WO2010149338A1 - Kettensäge - Google Patents

Kettensäge Download PDF

Info

Publication number
WO2010149338A1
WO2010149338A1 PCT/EP2010/003754 EP2010003754W WO2010149338A1 WO 2010149338 A1 WO2010149338 A1 WO 2010149338A1 EP 2010003754 W EP2010003754 W EP 2010003754W WO 2010149338 A1 WO2010149338 A1 WO 2010149338A1
Authority
WO
WIPO (PCT)
Prior art keywords
sword
chain
adjusting unit
drive pinion
pinion
Prior art date
Application number
PCT/EP2010/003754
Other languages
English (en)
French (fr)
Other versions
WO2010149338A4 (de
Inventor
Ingo Freithofnigg
Original Assignee
Prinz Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prinz Gmbh & Co. Kg filed Critical Prinz Gmbh & Co. Kg
Priority to EP10739490A priority Critical patent/EP2445687B1/de
Publication of WO2010149338A1 publication Critical patent/WO2010149338A1/de
Publication of WO2010149338A4 publication Critical patent/WO2010149338A4/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27BSAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
    • B27B17/00Chain saws; Equipment therefor
    • B27B17/14Arrangements for stretching the chain saw

Definitions

  • the invention relates to a chain saw with a sword, a drive pinion belonging to a drive and a running over the sword and the drive pinion saw chain, by a relative movement of the sword or part of the sword, in particular arranged at the end of a slider sword tip, and the drive pinion is tensionable and relaxing.
  • a chain saw with the features of claim 1, i. by in the above-mentioned chainsaw between the drive pinion and the sword, preferably in the area running from the drive pinion chain, a sensor element for detecting a change in the chain tension is arranged and independent of the load on the chain based on the change in the chain tension constantly working adjusting unit is provided for generating the relative movement.
  • FIG. 1 shows a chain saw schematically.
  • Figures 2 to 1 1 show the exemplary readjustment of the chain tension by several solutions.
  • Figures 12 to 20 provide exemplary solutions for picking up the chain tension by means of electronic or mechanical sensors.
  • Figures 21 to 26 illustrate the internal construction of the adjusting unit 3 in different variants.
  • FIG. 1 schematically shows a chain saw with the drive part 1, the chain bar 2 and the adjusting unit 3.
  • the drive pinion 4 is in alignment with the sword 2.
  • the chain is not shown in FIG.
  • the embodiment according to Figures 2 and 3 is based on the hitherto customary type of adjustment, in which the sword 2 is moved relative to the drive motor 1.
  • the housing of the adjusting unit 3 is divided and designed to be displaceable in the direction of the sword 2.
  • Fig. 2 shows the top view of the adjusting unit 3
  • Fig. 3 shows the view from the side of the drive pinion, which has been omitted in the illustration.
  • the division of the adjusting unit 3 relates to a part 5a, which is fixed to the drive motor 1 and an exemplary carriage 5b, on which the sword 2 is fixed.
  • the sword 2 in the longitudinal direction relative to the drive motor 1 is displaced.
  • the attachment or support of the chain saw for guiding the cut can be performed both on the motor side 6, as well as on the side of the chain 7. The necessary fittings are not shown.
  • the solution is only an example, it may instead of the Nuten Adjust 8 in the split housing 5a and 5b, other solutions such as trapezoidal guides, linear guides with bushings, etc. are used.
  • Other solutions such as trapezoidal guides, linear guides with bushings, etc. are used.
  • the mechanism for the re-enactment will be explained in a later section, since it can be used for almost all of the presented solutions.
  • Figures 4 to 11 are concerned with the adjustment of the chain tension by changes in the geometry between the sword 2 and the sword point and the drive pinion 4.
  • This part of the invention is based on the usual techniques for, usually manual, retightening the chain.
  • Stand-alone developments result from dividing the housing for the adjusting unit into a fixed part and a slide.
  • Fig. 4 shows the adjustment by a pinion 12 which engages in a rack 12 a, which in turn constitutes a part of the sword 2.
  • the sword 2 is moved over the longitudinal holes 12b in the desired direction.
  • the pinion 12 is moved by the adjusting unit 3 in the sense of readjusting the chain tension.
  • Fig. 5 shows another form of adjustment in which the sword tip is displaced in the longitudinal direction.
  • the mechanism for readjustment is included in the now undivided adjustment unit 3.
  • About a nose 9, the force is introduced from the adjusting unit 3 in the sword 2, either to move the whole sword or only the sword tip.
  • the nose 9 is latched via the opening 11 in the slide 10.
  • the slider 10 moves the tip 10a of the sword 2.
  • Fig. 6 shows a cross section A ... A of Fig. 5 by the sword 2 in the drive lug 9.
  • the nose 9 moves over the recess 1 1, the slider 10, which in turn the tip 10a of the sword 2 in terms of re-tensioning emotional.
  • Fig. 7 shows the simpler variant, in which the sword 2 on the guide pins
  • Figures 8 to 11 bring a more complex solution in which both the sword 2, as well as the adjusting unit 3 and the drive motor 1 keep a constant position.
  • the adjustment is done by moving the drive pinion 4 for the chain.
  • the motor pinion 15 is driven. Both the shaft 14 and the pinion 15 remain stationary.
  • the gear 16 is guided by the rocker 19 to the pinion 15, wherein the necessary adjusting force acts on the bore 18.
  • the pinion 4 is driven by the gear 16.
  • the pinion is moved relative to the sword 2 in the sense of a Nachspannens.
  • Fig. 10 (top view) and 11 (side view) show more schematically a solution, in which the pinion 4 by a double-executed gear similar to the figures 3 to 7 is guided parallel to the line of flight of the sword 2.
  • the motor pinion 15 is stationary in the machine and in turn drives the gear 16 at.
  • the pinion 15 and the shaft 20 of the gear 16 are connected to each other via the rocker 22 at a fixed distance.
  • the torque from the gear 16 is transmitted via the shaft 20 to the pinion 21, which in turn drives the gear 24.
  • the gear 24 is seated on the shaft 25 and drives the pinion 4 for the chain.
  • the shafts 20 and 25 are connected to each other via the 2 rocker 23 at a fixed distance.
  • the shaft 25 is guided in addition to the mounting of the rocker 23 in a sliding block 26.
  • the sliding block 26 is moved by the adjusting unit 3, not shown here, in the sense of re-tensioning the chain.
  • Figures 12 to 20 provide exemplary solutions for picking up the chain tension by means of electronic or mechanical sensors.
  • the recording of the tension of the chain 31 is shown in FIG. 12.
  • the arrows in Figure 12 show the direction of movement of the chain 31 and the direction of rotation of the pinion 4.
  • the sensor 30, shown here as a wheel or roller acts on or in the adjusting unit 3.
  • the following figures relate only to this area or on a part of the pinion 4.
  • the role 30 has two side treads not further described and a groove in the middle to guide the saw chain as with the sword with the side members.
  • Figures 13 and 14 show the decrease of the chain tension by means of the already mentioned roller 30 in side view and in plan view.
  • the roller 30 is connected via a bearing 36 with the rocker 32.
  • the rocker 32 leads via the bearing 33 and with the shaft 34 in the interior of the adjusting unit 3.
  • the spring 35 specifies the tension of the chain 31.
  • Fig. 15 shows a variant for transmitting the manipulated variable in the adjusting unit 3.
  • the roller 30 is mounted on the bearing 36.
  • the bearing 36 is fixed on the angle 39, which in turn leads to the bolt 38 in the interior of the adjusting unit 3.
  • the spring 35 which presses on the bolt 38, again provides the necessary chain tension.
  • the sliding element 40 has the advantage that the radius 41 in FIG. 17 is 10 to 20 times greater than the radius of the roller 30.
  • the sliding element 40 has in the middle a groove for the transport teeth of a typical saw chain, the chain 31 runs with the lateral links on the side parts of the groove. Apart from the simpler construction, the sliding member 40 is characterized by a much greater smoothness, as constantly several chain links rest on the running surfaces.
  • the sensor 50 is arranged laterally from the running direction of the chain 31 because of the higher security.
  • the chain 31 consists of the parts 31 a, the abrasive, the outer chain links 31 b and the middle chain link 31 c with the transport tooth for the drive pinion 4.
  • the arrow h indicates the direction of disengagement in loose chain.
  • the sensor 50 provides the output signal according to FIG. 19, a diagram of the amplitude 52 and the time t. In the wavy curve, the individual elements of the chain, depending on their distance 59 to the sensor 50 can be seen.
  • the individual regions of the curve 53 clearly show the small distance 59 between the sensor 50 and, for example, the cutting means 31a.
  • the individual parts of the chain are formed in the curve 53 in the steps 53a to 53d, wherein the outer chain links 31 b with the curve section 53b, the middle chain link 31 c with the part 53c correlate.
  • the area 53 d shows the increasing distance of the chain 31 from the sensor 50. After such a wavy signal still makes little sense to readjust the chain, in a further switching stage 60, the signals 51 must be smoothed directly from the sensor 50. After the switching stage 60 remains a smoothed signal 54 in the lower part of FIG. 19 left.
  • the threshold 55a corresponds to the measurement of the cutting means 31a, the value 55b to the outer chain links 31b, the value 55c to the middle chain link 31c and the decaying value 55d to the increasing distance h of the chain 31 from the sensor 50.
  • the smoothed signal 54 is sufficient to
  • the signals 62 and 63 are generated by the switching stage 61 and cause a retightening of the chain via the usual amplifier 64 for the signals and the motor 65 driven by the amplifier 64. This servo technology corresponds to the prior art , a detailed description can be omitted.
  • the electronic sensor 50 on an inductive or capacitive basis, it is also possible to use a sensor with a fixed magnet and the change in the magnetic flux as the manipulated variable.
  • This sensor provides a comparable signal, but has the disadvantage that any magnetizable particles that are removed during cutting, adhere to the sensor and distort the measurement.
  • Fig. 20 exemplifies the preparation of an electric signal for adjusting the chain tension.
  • the switching stage 61 and the amplifier 64 can be controlled.
  • FIGS. 21 to 30 show the internal construction of the adjusting unit 3 in different variants. After various power sources are available for readjustment, the most important solutions in this area are recorded.
  • Fig. 21 shows an exemplary mechanical solution for readjustment: the sensor
  • the slider 81 which is provided with an internal thread, depending on the direction of rotation of the friction wheel 77 is set in a lateral movement.
  • a coupling device is provided, for example, the nose 9 of Figures 5, 6 and 7.
  • the shaft 80 is fixed by the bearings 78 and 79 in the position.
  • the actuating force generated here can also be used via not further executed, but obvious mechanical solutions to provide the other adjustment methods of Figures 3 to 7 with the necessary manipulated variable.
  • Fig. 22 Instead of the friction wheel 77 and an electric motor 85 may be provided with gear 86 to perform the necessary corrections. It forms the actuator for the electrical and electronic solutions in the sensor system, as shown by way of example in FIGS. 18, 19, 20.
  • the drive of a pinion 12, as shown in Figure 4 can be realized directly with many commercially available transmissions and will also not be shown further.
  • the following two solutions use the drive fluid for the readjustment of the pressure of the rinsing fluid, which is required in any case with a high-performance saw.
  • the entire control circuit is matched to the rinsing fluid, which creates a variety of new components and solutions.
  • FIG. 23 shows the control required for most hydraulic adjustment units, which is controlled by the chain tension via the sensor 40.
  • the logic of the systems corresponds to a 3/2 control valve from the hydraulics with a middle position in which all lines are closed. This technique is believed to be known and is generally available.
  • the control valve consists of a metal or plastic body 102 with a blind hole 108. In the Blind hole is located at the bottom of the bore, a return spring 103, which presses the S85bolzen 100 against the chain tension, the sensor part 40, ident identi with the earlier names recorded.
  • the fluid Via the bore 106, the fluid is supplied under pressure to the chamber 109, which is formed by the recess 101 in the bore 108.
  • the holes 104 and 105 pass the fluid from the chamber 109 on to a simple turbine 110, depending on the position of the control pin 100th
  • the bore 107 which leads to the chamber under the control pin 100, serves primarily to relieve the chamber from the pressure of the fluid from the supply line 106. Via the bore 107, a back pressure can also be built up for further control and control purposes, e.g. to achieve an adjustment of the chain tension to certain materials or other operating parameters.
  • Fig. 25 shows another solution with a fluid, preferably a liquid. It is a more complex 4/2 control valve used in hydraulics, which knows a central position of the control pin 120, in which all outputs are locked.
  • the control valve is, for example, a part of the housing of the adjusting unit 3 and by the required holes 139 for the control pin 120, the bore 126 for the pressurized fluid, the bore 125 for the passage of the pressureless fluid, the holes 127 and 128 for the Exit 140, the hole 129 for the second exit and the relief bore 130 formed for any leaks between the control pin 120 and the bore 139.
  • the bores 140 and 129 may be alternately connected by the control bolt 120 to the fluid under pressure 126 or to the non-pressurized drain 125. In the middle position, as shown in Figure 25, all holes are 127 to 129 locked.
  • the spring 123 specifies the actuating force of the control pin 120 and thus the tension of the chain.
  • the bores from the control valve are connected to a double-acting pressure cylinder 133, wherein the output 140 is connected to the input 132 of the printing cylinder and the output 129 to the input 131 of the printing cylinder.
  • the piston 134 is moved to the appropriate position. The position of the piston is transmitted via the push rod 135 to the control block 137 and from this example to the nose 9, which is connected to the sword 2.
  • the control pin 120 is moved by the chain tension, which is received via the already known sensor 40. If the chain tension decreases, then pressure is applied via the pressure cylinder 133 through the nose 9, e.g. adjusted the sword. Likewise, if the chain is shortened, e.g. by cooling after a cut, the pressure is released from the pressure cylinder 133 and the chain is not overstretched.
  • the entire control unit consists of the control pin 120 with the sensor 40, the tension of the chain against the spring 123 acts. If the tension of the chain decreases, the control pin 120 is moved upwards and releases via the holes 126, the chamber 122 and the outlet 129 the pressure via the input 131 into the pressure cylinder 133. At the same time, the inlet 132 is connected via the elements 140, 121 and 125 to the non-pressurized drain, allowing the piston to move and retighten the chain.
  • a great advantage of this arrangement according to FIG. 25 is that readjustment in the sense of relaxation also takes place in the unpressurized state, without external energy. Via the bore 130, as explained in connection with FIG. 23, a pressure signal can again be applied in order to be able to respond to special conditions such as materials, rinsing agents, temperatures, etc., and to ensure an optimum operating point.
  • the pressure of the fluid is usually low, e.g. 4 ... 6 bar water pressure when using the chainsaw, the printing cylinder 133 considerable cross sections of the piston 134 are required.
  • the adjusting unit 3 should be built as small as possible in order to keep the entire machine easily manageable. It is therefore proposed in Fig. 26, the pressure cylinder perform multiple times to obtain even at a low pressure of the fluid sufficient force for the readjustment of the sword and thus the chain.
  • FIG. 26 shows by way of example two parallel-connected, double-executed impression cylinders, thus a 4-fold acting system, which delivers 4 times the force with respect to the system shown in FIG.
  • the system according to FIG. 26 is controlled by a 4/2 control valve according to FIG. 25, whereby the supply of all four individual cylinders takes place via the already known outputs 132 and 131.
  • the output 132 acts on the upper inputs of the four cylinders with the designations 166 to 169, the output 131 on the lower inputs 162 to 165.
  • the pistons 154 to 157 are moved to the desired position, whereby the piston rods 170 and 171 on which said pistons are mounted, move the block 137 and thus, for example, the locating lug 9.
  • more than the two pressure cylinders shown can be connected both in succession and in parallel, with which the force can be raised very far even at very low pressures of the fluid.
  • the valves for the fluid of Figures 23 and 25 act directly on the adjusting unit, be it a pressure cylinder, a turbine, or any of the other systems shown. If there are vibrations on the chain, for example due to uneven hardening in the material to be cut, they also trigger very fast readjustment reactions.
  • a dampening system in the sensor path can limit the ongoing neighbor. Suitable damping systems are: A cross-sectional throttle in the bores 107 and 130, so that the control bolt 100 and 120 can follow only damped the movements of the chain.
  • the connection 32 or 39 between the sensor part and the control pin or the electronic control can be carried out elastically, which also fast vibrations are kept away from the adjusting unit.
  • control bolt 100 or 120 act on a rotating control valve with the logic already described. With this solution, there are further possibilities of intervention in order to effect a damping of the signals.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Transmission Devices (AREA)
  • Sawing (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

Bei einer Kettensäge mit einem Schwert (2), einem zu einem Antrieb (1) gehörenden Antriebsritzel (4) und einer über das Schwert (2) und das Antriebsritzel (4) laufenden Sägekette (31), die durch eine Relativbewegung des Schwertes (2) oder eines Teils des Schwertes (10), insbesondere der am Ende eines Schiebers (10) angeordneten Schwertspitze (10a), und des Antriebsritzels (4) spannbar und entspannbar ist, ist erfindungsgemäß zwischen dem Antriebsritzel (4) und dem Schwert (2), vorzugsweise im Bereich der vom Antriebsritzel (4) ablaufenden Kette (31 ), ein Sensorelement (30, 40) zur Erfassung einer Änderung der Kettenspannung angeordnet und eine unabhängig von der Last auf der Kette (31) auf Basis der Änderung der Kettenspannung ständig arbeitende Nachstelleinheit (3) ist zur Erzeugung der Relativbewegung vorgesehen.

Description

Kettensäge
Die Erfindung betrifft eine Kettensäge mit einem Schwert, einem zu einem Antrieb gehörenden Antriebsritzel und einer über das Schwert und das Antriebsritzel laufenden Sägekette, die durch eine Relativbewegung des Schwertes oder eines Teils des Schwertes, insbesondere der am Ende eines Schiebers angeordneten Schwertspitze, und des Antriebsritzels spannbar und entspannbar ist.
Viele Werkstoffe werden mit Kettensägen geschnitten. Dabei erfahren diese Schneidgeräte eine besondere Belastung beim Schneiden harter Materialien wie Gesteinen. Da die Schneidkette einer Kettensäge während des Schnitts von sehr harten Materialien an Spannung verliert und ein solcher Schnitt oft eine Stunde oder länger dauert, muss einerseits die Kettenspannung ständig überwacht werden und andererseits sollte der Spannungsverlust der Schneidkette sofort ausgeglichen werden, um Beschädigungen des Gerätes zu vermeiden.
Bereits seit längerem sind manuelle mechanische Schneidkettenspannsysteme bekannt. Sie erfordern jedoch neben der ständigen Überwachung der Kettenspannung, dass erkannt wird, dass die Kettenspannung nachlässt, d.h. eine gewisse Erfahrung der die Kettensäge bedienenden Person, und das Unterbrechen des Schneidevorgangs. Da üblicherweise ungelernte Arbeitskräfte mit den Geräten arbeiten, ist in vielen Fällen die Notwendigkeit des Nachspannens nicht bekannt, bzw. das Nachlassen der Kettenspannung wird nicht erkannt, so dass die Kontrolle und Pflege der Schneidmittel im Einsatz vernachlässigt wird, wodurch die Aufwendungen für Ersatz und die Stillstandszeiten durch Maschinenproblemen deutlich steigen. Es ist daher Aufgabe der vorliegenden Erfindung eine Kettensäge so zu gestalten, dass das Nachlassen der Kettenspannung automatisch erkannt wird und diese Veränderung ausgeglichen wird.
Diese Aufgabe wird durch eine Kettensäge mit den Merkmalen des Anspruches 1 gelöst, d.h. indem bei der eingangs genannten Kettensäge zwischen dem Antriebsritzel und dem Schwert, vorzugsweise im Bereich der vom Antriebsritzel ablaufenden Kette, ein Sensorelement zur Erfassung einer Änderung der Kettenspannung angeordnet ist und eine unabhängig von der Last auf der Kette auf Basis der Änderung der Kettenspannung ständig arbeitende Nachstelleinheit zur Erzeugung der Relativbewegung vorgesehen ist.
Bei der erfindungsgemäßen Kettensäge wird somit automatisch die Kettenspannung ständig optimiert und die Nachteile einer manueller Kettennachspannung des Standes der Technik sowie vorzeitige Abnützung und Maschinenprobleme vermieden.
In den Unteransprüchen 2 bis 20 sind bevorzugte Ausführungsformen der erfindungsgemäßen Kettensäge gekennzeichnet.
Im Folgenden soll die Erfindung anhand von Ausführungsbeispielen, die in den angeschlossenen Zeichnungen dargestellt sind, näher erläutert werden. Die Figuren zeigen verschiedene Lösungen zum Nachstellen der Kettenspannung. Fig. 1 stellt eine Kettensäge schematisch dar. Die Figuren 2 bis 1 1 zeigen das beispielhafte Nachstellen der Kettenspannung durch mehrere Lösungen. Die Figuren 12 bis 20 bringen beispielhafte Lösungen für das Aufnehmen der Kettenspannung mit Hilfe von elektronischen oder mechanischen Sensoren. Die Figuren 21 bis 26 stellen die innere Konstruktion der Nachstelleinheit 3 in verschiedenen Varianten dar.
Die Fig.1 zeigt schematisch eine Kettensäge mit dem Antriebsteil 1 , dem Kettenschwert 2 und der Nachstelleinheit 3. Auf den Antriebsteil und das Schwert wird nicht weiter eingegangen, da diese Teile für die Erfindung nicht relevant sind. Das Antriebsritzel 4 liegt in der Flucht mit dem Schwert 2. Die Kette ist in der Fig. 1 nicht dargestellt. Die Ausführungsform gemäß den Figuren 2 und 3 lehnt sich an die bisher übliche Art der Nachstellung an, bei der das Schwert 2 gegenüber dem Antriebsmotor 1 verschoben wird. Um diese Nachstellung zu ermöglichen, ist das Gehäuse der Nachstelleinheit 3 geteilt und in Richtung des Schwertes 2 verschiebbar ausgeführt. Die Fig. 2 zeigt die Aufsicht auf die Nachstelleinheit 3, die Fig. 3 die Sicht von der Seite des Antriebsritzels, das in der Darstellung weggelassen worden ist. Die Teilung der Nachstelleinheit 3 betrifft einen Teil 5a, der am Antriebsmotor 1 befestigt ist und einen beispielhaften Schlitten 5b, auf dem das Schwert 2 befestigt ist. Damit ist das Schwert 2 in Längsrichtung gegenüber dem Antriebsmotor 1 verschiebbar. Die Befestigung bzw. Halterung der Kettensäge für das Führen des Schnittes kann sowohl auf der Motorseite 6, als auch auf der Seite der Kette 7 durchgeführt werden. Die erforderlichen Verschraubungen sind nicht dargestellt.
Die Lösung ist nur beispielhaft, es können anstelle der Nutenführung 8 beim geteilten Gehäuse 5a und 5b auch andere Lösungen wie Trapezführungen, Linearführungen mit Buchsen etc. verwendet werden. Der Mechanismus für die Nachstellung wird in einem späteren Abschnitt erläutert, da er für fast alle der vorgestellten Lösungen verwendbar ist.
Die Figuren 4 bis 11 befassen sich mit dem Nachstellen der Kettenspannung durch Veränderungen an der Geometrie zwischen dem Schwert 2 und der Schwertspitze und dem Antriebsritzel 4. Dieser Teil der Erfindung baut auf den üblichen Techniken zum, üblicherweise manuellen, Nachspannen der Kette auf. Es werden die an sich bekannten Methoden von einer Nase, einer Spindel, die die Nase und damit das Schwert bewegt oder einem Zahnrad, einer Zahnstange und dem dazugehörigen Ritzel, verwendet. Eigenständige Entwicklungen ergeben sich durch das Teilen des Gehäuses für die Nachstelleinheit in einen fest stehenden Teil und einen Schlitten.
Fig. 4 zeigt das Nachstellen durch ein Ritzel 12, das in eine Zahnstange 12a eingreift, die ihrerseits einen Bestandteil des Schwerts 2 darstellt. Das Schwert 2 wird über die Längslöcher 12b in der gewünschten Richtung bewegt. Das Ritzel 12 wird von der Nachstelleinheit 3 im Sinne der Nachregelung der Kettenspannung bewegt. Die Fig. 5 zeigt eine andere Form der Nachstellung, bei der die Schwertspitze in Längsrichtung verschoben wird. Der Mechanismus für das Nachstellen ist in der jetzt ungeteilten Nachstelleinheit 3 enthalten. Über eine Nase 9 wird die Kraft aus der Nachstelleinheit 3 in das Schwert 2 eingeleitet, sei es zum Verschieben des ganzen Schwertes oder nur der Schwertspitze. Die Nase 9 wird über die Öffnung 11 in den Schieber 10 eingeklinkt. Der Schieber 10 bewegt die Spitze 10a des Schwertes 2.
Fig. 6 zeigt einen Querschnitt A...A von Fig. 5 durch das Schwert 2 im Bereich der Antriebsnase 9. Die Nase 9 bewegt über die Ausnehmung 1 1 den Schieber 10, der seinerseits die Spitze 10a des Schwerts 2 im Sinne des Nachspannens bewegt.
Fig. 7 zeigt die einfachere Variante, bei der das Schwert 2 über die Führungsbolzen
13 in Längsrichtung gegenüber dem Antriebsmotor 1 oder der Nachstelleinheit 3 beweglich bleibt. Die Nase 9 der Nachstelleinheit wird in die Öffnung 11' eingefügt und bewirkt die Nachstellung des Schwertes 2.
Die Figuren 8 bis 11 bringen eine aufwändigere Lösung, bei der sowohl das Schwert 2, als auch die Nachstelleinheit 3 und der Antriebsmotor 1 eine gleich bleibende Position behalten. Das Nachstellen erfolgt durch das Verschieben des Antriebsritzels 4 für die Kette.
Bei Fig. 8 wird das Antriebsritzel 4 um das Motorritzel 15 geschwenkt. Der Mittelpunkt 17 des Zahnrads 16 wird auf einer Kreisbahn um den Mittelpunkt des Ritzels 15 gedreht, wobei beispielsweise die Positionen 16' bzw. 16" eingenommen werden können. Nachteil dieser Lösung ist, dass der Mittelpunkt 17 nicht exakt in der Flucht des Schwertes 2 bleibt, sondern durch das Schwenken seine Höhe um mehr als 1 mm ändern kann. Die Fig. 9 zeigt die Seitenansicht der Lösung. Um die Motorwelle
14 wird das Motorritzel 15 angetrieben. Sowohl die Welle 14 als auch das Ritzel 15 bleiben ortsfest. Das Zahnrad 16 wird durch die Schwinge 19 um das Ritzel 15 geführt, wobei die notwendige Nachstellkraft auf die Bohrung 18 wirkt. Über die Welle 17 wird das Ritzel 4 vom Zahnrad 16 angetrieben. Durch die Lösung wird das Ritzel im Sinne eines Nachspannens relativ zum Schwert 2 bewegt.
Fig. 10 (Aufsicht) und 11 (Seitenansicht) weisen mehr schematisch auf eine Lösung hin, bei der das Ritzel 4 durch ein doppelt ausgeführtes Getriebe ähnlich den Figuren 3 bis 7 parallel zur Fluchtlinie des Schwerts 2 geführt wird. Das Motorritzel 15 ist ortsfest in der Maschine und treibt seinerseits das Zahnrad 16 an. Das Ritzel 15 und die Welle 20 des Zahnrades 16 sind über die Schwinge 22 in einer fest stehenden Distanz miteinander verbunden. Das Drehmoment vom Zahnrad 16 wird über die Welle 20 auf das Ritzel 21 übertragen, das seinerseits das Zahnrad 24 antreibt. Das Zahnrad 24 sitzt auf der Welle 25 und treibt das Ritzel 4 für die Kette an. Die Wellen 20 und 25 sind über die 2-Schwinge 23 in einem festen Abstand miteinander verbunden. Die Welle 25 wird zusätzlich zur Lagerung der Schwinge 23 in einem Gleitstein 26 geführt. Der Gleitstein 26 wird durch die Nachstelleinheit 3, hier nicht weiter dargestellt, im Sinne eines Nachspannens der Kette bewegt.
Die Figuren 12 bis 20 bringen beispielhafte Lösungen für das Aufnehmen der Kettenspannung mit Hilfe von elektronischen oder mechanischen Sensoren.
Die Aufnahme der Spannung der Kette 31 wird in der Fig. 12 dargestellt. Die einzige Stelle, an der die Kette 31 nicht unter Spannung steht und an der die Längenänderung unbeeinflusst abgenommen werden kann, ist unmittelbar nach dem Antriebsritzel 4 und noch vor dem Einlauf in das Schwert 2. Die Pfeile in der Abbildung 12 zeigen die Bewegungsrichtung der Kette 31 und die Drehrichtung des Ritzels 4. Der Sensor 30, hier als Rad bzw. Rolle dargestellt, wirkt auf bzw. in die Nachstelleinheit 3. Die folgenden Figuren beziehen sich nur mehr auf diesen Bereich bzw. auf einen Teil des Ritzels 4. Die Rolle 30 weist zwei nicht weiter beschriebene seitliche Laufflächen und eine Nut in der Mitte auf, um die Sägekette wie beim Schwert mit den seitlichen Gliedern zu führen.
Figuren 13 und 14 zeigen die Abnahme der Kettenspannung mit Hilfe der bereits genannten Rolle 30 in Seitenansicht und in Aufsicht. Die Rolle 30 ist über ein Lager 36 mit der Schwinge 32 verbunden. Die Schwinge 32 führt über das Lager 33 und mit der Welle 34 in das Innere der Nachstelleinheit 3. Über einen, mit der Welle 34 fest verbundenen Hebel 37 wird die Kraft von der Rolle 30 auf die Feder 35 übertragen. Die Feder 35 gibt die Spannung der Kette 31 vor. Vom Hebel 37 wird die Stellgröße für das Nachstellen der Kette abgenommen. Die Aufbereitung des Stellsignals erfolgt in einem der folgenden Abschnitte. Fig. 15 bringt eine Variante zur Übertragung der Stellgröße in die Nachstelleinheit 3. Die Rolle 30 ist auf dem Lager 36 befestigt. Das Lager 36 wird auf dem Winkel 39 fixiert, der seinerseits auf dem Bolzen 38 in das Innere der Nachstelleinheit 3 führt. Die Feder 35, die auf den Bolzen 38 drückt, gibt wieder die notwendige Kettenspannung vor. Diese Variante hat Vorteile bei der Abnahme der Stellgrößen für das Nachstellen, wie in einem der folgenden Abschnitte gezeigt wird.
Anstelle der Rolle 30 kann auch ein Gleitelement 40 aus dem Schwert verwendet werden. Diese Lösung hat den Vorteil, dass das Lager 36 entfällt und stattdessen eine starre Verbindung zur Schwinge 32 oder dem Winkel 39 vorgesehen werden kann. Diese Lösung wird beispielhaft mit der Fig. 16 gezeigt. Das Gleitelement 40 hat den Vorteil, dass der Radius 41 in Fig. 17 um das 10 bis 20-fache größer ist als der Radius der Rolle 30. Das Gleitelement 40 weist in der Mitte eine Nut für die Transportzähne einer typischen Sägekette auf, die Kette 31 läuft mit den seitlichen Gliedern auf den Seitenteilen der Nut. Abgesehen von der einfacheren Konstruktion zeichnet sich das Gleitelement 40 durch eine wesentlich größere Laufruhe aus, da ständig mehrere Kettenglieder auf den Laufflächen aufliegen.
Eine elektronische Bestimmung der Kettenspannung wird in Fig. 18 behandelt. Der Sensor 50 wird wegen der höheren Sicherheit seitlich von der Laufrichtung der Kette 31 angeordnet. Die Kette 31 besteht aus den Teilen 31 a, dem Schleifmittel, den äußeren Kettengliedern 31b und dem mittleren Kettenglied 31c mit dem Transportzahn für das Antriebsritzel 4. Der Pfeil h gibt die Richtung des Ausrückens bei lockerer Kette an. Über die Distanz 59 wird die Annäherung von Teilen der Kette 31 elektronisch, sei es kapazitiv oder induktiv gemessen. Der Sensor 50 liefert das Ausgangsignal gemäß Fig. 19, einem Diagramm über die Amplitude 52 und die Zeit t. In der welligen Kurve sind die einzelnen Elemente der Kette, abhängig von ihrer Distanz 59 zum Sensor 50 erkennbar. Die einzelnen Bereiche der Kurve 53 zeigen deutlich die geringe Distanz 59 zwischen dem Sensor 50 und z.B. dem Schneidmittel 31a. Die einzelnen Teile der Kette bilden sich in der Kurve 53 in den Stufen 53a bis 53d ab, wobei die äußeren Kettenglieder 31 b mit dem Kurvenabschnitt 53b, das mittlere Kettenglied 31 c mit dem Teil 53c korrelieren. Der Bereich 53d zeigt den zunehmenden Abstand der Kette 31 vom Sensor 50. Nachdem ein derart welliges Signal noch wenig Sinn macht zum Nachstellen der Kette, müssen in einer weiteren Schaltstufe 60 die Signale 51 unmittelbar vom Sensor 50 geglättet werden. Nach der Schaltstufe 60 bleibt ein geglättetes Signal 54 im unteren Bereich der Fig. 19 übrig. Die Schwelle 55a entspricht der Messung des Schneidmittels 31a, der Wert 55b den äußeren Kettengliedern 31 b, der Wert 55c dem mittleren Kettenglied 31c und der abklingende Wert 55d der zunehmenden Entfernung h der Kette 31 vom Sensor 50. Das geglättete Signal 54 ist ausreichend, um eine beliebige Schaltstufe 61 anzusteuern, Die Signale 62 und 63 werden von der Schaltstufe 61 erzeugt und bewirken ein Nachspannen bzw. Nachlassen der Kette über den üblichen Verstärker 64 für die Signale und den vom Verstärker 64 angesteuerten Motor 65. Diese Servotechnologie entspricht dem Stand der Technik, eine ausführliche Beschreibung kann entfallen.
Alternativ zu dem elektronischen Sensor 50 auf induktiver oder kapazitiver Basis kann auch ein Sensor mit einem Festmagneten und der Änderung des magnetischen Flusses als Stellwert verwendet werden. Dieser Sensor liefert ein vergleichbares Signal, hat aber den Nachteil, dass eventuell magnetisierbare Partikel, die beim Schneiden abgetragen werden, auf dem Sensor haften bleiben und die Messung verfälschen.
Die Fig. 20 zeigt beispielhaft das Aufbereiten eines elektrischen Signals für das Nachstellen der Kettenspannung. Abhängig von der Art des Sensors, z.B. dem elektronischen Sensor 50 mit der Signalaufbereitung 60 kann die Schaltstufe 61 bzw. der Verstärker 64 angesteuert werden. Es kann aber auch eine mechanische Schaltung vorhanden sein, die z.B. vom Hebel 37 in Fig. 14 bedient wird und die Schaltstufe 61 direkt bedient.
Die Figuren 21 bis 30 stellen die innere Konstruktion der Nachstelleinheit 3 in verschiedenen Varianten dar. Nachdem verschiedene Kraftquellen zum Nachstellen in Frage kommen, werden die wichtigsten Lösungen in diesem Bereich festgehalten.
Fig. 21 zeigt eine beispielhafte mechanische Lösung für das Nachstellen: Der Sensor
40, beispielhaft und ident mit der Position 40 in den vorigen Figuren, überträgt die
Spannung der Kette auf die Welle 70 und die Feder 75, die in einem festen Auflager 76 ruht. Durch Veränderungen der Kettenspannung, dargestellt durch den Doppelpfeil oberhalb des Sensors 40, wird die Welle 70 axial gegen die Feder 75 verschoben. Die Welle 70 wird über ein hier nicht weiter interessierendes Getriebe 71 in Drehung versetzt, wie der Pfeil oberhalb des Getriebes 71 andeutet. Durch die Verschiebung der Welle 70 werden die Kupplungsscheiben 72 und 73 näher zur oder weiter weg von der Reibradscheibe 77 gebracht. Die Reibradscheibe 77 ändert die Drehrichtung, abhängig davon, ob sie von der Kupplungsscheibe 72 oder 73 berührt wird. Die Reibradscheibe 77 ist auf der Welle 80 befestigt, die mit einem Gewinde 82 versehen ist. Durch das Gewinde 82 wird das Gleitstück 81 , das mit einem Innengewinde versehen ist, abhängig von der Drehrichtung des Reibrades 77 in eine seitliche Bewegung versetzt. An diesem Gleitstück 81 ist eine Kupplungsvorrichtung vorgesehen, z.B. die Nase 9 aus den Figuren 5, 6 und 7. Die Welle 80 ist durch die Lager 78 und 79 in der Lage fixiert.
Die hier erzeugte Stellkraft kann über nicht weiter ausgeführte, aber nahe liegende mechanische Lösungen auch dazu verwendet werden, um auch die anderen Nachstellmethoden der Figuren 3 bis 7 mit der notwendigen Stellgröße zu versorgen.
Fig. 22: Anstelle der Reibradscheibe 77 kann auch ein Elektromotor 85 mit Getriebe 86 vorgesehen sein, um die notwendigen Korrekturen auszuführen. Sie bildet das Stellglied für die elektrischen und elektronischen Lösungen in der Sensorik, wie in den Figuren 18, 19, 20 beispielhaft gezeigt. Der Antrieb eines Ritzels 12, wie in der Figur 4 gezeigt, kann mit vielen handelsüblichen Getrieben direkt realisiert werden und soll ebenfalls nicht weiter dargestellt werden.
Die beiden folgenden Lösungen verwenden als Antriebsenergie für das Nachstellen den Druck der Spülflüssigkeit, die bei einer Hochleistungssäge ohnehin erforderlich ist. Der gesamte Regelkreis wird auf die Spülflüssigkeit abgestimmt, womit eine Vielzahl neuer Bauteile und Lösungen entstehen.
Fig. 23 zeigt die für die meisten hydraulischen Nachstelleinheiten erforderliche Regelung, die von der Kettenspannung über den Sensor 40 gesteuert wird. Die Logik der Systeme entspricht einem 3/2 Steuerventil aus der Hydraulik mit einer Mittelstellung, bei der alle Leitungen geschlossen sind. Diese Technik wird als bekannt vorausgesetzt und ist allgemein zugänglich. Das Steuerventil besteht aus einem Metall- oder Kunststoffkörper 102 mit einer Sacklochbohrung 108. In der Sacklochbohrung befindet sich am Boden der Bohrung eine Rückstellfeder 103, die den Sfeuerbolzen 100 gegen die Kettenspannung drückt, die vom Sensorteil 40, ident mit den früheren Bezeichnungen, aufgenommen wird. Über die Bohrung 106 wird das Fluid unter Druck zugeführt, bis zur Kammer 109, die durch die Ausnehmung 101 in der Bohrung 108 gebildet wird. Die Bohrungen 104 und 105 leiten das Fluid aus der Kammer 109 weiter zu einer einfachen Turbine 110, abhängig von der Stellung des Steuerbolzens 100.
Lässt die Kettenspannung nach, gleitet der Bolzen 100 nach oben und die Ausnehmung 101 gibt die Bohrung 104 frei. Damit wird die Turbine 1 10 nach rechts gedreht. Die Drehung wird, wie Fig. 24 zeigt, über ein bereits bekanntes Getriebe 86 auf die Welle 80 und damit auf das Gewinde 82 übertragen. Fig. 22 zeigt den
Gleitstein für das Nachstellen der Kettenspannung, z.B. über das Schwert 2. Wird die
Kette kürzer, z.B. durch Abkühlen nach dem Schnitt, dann wird die Öffnung 105 frei gegeben, die Turbine 1 10 wird nach links gedreht und es kommt zu einem Verringern der Spannung. Da das Fluid nach dem Bewegen der Turbine frei abläuft, ist eine aufwändigere Rücklaufsteuerung hier nicht erforderlich. Die gesamte Anordnung von der Turbine 110 über das Getriebe 86 und die Gewindespindel 80 und 82 sind selbsthemmend unter der Last der Kettensäge, weshalb hier keine Klemm- oder Bremssysteme erforderlich sind.
Die Bohrung 107, die zur Kammer unter dem Steuerbolzen 100 führt, dient in erster Linie zur Entlastung der Kammer vom Druck des Fluids aus der Zuleitung 106. Über die Bohrung 107 kann auch für weitere Regel- und Steuerzwecke ein Gegendruck aufgebaut werden, um z.B. eine Anpassung der Kettenspannung an bestimmte Werkstoffe oder andere Betriebsparameter zu erreichen.
Fig. 25 bringt eine andere Lösung mit einem Fluid, vorzugsweise einer Flüssigkeit. Es wird ein aufwändigeres 4/2 Steuerventil aus der Hydraulik verwendet, das eine Mittellage des Steuerbolzens 120 kennt, bei der alle Ausgänge gesperrt sind. Das Steuerventil ist beispielsweise ein Teil des Gehäuses der Nachstelleinheit 3 und wird durch die erforderlichen Bohrungen 139 für den Steuerbolzen 120, der Bohrung 126 für das unter Druck stehende Fluid, der Bohrung 125 für den Ablauf des drucklosen Fluids, den Bohrungen 127 und 128 für den Ausgang 140, der Bohrung 129 für den zweiten Ausgang und der Entlastungsbohrung 130 für eventuelle Leckagen zwischen dem Steuerbolzen 120 und der Bohrung 139 gebildet.
Die Bohrungen 140 und 129 können durch den Steuerbolzen 120 abwechselnd mit dem Fluid unter Druck 126 oder mit dem drucklosen Ablauf 125 verbunden werden. In der Mittelstellung, wie in der Figur 25 gezeigt, sind alle Bohrungen 127 bis 129 gesperrt. Die Feder 123 gibt die Stellkraft des Steuerbolzens 120 und damit die Spannung der Kette vor.
Die Bohrungen vom Steuerventil sind mit einem doppelt beaufschlagbaren Druckzylinder 133 verbunden, wobei der Ausgang 140 mit dem Eingang 132 des Druckzylinders verbunden ist und der Ausgang 129 mit dem Eingang 131 des Druckzylinders. Abhängig von den Druck- und Volumenverhältnissen im Druckzylinder 133 wird der Kolben 134 in die entsprechende Position verschoben. Die Position des Kolbens wird über die Schubstange 135 auf den Steuerklotz 137 und von diesem beispielsweise auf die Nase 9 übertragen, die mit dem Schwert 2 verbunden ist.
Der Steuerbolzen 120 wird von der Kettenspannung bewegt, die über den bereits bekannten Sensor 40 aufgenommen wird. Lässt die Kettenspannung nach, dann wird über den Druckzylinder 133 durch die Nase 9 z.B. das Schwert nachgestellt. Ebenso wird bei einem Verkürzen der Kette, z.B. durch Abkühlen nach einem Schnitt, der Druck aus dem Druckzylinder 133 abgelassen und die Kette nicht überdehnt.
Die gesamte Regeleinheit besteht aus dem Steuerbolzen 120 mit dem Sensor 40, wobei die Spannung der Kette gegen die Feder 123 wirkt. Verringert sich die Spannung der Kette, dann wird der Steuerbolzen 120 nach oben bewegt und gibt über die Bohrungen 126, die Kammer 122 und den Ausgang 129 den Druck über den Eingang 131 in den Druckzylinder 133 frei. Gleichzeitig wird der Eingang 132 über die Elemente 140, 121 und 125 mit dem drucklosen Ablauf verbunden, womit sich der Kolben bewegen kann und die Kette nachspannt.
Ein großer Vorteil dieser Anordnung nach Fig. 25 besteht darin, dass ein Nachregeln im Sinne eines Entspannens auch im drucklosen Zustand, ohne Fremdenergie, erfolgt. Über die Bohrung 130 kann, wie zu der Fig. 23 ausgeführt, wieder ein Drucksignal angelegt werden, um auf besondere Bedingungen wie Materialien, Spülmittel, Temperaturen etc. eingehen zu können und einen optimalen Arbeitspunkt sicher zu stellen.
Da der Druck des Fluids üblicherweise niedrig ist, z.B. 4...6 bar Wasserdruck bei Einsatz der Kettensäge, sind beim Druckzylinder 133 beträchtliche Querschnitte des Kolbens 134 erforderlich. Die Nachstelleinheit 3 soll jedoch möglichst klein gebaut werden, um die gesamte Arbeitsmaschine leicht handhabbar zu halten. Es wird daher in der Fig. 26 vorgeschlagen, die Druckzylinder mehrfach auszuführen, um auch bei einem niedrigen Druck des Fluids eine ausreichende Kraft für das Nachstellen des Schwerts und damit der Kette zu erlangen.
Fig. 26 zeigt als Beispiel zwei parallel geschaltete, doppelt ausgeführte Druckzylinder, somit ein 4-fach wirkendes System, das die 4-fache Kraft gegenüber dem in Figur 25 gezeigten System abgibt. Das System nach Fig. 26 wird von einem 4/2 Stellventil nach Figur 25 gesteuert, womit die Anspeisung aller vier Einzelzylinder über die bereits bekannten Ausgänge 132 und 131 erfolgt. Der Ausgang 132 wirkt auf die oberen Eingänge der vier Zylinder mit den Bezeichnungen 166 bis 169, der Ausgang 131 auf die unteren Eingänge 162 bis 165. Entsprechend den Druckverhältnissen werden die Kolben 154 bis 157 in die gewünschte Position verschoben, womit die Kolbenstangen 170 und 171 , auf denen die genannten Kolben befestigt sind, den Block 137 und damit beispielsweise die Stellnase 9 bewegen.
Abhängig von der Bauart der Säge können auch mehr als die gezeigten zwei Druckzylinder sowohl hintereinander, als auch parallel geschaltet werden, womit sich die Kraft selbst bei sehr niedrigen Drücken des Fluids sehr weit anheben lässt.
Die Ventile für das Fluid nach den Fig. 23 und 25 wirken direkt auf die Nachstelleinheit, sei es ein Druckzylinder, eine Turbine, oder eines der anderen, gezeigten Systeme. Kommt es zu Schwingungen auf der Kette, z.B. durch ungleiche Härten im zu schneidenden Material, lösen diese auch sehr schnelle Nachstellreaktionen aus. Hier kann ein dämpfendes System im Sensorpfad das andauernde Nächregeln einschränken. Als dämpfende Systeme kommen in Frage: Eine Querschnittsdrossel in den Bohrungen 107 bzw. 130, damit der Steuerbolzen 100 bzw. 120 nur gedämpft den Bewegungen der Kette folgen kann. Als weitere Maßnahme kann die Verbindung 32 bzw. 39 zwischen dem Sensorteil und dem Steuerbolzen oder der elektronischen Steuerung elastisch ausgeführt werden, womit ebenfalls rasche Schwingungen von der Nachstelleinheit ferngehalten werden.
Weitere Lösungen sind in der Fluidik bzw. Hydraulik bekannt, bei denen durch die Drosselung in den Zu- und Ableitungen zu den Druckzylindern 133 bzw. 150 bis 153 die Durchflussmenge begrenzt wird. Ebenso ist es möglich, durch die Ausformung der Bohrungen 104 bzw. 105 eine progressive Ventilöffnung zu erreichen, die mit geringen Durchflüssen beginnt und erst bei größeren Abweichungen einen größeren Querschnitt frei gibt. Ebenso kann der Steuerbolzen 100 bzw. 120 an den Rändern der Kammern 101 bzw. 121 und 122 derart angeschliffen sein, dass bei geringer Öffnung ein geringer Durchfluss erfolgt.
Es ist auch möglich, den Steuerbolzen 100 bzw. 120 auf ein rotierendes Stellventil mit der bereits beschriebenen Logik wirken zu lassen. Bei dieser Lösung gibt es weitere Eingriffsmöglichkeiten, um eine Dämpfung der Signale zu bewirken.

Claims

Patentansprüche
1. 1. Kettensäge mit einem Schwert (2), einem zu einem Antrieb (1) gehörenden Antriebsritzel (4) und einer über das Schwert (2) und das Antriebsritzel (4) laufenden Sägekette (31), die durch eine Relativbewegung des Schwertes (2) oder eines Teils des Schwertes (10), insbesondere der am Ende eines Schiebers (10) angeordneten Schwertspitze (10a), und des Antriebsritzels (4) spannbar und entspannbar ist, wobei zwischen dem Antriebsritzel (4) und dem Schwert (2), vorzugsweise im Bereich der vom Antriebsritzel (4) ablaufenden Kette (3*1), ein Sensorelement (30, 40) zur Erfassung einer
Änderung der Kettenspannung angeordnet ist und wobei eine unabhängig von der Last auf der Kette (31) auf Basis der Änderung der Kettenspannung ständig arbeitende Nachstelleinheit (3) zur Erzeugung der Relativbewegung vorgesehen ist, dadurch gekennzeichnet, dass das Sensorelement eine verschieb- oder verschwenkbare Rolle (30) oder ein verschieb- oder verschwenkbares Gleitstück (40) enthält, über die oder das die Sägekette (31) läuft.
2. - Kettensäge nach Anspruch 1 , dadurch gekennzeichnet, dass das Schwert (2), bzw. die Schwertspitze (10a) über den Schieber (10), auf der Nachstelleinheit
(3) oder dem Antrieb (1 ) verschiebbar angeordnet ist.
3. Kettensäge nach Anspruch 2, dadurch gekennzeichnet, dass für die Verschiebung des Schwertes (2) in demselben eine Zahnstange vorgesehen ist, in die ein von der Nachstelleinheit (3) antreibbares Ritzel eingreift.
4. Kettensäge nach Anspruch 1 , dadurch gekennzeichnet, dass die Nachstelleinheit (3) aus mindestens zwei zueinander bewegbaren Teilen (5a, 5b) besteht und dass das Schwert (2), bzw. die Schwertspitze (10a) über den Schieber (10), mit einem der Teile (5b) fest verbunden ist.
5. Kettensäge nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Nachstelleinheit (3) eine bewegliche Nase (9) aufweist, die in eine Öffnung (1 1 , 1 1 ' ) im Schwert (2), im Schieber (10), im Gehäuse der Nachstelleinheit (3) oder in Teilen des Antriebs (1) eingreift.
6. Kettensäge nach Anspruch 1 , dadurch gekennzeichnet, dass zur Veränderung der Position des Antriebsritzels (4) die Nachstelleinheit (3) in
Wirkverbindung mit einer Schwinge (19) steht, in der die gemeinsame Achse
(17) des Antriebsritzels (4) und eines Zahnrades (16) gelagert ist, das in ein
Motorritzel (15) eingreift.
7. Kettensäge nach Anspruch 1 , dadurch gekennzeichnet, dass zur Veränderung der Position des Antriebsritzels (4) die Nachstelleinheit (3) in Wirkverbindung mit einem Gleitstück (26) steht, in dem die gemeinsame Achse (25) des Antriebsritzels (4) und eines Zahnrades (24) gelagert ist, das Teil eines mit dem Motorritzel (15) verbundenen Getriebes (16, 21 , 24) ist.
8. Kettensäge nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Sensorelement Mittel zur Erzeugung eines elektrischen Signals enthält, deren Ausgang mit dem Eingang einer Schaltstufe zu Signalglättung (60) verbunden ist, dessen Ausgangssignale die Nachstelleinheit (3) ansteuern.
9. Kettensäge nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Sensorelement ein ein mechanisches Signal erzeugendes Element enthält, welches mechanische Signal aus der Verschiebung oder der Verschwenkung der Rolle (30) oder des Gleitstücks
(40) abgeleitet ist und die Nachstelleinheit (3) ansteuert.
10. Kettensäge nach Anspruch 9, dadurch gekennzeichnet, dass die Nachstelleinheit (3) eine durch das Sensorelement (40) entlang ihrer Längsachse gegen die Kraft eines elastischen Elements (75) verschiebbare, rotierende Kupplungswelle (70) enthält, an der zwei Kupplungsscheiben (72, 73) vorgesehen sind, zwischen denen eine Reibradscheibe (77) liegt, deren Welle (80) ortsfest gelagert ist und Teil eines Stellantriebs (80, 81 , 82) zur Veränderung des relativen Abstandes zwischen dem Antriebsritzel (4) und dem Schwert (2) bzw. der Schwertspitze (10a) ist.
1 1. Kettensäge nach Anspruch 9, dadurch gekennzeichnet, dass die Nachstelleinheit (3) ein hydraulisches Steuerventil enthält, dessen Steuerbolzen (100, 120) durch das Sensorelement (40) entlang seiner Längsachse gegen die Kraft eines elastischen Elements (103, 123) und/oder eines Gegendruckfluids verschiebbar ist, wobei die Ausgänge des hydraulischen Ventils eine hydraulische Stellvorrichtung (110, 134, 154, 155, 156, 157) zur Veränderung des relativen Abstandes zwischen dem Antriebsritzel (4) und dem Schwert (2) bzw. der Schwertspitze (10a) beaufschlagen.
12. Kettensäge nach Anspruch 10, dadurch gekennzeichnet, dass die hydraulische Stellvorrichtung eine Turbine (110) ist, die Teil eines Stellantriebs (110, 86, 80, 82) ist.
13. Kettensäge nach Anspruch 10, dadurch gekennzeichnet, dass die hydraulische Stellvorrichtung ein oder mehrere Kolben (134, 154, 155, 156, 157) sind.
14. Kettensäge nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Sensorelement oder in der Nachstelleinheit ein elektronischer, mechanischer oder hydraulischer Dämpfer angeordnet ist.
15. Kettensäge nach Anspruch 10 und 14, dadurch gekennzeichnet, dass der Dämpfer ein das Sensorelement und den Steuerbolzen bzw. die
Kupplungswelle verbindendes Teil (32, 39) ist, das elastisch ist.
16. Kettensäge nach einem der Ansprüche 1 1 bis 13 und 14, dadurch gekennzeichnet, dass der Dämpfer eine Drossel in einer oder mehreren Bohrungen oder Zu- und Ableitungen des hydraulischen Steuerventils ist.
17. Kettensäge nach einem der Ansprüche 1 1 bis 13 oder 16, dadurch gekennzeichnet, dass die Ränder einer oder mehrerer Bohrungen des Steuerventils eine progressiv öffnende Form haben.
18. Kettensäge nach einem der Ansprüche 11 bis 13 oder 16 oder 17, dadurch gekennzeichnet, dass der Steuerbolzen an seinen Arbeitskanten angeschliffen ist.
PCT/EP2010/003754 2009-06-25 2010-06-22 Kettensäge WO2010149338A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10739490A EP2445687B1 (de) 2009-06-25 2010-06-22 Kettensäge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA990/2009 2009-06-25
AT9902009A AT508397B1 (de) 2009-06-25 2009-06-25 Kettensäge

Publications (2)

Publication Number Publication Date
WO2010149338A1 true WO2010149338A1 (de) 2010-12-29
WO2010149338A4 WO2010149338A4 (de) 2011-03-31

Family

ID=43066030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/003754 WO2010149338A1 (de) 2009-06-25 2010-06-22 Kettensäge

Country Status (3)

Country Link
EP (1) EP2445687B1 (de)
AT (1) AT508397B1 (de)
WO (1) WO2010149338A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103596734A (zh) * 2011-06-07 2014-02-19 胡斯华纳有限公司 用于链锯的快动链条张紧装置以及这样的机构和方法
WO2015038011A1 (en) * 2013-09-12 2015-03-19 Waratah Nz Limited Saw apparatus with chain stretch detection
WO2015053666A1 (en) * 2013-10-07 2015-04-16 Husqvarna Ab Power saw chain tensioning arrangement
US11400530B2 (en) * 2017-06-09 2022-08-02 Husqvarna Ab Chainsaw and method
CN115263117A (zh) * 2022-07-26 2022-11-01 东风柳州汽车有限公司 电动滑移门的驱动机构和汽车
WO2022226563A1 (de) * 2021-04-29 2022-11-03 Julius Blum Gmbh Fräsvorrichtung zum ausfräsen einer taschenförmigen ausnehmung in einer möbelplatte zur aufnahme eines möbelbeschlages
WO2022226565A1 (de) * 2021-04-29 2022-11-03 Julius Blum Gmbh Kettenfräsvorrichtung mit anschlagelementen zum fräsen einer taschenförmigen ausnehmung in einem werkstück

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115922847B (zh) * 2022-12-15 2023-06-16 金华绿川科技有限公司 一种便于调节张力的链锯用链条张紧机构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2316997A (en) * 1940-08-29 1943-04-20 Reed Prentice Corp Tensioning means for chain saws
US3390710A (en) * 1966-04-14 1968-07-02 Outboard Marine Corp Chain saw
WO1985002362A1 (en) * 1983-11-23 1985-06-06 Horst Sellmaier Power saw guide
DE9311081U1 (de) * 1993-07-24 1994-11-17 Dolmar Gmbh Spannvorrichtung für einen Ketten- oder Riementrieb einer Handwerkzeugmaschine
WO1998034768A1 (en) * 1997-02-06 1998-08-13 Sisu Logging Ab Valve arrangement
DE20319743U1 (de) * 2003-10-24 2005-03-10 Dolmar Gmbh Kontrollvorrichtung, insbesondere für eine Kettensäge o.dgl.
US7287330B1 (en) * 2004-09-29 2007-10-30 G&R Equipment, Llc Chain saw automatic tensioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2316997A (en) * 1940-08-29 1943-04-20 Reed Prentice Corp Tensioning means for chain saws
US3390710A (en) * 1966-04-14 1968-07-02 Outboard Marine Corp Chain saw
WO1985002362A1 (en) * 1983-11-23 1985-06-06 Horst Sellmaier Power saw guide
DE9311081U1 (de) * 1993-07-24 1994-11-17 Dolmar Gmbh Spannvorrichtung für einen Ketten- oder Riementrieb einer Handwerkzeugmaschine
WO1998034768A1 (en) * 1997-02-06 1998-08-13 Sisu Logging Ab Valve arrangement
DE20319743U1 (de) * 2003-10-24 2005-03-10 Dolmar Gmbh Kontrollvorrichtung, insbesondere für eine Kettensäge o.dgl.
US7287330B1 (en) * 2004-09-29 2007-10-30 G&R Equipment, Llc Chain saw automatic tensioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103596734A (zh) * 2011-06-07 2014-02-19 胡斯华纳有限公司 用于链锯的快动链条张紧装置以及这样的机构和方法
WO2015038011A1 (en) * 2013-09-12 2015-03-19 Waratah Nz Limited Saw apparatus with chain stretch detection
WO2015053666A1 (en) * 2013-10-07 2015-04-16 Husqvarna Ab Power saw chain tensioning arrangement
US11400530B2 (en) * 2017-06-09 2022-08-02 Husqvarna Ab Chainsaw and method
WO2022226563A1 (de) * 2021-04-29 2022-11-03 Julius Blum Gmbh Fräsvorrichtung zum ausfräsen einer taschenförmigen ausnehmung in einer möbelplatte zur aufnahme eines möbelbeschlages
WO2022226565A1 (de) * 2021-04-29 2022-11-03 Julius Blum Gmbh Kettenfräsvorrichtung mit anschlagelementen zum fräsen einer taschenförmigen ausnehmung in einem werkstück
CN115263117A (zh) * 2022-07-26 2022-11-01 东风柳州汽车有限公司 电动滑移门的驱动机构和汽车
CN115263117B (zh) * 2022-07-26 2024-01-30 东风柳州汽车有限公司 电动滑移门的驱动机构和汽车

Also Published As

Publication number Publication date
AT508397B1 (de) 2011-04-15
EP2445687B1 (de) 2013-04-03
AT508397A1 (de) 2011-01-15
WO2010149338A4 (de) 2011-03-31
EP2445687A1 (de) 2012-05-02

Similar Documents

Publication Publication Date Title
EP2445687B1 (de) Kettensäge
DE2925268C2 (de)
EP2258495B1 (de) Hydraulischer Feinschneidkopf für eine Presse und Verfahren zu dessen Zustellung
EP1134431A1 (de) Antriebsvorrichtung
EP0230529A2 (de) Ventilanordnung für einen hydraulischen Druckspeicher
DE3742569A1 (de) Hydromechanische antriebsuebertragungsvorrichtung, wie kupplung, getriebe oder dgl.
DE3300212C2 (de)
EP2625450A1 (de) Elektromotorisch betätigtes ventil
WO2017140499A1 (de) Gleichgangzylinder für strangpressanlagen
DE102006021749A1 (de) Vorrichtung zum Erzeugen einer axialen Oszillationsbewegung einer rotierenden Walze einer Druckmaschine sowie Walze mit einer solchen Vorrichtung
EP0618025B1 (de) Einpressaggregat
AT392606B (de) Hydraulische steuereinrichtung fuer die einspritzeinheit einer kunststoff-spritzgiess- maschine
EP1937534A1 (de) Servoantrieb für servolenkung
EP1050685B1 (de) Hydraulischer Linearwegschieber
DE2625063A1 (de) Steuervorrichtung zur geschwindigkeitsregelung von pneumatischen und/oder hydraulischen arbeitskolben
DE112010005731B4 (de) Schwenkvorrichtung zum Schwenkbewegen von Massen, insbesondere zur Verwendung im Karosseriebau der Kfz-Industrie
DE2249728C3 (de) Druckmittelbetriebener Arbeitszylinder für Eilgang und Krafthub
DE10252046B4 (de) Antrieb für eine Spritzgiessmaschine
DE102005012297B4 (de) Schmiedemaschine
DE19757157A1 (de) Hydraulischer Linearantrieb
AT403502B (de) Kolbenstangenloser druckmittelzylinder
DE1477734C (de) Hydraulisches Stellgerat fur ein stufenloses Getriebe, insbe sondere fur Werkzeugmaschinen
DE102004057938A1 (de) Vorrichtung zum aktiven Verstellen bewegbarer Elemente an einem rotierenden Maschinenteil
AT202462B (de) Stufenloses Keilriemengetriebe für Motorfahrzeuge mit Zweiradantrieb
DE2952098A1 (de) Vorrichtung zur servo-steuerung von hydraulischen antrieben fuer transportvorrichtungen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10739490

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010739490

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE