WO2010150801A1 - 成形品の製造方法および製造装置、ならびに眼鏡レンズの製造方法 - Google Patents

成形品の製造方法および製造装置、ならびに眼鏡レンズの製造方法 Download PDF

Info

Publication number
WO2010150801A1
WO2010150801A1 PCT/JP2010/060613 JP2010060613W WO2010150801A1 WO 2010150801 A1 WO2010150801 A1 WO 2010150801A1 JP 2010060613 W JP2010060613 W JP 2010060613W WO 2010150801 A1 WO2010150801 A1 WO 2010150801A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding
molding material
closing member
mold
metal
Prior art date
Application number
PCT/JP2010/060613
Other languages
English (en)
French (fr)
Inventor
紀明 田口
茂 滝澤
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to EP10792119.9A priority Critical patent/EP2447226A4/en
Priority to US13/133,463 priority patent/US20120086138A1/en
Priority to CN2010800300561A priority patent/CN102471127A/zh
Priority to JP2011519912A priority patent/JPWO2010150801A1/ja
Publication of WO2010150801A1 publication Critical patent/WO2010150801A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0258Gravity bending involving applying local or additional heating, cooling or insulating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/0026Re-forming shaped glass by gravity, e.g. sagging
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/0086Heating devices specially adapted for re-forming shaped glass articles in general, e.g. burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0252Re-forming glass sheets by bending by gravity by gravity only, e.g. sagging
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/04Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a continuous way
    • C03B29/06Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a continuous way with horizontal displacement of the products
    • C03B29/08Glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for producing a molded article by a hot drooping molding method, and a molding apparatus that can be used in the manufacturing method. Furthermore, the present invention relates to a method for manufacturing a spectacle lens using the manufacturing method or a molded product manufactured by a molding apparatus.
  • the hot drooping molding method is a method in which a molding material made of a thermosoftening material such as glass is placed on a mold and heated to a temperature equal to or higher than its softening point to soften the molding material and adhere to the mold.
  • a molding method for obtaining a molded product having a desired surface shape by transferring the material onto the upper surface of the molding material For example, when molding a spectacle lens mold, the upper surface of the molding material is a surface for forming an optical functional surface, and thus high surface accuracy is required.
  • the method described in WO2007 / 063735 can suppress the scattering and mixing of foreign matter on the upper surface of the molding material without installing a large-scale clean room device, so that the upper surface of the molding material is molded with high accuracy without causing an increase in manufacturing cost. It is an excellent method that can be done.
  • the spectacle lens manufactured using the spectacle lens mold obtained by the above method has a new problem that an stigma unnecessary for spectacle correction may occur. It turned out to be.
  • An object of the present invention is to solve the above-mentioned new problem, that is, to provide means for producing a high-quality spectacle lens in which astigma is suppressed or reduced. It is.
  • the closing member holds and accumulates radiant heat from the heat source of the heating furnace for a while.
  • positioned in the space (occlusion space) obstruct
  • occlusion member is heated by the radiant heat re-radiated from the obstruction
  • WO2007 / 063735 it is described that ceramic is used as the material of the closing member.
  • ceramic is generally a material having low thermal conductivity, it is long until the closing member itself has a uniform temperature distribution. It takes time. Accordingly, since the temperature of each part of the closing member is different until the closing member itself has a uniform temperature distribution, it is as if heating is performed separately from a plurality of heat sources having different temperatures. This phenomenon is manifested particularly in a continuous heating furnace in which each zone in the furnace is controlled to a different temperature, or in a heating furnace in which a heat source is partially provided in the furnace.
  • the fact that the heating state of the molding material is greatly different in each part as described above causes the timing at which the lower surface of the molding material and the molding surface of the molding die are in close contact with each other in the plane.
  • the inventors of the present invention have found that this is a cause of generation of stigma that is not necessary for correction of spectacles in spectacle lenses molded from the obtained mold. Accordingly, as a result of further studies based on the above findings, the present inventors have found that a plate-like member whose outermost surface is made of a metal material between a heat source that radiates radiant heat and a molding material (hereinafter also referred to as “metal plate”). It was newly found that a molded product (glass eyeglass mold) capable of producing a high-quality spectacle lens in which astigma is suppressed or reduced can be obtained by arranging. About this reason, the present inventors guess as follows.
  • FIG. 1 (a) is an explanatory diagram of a mode in which a molding material is heated without arranging a metal plate
  • FIG. 1 (b) is an explanatory diagram of a mode in which a metal plate is disposed between a heat source and the molding material to perform heating. Indicates.
  • the molding material directly receives the radiant heat from the heat source.
  • the radiant heat radiated from the heat source such as a halogen lamp is shown in FIG. ), Since it spreads radially, it is difficult to supply uniform heat to each part of the upper surface of the molding material.
  • FIG. the radiant heat radiated from the heat source
  • the metal plate disposed between the heat source and the molding material functions as a heat source that once holds and stores the radiant heat from the heat source and then re-radiates it onto the molding material.
  • the metal material has high thermal conductivity, the entire outermost surface of the metal plate becomes a uniform temperature in a short time, and the radiant heat radiated from each part of the outermost surface of the metal plate onto the forming material can be made uniform.
  • molding raw material functions as a heat source which supplies uniform heat to each part of a shaping
  • the present inventors lead to uniform heating of the molding material, and as a result, obtain a molded product (glass lens mold) capable of producing a high-quality spectacle lens in which astigma is suppressed or reduced. I guess you can.
  • the first aspect of the present invention has been completed based on the above findings.
  • the method for producing a molded article according to the first aspect of the present invention comprises heating a molding material made of a thermosoftening substance to a temperature at which the molding material can be deformed in a state where the molding material is disposed on a molding die molding surface.
  • the heating may be performed by introducing a molding die in which the molding material is arranged into a heating furnace, and sequentially passing the plurality of heat sources arranged in the upper part of the furnace in the furnace. it can.
  • the plate member can be moved together with the mold so as to be always located above the upper surface of the molding material in the furnace.
  • the plate member a plate member having such a size that the molding material is hidden when the plate member arranged in the above state is observed from vertically above can be used.
  • the upper surface of the molding material before the molding can have a rotationally symmetric shape with the geometric center as the symmetry axis.
  • the molding surface opening portion of the molding die in which the molding material is arranged can be closed by the closing member, and the plate-like member can be arranged above the closing member.
  • the plate-like member may have a flat surface facing the upper surface of the molding material or a substantially similar shape to the upper surface of the molding material before molding.
  • the molding apparatus heats a molding material made of a thermosoftening substance to a temperature at which the molding material can be deformed in a state where the molding material is disposed on a molding die molding surface.
  • a plate-like member having an outermost surface disposed below the heat source and made of a metal material.
  • the molding apparatus may include a heating furnace in which a plurality of the heat sources are arranged on the upper part, and the heating furnace may further include a conveying unit that sequentially conveys the molding die under the plurality of heat sources.
  • the heating furnace may include moving means for moving the plate-shaped member together with the mold so that the plate-shaped member is always located above the upper surface of the molding material.
  • the molding apparatus may include a plate-like member having such a size that the molding material is hidden when the plate-like member arranged in the state is observed from vertically above as the plate-like member.
  • the molding apparatus may include a rotating unit that rotates the plate-like member in the horizontal direction during the heating.
  • the molding apparatus may be used in a molding method in which a molding material having a rotationally symmetric shape with the upper surface before molding having a geometric center as a symmetry axis is used as the molding material.
  • the molding apparatus may include a closing member that closes a molding surface opening portion of a molding die in which the molding material is disposed, and the plate-like member may be disposed above the closing member.
  • the plate-like member may have a flat surface facing the upper surface of the molding material or a substantially similar shape to the upper surface of the molding material before molding.
  • the present inventors have suppressed or reduced astigma by providing a metal material layer on at least a part of the closing member. It was newly found that a molded article (glass lens mold) capable of producing a high-quality spectacle lens can be obtained. For this reason, the present inventors have described that the metal material layer has a high thermal conductivity, so that the entire layer can be heated to a uniform temperature in a short time and function as a heat source capable of uniform heating. It is assumed that it leads to equalization.
  • the second aspect of the present invention has been completed based on the above findings.
  • the method for producing a molded product according to the second aspect of the present invention is to heat the molding material to a temperature at which the molding material can be deformed in a heating furnace in a state where the molding material made of a thermosoftening substance is disposed on the molding surface. Then, a method of manufacturing a molded product in which the upper surface of the molding material is molded into a desired shape by bringing the lower surface of the molding material into close contact with the molding surface, wherein the molding is performed on a molding die in which the molding material is disposed.
  • the molding surface side opening portion is closed by a closing member, and the closing member includes a metal material layer at least partially.
  • the metal material layer can be located on the outermost surface of the closing member.
  • the upper surface of the molding material before molding can have a rotationally symmetric shape with a geometric center as a symmetry axis
  • the metal material layer has a rotationally symmetric shape with a geometric center as a symmetry axis
  • the molding material can be arranged so that the geometric center of the metal material layer and the molding material upper surface is located on the same axis.
  • the outermost surface of the closing member can be made of the metal material layer.
  • the closing member may have the metal material layer on at least a part of the outer surface of a base material made of a ceramic material.
  • the manufacturing method may include a period of performing the heating in a state where the metal material layer is disposed between a heat source of the heating furnace and a forming material.
  • the blocking member may include a plurality of layers having different refractive indexes for far infrared rays, and at least one of the plurality of layers may be the metal material layer.
  • the molding apparatus heats a molding material made of a softening substance to a temperature at which the molding material can be deformed in a state where the molding material is disposed on a molding die molding surface in a heating furnace.
  • the surface-side opening portion is closed by a closing member, and the closing member includes a metal material layer at least partially.
  • the metal material layer can be located on the outermost surface of the closing member.
  • the upper surface of the molding material before molding can have a rotationally symmetric shape with the geometric center as the symmetry axis, and the metal material layer is rotationally symmetric with the geometric center as the symmetry axis.
  • the molding material can be arranged so that it has a shape and can be included on the upper surface of the closing member, and the geometric center of the metal material layer and the upper surface of the molding material is located on the same axis.
  • the outermost surface of the closing member can be made of the metal material layer.
  • the closing member may have the metal material layer on at least a part of an outer surface of a base material made of a ceramic material.
  • the forming apparatus may include a region where the heating is performed in a state where the metal material layer is disposed between a heat source of the heating furnace and a forming material.
  • the blocking member may include a plurality of layers having different refractive indices with respect to far infrared rays, and at least one of the plurality of layers may be the metal material layer.
  • a spectacle lens mold can be manufactured as the molded article.
  • the spectacle lens mold can be molded as the molded product by the molding apparatus according to the first aspect and the molding apparatus according to the second aspect.
  • a molded product is manufactured by the above manufacturing method or by the above molding apparatus, and a spectacle lens is manufactured by casting polymerization using the manufactured molded product or a part thereof as a mold.
  • the present invention relates to a method for manufacturing a spectacle lens.
  • the present invention it is possible to make uniform the heating of a molding material in a heating furnace, thereby obtaining a spectacle lens mold capable of manufacturing a high-quality spectacle lens in which astigma is suppressed or reduced. it can. Thereby, it is possible to provide a high-quality spectacle lens in which astigma is suppressed or reduced.
  • FIG. 1A is an explanatory view of a mode in which a forming material is heated without arranging a metal plate
  • FIG. 1B is an explanatory view of a mode in which the metal plate is disposed between a heat source and the forming material to perform heating. is there.
  • An example of the support method of the metal plate in a 1st aspect is shown.
  • An example of the support method of the metal plate in a 1st aspect is shown.
  • FIG. 5A shows an example in which a closing member is arranged under a heat source without arranging a metal plate
  • FIG. 5B shows an example in which a metal member is arranged between the heat source and the closing member. It is explanatory drawing of the arrangement
  • occlusion member which can be used in a 1st aspect is shown. It is a schematic diagram of the shaping
  • occlusion member which can be used in a 2nd aspect is shown. An example of the obstruction
  • a molding material made of a thermosoftening material is heated to a temperature at which the molding material can be deformed in a state where the molding material is disposed on the molding die molding surface, and the lower surface of the molding material is It is related with the manufacturing method of the molded article which shape
  • the heating is performed, a molding die in which the molding material is arranged, and a plate-like member (metal plate) whose outermost surface is made of a metal material are arranged above the upper surface of the molding material.
  • the metal plate is evenly distributed on the upper surface of the molding material as described above. It can function as a heat source for supplying heat. As a result, heating of the molding material can be made uniform. For example, when a spectacle lens mold is manufactured as a molded product, the generation of stigma unnecessary for correcting spectacles is reduced or suppressed, and a high quality spectacle lens is produced. Can be obtained.
  • the manufacturing method of the molded product of the first aspect will be described in more detail.
  • Metal plate The metal material constituting the outermost surface of the plate member is, for example, copper, iron, stainless steel (SUS430, 301, 304, 316, 310, etc.), chromium, cobalt, tungsten, nickel, gold, platinum, manganese, molybdenum, titanium, tantalum, Examples thereof include metals such as aluminum, and alloys of two or more of these or metals and nonmetals (for example, brass and duralumin). Among them, a highly heat conductive metal material that can be heated to a uniform temperature in a short time is preferable. As a high heat conductive metal material, a material having a thermal conductivity at 25 ° C.
  • the thermal conductivity of the metal material the more preferable it is because it can be heated to a uniform temperature in a shorter time.
  • the upper limit is the thermal conductivity at 25 ° C. 400 W / mk or less.
  • a metal material preferable as a material having a suitable thermal conductivity for example, copper (thermal conductivity at 25 ° C.
  • the metal material containing graphite together with the metal can achieve a thermal conductivity of about 1.5 times that of copper alone and about twice that of aluminum alone by including graphite. It is. Furthermore, since graphite is lighter than metal, by including graphite together with metal, the metal plate can be reduced in weight to, for example, about half of the copper plate. This point is preferable from the viewpoint of easy handling.
  • the metal plate is disposed above the upper surface of the molding material under a heat source that radiates radiant heat during heating of the molding material.
  • the metal plate disposed between the heat source and the forming material in this manner can function as a heat source that once stores heat from the heat source and re-radiates it.
  • the metal plate may include a material other than the metal material in a part other than the outermost surface.
  • a reinforcing layer made of ceramic can be provided inside the plate-like member in order to increase the strength.
  • various ceramic materials described later can be used as the material constituting the closing member.
  • Such a metal plate can be produced, for example, by forming a metal material layer on the surface of the ceramic plate by a known film forming method such as plating.
  • a plate-like member made entirely of a metal material including the outermost surface is preferable.
  • the thickness of the metal plate is, for example, about 1 mm to 5 mm, it is easy to handle, but is not particularly limited.
  • the metal plate including the reinforcing layer is easily handled as long as the thickness of the plate member including the reinforcing layer is about 1 mm to 5 mm, but is not particularly limited.
  • any heat source capable of radiating radiant heat can be used without any limitation, but by using a metal plate, radiant heat radiated radially from a lamp-type heat source such as a halogen lamp can be used. Since it can be made uniform and re-radiated onto the molding material, the application of the first aspect is particularly effective when a lamp-type heat source is used.
  • the metal plate can be placed at any position between the heat source and the molding material, but in order to re-radiate the radiant heat radiated from the heat source evenly to the upper surface of the molding material, the metal plate is separated from the upper surface of the heat source and the molding material. It is preferable to arrange in such a state. Since the upper surface of the molding material is a surface to be molded that is molded into a desired shape by heat softening, it is preferable to separate the upper surface of the molding material and the metal plate in order to prevent contamination of the upper surface of the molding material.
  • the distance between the molding material and the metal plate is preferably about 10 to 150 mm, for example, as the distance from the geometric center of the upper surface of the molding material. On the other hand, the distance between the heat source and the metal plate is, for example, about 50 to 300 mm, but is not particularly limited as long as it is appropriately determined according to the height in the heating furnace.
  • the metal plate may be arranged, for example, in a curved shape so as to cover the heat source.
  • the radiant heat is evenly radiated to the upper surface of the molding material.
  • the lower surface of the metal plate has a shape approximate to the upper surface of the molding material.
  • the substantially similar shape includes, for example, that the curvature differs by about ⁇ 15% or ⁇ 1 base curve.
  • the upper surface of the metal plate has the same shape as the lower surface because it is easy to process.
  • FIG. 2 shows a schematic view of the metal plate arranged above the upper surface of the forming material as observed from above.
  • the upper surface shape of the metal plate may be a square (the upper diagram in FIG. 2) or a circle (the lower diagram in FIG. 2), and may take various shapes such as a polygonal shape and an elliptical shape. You can also. Since the radiant heat is straight, the radiant heat re-radiated from the metal plate can be received by the entire upper surface of the molding material, so that any shape of the metal plate is placed above the upper surface of the molding material. When the metal plate is observed from above, it is preferable that the molding material be hidden.
  • the closing member when the closing member is arranged on the mold as described later, when the metal plate is observed from above in the above state, the closing member is hidden, that is, the molding material is hidden. It will be. Since the radiant heat re-radiated from the metal plate can be received by the entire upper surface of the closing member if the closing member is of a size that is hidden when observed in the above state, the heat re-radiated on the molding material in the closed space is re-radiated. It is possible to make uniform.
  • a batch-type heating furnace can be used, and a continuous-type heating furnace can also be used. From the viewpoint of productivity, it is preferable to use a continuous heating furnace.
  • a continuous heating furnace is a series of processes such as a temperature rising process, a high temperature holding process, a temperature lowering process, etc., by controlling the temperature inside the furnace so as to have a predetermined temperature distribution in the conveying direction when the object to be heated is transferred into the furnace. Can be continuously performed in a furnace. In order to perform such heating for each zone, a plurality of heat sources that radiate radiant heat are usually disposed in the continuous heating furnace in the upper part in the conveying direction of the object to be heated.
  • the molding die is sequentially passed under the plurality of heat sources while moving in the furnace, so that the molding material arranged on the molding die is subjected to heat treatment.
  • a continuous heating furnace it is possible to provide a metal plate between the heat source and the upper surface of the molding material only when the mold passes directly under the heat source. It is preferable that the metal plate is always located above the upper surface of the molding material in the furnace.
  • the first method is to install a strip-shaped metal plate in the furnace so as to cover the entire upper surface of the forming die.
  • the second method is to provide moving means to move the metal plate in the furnace, and move the metal plate together with the mold so that the metal plate is always above the upper surface of the forming material.
