WO2010150833A1 - 薄膜複合電池およびその製造方法 - Google Patents

薄膜複合電池およびその製造方法 Download PDF

Info

Publication number
WO2010150833A1
WO2010150833A1 PCT/JP2010/060692 JP2010060692W WO2010150833A1 WO 2010150833 A1 WO2010150833 A1 WO 2010150833A1 JP 2010060692 W JP2010060692 W JP 2010060692W WO 2010150833 A1 WO2010150833 A1 WO 2010150833A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
secondary battery
solar cell
battery
thin
Prior art date
Application number
PCT/JP2010/060692
Other languages
English (en)
French (fr)
Inventor
菊池 正志
馬場 守
Original Assignee
株式会社 アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アルバック filed Critical 株式会社 アルバック
Publication of WO2010150833A1 publication Critical patent/WO2010150833A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • H01M10/465Accumulators structurally combined with charging apparatus with solar battery as charging system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a thin film composite battery in which a thin film solar battery and a thin film secondary battery are integrated.
  • Patent Document 1 discloses a thin-film lithium ion thin-film secondary battery that stores the power output from the thin-film solar battery and supplies the stored power to a load and the thin film in order to effectively use the output of the thin-film solar battery.
  • a thin film composite battery integrated with a solar battery is described.
  • the thin film composite battery preferably has a structure in which light such as sunlight is directly incident on the thin film solar battery as described in the same document.
  • a structure in which a thin film solar cell and a thin film secondary battery are laminated in this order on a light-transmitting substrate such as a glass substrate, a secondary battery cell and a thin film solar cell on a metal thin plate made of iron or the like A structure in which and are stacked in this order has been proposed.
  • the internal structure of the thin-film solar cell a structure in which the photovoltaic effect is uniformly expressed on the main surface of the substrate is generally adopted, and the solar cell that is the smallest unit that exhibits the photovoltaic effect is the main surface of the substrate.
  • a structure in which a large number of lines are arranged along the line is arranged along the line.
  • the configuration of the thin film secondary battery combined with the thin film solar battery is a one-to-one correspondence between the secondary battery cell and the solar battery cell, which are the smallest units that exhibit the battery effect.
  • a configuration in which two or more solar cells are associated with one secondary battery cell has been proposed.
  • the electromotive force per solar cell is about 0.65 V and the withstand voltage of the thin film secondary battery is 2 V
  • three solar cells connected in series have one secondary battery.
  • the withstand voltage of the thin-film secondary battery is 4 V
  • the six solar cells connected in series are associated with one secondary battery cell.
  • an optimum voltage range is normally set as a charging characteristic for a voltage value during charging. And if the thin film secondary battery is charged at the maximum value in this voltage range, in other words, the voltage value exceeding the withstand voltage value, there is a possibility that the charging ability and discharging ability of the secondary battery cell may be impaired. . On the other hand, if charging is performed at a voltage value lower than the minimum value in the voltage range, the charging efficiency of the thin film secondary battery is reduced, and the thin film secondary battery is not charged to the maximum capacity. In other words, within the above voltage range, the higher the voltage value at the time of charging, the higher the charging efficiency of the thin-film secondary battery, and thus the time taken to complete the charging is naturally shorter.
  • the number of secondary battery cells is increased, or the forming material of the secondary battery cells is changed.
  • the charging capacity of the thin film secondary battery can be increased.
  • the electromotive force of the solar battery cell associated with one or more secondary battery cells is within the above voltage range and closer to the maximum value. It is desirable to do. In order to realize this, it is necessary to change the constituent material of the solar battery cell to correspond to the voltage range described above, and it is necessary to change the specification drastically.
  • the above Patent Document 1 does not disclose the detailed structure of the thin film composite battery in which two or more solar battery cells are connected in series to one or more secondary battery cells. For example, there is no disclosure about the electrical connection form between the solar battery cell and the secondary battery cell, the arrangement position of the solar battery cell and the secondary battery cell, and the like. Therefore, the structure of the conventional thin film composite battery still has room for examination.
  • a thin film composite battery cell in which two or more solar cells and a secondary battery cell are laminated includes an electrode of a thin film solar battery and an electrode of a secondary battery cell made of two or more solar cells.
  • An electrode wiring to be connected is required. If the thin-film solar battery and the thin-film secondary battery are connected to each other by a wire or the like as described in Patent Document 1, the area of the thin-film composite battery cell on the substrate main surface is simply a solar battery cell. Or the area of the secondary battery cell.
  • a wiring structure is applied to a general thin film solar cell in which a large number of solar cells are arranged on the main surface of the substrate, a large number of electrode wirings are routed outside the thin film solar cell. Therefore, a very complicated wiring structure is required to manufacture the thin film composite battery. As a result, it becomes difficult to manufacture the thin film composite battery itself.
  • the above-described electrode wiring is provided for each thin film composite battery cell, such wiring is also included in the space substantially occupied by one thin film composite battery cell. Since the thin film composite battery is usually disposed within a limited predetermined area, as the area of the wiring occupying the limited area is increased, the thin film composite battery can generate power or store electricity. As a result, the area occupied by the solar battery cell and the secondary battery cell is reduced, and as a result, the power generation amount and the power storage amount per unit area as the thin film composite battery are reduced.
  • the present invention has been made in view of the above-described conventional situation, and an object thereof is a power generation amount per unit area in a substrate in a thin film composite battery in which a thin film secondary battery and a thin film solar cell are stacked on a substrate. And a novel structure for suppressing a decrease in the amount of stored electricity and a method for manufacturing the same.
  • the thin film composite battery includes an electrical insulator, and a thin film solar battery and a thin film secondary battery provided in the insulator, and the thin film solar battery and the thin film secondary battery are in a direction perpendicular to the substrate. They are arranged in parallel and are electrically connected through holes that penetrate the insulator.
  • the top view which shows a part of planar structure of the thin film composite battery in this embodiment.
  • Sectional drawing which shows a part of sectional structure of the thin film composite battery of FIG.
  • Sectional drawing which shows a part of sectional structure of the thin film composite battery in the example of a change.
  • Sectional drawing which shows a part of sectional structure of the thin film composite battery in the example of a change.
  • FIG. 1 is a plan view showing a planar structure of the thin film composite battery
  • FIG. 2 is a sectional view taken along line 2-2 of FIG. 1 showing a sectional structure of the thin film solar battery.
  • a sheet-like glass substrate S that is a substrate of a thin film composite battery, that is, a flexible glass substrate S has an upper surface as a battery stack surface St, and the battery stack surface St includes a plurality of battery stack surfaces St.
  • the composite battery cell area SA is virtually divided into the composite battery cell area SA.
  • Each of the plurality of composite battery cell regions SA has two sides along the sheet conveyance direction DL (left and right direction in FIG. 1) of the glass substrate S and two sides along the sheet width direction Dw (up and down direction in FIG. 1) of the glass substrate S.
  • the plurality of composite battery cell areas SA are densely arranged along the sheet conveying direction DL and the sheet width direction Dw.
  • a thin-film solar cell including three solar cells C1 that is formed in a strip shape extending in the sheet width direction Dw and arranged along the sheet conveyance direction DL, and a first insulating layer
  • a cell Cm is provided.
  • Each of the first and second insulating layers D1 and D2 may be translucent. The formation region of the thin film solar cell and the formation region of the thin film secondary battery connected to the thin film solar cell overlap in the stacking direction Ds.
  • the thin-film secondary battery is installed in parallel to the thin-film solar battery at a position including the projection plane SP of light incident perpendicularly to the thin-film solar battery (in the direction perpendicular to the glass substrate S in FIG. 2).
  • the light projection plane SP corresponds to the surface of the insulating layer D1.
  • the edge (electrode) of the thin film solar cell as the lower layer protrudes from the formation region of the thin film secondary battery as the upper layer.
  • These composite battery cells Cm are formed by performing film formation processing or laser processing on the battery stack surface St of the glass substrate S while the glass substrate S is transported in the sheet transport direction DL.
  • the formation region of the thin-film solar cell refers to a region where three solar cells C1 are formed in one composite battery cell Cm, and the formation region of the thin-film secondary battery Means a region where one secondary battery cell C2 is formed in one composite battery cell Cm.
  • the plurality of composite battery cells Cm are configured similarly except that they are arranged in different composite battery cell areas SA. Therefore, only one composite battery cell Cm will be described in detail below.
  • one composite battery cell Cm includes three solar cells C1 arranged along the sheet conveyance direction DL.
  • the first solar cell C1, the second solar cell C1, and the third solar cell C1 in order from the first solar cell (left side in FIG. 2) of the composite battery cell Cm in the sheet conveyance direction DL.
  • Each of the three solar cells C1 constituting one composite battery cell Cm has a light-receiving electrode that is stacked in such a manner that a part thereof in the sheet conveying direction DL (a part on the left side in FIG. 2) has a three-stepped shape. 11, a conversion layer 12, and a back electrode 13.
  • the light receiving electrodes 11 constituting each solar battery cell C1 have a strip shape extending in the sheet width direction Dw and are arranged on the battery stack surface St at substantially equal intervals along the sheet conveying direction DL.
  • Each of the three light receiving electrodes 11 is a light-transmitting conductive oxide film that further transmits sunlight transmitted through the glass substrate S, and is made of, for example, tin dioxide, zinc dioxide, or the like.
  • the light receiving electrode 11 having such a configuration is formed by patterning a conductive oxide film formed on the glass substrate S by a sputtering method, for example, by a laser scribing method.
  • the isolated conversion layers 12 are laminated on the upper surfaces of the three light receiving electrodes 11 so that one end portions of the upper surfaces in the sheet conveying direction DL are exposed.
  • Each of the three conversion layers 12 is a laminated film composed of a plurality of semiconductor layers such as amorphous silicon or amorphous silicon-germanium, and is an n-type semiconductor layer, for example, in order from the side of the light receiving electrode 11 on which the layers are laminated.
  • a unit cell has a so-called nip structure in which an n layer, an i layer that is an i-type semiconductor layer, and a p layer that is a p-type semiconductor layer are stacked.
  • the conversion layer 12 in the third solar battery cell C1 is further laminated with a semiconductor layer 12a that exhibits a rectifying action for supplying current from the thin film solar battery to the thin film secondary battery.
  • a semiconductor layer 12a that exhibits a rectifying action for supplying current from the thin film solar battery to the thin film secondary battery.
  • the conversion layer 12 of the 1st photovoltaic cell C1 and the 2nd photovoltaic cell C1 consists of the said nip structure
  • the conversion layer 12 of the 3rd photovoltaic cell C1 is comprised by the nipn structure.
  • Each conversion layer 12 is formed, for example, by patterning an amorphous silicon-based thin film formed on the glass substrate S having the light receiving electrode 11 by a CVD method, also by a laser scribing method.
  • the back electrodes 13 are laminated on the top surfaces of the three conversion layers 12 so that one end of the top surface in the sheet conveying direction DL is also exposed.
  • Each of the three backside electrodes 13 converts again the light transmitted through the conductive oxide film laminated on the conductive oxide film and the light-transmitting conductive oxide film that transmits sunlight similarly to the light receiving electrode 11.
  • the reflective film has a function of returning to the layer 12 such as a silver thin film, and a conductive protective film such as a titanium thin film for chemically protecting the reflective film.
  • the back electrode 13 having such a configuration is formed, for example, by patterning a back electrode film formed on the glass substrate S having the conversion layer 12 by a sputtering method, also by a laser scribing method.
  • the second and third solar cells C1 a part of the light receiving electrode 11 protruding in the sheet conveying direction DL, that is, the upper conversion layer 12 is exposed. A part of the light receiving electrode 11 is electrically connected to the back surface electrode 13 of each of the first and second solar cells C1.
  • each of the three solar cells C1 the two electrodes sandwiching the conversion layer 12 protrude from the conversion layer 12 in the sheet conveyance direction DL, and the other direction opposite to the sheet conveyance direction DL. And a back electrode 13 protruding from the conversion layer 12. And the edge part of the back surface electrode 13 which protrudes in the opposite direction to the sheet conveyance direction DL is connected to the edge part of the adjacent light receiving electrode 11 which protrudes in the sheet conveyance direction DL, thereby three solar cells C1.
  • the light receiving electrode 11 of the first solar cell C1 functions as the negative electrode of the thin film solar cell
  • the back electrode of the third solar cell C1 serves as the positive electrode of the thin film solar cell. Function.
  • the composite battery cell Cm configured in this way is 1 by sunlight.
  • An electromotive force of .95 V can be obtained, and charging can be performed at a voltage value suitable for the secondary battery cell C2.
  • the length of the light receiving electrode 11 protruding in the sheet conveying direction DL of the light receiving electrode 11 is larger than that of the other solar cells C1 with respect to the conversion layer 12 thereof. Is longer than the other light receiving electrodes 11. That is, the first solar cell C1 is configured in such a manner that the region of the light receiving electrode 11 exposed from the conversion layer 12 in the sheet conveyance direction DL becomes larger than the other solar cell C1.
  • the first insulating layer D1 penetrates the second insulating layer D2, and also penetrates the negative electrode wiring hole HA including the step portion 20 and the second insulating layer D2 in the second insulating layer D2.
  • the first positive electrode wiring hole HC1 is disposed along the stacking direction Ds. That is, the negative electrode wiring hole HA and the positive electrode wiring hole HC1 are formed as holes that have the insulating layers D1 and D2, and are substantially in a one-dimensional direction (a direction perpendicular to the substrate S in this example) within the insulating layers D1 and D2. It extends continuously along.
  • the negative electrode wiring hole HA is provided on one end side of the composite battery cell region SA in the sheet conveyance direction DL, and extends substantially linearly along the stacking direction Ds.
  • the negative electrode wiring hole HA has a bottom surface connected to a part of the light receiving electrode 11 of the first solar cell C1 protruding in the sheet conveying direction DL, that is, a part of the light receiving electrode 11 exposed from the conversion layer 12. ing.
  • the first positive electrode wiring hole HC1 is provided on the other end side of the composite battery cell region SA in the direction opposite to the sheet conveying direction DL, and extends substantially linearly along the stacking direction Ds.
  • the first positive electrode wiring hole HC1 has a bottom surface connected to the back surface electrode 13 of the third solar battery cell C1.
  • the secondary battery cell C2 is a stacked body in which the negative electrode 21, the negative electrode active material layer 22, the solid electrolyte layer 23, the positive electrode active material layer 24, and the positive electrode 25 are stacked in this order from the first insulating layer D1 along the stacking direction Ds. And most of the whole is covered with the second insulating layer D2 having the negative electrode wiring hole HA and the first positive electrode wiring hole HC1.
  • the formation region of the secondary battery cell C2 overlaps with the formation region of the thin film solar cell to which the secondary battery cell C2 is connected in the stacking direction Ds and is included in the formation region of the thin film solar cell. Further, when viewed from the stacking direction Ds, the light receiving electrode 11 of the first solar cell C1 and the back electrode 13 of the third solar cell C1, which are lower layers, protrude from the formation region of the secondary battery cell C2.
  • the negative electrode active material layer 22, the solid electrolyte layer 23, the positive electrode active material layer 24, and the positive electrode 25, which are other layers excluding the negative electrode 21 have four sides when viewed from the stacking direction Ds. It is structured to match. That is, only the negative electrode 21 which is the lowermost layer protrudes in the sheet conveying direction DL when viewed from the stacking direction Ds, and the protruding portion is connected to the negative electrode wiring hole HA.
  • the negative electrode 21, the negative electrode active material layer 22, the solid electrolyte layer 23, the positive electrode active material layer 24, and the positive electrode 25, which are sequentially stacked on the first insulating layer D1, for example, by sputtering, are laser-scribing. It is formed by patterning.
  • the constituent material of the negative electrode active material layer 22 is a material capable of occluding and releasing lithium ions.
  • the material include an alloy of silicon and manganese, an alloy of lithium and another metal, metallic lithium, or Examples thereof include metal oxides such as titanium dioxide, niobium pentoxide, tin dioxide, and iron trioxide, and metal sulfides.
  • a solid inorganic electrolyte such as lithium phosphate or lithium sulfur
  • the positive electrode active material layer 24 include a lithium transition metal compound capable of occluding and releasing lithium ions.
  • lithium manganate, lithium cobaltate, or lithium ions having lithium ions as constituent atoms are implanted.
  • lithiated vanadium oxide and the like can be mentioned.
  • one metal material selected from the group which consists of vanadium, aluminum, nickel, copper, for example is mentioned.
  • the second insulating layer D2 is substantially linear from the first insulating layer D1 as described above.
  • the negative electrode wiring hole HA and the first positive electrode wiring hole HC1 extending in a shape penetrate through the stacking direction Ds. Further, a second positive electrode wiring hole HC2 extending from a part of the positive electrode 25 in the stacking direction Ds passes through the second insulating layer D2.
  • the step portion 20 of the negative electrode wiring hole HA (the portion where the hole HA has an enlarged diameter) has a bottom surface connected to the end of the negative electrode 21 protruding in the sheet conveying direction DL, that is, a part of the negative electrode 21 exposed from the functional layer. is doing.
  • the negative electrode wiring hole HA as the through hole is electrically connected to the light receiving electrode 11 of the first solar cell C1 through the bottom surface of the negative electrode wiring hole HA, and the step portion 20 of the negative electrode wiring hole HA.
  • a negative electrode wiring PA that is electrically connected to the negative electrode 21 of the secondary battery cell C2 through the bottom surface (and the side surface of the wiring hole HA) is filled.
  • the said functional layer is a layer which makes a secondary battery express a battery effect, and is the negative electrode active material layer 22, the solid electrolyte layer 23, and the positive electrode active material layer 24 in this embodiment.
  • the negative electrode wiring hole HA is formed, for example, after the first insulating layer D1 and the second insulating layer D2 are formed so as to cover the thin film solar cell and the thin film secondary battery, and then the first insulating layer D1 and the second insulating layer D2 are formed. It is formed by patterning by a wet etching method that penetrates the layer D2. Moreover, the negative electrode wiring PA is formed by, for example, filling a substrate having the negative electrode wiring hole HA formed as described above with a metal material by a sputtering method.
  • the first positive electrode wiring hole HC1 is separated from the secondary battery cell C2.
  • the first positive electrode wiring hole HC1 and the second positive electrode wiring hole HC2 are filled with a positive electrode wiring PC arranged so as to straddle the upper surface of the second insulating layer D2. Therefore, the positive electrode wiring PC is electrically connected to the back surface electrode 13 of the third solar cell C1 through the bottom surface of the first positive electrode wiring hole HC1, and also through the bottom surface of the second positive electrode wiring hole HC2. And electrically connected to the positive electrode 25 of the secondary battery cell C2. That is, the back electrode 13 of the third solar cell C1 is electrically connected to the positive electrode 25 of the secondary battery cell C2 via the positive electrode wiring PC.
  • the positive electrode wiring hole HC is the same as the negative electrode wiring hole HA, for example, after the first insulating layer D1 and the second insulating layer D2 are formed so as to cover the thin film solar cell and the thin film secondary battery. It is formed by patterning by a wet etching method that penetrates the insulating layer D1 and the second insulating layer D2. Further, the positive electrode wiring PC is formed by, for example, filling a substrate having the first positive electrode wiring hole HC1 and the second positive electrode wiring hole HC2 formed as described above with a sputtering method.
  • the thin-film secondary battery is stacked on the thin-film solar battery, and the formation region of the upper-layer thin-film secondary battery and the formation region of the lower-layer thin-film solar cell overlap in the stacking direction Ds.
  • the light receiving electrode 11 and the back electrode 13 disposed in the thin film solar cell formation region protrude from the thin film secondary battery formation region.
  • the light receiving electrode 11 serving as the negative electrode of the thin film solar cell is connected to the negative electrode 21 of the thin film secondary battery by a negative electrode wiring PA extending in the stacking direction Ds.
  • the back electrode 13 serving as the positive electrode of the thin film solar cell is connected to the positive electrode 25 of the thin film secondary battery by a positive electrode wiring PC extending in the stacking direction Ds.
  • the region of the battery stack surface St required for the negative electrode wiring PA and the positive electrode wiring PC is included in the formation region of the thin film solar cell when viewed from the stacking direction Ds. Therefore, the area occupied by the negative electrode wiring PA and the positive electrode wiring PC on the battery stack surface St can be minimized. Therefore, it is possible to divide most of the battery stack surface St into the occupied areas of the two types of batteries, and thus to provide a stacked structure that suppresses a decrease in the power generation amount and the power storage amount per unit area in the glass substrate S.
  • the negative electrode wiring PA and the positive electrode wiring PC are simply arranged in the one-dimensional direction as compared with the case where the electrode wiring is bent and formed in the three-dimensional direction including the surface direction of the battery stack surface St and the stacking direction Ds. (Ie, along the stacking direction Ds) extends substantially linearly. For this reason, the electrode wiring itself can be easily formed.
  • the negative electrode wiring PA negative electrode wiring hole HA
  • the negative electrode wiring PA extending linearly over the formation regions of both the thin film solar cell and the thin film secondary battery is replaced with the negative electrode 25 of the thin film secondary battery. Can only be easily connected.
  • a wiring PC is formed. Therefore, even after the thin film solar cell and the thin film secondary battery are stacked and covered with the first insulating layer D1 and the second insulating layer D2, the negative electrode wiring PA and the positive electrode wiring PC can be formed.
  • Wiring holes HA, HC1 and HC2 can be formed in a lump.
  • the electrode wiring can be easily formed, and the configuration of the electrode wiring itself can be simplified.
  • the negative electrode wiring hole HA, the first positive electrode wiring hole HC1 and the second positive electrode wiring hole HC2 formed prior to the formation of the negative electrode wiring PA and the positive electrode wiring PC are only formed along the stacking direction Ds.
  • the negative electrode wiring PA and the positive electrode wiring PC embedded in these are also formed along the stacking direction Ds. For this reason, it is possible to more easily manufacture the negative electrode wiring PA and the positive electrode wiring PC, and thus the thin film composite battery.
  • the negative electrode 21 which is the lowest layer among the electrodes constituting the thin film secondary battery is configured to protrude from the other layers in the sheet conveying direction DL, and the negative electrode 21 is connected to the negative electrode wiring PA. Become. With such a configuration, the connection between the negative electrode 21 and the negative electrode wiring PA of the thin-film secondary battery is ensured by the amount of protrusion of the negative electrode 21, and the insulation between the negative electrode wiring PA and other layers is more reliable. It will be something. Therefore, the function as a thin film composite battery is easily secured.
  • two or more solar cells C1 include a portion where one back electrode 13 protrudes from the conversion layer 12 and a portion where the other light receiving electrode 11 protrudes from the conversion layer 12. Are connected in series. Specifically, the back electrode 13 of the first solar cell C1 protrudes from the conversion layer 12 in the direction opposite to the sheet conveyance direction DL, and the light receiving electrode 11 of the second solar cell C1 extends from the conversion layer 12 to the sheet conveyance direction. The first solar cell C1 and the second solar cell C1 are connected in series by the portion protruding from the DL.
  • the back electrode 13 of the second solar cell C1 protrudes from the conversion layer 12 in the direction opposite to the sheet conveyance direction DL, and the light receiving electrode 11 of the third solar cell C1 extends from the conversion layer 12 in the sheet conveyance direction DL.
  • the second solar cell C1 and the third solar cell C1 are connected in series by the protruding portion.
  • the light receiving electrodes 11, the conversion layers 12, or the back electrodes 13 are close to each other between adjacent solar cells C 1, and the solar cells are connected in series. Becomes difficult to obtain.
  • the above-described configuration in which only different electrodes are close to each other between adjacent solar cells C1 makes it easier to configure the series connection of the solar cells C1 that are originally required.
  • the light receiving electrode 11 of the first solar cell C1 used for connection with the negative electrode wiring PA greatly protrudes from the conversion layer 12 of the solar cell C1 in the sheet conveying direction DL. Therefore, since the connection between the light receiving electrode 11 and the negative electrode wiring PA becomes easier, the function as the thin film composite battery is more easily secured.
  • the conversion layer 12 in the third solar battery cell C1 exhibits a rectifying action for supplying current from the thin film solar battery to the thin film secondary battery, the discharge from the thin film secondary battery to the thin film solar battery is suppressed. In addition, the charging performance of the thin film secondary battery can be improved.
  • the first insulating layer D1, the second insulating layer D2, the thin film secondary battery (secondary battery cell C2), and the thin film solar battery (first to third solar battery cells C1) are flexible. It is made on a glass substrate S having the same. Since the glass substrate S has translucency, high photoelectric conversion efficiency can be easily obtained. Further, the thin-film composite battery can be reduced in weight compared to the case where a metal substrate is used.
  • the conversion layer 12 of each solar cell C1 in the above embodiment has a nip structure in which an n layer, an i layer, and a p layer are stacked in order from the light receiving electrode 11 on which the stacked layers are stacked.
  • the three solar cells C1 are connected in series so that the light receiving electrode 11 of the first solar cell C1 functions as the negative electrode of the solar cell and the back electrode 13 of the third solar cell C1 functions as the positive electrode. Is done.
  • the conversion layer 12 of each solar cell C1 has a pin structure in which the p layer, the i layer, and the n layer are stacked in order from the light receiving electrode 11 on which the stacked layers are stacked.
  • the three solar cells C1 are connected in series so that the light receiving electrode 11 of the first solar cell C1 functions as a positive electrode of the solar cell and the back electrode 13 of the third solar cell C1 functions as a negative electrode.
  • the structure connected to may be sufficient.
  • the stacking order of the layers in the secondary battery cell C2 is the positive electrode 25, the positive electrode in order from the first insulating layer D1.
  • the active material layer 24, the solid electrolyte layer 23, the negative electrode active material layer 22, and the negative electrode 21 are formed.
  • a configuration in which only the positive electrode 25 which is the lowermost layer projects in the sheet conveying direction DL as viewed from the stacking direction Ds is preferable.
  • the negative electrode wiring hole HA and the negative electrode wiring PA in the above embodiment can function as the positive electrode wiring hole HC and the positive electrode wiring PC, respectively.
  • first positive electrode wiring hole HC1 and the second positive electrode wiring hole HC2 in the above embodiment can function as the negative electrode wiring hole HA, and the positive electrode wiring PC can function as the negative electrode wiring PA. Even with such a configuration, it is possible to obtain an effect similar to the effect of the above embodiment.
  • each solar cell is formed such that the light receiving electrode 11 of the first solar cell C1 functions as a positive electrode of the solar cell and the back electrode 13 of the third solar cell C1 functions as a negative electrode.
  • a configuration in which a rectifying action is provided on the conversion layer 12 of the first solar cell C1 is preferable. For example, by providing the semiconductor layer 12a (n layer) in the lowest layer of the conversion layer 12 having the pin structure in the first solar battery cell C1, the above-described rectifying action can be exhibited.
  • the structure that exhibits the rectifying action of supplying current from the thin film solar cell to the thin film secondary battery is not limited to the pn junction using the semiconductor layer 12a described above, but a varistor made of zinc oxide, strontium titanate, or the like is employed. It is also possible. Even in such a configuration, discharge from the thin film secondary battery to the thin film solar battery can be suppressed. Note that the semiconductor layer 12a and the varistor described above may be omitted if the discharge amount from the thin film secondary battery to the thin film solar battery is sufficiently small. In such a configuration, the process for forming the semiconductor layer 12a and the varistor can be omitted from the manufacturing process of the thin film composite battery, and the manufacture of the thin film composite battery itself can be simplified.
  • the thin film composite battery of the said embodiment is a structure by which a thin film solar cell and a thin film secondary battery are laminated
  • at least the first insulating layer D1 is translucent. That is, the second insulating layer D2 may also be translucent.
  • the formation region of the thin film solar cell and the formation region of the thin film secondary battery overlap in the stacking direction Ds.
  • the thin film solar cell is installed in parallel to the thin film secondary battery at a position including the projection plane SP of light incident perpendicularly to the thin film solar cell (direction perpendicular to the insulating layer D1 in FIG. 4).
  • the light projection plane SP corresponds to the surface of the insulating layer D2.
  • the negative electrode 21 to which the negative electrode wiring PA is connected in the thin film secondary battery formation region protrudes from the thin film solar cell formation region, and the positive electrode 25 to which the positive electrode wiring PC is connected is the same thin film. It protrudes from the solar cell formation region. Even with such a configuration, effects similar to the effects (1) and (2) of the above-described embodiment can be obtained.
  • the stepped portion 20 of the negative electrode wiring hole HA is connected to the end of the back electrode 13 of the first solar cell C1 in the sheet conveying direction DL, that is, a part of the back electrode 13 exposed from the conversion layer 12.
  • the back electrode 13 is preferably connected to the bottom surface of the stepped portion 20 and the side surface of the negative electrode wiring hole HA.
  • the positive electrode of the thin-film solar cell and the positive electrode of the thin-film secondary battery are positive electrodes formed across two through-holes composed of the first positive electrode wiring hole HC1 and the second positive electrode wiring hole HC2. They are connected via the wiring PC.
  • the connection between the positive electrode of the thin film solar cell and the positive electrode of the thin film secondary battery may be similar to the connection form between the negative electrode of the thin film solar cell and the negative electrode of the thin film secondary battery.
  • the positive electrode wiring hole (for example, the first positive electrode wiring hole HC1) may be configured as a through hole having a stepped shape (stepped portion) similar to the negative electrode wiring hole HA.
  • the step portion of the positive electrode wiring hole has a bottom surface connected to the positive electrode 25 projecting in the direction opposite to the sheet conveying direction DL, like the negative electrode 21, and the side surface of the positive electrode wiring hole and the bottom surface of the step portion
  • the positive electrode 25 may be connected to the two. If it is such a structure, the connection of the positive electrode of a thin film solar cell and the positive electrode of a thin film secondary battery is implement
  • the negative electrode 21, the negative electrode active material layer 22, the solid electrolyte layer 23, and the positive electrode active material layer 24 are first patterned, Next, the second insulating layer D2 is formed so as to cover them, and the positive electrode 25 is patterned on the second insulating layer D2.
  • the stacking order of the positive electrode and the negative electrode in the thin film solar cell and the stacking order of the positive electrode and the negative electrode in the thin film secondary battery are It may be different from the above embodiment.
  • the three solar cells C1 provided for each composite battery cell region SA are not limited to the structure divided in the composite battery cell region SA continuous in the sheet width direction Dw, and the composite battery cells continuous in the sheet width direction Dw
  • the structure may be continuous in the area SA.
  • the wiring connecting the electrode of the thin film solar cell and the electrode of the thin film secondary battery is not limited to the wiring filled in the circular hole or the rectangular hole such as the negative electrode hole or the positive electrode hole, but is a slit extending in the sheet width direction Dw
  • the wiring filled in the groove may be used.
  • a silicon oxide film or a resin film is preferable in forming a negative electrode wiring hole or a positive electrode wiring hole using a wet etching method or a photolithography method. Further, in forming the negative electrode hole and the positive electrode hole using laser processing, a silicon carbide film or a silicon oxynitride film having a high laser absorption rate is preferable.
  • the present invention is not limited to the negative electrode wiring PA (or the positive electrode wiring PC) including the step shape, that is, the step portion 20.
  • the negative electrode wiring PA is divided into two parts between the first and second insulating layers D1 and D2, and the negative electrode 21 of the secondary battery cell C2 is arranged between the two divided negative electrode wirings. Then, electrical connection may be made.
  • the positive electrode wiring PC of FIG. Also in the case of FIG. 4, the negative electrode wiring PA is divided into two parts between the first and second insulating layers D1 and D2, and the back electrode 13 of the solar cell C1 is provided between the two divided negative electrode wirings. It may be arranged to make an electrical connection.
  • the method for manufacturing a thin film composite battery according to this modification two drilling steps are required to form the wiring hole of the negative electrode wiring PA.
  • the first wiring hole that pierces the first insulating layer D1 laminated on the thin-film solar battery is formed by a first drilling step (laser processing or the like).
  • a first drilling step laser processing or the like.
  • a second hole forming step for drilling the second insulating layer D2 is performed for the second time (laser processing or the like). Formed by.
  • the manufacturing process becomes long because two drilling steps are required.
  • the negative electrode wiring hole HA is continuous over the first and second insulating layers D1 and D2, after forming the second insulating layer D2, It can be formed by one drilling step (that is, one laser processing). For this reason, a manufacturing process can be shortened.
  • the present invention is not limited to the thin film solar cell including two or more solar cells C1, and the thin film solar cell may include only one solar cell C1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 基板(S)上に形成される薄膜複合電池(Cm)は、電気的絶縁物(D1,D2)と、絶縁物(D1,D2)中に設けられた薄膜太陽電池(C1)および薄膜二次電池(C2)とを備える。薄膜太陽電池(C1)と薄膜二次電池(C2)は、基板(S)に垂直な方向に平行に配置されるとともに、絶縁物(D1,D2)を穿つ孔を介して電気的に接続されている。

Description

薄膜複合電池およびその製造方法
 この発明は、薄膜太陽電池と薄膜二次電池とが一体化された薄膜複合電池に関する。
 シリコン薄膜等の半導体材料の光起電力効果を利用した薄膜太陽電池は、従来から光エネルギーを電力に変換する光電変換装置として多用されている。特許文献1は、薄膜太陽電池の出力の有効的な利用を図るために、薄膜太陽電池が出力した電力を蓄えるとともに、この蓄えた電力を負荷に供給する薄膜リチウムイオン薄膜二次電池と上記薄膜太陽電池とが一体化された薄膜複合電池を記載している。
 薄膜複合電池では、同文献に記載されるように、太陽光等の光が薄膜太陽電池に直接入射する構造が好ましい。この構造として、例えばガラス基板等の透光性を有する基板上に薄膜太陽電池と薄膜二次電池とがこの順に積層された構造、鉄等からなる金属薄板上に二次電池セルと薄膜太陽電池とがこの順に積層された構造等が提案されている。こうして薄膜太陽電池と薄膜二次電池とが積層される薄膜複合電池であれば、薄膜太陽電池に薄膜二次電池が積層される構造であれ、薄膜二次電池に薄膜太陽電池が積層された構造であれ、薄膜太陽電池と薄膜二次電池とが基板主面に沿って並設された構造と比較すれば、単位面積あたりの発電量や蓄電量が向上可能になる。
 薄膜太陽電池の内部構造としては、基板主面に光起電力効果が均一に発現される構造が一般に採用されており、光起電力効果を発現する最小単位である太陽電池セルが同基板主面に沿って多数配置される構造が一般的である。これに対して、薄膜太陽電池と合わさる薄膜二次電池の構成としては、同文献に記載されるように、電池効果を発現する最小単位である二次電池セルと太陽電池セルとが1対1となる構成ばかりでなく、1つの二次電池セルに2つ以上の太陽電池セルが対応付けられる構成も提案されている。例えば同文献では、太陽電池セルあたりの起電力が凡そ0.65Vであって、薄膜二次電池の耐電圧が2Vであるときには、直列に接続された3つの太陽電池セルが1つの二次電池セルに対応付けられ、薄膜二次電池の耐電圧が4Vであるときには、直列に接続された6つの太陽電池セルが1つの二次電池セルに対応付けられている。
 ここで、上記薄膜二次電池のような充電可能な電池では通常、充電特性として、充電時の電圧値に最適な電圧範囲が設定される。そしてこの電圧範囲における最大値、換言すれば耐電圧値を超えた電圧値にて薄膜二次電池の充電が実施されるとなると、二次電池セルの充電能力や放電能力を損う虞がある。他方、上記電圧範囲における最小値を下回る電圧値にて充電を実施すると、薄膜二次電池の充電効率が低下し、該薄膜二次電池が充電可能な最大容量にまで充電されなくなる。言い換えれば、上記電圧範囲内であれば、充電時の電圧値がより高い方が薄膜二次電池の充電効率が高く、これにより充電の完了までにかかる時間も自ずとより短くなる。
 例えば、太陽電池セルと二次電池セルとの数が1対1の関係である薄膜複合電池にて、二次電池セルの数を増やす、あるいは二次電池セルの形成材料を変更する等して薄膜二次電池の充電容量を増大させることができる。この場合、その充電効率を担保するためには、1つまたは複数の二次電池セルに対応付けられた太陽電池セルの起電力を上記電圧範囲内であって且つ、その最大値により近い値とすることが望ましい。これを実現するためには、太陽電池セルの構成材料を変更して、上記電圧範囲に対応するものとせざるを得ず、その仕様を大幅に変更する必要がある。これに対して、1つの二次電池セルに対して2つ以上の太陽電池セルが直列に接続される構造であれば、二次電池セルの充電容量を上述のように変更したとしても、それに応じて太陽電池セルの数を変更するのみで所望の電圧を得ることができる。すなわち、二次電池セルの充電容量に係る自由度が向上することになる。
特開2002-42863号公報
 このように、1つあるいは2つ以上の二次電池セルに対して2つ以上の太陽電池セルが直列に接続される構成とすれば上述のような効果が得られるようになる。しかしながら、先の特許文献1には、こうした1乃至複数の二次電池セルに対して2つ以上の太陽電池セルが直列に接続される当該薄膜複合電池の詳細な構造が開示されていない。例えば、これら太陽電池セルと二次電池セルとの電気的な接続形態や、太陽電池セル及び二次電池セルの配設位置等々については、一切の開示がない。そのため、従来の薄膜複合電池の構造には、未だ検討の余地がある。
 つまり、2つ以上の太陽電池セルと二次電池セルとが積層されてなる薄膜複合電池セルには、2つ以上の太陽電池セルからなる薄膜太陽電池の電極と二次電池セルの電極とを接続する電極配線が必要とされる。特許文献1に記載のように、薄膜太陽電池と薄膜二次電池とがこれらの外側でワイヤ等により接続される配線構造であれば、基板主面における薄膜複合電池セルの面積が単に太陽電池セルの面積、あるいは二次電池セルの面積のみとなる。だが基板主面に多数の太陽電池セルが配置される一般的な薄膜太陽電池にこうした配線構造が適用されることになると、多数の電極配線が薄膜太陽電池の外側で引き回されることとなってしまい、薄膜複合電池を製造する上で非常に複雑な配線構造が必要となる。その結果、薄膜複合電池それ自体の製造が困難となってしまう。
 一方、上述する電極配線が薄膜複合電池セルごとに設けられる構成となれば、1つの薄膜複合電池セルが実質的に占有する空間にもこうした配線が含まれることとなる。薄膜複合電池は通常、限られた所定の面積内に配設されるものであることから、こうした限られた面積に占める配線の面積が拡大されるにつれて、該薄膜複合電池のうちで発電や蓄電に寄与する領域、つまり上記太陽電池セルや二次電池セルの占有面積が縮小されてしまい、ひいては、薄膜複合電池としての単位面積あたりの発電量、及び蓄電量が低下することになる。
 この発明は、上記従来の実情に鑑みてなされたものであり、その目的は、薄膜二次電池と薄膜太陽電池とが基板に積層されてなる薄膜複合電池において、基板における単位面積あたりの発電量及び蓄電量の低下を抑える新規な構造およびその製造方法を提供することである。
 本発明の一態様は、基板上に設けられる薄膜複合電池である。薄膜複合電池は、電気的絶縁物と、前記絶縁物中に設けられた薄膜太陽電池および薄膜二次電池とを備え、前記薄膜太陽電池と前記薄膜二次電池は、前記基板に垂直な方向に平行に配置されるとともに、前記絶縁物を穿つ孔を介して電気的に接続されている。
本実施形態における薄膜複合電池の平面構造の一部を示す平面図。 図1の薄膜複合電池の断面構造の一部を示す断面図。 変更例における薄膜複合電池の断面構造の一部を示す断面図。 変更例における薄膜複合電池の断面構造の一部を示す断面図。
 以下、本発明の一実施形態の薄膜複合電池について図1及び図2を参照して説明する。図1は薄膜複合電池の平面構造を示す平面図であり、図2は薄膜太陽電池の断面構造を示す図1の2-2線断面図である。
 図1に示されるように、薄膜複合電池の基体であるシート状のガラス基板S、すなわち可撓性を有するガラス基板Sは電池積層面Stとしての上面を有し、該電池積層面Stは複数の複合電池セル領域SAに仮想分割されている。複数の複合電池セル領域SAの各々は、ガラス基板Sのシート搬送方向DL(図1の左右方向)に沿う二辺及びガラス基板Sのシート幅方向Dw(図1の上下方向)に沿う二辺によって矩形状に囲まれている。複数の複合電池セル領域SAは、これらシート搬送方向DL及びシート幅方向Dwに沿って密に配列されている。
 複数の複合電池セル領域SAの各々には、シート幅方向Dwに延びる帯状を呈してシート搬送方向DLに沿って配列される3つの太陽電池セルC1からなる薄膜太陽電池と、第1の絶縁層D1と、1つの二次電池セルC2からなる薄膜二次電池と、第2の絶縁層D2とが電池積層面Stの法線方向(図1の積層方向Ds)に順次積層されて成る複合電池セルCmが設けられている。第1および第2の絶縁層D1,D2はそれぞれ透光性であってよい。上記薄膜太陽電池の形成領域と、該薄膜太陽電池に接続される薄膜二次電池の形成領域とは積層方向Dsにおいて重畳している。言い換えれば、薄膜二次電池は、薄膜太陽電池に垂直(図2においてガラス基板Sに垂直な方向)に入射した光の投影面SPを含む位置において薄膜太陽電池に平行に設置されている。この場合、光の投影面SPは絶縁層D1の表面に相当する。積層方向Dsから見て、下層である薄膜太陽電池の縁部(電極)は上層である薄膜二次電池の形成領域からはみ出している。なお、これら複合電池セルCmは、ガラス基板Sがシート搬送方向DLに搬送されつつ、該ガラス基板Sの電池積層面Stに成膜処理やレーザ加工処理が施されることによって形成される。なお、本実施形態の構成例では、薄膜太陽電池の形成領域とは、1つの複合電池セルCmにおいて3つの太陽電池セルC1が形成される領域のことをいい、薄膜二次電池の形成領域とは、1つの複合電池セルCm内において1つの二次電池セルC2が形成される領域のことをいう。
 複数の複合電池セルCmは、それらが異なる複合電池セル領域SAに配置されることを除いて、同様に構成されている。このため、以下では1つの複合電池セルCmのみについて詳細に説明する。
 図2に示されるように、1つの複合電池セルCmはシート搬送方向DLに沿って配列される3つの太陽電池セルC1を備えている。以下では、シート搬送方向DLにおける複合電池セルCmの先頭の太陽電池セル(図2の左側)から順に、第1の太陽電池セルC1、第2の太陽電池セルC1、第3の太陽電池セルC1とする。
 1つの複合電池セルCmを構成する3つの太陽電池セルC1の各々は、それのシート搬送方向DLにおける一部分(図2では左側の一部分)が3段の階段状となるかたちに積層された受光電極11、変換層12、裏面電極13とから構成されている。各太陽電池セルC1を構成する受光電極11は、シート幅方向Dwに延びる帯状を呈するとともにシート搬送方向DLに沿って略等間隔に電池積層面St上に配置されている。3つの受光電極11の各々は、ガラス基板Sを透過した太陽光をさらに透過する光透過性を有する導電性酸化物膜であって、例えば二酸化錫、二酸化亜鉛、等によって構成されている。このような構成からなる受光電極11は、例えばスパッタリング法によってガラス基板S上に形成された導電性酸化物膜がレーザスクライビング法によってパターニングされることにより形成される。
 3つの受光電極11の上面には、該上面のシート搬送方向DLにおける一端部が露出されるように、それぞれ孤立する変換層12が積層されている。3つの変換層12の各々は、アモルファスシリコン系やアモルファスシリコン-ゲルマニウム等の複数の半導体層からなる積層膜であり、例えばそれが積層される受光電極11の側から順に、n型半導体層であるn層、i型半導体層であるi層、p型半導体層であるp層が積層されてなる、所謂nip構造を単位セルとして有する。なお、変換層12としては、例えば光を異なる波長帯域毎に効率的に吸収して光電変換するために、吸収スペクトルの異なる上記単位セルを多段に積層したタンデム構造あるいはトリプル構造を用いることもできる。
 第3の太陽電池セルC1における変換層12には、上述する単位セルに加えて、さらに薄膜太陽電池から薄膜二次電池に電流を供給する整流作用を発現する半導体層12aが積層されている。例えば第1の太陽電池セルC1及び第2の太陽電池セルC1の変換層12が上記nip構造からなる場合には、第3の太陽電池セルC1の変換層12は、nipn構造によって構成される。各変換層12は、例えば受光電極11を有するガラス基板S上にCVD法によって形成されたアモルファスシリコン系薄膜がこれもまたレーザスクライビング法によってパターニングされることにより形成される。
 3つの変換層12の上面には、これもまた該上面のシート搬送方向DLにおける一端部が露出されるように、それぞれ裏面電極13が積層されている。3つの裏面電極13の各々は、受光電極11と同じく太陽光を透過する光透過性を有する導電性酸化膜と、当該導電性酸化膜に積層されて導電性酸化膜を透過した光を再び変換層12へ戻す機能を有する例えば銀薄膜等といった反射膜と、当該反射膜を化学的に保護するための例えばチタン薄膜等といった導電性保護膜とから構成されている。このような構成からなる裏面電極13は、例えば変換層12を有するガラス基板S上にスパッタリング法によって形成された裏面電極膜がこれもまたレーザスクライビング法によってパターニングされることにより形成される。
 このように構成される3つの太陽電池セルC1のうち第2及び第3の太陽電池セルC1では、シート搬送方向DLに突出する受光電極11の一部、すなわち上層の変換層12から露出される受光電極11の一部分が、第1及び第2の太陽電池セルC1の裏面電極13とそれぞれ電気的に接続されている。
 言い換えれば、3つの太陽電池セルC1の各々においては、変換層12を挟む2つの電極が、該変換層12からシート搬送方向DLにはみ出す受光電極11と、シート搬送方向DLとは反対の他方向に該変換層12からはみ出す裏面電極13とから構成されている。そして、シート搬送方向DLと反対方向にはみ出している裏面電極13の端部が、シート搬送方向DLにはみ出している隣接する受光電極11の端部に接続されることによって、3つの太陽電池セルC1が直列に接続されている。つまり1つの複合電池セルCmでは、ガラス基板Sの電池積層面Stに沿って広がる3つの太陽電池セルC1の各々の受光電極11、変換層12、および裏面電極13が順に電気的に接続されることで、これら3つの太陽電池セルC1が電気的に直列に接続されている。
 このように構成される薄膜太陽電池においては、第1の太陽電池セルC1の受光電極11が薄膜太陽電池の負極として機能し、第3の太陽電池セルC1の裏面電極が薄膜太陽電池の正極として機能する。そして1つの太陽電池セルC1の起電力が例えば0.65Vであって、二次電池セルC2の耐電圧が2Vであれば、このようにして構成される複合電池セルCmにおいて、太陽光によって1.95Vの起電力が得られることとなり、該二次電池セルC2に適した電圧値にて充電が可能になる。また二次電池セルC2の充電容量が変更されたとしても、それに応じて太陽電池セルC1の数を変更するのみで所望の電圧を得ることができ、二次電池セルC2の充電容量に係る自由度が向上することになる。
 なお第1の太陽電池セルC1においては、それの変換層12に対して受光電極11のはみ出す量が他の太陽電池セルC1よりも大きくなるかたちに、該受光電極11のシート搬送方向DLの長さが他の受光電極11よりも長く形成されている。つまり変換層12からシート搬送方向DLに露出される受光電極11の領域が他の太陽電池セルC1よりも大きくなるかたちに第1の太陽電池セルC1は構成されている。
 上記3つの太陽電池セルC1では、その全体の殆どが第1の絶縁層D1によって覆われている。第1の絶縁層D1には、第2の絶縁層D2を貫通するとともに、該第2の絶縁層D2内にて段差部20を含む負極配線孔HAと、第2の絶縁層D2を貫通する第1の正極配線孔HC1とが、積層方向Dsに沿って配置されている。即ち、負極配線孔HAおよび正極配線孔HC1は、絶縁層D1,D2を穿つ孔として形成され、絶縁層D1,D2内で実質的に一次元方向(本例では基板Sに垂直な方向)に沿って連続的に延びている。一例として、負極配線孔HAは、シート搬送方向DLにおいて複合電池セル領域SAの一端側に設けられており、積層方向Dsに沿って実質的に直線状に延びている。負極配線孔HAは、シート搬送方向DLに突出する第1の太陽電池セルC1の受光電極11の一部、すなわち、変換層12から露出される受光電極11の一部分と接続される底面を有している。また第1の正極配線孔HC1は、シート搬送方向DLとは反対方向において複合電池セル領域SAの他端側に設けられており、積層方向Dsに沿って実質的に直線状に延びている。第1の正極配線孔HC1は、第3の太陽電池セルC1の裏面電極13と接続される底面を有している。
 3つの太陽電池セルC1からなる薄膜太陽電池上には、第1の絶縁層D1を介して1つの二次電池セルC2が積層されている。二次電池セルC2は、第1の絶縁層D1から順に負極21、負極活物質層22、固体電解質層23、正極活物質層24、及び正極25が積層方向Dsに沿って積層された積層体であって、その全体の殆どが、上記負極配線孔HA及び第1の正極配線孔HC1を有する第2の絶縁層D2に覆われている。
 この二次電池セルC2の形成領域は、該二次電池セルC2が接続される薄膜太陽電池の形成領域と積層方向Dsにおいて重畳し、且つ該薄膜太陽電池の形成領域に含まれている。また積層方向Dsから見れば、下層である第1の太陽電池セルC1の受光電極11及び第3の太陽電池セルC1の裏面電極13が当該二次電池セルC2の形成領域からはみ出している。二次電池セルC2の形成領域内では、負極21を除いた他の層である負極活物質層22、固体電解質層23、正極活物質層24、及び正極25が積層方向Dsから見て四辺を一致させるかたちに構成されている。つまり、最下層である負極21のみが積層方向Dsから見てシート搬送方向DLに張出して、当該張り出した部分が上記負極配線孔HAに接続されている。
 二次電池セルC2は、例えばスパッタリング法によって第1の絶縁層D1上に順に積層された負極21、負極活物質層22、固体電解質層23、正極活物質層24、及び正極25がレーザスクライビング法によってパターニングされることにより形成される。
 なお上記負極21の構成材料としては、例えばバナジウム、アルミニウム、ニッケル、銅からなる群から選択される1つの金属材料が挙げられる。また負極活物質層22の構成材料は、リチウムイオンの吸蔵及び放出が可能な材料であって、その一例としては、シリコンとマンガンとの合金、リチウムと他の金属との合金、金属リチウム、あるいは二酸化チタン、五酸化ニオブ、二酸化錫、三酸化鉄等の金属酸化物、金属硫化物が挙げられる。
 また固体電解質層23の構成材料としては、例えばリン酸リチウムやリチウム硫黄等といった固体無機電解質が挙げられる。また正極活物質層24としては、リチウムイオンの吸蔵及び放出が可能なリチウム遷移金属化合物が挙げられ、その一例としてはリチウムイオンを構成原子として有するマンガン酸リチウム、コバルト酸リチウム、あるいはリチウムイオンが注入されることによってリチウム化された酸化バナジウム等が挙げられる。また正極25の構成材料としては、例えばバナジウム、アルミニウム、ニッケル、銅からなる群から選択される1つの金属材料が挙げられる。
 上記二次電池セルC2では、その全体の殆どが第2の絶縁層D2によって覆われており、この第2の絶縁層D2には、上述するように第1の絶縁層D1から実質的に直線状に延びる負極配線孔HAと第1の正極配線孔HC1とが積層方向Dsに沿って貫通している。また第2の絶縁層D2には、上記正極25の一部から積層方向Dsに延びる第2の正極配線孔HC2が貫通している。
 負極配線孔HAの段差部20(孔HAが拡径した部分)は、シート搬送方向DLに突出する負極21の端部、すなわち機能層から露出される負極21の一部分と接続される底面を有している。この貫通孔としての負極配線孔HAには、負極配線孔HAの底面を介して第1の太陽電池セルC1の受光電極11に電気的に接続されるとともに、負極配線孔HAの段差部20の底面(および配線孔HAの側面)を介して二次電池セルC2の負極21に電気的に接続される負極配線PAが充填されている。なお、上記機能層とは、二次電池に電池効果を発現させる層であって、本実施形態では、負極活物質層22、固体電解質層23、及び正極活物質層24である。
 負極配線孔HAは、例えば第1の絶縁層D1及び第2の絶縁層D2が薄膜太陽電池及び薄膜二次電池を覆うかたちに形成された後に、これら第1の絶縁層D1及び第2の絶縁層D2を貫通するウェットエッチング法によってパターニングされることにより形成される。また負極配線PAは、例えば上記のように形成された負極配線孔HAを有する基板に対してスパッタリング法によって金属材料が充填されることよって形成される。
 第1の正極配線孔HC1は上記二次電池セルC2から離間している。第1の正極配線孔HC1と第2の正極配線孔HC2とには、第2の絶縁層D2の上面を跨ぐように配置された正極配線PCが充填されている。従って、正極配線PCは、第1の正極配線孔HC1の底面を介して第3の太陽電池セルC1の裏面電極13に電気的に接続されるとともに、第2の正極配線孔HC2の底面を介して二次電池セルC2の正極25に電気的に接続されている。すなわち、第3の太陽電池セルC1の裏面電極13は、正極配線PCを介して二次電池セルC2の正極25と電気的に接続されている。
 正極配線孔HCは、上記負極配線孔HAと同じく、例えば第1の絶縁層D1及び第2の絶縁層D2が薄膜太陽電池及び薄膜二次電池を覆うかたちに形成された後に、これら第1の絶縁層D1及び第2の絶縁層D2を貫通するウェットエッチング法によってパターニングされることにより形成される。また正極配線PCは、例えば上記のように形成された第1の正極配線孔HC1及び第2の正極配線孔HC2を有する基板に対してスパッタリング法によって金属材料が充填されることよって形成される。
 本実施の形態にかかる複合薄膜太陽電池によれば、以下に列挙する効果が得られるようになる。
 (1)薄膜二次電池が薄膜太陽電池に積層され、積層方向Dsにおいて上層の薄膜二次電池の形成領域と下層の薄膜太陽電池の形成領域とが重畳している。積層方向Dsから見ると、薄膜太陽電池の形成領域に配置された受光電極11と裏面電極13とが、薄膜二次電池の形成領域からはみ出している。薄膜太陽電池の負極となる受光電極11は積層方向Dsに延びる負極配線PAによって薄膜二次電池の負極21に接続されている。薄膜太陽電池の正極となる裏面電極13は積層方向Dsに延びる正極配線PCによって薄膜二次電池の正極25に接続されている。
 こうした構成であれば、負極配線PA及び正極配線PCに必要とされる電池積層面Stの領域が、積層方向Dsから見れば、薄膜太陽電池の形成領域内に包含されることになる。そのため電池積層面Stにおける負極配線PAおよび正極配線PCの占有面積を必要最小限に抑えることが可能となる。それゆえに電池積層面Stの殆どを二種類の電池の占有面積に割くことが可能になり、ひいてはガラス基板Sにおける単位面積あたりの発電量及び蓄電量の低下を抑える積層構造が提供可能となる。
 (2)電池積層面Stの面方向と積層方向Dsとを含む三次元方向に電極配線を折り曲げて形成する場合に比して、上述のごとく負極配線PA及び正極配線PCは単純に一次元方向に(即ち積層方向Dsに沿って)実質的に直線状に延びている。このため、電極配線それ自体の形成を容易なものとすることができる。また、負極配線PA(負極配線孔HA)が段差部20を含むので、薄膜太陽電池と薄膜二次電池との両方の形成領域にわたって直線状に延びる負極配線PAを、薄膜二次電池の負極25のみに容易に接続することができる。
 (3)第1の絶縁層D1及び第2の絶縁層D2を積層方向Dsに貫通する負極配線孔HA、第1の正極配線孔HC1及び第2の正極配線孔HC2内に負極配線PA及び正極配線PCが形成される。そのため薄膜太陽電池及び薄膜二次電池が積層されて、これらが第1の絶縁層D1及び第2の絶縁層D2によって覆われた後であっても、負極配線PAと正極配線PCとを形成可能な配線孔HA,HC1,HC2を一括して形成することができる。それゆえに薄膜太陽電池及び第1の絶縁層D1を形成した後に負極配線PA及び正極配線PCの一部を形成し、さらに薄膜二次電池及び第2の絶縁層D2を形成した後に負極配線PA及び正極配線PCの残部を形成する場合と比較して、これら電極配線の形成が容易となり、また電極配線それ自体の構成も簡素なものとなる。
 つまり負極配線PA及び正極配線PCの形成に先立って形成される負極配線孔HA、第1の正極配線孔HC1及び第2の正極配線孔HC2は、積層方向Dsに沿って形成されるのみで、これらに埋設される負極配線PA及び正極配線PCも同じく積層方向Dsに沿って形成される。このため、負極配線PA及び正極配線PC、ひいては当該薄膜複合電池の製造をより容易とすることができる。
 (4)薄膜二次電池を構成する電極のうちで最下層となる負極21が他の層からシート搬送方向DLにはみ出すかたちに構成されて、該負極21が負極配線PAに接続されることとなる。こうした構成であれば、薄膜二次電池の負極21と負極配線PAとの接続が、該負極21のはみ出し分だけ確実なものとなり、また負極配線PAと他の層との間の絶縁がより確実なものとなる。そのため薄膜複合電池としての機能が担保されやすくなる。
 (5)隣接する太陽電池セルC1の間において、一方の裏面電極13が変換層12からはみ出す部分と、他方の受光電極11が変換層12からはみ出す部分とによって、2つ以上の太陽電池セルC1が直列に接続されることとなる。詳しくは、第1の太陽電池セルC1の裏面電極13が変換層12からシート搬送方向DLの反対方向にはみ出す部分と、第2の太陽電池セルC1の受光電極11が変換層12からシート搬送方向DLにはみ出す部分とによって、これら第1の太陽電池セルC1と第2の太陽電池セルC1とが直列に接続される。また第2の太陽電池セルC1の裏面電極13が変換層12からシート搬送方向DLの反対方向にはみ出す部分と、第3の太陽電池セルC1の受光電極11が変換層12からシート搬送方向DLにはみ出す部分とによって、これら第2の太陽電池セルC1と第3の太陽電池セルC1とが直列に接続される。
 こうした変換層12に対するはみ出し部分が無い場合には、隣接する太陽電池セルC1の間において受光電極11同士、あるいは変換層12同士、若しくは裏面電極13同士が近接してしまい、太陽電池セルの直列接続が得難くなる。この点、隣接する太陽電池セルC1の間において異なる電極同士のみが近接する上述する構成であれば、本来必要とされる太陽電池セルC1の直列接続がより容易に構成されることとなる。
 (6)そのうえ太陽電池セルC1の間を分離する上で必要とされる変換層12同士の間隔がこうした異なる電極間の接続において確保されることから、太陽電池セルC1間の接続を適切に行いつつ、電池積層面Stにおける占有面積を必要最小限に抑えることが可能になる。
 (7)負極配線PAとの接続に用いられる第1の太陽電池セルC1の受光電極11が該太陽電池セルC1の変換層12からシート搬送方向DLにより大きくはみ出すことになる。そのため、こうした受光電極11と負極配線PAとの接続がより容易となるため、当該薄膜複合電池としての機能がさらに担保されやすくなる。
 (8)第3の太陽電池セルC1における変換層12が薄膜太陽電池から薄膜二次電池に電流を供給する整流作用を発現するために、薄膜二次電池から薄膜太陽電池への放電を抑制することができ、薄膜二次電池の充電性能を向上させることもできる。
 (9)第1の絶縁層D1、第2の絶縁層D2、薄膜二次電池(二次電池セルC2)、および薄膜太陽電池(第1~第3の太陽電池セルC1)が可撓性を有するガラス基板S上に作られている。ガラス基板Sは透光性を有するため、高い光電変換効率を容易に得ることができる。また、金属基板を用いる場合に比べて、薄膜複合電池を軽量化することができる。
 なお、上記実施形態は以下のように変更して実施することもできる。
 ・上記実施形態における各太陽電池セルC1の変換層12は、それが積層される受光電極11から順に、n層、i層、p層が積層されてなるnip構造を有する。そして第1の太陽電池セルC1の受光電極11が太陽電池の負極として機能し、第3の太陽電池セルC1の裏面電極13が正極として機能するかたちに、3つの太陽電池セルC1が直列に接続される。これを変更して、各太陽電池セルC1の変換層12は、それが積層される受光電極11から順に、p層、i層、n層が積層されてなるpin構造を有する構成であってもよい。この場合、第1の太陽電池セルC1の受光電極11が太陽電池の正極として機能し、第3の太陽電池セルC1の裏面電極13が負極として機能するかたちに、3つの太陽電池セルC1が直列に接続される構成であってもよい。
 なお、上記のように変更された薄膜太陽電池の場合には、図3に示されるように、二次電池セルC2における各層の積層順序が、第1の絶縁層D1から順に、正極25、正極活物質層24、固体電解質層23、負極活物質層22、及び負極21となる。このとき、最下層である正極25のみが積層方向Dsから見てシート搬送方向DLに張出す構成が好ましい。こうした構成であれば、上記実施形態における負極配線孔HA及び負極配線PAを正極配線孔HC及び正極配線PCとしてそれぞれ機能させることが可能となる。また上記実施形態における第1の正極配線孔HC1及び第2の正極配線孔HC2を負極配線孔HAとして機能させ、正極配線PCを負極配線PAとして機能させることが可能となる。そしてこうした構成であっても、上記実施形態の効果と類似する効果を得ることが可能である。
 ・また上記の変更例のように第1の太陽電池セルC1の受光電極11が太陽電池の正極として機能し、第3の太陽電池セルC1の裏面電極13が負極として機能するかたちに、各太陽電池セルC1が直列に接続される構成においては、第1の太陽電池セルC1の変換層12に整流作用を設ける構成が好ましい。例えば、第1の太陽電池セルC1においてpin構造を有する変換層12の最下層に半導体層12a(n層)が設けられることによって、上述する整流作用を発現させることが可能となる。
 ・薄膜太陽電池から薄膜二次電池に電流を供給する整流作用を発現する構成としては、上述する半導体層12aを利用したpn接合に限らず、酸化亜鉛やチタン酸ストロンチウム等からなるバリスタを採用することも可能である。こうした構成においても薄膜二次電池から薄膜太陽電池への放電を抑制することができる。なお薄膜二次電池から薄膜太陽電池への放電量が十分に小さい構成であれば、上述する半導体層12aやバリスタを割愛してもよい。こうした構成においては、半導体層12aやバリスタを形成するための工程を薄膜複合電池の製造工程から割愛することが可能となり、薄膜複合電池の製造それ自体を簡便なものとすることができる。
 ・上記実施形態の薄膜複合電池は、ガラス基板Sの電池積層面Stから順に薄膜太陽電池と薄膜二次電池とが積層される構成であるが、これを変更して、図4に示されるように、可撓性を有するポリイミド基板Sの電池積層面Stから順に薄膜二次電池と薄膜太陽電池とが積層される構成であってもよい。この変更実施例では、少なくとも第1の絶縁層D1が透光性である。すなわち、第2の絶縁層D2も透光性であってよい。
 図4では、薄膜太陽電池の形成領域と薄膜二次電池の形成領域とが積層方向Dsにおいて重畳している。言い換えれば、薄膜太陽電池は、該薄膜太陽電池に垂直(図4において絶縁層D1に垂直な方向)に入射した光の投影面SPを含む位置において薄膜二次電池に平行に設置されている。この場合、光の投影面SPは絶縁層D2の表面に相当する。積層方向Dsから見て、薄膜二次電池の形成領域にて負極配線PAの接続先となる負極21が薄膜太陽電池の形成領域からはみ出し、また正極配線PCの接続先となる正極25が同薄膜太陽電池の形成領域からはみ出している。こうした構成であっても、上記実施形態の効果(1)、(2)に類似する効果が得られることとなる。
 なおこの際、負極配線孔HAの段差部20は、シート搬送方向DLにおける第1の太陽電池セルC1の裏面電極13の端部、すなわち変換層12から露出される裏面電極13の一部分に接続される底面を有し、この段差部20の底面と負極配線孔HAの側面とに裏面電極13が接続される構成が好ましい。こうした構成であれば、上記実施形態と同じく、上層である薄膜太陽電池の負極(裏面電極13)と負極配線PAとの電気的接続が、裏面電極13のはみ出し分だけ確実なものとなり、また負極配線PAと変換層12との間の絶縁や負極配線PAと受光電極11との間の絶縁がより確実なものとなる。
 ・上記実施形態では、薄膜太陽電池の正極と薄膜二次電池の正極とは、第1の正極配線孔HC1と第2の正極配線孔HC2とからなる2つの貫通孔に跨って形成される正極配線PCを介して接続される。これを変更して、薄膜太陽電池の正極と薄膜二次電池の正極との接続を、薄膜太陽電池の負極と薄膜二次電池の負極との接続形態に類似する形態にしてもよい。つまり正極配線孔(例えば第1の正極配線孔HC1)が負極配線孔HAと同じく段差形状(段差部)を有する貫通孔として構成されてもよい。この場合、該正極配線孔の段差部が、上記負極21と同じく、シート搬送方向DLの反対方向に張り出す正極25と接続される底面を有し、該正極配線孔の側面と段差部の底面とに正極25が接続されてもよい。こうした構成であれば、薄膜太陽電池の負極と薄膜二次電池の負極との接続形態と同じく、薄膜太陽電池の正極と薄膜二次電池の正極との接続を1つの正極貫通孔によって実現することが可能にもなる。
 なお、上述するようなシート搬送方向DLの反対方向に張り出す正極25を形成する上では、まず負極21、負極活物質層22、固体電解質層23、及び正極活物質層24がパターニングされて、次いでこれらを覆うかたちに第2の絶縁層D2が形成されて、そして該第2の絶縁層D2上にて正極25がパターニングされることにより形成可能である。
 ・薄膜太陽電池の正極及び負極が薄膜二次電池の正極及び負極に接続される構成において、薄膜太陽電池における正極と負極との積層順序、及び薄膜二次電池における正極と負極との積層順序は上記実施形態と異なるものであってもよい。
 ・複合電池セル領域SAごとに設けられた上記3つの太陽電池セルC1は、シート幅方向Dwに連なる複合電池セル領域SAにおいて分割される構造に限らず、こうしたシート幅方向Dwに連なる複合電池セル領域SAにおいて連続する構造であってもよい。
 ・薄膜太陽電池の電極と薄膜二次電池の電極とを結ぶ配線は、上記負極配線孔や正極配線孔等といった円形孔や矩形孔に充填される配線に限らず、シート幅方向Dwに延びるスリット状の溝に充填される配線であってもよい。
 ・第1の絶縁層D1及び第2の絶縁層D1の構成材料としては、ウェットエッチング法やフォトリソグラフィー法を用いて負極配線孔や正極配線孔を形成する上ではシリコン酸化膜や樹脂膜が好ましく、またレーザ加工を用いて負極配線孔や正極配線孔を形成する上ではレーザの吸収率が高い炭化珪素膜やシリコン酸窒化膜が好ましい。
 ・本発明は、負極配線PA(あるいは正極配線PC)が段差形状すなわち段差部20を含むことに限定されない。例えば、図2の場合、負極配線PAを第1および第2の絶縁層D1,D2間で2つに分割し、該分割した2つの負極配線の間に二次電池セルC2の負極21を配置して電気的接続を行ってもよい。図3の正極配線PCでも同様である。また、図4の場合も、負極配線PAを第1および第2の絶縁層D1,D2間で2つに分割し、該分割した2つの負極配線の間に太陽電池セルC1の裏面電極13を配置して電気的接続を行ってもよい。しかしながら、この変形例による薄膜複合電池の製造方法では、負極配線PAの配線孔を形成するために2回の孔あけ工程が必要となる。例えば、薄膜太陽電池の上方に薄膜二次電池を形成する場合、薄膜太陽電池上に積層した第1の絶縁層D1を穿つ第1の配線孔を1回目の孔あけ工程(レーザ加工など)によって形成する。次に、絶縁層D1上に薄膜二次電池と第2の絶縁層D2とを積層した後、第2の絶縁層D2を穿つ第2の配線孔を2回目の孔あけ工程(レーザ加工など)によって形成する。このように、2回の孔あけ工程が必要になるので製造工程が長くなる。これに対し、上述したような図2の実施形態では、負極配線孔HAは、第1および第2の絶縁層D1,D2にわたって連続しているので、第2の絶縁層D2を形成した後、1回の孔あけ工程(つまり、1回のレーザ加工)で形成することができる。このため、製造工程を短くすることができる。
 ・本発明は、薄膜太陽電池が2以上の太陽電池セルC1を含むことに限定されず、薄膜太陽電池が1つの太陽電池セルC1のみを含むものでもよい。

Claims (11)

  1.  基板上に形成される薄膜複合電池であって、
     電気的絶縁物と、
     前記絶縁物中に設けられた薄膜太陽電池および薄膜二次電池とを備え、
     前記薄膜太陽電池と前記薄膜二次電池は、前記基板に垂直な方向に平行に配置されるとともに、前記絶縁物を穿つ孔を介して電気的に接続されていることを特徴とする薄膜複合電池。
  2.  前記孔は、前記薄膜太陽電池と前記薄膜二次電池との間の電気接続経路において、前記基板に垂直な方向に沿って連続的に延びていることを特徴とする請求項1または2に記載の薄膜複合電池。
  3.  前記絶縁物は透光性であることを特徴とする請求項1または2に記載の薄膜複合電池。
  4.  前記薄膜二次電池は、前記薄膜太陽電池に垂直入射した光の投影面を含む位置において前記薄膜太陽電池に平行に設置されていることを特徴とする請求項1~3のいずれか一項に記載の薄膜複合電池。
  5.  前記薄膜太陽電池は、電気的に直列に接続された第1および第2の太陽電池セルを含み、各太陽電池セルは、光を電力に変換する変換層と、前記変換層を間に挟むように配置される第1および第2の電極とを含み、
     前記孔は、
     前記第1の太陽電池セルの前記第1の電極を前記薄膜二次電池の負極に電気的に接続するための第1の孔と、
     前記第2の太陽電池セルの前記第2の電極を前記薄膜二次電池の正極に電気的に接続するための第2の孔と
    を含むことを特徴とする請求項1~4のいずれか一項に記載の薄膜複合電池。
  6.  前記第1の孔および前記第2の孔のうちの少なくとも一方が段差部を含むことを特徴とする請求項5に記載の薄膜複合電池。
  7.  前記絶縁物、前記薄膜太陽電池、および前記薄膜二次電池は、可撓性基板上に作られることを特徴とする請求項1~6のいずれか一項に記載の薄膜複合電池。
  8.  前記可撓性基板がガラスからなることを特徴とする請求項7に記載の薄膜複合電池。
  9.  前記第1および前記第2の太陽電池セルのいずれか一方の前記変換層が、前記薄膜太陽電池から前記薄膜二次電池に電流を供給する整流作用を有することを特徴とする請求項5に記載の薄膜複合電池。
  10.  基板上に薄膜複合電池を製造する方法であって、
     前記基板上に薄膜太陽電池を形成すること、
     前記薄膜太陽電池上に第1の絶縁層を形成すること、
     前記第1の絶縁層上に薄膜二次電池を形成すること、
     前記薄膜二次電池上に第2の絶縁層を形成すること、
     前記第1および第2の絶縁層を穿つ配線孔を形成すること、
    を備え、前記薄膜太陽電池と前記薄膜二次電池は、前記配線孔を介して電気的に接続されていることを特徴とする方法。
  11.  基板上に薄膜複合電池を製造する方法であって、
     前記基板上に薄膜二次電池を形成すること、
     前記薄膜二次電池上に第1の絶縁層を形成すること、
     前記第1の絶縁層上に薄膜太陽電池を形成すること、
     前記薄膜太陽電池上に第2の絶縁層を形成すること、
     前記第1および第2の絶縁層を穿つ配線孔を形成すること、
    を備え、前記薄膜太陽電池と前記薄膜二次電池は、前記配線孔を介して電気的に接続されていることを特徴とする方法。
PCT/JP2010/060692 2009-06-23 2010-06-23 薄膜複合電池およびその製造方法 WO2010150833A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009149232A JP2011008976A (ja) 2009-06-23 2009-06-23 薄膜複合電池
JP2009-149232 2009-06-23

Publications (1)

Publication Number Publication Date
WO2010150833A1 true WO2010150833A1 (ja) 2010-12-29

Family

ID=43386602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060692 WO2010150833A1 (ja) 2009-06-23 2010-06-23 薄膜複合電池およびその製造方法

Country Status (2)

Country Link
JP (1) JP2011008976A (ja)
WO (1) WO2010150833A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3016258A1 (fr) * 2014-01-09 2015-07-10 Alex Hr Roustaei Systeme photovoltaique de production d'electricite a haut rendement avec stockage integre au substrat ou embarque sur panneaux (stockage abord)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101266810B1 (ko) 2011-05-31 2013-05-22 지에스나노텍 주식회사 태양전지 결합형 박막전지 패키지
WO2012173874A2 (en) * 2011-06-17 2012-12-20 Applied Materials, Inc. Thin film battery fabrication with mask-less electrolyte deposition
KR101802936B1 (ko) * 2011-11-24 2017-12-29 엘지디스플레이 주식회사 박막 배터리 일체형 태양전지 및 이의 제조방법
WO2014013637A1 (ja) 2012-07-18 2014-01-23 パナソニック株式会社 二次電池およびソーラー二次電池ならびにそれらの製造方法
KR102496474B1 (ko) * 2015-06-03 2023-02-06 삼성전자주식회사 이차 전지 구조/시스템과 그 제조방법 및 동작방법
JP6688631B2 (ja) * 2016-02-25 2020-04-28 セイコーインスツル株式会社 全固体型電極体及び電気化学セル
KR102524489B1 (ko) * 2018-03-21 2023-04-24 한국전자통신연구원 일체형 전자 소자

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222272A (ja) * 1995-02-10 1996-08-30 Ricoh Co Ltd 非水電解液二次電池と太陽電池との組み合わせ電池
JP2004031316A (ja) * 2000-07-28 2004-01-29 Japan Science & Technology Corp 太陽電池複合薄膜固体リチウムイオン二次電池
JP2006040636A (ja) * 2004-07-23 2006-02-09 Geomatec Co Ltd 薄膜固体リチウムイオン二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169973A (ja) * 1987-12-24 1989-07-05 Matsushita Electric Ind Co Ltd 非晶質太陽電池と薄膜二次電池の一体型素子
JPH03112951U (ja) * 1990-03-05 1991-11-19
JP2002252359A (ja) * 2001-02-23 2002-09-06 Seiko Epson Corp 受光層および太陽電池
JP2004158222A (ja) * 2002-11-01 2004-06-03 Mamoru Baba 多層積層電池
JP2006301711A (ja) * 2005-04-15 2006-11-02 Ricoh Co Ltd Icカード、通信端末およびicカードの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222272A (ja) * 1995-02-10 1996-08-30 Ricoh Co Ltd 非水電解液二次電池と太陽電池との組み合わせ電池
JP2004031316A (ja) * 2000-07-28 2004-01-29 Japan Science & Technology Corp 太陽電池複合薄膜固体リチウムイオン二次電池
JP2006040636A (ja) * 2004-07-23 2006-02-09 Geomatec Co Ltd 薄膜固体リチウムイオン二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3016258A1 (fr) * 2014-01-09 2015-07-10 Alex Hr Roustaei Systeme photovoltaique de production d'electricite a haut rendement avec stockage integre au substrat ou embarque sur panneaux (stockage abord)

Also Published As

Publication number Publication date
JP2011008976A (ja) 2011-01-13

Similar Documents

Publication Publication Date Title
WO2010150833A1 (ja) 薄膜複合電池およびその製造方法
EP2388827B1 (en) Solar cell module
JP5628456B1 (ja) ソーラー二次電池ならびにそれらの製造方法
WO2010144480A3 (en) Photovoltaic module and method of manufacturing a photovoltaic module having multiple semiconductor layer stacks
CN111213235B (zh) 具有四端叠层太阳能电池布置的太阳能电池板
JPWO2015040780A1 (ja) 太陽電池および太陽電池モジュール
CN116210088A (zh) 二端钙钛矿/硅叠层太阳能电池及相关制造方法
US20140339896A1 (en) Photovoltaic module
WO2016147566A1 (ja) 太陽電池セル
CN211789098U (zh) 晶硅-钙钛矿组件
TWI478361B (zh) 太陽能電池模組
TWI502756B (zh) 具有粗細匯流排電極之太陽能電池
JP2018201052A (ja) 太陽電池モジュール
CN111540803B (zh) 一种太阳能电池组件及其制作方法
CN114023787A (zh) 一种晶硅-钙钛矿叠层光伏组件
US20130312821A1 (en) Solar cell
US10170655B2 (en) Energy harvesting device with prefabricated thin film energy absorption sheets and roll-to-sheet and roll-to-roll fabrication thereof
TWM504356U (zh) 四柵匯流排太陽能電池
KR20160041649A (ko) 태양 전지용 리본 및 이를 포함하는 태양 전지 모듈
CN219352270U (zh) 一种太阳能叠层电池、电池组件和光伏系统
JP2012532445A (ja) 太陽光発電装置
CN115917763A (zh) 串联太阳能电池
WO2016042910A1 (ja) 光電変換装置
JPS6077471A (ja) 光発電装置
CN116722064A (zh) 薄膜太阳能电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10792151

Country of ref document: EP

Kind code of ref document: A1