水酸基)と、合成されるポリアミド酸の末端部のアミンやカルボン酸とが、ポリイミドを形成させる際に行われる加熱工程(焼成)において反応しグラフト化が起こる。グラフト化率はポリアミド酸の末端部のアミン又はカルボン酸の数が多い程高くなる。したがって、合成されるポリアミド酸の分子量が低いほどグラフト化率が高くなる。ここで、作製されたポリイミドフィルムを研磨することによって、カーボンブラック粒子がポリイミドフィルム中のポリマーマトリクスから滑落し磨耗が起こることとなる。このときポリイミドフィルム内においてカーボンブラック粒子とポリマーとの界面での相溶性を高める構造があると、滑落を抑える事が可能となるが、上記グラフトが相溶性を高める効果を有している。こうして、ポリアミド酸とカーボンブラックとが高度にグラフト化することによって、研磨によるカーボンブラック粒子の滑落が抑制され、結果耐摩耗性が向上する。
上記(i)及び/又は(ii)の効果により、重量平均分子量が1万~20万のポリアミド酸を原料として用いてポリイミドフィルムを作製すると、該フィルムの耐摩耗性が高くなるものと考えられる。ただし、ポリアミド酸の重量平均分子量が1万以下の場合には、得られるポリアミド酸の粘度が非常に低くなり、ポリイミドフィルムを作製することが困難になるおそれがある。
ここで、エーテル結合及び/又はチオエーテル結合にかかる酸素及び硫黄の分子量総和とは、エーテル結合にかかる酸素原子の数とチオエーテル結合にかかる硫黄原子の数との合計を表すが、これは、本発明のポリイミド及びポリアミド酸がエーテル結合とチオエーテル結合の両方を必須として有していることを必ずしも意味せず、例えば、本発明のポリイミド及びポリアミド酸がエーテル結合を有しチオエーテル結合を有していない場合には、該ポリイミド及びポリアミド酸のエーテル結合及び/又はチオエーテル結合にかかる酸素及び硫黄の分子量総和は、エーテル結合にかかる酸素原子の数の合計となる。
本発明のポリアミド酸における第1の好適な形態においては、原料として用いられる酸二無水物としては、下記一般式(3)で表される化合物が好適であり、芳香族系、脂肪族系いずれの化合物も使用できる。中でも、芳香族系酸無水物が好適である。なお、下記一般式(3)中のYは、上記一般式(1)及び(2)のYに該当し、4価の有機基を表すが、例えば、直鎖若しくは分岐鎖、又は、環を含んでいてもよい脂肪族有機基;芳香族有機基;2以上の脂肪族基や芳香族基が炭素原子で結合した有機基;2以上の脂肪族基や芳香族基が炭素原子以外の原子(例えば、酸素原子、窒素原子、硫黄原子等)で結合した有機基等が好適である。
4,4′-オキシジフタル酸無水物、3,3′,4,4′-ビフェニルエーテルテトラカルボン酸二無水物、2,3′,3,4′-ビフェニルエーテルテトラカルボン酸二無水物、4,4′-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4′-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4′-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、5,5′-ビス(トリフルオロメチル)-3,3′,4,4′-テトラカルボンジフェニルエーテル酸二無水物、1,4-ビス(3,4-ジカルボキシトリフルオロフェノキシ)テトラフルオロベンゼン酸二無水物、1,4-ビス(3,4-ジカルボキシトリフルオロフェノキシ)テトラクロロベンゼン酸二無水物、1,4-ビス(3,4-ジカルボキシトリフルオロフェノキシ)オクタフルオロビフェニル酸二無水物、1,4-ビス(3,4-ジカルボキシトリフルオロフェノキシ)ベンゼン酸二無水物。
中でも、上記Mは、酸素原子であることが特に好ましい。このように本発明において用いられる酸二無水物が、少なくとも、上記一般式(4)で表され、一般式(4)中のMが酸素原子を表す化合物を含む形態もまた、本発明の好適な実施形態の1つである。
下記式(6-6)~(6-9)中のZは、同一若しくは異なって、水素原子又はフッ素原子を表している。なお、Zは、各有機基中で同一であってもよいし、異なるものであってもよいし、また、各ベンゼン環中で同一であってもよいし、異なるものであってもよい。これら(6-1)~(6-9)で表される酸二無水物の1種又は2種以上を用いることが特に好適である。
ピロメリット酸二無水物、3,3′,4,4′-ベンゾフェノンテトラカルボン酸二無水物、3,3′,4,4′-ビフェニルスルホンテトラカルボン酸二無水物、3,3′,4,4′-テトラカルボキシジフェニルメタン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,6-ジクロルナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,7-ジクロルナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-テトラクロルナフタレン-1,4,5,8-テトラカルボン酸二無水物、1,2,3,4-フランテトラカルボン酸二無水物、2,3,4,5-チオフェンテトラカルボン酸二無水物、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、3,3′,4,4′-パーフルオロイソプロピリデンジフタル酸二無水物、ジフルオロピロメリット酸二無水物、ジクロロピロメリット酸二無水物、トリフルオロメチルピロメリット酸二無水物、1,4-ジ(トリフルオロメチル)ピロメリット酸二無水物、ジ(ヘプタフルオロプロピル)ピロメリット酸二無水物、ペンタフルオロエチルピロメリット酸二無水物、ビス{3,5-ジ(トリフルオロメチル)フェノキシ}ピロメリット酸二無水物、5,5′-ビス(トリフルオロメチル)-3,3′,4,4′-テトラカルボキシビフェニル酸二無水物、1,2′,5,5′-テトラキス(トリフルオロメチル)-3,3′,4,4′-テトラカルボキシビフェニル酸二無水物、5,5′-ビス(トリフルオロメチル)-3,3′,4,4′-テトラカルボキシベンゾフェノン酸二無水物、3,4,9,10-テトラカルボキシペリレン酸二無水物、3,3′,4,4′-ジメチルジフェニルシランテトラカルボン酸二無水物、3,3′,4,4′-テトラフェニルシランテトラカルボン酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)テトラメチルジシロキサン酸二無水物等の芳香族テトラカルボン酸無水物;
上記有機溶媒としては、ポリアミド酸の原料であるジアミン化合物と酸二無水物との反応が効率よく進行でき、かつこれらの原料に対して不活性であれば、特に限定されるものではない。例えば、N-メチルピロリドン、N-メチル-2-ピロリジノン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジメチルスルホキシド、スルホラン、メチルイソブチルケトン、アセトニトリル、ベンゾニトリル、ニトロベンゼン、ニトロメタン、ジメチルスルフォキシド、アセトン、メチルエチルケトン、イソブチルケトン、メタノール等の極性溶媒;トルエンやキシレン等の非極性溶媒等が挙げられる。中でも、極性溶媒を用いることが好ましい。これらの有機溶媒は、単独で使用されてもよいし、2種以上の混合物として使用されてもよい。
なお、上記一般式(9)で表されるジアミン化合物は、これまでにない新規な化合物であるため、ポリアミド酸及びポリイミドの原料としての用途に限らず、種々の用途(例えば、光学材料用途等)に用いることも可能である。このように、上記一般式(9)で表されるジアミン化合物もまた、本発明の1つである。
上記ハロゲン原子としては、フッ素原子(F)、塩素原子(Cl)、臭素原子(Br)、ヨウ素原子(I)が好ましく、これらの2種以上の原子で置換されていてもよい。中でも、屈折率制御の観点から、塩素原子(Cl)やフッ素原子(F)が好ましく、溶解性や撥水性向上の観点から、フッ素原子(F)がより好ましい。このように、上記R1が炭素数1~20のフッ素置換アルキル基である形態もまた、本発明の好適な実施形態の1つである。
上記一般式(9)で表されるジアミン化合物においては、このようなハロゲン置換アルキル基と酸素原子(O)又は硫黄原子(S)とからなる、ハロゲン置換アルコキシ基又はハロゲン置換アルキルチオ基を少なくとも1個有するが、これと、X1で表されるエーテル結合又はチオエーテル結合を2個有することとによる相乗効果によって、柔軟性がより向上し、また、著しく優れた撥水性や離型性(剥離性)を発揮できることになる。
また上記ハロゲン置換アルキル基においては、炭素原子に結合したハロゲン原子の総数が炭素原子に結合した水素原子の総数よりも多いことが好ましい。ハロゲン原子の総数が水素原子の総数より少ないと、撥水性をより充分に発揮できないおそれがある。例えば、上記ハロゲン置換アルキル基が無置換である場合に有する水素原子の総数を100%とすると、上記ハロゲン置換アルキル基が有するハロゲン原子の総数が50%を超えることが好適である。製造のし易さや撥水性等を考慮すると、ハロゲン原子の総数は、より好ましくは60%以上、更に好ましくは70%以上である。
CF3-(CF2)7-(CH2)2-
CF3-(CF2)9-(CH2)2-
CF3-(CF2)2-CH2-
CF3-(CF2)3-CH2-
CHF2-(CF2)7-CH2-
(CF3)2-CF(CF2)2-(CH2)2-
CF3CH2-
HCF2CH2-
F(CF2)2CH2-
CHF2CF2CH2-
(CF3)2CH-
CF3CH2CH2-
H(CF2)2CH2-
Cl(CF2)2CH2-
(CF3)C(CH3)H-
F(CF2)2(CH2)2-
CF3CHFCF2CH2-
CF3(CH2)3-
F(CF2)2C(CH3)H-
CF3C(CH3)2-
CH3C(CF3)2-
(CF3)4C-
(CF3)2C(CCl3)-
F(CF2)4CH2-
F(CF2)3(CH2)2-
F(CF2)2(CH2)3-
CF3(CH2)4-
(CF3)2CFCH2CH2-
(CF3)2C(CH3)CH2-
H(CF2)4CH2-
Cl(CF2)4CH2-
Br(CF2)2(CH2)3-
CF3CH2CH(CH3)CH2-
CF3CF(OCF3)CH2CH2-
(CF3)2CHOCH2CH2-
F(CF2)3C(CH3)H-
F(CF2)4(CH2)2-
F(CF2)3(CH2)3-
F(CF2)2(CH2)4-
(CF3)2CF(CH2)3-
(CF3)3CCH2CH2-
CF3CF(OCF3)(CH2)3-
F(CF2)3OCF(CF3)CH2-
H(CF2)5CH2-
F(CF2)2C(CH3)2-
CF3CHFCF2C(CH3)2-
F(CF2)6CH2-
F(CF2)5(CH2)2-
F(CF2)4(CH2)3-
(CF3)2CF(CF2)2(CH2)2-
(CF3)2CFCHFCF(CF3)CH2-
CF3CF2CF(CF3)(CH2)3-
H(CF2)6CH2-
Cl(CF2)6CH2-
F(CF2)6(CH2)2-
F(CF2)5(CH2)3-
F(CF2)4(CH2)4-
F(CF2)2(CH2)6-
F(CF2)3OCF(CF3)(CH2)3-
(CF3)3C(CH2)4-
H(CF2)7CH2-
F(CF2)8CH2-
F(CF2)6(CH2)3-
(CF3)2CF(CH2)6-
(CF3)2CF(CF2)4(CH2)2-
F(CF2)3OCF(CF3)CF2OCF(CF3)CH2-
H(CF2)8CH2-
F(CF2)4(CH2)6-
CF3(CF2)7(CH2)2-
F(CF2)8(CH2)3-
(CF3)2CF(CF2)6(CH2)2-
H(CF2)10CH2-
F(CF2)6(CH2)6-
F(CF2)10(CH2)2-
H(CF2)12CH2-
F(CF2)8(CH2)6-
製造方法(a):下記一般式(10)で表される化合物と、ハロゲン含有アルキルアルコール及び/又はハロゲン含有アルキルチオールとを反応させる工程(a-1)、並びに、当該工程(a-1)で得られた下記一般式(11a)で表される化合物と、アミノフェノール及び/又はアミノチオフェノールとを反応させる工程(a-2)を含む方法。
製造方法(b):下記一般式(10)で表される化合物と、アミノフェノール及び/又はアミノチオフェノールとを反応させる工程(b-1)、並びに、当該(b-1)工程で得られた下記一般式(11b)で表される化合物と、ハロゲン含有アルキルアルコール及び/又はハロゲン含有アルキルチオールとを反応させる工程(b-2)を含む方法。
ここで、上記仕込みのモル比は、目的とする化合物(すなわち、得ようとする上記一般式(9)で表されるジアミン化合物が、R1X2で表されるハロゲン置換アルコキシ基又はハロゲン置換アルキルチオ基を1個有するジアミン化合物であるか、2個有するジアミン化合物であるか、又は、3個有するジアミン化合物であるか)によって変えることが好ましい。例えば、1置換体(ハロゲン置換アルコキシ基又はハロゲン置換アルキルチオ基を1個有するジアミン化合物)を得ようとする際には、上記一般式(10)で表される化合物1モルに対して、ハロゲン含有アルキルアルコール及びハロゲン含有アルキルチオールの総量が0.3~2モルとなるように、より好ましくは0.5~1.5モルとなるように反応を行うことが好適である。同じく、2置換体(ハロゲン置換アルコキシ基及び/又はハロゲン置換アルキルチオ基を2個有するジアミン化合物)を得ようとする際には、ハロゲン含有アルキルアルコール及びハロゲン含有アルキルチオールの総量が1~3モルとなるように、より好ましくは1.5~2.5モルとなるように反応を行うことが好適である。同じく、3置換体(ハロゲン置換アルコキシ基及び/又はハロゲン置換アルキルチオ基を3個有するジアミン化合物)を得ようとする際には、ハロゲン含有アルキルアルコール及びハロゲン含有アルキルチオールの総量が2~10モルとなるように、より好ましくは3~8モルとなるように反応を行うことが好適である。
上記溶媒の使用量としては、反応を効率よく進行できる量であれば特に限定されないが、例えば、上記一般式(10)で表される化合物の溶媒中の濃度が3~40質量%となるように設定することが好ましい。より好ましくは、5~30質量%である。
上記反応工程(a-1)により、上記一般式(11a)で表される化合物が好適に得られる。なお、この一般式(11a)で表される化合物は、上記反応工程(a-2)でアミノフェノール及び/又はアミノチオフェノールと反応させる化合物である。
上記反応工程(b-1)により、上記一般式(11b)で表される化合物が好適に得られる。なお、この一般式(11b)で表される化合物は、上記反応工程(b-2)で、ハロゲン含有アルキルアルコール及び/又はハロゲン含有アルキルチオールと反応させる化合物である。
ここで、上記仕込みのモル比は、目的とする化合物(すなわち、得ようとする上記一般式(9)で表されるジアミン化合物が、R1X2で表されるハロゲン置換アルコキシ基又はハロゲン置換アルキルチオ基を1個有するジアミン化合物であるか、2個有するジアミン化合物であるか、又は、3個有するジアミン化合物であるか)によって変えることが好ましい。例えば、1置換体を得ようとする際には、上記一般式(11a)で表される化合物1モルに対して、ハロゲン含有アルキルアルコール及びハロゲン含有アルキルチオールの総量が0.3~2モルとなるように、より好ましくは0.5~1.5モルとなるように反応を行うことが好適である。同じく、2置換体を得ようとする際には、ハロゲン含有アルキルアルコール及びハロゲン含有アルキルチオールの総量が1~3モルとなるように、より好ましくは1.5~2.5モルとなるように反応を行うことが好適である。同じく、3置換体を得ようとする際には、ハロゲン含有アルキルアルコール及びハロゲン含有アルキルチオールの総量が2~10モルとなるように、より好ましくは3~8モルとなるように反応を行うことが好適である。
上記製造方法(b)においては、上述した反応以外の工程については特に限定されるものではなく、例えば、上記製造方法(a)について上述した分離、精製工程を行うことが好適である。
すなわち、上記製造方法(a)や(b)において、アミノフェノール及び/又はアミノチオフェノールに代えて、ビフェニルやビフェニルエーテルのようにベンゼン環を2以上有し、かつアミノ基(-NH2)とヒドロキシル基(-OH)とを有する化合物を用いることによって得られるジアミン化合物、具体的には、上記一般式(9)において、両端に存在するベンゼン環2個のいずれか又は両方が、ベンゼン環を2以上有し、かつアミノ基とヒドロキシル基とを有する化合物に由来する、2以上のベンゼン環となった構造のジアミン化合物もまた、本発明の好適な実施形態の1つである。
上記芳香族テトラカルボン酸無水物としては、例えば、下記の化合物等が好適である。
ピロメリット酸二無水物、3,3′,4,4′-ベンゾフェノンテトラカルボン酸二無水物、3,3′,4,4′-ビフェニルスルホンテトラカルボン酸二無水物、3,3′,4,4′-テトラカルボキシジフェニルメタン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,6-ジクロルナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,7-ジクロルナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-テトラクロルナフタレン-1,4,5,8-テトラカルボン酸二無水物、3,3′,4,4′-ビフェニルエーテルテトラカルボン酸二無水物、2,3′,3,4′-ビフェニルエーテルテトラカルボン酸二無水物、1,2,3,4-フランテトラカルボン酸二無水物、2,3,4,5-チオフェンテトラカルボン酸二無水物、4,4′-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4′-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4′-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、3,3′,4,4′-パーフルオロイソプロピリデンジフタル酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、
ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、3,5,6-トリカルボキシノルボナン-2-酢酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフラル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、ビシクロ[2,2,2]-オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物等の脂肪族又は脂環式テトラカルボン酸二無水物;1,3,3a,4,5,9b-ヘキサヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]フラン-1,3-ジオン、1,3,3a.4,5,9b-ヘキサヒドロ-5-メチル-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]フラン-1,3-ジオン、1,3,3a,4,5,9b-ヘキサヒドロ-8-メチル-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]フラン-1,3-ジオン。
なお、上記第2の好適な形態のポリアミド酸のより好ましい形態は、上記一般式(9)で表されるジアミン化合物及び上記一般式(12)で表される酸二無水物のうちより好ましい形態のものを用いて合成することによって得ることができる。すなわち、本発明におけるポリアミド酸が、上記一般式(16)中のR1が炭素数1~20のフッ素置換アルキル基である形態であること、また、上記一般式(16)中のB2がF(フッ素原子)である形態であることもまた、本発明の好適な実施形態の1つである。
なお、このような組成物においても、ポリアミド酸として重量平均分子量が20万以上の高分子量のポリアミド酸を用いる場合には、水分量が1000ppm以下であることが好ましいが、後述するようにカーボンブラック及び/又はフッ素系樹脂を、分散液として、ポリアミド酸の重合後に混合する場合にも、水分が混入しないようにすることが好ましい。
上記ポリカルボン酸系高分子分散剤としては、例えば、(メタ)アクリル酸と(メタ)アクリル酸エステルとの共重合体、無水マレイン酸共重合体とアルキルアミン等の各種アミンやアルコールとのアミド化又はエステル化物、ポリ(メタ)アクリル酸共重合体等のポリカルボン酸のポリエステルやポリアルキレングリコールをグラフトさせた櫛型ポリマー等が挙げられる。なお、本明細書において、(メタ)アクリル酸は、アクリル酸又はメタクリル酸を意味する。
上記分子内に複数のアミド基を有する高分子分散剤としては、例えば、縮合反応によって得られるポリアミド、ポリビニルピロリドン、ポリN,N-ジメチルアクリルアミドの共重合体や、これらにポリエステルやポリアルキレングリコールをグラフトさせた櫛型ポリマー等が挙げられる。
上記多環式芳香族化合物を含有する高分子分散剤としては、例えば、ピレンやキナクリドン骨格を有するビニルモノマーと各種モノマーとの共重合体が挙げられる。
本発明はそして、本発明のポリイミドを含むポリイミド組成物でもある。
なお、本明細書においては、ポリアミド酸をイミド化したものを「ポリイミド」と称し、ポリアミド酸組成物をイミド化したものを「ポリイミド組成物」と称する。
また上記イミド化反応は、通常の手法により行えばよく、例えば、これらを加熱及び/又は減圧乾燥することにより行うこともできるし、また、通常用いられる方法で化学イミド化してもよい。
なお、上記のようにして得られるポリイミドの厚みは特に限定されず、用いられる用途に応じて適宜設定すればよいが、複写機部材用途(例えば、画像形成・記録装置用ベルト用途)では0.5~50μmであることが好ましく、より好ましくは1~30μmである。
なお、水に対する接触角は、協和界面化学社製の接触角計「CA-X」により測定することができる。
<動的粘弾性測定方法>
装置:ティー・エイ・インスツルメント社製
動的粘弾性 RSA III
測定方法:20μmのフィルムを5×40mmの短冊状に作製し、200℃での伸びと応力を測定し、引っ張り弾性率を算出した。
<GPC測定方法>
装置:東ソー株式会社製 HCL-8220GPC
カラム:TSKgel Super AWM-H
溶離液(LiBr・H2O、リン酸入りNMP):0.01mol/L
合成例1
ペンタフルオロベンゾニトリル(PFBN)5.66g(29.31mmol)、アルキルフッ素化アルコール9.28g(19.99mmol)、炭酸カリウム1.45g(10.49mmol)及びアセトニトリル50gを反応容器に一括で仕込んだ。この反応溶液を70℃で24時間加熱し、その後冷却した。反応終了後、析出塩を濾過した後、溶媒留去し、得られた粗生成物を113-118℃/0.1mmHgの条件で減圧蒸留して、白色固体8.92g(収率70%)を得た。
得られた生成物は、ペンタフルオロデカノキシ-2,3,5,6-テトラフルオロベンゾニトリル(p-置換体)/ペンタフルオロデカノキシ-3,4,5,6-テトラフルオロベンゾニトリル(o-置換体)=87.7/12.3の混合物であった。得られた物質の1H-NMR及び19F-NMRチャートをそれぞれ、図1及び図2に示す。なお、得られた生成物のp-置換体/o-置換体の比率は、図2に示した19F-NMRチャートの(i)、(j)及び(k)、(l)、(m)、(n)のピークの面積比から算出したものである。1H-NMR及び19F-NMR測定は、以下の装置及び条件により行った。
[1H-NMR及び19F-NMR測定]
Unity Plus 400(Varian社製)を用いて、溶媒CDCl3を使用し、1H-NMR(400MHz)及び19F-NMR(376MHz)スペクトル測定し、構造分析を行った。なお、1H-NMRスペクトルは、内部標準としてテトラメチルシラン(TMS)のHの位置を0ppmとし、19F-NMRスペクトルは、内部標準としてヘキサフルオロベンゼンのFの位置を0ppmとした。
なお、合成例1で得た主成分たるヘプタデカフルオロデカノキシ-2,3,5,6-テトラフルオロベンゾニトリル(p-置換体)の構造を、下記に示す。
合成例2
300ml3つ口反応容器に、合成例1で得たヘプタデカフルオロデカノキシテトラフルオロベンゾニトリル10.00g(15.69mmol)、p-アミノフェノール5.13g(47.01mmol)、炭酸カリウム8.68g(62.80mmol)、アセトニトリル150gを仕込み、80℃に加熱し16時間反応させた。放冷した後、反応溶液を濾過して無機塩を除き、エバポレーターを用いて濃縮した。濃縮物を酢酸エチルに溶解し、2度水洗した。有機層を硫酸ナトリウムで乾燥後濃縮して、シリカゲルカラムクロマトグラフィ(酢酸エチル/ヘキサン=7/3)により精製、更に再結晶することで、目的のジアミン化合物を4.82g(5.91mmol、収率38%)で得た。なお、合成例2の反応式を下記に示す。
NMRスペクトル(装置:日本電子社製、形式:JNM-AL400)
1H-NMR(CDCl3):δ6.87(dd、J=2.4Hz,6.8Hz、4H)、δ6.64(dd、J=2.4Hz,6.8Hz、4H)、δ4.54(t、J=6.8Hz、2H)、δ3.58(brs、4H)、δ2.67-2.58(m、2H)
19F-NMR(CDCl3):δ81.01(t、J=9.4Hz、3F)、δ48.44(t、J=15.79Hz、2F)、δ40.10(brs、2F)、δ39.84(brs、4F)、δ39.04(brs、2F)、δ38.25(brs、2F)、δ35.65(brs、2F)、δ16.70(s、2F)
300ml3つ口反応容器に、合成例1で得たヘプタデカフルオロデカノキシテトラフルオロベンゾニトリル12.00g(18.83mmol)、4-アミノベンゼンチオール4.71g(37.62mmol)、炭酸カリウム7.8g(56.44mmol)、アセトニトリル170gを仕込み、40℃に加熱し14時間反応させた。放冷した後、反応溶液を濾過して無機塩を除き、エバポレーターを用いて濃縮した。濃縮物を酢酸エチルに溶解し、2度水洗した。有機層を硫酸ナトリウムで乾燥後濃縮して、シリカゲルカラムクロマトグラフィ(酢酸エチル/ヘキサン=7/3)により精製、更に2度再結晶することで、目的のジアミン化合物を5.30g(6.25mmol、収率33%)で得た。なお、合成例3の反応式を下記に示す。
NMRスペクトル(装置:日本電子社製、形式:JNM-AL400)
1H-NMR(CDCl3):δ7.38(dd、J=2.0Hz,6.8Hz、4H)、δ6.59(dd、J=2.0Hz,6.8Hz、4H)、δ4.44(t、J=6.4Hz、2H)、δ3.80(brs、4H)、δ2.64-2.55(m、2H)
19F-NMR(CDCl3):δ81.02(t、J=9.4Hz、3F)、δ84.43(t、J=14.66Hz、3F)、δ46,99(s、2F)、δ40.11(brs、2F)、δ39.86(brs、4F)、δ39.05(brs、2F)、δ38.25(brs、2F)、δ35.66(brs、2F)
実施例1
50ml容量の三口フラスコに、ビス(4-アミノフェニル)エーテル0.384g(1.9ミリモル)、1,4-ビス(3,4-ジカルボキシトリフルオロフェノキシ)テトラフルオロベンゼン酸二無水物(別名:4,4’-[(2,3,5,6-テトラフルオロ-1,4-フェニレン)ビス(オキシ)]ビス(3,5,6-トリフルオロフタル酸無水物)1.116g(1.9ミリモル)、及び、N-メチルピロリドン13.5gを仕込んだ。窒素雰囲気下中、室温で5日間攪拌することで、ポリアミド酸(固形分濃度:10質量%)を得た。このポリアミド酸の分子量Mwを表1に示す。
このようにして得たポリアミド酸(固形分濃度:10質量%)を、Si基板上に、スピンコーター(ミカサ社製)を用いて、焼成後の厚みが5μmの膜厚になるように製膜し、320℃、1時間、窒素雰内気下で焼成を行った。得られたフィルム(ポリイミドフィルム)について、水との接触角及び弾性率を評価した。結果を表1に示す。
なお、ビス(4-アミノフェニル)エーテルは、1分子内にエーテル結合を1個有するジアミン化合物であり、1,4-ビス(3,4-ジカルボキシトリフルオロフェノキシ)テトラフルオロベンゼン酸二無水物は、1分子内にエーテル結合を2個有する酸二無水物であり、これらのモル比は1/1であることから、エーテル結合の総和は、1×1個+1×2個=3個となる。
50ml容量の三口フラスコに、4,4’-ビス(4-アミノフェノキシ)ビフェニル0.581g(1.6ミリモル)、1,4-ビス(3,4-ジカルボキシトリフルオロフェノキシ)テトラフルオロベンゼン酸二無水物0.919g(1.6ミリモル)、及び、N-メチルピロリドン13.5gを仕込んだ後、実施例1と同様にしてポリアミド酸(固形分濃度:10質量%)を得た。次いで、このポリアミド酸を用いて、実施例1と同様にしてポリイミドフィルムを形成した。ポリアミド酸の分子量Mw、フィルムについての水との接触角、弾性率の評価結果を表1に示す。
なお、4,4’-ビス(4-アミノフェノキシ)ビフェニルは、1分子内にエーテル結合を2個有するジアミン化合物であり、1,4-ビス(3,4-ジカルボキシトリフルオロフェノキシ)テトラフルオロベンゼン酸二無水物は、1分子内にエーテル結合を2個有する酸二無水物であり、これらのモル比は1/1であることから、エーテル結合の総和は、1×2個+1×2個=4個となる。
50ml容量の三口フラスコに、1,4-ビス(4-アミノフェノキシ)ベンゼン0.501g(1.7ミリモル)、1,4-ビス(3,4-ジカルボキシトリフルオロフェノキシ)テトラフルオロベンゼン酸二無水物0.999g(1.7ミリモル)、及び、N-メチルピロリドン13.5gを仕込んだ後、実施例1と同様にしてポリアミド酸(固形分濃度:10質量%)を得た。次いで、このポリアミド酸を用いて、実施例1と同様にしてポリイミドフィルムを形成した。ポリアミド酸の分子量Mw、フィルムについての水との接触角、弾性率の評価結果を表1に示す。
なお、1,4-ビス(4-アミノフェノキシ)ベンゼンは、1分子内にエーテル結合を2個有するジアミン化合物であり、1,4-ビス(3,4-ジカルボキシトリフルオロフェノキシ)テトラフルオロベンゼン酸二無水物は、1分子内にエーテル結合を2個有する酸二無水物であり、これらのモル比は1/1であることから、エーテル結合の総和は、1×2個+1×2個=4個となる。
50ml容量の三口フラスコに、1,3-ジアミノ-2,4,5,6-テトラフルオロベンゼン1.170g(6.5ミリモル)、1,4-ビス(3,4-ジカルボキシトリフルオロフェノキシ)テトラフルオロベンゼン酸二無水物3.780g(6.5ミリモル)、及び、N-メチルピロリドン10.1gを仕込んだ後、実施例1と同様にしてポリアミド酸(固形分濃度:33質量%)を得た。次いで、このポリアミド酸を用いて、実施例1と同様にしてポリイミドフィルムを形成した。ポリアミド酸の分子量Mw、フィルムについての水との接触角、弾性率の評価結果を表1に示す。
なお、1,3-ジアミノ-2,4,5,6-テトラフルオロベンゼンは、エーテル結合を有さないジアミン化合物であり、1,4-ビス(3,4-ジカルボキシトリフルオロフェノキシ)テトラフルオロベンゼン酸二無水物は、1分子内にエーテル結合を2個有する酸二無水物であり、これらのモル比は1/1であることから、エーテル結合の総和は、1×0個+1×2個=2個となる。
50ml容量の三口フラスコに、1,4-ビス(4-アミノフェノキシ)ベンゼン0.595g(2.0ミリモル)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物0.905g(2.0ミリモル)、及び、N-メチルピロリドン13.5gを仕込んだ後、実施例1と同様にしてポリアミド酸(固形分濃度:10質量%)を得た。次いで、このポリアミド酸を用いて、実施例1と同様にしてポリイミドフィルムを形成した。ポリアミド酸の分子量Mw、フィルムについての水との接触角の評価結果を表1に示す。
なお、1,4-ビス(4-アミノフェノキシ)ベンゼンは、1分子内にエーテル結合を2個有するジアミン化合物であり、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物はエーテル結合を有さない酸二無水物であり、これらのモル比は1/1であることから、エーテル結合の総和は、1×2個+1×0個=2個となる。
50ml容量の三口フラスコに、合成例2で得たジアミン化合物0.486g及び1,4-ビス(4-アミノフェノキシ)ベンゼン0.174g(これらの合計量:1.2ミリモル)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物0.529g(1.2ミリモル)、及び、N-メチルピロリドン13.5gを仕込んだ後、実施例1と同様にしてポリアミド酸(固形分濃度:10質量%)を得た。次いで、このポリアミド酸を用いて、実施例1と同様にしてポリイミドフィルムを形成した。ポリアミド酸の分子量Mw、フィルムについての水との接触角の評価結果を表1に示す。
なお、合成例2で得たジアミン化合物及び1,4-ビス(4-アミノフェノキシ)ベンゼンは、各々、1分子内にエーテル結合を2個有するものであり、これらのモル比は1/1(=0.5/0.5)であった。また、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物はエーテル結合を有さない酸二無水物であり、ジアミン化合物の合計量と酸二無水物とのモル比は1/1であったため、エーテル結合の総和は、0.5×2個+0.5×2個+1×0個=2個となる。
50ml容量の三口フラスコに、合成例2で得たジアミン化合物1.31g(1.6ミリモル)と、1,4-ビス(3,4-ジカルボキシトリフルオロフェノキシ)テトラフルオロベンゼン酸二無水物0.94g(1.6ミリモル)、及び、N-メチルピロリドン12.8gを仕込んだ。窒素雰囲気下中、室温で5日間攪拌することで、ポリアミド酸(固形分濃度:15質量%)を得た。この反応式を下記に示す。また、得られたポリアミド酸の分子量Mwを表2に示す。
50ml容量の三口フラスコに、合成例3で得たジアミン化合物0.889g(1.0ミリモル)、1,4-ビス(3,4-ジカルボキシトリフルオロフェノキシ)テトラフルオロベンゼン酸二無水物0.611g(1.0ミリモル)、及び、N-メチルピロリドン13.5gを仕込んだ後、実施例1と同様にしてポリアミド酸(固形分濃度:10質量%)を得た。次いで、このポリアミド酸を用いて、実施例1と同様にしてポリイミドフィルムを形成した。ポリアミド酸の分子量Mw、フィルムについての水との接触角の評価結果を表2に示す。
50ml容量の三口フラスコに、合成例2で得たジアミン化合物0.971g(1.2ミリモル)、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物0.529g(1.2ミリモル)、及び、N-メチルピロリドン13.5gを仕込んだ後、実施例1と同様にしてポリアミド酸(固形分濃度:10質量%)を得た。次いで、このポリアミド酸を用いて、実施例1と同様にしてポリイミドフィルムを形成した。ポリアミド酸の分子量Mw、フィルムについての水との接触角の評価結果を表2に示す。
50ml容量の三口フラスコに、1,4-ビス(4-アミノフェノキシ)ベンゼン0.174g及び合成例2で得たジアミン化合物0.486g(これらの合計量:1.2ミリモル)、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物0.529g(1.2ミリモル)、及び、N-メチルピロリドン13.5gを仕込んだ後、実施例1と同様にしてポリアミド酸(固形分濃度:10質量%)を得た。次いで、このポリアミド酸を用いて、実施例1と同様にしてポリイミドフィルムを形成した。ポリアミド酸の分子量Mw、フィルムについての水との接触角の評価結果を表2に示す。
50ml容量の三口フラスコに、1,4-ビス(4-アミノフェノキシ)ベンゼン0.157g及び合成例2で得たジアミン化合物0.438g(これらの合計量:1.1ミリモル)、1,4-ビス(3,4-ジカルボキシトリフルオロフェノキシ)テトラフルオロベンゼン酸二無水物0.625g(1.1ミリモル)、及び、N-メチルピロリドン13.5gを仕込んだ後、実施例1と同様にしてポリアミド酸(固形分濃度:10質量%)を得た。次いで、このポリアミド酸を用いて、実施例1と同様にしてポリイミドフィルムを形成した。ポリアミド酸の分子量Mw、フィルムについての水との接触角の評価結果を表2に示す。
50ml容量の三口フラスコに1,4-ビス(4-アミノフェノキシ)ベンゼン1.09g(0.0037モル)、4,4’-((1,4-フェニレン)ビス(オキシ))ビス(3,5,6-トリフルオロフタル酸無水物)1.91g(0.0037モル)、及び、N-メチルピロリドン12gを仕込んだ。窒素雰囲気下中、室温で5日間攪拌することで、ポリアミド酸(固形分濃度:10質量%)を得た。得られたポリアミド酸の分子量Mwを表3に示す。
なお、1,4-ビス(4-アミノフェノキシ)ベンゼンは1分子内にエーテル結合を2個有するジアミン化合物であり、4,4’-((1,4-フェニレン)ビス(オキシ))ビス(3,5,6-トリフルオロフタル酸無水物)は1分子内にエーテル結合を2個有する酸二無水物であり、これらのモル比は1/1であることから、エーテル結合の総和は1×2個+1×2個=4個となる。
50ml容量の三口フラスコに1,4-ビス(4-アミノフェノキシ)ベンゼン0.534g(0.0018モル)、5,5’-(4,4’-(プロパン-2,2’-ジイル)ビス(1,4-フェニレン))ビス(オキシ)ビスフタル酸無水物0.961g(0.0018モル)、及び、N-メチルピロリドン13.5gを仕込んだ。窒素雰囲気下中、室温で5日間攪拌することで、ポリアミド酸(固形分濃度:10質量%)を得た。得られたポリアミド酸の分子量Mwを表3に示す。
なお、1,4-ビス(4-アミノフェノキシ)ベンゼンは1分子内にエーテル結合を2個有するジアミン化合物であり、5,5’-(4,4’-(プロパン-2,2’-ジイル)ビス(1,4-フェニレン))ビス(オキシ)ビスフタル酸無水物は1分子内にエーテル結合を2個有する酸二無水物であり、これらのモル比は1/1であることから、エーテル結合の総和は1×2個+1×2個=4個となる。
50ml容量の三口フラスコに1,4-ビス(4-アミノフェノキシ)ベンゼン1.456g(0.005モル)、4,4’-オキシジフタル酸無水物1.545g(0.005モル)、及び、N-メチルピロリドン27gを仕込んだ。窒素雰囲気下中、室温で5日間攪拌することで、ポリアミド酸(固形分濃度:10質量%)を得た。得られたポリアミド酸の分子量Mwを表3に示す。
なお、1,4-ビス(4-アミノフェノキシ)ベンゼンは1分子内にエーテル結合を2個有するジアミン化合物であり、4,4’-オキシジフタル酸無水物は1分子内にエーテル結合を1個有する酸二無水物であり、これらのモル比は1/1であることから、エーテル結合の総和は1×2個+1×1個=3個となる。
200mlのガラス容器中に、溶媒としてN-メチルピロリドン98gと、ケッチェンブラック(LION社製:カーボンECP600JD)2g、分散剤としてポリビニルピロリドン(日本触媒社製:K-30)0.4gと、直径1mmのビーズを入れ、ペイントシェーカーによリ1時間分散処理を行った後、ろ過することで、カーボン分散液(1)を得た。得られたカーボン分散液(1)をナノ粒子測定装置(掘場製作所社製:LB-500)で粒度分布を測定したところ、算術計算系0.22μmであり、カーボンブラックが均一に分散した溶液が得られていることがわかった。
実施例15
実施例3で得たポリアミド酸(固形分濃度:10質量%)10gに、PTFE分散NMP溶液(喜多村社製、KD-1000AS、分散媒:NMP(N-メチルピロリドン)、粒径300nm)0.63gを混合したところ、均一な溶液となり、PTFE分散ポリアミド酸組成物が得られた。このPTFEポリアミド酸組成物をSiウェハ上に、スピンコーター(ミカサ社製)を用いて、焼成後のフィルム厚みが5μmとなるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。得られたフィルム(ポリイミドフィルム)について、水による接触角測定を行ったところ、110°であった。
調製例1で得たカーボン分散液(1)1.55gを、実施例3で得たポリアミド酸(固形分濃度:10質量%)10gに混合したところ、均一な溶液となり、カーボン分散ポリアミド酸組成物が得られた(ポリアミド酸の固形分濃度:8.6質量%)。このカーボン分散ポリアミド酸組成物をSiウェハ上に、スピンコーター(ミカサ社製)を用いて、焼成後のフィルム厚みが5μmとなるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。このようにしてポリイミドフィルムを得た。
調製例1で得たカーボン分散液(1)0.51gを実施例3で得たポリアミド酸(固形分濃度:10質量%)10gに混合して得たカーボン分散ポリアミド酸組成物に、PTFE分散NMP溶液(喜多村社製、KD-1000AS、PTFE固形分濃度:40質量%、分散媒:NMP(N-メチルピロリドン)、粒径300nm)1.07gを混合し、自転公転式攪拌装置(シンキー社製:泡取り練太郎)で攪拌脱法を行った。その後、得られた組成物(ポリアミド酸組成物)をSi基板上に、スピンコーター(ミカサ社製)を用いて、焼成後の厚みが5μmの膜厚になるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。このようにしてポリイミドフィルムを得た。
実施例7で得たポリアミド酸(固形分濃度:15質量%)10gに、PTFE分散NMP溶液(喜多村社製、KD-1000AS、分散媒:NMP(N-メチルピロリドン)、粒径300nm)0.42gを混合したところ、均一な溶液となり、PTFE分散ポリアミド酸組成物が得られた。このPTFEポリアミド酸組成物をSiウェハ上に、スピンコーター(ミカサ社製)を用いて、焼成後のフィルム厚みが5μmとなるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。得られたフィルム(ポリイミドフィルム)について、水による接触角測定を行ったところ、110°であった。
調製例1で得たカーボン分散液(1)3.96gを、実施例7で得たポリアミド酸(固形分濃度:15質量%)10gに混合したところ、均一な溶液となり、カーボン分散ポリアミド酸組成物が得られた(ポリアミド酸の固形分濃度:12質量%)。このカーボン分散ポリアミド酸組成物をSiウェハ上に、スピンコーター(ミカサ社製)を用いて、焼成後のフィルム厚みが5μmとなるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。このようにしてポリイミドフィルムを得た。
調製例1で得たカーボン分散液(1)3.96gを実施例7で得たポリアミド酸(固形分濃度:15質量%)10gに混合して得たカーボン分散ポリアミド酸組成物に、PTFE分散NMP溶液(喜多村社製、KD-1000AS、PTFE固形分濃度:40質量%、分散媒:NMP(N-メチルピロリドン)、粒径300nm)0.94g(ポリアミド酸固形分に対してPTFE固形分が25質量%)を混合し、自転公転式攪拌装置(シンキー社製:泡取り練太郎)で攪拌脱法を行った。その後、得られた組成物(ポリアミド酸組成物)をSi基板上に、スピンコーター(ミカサ社製)を用いて、焼成後の厚みが5μmの膜厚になるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。このようにしてポリイミドフィルムを得た。
実施例12で得られたポリアミド酸(固形分濃度:10質量%)10gにPTFE分散NMP溶液(喜多村社製、KD-1000AS、分散媒:NMP(N-メチルピロリドン)、粒径300nm)1.67gを混合したところ、均一な溶液となり、PTFE分散ポリアミド酸組成物が得られた。このPTFEポリアミド酸組成物をSiウェハ上に、スピンコーター(ミカサ社製)を用いて、焼成後のフィルム厚みが5μmとなるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。得られたフィルムの表面抵抗値を測定したところ、5.72×1015Ω/□であった。また、得られたフィルム(ポリイミドフィルム)について、水による接触角測定を行ったところ、87°であった。組成及び評価結果を表4に示す。
調製例1で得たカーボン分散液(1)0.75gを実施例12で得られたポリアミド酸(固形分濃度:10質量%)10gに混合したところ、均一な溶液となり、カーボン分散ポリアミド酸組成物が得られた(ポリアミド酸の固形分濃度:8.6質量%)。このカーボン分散ポリアミド酸組成物をSiウェハ上に、スピンコーター(ミカサ社製)を用いて、焼成後のフィルム厚みが5μmとなるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。このようにしてポリイミドフィルムを得た。得られたフィルムの表面抵抗値を測定したところ、2.57×107Ω/□であった。また、得られたフィルムの水による接触角測定を行ったところ、79°であった。組成及び評価結果を表4に示す。
調製例1で得たカーボン分散液(1)0.75gを実施例12で得られたポリアミド酸(固形分濃度:10質量%)10gに混合して得たカーボン分散ポリアミド酸組成物に、PTFE分散NMP溶液(喜多村社製、KD-1000AS、分散媒:NMP(N-メチルピロリドン)、粒径300nm)1.67gを混合し、自転公転式攪拌装置(シンキー社製:泡取り練太郎)で攪拌脱法を行った。その後、得られた組成物(ポリアミド酸組成物)をSi基板上に、スピンコーター(ミカサ社製)を用いて、焼成後の厚みが5μmの膜厚になるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。このようにしてポリイミドフィルムを得た。得られたフィルムの表面抵抗値を測定したところ、4.16×107Ω/□であった。また、得られたフィルムの水による接触角測定を行ったところ、86°であった。組成及び評価結果を表4に示す。
実施例13で得られたポリアミド酸(固形分濃度:10質量%)10gにPTFE分散NMP溶液(喜多村社製、KD-1000AS、分散媒:NMP(N-メチルピロリドン)、粒径300nm)1.67gを混合したところ、均一な溶液となり、PTFE分散ポリアミド酸組成物が得られた。このPTFEポリアミド酸組成物をSiウェハ上に、スピンコーター(ミカサ社製)を用いて、焼成後のフィルム厚みが5μmとなるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。得られたフィルムの表面抵抗値を測定したところ、2.55×1016Ω/□であった。また、得られたフィルム(ポリイミドフィルム)について、水による接触角測定を行ったところ、98°であった。組成及び評価結果を表4に示す。
調製例1で得たカーボン分散液(1)0.75gを実施例13で得られたポリアミド酸(固形分濃度:10質量%)10gに混合したところ、均一な溶液となり、カーボン分散ポリアミド酸組成物が得られた(ポリアミド酸の固形分濃度:8.6質量%)。このカーボン分散ポリアミド酸組成物をSiウェハ上に、スピンコーター(ミカサ社製)を用いて、焼成後のフィルム厚みが5μmとなるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。このようにしてポリイミドフィルムを得た。得られたフィルムの表面抵抗値を測定したところ、2.46×1016Ω/□であった。また、得られたフィルム(ポリイミドフィルム)について、水による接触角測定を行ったところ、85°であった。組成及び評価結果を表4に示す。
調製例1で得たカーボン分散液(1)0.75gを実施例13で得られたポリアミド酸(固形分濃度:10質量%)10gに混合して得たカーボン分散ポリアミド酸組成物に、PTFE分散NMP溶液(喜多村社製、KD-1000AS、分散媒:NMP(N-メチルピロリドン)、粒径300nm)1.67gを混合し、自転公転式攪拌装置(シンキー社製:泡取り練太郎)で攪拌脱法を行った。その後、得られた組成物(ポリアミド酸組成物)をSi基板上に、スピンコーター(ミカサ社製)を用いて、焼成後の厚みが5μmの膜厚になるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。このようにしてポリイミドフィルムを得た。得られたフィルムの表面抵抗値を測定したところ、3.48×1016Ω/□であった。また、得られたフィルムの水による接触角測定を行ったところ、88°であった。組成及び評価結果を表4に示す。
実施例27
200ml容量の三口フラスコに1,3-ジアミノ-2,4,5,6-テトラフルオロベンゼン4.73g(26ミリモル)、4,4’-[(2,3,5,6-テトラフルオロ-1,4-フェニレン)ビス(オキシ)]ビス(3,5,6-トリフルオロフタル酸無水物)15.28g(26ミリモル)、カーボン分散液(1)52.8g及びN-メチルピロリドン28.2gを仕込んだ。窒素雰囲気下、室温で、5日間攪拌することで、カーボン分散ポリアミド酸組成物(1)(ポリアミド酸の固形分濃度:20.0%)を得た。
得られたカーボン分散ポリアミド酸組成物(1)をSiウェハ上に、スピンコーター(ミカサ社製)を用いて、焼成後のフィルム厚みが5μとなるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。得られたフィルム(ポリイミドフィルム1)について表面抵抗値を測定したところ、1.95×106Ω/□であり、水による接触角測定を行ったところ、80°であった。組成及び評価結果を表4に示す。
実施例28
200ml容量の三口フラスコに1,3-ジアミノ-2,4,5,6-テトラフルオロベンゼン2.84g(16ミリモル)、4,4’-[(2,3,5,6-テトラフルオロ-1,4-フェニレン)ビス(オキシ)]ビス(3,5,6-トリフルオロフタル酸無水物)9.17g(16ミリモル)、及び、N-メチルピロリドン28.0gを仕込んだ。窒素雰囲気下、室温で、5日間攪拌することで、ポリアミド酸溶液(a)(ポリアミド酸の固形分濃度:30.0%)を得た。
調製例1で得たカーボン分散液(1)31.7gを上記ポリアミド酸溶液(a)40gに混合したところ、均一な溶液となり、カーボン分散ポリアミド酸組成物(2)が得られた(ポリアミド酸の固形分濃度:20.0%)。このカーボン分散ポリアミド酸組成物(2)をSiウェハ上に、スピンコーター(ミカサ社製)を用いて、焼成後のフィルム厚みが5μとなるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。得られたフィルム(ポリイミドフィルム2)の表面抵抗値を測定したところ、1.13×106Ω/□で、水による接触角測定を行ったところ、80°であった。組成及び評価結果を表4に示す。
実施例29
実施例28で作製したポリアミド酸溶液(a)10gへカーボン分散液を添加せず、0.22gのPTFE(ダイキン工業社製:ルブロン)を添加し、自転公転式攪拌装置(シンキー社製:泡取り混太郎)で攪拌脱法を行った。その後、得られた組成物(ポリアミド酸組成物(3))をSi基板上に、スピンコーター(ミカサ社製)を用いて、焼成後の厚みが5μの膜厚になるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。得られたフィルム(ポリイミドフィルム3)の表面抵抗値を測定したところ、1.89×1018Ω/□であり、水による接触角測定を行ったところ、100°であった。組成及び評価結果を表4に示す。
実施例30
調製例1で得たカーボン分散液(1)63.3gを実施例28で得たポリアミド酸溶液(a)40gに混合して得たカーボン分散ポリアミド酸組成物(2)10gへ、0.22gのPTFE(ダイキン工業社製:ルブロン)を添加し、自転公転式攪拌装置(シンキー社製:泡取り練太郎)で攪拌脱法を行った。その後、得られた組成物(ポリアミド酸組成物(4))をSi基板上に、スピンコーター(ミカサ社製)を用いて、焼成後の厚みが5μの膜厚になるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。得られたフィルム(ポリイミドフィルム4)の表面抵抗値を測定したところ、8.68×105Ω/□であり、水による接触角測定を行ったところ、100°であった。組成及び評価結果を表4に示す。
実施例31
200ml容量の三口フラスコに4,4’-ジアミノ2,2’-ビス(トリフルオロメチル)ビフェニル5.32g(17ミリモル)、4,4’-[(2,3,5,6-テトラフルオロ-1,4-フェニレン)ビス(オキシ)]ビス(3,5,6-トリフルオロフタル酸無水物)9.68g(17ミリモル)、調製例1で得たカーボン分散液(1)39.6g及びN-メチルピロリドン46.2gを仕込んだ。窒素雰囲気下、室温で、5日間攪拌することで、カーボン分散ポリアミド酸組成物(5)(ポリアミド酸の固形分濃度:15.0%)を得た。得られたカーボン分散ポリアミド酸組成物(5)をSiウェハ上に、スピンコーター(ミカサ社製)を用いて、焼成後のフィルム厚みが5μの膜厚になるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。得られたフィルム(ポリイミドフィルム5)の表面抵抗値を測定したところ、2.10×106Ω/□であり、水による接触角測定を行ったところ、80°であった。組成及び評価結果を表4に示す。
実施例32
200ml容量の三口フラスコに4,4’-ジアミノ2,2’-ビス(トリフルオロメチル)ビフェニル2.13g(7.0ミリモル)、4,4’-[(2,3,5,6-テトラフルオロ-1,4-フェニレン)ビス(オキシ)]ビス(3,5,6-トリフルオロフタル酸無水物3.87g(7.0ミリモル)及びN-メチルピロリドン34.0gを仕込んだ。窒素雰囲気下、室温で、5日間攪拌することで、ポリアミド酸溶液(b)(ポリアミド酸の固形分濃度:15.0%)を得た。
調製例1で得たカーボン分散液(1)15.9gを、上記ポリアミド酸溶液(b)40gに混合したところ、均一な溶液となり、カーボン分散ポリアミド酸組成物(6)が得られた(ポリアミド酸の固形分濃度:12%)。このカーボン分散ポリアミド酸組成物(6)をSiウェハ上に、スピンコーター(ミカサ社製)を用いて、焼成後のフィルム厚みが5μとなるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。得られたフィルム(ポリイミドフィルム6)の表面抵抗値を測定したところ、3.42×106Ω/□であり、水による接触角測定を行ったところ、80°であった。組成及び評価結果を表4に示す。
実施例33
実施例32で作製したポリアミド酸溶液(b)10gへカーボンを添加せず、0.17gのPTFE(ダイキン工業社製:ルブロン)を添加し、自転公転式攪拌装置(シンキー社製:泡取り練太郎)で攪拌脱法を行った。その後、得られた組成物(ポリアミド酸組成物(7))をSi基板上に、スピンコーター(ミカサ社製)を用いて、焼成後の厚みが5μの膜厚になるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。得られたフィルム(ポリイミドフィルム7)の表面抵抗値を測定したところ、3.17×1017Ω/□であり、水による接触角測定を行ったところ、100°であった。組成及び評価結果を表4に示す。
実施例34
調製例1で得たカーボン分散液(1)63.3gを実施例32で得たポリアミド酸溶液(b)40gに混合して得られたカーボン分散ポリアミド酸組成物(6)10gへ0.13gのPTFE(ダイキン工業社製:ルブロン)を添加し、自転公転式攪拌装置(シンキー社製:泡取り練太郎)で攪拌脱法を行った。その後、得られた組成物(ポリアミド酸組成物(8))をSi基板上に、スピンコーター(ミカサ社製)を用いて、焼成後の厚みが5μの膜厚になるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。得られたフィルム(ポリイミドフィルム8)の表面抵抗値を測定したところ、3.52×105Ω/□であり、水による接触角測定を行ったところ、100°であった。組成及び評価結果を表4に示す。
実施例35
実施例28で作製したポリアミド酸溶液(a)40gに、PTFE分散NMP溶液(喜多村社製、KD-1000AS、分散媒:NMP(N-メチルピロリドン)、粒径300nm)3.33gを混合したところ、均一な溶液となり、PTFE分散ポリアミド酸組成物(9)が得られた(ポリアミド酸の固形分濃度:29%)。このPTFE分散ポリアミド酸組成物(9)をSiウェハ上に、スピンコーター(ミカサ社製)を用いて、焼成後のフィルム厚みが5μとなるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。得られたフィルム(ポリイミドフィルム9)の表面抵抗値を測定したところ、4.56×1017Ω/□で、水による接触角測定を行ったところ、108°であった。組成及び評価結果を表4に示す。
実施例36
実施例28で作製したポリアミド酸溶液(a)をカーボン添加せず、Si基板上に、スピンコーター(ミカサ社製)を用いて、焼成後の厚みが5μの膜厚になるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。得られたフィルム(ポリイミドフィルム10)の表面抵抗値を測定したところ、1.89×1017Ω/□であり、水による接触角測定を行ったところ、80°であった。組成及び評価結果を表4に示す。
実施例37
実施例32で作製したポリアミド酸溶液(b)をカーボン添加せず、Si基板上に、スピンコーター(ミカサ社製)を用いて、焼成後の厚みが5μの膜厚になるように製膜し、320℃、1時間、窒素雰囲気下で焼成を行った。得られたフィルム(ポリイミドフィルム11)の表面抵抗値を測定したところ、1.57×1017Ω/□であり、水による接触角測定を行ったところ、80°であった。組成及び評価結果を表4に示す。
TPE-Q:1,4-ビス(4-アミノフェノキシ)ベンゼン
4FMPD:1,3-ジアミノ-2,4,5,6-テトラフルオロベンゼン
TFMB:4,4’-ジアミノ2,2’-ビス(トリフルオロメチル)ビフェニル
CB:カーボンブラック
PTFE:ポリテトラフルオロエチレン
Claims (15)
- 酸二無水物とジアミン化合物とを各々1種又は2種以上用いて得られる複写機部材用の高撥水性ポリイミドであって、
該酸二無水物及びジアミン化合物のうち少なくとも1種の化合物は、分子内にエーテル結合及び/又はチオエーテル結合を有するものであり、
該ポリイミドを構成する酸二無水物及びジアミン化合物由来の重合繰り返し単位中のエーテル結合及びチオエーテル結合の総和が2以上であることを特徴とする複写機部材用高撥水性ポリイミド。 - 前記一般式(9)中のR1は、炭素数1~20のフッ素置換アルキル基であることを特徴とする請求項3に記載の複写機部材用高撥水性ポリイミド。
- 前記一般式(9)中のB2は、F(フッ素原子)であることを特徴とする請求項3又は4に記載の複写機部材用高撥水性ポリイミド。
- 請求項1~6のいずれかに記載のポリイミドを含むことを特徴とするポリイミド組成物。
- 複写機部材用高撥水性ポリイミドを形成するためのポリアミド酸組成物であって、
該ポリアミド酸組成物は、酸二無水物とジアミン化合物とを各々1種又は2種以上用いて得られるポリアミド酸を含み、
該酸二無水物及びジアミン化合物のうち少なくとも1種の化合物は、分子内にエーテル結合及び/又はチオエーテル結合を有するものであり、
該ポリアミド酸を構成する酸二無水物及びジアミン化合物由来の重合繰り返し単位中のエーテル結合及びチオエーテル結合の総和が2以上であることを特徴とする複写機部材用高撥水性ポリイミド形成用ポリアミド酸組成物。 - 前記ポリアミド酸組成物は、更に、カーボンブラック及び/又はフッ素系樹脂を含むことを特徴とする請求項8に記載の複写機部材用高撥水性ポリイミド形成用ポリアミド酸組成物。
- 前記一般式(16)中のR1は、炭素数1~20のフッ素置換アルキル基であることを特徴とする請求項11に記載の複写機部材用高撥水性ポリイミド形成用ポリアミド酸組成物。
- 前記一般式(16)中のB2は、F(フッ素原子)であることを特徴とする請求項11又は12に記載の複写機部材用高撥水性ポリイミド形成用ポリアミド酸組成物。
- 請求項8~14のいずれかに記載のポリアミド酸組成物をイミド化して得られることを特徴とするポリイミド組成物。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011519963A JPWO2010150908A1 (ja) | 2009-06-26 | 2010-06-28 | 複写機部材用高撥水性ポリイミド及びポリアミド酸組成物 |
US13/379,840 US20120101213A1 (en) | 2009-06-26 | 2010-06-28 | Highly water-repellent polyimide for copier member, and polyamic acid composition |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-151982 | 2009-06-26 | ||
JP2009151982 | 2009-06-26 | ||
JP2009-184947 | 2009-08-07 | ||
JP2009184947 | 2009-08-07 | ||
JP2009-259178 | 2009-11-12 | ||
JP2009259178 | 2009-11-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010150908A1 true WO2010150908A1 (ja) | 2010-12-29 |
Family
ID=43386675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/060967 WO2010150908A1 (ja) | 2009-06-26 | 2010-06-28 | 複写機部材用高撥水性ポリイミド及びポリアミド酸組成物 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20120101213A1 (ja) |
JP (1) | JPWO2010150908A1 (ja) |
WO (1) | WO2010150908A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011164571A (ja) * | 2010-01-13 | 2011-08-25 | Fuji Xerox Co Ltd | 画像形成装置用の無端ベルト及び画像形成装置 |
WO2013080793A1 (ja) * | 2011-11-29 | 2013-06-06 | 住友電気工業株式会社 | ポリイミドチューブ、その製造方法、及び定着ベルト |
JP2017077240A (ja) * | 2015-10-21 | 2017-04-27 | 株式会社日本触媒 | 接着性細胞培養用基材、ならびにこれを利用した細胞培養容器および細胞培養方法 |
JP2017077241A (ja) * | 2015-10-21 | 2017-04-27 | 株式会社日本触媒 | 接着性細胞培養用基材、ならびにこれを利用した細胞培養容器および細胞培養方法 |
JP2018002945A (ja) * | 2016-07-06 | 2018-01-11 | 三菱鉛筆株式会社 | ポリイミド前駆体溶液組成物、それを用いたポリイミドフィルム |
JP2018054773A (ja) * | 2016-09-28 | 2018-04-05 | 富士ゼロックス株式会社 | 画像形成装置、現像装置及び現像ロール支持装置 |
JP2018054772A (ja) * | 2016-09-28 | 2018-04-05 | 富士ゼロックス株式会社 | 画像形成装置、現像装置及び軸受 |
JP2018131486A (ja) * | 2017-02-13 | 2018-08-23 | 東京応化工業株式会社 | 樹脂組成物、硬化物の製造方法、硬化物、フレキシブル基板、及びフレキシブルディスプレイ |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101344006B1 (ko) * | 2012-07-11 | 2013-12-23 | 주식회사 엘지화학 | 연성 금속 적층체 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS638455A (ja) * | 1986-06-30 | 1988-01-14 | Mitsui Toatsu Chem Inc | ポリイミド樹脂組成物 |
JPH07287467A (ja) * | 1994-02-28 | 1995-10-31 | Ntn Corp | 複写機用分離爪 |
JPH1121350A (ja) * | 1997-06-30 | 1999-01-26 | Nippon Telegr & Teleph Corp <Ntt> | はっ水性ポリイミドフィルム及びその製造方法 |
JP2004157221A (ja) * | 2002-11-05 | 2004-06-03 | Kanegafuchi Chem Ind Co Ltd | 電子写真装置用無端ベルト |
JP2004161821A (ja) * | 2002-11-11 | 2004-06-10 | Kanegafuchi Chem Ind Co Ltd | ポリイミド管状成形体 |
JP2010151969A (ja) * | 2008-12-24 | 2010-07-08 | Fuji Xerox Co Ltd | 電子写真用部材、無端ベルト、定着装置及び画像形成装置 |
-
2010
- 2010-06-28 US US13/379,840 patent/US20120101213A1/en not_active Abandoned
- 2010-06-28 JP JP2011519963A patent/JPWO2010150908A1/ja active Pending
- 2010-06-28 WO PCT/JP2010/060967 patent/WO2010150908A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS638455A (ja) * | 1986-06-30 | 1988-01-14 | Mitsui Toatsu Chem Inc | ポリイミド樹脂組成物 |
JPH07287467A (ja) * | 1994-02-28 | 1995-10-31 | Ntn Corp | 複写機用分離爪 |
JPH1121350A (ja) * | 1997-06-30 | 1999-01-26 | Nippon Telegr & Teleph Corp <Ntt> | はっ水性ポリイミドフィルム及びその製造方法 |
JP2004157221A (ja) * | 2002-11-05 | 2004-06-03 | Kanegafuchi Chem Ind Co Ltd | 電子写真装置用無端ベルト |
JP2004161821A (ja) * | 2002-11-11 | 2004-06-10 | Kanegafuchi Chem Ind Co Ltd | ポリイミド管状成形体 |
JP2010151969A (ja) * | 2008-12-24 | 2010-07-08 | Fuji Xerox Co Ltd | 電子写真用部材、無端ベルト、定着装置及び画像形成装置 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011164571A (ja) * | 2010-01-13 | 2011-08-25 | Fuji Xerox Co Ltd | 画像形成装置用の無端ベルト及び画像形成装置 |
WO2013080793A1 (ja) * | 2011-11-29 | 2013-06-06 | 住友電気工業株式会社 | ポリイミドチューブ、その製造方法、及び定着ベルト |
JP2013114068A (ja) * | 2011-11-29 | 2013-06-10 | Sumitomo Electric Ind Ltd | ポリイミドチューブ、その製造方法、及び定着ベルト |
US9335689B2 (en) | 2011-11-29 | 2016-05-10 | Sumitomo Electric Industries, Ltd. | Polyimide tube, method for producing same, and fixing belt |
JP2017077240A (ja) * | 2015-10-21 | 2017-04-27 | 株式会社日本触媒 | 接着性細胞培養用基材、ならびにこれを利用した細胞培養容器および細胞培養方法 |
JP2017077241A (ja) * | 2015-10-21 | 2017-04-27 | 株式会社日本触媒 | 接着性細胞培養用基材、ならびにこれを利用した細胞培養容器および細胞培養方法 |
JP2018002945A (ja) * | 2016-07-06 | 2018-01-11 | 三菱鉛筆株式会社 | ポリイミド前駆体溶液組成物、それを用いたポリイミドフィルム |
JP7002832B2 (ja) | 2016-07-06 | 2022-01-20 | 三菱鉛筆株式会社 | ポリイミド前駆体溶液組成物、それを用いたポリイミドフィルム |
JP2018054773A (ja) * | 2016-09-28 | 2018-04-05 | 富士ゼロックス株式会社 | 画像形成装置、現像装置及び現像ロール支持装置 |
JP2018054772A (ja) * | 2016-09-28 | 2018-04-05 | 富士ゼロックス株式会社 | 画像形成装置、現像装置及び軸受 |
JP2018131486A (ja) * | 2017-02-13 | 2018-08-23 | 東京応化工業株式会社 | 樹脂組成物、硬化物の製造方法、硬化物、フレキシブル基板、及びフレキシブルディスプレイ |
US11260635B2 (en) | 2017-02-13 | 2022-03-01 | Tokyo Ohka Kogyo Co., Ltd. | Resin composition, method for producing cured article, cured article, flexible substrate, and flexible display |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010150908A1 (ja) | 2012-12-10 |
US20120101213A1 (en) | 2012-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010150908A1 (ja) | 複写機部材用高撥水性ポリイミド及びポリアミド酸組成物 | |
JP5708676B2 (ja) | ポリイミド前駆体組成物の製造方法 | |
JP5846136B2 (ja) | ポリイミド前駆体組成物、及びポリイミド前駆体組成物の製造方法 | |
JP6780259B2 (ja) | ポリイミド前駆体組成物、及びポリイミド前駆体組成物の製造方法 | |
KR101538559B1 (ko) | 폴리이미드막 적층체의 제조 방법 | |
US20100316877A1 (en) | Method for preparing polyimide and polyimide prepared using the same | |
JP6950684B2 (ja) | ポリイミド樹脂 | |
JP4774754B2 (ja) | 溶剤可溶性ポリイミド共重合体及びポリイミドワニス | |
JP2016121295A (ja) | ポリイミド前駆体組成物、ポリイミド成形体、及びポリイミド成形体の製造方法 | |
JP2017052877A (ja) | ポリイミド前駆体組成物、ポリイミド前駆体組成物の製造方法、及びポリイミド成形体の製造方法 | |
TWI776960B (zh) | 聚醯亞胺樹脂、聚醯亞胺清漆及聚醯亞胺薄膜 | |
KR20160143848A (ko) | 테트라카르복실산 이무수물, 폴리아미드산, 폴리이미드 및 그들의 제조 방법, 및 폴리아미드산 용액 | |
KR101819783B1 (ko) | 폴리이미드 심리스 벨트, 그 제조 방법, 폴리이미드 전구체 용액 조성물 | |
JP7006033B2 (ja) | ポリイミド前駆体溶液、及びポリイミド成形体 | |
JP5326253B2 (ja) | ポリイミド膜の製造方法、及び芳香族ポリイミド | |
JP6427905B2 (ja) | ポリイミド前駆体組成物、ポリイミド成形体の製造方法、及びポリイミド成形体 | |
JP5822064B2 (ja) | 芳香族ポリイミドシームレスベルトの製造方法 | |
JP6496993B2 (ja) | ポリイミド前駆体組成物、ポリイミド前駆体の製造方法、ポリイミド成形体、及びポリイミド成形体の製造方法 | |
WO2022054766A1 (ja) | 重合体組成物、ワニス、及びポリイミドフィルム | |
JPH1149855A (ja) | フッ素含有ポリイミド、基板積層体およびポリアミック酸溶液 | |
JP2013006959A (ja) | ポリイミド組成物および複写機部材 | |
JP2023550951A (ja) | ポリアミック酸組成物およびこれを含むポリイミド | |
WO2022054765A1 (ja) | 重合体組成物、ワニス、及びポリイミドフィルム | |
WO2021210641A1 (ja) | イミド-アミド酸共重合体及びその製造方法、ワニス、並びにポリイミドフィルム | |
JP2012102222A (ja) | フッ素樹脂含有傾斜膜、その製造方法及びフッ素樹脂含有傾斜膜形成用樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10792225 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13379840 Country of ref document: US Ref document number: 2011519963 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10792225 Country of ref document: EP Kind code of ref document: A1 |