  • independent temperature control is usually performed for each zone in the furnace, and temperature control is usually performed so as to have a temperature distribution within the same zone.
  • the moving means for moving the metal plate in the second method may be provided as a separate means from the conveying means for conveying the mold, but is preferably the same means as the conveying means for the mold.
  • a continuous heating furnace equipped with a belt conveyor as a conveying means if a metal plate is arranged on a belt conveyor using a support such as a tripod, the metal plate can be moved together with the forming mold in the furnace. it can.
  • the support base it is possible to use a support having a metal plate support portion opened (for example, a metal plate supported by a ring-shaped member) so that radiant heat from the lower surface of the metal plate is not blocked by the support base.
  • a support having a metal plate support portion opened for example, a metal plate supported by a ring-shaped member
  • An example of the metal plate supported in such a state is shown in FIG.
  • a metal plate having such a structure is preferable because the support base does not block radiant heat from the lower surface of the metal plate.
  • An example of the metal plate supported in such a state is shown in FIG.
  • a mold is placed at a fixed position in the furnace and heat treatment is performed.
  • a metal plate is placed on the upper side of the mold using a support such as a tripod, or a metal provided with a support column. If a board is arrange
  • molding materials are usually heat-molded in batch furnaces by introducing multiple molding materials into the furnace at the same time.
  • continuous heating furnaces multiple molding materials are sequentially placed in the furnace. It is carried to.
  • the heating state in each part in the furnace is different. Since the temperature of the metal material is equalized in a short time regardless of the external temperature distribution, uniform radiant heat can be radiated (re-radiated) onto the upper surface of the molding material. In a continuous heating furnace whose temperature is controlled to a high temperature, the front is exposed to a higher temperature. Therefore, although it is a very short time, a slight temperature distribution may occur on the metal plate.
  • the manufacturing method of a molded product according to the first aspect using a metal plate that can be rotated independently of the molding material is used to droop a molded product having a complicated shape such as a spectacle lens mold. It is particularly suitable as a method for producing by a molding method. Furthermore, rotating the metal plate is also effective for improving the uniformity of heating when the shape of the upper surface of the molding material and the shape of the lower surface of the metal plate do not correspond well.
  • the metal plate can be rotated continuously during heating, or can be intermittently performed only in a region where the heat distribution is particularly likely to be non-uniform.
  • the rotation of the metal plate may be performed only in one direction, and the reverse rotation may be appropriately combined. For example, it is possible to repeat approximately one turn in a certain direction (forward direction) and then rotate approximately one turn in the reverse direction.
  • a ring-shaped turntable is provided on the floor of the heating furnace so as to surround the position where the mold is placed, and a support for supporting a metal plate or a tripod leg with a metal plate placed on this turntable If the turntable is rotated, the metal plate can be rotated independently of the forming material and the forming die.
  • the molding material is made of a thermosoftening material.
  • thermosoftening substance various substances having thermosoftening properties such as glass and plastic can be used.
  • the glass include crown-type, flint-type, barium-type, phosphate-type, fluorine-containing type, and fluorophosphate-type glasses.
  • the glass suitable as the molding material include glasses having the compositions and physical properties described in paragraphs [0028] to [0031] of WO 2007/063735.
  • the molding material can be obtained by processing a thermosoftening substance into a desired shape. Processing of the molding material can be performed by a known method.
  • the shape of the molding material is flat, spherical, elliptical, rotationally symmetric (toric lens, aspherical rotationally symmetric power lens), free-form surface (progressive power lens, aspherical double-sided power lens), etc. be able to.
  • the timing of adhesion between the lower surface of the molding material and the molding surface of the molding die is due to imbalance in heat distribution during heating.
  • the use of the metal plate can increase the uniformity of heating of the forming material and balance the heat distribution. Therefore, it is preferable that the first aspect is applied to an aspect in which a molding material having a rotationally symmetric shape whose upper surface has a geometric center as a symmetry axis is a molding object.
  • a mold having the molding material disposed on the molding surface is heated to a temperature at which the mold can be deformed.
  • a known mold used in a hot droop molding method can be used. Examples of the mold used in the first embodiment include the molds described in paragraphs [0024] to [0027] and [0035] to [0053] of WO 2007/063735. It is also possible to use a molding die having a through hole described in International Publication No. 2007/063735 and perform suction through the through hole during molding.
  • the heat treatment can be performed in a state where the molding surface side opening portion of the molding die on which the molding material is arranged is closed by the closing member.
  • the use of the closing member is preferable because foreign matter can be prevented from entering the upper surface of the molding material without installing a large-scale clean room including a heating furnace.
  • “blocking” in the present invention means that the internal space is isolated from the outside to the extent that foreign matters such as dust and dirt do not enter and exit, but the entry and exit of gas is allowed.
  • a member made of a ceramic material having excellent heat resistance is preferably used.
  • ceramic materials include alumina (Al 2 O 3 ), Altic (Al 2 O 3 —TiC), zirconia (ZrO 2 ), silicon nitride (Si 3 N 4 ), and aluminum nitride.
  • a ceramic mainly composed of SiO 2 , Al 2 O 3 , or MgO such as (AlN) or silicon carbide (SiC) is suitable. More preferable examples include ceramics containing 99% by mass or more of SiO 2 , Al 2 O 3 and MgO, and K 2 O and the like.
  • main component means that the above components occupy the most part of the ceramic material constituent components, for example, 50% by mass or more.
  • the closing member made of a ceramic material can be formed by, for example, a powder metal method. Details thereof can be referred to paragraph [0021] of WO 2007/063735.
  • grain scattering prevention processing can also be given to the inner upper surface of the closure member which consists of ceramic materials. Details thereof are described in paragraphs [0022] to [0023] of WO 2007/063735.
  • the closing member that can be used in the first aspect only needs to have a shape capable of closing the molding surface side opening of the molding die on which the molding material is disposed.
  • An example of such a closing member is a lid-shaped member (lid member) as shown in FIG.
  • FIG. 5A shows an example in which a closing member is arranged under a heat source without arranging a metal plate
  • FIG. 5B shows an example in which a metal member is arranged between the heat source and the closing member.
  • the heat source 2 radiates radiant heat with higher energy than the heat source 1 so that the temperature becomes higher in the mold conveyance direction.
  • the heating state in each part in the furnace is different.
  • a heat source that radiates high-energy radiant heat as it goes forward is arranged as shown in FIG. Since the occlusion member is low in thermal conductivity, it takes a long time for the forward heat to be conducted to the entire occlusion member. In other words, it is difficult for the closing member made of a ceramic material to have a uniform temperature state in a short time by receiving different energy generated by each heat source.
  • each part of the closing member is in a state as if it acts as a plurality of heat sources that radiate radiant heat at different temperatures, which causes uneven heating of the molding material.
  • the metal plate if a metal plate is arranged above the closing member made of a ceramic material, the metal plate temporarily stores radiant heat from the heat source. Since the temperature of the metal plate can be equalized in a short time, uniform radiation heat can be radiated (re-radiated) onto the closing member as schematically shown in FIG.
  • the radiant heat radiated (re-radiated again) from each part of the closing member is made uniform, so that the molding material arranged in the closing space is uniformly heated.
  • the inner upper surface of the closing member is substantially similar to or flat with the upper surface of the molding material.
  • the lower surface of the metal plate is a flat surface or is substantially similar to the outer upper surface of the closing member.
  • an annular holding member is disposed between the closing member and the mold, and the end surface at the step portion on the outer periphery of the holding member is fitted with the end surface of the lid member opening.
  • a step portion for holding the closing member may be provided on the outer periphery of the mold, and the end surface of the step portion and the closing member opening may be fitted together.
  • the closing member shown in FIG. 5 forms a part of a columnar shape, and only one bottom surface of the columnar shape is open, and a space is formed inside.
  • the size of the closing member is not particularly limited, but from the viewpoint of impact resistance and heat conduction efficiency, the thickness is preferably about 1 ⁇ m to 5 mm, and the internal height is about 5 to 100 mm, particularly 30 to 60 mm.
  • the occluding member usable in the first embodiment reference can be made to paragraphs [0013] to [0023] of WO 2007/063735.
  • each film thickness considering the refractive index of each layer with respect to a far-infrared ray.
  • the radiant heat radiated from the closing member to the closed space is gradually re-radiated (radiated) toward the outside as far infrared energy.
  • a blocking member made of a ceramic material can function as a far-infrared transmission preventing layer (far-infrared blocking filter), which allows far-infrared energy to be transmitted to the outside. It is possible to suppress a decrease in heat retention due to re-radiation. Therefore, it is preferable to construct the closing member from a ceramic material from the viewpoint of improving heat retention.
  • the closing member has a multilayer structure of two or more layers.
  • the wavelength of light to be selectively blocked is ⁇ 0
  • the refractive index of the high refractive index layer is n H
  • the refractive index of the low refractive index layer is n L
  • the film thickness d H of the high refractive index layer is ⁇ 0 / 4n L
  • the light reflected at the layer boundary cancels each other and the transmittance decreases.
  • the blocking member includes a combination of a high refractive index layer and a low refractive index layer, and the film thickness of each layer is determined by the above formula based on the refractive index of each layer with respect to far infrared rays, A function as a blocking filter can be provided. Since the far-infrared wavelength range is about 3 to 1000 ⁇ m, the optical film thickness (refractive index ⁇ physical film thickness) of the high refractive index layer and the low refractive index layer should be in the range of 0.75 to 250 ⁇ m, respectively. Is preferred. In this case, the outermost layer in contact with the closed space may be a high refractive index layer or a low refractive index layer.
  • the function as the far-infrared shielding filter described above usually increases as the combination of the high refractive index layer and the low refractive index layer increases. Therefore, when the blocking member has a multilayer structure of two or more layers, a high refractive index material having a high refractive index for far infrared rays and a low refractive index material having a low refractive index for far infrared rays are alternately laminated, Two or more combinations of the high refractive index layer and the low refractive index layer are preferably provided.
  • the blocking member when the blocking member has a multilayer structure, the blocking member preferably includes a plurality of layers having different refractive indexes with respect to far infrared rays.
  • the optical film thickness of each layer is preferably in the range of 0.75 to 250 ⁇ m as described above.
  • An example of the layer structure of such a blocking member is shown in FIG.
  • the closing member shown in FIG. 7 includes two combinations of a high refractive index layer and a low refractive index layer from the closed space side.
  • is the wavelength in the far infrared region (about 3 to 1000 ⁇ m)
  • the refractive index of each material is the refractive index with respect to ⁇ .
  • the present invention is not limited to the embodiment shown in FIG. 7, and at least one layer of the laminated structure is made of ceramic or the like.
  • An occluding member made of a material other than a metal material can also be used.
  • the difference in refractive index between adjacent layers with respect to far infrared rays can be, for example, 1.00 or more and 2.00 or less, but is not particularly limited.
  • an appropriate material can be selected from known materials such as the above-described ceramic materials and metal materials in consideration of the refractive index with respect to far infrared rays.
  • the multi-layer blocking member can be produced, for example, by laminating a metal material layer on a base material by a known film forming method such as plating.
  • the heat source of the heating furnace is also arranged below the mold, it is also preferable to provide a metal material layer on the lowermost surface of the mold by a known film formation method such as plating.
  • the metal material constituting the metal material layer those exemplified as the metal material constituting the metal plate are preferably used.
  • the thickness is preferably about 1 mm to 30 mm from the viewpoint of film formability and ease of handling of the formed film. Since the metal has poor durability at the general maximum temperature of 800 ° C. for softening and has a large coefficient of thermal expansion, the shape is greatly deformed by thermal expansion near 800 ° C. Therefore, it is preferable to form the molding surface from a ceramic material having high durability at high temperatures and a relatively low coefficient of thermal expansion.
  • the ceramic material has a problem of non-uniform heating as described above. Therefore, in order to compensate for this, it is preferable to form the mold base material from a ceramic material and form a metal material layer on the outermost surface of the lower surface of the mold. Thereby, it becomes possible to ensure the uniformity of heating from below, and a higher quality molded product can be obtained.
  • the deformable temperature is preferably a temperature not lower than the glass transition point (Tg) when the molding material is made of glass.
  • the heating can be performed by a known method, for example, by placing a mold in an electric furnace. By controlling the atmospheric temperature in the electric furnace so that the molding material has a set temperature, the molding material can be heated to a desired temperature.
  • the first aspect is not limited to the following aspect.
  • the mold is placed with the molding surface facing up.
  • a closure member is installed so that the opening part of a shaping
  • the holding member is used for installing the closing member, the holding member is fitted into the peripheral portion of the molding surface and the stepped portion on the side surface. Then, the molding material is placed at a predetermined position on the molding surface along the holding member.
  • the end surface of the molding material side is supported and fixed by the holding member, while in the vertical direction, the outer peripheral end surface of the lower surface of the molding material is held and fixed in contact with the molding surface of the mold.
  • molding raw material is spaced apart from the die molding surface.
  • the separation distance varies depending on the shape of the molding surface material lower surface and the molding surface, but is usually about 0.1 to 2.0 mm.
  • a metal plate is disposed above the upper surface of the molding material.
  • a metal plate is installed on an installation stand such as a tripod, or as shown in FIG. Then, it conveys from a clean room to an electric furnace with a belt conveyor, moves inside an electric furnace in the state which maintained the positional relationship of a shaping
  • suction is performed during molding using a mold having a through hole, it is preferable to use a table having a suction function as the mounting table.
  • heat softening can be performed while temperature control is performed based on a preset temperature program.
  • the electric furnace either a batch type electric furnace or a continuous charging type electric furnace may be used.
  • a batch-type electric furnace is a device in which a workpiece is placed in a relatively small closed space and the temperature in the furnace is changed according to a predetermined temperature program.
  • a continuous charging type electric furnace has an inlet and an outlet, and is a device for performing heat treatment by passing a workpiece through the electric furnace having a set temperature distribution by a conveying device such as a conveyor for a certain period of time. .
  • the temperature distribution inside the furnace can be controlled by a plurality of heaters (heat sources) considering heat generation and heat radiation and a control mechanism of the air circulation in the furnace.
  • a heating furnace in which a heater is installed in the upper part of the in-furnace conveyance path is used, but a heat source can be arranged in the lower part or the side wall of the in-furnace conveyance path.
  • the temperature in the continuous heating furnace it is preferable to control the temperature in the continuous heating furnace so that a temperature rising region, a constant temperature holding region, and a cooling region are included from the inlet (molding die inlet) side.
  • the molding material passing through the temperature-controlled furnace in this way is heated to a deformable temperature in the temperature raising region, the upper surface molding proceeds in the constant temperature holding region, and then cooled in the cooling region and discharged outside the furnace. Is done. What is necessary is just to set suitably the length of each area
  • the temperature control of the continuous heating furnace and the thermoforming of the molding material in the continuous heating furnace are preferably performed by the methods described in paragraphs [0062] to [0074] of WO 2007/063735, for example.
  • the lower surface of the molding material and the molding surface are in a male-female relationship.
  • the upper surface of the molding material is deformed in accordance with the shape deformation of the lower surface of the molding material, and the molding die molding surface is molded into a substantially transferred shape.
  • the mold shape can be transferred to the upper surface of the molding material to mold the upper surface of the molding material into a desired shape.
  • the molding material can be removed from the molding die to obtain a molded product.
  • the molded product thus obtained can be used as a spectacle lens mold.
  • a part such as a peripheral portion can be removed and used as a spectacle lens mold.
  • the obtained spectacle lens mold can be used as an upper mold or a lower mold of a mold for producing a plastic lens by a casting polymerization method. More specifically, the mold is assembled by combining the upper mold and the lower mold with a gasket or the like so that the upper surface of the molding material molded by the hot droop molding method is placed inside the mold, and the plastic lens is inserted into the cavity of the mold.
  • a lens having a desired surface shape can be obtained by injecting the raw material liquid and performing a polymerization reaction.
  • the casting polymerization using the spectacle lens mold can be performed by a known method.
  • a molding material made of a thermosoftening substance is heated to a temperature at which the molding material can be deformed in a state where the molding material is arranged on the molding surface, and the lower surface of the molding material is closely attached to the molding surface.
  • molding method which shape
  • molding apparatus concerning a 1st aspect contains the heat source which can radiate
  • the molding material can be heated uniformly, whereby a high-quality molded product, for example, a high-quality spectacle lens in which astigma is suppressed or reduced can be manufactured.
  • An eyeglass lens mold can be manufactured.
  • the molding material in a state where a molding material made of a thermosoftening substance is disposed on a molding die molding surface, the molding material is heated to a temperature at which the molding material can be deformed in a heating furnace, and the lower surface of the molding material is molded. It is related with the manufacturing method of the molded article which shape
  • the molding is performed by closing a molding surface side opening portion of a molding die in which a molding material is disposed with a closing member, and at least partially as the closing member.
  • the one containing a metal material layer is used.
  • the “blocking” in the present invention is as described above.
  • the closing member can temporarily hold and accumulate radiant heat from the heat source of the heating furnace and re-radiate the accumulated heat, whereby each part of the closing member can function as a heat source.
  • the metal material layer can serve as a heat source capable of uniform heating as described above. This enables uniform heating of the molding material in the heating furnace.
  • the closing member can also play a role of preventing foreign matter from entering the upper surface of the molding material from the heating furnace.
  • the closing member in the second aspect of the closing member may be any member as long as it has a shape capable of closing the molding surface side open part of the molding die on which the molding material is arranged, like the closing member in the first aspect.
  • An example of such a blocking member will be described with reference to FIG.
  • the present invention is not limited to the embodiment shown in FIG.
  • the aspect in which the closing member is a lid member will be described below, the closing member in the second aspect is not limited to the lid shape.
  • FIG. 8 is a schematic view of a molding die in which a molding material is placed on the molding surface and a lid member is disposed on the upper opening.
  • FIG. 8A shows a state before heat softening
  • FIG. 8B shows a state after heat softening.
  • an annular holding member is disposed between the lid member and the mold, and the end surface at the step portion on the outer periphery of the holding member and the end surface of the lid member opening are fitted. The case where such a holding member is not used is as described above with reference to FIG.
  • the lid member shown in FIG. 8 forms a part of a cylindrical shape, and only one bottom surface of the cylindrical shape is open, and a space is formed inside.
  • the size of the closing member is not particularly limited, but from the viewpoint of impact resistance and heat conduction efficiency, the thickness is preferably about 1 ⁇ m to 5 mm, and the internal height is about 5 to 100 mm, particularly 30 to 60 mm.
  • the metal material layer can be formed by a known film formation method such as plating.
  • the thickness of the metal material layer is preferably about 1 mm to 5 mm from the viewpoint of film formability and easy handling of the formed film.
  • the thickness of the metal material layer and the thickness of the base material in consideration of the refractive index of the metal material layer and the base material with respect to the far infrared rays are preferably determined respectively.
  • the closing member made of a metal material to be described later can be formed by a known molding method such as injection molding.
  • the thickness of the side surface from the stepped portion toward the opening is thinner than the side surface from the stepped portion toward the upper surface.
  • the amount of thermal expansion of the holding member is reduced, so that the airtightness of the closing member can be improved. It is preferable that the end face of the opening of the closing member mated with the mold or the holding member is a smooth surface in order to improve hermeticity.
  • the closing member used in the method for manufacturing a molded product according to the second aspect has a metal material layer at least partially. Details of the metal material layer will be described below.
  • the metal material layer is a layer made of a metal material. Details of the metal material are as described above for the metal material in the first embodiment.
  • the metal material layer may be included in at least a part of the closing member, but in order to be heated in a uniform state in a short time by directly receiving radiation heat from a heat source of a heating furnace, the closing member It is preferable to be located on the outermost surface.
  • the outermost surface of the closing member refers to the surface of the closing member (outer surface) that is in direct contact with the heating furnace atmosphere.
  • a closing member having a metal material layer on at least a part of the outermost surface of the closing member can be mentioned. More specifically, a metal is provided on at least a part of the outer surface of the closing member base material.
  • An occlusion member in which a material layer is formed can be mentioned. An example of such a closing member is shown in FIG.
  • the closing member shown in FIG. 9 has a metal material layer (metal plate) disposed on a part (upper surface) of the outermost surface of the closing member base material.
  • the metal material layer may be provided as a separate member from the closing member base material as shown in FIG. 9, or may be provided integrally by plating or the like.
  • the closing member base material and the metal material layer are in close contact with each other in order to heat the closing member base material by heat conduction from the metal material layer.
  • a metal material layer can also be provided in the side surface of a closure member.
  • a cylindrical metal member metal cylinder
  • the metal material layer can function as a heat source for heating the inside of the closing member by being heated by radiant heat from a heat source of a heating furnace. From the viewpoint of heating efficiency, it is preferable to provide a metal material layer on the closing member so that a period during which the metal material layer is disposed between the heat source of the furnace and the molding material is included during heating. For example, when using a heating furnace in which a heat source is arranged at the upper part of the heating furnace, it is preferable that a metal material layer is positioned at least on the upper surface of the closing member, and when using a heating furnace in which a heat source is arranged on the side wall. Preferably, the metal material layer is located at least on the side surface of the closing member.
  • the entire outermost surface is preferably made of a metal material layer.
  • a specific example of such a blocking member is shown in FIG.
  • the metal material layer may be formed so as to be in close contact with the entire outermost surface of the closing member base material as shown in FIG. 10 (a), and the closing member is composed of a plurality of members as shown in FIG. 10 (b).
  • the metal material layer may be provided in a state where a part of the closing member base material is not in contact.
  • the entire closure member is made of a metal material and is made of a metal material.
  • the metal material layer can be provided on the closing member base material as shown in FIGS.
  • a metal material that is the same as or different from the metal material layer can be used as the base material constituting the closing member base material, or a ceramic material can be used.
  • the metal material as the base material the metal materials exemplified above can be used.
  • a base material made of a metal material can be obtained by a known molding method such as injection molding.
  • the blocking member has a metal material layer and includes a ceramic material as a base material, the molding material is uniform. It is possible to heat it.
  • the heating state in each part in the furnace is different.
  • the heating state in a continuous heating furnace whose temperature is controlled so as to become higher in the conveying direction, the front is exposed to a higher temperature, but the closing member made of ceramic material has a low thermal conductivity, so the heat in the front is blocked.
  • a closing member made of a ceramic material it takes a long time to conduct to the whole. That is, it is difficult for a closing member made of a ceramic material to cope with the external temperature distribution in a short time.
  • the metal material layer is exposed to an external temperature distribution prior to the ceramic material. Since the temperature of the metal material layer can be made uniform in a short time regardless of the external temperature distribution, the ceramic material can be heated by using the metal material layer having the uniform temperature as a heat source. As a result, the ceramic material can be uniformly heated regardless of the external temperature distribution. If the ceramic base material is uniformly heated in this way, there is no large temperature difference between the respective parts of the base material, so that the molding material arranged in the enclosed space is uniformly heated as a heat source capable of uniform heating. be able to.
  • the ceramic material As the ceramic material as the base material, it is preferable to use a ceramic material having excellent heat resistance. Details of such a ceramic material are as described above for the ceramic material that can constitute the closing member in the first embodiment.
  • a base material made of a ceramic material can be formed, for example, by a powder metal method. Details thereof can be referred to paragraph [0021] of WO 2007/063735. Further, the inner upper surface of the base material made of a ceramic material can be subjected to particle scattering prevention processing. Details thereof are described in paragraphs [0022] to [0023] of WO 2007/063735.
  • the thermal conductivity of the base material is The value at 25 ° C. is preferably 3 to 170 W / mk. Examples of such a low thermal conductive material include the above ceramic materials.
  • Providing a metal material layer on a base material made of a ceramic material as described above is preferable for improving the heat retaining property for the following reasons. Radiant heat radiated from the closing member to the closed space is gradually re-radiated (radiated) toward the outside as far-infrared energy.
  • ceramic materials generally have a low far-infrared transmission compared to metal materials, so they can function as a far-infrared transmission preventing layer (far-infrared blocking filter), and far-infrared energy is re-radiated to the outside to keep warm. It can suppress that property falls.
  • the function as a far infrared ray blocking filter is given to the blocking member, thereby preventing the re-radiation and improving the heat retaining property.
  • the principle that such a multi-layered blocking member functions as a far-infrared blocking filter is as described above for the blocking member that can be used in the first embodiment. Therefore, in the closing member having the metal material layer on the ceramic base material, either one of the ceramic base material and the metal material layer is a high refractive index layer and the other is a low refractive index layer.
  • the function as a far-infrared cutoff filter can be imparted to the blocking member.
  • the wavelength range of far-infrared is about 3 to 1000 ⁇ m, so the optical film thickness (refractive index ⁇ physical film thickness) of the ceramic base material and the metal material layer is in the range of 0.75 to 250 ⁇ m, respectively. It is preferable.
  • the outermost layer in contact with the closed space may be a high refractive index layer or a low refractive index layer.
  • the occlusion member made of a single metal material layer or the occlusion member made of two layers of the metal material layer and the base material has been described.
  • the occlusion member used in the second embodiment is limited to these embodiments. Is not to be done.
  • a high refractive index material layer having a high refractive index with respect to the far infrared ray and the far infrared ray are provided in order to provide the blocking member with the function as the far infrared ray blocking filter described above. It is preferable to provide at least one combination with a low refractive index material layer having a low refractive index.
  • the function as a far-infrared blocking filter usually increases as the combination of the high refractive index layer and the low refractive index layer increases, the high refractive index layer and the low refractive index layer are stacked alternately. More preferably, two or more combinations are provided.
  • the blocking member includes a plurality of layers having different refractive indexes with respect to far infrared rays. Is preferred.
  • at least one of the plurality of layers is the metal material layer.
  • the optical film thickness of each layer is preferably in the range of 0.75 to 250 ⁇ m as described above.
  • FIG. 11 An example of the layer structure of such a blocking member is shown in FIG.
  • the blocking member shown in FIG. 11 includes two combinations of a high refractive index layer and a low refractive index layer from the closed space side. In FIG.
  • is the wavelength in the far infrared region (about 3 to 1000 ⁇ m), and the refractive index of each material is the refractive index with respect to ⁇ .
  • 11 shows an embodiment in which the entire layer including the base material is a metal material layer, the second embodiment is not limited to the embodiment shown in FIG. 11, and at least one of the base material and the laminated structure is ceramic. It is also possible to use a closing member made of a material other than a metal material such as. Further, the difference in refractive index between adjacent layers with respect to far infrared rays can be, for example, 1.00 or more and 2.00 or less, but is not particularly limited. About the adjustment method of the refractive index of a metal material and a ceramic material, it is as having described about the 1st aspect previously.
  • the upper surface of the molding material is opposed in order to further improve the uniformity of heating of the molding material and balance the heat distribution.
  • the upper surface of the closing member is also preferably rotationally symmetric with the geometric center as the axis of symmetry, and the molding material is preferably arranged so that the geometric center of the upper surface of the molding material and the upper surface of the closing member are located on the same axis. preferable.
  • a closing member including a metal material layer having a rotationally symmetric shape with the geometric center as the symmetry axis on the upper surface is used so that the geometric center of the metal material layer and the geometric center of the molding material are located on the same axis. It is even more preferable to arrange the molding material.
  • a method for molding the molding material in the second embodiment will be described.
  • the molding material is heated to a temperature at which the molding material can be deformed on the molding die.
  • a metal material layer is used to ensure air permeability when using a molding die having a through hole described in International Publication No. 2007/063735 and performing suction through the through hole during molding. It is also possible to provide a vent hole in a part of the metal layer and to form the metal material layer as a layer having a fine network structure. Further, when the heat source of the heating furnace is also disposed below the mold, it is also preferable to provide a metal material layer on the lowermost outermost surface of the mold as described in the first aspect.
  • the above deformable temperature and heating method are as described in the first embodiment.
  • the molding material is heated through the closing member, even when a heating furnace having a large temperature distribution inside is used, uniform heating can be performed.
  • the second aspect is not limited to the following aspect.
  • the mold is placed with the molding surface facing up. Details regarding the use of the holding member are as described for the first aspect.
  • the closing member is preferably placed while fitting with the holding member. After closing the molding surface side open part of the molding die where the molding material is arranged with the closing member, it is transported from the clean room to the electric furnace, and the combination of the molding die, holding member, molding material, and closing member is placed on the mounting table of the electric furnace Then, heat treatment is performed using an electric furnace.
  • the heater is usually installed at the upper part of the in-furnace conveyance path, but it is also possible to arrange a heat source at the lower part or the side wall of the conveyance path.
  • the details of the specific mode of the method for manufacturing the molded product according to the second aspect are as described above for the specific mode of the method for manufacturing the molded product according to the first mode.
  • the molded product obtained by the method of manufacturing a molded product according to the second aspect can also be used as a spectacle lens mold.
  • a part such as a peripheral portion can be removed and used as a spectacle lens mold. Details of an embodiment in which the obtained molded product or a part thereof is used as a spectacle lens mold are as described above for the first embodiment.
  • a molding material made of a softening material is heated to a temperature at which the molding material can be deformed in a state where the molding material is arranged on a molding die molding surface in a heating furnace, and the lower surface of the molding material is formed by the molding.
  • molding method which shape
  • the molding is performed by closing the molding surface side opening portion of the molding die on which the molding material is arranged with a closing member, and at least a part of the closing member An occluding member including a metal material layer is used.
  • molding apparatus concerning a 2nd aspect can contain multiple sets of a shaping
  • the present invention provides a method for producing a molded article by the method for producing a molded article according to the first or second aspect, or the molding apparatus according to the first or second aspect, and the produced molded article or one of them.
  • the molding material can be heated uniformly, whereby a high-quality molded product can be obtained, and the obtained molding can be obtained.
  • the product or a part thereof as a spectacle lens mold, it is possible to obtain a high-quality spectacle lens in which astigma is suppressed or reduced.
  • Example 1 A plurality of glass materials were heat-treated by being conveyed in a continuous heating furnace in a state where they were arranged on the molding surfaces of different molds. As shown in FIG. 6, a glass material, a closing member, and a metal plate are arranged on the mold, and the glass material and the closing member are placed so as to be conveyed into the continuous heating furnace while maintaining this positional relationship. A metal plate supported by the placed mold and support was placed on a belt conveyor. When observed from above in this state, the closing member was hidden by the metal plate and was not observed.
  • the glass material a glass material whose upper surface has a rotationally symmetric shape with the geometric center as the symmetry axis was used.
  • a disk-shaped copper plate (a flat plate having a double-sided plane) having a thickness of 5 mm was used.
  • the distance from the geometric center of the upper surface of the molding material disposed inside the closing member to the lower surface of the metal plate is about 50 mm, and the distance from the halogen heater installed on the upper surface of the furnace inside to the upper surface of the metal plate is about 50 mm during conveyance in the furnace.
  • the height of the support was set so that the metal plate was placed at a position of 100 mm.
  • the closing member a ceramic containing 99% or more of SiO 2 , Al 2 O 3 , MgO and K 2 O as other components is planarized on the outer upper surface and the inner upper surface by the powder metal method as shown in FIG.
  • a lid member formed into a lid shape was used.
  • the thickness of the lid member was about 5 mm, and the internal height of the lid member was about 50 mm.
  • a mold having a closing member and a glass material disposed therein, and a metal plate disposed above the mold by a column surrounding the mold so as to be always positioned on the upper surface of the glass material in the furnace It was made to convey sequentially to seven continuous zones by which temperature control was carried out as follows. In each zone, a plurality of halogen lamps were arranged on the upper surface in order to enable the temperature control described below.
  • (A) Preliminary temperature raising zone This zone whose temperature was controlled so that the glass material could be maintained at a constant temperature of about 25 ° C.
  • (B) Rapid heating temperature increase zone The glass material is heated at a temperature increase rate of about 4 ° C./min from about 25 ° C. to the glass transition temperature of the glass material (hereinafter also referred to as Tg) ⁇ 50 ° C. (hereinafter also referred to as T1). The zone thus temperature controlled was passed through the mold over approximately 90 minutes.
  • (C) Low-speed heating temperature rise zone The temperature rise rate of the glass material is about 2 ° C./min from the temperature T1 to a temperature equal to or higher than the Tg of the glass material and from the glass softening point to about ⁇ 50 ° C. (hereinafter also referred to as T2).
  • This zone was passed through the mold over about 120 minutes.
  • D Constant temperature holding zone The zone in which the temperature was controlled so that the glass material heated at the temperature T2 was held at a temperature in the vicinity of the temperature T2 was passed through the mold over about 60 minutes.
  • E Low-speed cooling zone This glass material is temperature-controlled so that the glass material is cooled to a Tg of ⁇ 100 ° C. (hereinafter also referred to as T3) at a temperature decreasing rate of 1 ° C./min. The mold was passed through.
  • T3 Tg of ⁇ 100 ° C.
  • F Rapid Cooling Zone While passing through this zone, the glass material was cooled to about 200 ° C. at a temperature drop rate of about 1.5 ° C./min.
  • G Natural cooling zone In this zone, the glass material was cooled to room temperature by natural cooling.
  • the molded product discharged out of the furnace was used as a mold, and a double-sided aspherical progressive-power lens was obtained by casting polymerization.
  • the obtained lens had a lens outer diameter of 75 ⁇ and a surface average base curve of 4D.
  • the obtained lens was applied to the lens rest of a lens meter, and the stigma at the optical center or refractive power measurement reference point was measured. The result was 0.01D.
  • the lens meter used in the present embodiment is a transmission type, astigma can also be calculated by analyzing the surface refractive power from the measurement result of the reflective surface refractive power device or the shape measuring device.
  • Example 2 The lid member shown in FIG. 10 (a) was used, and the glass material was thermoformed in a continuous heating furnace.
  • the used lid member is made of ceramics containing 99% or more of SiO 2 , Al 2 O 3 , MgO and K 2 O as other components formed into a lid shape shown in FIG. It was prepared by plating copper on the entire outermost surface of the base material.
  • the thickness of the copper plating layer was about 1 mm
  • the thickness of the lid member including the copper plating layer was about 5 mm
  • the internal height of the lid member was about 50 mm.
  • the upper surface of the lid member including the copper plating layer and the upper surface of the glass material are both rotationally symmetric with the geometric center as the axis of symmetry, and the geometric center of the upper surface of the lid member including the copper plating layer and the geometric center of the upper surface of the glass material are in the vertical direction.
  • the lid member was arranged on the mold so as to be positioned on the same axis.
  • the mold in which the lid member and the glass material were arranged was sequentially conveyed to seven continuous zones in which temperature was controlled in the same manner as in Example 1. Thereafter, the molded product discharged out of the furnace was used as a mold, and a double-sided aspherical progressive-power lens was obtained by casting polymerization.
  • the obtained lens had a lens outer diameter of 75 ⁇ and a surface average base curve of 4D.
  • the obtained lens was applied to the lens rest of a lens meter, and the stigma at the optical center or refractive power measurement reference point was measured. The result was 0.01D.
  • Example 3 A molded product was produced and cast polymerization was performed using the obtained molded product in the same manner as in Example 2 except that a lid member formed entirely by injection molding was used. It was 0.02D when the stigma of the lens obtained by cast polymerization was measured.
  • Example 4 Example 2 is the same as Example 2 except that a copper plating layer is not formed on the side surface of the outermost surface of the base material made of ceramic, and a disc-like (centrosymmetric shape) copper plating layer is formed on the upper surface. Production of a molded product by the method and cast polymerization using the obtained molded product were performed. It was 0.03D when the stigma of the lens obtained by cast polymerization was measured.
  • Example 2 A molded product was produced in the same manner as in Example 2 except that a copper base layer was not used and a ceramic base material was used as a lid member, and cast polymerization was performed using the obtained molded product. It was 0.06D when the astigma of the lens obtained by casting polymerization was measured.
  • the standard for determining stigma is usually within 0.09D in absolute value, but it is allowed as a manufacturing error in terms of ease of handling in the process of manufacturing spectacles using the product lens.
  • the remaining tolerance is about 0.03D. Since the stigma of the lenses obtained in Comparative Examples 1 and 2 was within the above-mentioned determination standard, but was outside the range of the residual tolerance allowed as the manufacturing error, the lenses obtained in Comparative Examples 1 and 2 were Care must be taken when using and manufacturing eyeglasses. On the other hand, in Examples 1 to 4, it was possible to obtain a double-sided aspherical progressive-power lens in which the stigma is within the determination standard of the product lens and within the range of the residual tolerance allowed as a manufacturing error.
  • Example 1 it was possible to obtain a spectacle lens mold capable of forming a spectacle lens in which the generation of stigma was suppressed without rotating the metal plate.
  • the radiant heat radiated from the heat source disposed in each part of the furnace was obtained.
  • the reason why the stigma generation was most effectively suppressed in the example 2 was as follows. (1) A copper plating layer (metal material layer) was formed on the entire outermost surface of the lid member. Therefore, it was possible to quickly respond to the temperature change in each temperature-controlled zone as described above, and the entire surface of the copper plating layer became a uniform temperature in a short time. It is thought that the temperature change was suppressed.
  • the present invention is useful in the field of manufacturing eyeglass lenses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

本発明の一態様は、熱軟化性物質からなる成形素材を、成形型成形面上に配置した状態で該成形素材が変形可能な温度まで加熱し、該成形素材の下面を前記成形面に密着させることにより、前記成形素材の上面を所望の形状に成形する成形品の製造方法に関する。前記加熱を、前記成形素材を配置した成形型を、該成形素材上面の上方に最表面が金属材料からなる板状部材を配置した状態で、輻射熱を放射する熱源下に置くことによって行う。本発明の他の態様は、熱軟化性物質からなる成形素材を成形型成形面上に配置した状態で、加熱炉内で前記成形素材が変形可能な温度まで加熱し、該成形素材の下面を前記成形面に密着させることにより、前記成形素材の上面を所望の形状に成形する成形品の製造方法に関する。前記成形を、成形素材を配置した成形型の成形面側開放部を閉塞部材によって閉塞して行い、かつ、前記閉塞部材は、少なくとも一部に金属材料層を含む。

Description

成形品の製造方法および製造装置、ならびに眼鏡レンズの製造方法 関連出願の相互参照
 本出願は、2009年6月26日出願の日本特願2009-152424号および日本特願2009-152427号、ならびに2009年9月30日出願の日本特願2009-226208号および日本特願2009-226209号の優先権を主張し、それらの全記載は、ここに特に開示として援用される。
 本発明は、熱垂下成形法による成形品の製造方法、および前記製造方法に使用され得る成形装置に関する。
 更に本発明は、前記製造方法または成形装置により製造された成形品を用いる眼鏡レンズの製造方法に関する。
 近年、軸対称の非球面レンズ設計を組み入れることにより、薄肉軽量化を図った多焦点眼鏡レンズの需要が増大している。そのため、このような複雑な形状の眼鏡レンズを得るための鋳型の成形法として、熱垂下成形法が提案されている(特開平6-130333号公報および特開平4-275930号公報参照、それらの全記載は、ここに特に開示として援用される)。
 熱垂下成形法は、ガラス等の熱軟化性物質からなる成形素材を型の上に載せ、その軟化点以上の温度に加熱することにより成形素材を軟化させて型と密着させることにより、型形状を成形素材の上面に転写させて所望の面形状を有する成形品を得る成形法である。例えば眼鏡レンズ用鋳型を成形する場合には、成形素材上面は、光学機能面を形成するための面となるため、高い面精度が要求される。これに対しWO2007/063735および英語ファミリーメンバーUS2009/289380A1、それらの全記載は、ここに特に開示として援用される、には、面精度低下の一因となり得る成形素材上面への異物混入を防止するために、閉塞部材を用いて成形型の成形面側開放部を閉塞することが提案されている。
 WO2007/063735に記載の方法は、大規模クリーンルーム装置を設置することなく、成形素材上面への異物の飛散、混入を抑制できるため、製造コストの増大を招くことなく高い精度をもって成形素材上面を成形できる優れた方法である。しかし、本発明者らの検討の結果、上記方法によって得られた眼鏡レンズ用鋳型を用いて製造された眼鏡レンズでは、眼鏡矯正に不要なアスティグマが発生する場合があるという、新たな課題があることが判明した。
 本発明は、上記新たな課題を解決することを目的とするものであり、即ち、アスティグマが抑制ないしは低減された高品質な眼鏡レンズを製造するための手段を提供することを目的とするものである。
 本発明者らは、上記目的を達成するために、WO2007/063735に記載の方法において上記課題が生じる理由について鋭意検討を重ねた結果、以下の新たな知見を得た。
 上記閉塞部材は、加熱炉の熱源からの輻射熱等を暫時保持、蓄積する。そして閉塞部材によって閉塞された空間(閉塞空間)内に配置された成形素材は、閉塞部材から閉塞空間へ再放射される輻射熱によって加熱される。即ち、閉塞部材各部を熱源として放射される輻射熱によって成形素材の加熱が行われる。
 一方、WO2007/063735には、閉塞部材の素材としてセラミックを使用することが記載されているが、セラミックは、一般に熱伝導率が低い素材であるため閉塞部材自体が均一な温度分布となるまで長時間を要する。したがって閉塞部材自体が均一な温度分布となるまでの間は、閉塞部材各部の温度が異なるため、あたかも異なる温度の複数の熱源から別々に加熱が行われているかのような状態となる。この現象は、特に、炉内の各ゾーンが異なる温度に制御された連続式加熱炉や、炉内に部分的に熱源が設けられた加熱炉において顕在化する。しかし、このように成形素材の加熱状態が各部で大きく異なることは、成形素材下面と成形型成形面とが密着するタイミングが面内各部で大きくずれる原因となる。本発明者らは、このことが、得られた鋳型により成形された眼鏡レンズにおいて、眼鏡矯正に不要なアスティグマが発生する原因であるとの知見を得た。
 そこで本発明者らは、上記知見に基づき更に検討を重ねた結果、輻射熱を放射する熱源と成形素材との間に最表面が金属材料からなる板状部材(以下、「金属板」ともいう)を配置することにより、アスティグマが抑制ないしは低減された高品質な眼鏡レンズを製造可能な成形品(眼鏡レンズ用鋳型)が得られることを新たに見出した。この理由について本発明者らは、以下のように推察している。
 図1(a)に、金属板を配置せず成形素材を加熱する態様の説明図、図1(b)に熱源と成形素材との間に金属板を配置して加熱を行う態様の説明図を示す。
 熱源と成形素材との間に何も介在させずに加熱を行うと、成形素材は熱源からの輻射熱を直接受けることになるが、ハロゲンランプ等の熱源から放射される輻射熱は、図1(a)に示すように、放射状に広がるため成形素材上面各部に均等な熱を供給することは困難である。
 これに対し、熱源と成形素材との間に配置された金属板は、図1(b)に示すように、熱源からの輻射熱を一旦保持、蓄熱した後に成形素材上に再放射する熱源として機能する。金属材料は熱伝導率が高いため、短時間で金属板最表面全体が均一な温度となり金属板の最表面各部から成形素材上へ放射される輻射熱が均一化され得る。これにより、熱源と成形素材との間に配置された金属板は、成形素材上面各部に均等な熱を供給する熱源として機能すると考えられる。本発明者らは、このことが成形素材の加熱の均一化に繋がり、結果的にアスティグマが抑制ないしは低減された高品質な眼鏡レンズを製造可能な成形品(眼鏡レンズ用鋳型)を得ることができると推察している。
 本発明の第一の態様は、以上の知見に基づき完成された。
 本発明の第一の態様にかかる成形品の製造方法は、熱軟化性物質からなる成形素材を、成形型成形面上に配置した状態で該成形素材が変形可能な温度まで加熱し、該成形素材の下面を前記成形面に密着させることにより、前記成形素材の上面を所望の形状に成形する成形品の製造方法であって、前記加熱を、前記成形素材を配置した成形型を、該成形素材上面の上方に最表面が金属材料からなる板状部材を配置した状態で、輻射熱を放射する熱源下に置くことによって行うものである。
 上記製造方法では、前記成形素材を配置した成形型を加熱炉内に導入し、該炉内において、炉内上部に配置された複数の前記熱源下を順次通過させることによって前記加熱を行うことができる。
 上記製造方法では、前記板状部材を、前記炉内で常時成形素材上面の上方に位置するように、前記成形型とともに移動させることができる。
 上記製造方法では、前記板状部材として、前記状態で配置された板状部材を鉛直上方から観察した際、前記成形素材が隠れる大きさを有する板状部材を使用することができる。
 前記成形前の成形素材上面は、幾何中心を対称軸とする回転対称形状を有することができる。
 上記製造方法では、前記成形素材を配置した成形型の成形面開放部を、閉塞部材によって閉塞し、かつ該閉塞部材上方に前記板状部材を配置することができる。
 前記板状部材は、成形素材上面と対向する面が平面または前記成形前の成形素材上面と略相似形状であることができる。
 本発明の第一の態様にかかる成形装置は、熱軟化性物質からなる成形素材を、成形型成形面上に配置した状態で該成形素材が変形可能な温度まで加熱し、該成形素材の下面を前記成形面に密着させることにより、前記成形素材の上面を所望の形状に成形する成形法に使用される成形装置であって、輻射熱を放射可能な熱源と、前記成形素材上面の上方であって、かつ上記熱源の下方に配置された状態の最表面が金属材料からなる板状部材と、を含むものである。
 上記成形装置は、前記熱源が上部に複数配置された加熱炉を含むことができ、前記加熱炉は前記複数の熱源下に前記成形型を順次搬送する搬送手段を更に含むことができる。
 前記加熱炉は、前記板状部材が常時成形素材上面の上方に位置するように、前記成形型とともに前記板状部材を移動させる移動手段を含むことができる。
 上記成形装置は、前記板状部材として、前記状態で配置された板状部材を鉛直上方から観察した際、前記成形素材が隠れる大きさを有する板状部材を含むことができる。
 上記成形装置は、前記加熱中、前記板状部材を水平方向に回転させる回転手段を含むことができる。
 上記成形装置は、前記成形素材として、成形前の上面が幾何中心を対称軸とする回転対称形状を有する成形素材を使用する成形法に使用され得る。
 上記成形装置は、前記成形素材を配置した成形型の成形面開放部を閉塞する閉塞部材を含むことができ、該閉塞部材上方には前記板状部材が配置され得る。
 前記板状部材は、成形素材上面と対向する面が平面または前記成形前の成形素材上面と略相似形状であることができる。
 更に本発明者らは、WO2007/063735に記載の方法に関する前述の知見に基づき更に検討を重ねた結果、閉塞部材の少なくとも一部に金属材料層を設けることにより、アスティグマが抑制ないしは低減された高品質な眼鏡レンズを製造可能な成形品(眼鏡レンズ用鋳型)が得られることを新たに見出した。この理由について本発明者らは、上記金属材料層は熱伝導率が高いため、短時間で層全体が均一な温度となり均一な加熱が可能な熱源として機能し得ることが、成形素材の加熱の均一化に繋がっていると推察している。
 本発明の第二の態様は、以上の知見に基づき完成された。
 本発明の第二の態様にかかる成形品の製造方法は、熱軟化性物質からなる成形素材を成形型成形面上に配置した状態で、加熱炉内で前記成形素材が変形可能な温度まで加熱し、該成形素材の下面を前記成形面に密着させることにより、前記成形素材の上面を所望の形状に成形する成形品の製造方法であって、前記成形を、成形素材を配置した成形型の成形面側開放部を閉塞部材によって閉塞して行い、かつ、前記閉塞部材は、少なくとも一部に金属材料層を含むものである。
 前記金属材料層は、前記閉塞部材の最表面に位置することができる。
 上記製造方法において、成形前の成形素材上面は、幾何中心を対称軸とする回転対称形状を有することができ、前記金属材料層は、幾何中心を対称軸とする回転対称形状を有し、かつ前記閉塞部材の上面に含まれることができ、前記金属材料層と前記成形素材上面の幾何中心が同一軸上に位置するように前記成形素材の配置を行うことができる。
 前記閉塞部材は、最表面が前記金属材料層からなることができる。
 前記閉塞部材は、セラミック材料からなる母材の外側表面の少なくとも一部に、前記金属材料層を有することができる。
 上記製造方法は、前記金属材料層を、前記加熱炉の熱源と成形素材との間に配置した状態で、前記加熱を行う期間を含むことができる。
 前記閉塞部材は、遠赤外線に対する屈折率の異なる複数の層を含むことができ、該複数の層の少なくとも一層が前記金属材料層であることができる。
 本発明の第二の態様にかかる成形装置は、軟化性物質からなる成形素材を、加熱炉内で成形型成形面上に配置した状態で該成形素材が変形可能な温度まで加熱し、該成形素材の下面を前記成形面に密着させることにより、前記成形素材の上面を所望の形状に成形する成形法に使用される成形装置であって、前記成形を、成形素材を配置した成形型の成形面側開放部を閉塞部材によって閉塞して行い、かつ、前記閉塞部材は、少なくとも一部に金属材料層を含むものである。
 前記金属材料層は、前記閉塞部材の最表面に位置することができる。
 上記成形装置が使用される成形法では、成形前の成形素材上面は、幾何中心を対称軸とする回転対称形状を有することができ、前記金属材料層は、幾何中心を対称軸とする回転対称形状を有し、かつ前記閉塞部材の上面に含まれることができ、前記金属材料層と前記成形素材上面の幾何中心が同一軸上に位置するように前記成形素材の配置を行うことができる。
 上記成形装置において、前記閉塞部材は、最表面が前記金属材料層からなることができる。
 上記成形装置において、前記閉塞部材は、セラミック材料からなる母材の外側表面の少なくとも一部に、前記金属材料層を有することができる。
 上記成形装置は、前記金属材料層を、前記加熱炉の熱源と成形素材との間に配置した状態で、前記加熱を行う領域を含むことができる。
 上記成形装置において、前記閉塞部材は、遠赤外線に対する屈折率の異なる複数の層を含むことができ、該複数の層の少なくとも一層が前記金属材料層であることができる。
 第一の態様にかかる製造方法および第二の態様にかかる製造方法により、前記成形品として眼鏡レンズ用鋳型を製造することができる。
 第一の態様にかかる成形装置および第二の態様にかかる成形装置により、前記成形品として眼鏡レンズ用鋳型を成形することができる。
 本発明の更なる態様は、上記製造方法により、または上記成形装置により成形品を製造すること、および、製造した成形品またはその一部を鋳型として注型重合により眼鏡レンズを製造すること、を含む眼鏡レンズの製造方法に関する。
 本発明によれば、加熱炉内での成形素材の加熱の均一化が可能であり、これによりアスティグマが抑制ないしは低減された高品質な眼鏡レンズを製造可能な眼鏡レンズ用鋳型を得ることができる。これにより、アスティグマが抑制ないしは低減された高品質な眼鏡レンズを提供することが可能となる。
図1(a)は金属板を配置せず成形素材を加熱する態様の説明図、図1(b)は熱源と成形素材との間に金属板を配置して加熱を行う態様の説明図である。 第一の態様における成形素材上面の上方に配置された金属板を鉛直上方から観察した模式図である。 第一の態様における金属板の支持方法の一例を示す。 第一の態様における金属板の支持方法の一例を示す。 図5(a)に、金属板を配置せず熱源下に閉塞部材を配置した例を示し、図5(b)に、熱源と閉塞部材との間に金属部材を配置した例を示す。 第一の態様にかかる実施例における成形型、ガラス素材、閉塞部材および金属板の配置状態の説明図である。 第一の態様において使用可能な閉塞部材の層構成の一例を示す。 成形面上に成形素材を載置し、成形面側開放部に閉塞部材を配置した成形型の模式図である。 第二の態様において使用可能な閉塞部材の一例を示す。 第二の態様において使用可能な閉塞部材の一例を示す。 第二の態様において使用可能な閉塞部材の層構成の一例を示す。
 以下に、本発明の第一の態様、第二の態様、および両態様に共通する事項について更に詳細に説明する。以下において特記しない限り、記載した事項は両態様に共通するものとする。また、両態様は任意に組み合わせることも可能である。
 本発明の第一の態様は、熱軟化性物質からなる成形素材を、成形型成形面上に配置した状態で該成形素材が変形可能な温度まで加熱し、該成形素材の下面を前記成形面に密着させることにより、前記成形素材の上面を所望の形状に成形する成形品の製造方法に関する。第一の態様にかかる成形品の製造方法は、前記加熱を、前記成形素材を配置した成形型を、該成形素材上面の上方に最表面が金属材料からなる板状部材(金属板)を配置した状態で、輻射熱を放射する熱源下に置くことによって行うものである。第一の態様にかかる成形品の製造方法によれば、輻射熱を放射する熱源と成形素材との間に金属板を配置することにより、先に説明したように金属板が成形素材上面各部に均等な熱を供給する熱源として機能することができる。これにより、成形素材の加熱の均一化が可能となり、例えば成形品として眼鏡レンズ用鋳型を製造する際には、眼鏡矯正に不要なアスティグマの発生が低減ないしは抑制された、高品質な眼鏡レンズを成形可能な眼鏡レンズ用鋳型を得ることができる。
 以下、第一の態様の成形品の製造方法について、更に詳細に説明する。
金属板
 前記板状部材の最表面を構成する金属材料としては、例えば銅、鉄、ステンレス(SUS430,301,304,316,310等)、クロム、コバルト、タングステン、ニッケル、金、白金、マンガン、モリブデン、チタン、タンタル、アルミニウム等の金属、およびこれらの2種以上または金属と非金属からなる合金(例えば真鍮、ジュラルミン等)を挙げることができる。中でも、短時間に均一な温度に加熱され得る高熱伝導金属材料が好ましい。高熱伝導金属材料としては、25℃での熱伝導度が200W/mk以上のものが好ましく、230W/mk以上のものがより好ましく、300W/mk以上のものが更に好ましい。金属材料の熱伝導度は高いほど、より短時間で均一な温度に加熱され得るので好ましいが、入手可能な金属材料の熱伝導度を考慮すると、その上限は、25℃での熱伝導度として、400W/mk以下程度である。好適な熱伝導度を有する材料として好ましい金属材料としては、例えば、銅(25℃での熱伝導度398W/mk)、金(同熱伝導度320W/mk)、アルミニウム(同熱伝導度236W/mk)を挙げることができる。なお、金属とともに黒鉛を含む金属材料は、黒鉛を含むことにより、例えば銅単独の約1.5倍、アルミニウム単独の約2倍の熱伝導率を達成することができるため金属板の素材として好適である。更に、黒鉛は金属と比べて軽いため、金属とともに黒鉛を含むことにより、金属板を、例えば銅板の約半分に軽量化することができる。この点は、取り扱いの容易性の観点から好ましい。
 前記金属板は、成形素材の加熱中、輻射熱を放射する熱源下、成形素材上面の上方に配置される。このように熱源と成形素材との間に配置された金属板は、前述のように、熱源からの熱を一旦蓄熱し、再放射する熱源として機能し得る。前記金属板は、最表面以外の一部に金属材料以外の素材を含むこともできる。例えば、強度を高めるためセラミックからなる補強層を板状部材内部に設けることも可能である。そのような補強層を構成するセラミックとしては、例えば、閉塞部材を構成する材料として後述する各種セラミック材料を使用することができる。このような金属板は、例えばセラミック板表面にメッキ等の公知の成膜法により金属材料層を形成することにより作製することができる。板状部材全体を短時間で均一な温度とするためには、最表面を含む全体が金属材料からなる板状部材が好ましい。
 金属板の厚みは、例えば1mm~5mm程度であれば取り扱いが容易であるが、特に限定されるものではない。上記のように内部に補強層を含む金属板についても、補強層を含む板状部材の厚みが1mm~5mm程度であれば取り扱いが容易であるが、特に限定されるものではない。
 なお、第一の態様では、輻射熱を放射可能な熱源であれば何ら制限なく使用することができるが、金属板を使用することによりハロゲンランプ等のランプ式の熱源から放射状に放射される輻射熱を均一化して成形素材上に再放射することができるため、ランプ式の熱源を使用する場合に第一の態様の適用が特に有効である。
 金属板は、熱源と成形素材との間の任意の位置に配置することができるが、熱源から放射される輻射熱を成形素材上面に均等に再放射するためには、熱源および成形素材上面と離間した状態で配置することが好ましい。成形素材上面は熱軟化により所望の形状に成形される被成形面であるため、成形素材上面と金属板を離間させることは、成形素材上面の汚染防止のためにも好ましい。成形素材と金属板との離間距離は、例えば成形素材上面の幾何中心との距離として、10~150mm程度が好適である。一方、熱源と金属板との離間距離は、例えば50~300mm程度であるが、加熱炉内の高さに応じて適宜決定すればよく特に限定されるものではない。
 金属板は、例えば湾曲した形状として熱源を覆うように配置してもよいが、図1(b)に図示するように、金属板下面を平面とすれば成形素材上面に均等に輻射熱を放射することができ好ましい。また、成形素材上面に金属板からの輻射熱を均等に放射し、成形素材の熱分布の均一性を高める上では、金属板下面を成形素材上面に近似した形状とすることも好ましい。以上の観点から、金属板下面は、平面または成形前の成形素材上面と略相似形状であることが好ましい。ここで略相似形状とは、例えば、曲率が±15%程度または±1ベースカーブ程度異なることを含むものとする。金属板の上面は下面と同様の形状とすることが加工が容易であり好ましい。
 ここで金属板の好ましい大きさについて説明するため、成形素材上面の上方に配置された金属板を鉛直上方から観察した模式図を図2に示す。
 図2に示すように、金属板の上面形状は正方形(図2上図)であっても円(図2下図)であってもよく、更には多角形、楕円形状等の各種形状を取ることもできる。輻射熱は直進性を有するため、金属板から再放射された輻射熱を成形素材上面全面で受け取ることができるように、いずれの形状の金属板であっても、成形素材上面の上方に配置した状態の金属板を鉛直上方から観察した際、成形素材が隠れる大きさであることが好ましい。また、後述するように成形型上に閉塞部材を配置する場合は、上記状態で金属板を鉛直上方から観察した際、閉塞部材が隠れる大きさであれば、即ち成形素材が隠れる大きさにあることになる。上記状態で観察した際に閉塞部材が隠れる大きさであれば金属板から再放射された輻射熱を閉塞部材上面全面で受け取ることができるため、閉塞空間内で成形素材上に再々放射される熱を均一化することができ好ましい。
 第一の態様にかかる成形品の製造方法では、バッチ式加熱炉を使用することもでき、連続式の加熱炉を使用することもできる。生産性の点からは連続式加熱炉を使用することが好ましい。連続式加熱炉は、加熱対象物を炉内に搬送するにあたり、搬送方向において所定の温度分布を持つように炉内を温度制御することにより、昇温過程、高温保持過程、降温過程等の一連の処理を炉内で連続的に行うことができる。このようなゾーン毎の加熱を行うため、連続式加熱炉内には通常、加熱対象物の搬送方向の上部に、輻射熱を放射する熱源が複数配置されている。連続式加熱炉内では、成形型が炉内を移動しながら上記複数の熱源下を順次通過することによって、成形型上に配置された成形素材に加熱処理が施される。連続式加熱炉内では、成形型が熱源直下を通過するときのみ、熱源と成形素材上面との間に金属板を設けることも可能であるが、均一な加熱を行うためには、連続式加熱炉内で常時、金属板が成形素材上面の上方に位置することが好ましい。
 連続式加熱炉内で前記金属板を常時成形素材上面の上方に配置するためには、第一の方法としては、成形型の搬送経路上方全面を覆うように帯状の金属板を炉内に設置する方法を挙げることができ、第二の方法としては、炉内に金属板を移動させる移動手段を設け、金属板が常時成形素材上面の上方に位置するように、成形型とともに金属板を移動させる方法を挙げることができる。連続式加熱炉では、炉内の各ゾーン毎に独立した温度制御がなされ、更に同一ゾーン内で温度分布を持つように温度制御がなされることが通常である。一方、金属板は上記の通り熱伝導率が高いため、温度分布を持つ雰囲気内に配置されたとしても、該雰囲気と同様の温度分布を持たせることは一般に困難であることが多い。したがって、第二の方法を採用することが好ましい。第二の方法において金属板を移動させる移動手段は、成形型を搬送する搬送手段と別手段として設けてもよいが、成形型の搬送手段と同一手段とすることが好ましい。例えば、搬送手段としてベルトコンベアーを備えた連続式加熱炉であれば、ベルトコンベアー上に三脚等の支持台を使用し金属板を配置すれば、炉内で成形型とともに金属板を移動させることができる。ここで支持台としては、支持台によって金属板下面からの輻射熱が遮断されないように、金属板支持部が開口されているもの(例えばリング状部材によって金属板を支持するもの)を使用することが好ましい。そのような状態で支持された金属板の一例を図3に示す。または、支持台を使用せず、金属板の周縁部に3本または4本以上の支柱を設けて支持することも可能である。このような構造の金属板とすれば、支持台によって金属板下面からの輻射熱を遮断することがなく好ましい。そのような状態で支持された金属板の一例を図4に示す。
 一方、バッチ炉では、炉内の固定した位置に成形型を設置し加熱処理が行われるため、例えば成形型上方に三脚等の支持台を使用し金属板を配置したり、支柱を設けた金属板を配置すれば、成形素材上面と熱源との間に金属板を配置した状態で加熱処理を行うことができる。以上説明した連続式加熱炉およびバッチ式加熱炉の詳細については、更に後述する。
 成形素材の加熱成形は、通常、生産性向上のため、バッチ炉であれば複数の成形素材を炉内に同時に導入して行われ、連続式加熱炉であれば複数の成形素材を順次炉内へ搬送して行われる。このように複数の成形素材を処理する際、各成形素材の加熱の均一性をそれぞれ確保するためには、成形素材1つにつき1枚の金属板を設置することが好ましい。
 例えば炉内の一部に熱源が配置された加熱炉や、各ゾーンが異なる温度に制御された連続式加熱炉では、炉内各部での加熱状態は異なる。金属材料は外部の温度分布にかかわらず短時間で温度が均一化されるため、均等な輻射熱を成形素材上面に放射(再放射)することができるが、例えば搬送方向に向かって高温になるように温度制御された連続式加熱炉内では、前方ほど高温に晒されるため、ごく短時間ではあるが、金属板上でわずかながら温度分布が生じる場合がある。このような場合には、上記のわずかな温度分布を是正し成形素材上面に放射される輻射熱をよりいっそう均一化するために、金属板を水平方向に回転させることが好ましい。加熱炉内での温度分布の均一化の手段としては、特開昭63-306390号公報、その全記載は、ここに特に開示として援用される、に、セラミック製品を連続式加熱炉内で焼成、メタライズ、ろう付け接合等をする際、加熱対象物を炉内で回転させることにより加熱の均一性を高めることが提案されている。しかし、眼鏡レンズ用鋳型のような複雑な形状の成形品を熱垂下成形法によって成形する際には、単なる回転による熱分布の均一化では、予期せぬ非点収差が発生することがある。これに対し金属板を回転させる方法であれば、成形素材を回転させることなく加熱の均一性を高めることができる。したがって、成形素材とは分離独立して回転させることが可能な金属板を使用する第一の態様にかかる成形品の製造方法は、眼鏡レンズ用鋳型のような複雑な形状の成形品を熱垂下成形法により製造する方法として特に好適である。更に、金属板を回転させることは、成形素材上面の形状と金属板下面の形状が良好に対応していない場合等に加熱の均一性を高めるためにも有効である。
 前記金属板の回転は、加熱中、連続的に行うこともでき、または熱分布が特に不均一となりやすい領域のみで断続的に行うこともできる。また、金属板の回転は、一方向のみに行ってもよく、逆回転を適宜組み合わせることも可能である。例えば、ある方向(順方向)に略1周回転させた後、逆方向に略1周回転させることを繰り返すこともできる。例えば、加熱炉の床面上に、成形型設置位置を取り囲むようにリング状の回転台を設け、この回転台の上に金属板を支える支柱または金属板を設置した三脚の脚を載せた状態で回転台を回転させれば、金属板を成形素材および成形型と独立に回転させることができる。
成形素材
 次に、第一の態様の製造方法において、加熱軟化により上面が所望形状に成形される成形素材について説明する。
 前記成形素材は、熱軟化性物質からなるものである。熱軟化性物質としては、ガラス、プラスチック等の熱軟化性を有する各種物質を用いることができる。ガラスとしては、クラウン系、フリント系、バリウム系、リン酸塩系、フッ素含有系、フツリン酸系等のガラスを挙げることができる。成形素材として好適なガラスとしては、国際公開第2007/063735号段落[0028]~[0031]に記載の組成および物性を有するガラスを挙げることができる。
 前記成形素材は、熱軟化性物質を所望の形状に加工することにより得ることができる。成形素材の加工は、公知の方法で行うことができる。成形素材の形状は、平板状、球状、楕円形状、回転対称形状(トーリックレンズ、非球面回転対称屈折力レンズ)、自由曲面形状(累進屈折力レンズ、非球面型両面屈折力レンズ)等であることができる。特に、上面が幾何中心を対称軸とする回転対称形状を有する成形素材を成形対象とする態様では、加熱時の熱分布の不均衡により、成形素材下面と成形型成形面との密着のタイミングが大きくずれることによる前記したアスティグマの発生がより顕在化する傾向がある。これに対し第一の態様によれば、前記金属板の使用により成形素材の加熱の均一性を高め熱分布を均衡化させることができる。したがって第一の態様は、上面が幾何中心を対称軸とする回転対称形状を有する成形素材を成形対象とする態様に適用することが好ましい。
成形方法
 次に、上記成形素材を成形する方法について説明する。
 上記成形素材を成形面上に配置した成形型を、成形型上で変形可能な温度まで加熱する。成形素材を配置する成形型としては、熱垂下成形法に使用される公知の成形型を用いることができる。第一の態様において使用される成形型としては、例えば国際公開第2007/063735号段落[0024]~[0027]および[0035]~[0053]に記載の成形型を挙げることができる。国際公開第2007/063735号に記載されている貫通孔を有する成形型を使用し、成形時に貫通孔を通して吸引を行うことも可能である。
 第一の態様では、成形素材を配置した成形型の成形面側開放部を、閉塞部材によって閉塞した状態で加熱処理を行うこともできる。閉塞部材を使用することは、加熱炉を含む大規模クリーンルームを設置することなく、成形素材上面への異物混入を防ぐことができるため好ましい。なお、本発明における「閉塞」とは、塵や埃等の異物が出入りしない程度に内部空間を外部と隔離することを意味するが、気体の出入りは許容するものとする。
 閉塞部材としては、耐熱性に優れたセラミック材料からなるものを用いることが好ましい。そのようなセラミック材料としては、例えば、アルミナ系(Al23)、アルチック系(Al23-TiC)、ジルコニア系(ZrO2)、窒化珪素系(Si34)、窒化アルミ系(AlN)、炭化珪素系(SiC)等のSiO2、Al23、MgOを主成分とするセラミックが適している。より好ましいものとしては、SiO2、Al23、MgOを99質量%以上、その他にK2O等を含むセラミックを挙げることができる。なお、ここで「主成分とする」とは、上記成分がセラミック材料構成成分の最も多くの部分を占めること、例えば50質量%以上を占めることをいう。セラミック材料からなる閉塞部材は、例えば粉末地金法によって形成することができる。その詳細については、国際公開第2007/063735号段落[0021]を参照できる。また、セラミック材料からなる閉塞部材の内側上面には、粒子飛散防止加工を施すこともできる。その詳細は、国際公開第2007/063735号段落[0022]~[0023]に記載されている。第一の態様において使用可能な閉塞部材は、成形素材を配置した成形型の成形面側開放部を閉塞し得る形状を有するものであればよい。そのような閉塞部材としては、後述する図5に示すように蓋形状の部材(蓋部材)を挙げることができる。
 前述のように、セラミック材料からなる閉塞部材は、これのみでは成形素材を均一に加熱することは困難であるが、上方に金属板を配置した状態で使用すれば成形素材を均一に加熱することが可能となる。以下、その理由を説明する。
 図5(a)に、金属板を配置せず熱源下に閉塞部材を配置した例を示し、図5(b)に、熱源と閉塞部材との間に金属部材を配置した例を示す。図5に示す態様では、成形型搬送方向に向かって高温となるように、熱源2は熱源1よりも高いエネルギーの輻射熱を放射する。
 例えば炉内の一部に熱源が配置された加熱炉や、各ゾーンが異なる温度に制御された連続式加熱炉では、炉内各部での加熱状態は異なる。例えば、搬送方向に向かって高温になるように温度制御された連続式加熱炉内では、図5に示すように前方に行くほど高いエネルギーの輻射熱を放射する熱源が配置されるが、セラミック材料からなる閉塞部材は熱伝導度が低いため、前方の熱が閉塞部材全体に伝導するまで長時間を要する。即ち、セラミック材料からなる閉塞部材では、各熱源が発する異なるエネルギーを受け短時間で全体が均一な温度状態となることは困難である。したがって、図5(a)に矢印の大きさで模式的に示すように、閉塞部材前方ほど高いエネルギーの輻射熱を成形素材上面に放射することになる。これにより結果的に閉塞部材各部が異なる温度の輻射熱を放射する複数の熱源として作用しているかのような状態となり、成形素材の加熱状態の不均一化の原因となる。
 これに対しセラミック材料からなる閉塞部材上方に金属板を配置すれば、金属板が熱源からの輻射熱を一旦蓄熱する。金属板は短時間で温度が均一化され得るため、図5(b)に模式的に示すように、閉塞部材上に均等な輻射熱を放射(再放射)することができる。このように閉塞部材に加えられる熱が均等化されていれば、閉塞部材各部から放射(再々放射)される輻射熱が均一化されるため、閉塞空間内に配置された成形素材を均一に加熱することができる。より均一な加熱のためには、閉塞部材の内側上面が成形素材上面と略相似形状であるか平面であることが好ましい。さらには、金属板下面が平面であるか、閉塞部材外側上面と略相似形状であることが好ましい。
 なお、図5に示す態様では、閉塞部材と成形型との間に環状の保持部材を配置し、保持部材外周の段差部にある端面と蓋部材開口部端面とを勘合させている。このような保持部材を使用しない場合は、成形型外周部に閉塞部材保持のための段差部を設け、該段差部端面と閉塞部材開口部とを勘合させればよい。
 図5に示す閉塞部材は、円柱形状の一部をなしており、円柱形状の一方の底面のみが開口し、内部に空間が形成されている。閉塞部材の寸法は特に限定されないが、耐衝撃性と熱伝導効率の観点から、厚みは1μm~5mm程度、内部高さは5~100mm程度、特に30~60mmが好適である。第一の態様において使用可能な閉塞部材については、国際公開第2007/063735号段落[0013]~[0023]を参照できる。なお、後述するように閉塞部材を多層構成として遠赤外線遮断フィルターとしての機能を付与する場合には、遠赤外線に対する各層の屈折率を考慮し、それぞれの膜厚を決定することが好ましい。
 閉塞部材から閉塞空間へ放射された輻射熱は、遠赤外線エネルギーとして徐々に外部へ向かって再放射(輻射)される。一方、セラミック材料は、一般に遠赤外線透過性が低いため、セラミック材料から構成された閉塞部材は遠赤外線透過防止層(遠赤外線遮断フィルター)として機能することができ、これにより遠赤外線エネルギーが外部へ再放射され保温性が低下することを抑制することができる。したがって、セラミック材料から閉塞部材を構成することは、保温性向上の点からも好ましい。
 また、保温性向上のためには、閉塞部材を2層以上の多層構成とすることも好ましい。以下、この点について説明する。
 特定波長域の光を選択的に遮断するためには高屈折率層と低屈折率層とを交互に積層した積層構造を採用することができる。ここで選択的に遮断したい光の波長をλ0、この光に対する高屈折率層の屈折率をnH、低屈折率層の屈折率をnLとすると、高屈折率層の膜厚dH=λ0/4nH、低屈折率層の膜厚dL=λ0/4nLとすれば、層の境界で反射した光が互いに打ち消しあい透過率が減少する。したがって閉塞部材を高屈折率層と低屈折率層との組み合わせを含む構成とし、遠赤外線に対する各層の屈折率に基づき上記式によってそれぞれの層の膜厚をそれぞれ決定すれば、閉塞部材に遠赤外線遮断フィルターとしての機能を付与することができる。遠赤外線の波長域は約3~1000μmであるため、高屈折率層、低屈折率層の光学膜厚(屈折率×物理膜厚)は、それぞれ0.75~250μmの範囲の範囲とすることが好ましい。この場合、閉塞空間に接する最表層は高屈折率層であってもよく低屈折率層であってもよい。
 なお、前述の遠赤外線遮断フィルターとしての機能は通常、高屈折率層と低屈折率層との組み合わせが多くなるほど高まる。したがって、閉塞部材を2層以上の多層構成とする場合には、遠赤外線に対する屈折率の高い高屈折率材料と遠赤外線に対する屈折率の低い低屈折率材料とが交互に積層されるように、高屈折率層と低屈折率層との組み合わせを2組またはそれ以上設けることが好ましい。このように第一の態様では、閉塞部材を多層構成とする場合には、閉塞部材を遠赤外線に対する屈折率の異なる複数の層を含む構成とすることが好ましい。この場合、各層の光学膜厚は、上記の通りそれぞれ0.75~250μmの範囲の範囲とすることが好ましい。そのような閉塞部材の層構成の一例を、図7に示す。図7に示す閉塞部材は、閉塞空間側から、高屈折率層と低屈折率層との組み合わせを2組含む。図7中、λは遠赤外線域(約3~1000μm)の波長であり、各材料の屈折率は上記λに対する屈折率である。なお図7では母材を除く積層構造の全層が金属材料層である態様を示したが、本発明は図7に示す態様に限定されるものではなく、積層構造の少なくとも一層がセラミック等の金属材料以外の材料からなる閉塞部材を使用することもできる。また、隣接する層の遠赤外線に対する屈折率の違いは、例えば1.00以上2.00以下であることができるが特に限定されるものではない。上記多層構成の閉塞部材を構成する材料としては、前述のセラミック材料や金属材料等の公知の材料の中から遠赤外線に対する屈折率を考慮して適切な材料を選択して使用することができる。また、金属材料については、合金組成によって遠赤外線に対する屈折率を調整することも可能である。セラミック材料も同様に、その組成により遠赤外線に対する屈折率を調整することができる。上記多層構成の閉塞部材は、例えば、母材上にメッキ等の公知の成膜方法により金属材料層を積層することによって作製することができる。
 加熱炉の熱源が成形型下方にも配置されている場合には、成形型の下面最表面に、メッキ等の公知の成膜方法により金属材料層を設けることも好ましい。金属材料層を構成する金属材料としては、金属板を構成する金属材料として例示したものを使用することが好ましい。その厚さは、成膜性と形成された膜の取り扱いの容易性の観点から、1mm~30mm程度が好適である。金属は軟化加工の一般的な最高温度800℃での耐久性に乏しく、また熱膨張率が大きいため、800℃近傍では熱膨張により形状が大きく変形する。したがって成形型成形面は高温での耐久性が高く、かつ熱膨張率が比較的小さいセラミック材料から形成することが好ましい。他方、セラミック材料は、上記の通り加熱の不均一性という課題がある。そこでこの点を補うため、成形型母材をセラミック材料から構成し、成形型の下面最表面に金属材料層を形成することが好ましい。これにより、下方からの加熱についても均一性を確保することが可能となり、より高品質な成形品を得ることができる。
 上記変形可能な温度とは、成形素材がガラスからなるものである場合には、ガラス転移点(Tg)以上の温度であることが好ましい。加熱は、公知の方法、例えば成形型を電気炉内に配置して行うことができる。成形素材が設定した温度となるように電気炉内の雰囲気温度を制御することにより、成形素材を所望の温度に加熱することができる。
 次に、第一の態様にかかる成形品の製造方法の具体的態様について説明する。但し、第一の態様は下記態様に限定されるものではない。
 まず、好ましくはクリーンルーム内で、成型面を上にして成形型を設置する。前記閉塞部材を用いる場合には、成形型の開放部を閉塞するように閉塞部材を設置する。閉塞部材の設置のために保持部材を用いる場合には、成型面周縁部および側面の段付け部に保持部材を勘合させる。そして保持部材に沿って成形素材を成型面の所定の位置に載置する。水平方向には成形素材側部端面が保持部材によって支持固定され、一方垂直方向には成形素材下面の外周部端面が、成形型の成型面と接触して保持固定される。そして成形素材の成形型との接触面側の中央部は、型成型面より離間している。離間の距離は、成形面素材下面および型成形面の形状により異なるが、通常約0.1~2.0mm程度である。
 次いで、成形素材上面の上方に金属板を配置する。図3に示すように三脚等の設置台上に金属板を設置するか、または図4に示すように周縁部に支柱を設けた金属板を設置する。その後、ベルトコンベアーによってクリーンルームから電気炉へ搬送し、成形型、成形素材、閉塞部材、金属板の位置関係を維持した状態で電気炉内を移動させ加熱処理を行う。異物混入を確実に防止するためには、このようにクリーンルーム内で成形素材の成形型への配置等を行うことが好ましい。また、貫通孔を有する成形型を使用し成形中に吸引を行う場合には、上記載置台として吸引機能を有するものを使用することが好ましい。
 電気炉では、あらかじめ設定された温度プログラムに基づいて温度制御をしながら加熱軟化処理を行うことができる。電気炉としては、バッチ型電気炉、連続投入型電気炉のいずれを用いてもよい。バッチ型電気炉は、比較的小さい閉じた空間内に被加工物を設置し、予め決められた温度プログラムに従って炉内の温度を変化させる装置である。一方、連続投入型電気炉は入り口と出口を有しており、設定された温度分布の電気炉内部を、コンベアー等の搬送装置によって被加工物を一定時間で通過させて熱処理を行う装置である。連続式加熱炉では、発熱と放熱を考慮した複数のヒーター(熱源)と炉内空気循環の制御機構によって、炉内部の温度分布を制御することができる。第一の態様では、炉内搬送経路の上部にヒーターが設置された加熱炉を用いるが、炉内搬送経路の下部や側壁に熱源を配置することも可能である。
 連続式加熱炉内は、入口(成形型導入口)側から昇温領域、定温保持領域、および冷却領域が含まれるように温度制御することが好ましい。このように温度制御された炉内を通過する成形素材は、昇温領域において変形可能な温度まで加熱され、定温保持領域で上面の成形が進行し、その後冷却領域で冷却されて炉外へ排出される。各領域の長さや各領域における搬送速度等は、炉の搬送経路全長および加熱プログラムに応じて適宜設定すればよい。連続式加熱炉の温度制御および連続式加熱炉内での成形素材の加熱成形は、例えば国際公開第2007/063735号段落[0062]~[0074]に記載の方法で行うことが好ましい。
 加熱炉内で軟化加工が完了すると、成形素材下面と成形型成形面が互いに雌雄の関係になる。一方、成形素材上面は、成形素材下面の形状変形に応じて変形し、成形型成形面が略転写された形状に成形される。このように熱垂下成形法では、型形状を成形素材の上面に転写させて成形素材上面を所望の形状に成形することができる。
 以上の工程により上面を成形した後、成形素材を成形型から除去し、成形品を得ることができる。こうして得られた成形品は、眼鏡レンズ用鋳型として用いることができる。または周縁部など一部を除去して眼鏡レンズ用鋳型として使用することができる。得られた眼鏡レンズ用鋳型は、注型重合法によりプラスチックレンズを製造するための成形型の上型または下型として使用することができる。より詳しくは、熱垂下成形法により成形された成形素材上面が成形型内部に配置されるように、上型および下型をガスケット等により組み合わせて成形型を組み立て、この成形型のキャビティへプラスチックレンズ原料液を注入し重合反応を行うことにより、所望の面形状を有するレンズを得ることができる。前記眼鏡レンズ用鋳型を使用する注型重合は、公知の方法で行うことができる。
 更に第一の態様は、熱軟化性物質からなる成形素材を、成形型成形面上に配置した状態で該成形素材が変形可能な温度まで加熱し、該成形素材の下面を前記成形面に密着させることにより、前記成形素材の上面を所望の形状に成形する成形法に使用される成形装置に関する。第一の態様にかかる成形装置は、輻射熱を放射可能な熱源と、前記成形素材上面の上方であって、かつ上記熱源の下方に配置された状態の金属板と、を含むものである。
 第一の態様にかかる成形装置の詳細は、先に説明した通りである。第一の態様にかかる成形装置によれば、成形素材を均一に加熱することができ、これにより高品質な成形品、例えば、アスティグマが抑制ないしは低減された高品質な眼鏡レンズを製造可能な眼鏡レンズ用鋳型を製造することができる。
 次に、本発明の第二の態様について説明する。
 第二の態様は、熱軟化性物質からなる成形素材を成形型成形面上に配置した状態で、加熱炉内で前記成形素材が変形可能な温度まで加熱し、該成形素材の下面を前記成形面に密着させることにより、前記成形素材の上面を所望の形状に成形する成形品の製造方法に関する。第二の態様にかかる成形品の製造方法は、前記成形を、成形素材を配置した成形型の成形面側開放部を閉塞部材によって閉塞して行い、かつ、前記閉塞部材として、少なくとも一部に金属材料層を含むものを使用する。なお、本発明における「閉塞」については、前述の通りである。
 前記閉塞部材は、加熱炉の熱源からの輻射熱等を一旦保持、蓄積し、蓄積した熱を再放射することができ、これにより閉塞部材各部が熱源として機能し得る。ここで閉塞部材の少なくとも一部に金属材料層が含まれると、前述のように、この金属材料層が均一加熱が可能な熱源となり得る。これにより、加熱炉内での成形素材の加熱の均一化が可能となり、例えば成形品として眼鏡レンズ用鋳型を製造する際には、眼鏡矯正に不要なアスティグマが低減ないしは抑制された、高品質な眼鏡レンズを成形可能な眼鏡レンズ用鋳型を得ることができる。更に上記閉塞部材は、加熱炉から成形素材上面への異物混入を防止する役割を果たすこともできる。
 以下、第二の態様にかかる成形品の製造方法について、更に詳細に説明する。
閉塞部材
 第二の態様における閉塞部材は、第一の態様における閉塞部材と同様、成形素材を配置した成形型の成形面側開放部を閉塞し得る形状を有するものであればよい。そのような閉塞部材の一例を、図8に基づき説明する。但し、本発明は、図8に示す態様に限定されるものではない。また、以下では閉塞部材が蓋部材である態様について説明するが、第二の態様における閉塞部材は蓋形状のものに限定されるものではない。
 図8は、成形面上に成形素材を載置し、上部開放部に蓋部材を配置した成形型の模式図である。図8(a)は、加熱軟化前の状態、図8(b)は加熱軟化後の状態を示す。なお、図8に示す態様では、蓋部材と成形型との間に環状の保持部材を配置し、保持部材外周の段差部にある端面と蓋部材開口部端面とを勘合させている。このような保持部材を使用しない場合については、先に図5を参照し説明した通りである。
 図8に示す蓋部材は、円柱形状の一部をなしており、円柱形状の一方の底面のみが開口し、内部に空間が形成されている。閉塞部材の寸法は特に限定されないが、耐衝撃性と熱伝導効率の観点から、厚みは1μm~5mm程度、内部高さは5~100mm程度、特に30~60mmが好適である。後述するように金属材料層を母材上に設ける場合、メッキ等の公知の成膜方法により金属材料層を形成することができる。この場合の金属材料層の厚みは、成膜性と形成された膜の取り扱いの容易性の点から、1mm~5mm程度が好適である。なお、後述するように閉塞部材に遠赤外線遮断フィルターとしての機能を付与する場合には、遠赤外線に対する金属材料層および母材の屈折率を考慮し金属材料層の膜厚および母材の厚さをそれぞれ決定することが好ましい。また、後述する金属材料からなる閉塞部材は、例えば射出成形等の公知の成形方法によって形成することができる。
 図8に示す蓋部材には、内部に段付け部が形成されており、段付け部から開口部に向かう側面の厚さは、段付け部から上面へ向かう側面より薄くなっている。このように閉塞部材の開口部端面の厚さを薄くすることにより、閉塞部材と保持部材(保持部材を使用しない場合は成形型)との接触面が小さくなり、閉塞部材の自重によって与えられる開口部端面にかかる単位面積あたりの圧力が高くなるため、閉塞部材内部の気密性を高めることができる。また、図8に示すように保持部材を使用する場合、蓋部材の開口部端面の面積が小さくすれば、保持部材の閉塞部材との接触部の面積を小さくすることができ、保持部材全体の小型化につながる。保持部材の小型化により、保持部材の熱膨張の量が減少するため、閉塞部材の気密性を向上させることができる。成形型または保持部材と勘合する閉塞部材の開口部端面は、密閉性向上のため平滑面とすることが好ましい。
 第二の態様にかかる成形品の製造方法において使用される閉塞部材は、少なくとも一部に金属材料層を有する。以下、金属材料層の詳細を説明する。
金属材料層
 前記金属材料層とは、金属材料からなる層である。金属材料の詳細については、先に第一の態様における金属材料について説明した通りである。
 前記金属材料層は、閉塞部材の少なくとも一部に含まれていればよいが、加熱炉の熱源からの輻射熱等を直接受けることにより短時間で均一な状態に加熱されるためには、閉塞部材の最表面に位置することが好ましい。ここで閉塞部材の最表面とは、加熱炉雰囲気と直接接する閉塞部材表面(外側表面)をいうものとする。
 前記閉塞部材の一態様としては、閉塞部材の最表面の少なくとも一部に金属材料層を有する閉塞部材を挙げることができ、より詳しくは、閉塞部材母材の外側表面の少なくとも一部に、金属材料層を形成した閉塞部材を挙げることができる。そのような閉塞部材の一例を図9に示す。図9に示す閉塞部材は、閉塞部材母材の最表面の一部(上面)に金属材料層(金属板)を配置したものである。なお、第二の態様において金属材料層は、図9に示すように閉塞部材母材とは別部材として設けてもよく、メッキ等によって一体に設けてもよい。閉塞部材母材と金属材料層の少なくとも一部は密着した状態であることが、金属材料層からの熱伝導によって閉塞部材母材を加熱する上で好ましい。また、図9では、閉塞部材の最表面の上面に金属材料層を設ける態様を示したが、閉塞部材の側面に金属材料層を設けることもできる。例えば閉塞部材母材周辺を取り囲むように円筒状の金属部材(金属筒)を配置することも可能である。
 前記金属材料層は、加熱炉の熱源からの輻射熱等によって加熱されることにより、閉塞部材内部を加熱する熱源として機能することができる。加熱効率の点からは、加熱中、炉の熱源と成形素材との間に金属材料層が配置される期間が含まれるように、閉塞部材に金属材料層を設けることが好ましい。例えば、加熱炉上部に熱源が配置された加熱炉を使用する場合には、少なくとも閉塞部材の上面に金属材料層が位置することが好ましく、側壁に熱源が配置された加熱炉を使用する場合には、少なくとも閉塞部材の側面に金属材料層が位置することが好ましい。
 閉塞部材は、熱源からの輻射熱に加えて炉内雰囲気からの熱伝導によっても加熱され得るため、輻射熱および伝導熱によって閉塞部材表面を短時間で均一な状態に加熱するためには、閉塞部材の最表面全面が、金属材料層からなることが好ましい。そのような閉塞部材の具体例を、図10に示す。金属材料層は、図10(a)に示すように、閉塞部材母材の最表面全面に密着するように形成してもよく、図10(b)に示すように閉塞部材を複数部材から構成し、閉塞部材母材と一部が接触していない状態で金属材料層を設けてもよい。または、閉塞部材全体を金属材料から構成し、金属材料からなる閉塞部材とすることも好ましい。
 前記金属材料層は、図9および図10に示すように閉塞部材母材上に設けることができる。この場合、閉塞部材母材を構成する母材材料としては、金属材料層と同一または異なる金属材料を用いることができ、またはセラミック材料を用いることもできる。母材材料としての金属材料としては、先に例示した金属材料を用いることができる。金属材料からなる母材は、射出成形等の公知の成形方法によって得ることができる。
 前述のように、セラミック材料からなる閉塞部材は成形素材を均一に加熱することは困難であるが、金属材料層を有するとともに、母材としてセラミック材料を含む閉塞部材であれば、成形素材を均一に加熱することが可能である。以下、その理由を説明する。
 例えば炉内の一部に熱源が配置された加熱炉や、各ゾーンが異なる温度に制御された連続式加熱炉では、炉内各部での加熱状態は異なる。例えば搬送方向に向かって高温になるように温度制御された連続式加熱炉内では、前方ほど高温に晒されるが、セラミック材料からなる閉塞部材は熱伝導度が低いため、前方の熱が閉塞部材全体に伝導するまで長時間を要する。即ち、セラミック材料からなる閉塞部材では、外部の温度分布に短時間で対応することは困難である。
 これに対し、セラミック材料からなる母材上に金属材料層を有する閉塞部材では、金属材料層がセラミック材料に先立ち外部の温度分布に晒される。金属材料層は外部の温度分布にかかわらず短時間で温度が均一化され得るため、この均一な温度の金属材料層を熱源としてセラミック材料を加熱することができる。これにより、結果的に外部の温度分布にかかわらずセラミック材料を均一に加熱することが可能となる。このように均一に加熱されたセラミック母材であれば、母材各部に大きな温度の違いがないため、均一な加熱が可能な熱源として、閉塞空間内に配置された成形素材を均一に加熱することができる。
 母材としてのセラミック材料としては、耐熱性に優れたセラミック材料を用いることが好ましい。そのようなセラミック材料の詳細は、先に第一の態様における閉塞部材を構成可能なセラミック材料について記載した通りである。セラミック材料からなる母材は、例えば粉末地金法によって形成することができる。その詳細については、国際公開第2007/063735号段落[0021]を参照できる。また、セラミック材料からなる母材の内側上面には、粒子飛散防止加工を施すこともできる。その詳細は、国際公開第2007/063735号段落[0022]~[0023]に記載されている。
 熱伝導度が高い材料ほど短時間で冷却される。したがって、閉塞部材内部(閉塞空間)の保温の点からは、母材材料としては、金属材料層を構成する金属材料より熱伝導度が低い材料を使用することが好ましい。ただし熱伝導度が過度に低い材料では、金属材料層を設けることによっても均一な状態に加熱することは困難であるため、均一加熱と保温性の点からは、母材材料の熱伝導度は、25℃での値として、3~170W/mkであることが好ましい。このような低熱伝導材料としては、上記セラミック材料を挙げることができる。
 上記のようにセラミック材料からなる母材上に金属材料層を設けることは、以下の理由からも保温性向上のために好ましい。
 閉塞部材から閉塞空間へ放射された輻射熱は、遠赤外線エネルギーとして徐々に外部へ向かって再放射(輻射)される。一方、セラミック材料は、一般に金属材料と比べて遠赤外線透過性が低いため、遠赤外線透過防止層(遠赤外線遮断フィルター)として機能することができ、これにより遠赤外線エネルギーが外部へ再放射され保温性が低下することを抑制することができる。
 また、第二の態様では、金属材料層とセラミック母材との膜厚を調整することにより、閉塞部材に遠赤外線遮断フィルターとしての機能を付与し、これにより上記再放射を防ぎ保温性を高めることもできる。このような多層構成の閉塞部材が遠赤外線遮断フィルターとして機能する原理については、先に第一の態様において使用可能な閉塞部材について説明した通りである。したがってセラミック母材上に金属材料層を有する閉塞部材において、セラミック母材、金属材料層のいずれか一方を高屈折率層、他方を低屈折率層として、遠赤外線に対する両者の屈折率に基づき前述の式によってセラミック母材の厚さおよび金属材料層の膜厚をそれぞれ決定すれば、閉塞部材に遠赤外線遮断フィルターとしての機能を付与することができる。前述の通り遠赤外線の波長域は約3~1000μmであるため、セラミック母材、金属材料層の光学膜厚(屈折率×物理膜厚)は、それぞれ0.75~250μmの範囲の範囲とすることが好ましい。この場合、閉塞空間に接する最表層は高屈折率層であってもよく低屈折率層であってもよい。
 以上説明した態様では、金属材料層単層からなる閉塞部材または金属材料層と母材の2層からなる閉塞部材について説明したが、第二の態様において使用される閉塞部材は、これら態様に限定されるものではない。例えば金属材料層を2層以上設け、および/または、母材を2層以上の構成とし、全体として3層以上の多層構成である閉塞部材を使用することも、もちろん可能である。
 なお、閉塞部材を全体として2層以上の多層構成とする場合、閉塞部材に前述の遠赤外線遮断フィルターとしての機能を付与するために、遠赤外線に対する屈折率の高い高屈折率材料層と遠赤外線に対する屈折率の低い低屈折率材料層との組み合わせを少なくとも1組設けることが好ましい。また、遠赤外線遮断フィルターとしての機能は通常、高屈折率層と低屈折率層との組み合わせが多くなるほど高まるため、高屈折率層と低屈折率層とが交互に積層されるように、上記組み合わせを2組またはそれ以上設けることが更に好ましい。このように第二の態様では、母材がセラミックである場合に限らず、閉塞部材を多層構成とする場合には、閉塞部材を遠赤外線に対する屈折率の異なる複数の層を含む構成とすることが好ましい。この場合、上記複数の層の少なくとも一層は前記金属材料層である。また、この場合、各層の光学膜厚は、上記の通りそれぞれ0.75~250μmの範囲の範囲とすることが好ましい。そのような閉塞部材の層構成の一例を、図11に示す。図11に示す閉塞部材は、閉塞空間側から、高屈折率層と低屈折率層との組み合わせを2組含む。図11中、λは遠赤外線域(約3~1000μm)の波長であり、各材料の屈折率は上記λに対する屈折率である。なお図11では母材を含む全層が金属材料層である態様を示したが、第二の態様は図11に示す態様に限定されるものではなく、母材や積層構造の少なくとも一層がセラミック等の金属材料以外の材料からなる閉塞部材を使用することもできる。また、隣接する層の遠赤外線に対する屈折率の違いは、例えば1.00以上2.00以下であることができるが特に限定されるものではない。金属材料、セラミック材料の屈折率の調整方法については、先に第一の態様について記載した通りである。
成形素材
 第二の態様にかかる成形品の製造方法において、加熱軟化により上面が所望形状に成形される成形素材の詳細については、先に第一の態様について記載した通りである。特に、上面が幾何中心を対称軸とする回転対称形状を有する成形素材を成形対象とする態様では、成形素材の加熱の均一性をより高め熱分布を均衡化させるために、成形素材上面と対向する閉塞部材上面も、幾何中心を対称軸とする回転対称形状とすることが好ましく、成形素材上面と閉塞部材上面の幾何中心が同一軸上に位置するように、成形素材を配置することがより好ましい。更には、幾何中心を対称軸とする回転対称形状を有する金属材料層を上面に含む閉塞部材を使用し、上記金属材料層の幾何中心と成形素材の幾何中心が同一軸上に位置するように、成形素材を配置することがより一層好ましい。
成形方法
 次に、第二の態様において上記成形素材を成形する方法について説明する。
 上記成形素材を成形面上に配置した成形型の成形面側開放部を閉塞部材によって閉塞した後、前記成形素材を、成形型上で変形可能な温度まで加熱する。成形型については、先に第一の態様について記載した通りである。なお、第二の態様では、国際公開第2007/063735号に記載されている貫通孔を有する成形型を使用し、成形時に貫通孔を通して吸引を行う際、通気性を確保するために金属材料層の一部に通気穴を設けたり、金属材料層を微細な網目構造を有する層として形成することも可能である。また、加熱炉の熱源が成形型下方にも配置されている場合には、第一の態様について記載したように、成形型の下面最表面に金属材料層を設けることも好ましい。
 上記変形可能な温度および加熱方法については、先に第一の態様について記載した通りである。前述のように、第二の態様では、成形素材は閉塞部材を介して加熱されるため、内部に大きいな温度分布を有する加熱炉を使用する場合にも、均一な加熱を行うことができる。
 次に、第二の態様にかかる成形品の製造方法の具体的態様について説明する。但し、第二の態様は、下記態様に限定されるものではない。
 まず、好ましくはクリーンルーム内で、成型面を上にして成形型を設置する。前記保持部材を用いる場合の詳細については、先に第一の態様について記載した通りである。
 次いで閉塞部材を、好ましくは保持部材と勘合させて載置する。閉塞部材で成形素材を配置した成形型の成形面側開放部を閉塞した後、クリーンルームから電気炉へ搬送し、電気炉の載置台に成形型、保持部材、成形素材、閉塞部材の組み合わせを載置して電気炉によって加熱処理を行う。第二の態様において加熱炉として連続式加熱炉を使用する場合、通常、ヒーターは炉内搬送経路の上部に設置されるが、搬送経路の下部や側壁に熱源を配置することも可能である。
 その他、第二の態様にかかる成形品の製造方法の具体的態様の詳細は、先に第一の態様にかかる成形品の製造方法の具体的態様について記載した通りである。
 第二の態様にかかる成形品の製造方法により得られた成形品も、眼鏡レンズ用鋳型として用いることができる。または周縁部など一部を除去して眼鏡レンズ用鋳型として使用することができる。得られた成形品またはその一部を眼鏡レンズ用鋳型として使用する態様の詳細は、先に第一の態様について記載した通りである。
 更に第二の態様は、軟化性物質からなる成形素材を、加熱炉内で成形型成形面上に配置した状態で該成形素材が変形可能な温度まで加熱し、該成形素材の下面を前記成形面に密着させることにより、前記成形素材の上面を所望の形状に成形する成形法に使用される成形装置に関する。第二の態様にかかる成形装置は、前記成形を、成形素材を配置した成形型の成形面側開放部を閉塞部材によって閉塞して行うものであり、かつ、前記閉塞部材として、少なくとも一部に金属材料層を含む閉塞部材を使用する。
 第二の態様にかかる成形装置は、成形素材と閉塞部材のセットを複数含むことができる。第二の態様にかかる成形装置の詳細は、先に説明した通りである。第二の態様にかかる成形装置によれば、成形素材を均一に加熱することができ、これにより高品質な成形品、例えば、アスティグマが抑制ないしは低減された高品質な眼鏡レンズを製造可能な眼鏡レンズ用鋳型を製造することができる。
 更に本発明は、第一もしくは第二の態様にかかる成形品の製造方法により、または第一もしくは第二の態様にかかる成形装置により成形品を製造すること、ならびに、製造した成形品またはその一部を鋳型として注型重合により眼鏡レンズを製造すること、
を含む眼鏡レンズの製造方法にも関する。先に説明したように、本発明の成形品の製造方法および成形装置によれば、成形素材を均一に加熱することができ、これにより高品質な成形品を得ることができ、得られた成形品またはその一部を眼鏡レンズ用鋳型として使用することにより、アスティグマが抑制ないしは低減された高品質な眼鏡レンズを得ることができる。
 以下に、本発明を実施例に基づき説明する。但し、本発明は実施例に示す態様に限定されるものではない。
1.第一の態様にかかる実施例・比較例
[実施例1]
 複数のガラス素材を、それぞれ別の成形型の成形面上に配置した状態で連続式加熱炉内を搬送させることにより加熱処理を施した。成形型上には、図6に示すようにガラス素材、閉塞部材および金属板を配置し、この位置関係を維持した状態で連続式加熱炉内に搬送されるように、ガラス素材および閉塞部材を載せた成形型と支柱によって支えられた金属板を、ベルトコンベアー上に載置した。この状態で鉛直上方から観察すると、閉塞部材は金属板に隠れて観察されなかった。
 ガラス素材としては、上面が幾何中心を対称軸とする回転対称形状であるガラス素材を使用した。
 金属板としては、厚さ5mmの円盤状の銅板(両面平面の平板)を使用した。閉塞部材内部に配置された成形素材上面の幾何中心から金属板下面までの距離は、約50mmであり、炉内搬送中、炉内部上面に設置されたハロゲンヒーターから金属板上面までの距離が約100mmとなる位置に金属板が配置されるように支柱の高さを設定した。
 閉塞部材としては、SiO2、Al23、MgOを99%以上、その他の成分としてK2Oを含むセラミックを粉末地金法により図6に示すように、外側上面、内側上面とも平面の蓋形状に成形した蓋部材を使用した。蓋部材の厚さは5mm程度、蓋部材の内部高さは約50mmであった。
 連続式加熱炉内では、閉塞部材およびガラス素材が配置された成形型と、炉内で常時ガラス素材の上面に位置するように成形型を取り囲む支柱によって成形型上方に配置された金属板を、以下のように温度制御された連続する7ゾーンに順次搬送させた。各ゾーンには、以下に記載の温度制御を可能とするため、それぞれ複数のハロゲンランプを上面に配置した。
(A)予備昇温ゾーン
 ガラス素材を約25℃の一定温度に保持できるように温度制御された本ゾーンを、約90分かけて成形型を通過させた。
(B)急速加熱昇温ゾーン
 約25℃から上記ガラス素材のガラス転移温度(以降Tgともいう)-50℃(以降T1ともいう)まで、ガラス素材が約4℃/minの昇温速度で加熱されるように温度制御した本ゾーンを、約90分かけて成形型を通過させた。
(C)低速加熱昇温ゾーン
 温度T1から上記ガラス素材のTg以上の温度であってガラス軟化点より約-50℃(以降T2ともいう)まで、ガラス素材が約2℃/minの昇温速度で加熱されるように温度制御した本ゾーンを、約120分かけて成形型を通過させた。
(D)定温保持ゾーン
 温度T2で加熱されたガラス素材が、温度T2近傍の温度に保持されるように温度制御した本ゾーンを、約60分かけて成形型を通過させた。
(E)低速冷却ゾーン
 上記ガラス素材が、Tgの-100℃(以降T3ともいう)まで、1℃/minの降温速度で冷却されるように温度制御した本ゾーンを、約300分かけて成形型を通過させた。
(F)急速冷却ゾーン
 本ゾーンを通過させながら、上記ガラス素材を降温速度約1.5℃/minで約200℃程度まで冷却した。
(G)自然冷却ゾーン
 本ゾーンにおいて、自然冷却によって上記ガラス素材を室温まで冷却した。
 その後、炉外に排出された成形品を鋳型として使用し、注型重合により両面非球面型累進屈折力レンズを得た。得られたレンズのレンズ外径は75φ、表面平均ベースカーブは4Dであった。得られたレンズをレンズメーターのレンズ当てに当て、光学中心または屈折力測定基準点でのアスティグマを測定したところ、0.01Dであった。本実施例で使用したレンズメーターは透過式であるが、反射式の表面屈折力装置や形状測定装置の測定結果から表面屈折力を解析することによってアスティグマを算出することもできる。
[比較例1]
 金属板を使用しなかった点以外は実施例1と同様の方法で成形品の作製および得られた成形品を使用した注型重合を行った。注型重合によって得られたレンズのアスティグマを測定したところ、0.06Dであった。
2.第二の態様にかかる実施例・比較例
[実施例2]
 図10(a)に示す蓋部材を使用し、連続式加熱炉内でガラス素材の加熱成形を行った。
 使用した蓋部材は、粉末地金法により図10(a)に示す蓋形状に成形された、SiO2、Al23、MgOを99%以上、その他の成分としてK2Oを含むセラミックからなる母材の最表面全面に、銅をメッキして作製した。銅メッキ層の厚さは約1mm程度、銅メッキ層を含む蓋部材の厚さは5mm程度、蓋部材の内部高さは約50mmであった。
 銅メッキ層を含む蓋部材上面、ガラス素材上面は、いずれも幾何中心を対称軸とする回転対称形状とし、銅メッキ層を含む蓋部材上面の幾何中心とガラス素材上面の幾何中心が、鉛直方向で同一軸上に位置するように成形型上に蓋部材を配置した。
 連続式加熱炉内では、蓋部材およびガラス素材が配置された成形型を、実施例1と同様に温度制御された連続する7ゾーンに順次搬送させた。
 その後、炉外に排出された成形品を鋳型として使用し、注型重合により両面非球面型累進屈折力レンズを得た。得られたレンズのレンズ外径は75φ、表面平均ベースカーブは4Dであった。得られたレンズをレンズメーターのレンズ当てに当て、光学中心または屈折力測定基準点でのアスティグマを測定したところ、0.01Dであった。
[実施例3]
 射出成形により成形した、全体が銅からなる蓋部材を使用した点以外は実施例2と同様の方法で成形品の作製および得られた成形品を使用した注型重合を行った。注型重合によって得られたレンズのアスティグマを測定したところ、0.02Dであった。
[実施例4]
 セラミックからなる母材の最表面の側面には銅メッキ層を形成せず、上面に円盤状(中心対称形状)の銅メッキ層を形成した蓋部材を使用した点以外は実施例2と同様の方法で成形品の作製および得られた成形品を使用した注型重合を行った。注型重合によって得られたレンズのアスティグマを測定したところ、0.03Dであった。
[比較例2]
 銅メッキ層を形成せずセラミック母材を蓋部材として使用した点以外は実施例2と同様の方法で成形品の作製および得られた成形品を使用した注型重合を行った。注型重合によって得られたレンズのアスティグマを測定したところ、0.06Dであった。
評価結果
 製品レンズとしては、アスティグマの判定規格は通常絶対値で0.09D以内とされているが、製品レンズを使用し眼鏡を製造する工程における取り扱いの容易性の点から製造誤差として許容される残公差は0.03D以内程度である。
 比較例1および2で得られたレンズのアスティグマは上記判定規格内であったが上記の製造誤差として許容される残公差の範囲外であったため、比較例1および2で得られたレンズを使用し眼鏡を製造する際には取り扱いに注意が必要となる。
 これに対し実施例1~4では、アスティグマが製品レンズの判定規格内であり、かつ製造誤差として許容される残公差の範囲内の両面非球面型累進屈折力レンズを得ることができた。
 上記結果から、本発明によれば眼鏡レンズの矯正に不要なアスティグマの発生を抑制することにより、装用感に優れる眼鏡レンズを製造可能なレンズ用鋳型を提供できることが示された。実施例1では金属板を回転させることなくアスティグマの発生が抑制された眼鏡レンズを成形可能な眼鏡レンズ用鋳型を得ることができたが、炉内各部に配置された熱源から放射される輻射熱のエネルギー差が大きい場合等には、先に説明したように金属板を回転させることが好ましい。
 また、実施例2~4の中で実施例2において最もアスティグマ発生を効果的に抑制できた理由は、(1)蓋部材の最表面全面に銅メッキ層(金属材料層)が形成されていたため、上記のように温度制御された各ゾーンでの温度変化に迅速に対応し銅メッキ層全面が短時間で均一な温度となったこと、(2)セラミック材料による保温効果によって蓋部材内部の温度変化が抑制されたこと、にあると考えられる。
 本発明は、眼鏡レンズの製造分野に有用である。

Claims (15)

  1. 熱軟化性物質からなる成形素材を、成形型成形面上に配置した状態で該成形素材が変形可能な温度まで加熱し、該成形素材の下面を前記成形面に密着させることにより、前記成形素材の上面を所望の形状に成形する成形品の製造方法であって、
    前記加熱を、前記成形素材を配置した成形型を、該成形素材上面の上方に最表面が金属材料からなる板状部材を配置した状態で、輻射熱を放射する熱源下に置くことによって行う、前記成形品の製造方法。
  2. 前記成形素材を配置した成形型を加熱炉内に導入し、該炉内において、炉内上部に配置された複数の前記熱源下を順次通過させることによって前記加熱を行う、請求項1に記載の成形品の製造方法。
  3. 前記板状部材を、前記炉内で常時成形素材上面の上方に位置するように、前記成形型とともに移動させる、請求項2に記載の成形品の製造方法。
  4. 熱軟化性物質からなる成形素材を、成形型成形面上に配置した状態で該成形素材が変形可能な温度まで加熱し、該成形素材の下面を前記成形面に密着させることにより、前記成形素材の上面を所望の形状に成形する成形法に使用される成形装置であって、
    輻射熱を放射可能な熱源と、
    前記成形素材上面の上方であって、かつ上記熱源の下方に配置された状態の最表面が金属材料からなる板状部材と、
    を含む、前記成形装置。
  5. 前記熱源が上部に複数配置された加熱炉を含み、かつ
    前記加熱炉は前記複数の熱源下に前記成形型を順次搬送する搬送手段を更に含む、請求項4に記載の成形装置。
  6. 前記加熱炉は、前記板状部材が常時成形素材上面の上方に位置するように、前記成形型とともに前記板状部材を移動させる移動手段を含む、請求項5に記載の成形装置。
  7. 熱軟化性物質からなる成形素材を成形型成形面上に配置した状態で、加熱炉内で前記成形素材が変形可能な温度まで加熱し、該成形素材の下面を前記成形面に密着させることにより、前記成形素材の上面を所望の形状に成形する成形品の製造方法であって、
    前記成形を、成形素材を配置した成形型の成形面側開放部を閉塞部材によって閉塞して行い、かつ、
    前記閉塞部材は、少なくとも一部に金属材料層を含む、前記製造方法。
  8. 前記金属材料層は、前記閉塞部材の最表面に位置する請求項7に記載の製造方法。
  9. 成形前の成形素材上面は、幾何中心を対称軸とする回転対称形状を有し、
    前記金属材料層は、幾何中心を対称軸とする回転対称形状を有し、かつ前記閉塞部材の上面に含まれ、
    前記金属材料層と前記成形素材上面の幾何中心が同一軸上に位置するように前記成形素材の配置を行う、請求項7または8に記載の製造方法。
  10. 軟化性物質からなる成形素材を、加熱炉内で成形型成形面上に配置した状態で該成形素材が変形可能な温度まで加熱し、該成形素材の下面を前記成形面に密着させることにより、前記成形素材の上面を所望の形状に成形する成形法に使用される成形装置であって、
    前記成形を、成形素材を配置した成形型の成形面側開放部を閉塞部材によって閉塞して行い、かつ、
    前記閉塞部材は、少なくとも一部に金属材料層を含む、前記成形装置。
  11. 前記金属材料層は、前記閉塞部材の最表面に位置する請求項10に記載の成形装置。
  12. 成形前の成形素材上面は、幾何中心を対称軸とする回転対称形状を有し、
    前記金属材料層は、幾何中心を対称軸とする回転対称形状を有し、かつ前記閉塞部材の上面に含まれ、
    前記金属材料層と前記成形素材上面の幾何中心が同一軸上に位置するように前記成形素材の配置を行う、請求項10または11に記載の成形装置。
  13. 前記成形品として眼鏡レンズ用鋳型を製造する、請求項1~3および7~9のいずれか1項に記載の製造方法。
  14. 前記成形品として眼鏡レンズ用鋳型を成形する、請求項4~6および10~12のいずれか1項に記載の成形装置。
  15. 請求項1~3および7~9のいずれか1項に記載の製造方法により、または請求項4~6および10~12のいずれか1項に記載の成形装置により成形品を製造すること、
    ならびに、
    製造した成形品またはその一部を鋳型として注型重合により眼鏡レンズを製造すること、
    を含む眼鏡レンズの製造方法。
PCT/JP2010/060613 2009-06-26 2010-06-23 成形品の製造方法および製造装置、ならびに眼鏡レンズの製造方法 WO2010150801A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10792119.9A EP2447226A4 (en) 2009-06-26 2010-06-23 METHOD AND DEVICE FOR PRODUCING A MOLDED ARTICLE, AND METHOD FOR PRODUCING A GLASS GLASS LENS
US13/133,463 US20120086138A1 (en) 2009-06-26 2010-06-23 Manufacturing method and manufacturing device of formed article, and manufacturing method of eyeglass lens
CN2010800300561A CN102471127A (zh) 2009-06-26 2010-06-23 成形品的制造方法及制造装置、以及眼镜片的制造方法
JP2011519912A JPWO2010150801A1 (ja) 2009-06-26 2010-06-23 成形品の製造方法および製造装置、ならびに眼鏡レンズの製造方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009-152427 2009-06-26
JP2009-152424 2009-06-26
JP2009152427 2009-06-26
JP2009152424 2009-06-26
JP2009-226209 2009-09-30
JP2009226208 2009-09-30
JP2009226209 2009-09-30
JP2009-226208 2009-09-30

Publications (1)

Publication Number Publication Date
WO2010150801A1 true WO2010150801A1 (ja) 2010-12-29

Family

ID=43386570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060613 WO2010150801A1 (ja) 2009-06-26 2010-06-23 成形品の製造方法および製造装置、ならびに眼鏡レンズの製造方法

Country Status (5)

Country Link
US (1) US20120086138A1 (ja)
EP (1) EP2447226A4 (ja)
JP (1) JPWO2010150801A1 (ja)
CN (1) CN102471127A (ja)
WO (1) WO2010150801A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518839A (ja) * 2011-05-27 2014-08-07 コーニング インコーポレイテッド ガラス成形システム及び関連装置及び方法
WO2014171115A1 (ja) * 2013-04-16 2014-10-23 パナソニックIpマネジメント株式会社 燃料電池システム
US10336642B2 (en) 2016-06-27 2019-07-02 AGC Inc. Method for manufacturing formed glass and heating apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9446977B2 (en) * 2012-12-10 2016-09-20 Corning Incorporated Method and system for making a glass article with uniform mold temperature
CN104058580B (zh) * 2014-05-08 2017-02-15 嘉善冠得光学玻璃有限公司 一种大型光学玻璃平镜热加工成球面镜的装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306390A (ja) 1987-06-03 1988-12-14 日本特殊陶業株式会社 熱処理方法
JPH04275930A (ja) 1991-02-26 1992-10-01 Asahi Optical Co Ltd 熱軟化性物質の熱垂下成形方法及び成形装置
JPH06130333A (ja) 1992-10-20 1994-05-13 Toray Ind Inc 多焦点眼鏡レンズ用ガラスモールドの製造方法
JP2005343747A (ja) * 2004-06-03 2005-12-15 Nippon Sheet Glass Co Ltd 板ガラスの曲げ加工方法及び板ガラスの曲げ加工装置
JP2005350286A (ja) * 2004-06-08 2005-12-22 Nippon Sheet Glass Co Ltd ガラス成形装置の加熱制御装置及びガラス成形方法
WO2007063734A1 (ja) * 2005-11-30 2007-06-07 Hoya Corporation 成形品の製造方法、保持部材および成形装置
WO2007063735A1 (ja) 2005-11-30 2007-06-07 Hoya Corporation 成形品の製造方法、閉塞部材およびそれを含む成形装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973943A (en) * 1975-03-12 1976-08-10 Ppg Industries, Inc. Apparatus for supporting shaped glass sheets for tempering
US4105429A (en) * 1977-05-02 1978-08-08 Delgado Manuel M Method and apparatus for precision forming of plastic materials such as glass to precise dimensions from sheet material
EP0022884A1 (en) * 1979-07-18 1981-01-28 ASH & LACY LIMITED Method and apparatus for bending sheet material and bent sheet material obtained
US5147437A (en) * 1988-07-25 1992-09-15 Bristol Alexander C Invisible flat-top mold blank and method for manufacturing same
JPH02307833A (ja) * 1989-05-19 1990-12-21 Nippon Sheet Glass Co Ltd 合せガラス用板ガラスの加熱方法
AU3557400A (en) * 1999-03-23 2000-10-09 Fotheringham, Ulrich Method of forming glass-ceramic parts and/or glass parts
JP2003160346A (ja) * 2001-11-22 2003-06-03 Murakami Corp ガラス基板の曲面成形方法
JP5042032B2 (ja) * 2005-11-18 2012-10-03 Hoya株式会社 成形品の製造方法、ガラス素材、ならびにガラス素材および成形型の面形状決定方法
WO2007058352A1 (ja) * 2005-11-18 2007-05-24 Hoya Corporation 成形品の製造方法、成形型およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306390A (ja) 1987-06-03 1988-12-14 日本特殊陶業株式会社 熱処理方法
JPH04275930A (ja) 1991-02-26 1992-10-01 Asahi Optical Co Ltd 熱軟化性物質の熱垂下成形方法及び成形装置
JPH06130333A (ja) 1992-10-20 1994-05-13 Toray Ind Inc 多焦点眼鏡レンズ用ガラスモールドの製造方法
JP2005343747A (ja) * 2004-06-03 2005-12-15 Nippon Sheet Glass Co Ltd 板ガラスの曲げ加工方法及び板ガラスの曲げ加工装置
JP2005350286A (ja) * 2004-06-08 2005-12-22 Nippon Sheet Glass Co Ltd ガラス成形装置の加熱制御装置及びガラス成形方法
WO2007063734A1 (ja) * 2005-11-30 2007-06-07 Hoya Corporation 成形品の製造方法、保持部材および成形装置
WO2007063735A1 (ja) 2005-11-30 2007-06-07 Hoya Corporation 成形品の製造方法、閉塞部材およびそれを含む成形装置
US20090289380A1 (en) 2005-11-30 2009-11-26 Hoya Corporation Method of manufacturing formed article, covering member, and forming apparatus comprising the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518839A (ja) * 2011-05-27 2014-08-07 コーニング インコーポレイテッド ガラス成形システム及び関連装置及び方法
WO2014171115A1 (ja) * 2013-04-16 2014-10-23 パナソニックIpマネジメント株式会社 燃料電池システム
JP5866546B2 (ja) * 2013-04-16 2016-02-17 パナソニックIpマネジメント株式会社 燃料電池システム
US9871264B2 (en) 2013-04-16 2018-01-16 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system
US10336642B2 (en) 2016-06-27 2019-07-02 AGC Inc. Method for manufacturing formed glass and heating apparatus

Also Published As

Publication number Publication date
EP2447226A4 (en) 2014-10-01
JPWO2010150801A1 (ja) 2012-12-10
US20120086138A1 (en) 2012-04-12
EP2447226A1 (en) 2012-05-02
CN102471127A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5042032B2 (ja) 成形品の製造方法、ガラス素材、ならびにガラス素材および成形型の面形状決定方法
JP5121460B2 (ja) 成形品の製造方法、閉塞部材およびそれを含む成形装置
WO2010150801A1 (ja) 成形品の製造方法および製造装置、ならびに眼鏡レンズの製造方法
CN103384912B (zh) 用于热处理腔室的边缘环
JP5615799B2 (ja) レンズ用鋳型の製造方法および眼鏡レンズの製造方法
CN106715753A (zh) 常压外延沉积腔室
JP5319555B2 (ja) レンズ用鋳型の製造方法
JP5393664B2 (ja) レンズ用鋳型の製造方法
JP5496179B2 (ja) レンズ用鋳型の製造方法および眼鏡レンズの製造方法
CN104752277A (zh) 外延生长装置
JP5042033B2 (ja) 成形品の製造方法、保持部材および成形装置
KR20170131128A (ko) 3d 유리 성형장치 및 방법
US20110304064A1 (en) Method of manufacturing lens casting mold
JP2012116705A (ja) 光学素子の成形装置及び成形方法
JP5953906B2 (ja) 光学素子の成形装置及び成形方法
JP2010159182A (ja) 光学素子の製造装置とその製造方法
JP2011184248A (ja) 光学素子の成形装置
JP2011230970A (ja) 光学素子の成形装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080030056.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792119

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011519912

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13133463

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010792119

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE