WO2010147059A1 - Electronic circuit, method for forming same, and copper-clad laminate for electronic circuit formation - Google Patents
Electronic circuit, method for forming same, and copper-clad laminate for electronic circuit formation Download PDFInfo
- Publication number
- WO2010147059A1 WO2010147059A1 PCT/JP2010/059947 JP2010059947W WO2010147059A1 WO 2010147059 A1 WO2010147059 A1 WO 2010147059A1 JP 2010059947 W JP2010059947 W JP 2010059947W WO 2010147059 A1 WO2010147059 A1 WO 2010147059A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper
- layer
- etching
- electronic circuit
- forming
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 70
- 230000015572 biosynthetic process Effects 0.000 title claims description 26
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 295
- 239000010949 copper Substances 0.000 claims abstract description 235
- 229910052802 copper Inorganic materials 0.000 claims abstract description 233
- 238000005530 etching Methods 0.000 claims abstract description 173
- 239000011347 resin Substances 0.000 claims abstract description 91
- 229920005989 resin Polymers 0.000 claims abstract description 91
- 239000000758 substrate Substances 0.000 claims abstract description 70
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 50
- 239000011889 copper foil Substances 0.000 claims description 73
- 238000007747 plating Methods 0.000 claims description 53
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 52
- 238000011282 treatment Methods 0.000 claims description 26
- 229910052759 nickel Inorganic materials 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 13
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 11
- 239000000956 alloy Substances 0.000 claims description 11
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 11
- 229910052737 gold Inorganic materials 0.000 claims description 11
- 239000010931 gold Substances 0.000 claims description 11
- 238000005554 pickling Methods 0.000 claims description 9
- 238000007788 roughening Methods 0.000 claims description 9
- 229910017052 cobalt Inorganic materials 0.000 claims description 7
- 239000010941 cobalt Substances 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical group [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 3
- 230000002265 prevention Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 237
- 239000000243 solution Substances 0.000 description 20
- 239000011651 chromium Substances 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 14
- 238000000576 coating method Methods 0.000 description 14
- 229920001721 polyimide Polymers 0.000 description 13
- 150000001879 copper Chemical class 0.000 description 12
- 238000007665 sagging Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 229910052804 chromium Inorganic materials 0.000 description 10
- 239000009719 polyimide resin Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 9
- 239000011888 foil Substances 0.000 description 9
- 238000004544 sputter deposition Methods 0.000 description 9
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 7
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 7
- 238000009713 electroplating Methods 0.000 description 7
- 229910000077 silane Inorganic materials 0.000 description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 6
- 229910000990 Ni alloy Inorganic materials 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 238000002845 discoloration Methods 0.000 description 5
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 4
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 3
- 229910018879 Pt—Pd Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- BWLUMTFWVZZZND-UHFFFAOYSA-N Dibenzylamine Chemical compound C=1C=CC=CC=1CNCC1=CC=CC=C1 BWLUMTFWVZZZND-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229960003280 cupric chloride Drugs 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- XEMZLVDIUVCKGL-UHFFFAOYSA-N hydrogen peroxide;sulfuric acid Chemical compound OO.OS(O)(=O)=O XEMZLVDIUVCKGL-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000000717 platinum sputter deposition Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- NJZLKINMWXQCHI-UHFFFAOYSA-N sodium;3-(3-sulfopropyldisulfanyl)propane-1-sulfonic acid Chemical compound [Na].[Na].OS(=O)(=O)CCCSSCCCS(O)(=O)=O NJZLKINMWXQCHI-UHFFFAOYSA-N 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- TXDNPSYEJHXKMK-UHFFFAOYSA-N sulfanylsilane Chemical compound S[SiH3] TXDNPSYEJHXKMK-UHFFFAOYSA-N 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/06—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0338—Layered conductor, e.g. layered metal substrate, layered finish layer or layered thin film adhesion layer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09209—Shape and layout details of conductors
- H05K2201/09654—Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
- H05K2201/098—Special shape of the cross-section of conductors, e.g. very thick plated conductors
Definitions
- the present invention relates to an electronic circuit for forming a circuit by etching, a method for forming the same, and a copper-clad laminate for forming an electronic circuit.
- Copper foil for printed circuits is widely used in electronic and electrical equipment, but this copper foil for printed circuits is generally used with a base material such as a synthetic resin board or film with or without an adhesive. Bonding under high temperature and high pressure to produce a copper clad laminate, then printing the circuit by resist coating and exposure process to form the desired circuit, and further through an etching process to remove unnecessary portions of the copper foil Further, various elements are soldered to form a printed circuit for an electro device.
- Copper foils used in such printed circuits are broadly divided into electrolytic copper foils and rolled copper foils depending on the type of manufacturing method, both of which are used according to the types of printed circuit boards and quality requirements. Yes. These copper foils have a surface to be bonded to the resin base material and a non-bonded surface, and are each subjected to a special surface treatment (treating treatment). In some cases, the copper foil used for the inner layer of the multilayer printed wiring board has a function of adhering to the resin on both sides (double treatment).
- electrolytic copper foil is produced by electrodepositing copper onto a rotating drum and continuously peeling it to produce a copper foil.
- the surface that contacts the rotating drum is a glossy surface and the opposite surface. Has many irregularities (rough surface).
- a thin plating layer may be formed in order to prevent such copper particles from falling off while enhancing such unevenness.
- a series of these steps is called roughening treatment.
- Such a roughening treatment is required not only for the electrolytic copper foil but also for the rolled copper foil, and the same roughening treatment is also carried out for the rolled copper foil.
- Copper-clad laminates are manufactured by hot pressing and continuous processes using the above copper foil.
- this laminated plate is produced by synthesize epoxy resin, impregnate paper substrate with phenol resin, and dry it to produce a prepreg, and further combine this prepreg and copper foil with a combination press. It is manufactured through processes such as hot pressing.
- the copper-clad laminate produced in this way is printed by a resist coating and exposure process to form the target circuit, and further undergoes an etching process to remove unnecessary portions of the copper layer.
- an etching process to remove unnecessary portions of the copper layer.
- Such “sag” needs to be made as small as possible.
- the “sag” is reduced by extending the etching time and increasing the etching time.
- the circuit width will be reduced accordingly, and the uniform line width (circuit width) that is intended for circuit design will be reduced.
- the uniform line width (circuit width) that is intended for circuit design will be reduced.
- the present inventors have proposed a copper foil in which a metal or alloy layer (hereinafter referred to as an EF layer) having a slower etching rate than copper is formed on a copper foil on the etching surface side (Patent Literature). 1).
- the metal or alloy is nickel, cobalt, or an alloy thereof.
- circuit shape improvement effect does not reach the copper plating layer formed on the EF layer when the copper plating step is further included on the EF layer as a pre-process of circuit formation.
- the EF layer is removed, so that there is a problem that the circuit shape cannot be improved.
- the effect of improving the circuit shape cannot be obtained in the first place in a laminated board using a copper foil in which an EF layer is not formed or a laminated board in which a copper layer is formed on a resin film.
- the present invention when performing circuit formation by etching the copper layer of the copper-clad laminate, prevents sagging due to etching, can form a uniform circuit of the desired circuit width, and further improve the etchability by pattern etching, It is an object of the present invention to obtain an electronic circuit, a method for forming the same, and a copper-clad laminate for forming an electronic circuit that can prevent the occurrence of short circuits and circuit width defects.
- the inventors of the present invention added the process of forming the EF layer to a process as close as possible to the etching process for forming a circuit, that is, a process in which the EF layer formed by the subsequent processing is not removed. It was found that the problem can be solved by adjusting the etching in the thickness direction of the layer to effectively form a uniform circuit with a small circuit width.
- the present invention is based on this finding, 1) A copper or copper alloy layer (A) formed on one or both sides of a resin substrate, a copper or copper alloy layer (B) formed on a part or the entire surface of the (A) layer, the (B ) A layered body composed of a layer (C) having a slower etching rate than copper with respect to a copper etchant formed on a part or the entire surface of the layer, the layer (A), the layer (B) and (C) Provided is an electronic circuit comprising a copper circuit formed by etching and removing a part of a laminated portion of a layer to the surface of a resin substrate.
- the (A) layer may be a copper foil provided in advance with a layer (C ′) having an etching rate slower than that of copper with respect to the copper etchant.
- the laminate includes the (A) layer, the ( A) A laminate composed of the (C ′) layer formed on a part or the entire surface of the layer, the (B) layer, and the (C) layer may be used.
- the present invention also provides: 2) Copper or copper alloy layer (A) formed on one or both sides of a resin substrate, and an etching rate slower than copper with respect to a copper etching solution formed on a part or the entire surface of the (A) layer A layered product composed of layer (C), comprising a copper circuit formed by etching and removing a part of the layered portion of layers (A) and (C) to the surface of the resin substrate.
- An electronic circuit is provided.
- the copper foil used for the (A) layer may be a copper foil having a layer corresponding to the (C) layer in advance, but is formed on the surface as necessary.
- the treatment layer (such as a rust prevention layer and a heat-resistant layer) including the (C) layer may be removed by etching or the like in the process in order to adjust the thickness of the (A) layer. In any case, the effect is not changed by forming the (C) layer before etching for circuit formation.
- the present invention also provides: 3)
- the layer (C) having an etching rate slower than that of copper with respect to the copper etchant is any one of nickel, cobalt, iron, platinum group elements, gold, silver, a combination thereof, or a combination thereof.
- An electronic circuit according to any one of 1) and 2), which is an alloy containing a main component, is provided.
- the present invention also provides: 4) deposition of the layer (C) is an electronic circuit according to any one of 3) to be 1), characterized in that it is 50 ⁇ g / dm 2 ⁇ 3000 ⁇ g / dm 2, provided.
- the present invention also provides: 5)
- the surface of the copper or copper alloy layer (A) opposite to the surface in contact with the resin is a surface treated by at least one of pickling treatment, soft etching, or surface roughening treatment.
- An electronic circuit according to any one of 1) to 4) is provided.
- the surface of the copper or copper alloy layer (A) that is opposite to the surface in contact with the resin is a surface that has been reduced by one or more pickling, soft etching, or one or more treatments that roughen the surface.
- An electronic circuit according to any one of 1) to 5) is provided.
- the present invention also provides: 7) A copper or copper alloy layer (A) on one or both sides of the resin substrate, then a copper or copper alloy layer (B) on a part or the entire surface of the (A) layer, and the (B ) A layer (C) having a slower etching rate than copper is formed on a part or the entire surface of the layer to produce a copper-clad laminate, and then the copper-clad laminate (( A method of forming an electronic circuit comprising a step of forming a copper circuit by etching and removing a part of the laminated portion composed of the A) layer, the (B) layer, and the (C) layer to the surface of the resin substrate I will provide a.
- the present invention also provides: 8) A copper or copper alloy layer (A) is formed on one side or both sides of a resin substrate to produce a copper clad laminate, a through hole is formed in the copper clad laminate, and further on the (A) layer. After a plating layer made of a copper or copper alloy layer (B) is formed in a part or the entire surface and in the through hole, a part or the entire surface of the (B) layer is more than copper for the copper etching solution.
- a copper circuit is formed by forming a layer (C) having a slow etching rate, and further etching and removing a part of the laminate composed of the (A) layer, the (B) layer, and the (C) layer to the resin substrate surface.
- a method for forming an electronic circuit comprising the steps of forming.
- the present invention also provides: 9) A layer of copper or copper alloy (A) on one or both sides of the resin substrate, and then a layer having a slower etching rate than copper with respect to the copper etchant on a part or the whole of the layer (A) ( C) is formed to produce a copper clad laminate, and then a part of the laminate composed of the (A) layer and (C) layer of this copper clad laminate is etched and removed to the resin substrate surface.
- a method for forming an electronic circuit characterized by comprising a step of forming a copper circuit.
- the present invention also provides: 10) The thickness of the copper or copper alloy layer (A) is adjusted by etching the copper or copper alloy layer (A) formed on one or both sides of the resin substrate, and the thickness of these layers is adjusted. Next, a layer (C) whose etching rate is slower than that of copper is formed to produce a copper-clad laminate, and then a part of the layered portion of the layers (A) and (C) is removed to the resin substrate surface by etching.
- a method for forming an electronic circuit is provided.
- the present invention also provides: 11) A copper or copper alloy layer (A) on one or both sides of the resin substrate has a slower etching rate than copper on the copper foil surface in advance with respect to a copper etching solution as a copper foil used when forming the layer.
- the present invention also provides: 12) The method for forming an electronic circuit according to any one of 7) to 11), wherein a heat-resistant layer and / or a rust-proof layer is formed on the (C) or (C ′) layer, provide.
- the present invention also provides: 13) As a layer (C) or a layer (C ′) whose etching rate is slower than copper with respect to the copper etching solution, any one metal of nickel, cobalt, iron, platinum group element, gold, silver, or A method of forming an electronic circuit according to any one of 7) to 12), characterized by using a combination thereof or an alloy containing these as a main component.
- the present invention also provides: 14) The deposition amount of the layer (C) or layer (C'), the electronic circuit according to any one of 7), characterized in that adjusting the 50 ⁇ g / dm 2 ⁇ 3000 ⁇ g / dm 2 13) A forming method is provided.
- the present invention also provides: 15) The electronic circuit according to any one of 7) to 14), wherein the layer (A) of copper or copper alloy is treated by one or more of pickling treatment, soft etching, or surface roughening treatment.
- a forming method is provided.
- the present invention also provides: 16) The thickness of the copper or copper alloy layer (A layer) is reduced by pickling, soft etching, or one or more treatments for roughening the surface, according to any one of 7) to 15), A method of forming an electronic circuit is provided.
- the present invention also provides: 17) A copper or copper alloy layer (A) is formed on one or both sides of a resin substrate to produce a copper clad laminate, a through hole is formed in the copper clad laminate, and further on the layer (A). After a plating layer made of a copper or copper alloy layer (B) is formed in part or the entire surface and in the through hole, etching is performed on the part or the entire surface of the (B) layer with respect to a copper etching solution rather than copper. A slow-speed layer (C) is formed, and a copper circuit is formed by etching and removing a part of the laminated portion composed of the layers (A), (B), and (C) to the resin substrate surface.
- a copper-clad laminate for forming an electronic circuit wherein a copper or copper alloy layer (A) is formed on one or both sides of a resin substrate before through-hole formation, and a copper or copper alloy layer (B) formed thereafter Pickling at least one of the plating layer (through-hole plating layer) made of Providing a copper-clad laminate, for electronic circuit formation, characterized by being the thickness reduction processing by the / and soft etching.
- etching a copper circuit as an electronic circuit on a copper clad laminate was taken as an example.
- the purpose is to obtain a more prominent shape by etching, a copper bump that is a form of an electronic circuit It can be applied to all related technologies such as formation.
- the present invention has an effect that when a circuit is formed by etching a copper layer of a copper clad laminate, a circuit having a more uniform circuit width can be formed. Further, there is an effect that the occurrence of sagging due to etching can be prevented. This has the remarkable effect that it is possible to provide an excellent method for forming an electronic circuit capable of improving the etching property by pattern etching and preventing the occurrence of a short circuit or a defective circuit width.
- the present invention relates to an electronic circuit and a method for forming the circuit by etching, and a copper clad laminate used in the method.
- a copper or copper alloy layer (B) layer is formed on a copper or copper alloy layer (A) formed on a resin substrate. That is, this copper layer (B) is a copper layer newly formed on the copper-clad laminate by through-hole plating or the like.
- the thickness of the layer (A) is reduced by soft etching or the like.
- the copper or copper alloy layer (A) may be a plating layer directly formed on a resin substrate or a copper or copper alloy layer made of an adhered foil. That is, for the layer (A), a copper clad laminate in which a copper layer is directly formed after a surface treatment such as a plasma treatment on a resin film such as polyimide can be used without using a copper foil. . In this case, as in the case where the foil to be bonded is a foil not previously provided with an EF layer, the surface does not have an EF layer at this stage.
- the formation of the (B) layer is mainly performed by a wet plating method, but has a feature that a new copper surface is formed. Further, when the thickness of the layer (A) is reduced by soft etching, a new copper surface appears in the same manner.
- (A) layer reduced in thickness by soft etching, or (A) layer using a copper foil in which an EF layer has not been formed in advance copper is added to the copper etching solution.
- a layer (C) layer having a slower etching rate is formed.
- a material having a slower etching rate than copper is selected for the copper etchant.
- any one metal of nickel, cobalt, iron, platinum group, gold and silver, a combination thereof, or an alloy containing these as a main component is suitable.
- any one metal of nickel, platinum group, and gold, or a combination thereof, or an alloy containing these as a main component is desirable.
- the nickel or nickel alloy layer will be specifically described by way of example.
- the nickel or nickel alloy layer is located close to the resist portion on the copper foil, and the etching rate of the copper foil on the resist side is suppressed by this nickel or nickel alloy layer.
- the copper etching proceeds at a normal rate as the distance from the nickel alloy layer increases.
- etching proceeds substantially vertically from the resist side of the side surface of the copper circuit toward the resin substrate side, and a rectangular copper foil circuit is formed.
- the nickel or nickel alloy layer or the like mainly suppresses the occurrence of sagging and forms a circuit with a uniform circuit width.
- etching solution with a ferric chloride aqueous solution having a high etching rate. This is because there is a problem that the etching rate decreases due to circuit miniaturization.
- An etching solution using a ferric chloride aqueous solution is an effective means for preventing this. However, this does not prevent the use of other etchants.
- the etching solution can be changed as necessary.
- the space on the resin substrate formed between the copper circuits can be adjusted to a width corresponding to the thickness (T) of the copper layer including the (A) layer and the (B) layer.
- T thickness of the copper layer including the (A) layer and the (B) layer.
- the circuit width can be arbitrarily designed according to the application.
- An organic rust preventive layer such as a chrome layer or a chromate layer and / or a silane treatment can be further formed on the (C) layer.
- this amount by appropriately selecting this amount, the oxidation of the surface of the (C) layer can be similarly suppressed, so that the stability is further stabilized.
- a circuit width pattern can be formed.
- discoloration resistance means a function capable of suppressing discoloration during storage and thermal discoloration during solder mounting.
- the load of the C layer removal step increases during soft etching, and a processing residue may occur depending on the case. This hinders circuit design. Therefore, it is necessary to set the above range.
- chromium amount when providing the said chromium layer or chromate layer, chromium amount shall be 100 microgram / dm ⁇ 2 > or less in conversion of metal chromium. Moreover, when forming the said silane treatment layer, it is desirable that it is 20 microgram / dm ⁇ 2 > or less in conversion of silicon simple substance. This is to suppress the difference in etching rate with respect to the pattern etching solution. However, an appropriate amount is effective to prevent oxidation of the (C) layer.
- silane treatment Select from various series of silanes such as: Silane dissolved in alcohol is diluted with water to a predetermined concentration and applied to the copper foil surface. Concentration: 0.01 wt% to 2 wt% Type: Olefin silane, Epoxy silane, Acrylic silane, Amino silane, Mercapto silane
- Chromium adhesion analysis method In order to analyze the treated surface, the opposite surface is pressed with FR-4 resin and masked. The sample is boiled in hydrochloric acid having a concentration of 10% for 3 minutes to dissolve the treatment layer, and the solution is quantitatively analyzed for zinc and chromium by atomic absorption analysis.
- a resist pattern for forming a circuit is formed on the layer (C), and an etching solution made of a cupric chloride solution or a ferric chloride solution is used, and a portion other than the portion to which the resist pattern is attached Unnecessary portions of the laminated portion of the (A) layer, (B) layer, and (C) layer on the resin substrate are removed to the surface of the resin substrate. Next, the resist is removed, and if necessary, the remaining (C) layer is removed by soft etching. The removal of the unnecessary copper foil from the formation of the resist pattern is a commonly performed technique, and therefore, it is not necessary to explain much and is omitted.
- the present invention for example, it is possible to form a circuit having a space of 2 times or less, further 1.5 times or less of the thickness (T) of the copper layer including the (A) layer and the (B) layer.
- T thickness of the copper layer including the (A) layer and the (B) layer.
- More preferable implementation conditions are as follows. After the (A) layer is formed by plating or pasting as described above, the copper foil on the exposed surface of the A layer, which is a copper foil, is protected before the (B) layer is formed. Therefore, it is desirable to remove the layer applied for this purpose by etching or the like in advance. This is to improve the subsequent plating adhesion.
- copper foil When copper foil is used as the copper or copper alloy layer formed on the resin substrate, it can be similarly applied to the roughened surface (M surface) or glossy surface (S surface) of the electrolytic copper foil, but the surface to be etched is Usually use the glossy side.
- a rolled copper foil When using a rolled copper foil, a high purity rolled copper foil or a rolled alloy copper foil with improved strength can also be used.
- the present invention includes all of these copper foils.
- the etching factor is defined as the point of intersection between the perpendicular line from the upper surface of the copper foil and the resin substrate, assuming that the circuit is etched vertically when etching is performed in a divergent manner (when sagging occurs).
- the ratio of this a to the thickness b of the copper foil: b / a is shown.
- the larger this value the greater the inclination angle and the etching. It means that no residue remains and dripping is reduced.
- a present Example is an example for making an understanding easy, and is not restrict
- the copper plating solution and conditions are the same as those described in Japanese Patent Application Laid-Open No. 2004-107786.
- Example 1 An electrolytic copper foil having a foil thickness of 18 ⁇ m was used. This electrolytic copper foil was bonded to a polyimide resin substrate to obtain a copper-clad laminate. Next, a copper plating layer of 20 ⁇ m was formed on this copper clad laminate. The copper plating was performed as described above. As a result, the total thickness of the electrolytic copper foil and the copper plating layer on the resin substrate was 38 ⁇ m. Next, a gold sputter layer having an adhesion amount of 400 ⁇ g / dm 2 was formed on the copper plating layer under the above-mentioned gold sputtering conditions, and a chromate layer was formed under the above-mentioned chromate conditions.
- the closest width of the space on the resin substrate formed between the copper circuits was 1.8 times the thickness of the copper layer including the (A) layer and the (B) layer.
- the soft etching property was good, and no processing residue occurred.
- Example 2 In Example 2, a rolled copper foil having a thickness of 12 ⁇ m was used, and the rolled copper foil was bonded to a polyimide resin substrate to obtain a copper-clad laminate. Next, this copper clad laminate was soft etched to remove a portion of the copper layer. This resulted in a copper thickness of 5 ⁇ m.
- a platinum plating layer having a platinum adhesion amount of 75 ⁇ g / dm 2 was formed on the copper-clad laminate under the above platinum sputtering conditions.
- ten circuits were printed by the resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed.
- the closest width of the space on the resin substrate formed between the copper circuits was 3.6 times the thickness of the copper layer.
- the inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 80 ° in Example 2, and a good result was obtained.
- the etching factor (EF) was 5.5, which was also good.
- Example 3 In this example, a 12 ⁇ m-rolled copper alloy (Cu-0.2 wt% Cr-0.1 wt% Zr) foil in which a Ni plating layer having a Ni adhesion amount of 700 ⁇ g / dm 2 is formed in advance is bonded to a resin substrate (polyimide resin). Thus, a copper-clad laminate was produced. After forming a through hole in this copper clad laminate, a total of 26 ⁇ m of copper was plated by combining electroless plating and electroplating. The total thickness of the copper alloy and the copper plating layer was 38 ⁇ m.
- a Pd sputter layer having a Pd adhesion amount of 700 ⁇ g / dm 2 was formed on the copper clad laminate on which the copper plating layer was formed under the above Pd sputtering conditions.
- 10 circuits were printed thereon by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed.
- the closest width of the space on the resin substrate formed between the copper circuits was 1.9 of the thickness of the copper layer.
- the results of evaluation of 10 circuits showed little processing residue and good soft etching property ( ⁇ ).
- the inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 81 ° in Example 3, and a good result was obtained.
- the etching factor (EF) was 6.5, and this result was also good.
- Example 4 In this example, a 12 ⁇ m-rolled copper alloy (Cu-0.2 wt% Cr-0.1 wt% Zr) foil in which a Ni plating layer having a Ni adhesion amount of 700 ⁇ g / dm 2 was previously formed on a resin substrate (polyimide resin) was used. A copper clad laminate was produced by bonding. After forming a through hole in this copper clad laminate, a total of 26 ⁇ m of copper was plated by combining electroless plating and electroplating. The total thickness of the copper alloy and the copper plating layer was 38 ⁇ m.
- a Pt—Pd sputtered layer having a Pt—Pd deposition amount of 800 ⁇ g / dm 2 was formed on the copper clad laminate on which the copper plating layer was formed under the above Pt—Pd sputtering conditions.
- 10 circuits were printed thereon by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed.
- the results of evaluation of 10 circuits showed little processing residue and good soft etching property ( ⁇ ).
- the closest width of the space on the resin substrate formed between the copper circuits was 1.9 times the thickness of the copper layer.
- the inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 82 ° in Example 4, and a good result was obtained.
- the etching factor (EF) was 6.8, and this result was also good.
- Example 5 In this embodiment, a resin substrate (polyimide resin) is preliminarily plasma-treated, and then a tie coat (Ni-20 wt% Cr) layer and a metal seed layer are formed by sputtering, and then an 8 ⁇ copper layer is formed by electroplating. A copper resin laminate was produced. Next, a 30 ⁇ m copper plating layer was formed on this copper resin laminate. As a result, the total copper layer thickness was 38 ⁇ m. Further, a nickel plating layer having an adhesion amount of 1200 ⁇ g / dm 2 was formed on the copper layer under the above nickel plating conditions.
- the inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 76 ° in Example 5, and a good result was obtained.
- the results of evaluation of 10 circuits showed little processing residue and good soft etching property ( ⁇ ).
- the etching factor (EF) was 4, and this result was also good.
- a resin substrate (polyimide resin) is preliminarily plasma-treated, and then a tie coat (Ni-20 wt% Cr) layer and a metal seed layer are formed by sputtering, and then an 8 ⁇ copper layer is formed by electroplating.
- a copper resin laminate was produced.
- a 30 ⁇ m copper plating layer was formed on this copper resin laminate.
- the total copper layer thickness was 38 ⁇ m.
- a nickel-cobalt plating layer having an adhesion amount of 1800 ⁇ g / dm 2 was formed on the copper layer under the above nickel-cobalt plating conditions.
- the inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 76 ° in Example 6, and a good result was obtained.
- the results of evaluation of 10 circuits showed little processing residue and good soft etching property ( ⁇ ).
- the etching factor (EF) was 4, and this result was also good.
- Example 7 a resin substrate (polyimide resin) is preliminarily plasma-treated, and then a tie coat (Ni-20 wt% Cr) layer and a metal seed layer are formed by sputtering, and then an 8 ⁇ copper layer is formed by electroplating. A copper resin laminate was produced. Next, a 30 ⁇ m copper plating layer was formed on this copper resin laminate. As a result, the total copper layer thickness was 38 ⁇ m. Further, a nickel plating layer having an adhesion amount of 2500 ⁇ g / dm 2 was formed on the copper layer under the above nickel plating conditions.
- the inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 77 ° in Example 7, and a good result was obtained.
- the results of evaluation of 10 circuits were that there was little processing residue and soft etching property was good ( ⁇ ).
- the etching factor (EF) was 4.5, and this result was also good.
- the inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, in this comparative example 1, it is 52 °, and the sagging of the circuit is observed, resulting in a failure.
- EF etching factor
- the inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 54 ° in the present comparative example 2, and the sagging of the circuit is observed, resulting in a failure.
- the etching factor (EF) was 1.4 and was unsatisfactory.
- Comparative Example 3 In Comparative Example 3, a resin substrate (polyimide resin) was previously plasma-treated, and then a tie coat (Ni-20 wt% Cr) layer and a metal seed layer were formed by sputtering, and then an 8 ⁇ copper layer was formed by electroplating. The formed copper resin laminate was manufactured. Next, a 30 ⁇ m copper plating layer was formed on this copper resin laminate. As a result, the total copper layer thickness was 38 ⁇ m.
- the inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 52 ° in the present comparative example 3, which causes sagging and becomes defective.
- the etching factor (EF) was 1.3 and was unsatisfactory.
- Comparative Example 4 In this comparative example 4, a resin substrate (polyimide resin) is preliminarily plasma-treated, then a tie coat (Ni-20 wt% Cr) layer and a metal seed layer are formed by sputtering, and then an 8 ⁇ copper layer is formed by electroplating. The formed copper resin laminate was manufactured. Next, a 30 ⁇ m copper plating layer was formed on this copper resin laminate. As a result, the total copper layer thickness was 38 ⁇ m. Further, a nickel plating layer having an adhesion amount of 3200 ⁇ g / dm 2 was formed on the copper layer under the above nickel plating conditions.
- the inclination angle of the circuit was observed by FIB-SIM. Although it can be said that the inclination angle is 63 ° or more, it is a good result, but in Comparative Example 3, it was 78 °.
- the etching factor (EF) was 4.6, which was good. However, when an attempt was made to remove the nickel layer by soft etching, a processing residue occurred.
- the present invention is a copper-clad laminate, and by adding a step of forming a thin layer having a slower etching rate than copper to a series of steps of forming a circuit by etching a copper foil, the intended circuit width is made more uniform.
- This has the effect that a simple circuit can be formed, there is no processing residue due to etching, the occurrence of sagging is prevented, and the time for circuit formation by etching can be shortened.
- This can improve the etching performance in pattern etching and prevent the occurrence of short circuits and circuit width defects, so it can be used as a copper-clad laminate (for rigid and flexible) and used for the formation of electronic circuits on printed circuit boards. It is.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing Of Printed Circuit Boards (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Manufacturing Of Printed Wiring (AREA)
- ing And Chemical Polishing (AREA)
Abstract
Provided is an electronic circuit formed of copper circuits which have a layer (A) made of copper or a copper alloy, another layer (B) made of copper or a copper alloy, and still another layer (C), and which are formed by removing parts of the layer (A), the layer (B) and the layer (C) through an etching process. The layer (A) is formed on a surface in one side or surfaces in both sides of a resin substrate. The layer (B) is formed on a part or the entirety of the surface of the layer (A). The layer (C) is formed on a part or the entirety of the surface of the layer (B) and gives an etching rate slower than copper in etching with a copper etching solution. The electronic circuit is characterized in that spaces on the resin substrate, which are formed between the copper circuits, are adjusted so as to have a width according to a thickness of copper corresponding to a combination of the layer (A) and the layer (B). The electronic circuit addresses the possibility of forming circuits having uniform circuit widths, improvement of etching performance in pattern etching, and prevention of short-circuiting and occurrence of inadequate circuit widths.
Description
本発明は、エッチングにより回路形成を行う電子回路及びその形成方法並びに電子回路形成用銅張積層板に関する。
The present invention relates to an electronic circuit for forming a circuit by etching, a method for forming the same, and a copper-clad laminate for forming an electronic circuit.
電子・電気機器に印刷回路用銅箔が広く使用されているが、この印刷回路用銅箔は、一般に合成樹脂ボードやフイルム等の基材に接着剤を介して、あるいは接着剤を用いずに高温高圧下で接着して銅張積層板を製造し、その後、目的とする回路を形成するためにレジスト塗布及び露光工程により回路を印刷し、さらに銅箔の不要部分を除去するエッチング処理を経て、また、さらに各種の素子が半田付けされてエレクトロデバイス用の印刷回路が形成されている。
Copper foil for printed circuits is widely used in electronic and electrical equipment, but this copper foil for printed circuits is generally used with a base material such as a synthetic resin board or film with or without an adhesive. Bonding under high temperature and high pressure to produce a copper clad laminate, then printing the circuit by resist coating and exposure process to form the desired circuit, and further through an etching process to remove unnecessary portions of the copper foil Further, various elements are soldered to form a printed circuit for an electro device.
このような印刷回路に使用する銅箔は、その製造方法の種類の違いにより電解銅箔及び圧延銅箔に大別されるが、いずれも印刷回路板の種類や品質要求に応じて使用されている。
これらの銅箔は、樹脂基材と接着される面と非接着面があり、それぞれ特殊な表面処理(トリート処理)が施されている。また、多層プリント配線板の内層に使用する銅箔のように両面に樹脂との接着機能をもつようにされる(ダブルトリート処理)場合もある。 Copper foils used in such printed circuits are broadly divided into electrolytic copper foils and rolled copper foils depending on the type of manufacturing method, both of which are used according to the types of printed circuit boards and quality requirements. Yes.
These copper foils have a surface to be bonded to the resin base material and a non-bonded surface, and are each subjected to a special surface treatment (treating treatment). In some cases, the copper foil used for the inner layer of the multilayer printed wiring board has a function of adhering to the resin on both sides (double treatment).
これらの銅箔は、樹脂基材と接着される面と非接着面があり、それぞれ特殊な表面処理(トリート処理)が施されている。また、多層プリント配線板の内層に使用する銅箔のように両面に樹脂との接着機能をもつようにされる(ダブルトリート処理)場合もある。 Copper foils used in such printed circuits are broadly divided into electrolytic copper foils and rolled copper foils depending on the type of manufacturing method, both of which are used according to the types of printed circuit boards and quality requirements. Yes.
These copper foils have a surface to be bonded to the resin base material and a non-bonded surface, and are each subjected to a special surface treatment (treating treatment). In some cases, the copper foil used for the inner layer of the multilayer printed wiring board has a function of adhering to the resin on both sides (double treatment).
電解銅箔は一般に回転ドラムに銅を電着させ、それを連続的に剥がして銅箔を製造しているが、この製造時点で回転ドラムに接触する面は光沢面で、その反対側の面は多数の凹凸を有している(粗面)。しかし、このような粗面でも樹脂基板との接着性を一層向上させるために、0.2~3μm程度の銅粒子を付着させるのが一般的である。
さらに、このような凹凸を増強した上に銅粒子の脱落を防止するために薄いめっき層を形成する場合もある。これらの一連の工程を粗化処理と呼んでいる。このような粗化処理は、電解銅箔に限らず圧延銅箔でも要求されることであり、同様な粗化処理が圧延銅箔においても実施されている。 In general, electrolytic copper foil is produced by electrodepositing copper onto a rotating drum and continuously peeling it to produce a copper foil. At this time, the surface that contacts the rotating drum is a glossy surface and the opposite surface. Has many irregularities (rough surface). However, in order to further improve the adhesion to the resin substrate even on such a rough surface, it is common to deposit copper particles of about 0.2 to 3 μm.
Furthermore, a thin plating layer may be formed in order to prevent such copper particles from falling off while enhancing such unevenness. A series of these steps is called roughening treatment. Such a roughening treatment is required not only for the electrolytic copper foil but also for the rolled copper foil, and the same roughening treatment is also carried out for the rolled copper foil.
さらに、このような凹凸を増強した上に銅粒子の脱落を防止するために薄いめっき層を形成する場合もある。これらの一連の工程を粗化処理と呼んでいる。このような粗化処理は、電解銅箔に限らず圧延銅箔でも要求されることであり、同様な粗化処理が圧延銅箔においても実施されている。 In general, electrolytic copper foil is produced by electrodepositing copper onto a rotating drum and continuously peeling it to produce a copper foil. At this time, the surface that contacts the rotating drum is a glossy surface and the opposite surface. Has many irregularities (rough surface). However, in order to further improve the adhesion to the resin substrate even on such a rough surface, it is common to deposit copper particles of about 0.2 to 3 μm.
Furthermore, a thin plating layer may be formed in order to prevent such copper particles from falling off while enhancing such unevenness. A series of these steps is called roughening treatment. Such a roughening treatment is required not only for the electrolytic copper foil but also for the rolled copper foil, and the same roughening treatment is also carried out for the rolled copper foil.
以上のような銅箔を使用してホットプレス法や連続法により銅張り積層板が製造される。この積層板は、例えばホットプレス法を例にとると、エポキシ樹脂の合成、紙基材へのフェノール樹脂の含浸、乾燥を行ってプリプレグを製造し、さらにこのプリプレグと銅箔を組合せプレス機により熱圧成形を行う等の工程を経て製造されている。これ以外にも、銅箔にポリイミド前駆体溶液を乾燥及び固化させて、前記銅箔上にポリイミド樹脂層を形成する方法がある。また、ポリイミド等の樹脂フイルムにプラズマ処理等の表面処理をした後、必要に応じてNi-Crなどの接着層を介して銅箔と同等の厚みの銅層を直接形成する方法もある。本発明は、以上のような、樹脂層に銅層が形成されたものを「銅張り積層板」と総称して説明する。
Copper-clad laminates are manufactured by hot pressing and continuous processes using the above copper foil. For example, taking the hot press method as an example, this laminated plate is produced by synthesize epoxy resin, impregnate paper substrate with phenol resin, and dry it to produce a prepreg, and further combine this prepreg and copper foil with a combination press. It is manufactured through processes such as hot pressing. In addition to this, there is a method of forming a polyimide resin layer on the copper foil by drying and solidifying the polyimide precursor solution on the copper foil. There is also a method in which after a surface treatment such as plasma treatment is applied to a resin film such as polyimide, a copper layer having a thickness equivalent to that of the copper foil is directly formed through an adhesive layer such as Ni—Cr as required. In the present invention, the above-described one in which a copper layer is formed on a resin layer will be collectively referred to as a “copper-clad laminate”.
このようにして製造された銅張り積層板は、目的とする回路を形成するためにレジスト塗布及び露光工程により回路を印刷し、さらに銅層の不要部分を除去するエッチング処理を経るが、エッチングして回路を形成する際に、その回路が予め表面に形成されたマスクパターン通りの幅にならないという問題がある。
それは、エッチングすることにより形成される銅回路が、銅層の表面から下に向かって、すなわち樹脂層に向かって、末広がりにエッチングされる(ダレを発生する)ことによる。大きな「ダレ」が発生した場合には、樹脂基板近傍で銅回路が短絡し、不良品となる場合もある。 The copper-clad laminate produced in this way is printed by a resist coating and exposure process to form the target circuit, and further undergoes an etching process to remove unnecessary portions of the copper layer. When the circuit is formed, there is a problem that the circuit does not have the width as the mask pattern previously formed on the surface.
This is because the copper circuit formed by etching is etched from the surface of the copper layer downward, that is, toward the resin layer (sagging). If a large “sag” occurs, the copper circuit may short-circuit near the resin substrate, resulting in a defective product.
それは、エッチングすることにより形成される銅回路が、銅層の表面から下に向かって、すなわち樹脂層に向かって、末広がりにエッチングされる(ダレを発生する)ことによる。大きな「ダレ」が発生した場合には、樹脂基板近傍で銅回路が短絡し、不良品となる場合もある。 The copper-clad laminate produced in this way is printed by a resist coating and exposure process to form the target circuit, and further undergoes an etching process to remove unnecessary portions of the copper layer. When the circuit is formed, there is a problem that the circuit does not have the width as the mask pattern previously formed on the surface.
This is because the copper circuit formed by etching is etched from the surface of the copper layer downward, that is, toward the resin layer (sagging). If a large “sag” occurs, the copper circuit may short-circuit near the resin substrate, resulting in a defective product.
このような「ダレ」は極力小さくすることが必要である。例えば、樹脂基板近傍での銅回路の短絡を防止するために、エッチング時間を延長し、エッチングをより多くして、この「ダレ」を減少させることも考えられた。
しかし、この場合は、すでに所定の幅寸法に至っている箇所があると、そこがさらにエッチングされることになるので、回路幅がそれだけ狭くなり、回路設計上目的とする均一な線幅(回路幅)が得られず、特にその部分(細線化された部分)で発熱し、場合によっては断線するという問題が発生する。
電子回路のファインパターン化がさらに進行する中で、現在もなお、このようなエッチング不良による問題がより強く現れ、回路形成上で、大きな問題となっている。 Such “sag” needs to be made as small as possible. For example, in order to prevent a short circuit of the copper circuit in the vicinity of the resin substrate, it has been considered that the “sag” is reduced by extending the etching time and increasing the etching time.
However, in this case, if there is a part that has already reached the predetermined width dimension, it will be further etched, so that the circuit width will be reduced accordingly, and the uniform line width (circuit width) that is intended for circuit design will be reduced. ) Cannot be obtained, and heat is generated particularly in that portion (thinned portion), and in some cases, there is a problem of disconnection.
As the fine patterning of electronic circuits further progresses, the problem due to such etching failure still appears more strongly and still becomes a big problem in circuit formation.
しかし、この場合は、すでに所定の幅寸法に至っている箇所があると、そこがさらにエッチングされることになるので、回路幅がそれだけ狭くなり、回路設計上目的とする均一な線幅(回路幅)が得られず、特にその部分(細線化された部分)で発熱し、場合によっては断線するという問題が発生する。
電子回路のファインパターン化がさらに進行する中で、現在もなお、このようなエッチング不良による問題がより強く現れ、回路形成上で、大きな問題となっている。 Such “sag” needs to be made as small as possible. For example, in order to prevent a short circuit of the copper circuit in the vicinity of the resin substrate, it has been considered that the “sag” is reduced by extending the etching time and increasing the etching time.
However, in this case, if there is a part that has already reached the predetermined width dimension, it will be further etched, so that the circuit width will be reduced accordingly, and the uniform line width (circuit width) that is intended for circuit design will be reduced. ) Cannot be obtained, and heat is generated particularly in that portion (thinned portion), and in some cases, there is a problem of disconnection.
As the fine patterning of electronic circuits further progresses, the problem due to such etching failure still appears more strongly and still becomes a big problem in circuit formation.
本発明者らは、これらを改善するために、エッチング面側の銅箔に銅よりもエッチング速度が遅い金属又は合金層(以下、EF層と呼ぶ)を形成した銅箔を提案した(特許文献1参照)。この場合の金属又は合金としては、ニッケル、コバルト及びこれらの合金であり、銅回路厚みよりも十分に薄い厚みで形成することにより、形成された回路が痩せ過ぎることなくダレの小さいエッチングが可能である。
すなわち、回路設計に際しては、マスクパターンとなるレジスト塗布側、すなわち銅箔の表面からエッチング液が浸透するので、レジスト直下にEF層を所定の付着量の範囲で形成することにより、その近傍の銅箔部分のエッチングが抑制され、他の銅箔部分のエッチングが進行するので、「ダレ」が減少し、より均一な幅の回路が形成できるという効果をもたらした。この結果は、従来技術から見ると、大きな進歩があった。 In order to improve these, the present inventors have proposed a copper foil in which a metal or alloy layer (hereinafter referred to as an EF layer) having a slower etching rate than copper is formed on a copper foil on the etching surface side (Patent Literature). 1). In this case, the metal or alloy is nickel, cobalt, or an alloy thereof. By forming the metal or the alloy with a thickness sufficiently smaller than the copper circuit thickness, the formed circuit can be etched with little sagging without being too thin. is there.
That is, when designing a circuit, the etching solution penetrates from the resist coating side that becomes a mask pattern, that is, from the surface of the copper foil. Therefore, by forming an EF layer in a predetermined adhesion amount range immediately below the resist, Since the etching of the foil portion is suppressed and the etching of the other copper foil portion proceeds, the “sag” is reduced, and an effect that a circuit with a more uniform width can be formed is brought about. This result is a significant advance from the prior art.
すなわち、回路設計に際しては、マスクパターンとなるレジスト塗布側、すなわち銅箔の表面からエッチング液が浸透するので、レジスト直下にEF層を所定の付着量の範囲で形成することにより、その近傍の銅箔部分のエッチングが抑制され、他の銅箔部分のエッチングが進行するので、「ダレ」が減少し、より均一な幅の回路が形成できるという効果をもたらした。この結果は、従来技術から見ると、大きな進歩があった。 In order to improve these, the present inventors have proposed a copper foil in which a metal or alloy layer (hereinafter referred to as an EF layer) having a slower etching rate than copper is formed on a copper foil on the etching surface side (Patent Literature). 1). In this case, the metal or alloy is nickel, cobalt, or an alloy thereof. By forming the metal or the alloy with a thickness sufficiently smaller than the copper circuit thickness, the formed circuit can be etched with little sagging without being too thin. is there.
That is, when designing a circuit, the etching solution penetrates from the resist coating side that becomes a mask pattern, that is, from the surface of the copper foil. Therefore, by forming an EF layer in a predetermined adhesion amount range immediately below the resist, Since the etching of the foil portion is suppressed and the etching of the other copper foil portion proceeds, the “sag” is reduced, and an effect that a circuit with a more uniform width can be formed is brought about. This result is a significant advance from the prior art.
ここで、さらに改良を進める段階で、問題がいくつか浮上した。ひとつは、回路形成の前工程として、上記のEF層の上に、さらに銅めっき工程を含む場合に、EF層の上に形成される銅めっき層には回路形状の改善効果が及ばない問題があった。また、回路形成前にソフトエッチングやハーフエッチングなどで銅層の厚みを薄くしたり、表面を荒らす処理を行う場合、EF層が除去されてしまうので回路形状を改善できない問題があった。さらに、EF層が形成されていない銅箔を用いた積層板や、樹脂フィルム上に銅層を形成する積層板では回路形状の改善効果がそもそも得られないという問題がある。
Here are some problems that emerged during further improvements. One is the problem that the circuit shape improvement effect does not reach the copper plating layer formed on the EF layer when the copper plating step is further included on the EF layer as a pre-process of circuit formation. there were. Further, when the thickness of the copper layer is reduced by soft etching or half etching before the circuit is formed, or when the surface is roughened, the EF layer is removed, so that there is a problem that the circuit shape cannot be improved. Furthermore, there is a problem that the effect of improving the circuit shape cannot be obtained in the first place in a laminated board using a copper foil in which an EF layer is not formed or a laminated board in which a copper layer is formed on a resin film.
本発明は、銅張り積層板の銅層をエッチングにより回路形成を行うに際し、エッチングによるダレを防止し、目的とする回路幅の均一な回路を形成でき、さらにパターンエッチングでのエッチング性の向上、ショートや回路幅の不良の発生を防止できる電子回路及びその形成方法並びに電子回路形成用銅張積層板を得ることを課題とする。
The present invention, when performing circuit formation by etching the copper layer of the copper-clad laminate, prevents sagging due to etching, can form a uniform circuit of the desired circuit width, and further improve the etchability by pattern etching, It is an object of the present invention to obtain an electronic circuit, a method for forming the same, and a copper-clad laminate for forming an electronic circuit that can prevent the occurrence of short circuits and circuit width defects.
本発明者らは、前記のEF層を形成する工程を、回路形成のためのエッチング工程になるべく近い工程、すなわち、その後の処理により形成したEF層が除去されないような工程に加えることで、銅層の厚み方向のエッチングを調節し、効果的にダレの少ない回路幅の均一な回路を形成することで問題を解決できるとの知見を得た。
The inventors of the present invention added the process of forming the EF layer to a process as close as possible to the etching process for forming a circuit, that is, a process in which the EF layer formed by the subsequent processing is not removed. It was found that the problem can be solved by adjusting the etching in the thickness direction of the layer to effectively form a uniform circuit with a small circuit width.
本発明はこの知見に基づいて、
1)樹脂基板の片面または両面に形成された銅又は銅合金の層(A)、該(A)層上の一部または全面に形成された銅又は銅合金の層(B)、該(B)層上の一部又は全面に形成された銅エッチング液に対して銅よりもエッチング速度が遅い層(C)から構成される積層体であって、前記(A)層、(B)層及び(C)層の積層部の一部を樹脂基板表面までエッチングして除去することにより形成された銅回路からなることを特徴とする電子回路を、提供する。
ここに、(A)層は銅エッチング液に対して銅よりもエッチング速度が遅い層(C´)を予め備える銅箔でもよく、その場合は、上記積層体は、(A)層、該(A)層上の一部又は全面に形成された(C´)層、上記(B)層、上記(C)層、から構成される積層体であってもよい。 The present invention is based on this finding,
1) A copper or copper alloy layer (A) formed on one or both sides of a resin substrate, a copper or copper alloy layer (B) formed on a part or the entire surface of the (A) layer, the (B ) A layered body composed of a layer (C) having a slower etching rate than copper with respect to a copper etchant formed on a part or the entire surface of the layer, the layer (A), the layer (B) and (C) Provided is an electronic circuit comprising a copper circuit formed by etching and removing a part of a laminated portion of a layer to the surface of a resin substrate.
Here, the (A) layer may be a copper foil provided in advance with a layer (C ′) having an etching rate slower than that of copper with respect to the copper etchant. In this case, the laminate includes the (A) layer, the ( A) A laminate composed of the (C ′) layer formed on a part or the entire surface of the layer, the (B) layer, and the (C) layer may be used.
1)樹脂基板の片面または両面に形成された銅又は銅合金の層(A)、該(A)層上の一部または全面に形成された銅又は銅合金の層(B)、該(B)層上の一部又は全面に形成された銅エッチング液に対して銅よりもエッチング速度が遅い層(C)から構成される積層体であって、前記(A)層、(B)層及び(C)層の積層部の一部を樹脂基板表面までエッチングして除去することにより形成された銅回路からなることを特徴とする電子回路を、提供する。
ここに、(A)層は銅エッチング液に対して銅よりもエッチング速度が遅い層(C´)を予め備える銅箔でもよく、その場合は、上記積層体は、(A)層、該(A)層上の一部又は全面に形成された(C´)層、上記(B)層、上記(C)層、から構成される積層体であってもよい。 The present invention is based on this finding,
1) A copper or copper alloy layer (A) formed on one or both sides of a resin substrate, a copper or copper alloy layer (B) formed on a part or the entire surface of the (A) layer, the (B ) A layered body composed of a layer (C) having a slower etching rate than copper with respect to a copper etchant formed on a part or the entire surface of the layer, the layer (A), the layer (B) and (C) Provided is an electronic circuit comprising a copper circuit formed by etching and removing a part of a laminated portion of a layer to the surface of a resin substrate.
Here, the (A) layer may be a copper foil provided in advance with a layer (C ′) having an etching rate slower than that of copper with respect to the copper etchant. In this case, the laminate includes the (A) layer, the ( A) A laminate composed of the (C ′) layer formed on a part or the entire surface of the layer, the (B) layer, and the (C) layer may be used.
また、本発明は、
2)樹脂基板の片面または両面に形成された銅又は銅合金の層(A)、該(A)層上の一部又は全面に形成された銅エッチング液に対して銅よりもエッチング速度が遅い層(C)から構成される積層体であって、前記(A)層及び(C)層の積層部の一部を樹脂基板表面までエッチングして除去することにより形成された銅回路からなることを特徴とする電子回路を、提供する。 The present invention also provides:
2) Copper or copper alloy layer (A) formed on one or both sides of a resin substrate, and an etching rate slower than copper with respect to a copper etching solution formed on a part or the entire surface of the (A) layer A layered product composed of layer (C), comprising a copper circuit formed by etching and removing a part of the layered portion of layers (A) and (C) to the surface of the resin substrate. An electronic circuit is provided.
2)樹脂基板の片面または両面に形成された銅又は銅合金の層(A)、該(A)層上の一部又は全面に形成された銅エッチング液に対して銅よりもエッチング速度が遅い層(C)から構成される積層体であって、前記(A)層及び(C)層の積層部の一部を樹脂基板表面までエッチングして除去することにより形成された銅回路からなることを特徴とする電子回路を、提供する。 The present invention also provides:
2) Copper or copper alloy layer (A) formed on one or both sides of a resin substrate, and an etching rate slower than copper with respect to a copper etching solution formed on a part or the entire surface of the (A) layer A layered product composed of layer (C), comprising a copper circuit formed by etching and removing a part of the layered portion of layers (A) and (C) to the surface of the resin substrate. An electronic circuit is provided.
1)および2)にあっては、(A)層に用いる銅箔は、予め(C)層に相当する層をもつ銅箔であってもかまわないが、必要に応じて表面に形成された(C)層を含む処理層(防錆層、耐熱層など)は(A)層の厚みを調整するために工程においてエッチングなどにより除去される場合もある。いずれの場合であっても(C)層を回路形成のためのエッチング前に形成することで効果は変わらない。
In 1) and 2), the copper foil used for the (A) layer may be a copper foil having a layer corresponding to the (C) layer in advance, but is formed on the surface as necessary. The treatment layer (such as a rust prevention layer and a heat-resistant layer) including the (C) layer may be removed by etching or the like in the process in order to adjust the thickness of the (A) layer. In any case, the effect is not changed by forming the (C) layer before etching for circuit formation.
また、本発明は、
3)前記銅エッチング液に対して銅よりもエッチング速度が遅い層(C)が、ニッケル、コバルト、鉄、白金族元素、金、銀のいずれか1種の金属、若しくはこれらの組合せ又はこれらを主成分とする合金であることを特徴とする1)または2)のいずれかに記載の電子回路を、提供する。 The present invention also provides:
3) The layer (C) having an etching rate slower than that of copper with respect to the copper etchant is any one of nickel, cobalt, iron, platinum group elements, gold, silver, a combination thereof, or a combination thereof. An electronic circuit according to any one of 1) and 2), which is an alloy containing a main component, is provided.
3)前記銅エッチング液に対して銅よりもエッチング速度が遅い層(C)が、ニッケル、コバルト、鉄、白金族元素、金、銀のいずれか1種の金属、若しくはこれらの組合せ又はこれらを主成分とする合金であることを特徴とする1)または2)のいずれかに記載の電子回路を、提供する。 The present invention also provides:
3) The layer (C) having an etching rate slower than that of copper with respect to the copper etchant is any one of nickel, cobalt, iron, platinum group elements, gold, silver, a combination thereof, or a combination thereof. An electronic circuit according to any one of 1) and 2), which is an alloy containing a main component, is provided.
また、本発明は、
4)前記層(C)の被着量が、50μg/dm2~3000μg/dm2であることを特徴とする1)から3)のいずれかに記載の電子回路を、提供する。 The present invention also provides:
4) deposition of the layer (C) is an electronic circuit according to any one of 3) to be 1), characterized in that it is 50μg / dm 2 ~ 3000μg / dm 2, provided.
4)前記層(C)の被着量が、50μg/dm2~3000μg/dm2であることを特徴とする1)から3)のいずれかに記載の電子回路を、提供する。 The present invention also provides:
4) deposition of the layer (C) is an electronic circuit according to any one of 3) to be 1), characterized in that it is 50μg / dm 2 ~ 3000μg / dm 2, provided.
また、本発明は、
5)銅又は銅合金の層(A)層の樹脂に接する面の逆側の面が、酸洗処理、ソフトエッチング又は表面を荒らす処理の一以上で処理された面であることを特徴とする1)から4)のいずれかに記載の電子回路を、提供する。 The present invention also provides:
5) The surface of the copper or copper alloy layer (A) opposite to the surface in contact with the resin is a surface treated by at least one of pickling treatment, soft etching, or surface roughening treatment. An electronic circuit according to any one of 1) to 4) is provided.
5)銅又は銅合金の層(A)層の樹脂に接する面の逆側の面が、酸洗処理、ソフトエッチング又は表面を荒らす処理の一以上で処理された面であることを特徴とする1)から4)のいずれかに記載の電子回路を、提供する。 The present invention also provides:
5) The surface of the copper or copper alloy layer (A) opposite to the surface in contact with the resin is a surface treated by at least one of pickling treatment, soft etching, or surface roughening treatment. An electronic circuit according to any one of 1) to 4) is provided.
6)銅又は銅合金の層(A)層の樹脂に接する面の逆側の面が、酸洗処理、ソフトエッチング又は表面を荒らす処理の一以上の処理により減厚された面であることを特徴とする1)から5)のいずれかに記載の電子回路を、提供する。
6) The surface of the copper or copper alloy layer (A) that is opposite to the surface in contact with the resin is a surface that has been reduced by one or more pickling, soft etching, or one or more treatments that roughen the surface. An electronic circuit according to any one of 1) to 5) is provided.
また、本発明は、
7)樹脂基板の片面または両面に銅又は銅合金の層(A)を、次いで、該(A)層上の一部または全面に銅又は銅合金の層(B)を、さらに、該(B)層上の一部又は全面に、銅エッチング液に対して銅よりもエッチング速度が遅い層(C)を形成して銅張積層板を作製し、次に、この銅張積層板の前記(A)層と(B)層及び(C)層からなる積層部の一部を樹脂基板表面までエッチングして除去することにより銅回路を形成する工程からなることを特徴とする電子回路の形成方法を、提供する。 The present invention also provides:
7) A copper or copper alloy layer (A) on one or both sides of the resin substrate, then a copper or copper alloy layer (B) on a part or the entire surface of the (A) layer, and the (B ) A layer (C) having a slower etching rate than copper is formed on a part or the entire surface of the layer to produce a copper-clad laminate, and then the copper-clad laminate (( A method of forming an electronic circuit comprising a step of forming a copper circuit by etching and removing a part of the laminated portion composed of the A) layer, the (B) layer, and the (C) layer to the surface of the resin substrate I will provide a.
7)樹脂基板の片面または両面に銅又は銅合金の層(A)を、次いで、該(A)層上の一部または全面に銅又は銅合金の層(B)を、さらに、該(B)層上の一部又は全面に、銅エッチング液に対して銅よりもエッチング速度が遅い層(C)を形成して銅張積層板を作製し、次に、この銅張積層板の前記(A)層と(B)層及び(C)層からなる積層部の一部を樹脂基板表面までエッチングして除去することにより銅回路を形成する工程からなることを特徴とする電子回路の形成方法を、提供する。 The present invention also provides:
7) A copper or copper alloy layer (A) on one or both sides of the resin substrate, then a copper or copper alloy layer (B) on a part or the entire surface of the (A) layer, and the (B ) A layer (C) having a slower etching rate than copper is formed on a part or the entire surface of the layer to produce a copper-clad laminate, and then the copper-clad laminate (( A method of forming an electronic circuit comprising a step of forming a copper circuit by etching and removing a part of the laminated portion composed of the A) layer, the (B) layer, and the (C) layer to the surface of the resin substrate I will provide a.
また、本発明は、
8)樹脂基板の片面または両面に銅又は銅合金の層(A)を形成して銅張積層板を作製し、この銅張積層板にスルーホールを形成し、さらに前記(A)層上の一部又は全面及びスルーホール内に、銅又は銅合金の層(B)からなるめっき層を形成した後、該(B)層上の一部又は全面に、銅エッチング液に対して銅よりもエッチング速度が遅い層(C)を形成し、さらに前記(A)層と(B)層及び(C)層からなる積層部の一部を樹脂基板表面までエッチングして除去することにより銅回路を形成する工程からなることを特徴とする電子回路の形成方法を、提供する。 The present invention also provides:
8) A copper or copper alloy layer (A) is formed on one side or both sides of a resin substrate to produce a copper clad laminate, a through hole is formed in the copper clad laminate, and further on the (A) layer. After a plating layer made of a copper or copper alloy layer (B) is formed in a part or the entire surface and in the through hole, a part or the entire surface of the (B) layer is more than copper for the copper etching solution. A copper circuit is formed by forming a layer (C) having a slow etching rate, and further etching and removing a part of the laminate composed of the (A) layer, the (B) layer, and the (C) layer to the resin substrate surface. There is provided a method for forming an electronic circuit comprising the steps of forming.
8)樹脂基板の片面または両面に銅又は銅合金の層(A)を形成して銅張積層板を作製し、この銅張積層板にスルーホールを形成し、さらに前記(A)層上の一部又は全面及びスルーホール内に、銅又は銅合金の層(B)からなるめっき層を形成した後、該(B)層上の一部又は全面に、銅エッチング液に対して銅よりもエッチング速度が遅い層(C)を形成し、さらに前記(A)層と(B)層及び(C)層からなる積層部の一部を樹脂基板表面までエッチングして除去することにより銅回路を形成する工程からなることを特徴とする電子回路の形成方法を、提供する。 The present invention also provides:
8) A copper or copper alloy layer (A) is formed on one side or both sides of a resin substrate to produce a copper clad laminate, a through hole is formed in the copper clad laminate, and further on the (A) layer. After a plating layer made of a copper or copper alloy layer (B) is formed in a part or the entire surface and in the through hole, a part or the entire surface of the (B) layer is more than copper for the copper etching solution. A copper circuit is formed by forming a layer (C) having a slow etching rate, and further etching and removing a part of the laminate composed of the (A) layer, the (B) layer, and the (C) layer to the resin substrate surface. There is provided a method for forming an electronic circuit comprising the steps of forming.
また、本発明は、
9)樹脂基板の片面または両面に銅又は銅合金の層(A)を、次いで、該(A)層上の一部または全面に、銅エッチング液に対して銅よりもエッチング速度が遅い層(C)を形成して銅張積層板を作製し、次に、この銅張積層板の前記(A)層と(C)層からなる積層部の一部を樹脂基板表面までエッチングして除去することにより銅回路を形成する工程からなることを特徴とする電子回路の形成方法を、提供する。 The present invention also provides:
9) A layer of copper or copper alloy (A) on one or both sides of the resin substrate, and then a layer having a slower etching rate than copper with respect to the copper etchant on a part or the whole of the layer (A) ( C) is formed to produce a copper clad laminate, and then a part of the laminate composed of the (A) layer and (C) layer of this copper clad laminate is etched and removed to the resin substrate surface. There is provided a method for forming an electronic circuit, characterized by comprising a step of forming a copper circuit.
9)樹脂基板の片面または両面に銅又は銅合金の層(A)を、次いで、該(A)層上の一部または全面に、銅エッチング液に対して銅よりもエッチング速度が遅い層(C)を形成して銅張積層板を作製し、次に、この銅張積層板の前記(A)層と(C)層からなる積層部の一部を樹脂基板表面までエッチングして除去することにより銅回路を形成する工程からなることを特徴とする電子回路の形成方法を、提供する。 The present invention also provides:
9) A layer of copper or copper alloy (A) on one or both sides of the resin substrate, and then a layer having a slower etching rate than copper with respect to the copper etchant on a part or the whole of the layer (A) ( C) is formed to produce a copper clad laminate, and then a part of the laminate composed of the (A) layer and (C) layer of this copper clad laminate is etched and removed to the resin substrate surface. There is provided a method for forming an electronic circuit, characterized by comprising a step of forming a copper circuit.
また、本発明は、
10)樹脂基板の片面または両面に形成した銅又は銅合金の層(A)をエッチングにより、銅又は銅合金の層(A)の厚さを調節し、これらの厚さを調節した層の上に、銅よりもエッチング速度が遅い層(C)形成して銅張積層板を作製し、次に前記(A)層及び(C)層の積層部の一部を樹脂基板表面までエッチングにより除去して銅回路を形成することを特徴とする電子回路の形成方法を、提供する。 The present invention also provides:
10) The thickness of the copper or copper alloy layer (A) is adjusted by etching the copper or copper alloy layer (A) formed on one or both sides of the resin substrate, and the thickness of these layers is adjusted. Next, a layer (C) whose etching rate is slower than that of copper is formed to produce a copper-clad laminate, and then a part of the layered portion of the layers (A) and (C) is removed to the resin substrate surface by etching. Thus, a method for forming an electronic circuit is provided.
10)樹脂基板の片面または両面に形成した銅又は銅合金の層(A)をエッチングにより、銅又は銅合金の層(A)の厚さを調節し、これらの厚さを調節した層の上に、銅よりもエッチング速度が遅い層(C)形成して銅張積層板を作製し、次に前記(A)層及び(C)層の積層部の一部を樹脂基板表面までエッチングにより除去して銅回路を形成することを特徴とする電子回路の形成方法を、提供する。 The present invention also provides:
10) The thickness of the copper or copper alloy layer (A) is adjusted by etching the copper or copper alloy layer (A) formed on one or both sides of the resin substrate, and the thickness of these layers is adjusted. Next, a layer (C) whose etching rate is slower than that of copper is formed to produce a copper-clad laminate, and then a part of the layered portion of the layers (A) and (C) is removed to the resin substrate surface by etching. Thus, a method for forming an electronic circuit is provided.
また、本発明は、
11)前記樹脂基板の片面または両面に銅又は銅合金の層(A)が、層を形成するときに用いる銅箔として、予め銅箔表面に銅エッチング液に対して銅よりもエッチング速度が遅い層(C´)を備える銅箔を用いることを特徴とする7)から10)のいずれかに記載の電子回路の形成方法を、提供する。 The present invention also provides:
11) A copper or copper alloy layer (A) on one or both sides of the resin substrate has a slower etching rate than copper on the copper foil surface in advance with respect to a copper etching solution as a copper foil used when forming the layer. A method for forming an electronic circuit according to any one of 7) to 10), wherein a copper foil provided with a layer (C ′) is used.
11)前記樹脂基板の片面または両面に銅又は銅合金の層(A)が、層を形成するときに用いる銅箔として、予め銅箔表面に銅エッチング液に対して銅よりもエッチング速度が遅い層(C´)を備える銅箔を用いることを特徴とする7)から10)のいずれかに記載の電子回路の形成方法を、提供する。 The present invention also provides:
11) A copper or copper alloy layer (A) on one or both sides of the resin substrate has a slower etching rate than copper on the copper foil surface in advance with respect to a copper etching solution as a copper foil used when forming the layer. A method for forming an electronic circuit according to any one of 7) to 10), wherein a copper foil provided with a layer (C ′) is used.
また、本発明は、
12)前記(C)又は(C´)層上に、耐熱層及び又は防錆層を形成されていることを特徴とする7)から11)のいずれかに記載の電子回路の形成方法を、提供する。 The present invention also provides:
12) The method for forming an electronic circuit according to any one of 7) to 11), wherein a heat-resistant layer and / or a rust-proof layer is formed on the (C) or (C ′) layer, provide.
12)前記(C)又は(C´)層上に、耐熱層及び又は防錆層を形成されていることを特徴とする7)から11)のいずれかに記載の電子回路の形成方法を、提供する。 The present invention also provides:
12) The method for forming an electronic circuit according to any one of 7) to 11), wherein a heat-resistant layer and / or a rust-proof layer is formed on the (C) or (C ′) layer, provide.
また、本発明は、
13)前記銅エッチング液に対して銅よりもエッチング速度が遅い層(C)又は層(C´)として、ニッケル、コバルト、鉄、白金族元素、金、銀のいずれか1種の金属、若しくはこれらの組合せ又はこれらを主成分とする合金を用いることを特徴とする7)から12)のいずれかに記載の電子回路の形成方法を、提供する。 The present invention also provides:
13) As a layer (C) or a layer (C ′) whose etching rate is slower than copper with respect to the copper etching solution, any one metal of nickel, cobalt, iron, platinum group element, gold, silver, or A method of forming an electronic circuit according to any one of 7) to 12), characterized by using a combination thereof or an alloy containing these as a main component.
13)前記銅エッチング液に対して銅よりもエッチング速度が遅い層(C)又は層(C´)として、ニッケル、コバルト、鉄、白金族元素、金、銀のいずれか1種の金属、若しくはこれらの組合せ又はこれらを主成分とする合金を用いることを特徴とする7)から12)のいずれかに記載の電子回路の形成方法を、提供する。 The present invention also provides:
13) As a layer (C) or a layer (C ′) whose etching rate is slower than copper with respect to the copper etching solution, any one metal of nickel, cobalt, iron, platinum group element, gold, silver, or A method of forming an electronic circuit according to any one of 7) to 12), characterized by using a combination thereof or an alloy containing these as a main component.
また、本発明は、
14)前記層(C)又は層(C´)の被着量を、50μg/dm2~3000μg/dm2に調節することを特徴とする7)から13)のいずれかに記載の電子回路の形成方法を、提供する。 The present invention also provides:
14) The deposition amount of the layer (C) or layer (C'), the electronic circuit according to any one of 7), characterized in that adjusting the 50μg / dm 2 ~ 3000μg / dm 2 13) A forming method is provided.
14)前記層(C)又は層(C´)の被着量を、50μg/dm2~3000μg/dm2に調節することを特徴とする7)から13)のいずれかに記載の電子回路の形成方法を、提供する。 The present invention also provides:
14) The deposition amount of the layer (C) or layer (C'), the electronic circuit according to any one of 7), characterized in that adjusting the 50μg / dm 2 ~ 3000μg / dm 2 13) A forming method is provided.
また、本発明は、
15)銅又は銅合金の層(A)層を、酸洗処理、ソフトエッチング又は表面を荒らす処理の一以上で処理することを特徴とする7)から14)のいずれかに記載の電子回路の形成方法を、提供する。 The present invention also provides:
15) The electronic circuit according to any one of 7) to 14), wherein the layer (A) of copper or copper alloy is treated by one or more of pickling treatment, soft etching, or surface roughening treatment. A forming method is provided.
15)銅又は銅合金の層(A)層を、酸洗処理、ソフトエッチング又は表面を荒らす処理の一以上で処理することを特徴とする7)から14)のいずれかに記載の電子回路の形成方法を、提供する。 The present invention also provides:
15) The electronic circuit according to any one of 7) to 14), wherein the layer (A) of copper or copper alloy is treated by one or more of pickling treatment, soft etching, or surface roughening treatment. A forming method is provided.
また、本発明は、
16)銅又は銅合金の層(A層)を、酸洗処理、ソフトエッチング又は表面を荒らす処理の一以上の処理により減厚することを特徴とする7)から15)のいずれかに記載の電子回路の形成方法を、提供する。 The present invention also provides:
16) The thickness of the copper or copper alloy layer (A layer) is reduced by pickling, soft etching, or one or more treatments for roughening the surface, according to any one of 7) to 15), A method of forming an electronic circuit is provided.
16)銅又は銅合金の層(A層)を、酸洗処理、ソフトエッチング又は表面を荒らす処理の一以上の処理により減厚することを特徴とする7)から15)のいずれかに記載の電子回路の形成方法を、提供する。 The present invention also provides:
16) The thickness of the copper or copper alloy layer (A layer) is reduced by pickling, soft etching, or one or more treatments for roughening the surface, according to any one of 7) to 15), A method of forming an electronic circuit is provided.
また、本発明は、
17)樹脂基板の片面または両面に銅又は銅合金の層(A)を形成して銅張積層板を作製し、この銅張積層板にスルーホールを形成し、さらに前記(A)層上の一部又は全面及びスルーホール内に、銅又は銅合金の層(B)からなるめっき層を形成した後、該(B)層上の一部又は全面に銅エッチング液に対して銅よりもエッチング速度が遅い層(C)を形成し、さらに前記(A)層と(B)層及び(C)層からなる積層部の一部を樹脂基板表面までエッチングして除去することにより銅回路を形成する電子回路形成用銅張積層板であって、スルーホール形成前の樹脂基板の片面または両面に銅又は銅合金の層(A)および、その後に形成される銅又は銅合金の層(B)からなるめっき層(スルーホールめっき層)の少なくとも一方を、酸洗又は/及びソフトエッチングにより減厚処理されていることを特徴とする電子回路形成用銅張積層板、を提供する。 The present invention also provides:
17) A copper or copper alloy layer (A) is formed on one or both sides of a resin substrate to produce a copper clad laminate, a through hole is formed in the copper clad laminate, and further on the layer (A). After a plating layer made of a copper or copper alloy layer (B) is formed in part or the entire surface and in the through hole, etching is performed on the part or the entire surface of the (B) layer with respect to a copper etching solution rather than copper. A slow-speed layer (C) is formed, and a copper circuit is formed by etching and removing a part of the laminated portion composed of the layers (A), (B), and (C) to the resin substrate surface. A copper-clad laminate for forming an electronic circuit, wherein a copper or copper alloy layer (A) is formed on one or both sides of a resin substrate before through-hole formation, and a copper or copper alloy layer (B) formed thereafter Pickling at least one of the plating layer (through-hole plating layer) made of Providing a copper-clad laminate, for electronic circuit formation, characterized by being the thickness reduction processing by the / and soft etching.
17)樹脂基板の片面または両面に銅又は銅合金の層(A)を形成して銅張積層板を作製し、この銅張積層板にスルーホールを形成し、さらに前記(A)層上の一部又は全面及びスルーホール内に、銅又は銅合金の層(B)からなるめっき層を形成した後、該(B)層上の一部又は全面に銅エッチング液に対して銅よりもエッチング速度が遅い層(C)を形成し、さらに前記(A)層と(B)層及び(C)層からなる積層部の一部を樹脂基板表面までエッチングして除去することにより銅回路を形成する電子回路形成用銅張積層板であって、スルーホール形成前の樹脂基板の片面または両面に銅又は銅合金の層(A)および、その後に形成される銅又は銅合金の層(B)からなるめっき層(スルーホールめっき層)の少なくとも一方を、酸洗又は/及びソフトエッチングにより減厚処理されていることを特徴とする電子回路形成用銅張積層板、を提供する。 The present invention also provides:
17) A copper or copper alloy layer (A) is formed on one or both sides of a resin substrate to produce a copper clad laminate, a through hole is formed in the copper clad laminate, and further on the layer (A). After a plating layer made of a copper or copper alloy layer (B) is formed in part or the entire surface and in the through hole, etching is performed on the part or the entire surface of the (B) layer with respect to a copper etching solution rather than copper. A slow-speed layer (C) is formed, and a copper circuit is formed by etching and removing a part of the laminated portion composed of the layers (A), (B), and (C) to the resin substrate surface. A copper-clad laminate for forming an electronic circuit, wherein a copper or copper alloy layer (A) is formed on one or both sides of a resin substrate before through-hole formation, and a copper or copper alloy layer (B) formed thereafter Pickling at least one of the plating layer (through-hole plating layer) made of Providing a copper-clad laminate, for electronic circuit formation, characterized by being the thickness reduction processing by the / and soft etching.
ここで、銅張積層板上の電子回路としての銅回路のエッチングを例としたが、エッチングでより切り立った形状を得ることを目的とするものであれば、電子回路の一形態である銅バンプ形成等、あらゆる関連技術への適用が可能である。
Here, an example of etching a copper circuit as an electronic circuit on a copper clad laminate was taken as an example. However, if the purpose is to obtain a more prominent shape by etching, a copper bump that is a form of an electronic circuit It can be applied to all related technologies such as formation.
本発明は、銅張積層板の銅層をエッチングにより回路形成を行うに際し、目的とする回路幅のより均一な回路を形成できるという効果を有する。また、エッチングによるダレの発生を防止することができるという効果を有する。
これによってパターンエッチングでのエッチング性の向上、ショートや回路幅の不良の発生を防止できる優れた電子回路の形成方法を提供することができるという著しい効果を有する。 The present invention has an effect that when a circuit is formed by etching a copper layer of a copper clad laminate, a circuit having a more uniform circuit width can be formed. Further, there is an effect that the occurrence of sagging due to etching can be prevented.
This has the remarkable effect that it is possible to provide an excellent method for forming an electronic circuit capable of improving the etching property by pattern etching and preventing the occurrence of a short circuit or a defective circuit width.
これによってパターンエッチングでのエッチング性の向上、ショートや回路幅の不良の発生を防止できる優れた電子回路の形成方法を提供することができるという著しい効果を有する。 The present invention has an effect that when a circuit is formed by etching a copper layer of a copper clad laminate, a circuit having a more uniform circuit width can be formed. Further, there is an effect that the occurrence of sagging due to etching can be prevented.
This has the remarkable effect that it is possible to provide an excellent method for forming an electronic circuit capable of improving the etching property by pattern etching and preventing the occurrence of a short circuit or a defective circuit width.
本発明は、エッチングによって電子回路及び同回路を形成する方法並びにこれらに使用する銅張積層板である。
本願発明の目的を達成するための一つの形態としては、まず、樹脂基板に形成された銅又は銅合金の層(A)上に銅又は銅合金の層(B)層を形成する。すなわち、この銅層(B)は、銅張積層板に、スルーホールめっきなどによって新たに形成された銅層である。また、別の形態としては(A)層をソフトエッチングなどにより減厚する。 The present invention relates to an electronic circuit and a method for forming the circuit by etching, and a copper clad laminate used in the method.
As one mode for achieving the object of the present invention, first, a copper or copper alloy layer (B) layer is formed on a copper or copper alloy layer (A) formed on a resin substrate. That is, this copper layer (B) is a copper layer newly formed on the copper-clad laminate by through-hole plating or the like. As another form, the thickness of the layer (A) is reduced by soft etching or the like.
本願発明の目的を達成するための一つの形態としては、まず、樹脂基板に形成された銅又は銅合金の層(A)上に銅又は銅合金の層(B)層を形成する。すなわち、この銅層(B)は、銅張積層板に、スルーホールめっきなどによって新たに形成された銅層である。また、別の形態としては(A)層をソフトエッチングなどにより減厚する。 The present invention relates to an electronic circuit and a method for forming the circuit by etching, and a copper clad laminate used in the method.
As one mode for achieving the object of the present invention, first, a copper or copper alloy layer (B) layer is formed on a copper or copper alloy layer (A) formed on a resin substrate. That is, this copper layer (B) is a copper layer newly formed on the copper-clad laminate by through-hole plating or the like. As another form, the thickness of the layer (A) is reduced by soft etching or the like.
ここで、前記銅又は銅合金の層(A)は、樹脂基板に直接形成されためっき層又は接着された箔からなる銅又は銅合金の層のいずれでもよい。すなわち、上記(A)層については、銅箔を使用せずに、ポリイミド等の樹脂フイルムにプラズマ処理等の表面処理をした後、直接銅層を形成した銅張積層板を使用することもできる。この場合は接着されるべき箔が予めEF層を備えない箔である場合と同じく、この段階では表面にEF層を有しない。(B)層の形成は、主に湿式めっき法によって行われるが、銅の新生面が形成されるという特徴を有している。また、ソフトエッチングにより(A)層を減厚した場合も同様に銅の新生面が現れることとなる。
Here, the copper or copper alloy layer (A) may be a plating layer directly formed on a resin substrate or a copper or copper alloy layer made of an adhered foil. That is, for the layer (A), a copper clad laminate in which a copper layer is directly formed after a surface treatment such as a plasma treatment on a resin film such as polyimide can be used without using a copper foil. . In this case, as in the case where the foil to be bonded is a foil not previously provided with an EF layer, the surface does not have an EF layer at this stage. The formation of the (B) layer is mainly performed by a wet plating method, but has a feature that a new copper surface is formed. Further, when the thickness of the layer (A) is reduced by soft etching, a new copper surface appears in the same manner.
次に、この(B)層、又はソフトエッチングにより減厚された(A)層、又は予めEF層が形成されていない銅箔を用いた(A)層上に、銅エッチング液に対して銅よりもエッチング速度が遅い層(C)層を形成する。この(C)層としては、銅エッチング液に対して銅よりもエッチング速度が遅い材料を選択する。この材料としては、ニッケル、コバルト、鉄、白金族、金、銀のいずれか1種の金属、若しくはその組合せ又はこれらを主成分とする合金が適当である。特に、ニッケル、白金族、金のいずれか1種の金属、若しくはその組合せ、又はこれらを主成分とする合金が望ましい。
Next, on this (B) layer, (A) layer reduced in thickness by soft etching, or (A) layer using a copper foil in which an EF layer has not been formed in advance, copper is added to the copper etching solution. A layer (C) layer having a slower etching rate is formed. As this (C) layer, a material having a slower etching rate than copper is selected for the copper etchant. As this material, any one metal of nickel, cobalt, iron, platinum group, gold and silver, a combination thereof, or an alloy containing these as a main component is suitable. In particular, any one metal of nickel, platinum group, and gold, or a combination thereof, or an alloy containing these as a main component is desirable.
ニッケル又はニッケル合金層を、例にとって具体的に説明すると、銅箔上のレジスト部分に近い位置にあり、レジスト側の銅箔のエッチング速度は、このニッケル又はニッケル合金層により抑制され、逆にニッケル又はニッケル合金層から遠ざかるに従い、銅のエッチングは通常の速度で進行する。
これによって、銅回路の側面のレジスト側から樹脂基板側に向かってほぼ垂直にエッチングが進行し、矩形の銅箔回路が形成される。
ニッケル又はニッケル合金層等は、主としてダレの発生を抑制し、目的とする回路幅の均一な回路を形成することである。 The nickel or nickel alloy layer will be specifically described by way of example. The nickel or nickel alloy layer is located close to the resist portion on the copper foil, and the etching rate of the copper foil on the resist side is suppressed by this nickel or nickel alloy layer. Alternatively, the copper etching proceeds at a normal rate as the distance from the nickel alloy layer increases.
As a result, etching proceeds substantially vertically from the resist side of the side surface of the copper circuit toward the resin substrate side, and a rectangular copper foil circuit is formed.
The nickel or nickel alloy layer or the like mainly suppresses the occurrence of sagging and forms a circuit with a uniform circuit width.
これによって、銅回路の側面のレジスト側から樹脂基板側に向かってほぼ垂直にエッチングが進行し、矩形の銅箔回路が形成される。
ニッケル又はニッケル合金層等は、主としてダレの発生を抑制し、目的とする回路幅の均一な回路を形成することである。 The nickel or nickel alloy layer will be specifically described by way of example. The nickel or nickel alloy layer is located close to the resist portion on the copper foil, and the etching rate of the copper foil on the resist side is suppressed by this nickel or nickel alloy layer. Alternatively, the copper etching proceeds at a normal rate as the distance from the nickel alloy layer increases.
As a result, etching proceeds substantially vertically from the resist side of the side surface of the copper circuit toward the resin substrate side, and a rectangular copper foil circuit is formed.
The nickel or nickel alloy layer or the like mainly suppresses the occurrence of sagging and forms a circuit with a uniform circuit width.
微細回路形成においては、エッチング速度が速い、塩化第二鉄水溶液によるエッチング液を用いることが好ましい。これは、回路の微細化によりエッチング速度が下がるという問題があるからである。塩化第二鉄水溶液によるエッチング液は、これを防止する有効な手段である。しかし、他のエッチング液の使用を妨げるものではない。必要に応じて、エッチング液を替えることが可能である。
形成 In forming a fine circuit, it is preferable to use an etching solution with a ferric chloride aqueous solution having a high etching rate. This is because there is a problem that the etching rate decreases due to circuit miniaturization. An etching solution using a ferric chloride aqueous solution is an effective means for preventing this. However, this does not prevent the use of other etchants. The etching solution can be changed as necessary.
これによって、銅の回路間に形成された樹脂基板上のスペースを、前記(A)層及び(B)層を合わせた銅層の厚み(T)に応じた幅に調整することができる。例えば、銅層の厚み(T)の2倍以下、さらには1.5倍以下のスペースを有する回路を精度良く形成することができる。一方、回路幅は、用途に応じて任意に設計することができる。
Thereby, the space on the resin substrate formed between the copper circuits can be adjusted to a width corresponding to the thickness (T) of the copper layer including the (A) layer and the (B) layer. For example, it is possible to accurately form a circuit having a space not more than twice the thickness (T) of the copper layer, and further not more than 1.5 times. On the other hand, the circuit width can be arbitrarily designed according to the application.
前記(C)層上には、さらにクロム層若しくはクロメート層及び又はシラン処理などの有機防錆層を形成することができる。この場合は、パターンエッチング液に対するエッチング速度の相異が生ずる可能性はあるが、この量を適宜選択することにより、同様に(C)層の表面の酸化を押さえることができるので、さらに安定した回路幅のパターンの形成が可能となる。
ク ロ ム An organic rust preventive layer such as a chrome layer or a chromate layer and / or a silane treatment can be further formed on the (C) layer. In this case, there may be a difference in etching rate with respect to the pattern etching solution. However, by appropriately selecting this amount, the oxidation of the surface of the (C) layer can be similarly suppressed, so that the stability is further stabilized. A circuit width pattern can be formed.
また、前記(C)層に含まれるニッケル、白金族、金、銀の量は、50μg/dm2~3000μg/dm2、好ましくは2250μg/dm2以下、さらに1500μg/dm2以下することが望ましい。これは回路エッチングの際に、ダレを生ずるのを抑制し、均一な回路のエッチングに必要な量である。
50μg/dm2未満では、その効果がない。好ましくは100μg/dm2以上、より好ましくは200μg/dm2以上である。 Further, the (C) nickel contained in the layer, the platinum group, gold, the amount of silver, 50μg / dm 2 ~ 3000μg / dm 2, preferably from 2250μg / dm 2 or less, it is desirable to further 1500μg / dm 2 or less . This is an amount necessary to suppress the occurrence of sagging during circuit etching and to etch a uniform circuit.
If it is less than 50 μg / dm 2 , there is no effect. Preferably it is 100 microgram / dm < 2 > or more, More preferably, it is 200 microgram / dm < 2 > or more.
50μg/dm2未満では、その効果がない。好ましくは100μg/dm2以上、より好ましくは200μg/dm2以上である。 Further, the (C) nickel contained in the layer, the platinum group, gold, the amount of silver, 50μg / dm 2 ~ 3000μg / dm 2, preferably from 2250μg / dm 2 or less, it is desirable to further 1500μg / dm 2 or less . This is an amount necessary to suppress the occurrence of sagging during circuit etching and to etch a uniform circuit.
If it is less than 50 μg / dm 2 , there is no effect. Preferably it is 100 microgram / dm < 2 > or more, More preferably, it is 200 microgram / dm < 2 > or more.
なお、200μg/dm2以上では、耐変色性も生じ、厚みが多くなるに従って、耐熱(耐変色)性が向上するので、多い方が良いと言える。この場合、耐変色性とは、保管時の変色、半田実装時の熱時変色を抑制できる機能を意味する。
一方、多すぎる場合には、後工程の関係でC層の除去が必要となる場合、ソフトエッチングの際に、C層除去の工程の負荷が大きくなり、場合によっては処理残りが発生し、銅回路の設計上支障となる。したがって、上記の範囲とすることが必要である。 In addition, if it is 200 microgram / dm < 2 > or more, discoloration resistance also arises, and since heat resistance (discoloration resistance) improves as thickness increases, it can be said that the larger one is better. In this case, discoloration resistance means a function capable of suppressing discoloration during storage and thermal discoloration during solder mounting.
On the other hand, if the amount of C layer needs to be removed due to the post-process, the load of the C layer removal step increases during soft etching, and a processing residue may occur depending on the case. This hinders circuit design. Therefore, it is necessary to set the above range.
一方、多すぎる場合には、後工程の関係でC層の除去が必要となる場合、ソフトエッチングの際に、C層除去の工程の負荷が大きくなり、場合によっては処理残りが発生し、銅回路の設計上支障となる。したがって、上記の範囲とすることが必要である。 In addition, if it is 200 microgram / dm < 2 > or more, discoloration resistance also arises, and since heat resistance (discoloration resistance) improves as thickness increases, it can be said that the larger one is better. In this case, discoloration resistance means a function capable of suppressing discoloration during storage and thermal discoloration during solder mounting.
On the other hand, if the amount of C layer needs to be removed due to the post-process, the load of the C layer removal step increases during soft etching, and a processing residue may occur depending on the case. This hinders circuit design. Therefore, it is necessary to set the above range.
また、本発明の電子回路用の圧延銅箔又は電解銅箔において、前記クロム層若しくはクロメート層を設ける場合には、クロム量を金属クロム換算で、100μg/dm2以下とする。また、前記シラン処理層を形成する場合には、シリコン単体換算で、20μg/dm2以下であることが望ましい。これは、パターンエッチング液に対するエッチング速度の相異が生ずるのを抑制するためである。しかしながら、適度な量は、(C)層の酸化を防止するのに有効である。
Moreover, in the rolled copper foil or electrolytic copper foil for electronic circuits of this invention, when providing the said chromium layer or chromate layer, chromium amount shall be 100 microgram / dm < 2 > or less in conversion of metal chromium. Moreover, when forming the said silane treatment layer, it is desirable that it is 20 microgram / dm < 2 > or less in conversion of silicon simple substance. This is to suppress the difference in etching rate with respect to the pattern etching solution. However, an appropriate amount is effective to prevent oxidation of the (C) layer.
下記に代表的かつ好適なめっき条件の例を示す。
(銅めっき)
Cu: 90g/L
H2SO4:80g/L
Cl: 60ppm
液温: 55~57℃
添加剤:ビス(3-スルフォプロピル)ジスルファイド2ナトリウム(RASCHIG社製 CPS)、ジベンジルアミン変性物 Examples of typical and preferable plating conditions are shown below.
(Copper plating)
Cu: 90 g / L
H 2 SO 4 : 80 g / L
Cl: 60ppm
Liquid temperature: 55-57 ° C
Additives: Bis (3-sulfopropyl) disulfide disodium (CPS manufactured by RASCHIG), dibenzylamine modified product
(銅めっき)
Cu: 90g/L
H2SO4:80g/L
Cl: 60ppm
液温: 55~57℃
添加剤:ビス(3-スルフォプロピル)ジスルファイド2ナトリウム(RASCHIG社製 CPS)、ジベンジルアミン変性物 Examples of typical and preferable plating conditions are shown below.
(Copper plating)
Cu: 90 g / L
H 2 SO 4 : 80 g / L
Cl: 60ppm
Liquid temperature: 55-57 ° C
Additives: Bis (3-sulfopropyl) disulfide disodium (CPS manufactured by RASCHIG), dibenzylamine modified product
(ニッケルめっき)
Ni:10~40g/L
pH:2.5~3.5
温度:常温~60°C
電流密度Dk:2~50A/dm2
時間:1~4秒 (Nickel plating)
Ni: 10-40g / L
pH: 2.5-3.5
Temperature: normal temperature to 60 ° C
Current density Dk: 2 to 50 A / dm 2
Time: 1 to 4 seconds
Ni:10~40g/L
pH:2.5~3.5
温度:常温~60°C
電流密度Dk:2~50A/dm2
時間:1~4秒 (Nickel plating)
Ni: 10-40g / L
pH: 2.5-3.5
Temperature: normal temperature to 60 ° C
Current density Dk: 2 to 50 A / dm 2
Time: 1 to 4 seconds
(コバルトめっき)
Co:10~40g/L
pH:2.5~3.5
温度:常温~60°C
電流密度Dk:2~50A/dm2
時間:1~4秒 (Cobalt plating)
Co: 10-40 g / L
pH: 2.5-3.5
Temperature: normal temperature to 60 ° C
Current density Dk: 2 to 50 A / dm 2
Time: 1 to 4 seconds
Co:10~40g/L
pH:2.5~3.5
温度:常温~60°C
電流密度Dk:2~50A/dm2
時間:1~4秒 (Cobalt plating)
Co: 10-40 g / L
pH: 2.5-3.5
Temperature: normal temperature to 60 ° C
Current density Dk: 2 to 50 A / dm 2
Time: 1 to 4 seconds
(鉄めっき)
Fe:20~25g/L
pH:2.5~3.5
温度:50~60°C
電流密度Dk:4~10A/dm2
時間:1~4秒 (Iron plating)
Fe: 20 to 25 g / L
pH: 2.5-3.5
Temperature: 50-60 ° C
Current density Dk: 4 to 10 A / dm 2
Time: 1 to 4 seconds
Fe:20~25g/L
pH:2.5~3.5
温度:50~60°C
電流密度Dk:4~10A/dm2
時間:1~4秒 (Iron plating)
Fe: 20 to 25 g / L
pH: 2.5-3.5
Temperature: 50-60 ° C
Current density Dk: 4 to 10 A / dm 2
Time: 1 to 4 seconds
(白金族、金、銀のスパッタリング条件)
装置:アルバック製 MNS-6000
真空度:0.2Pa
電力:DC20~50W
時間:5~150秒 (Platinum group, gold, silver sputtering conditions)
Device: ULVAC MNS-6000
Degree of vacuum: 0.2Pa
Power: DC20-50W
Time: 5 to 150 seconds
装置:アルバック製 MNS-6000
真空度:0.2Pa
電力:DC20~50W
時間:5~150秒 (Platinum group, gold, silver sputtering conditions)
Device: ULVAC MNS-6000
Degree of vacuum: 0.2Pa
Power: DC20-50W
Time: 5 to 150 seconds
(クロメート処理の条件)
(A)浸漬クロメート処理
K2Cr2O7(Na2Cr2O7或いはCrO3):0.1~5g/リットル
pH :2~13
温度 :常温~60℃
時間 :5~30秒
(B)電解クロメート処理
K2Cr2O7(Na2Cr2O7或いはCrO3):2~10g/リットル
NaOH或いはKOH :10~50g/リットル
pH:7~13
浴温:20~80°C
電流密度Dk :0.05~5A/dm2
時間:5~30秒
アノード:Pt-Ti 板、鉛板等 (Conditions for chromate treatment)
(A) Immersion chromate treatment K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 0.1 to 5 g / liter pH: 2 to 13
Temperature: Normal temperature to 60 ° C
Time: 5 to 30 seconds (B) Electrolytic chromate treatment K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / liter NaOH or KOH: 10 to 50 g / liter pH: 7 to 13
Bath temperature: 20-80 ° C
Current density D k : 0.05 to 5 A / dm 2
Time: 5-30 seconds Anode: Pt-Ti plate, lead plate, etc.
(A)浸漬クロメート処理
K2Cr2O7(Na2Cr2O7或いはCrO3):0.1~5g/リットル
pH :2~13
温度 :常温~60℃
時間 :5~30秒
(B)電解クロメート処理
K2Cr2O7(Na2Cr2O7或いはCrO3):2~10g/リットル
NaOH或いはKOH :10~50g/リットル
pH:7~13
浴温:20~80°C
電流密度Dk :0.05~5A/dm2
時間:5~30秒
アノード:Pt-Ti 板、鉛板等 (Conditions for chromate treatment)
(A) Immersion chromate treatment K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 0.1 to 5 g / liter pH: 2 to 13
Temperature: Normal temperature to 60 ° C
Time: 5 to 30 seconds (B) Electrolytic chromate treatment K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / liter NaOH or KOH: 10 to 50 g / liter pH: 7 to 13
Bath temperature: 20-80 ° C
Current density D k : 0.05 to 5 A / dm 2
Time: 5-30 seconds Anode: Pt-Ti plate, lead plate, etc.
(シラン処理の条件)
下記のような色々な系列のシランから選択する。アルコールに溶解したシランを所定の濃度まで水で希釈し、銅箔表面へ塗布する。
濃度:0.01wt%~2wt%
種類:オレフィン系シラン、エポキシ系シラン、アクリル系シラン、アミノ系シラン、メルカプト系シラン (Conditions for silane treatment)
Select from various series of silanes such as: Silane dissolved in alcohol is diluted with water to a predetermined concentration and applied to the copper foil surface.
Concentration: 0.01 wt% to 2 wt%
Type: Olefin silane, Epoxy silane, Acrylic silane, Amino silane, Mercapto silane
下記のような色々な系列のシランから選択する。アルコールに溶解したシランを所定の濃度まで水で希釈し、銅箔表面へ塗布する。
濃度:0.01wt%~2wt%
種類:オレフィン系シラン、エポキシ系シラン、アクリル系シラン、アミノ系シラン、メルカプト系シラン (Conditions for silane treatment)
Select from various series of silanes such as: Silane dissolved in alcohol is diluted with water to a predetermined concentration and applied to the copper foil surface.
Concentration: 0.01 wt% to 2 wt%
Type: Olefin silane, Epoxy silane, Acrylic silane, Amino silane, Mercapto silane
(ニッケル等の付着量分析方法)
ニッケル処理面を分析するため、反対面をFR-4樹脂でプレス作製し、マスキングする。そのサンプルを濃度30%の硝酸にて表面処理被膜が溶けるまで溶解させ、ビーカー中の溶解液を10倍に稀釈し、原子吸光分析によりニッケルの定量分析を行う。 (Method of analyzing the amount of adhesion of nickel, etc.)
In order to analyze the nickel-treated surface, the opposite surface is pressed with FR-4 resin and masked. The sample is dissolved in nitric acid with a concentration of 30% until the surface treatment film is dissolved, the solution in the beaker is diluted 10 times, and quantitative analysis of nickel is performed by atomic absorption analysis.
ニッケル処理面を分析するため、反対面をFR-4樹脂でプレス作製し、マスキングする。そのサンプルを濃度30%の硝酸にて表面処理被膜が溶けるまで溶解させ、ビーカー中の溶解液を10倍に稀釈し、原子吸光分析によりニッケルの定量分析を行う。 (Method of analyzing the amount of adhesion of nickel, etc.)
In order to analyze the nickel-treated surface, the opposite surface is pressed with FR-4 resin and masked. The sample is dissolved in nitric acid with a concentration of 30% until the surface treatment film is dissolved, the solution in the beaker is diluted 10 times, and quantitative analysis of nickel is performed by atomic absorption analysis.
(クロムの付着量分析方法)
処理面を分析するため、反対面をFR-4樹脂でプレス作製し、マスキングする。そのサンプルを濃度10%の塩酸にて3分間煮沸して処理層を溶解させ、その溶液を原子吸光分析により亜鉛、クロムの定量分析を行う。 (Chromium adhesion analysis method)
In order to analyze the treated surface, the opposite surface is pressed with FR-4 resin and masked. The sample is boiled in hydrochloric acid having a concentration of 10% for 3 minutes to dissolve the treatment layer, and the solution is quantitatively analyzed for zinc and chromium by atomic absorption analysis.
処理面を分析するため、反対面をFR-4樹脂でプレス作製し、マスキングする。そのサンプルを濃度10%の塩酸にて3分間煮沸して処理層を溶解させ、その溶液を原子吸光分析により亜鉛、クロムの定量分析を行う。 (Chromium adhesion analysis method)
In order to analyze the treated surface, the opposite surface is pressed with FR-4 resin and masked. The sample is boiled in hydrochloric acid having a concentration of 10% for 3 minutes to dissolve the treatment layer, and the solution is quantitatively analyzed for zinc and chromium by atomic absorption analysis.
上記の通り、(C)層上に回路形成用のレジストパターンを形成し、さらに塩化第二銅溶液または塩化第二鉄溶液からなるエッチング液を用いて、前記レジストパターンが付された部分以外の樹脂基板上の前記(A)層、(B)層及び(C)層の積層部の不必要部分を樹脂基板表面まで除去する。次にレジスト除去を行い、必要であればさらにソフトエッチングにより残部の(C)層を除去する。このレジストパターンの形成から不要な銅箔の除去は、一般的に行われている手法なので、多くを説明する必要はないので省略する。
As described above, a resist pattern for forming a circuit is formed on the layer (C), and an etching solution made of a cupric chloride solution or a ferric chloride solution is used, and a portion other than the portion to which the resist pattern is attached Unnecessary portions of the laminated portion of the (A) layer, (B) layer, and (C) layer on the resin substrate are removed to the surface of the resin substrate. Next, the resist is removed, and if necessary, the remaining (C) layer is removed by soft etching. The removal of the unnecessary copper foil from the formation of the resist pattern is a commonly performed technique, and therefore, it is not necessary to explain much and is omitted.
本発明により、例えば、(A)層及び(B)層を合わせた銅層の厚み(T)の、2倍以下、さらには1.5倍以下のスペースを有する回路を形成することができる。
以上については、上記に説明した(A)層、(B)層、(C)層の組み合わせにより実現できるものであり、優れた本願発明の特徴の一つである。 According to the present invention, for example, it is possible to form a circuit having a space of 2 times or less, further 1.5 times or less of the thickness (T) of the copper layer including the (A) layer and the (B) layer.
The above can be realized by the combination of the (A) layer, (B) layer, and (C) layer described above, and is one of the excellent features of the present invention.
以上については、上記に説明した(A)層、(B)層、(C)層の組み合わせにより実現できるものであり、優れた本願発明の特徴の一つである。 According to the present invention, for example, it is possible to form a circuit having a space of 2 times or less, further 1.5 times or less of the thickness (T) of the copper layer including the (A) layer and the (B) layer.
The above can be realized by the combination of the (A) layer, (B) layer, and (C) layer described above, and is one of the excellent features of the present invention.
さらに好適な実施条件を示すと、上記の通り(A)層をめっき又は張り付けて形成した後、(B)層形成前に、銅箔であるA層の露出面上の該銅箔を保護するために施されている層を、予めエッチングなどにより除去することが望ましい。これは、後続のめっきの付着を良好にするためである。
More preferable implementation conditions are as follows. After the (A) layer is formed by plating or pasting as described above, the copper foil on the exposed surface of the A layer, which is a copper foil, is protected before the (B) layer is formed. Therefore, it is desirable to remove the layer applied for this purpose by etching or the like in advance. This is to improve the subsequent plating adhesion.
樹脂基板に形成する銅又は銅合金層として、銅箔を使用する場合、電解銅箔の粗化面(M面)又は光沢面(S面)にも同様に適用できるが、エッチングされる面は、通常光沢面側を使用する。圧延銅箔を使用する場合は、高純度圧延銅箔又は強度を向上させた圧延合金銅箔を使用することもできる。本件発明はこれらの銅箔の全てを包含する。
When copper foil is used as the copper or copper alloy layer formed on the resin substrate, it can be similarly applied to the roughened surface (M surface) or glossy surface (S surface) of the electrolytic copper foil, but the surface to be etched is Usually use the glossy side. When using a rolled copper foil, a high purity rolled copper foil or a rolled alloy copper foil with improved strength can also be used. The present invention includes all of these copper foils.
(エッチングファクターの測定条件)
エッチングファクターは、末広がりにエッチングされた場合(ダレが発生した場合)、回路が垂直にエッチングされたと仮定した場合の、銅箔上面からの垂線と樹脂基板との交点をP点とし、このP点からのダレの長さの距離をaとした場合において、このaと銅箔の厚さbとの比:b/aを示すものであり、この数値が大きいほど、傾斜角は大きくなり、エッチング残渣が残らず、ダレが小さくなることを意味する。
エッチングファクター(EF)の計算方法の概略を図1に示す。この図1に示すように、EF=b/aとして計算する。このエッチングファクターを用いることにより、エッチング性の良否を簡単に判定できる。 (Etching factor measurement conditions)
The etching factor is defined as the point of intersection between the perpendicular line from the upper surface of the copper foil and the resin substrate, assuming that the circuit is etched vertically when etching is performed in a divergent manner (when sagging occurs). When the distance of the length of sagging from a is a, the ratio of this a to the thickness b of the copper foil: b / a is shown. The larger this value, the greater the inclination angle and the etching. It means that no residue remains and dripping is reduced.
An outline of the calculation method of the etching factor (EF) is shown in FIG. As shown in FIG. 1, calculation is performed with EF = b / a. By using this etching factor, it is possible to easily determine whether the etching property is good or bad.
エッチングファクターは、末広がりにエッチングされた場合(ダレが発生した場合)、回路が垂直にエッチングされたと仮定した場合の、銅箔上面からの垂線と樹脂基板との交点をP点とし、このP点からのダレの長さの距離をaとした場合において、このaと銅箔の厚さbとの比:b/aを示すものであり、この数値が大きいほど、傾斜角は大きくなり、エッチング残渣が残らず、ダレが小さくなることを意味する。
エッチングファクター(EF)の計算方法の概略を図1に示す。この図1に示すように、EF=b/aとして計算する。このエッチングファクターを用いることにより、エッチング性の良否を簡単に判定できる。 (Etching factor measurement conditions)
The etching factor is defined as the point of intersection between the perpendicular line from the upper surface of the copper foil and the resin substrate, assuming that the circuit is etched vertically when etching is performed in a divergent manner (when sagging occurs). When the distance of the length of sagging from a is a, the ratio of this a to the thickness b of the copper foil: b / a is shown. The larger this value, the greater the inclination angle and the etching. It means that no residue remains and dripping is reduced.
An outline of the calculation method of the etching factor (EF) is shown in FIG. As shown in FIG. 1, calculation is performed with EF = b / a. By using this etching factor, it is possible to easily determine whether the etching property is good or bad.
次に、本発明の実施例及び比較例について説明する。なお、本実施例は理解を容易にするための例であり、下記の例に制限されるものではない。すなわち、本発明は、本明細書に記載する技術思想の範囲内で、下記に示す実施例以外の態様あるいは変形を全て包含するものである。
また、これらの例では、銅めっき液・条件は、出願人が特開2004-107786で示した液・条件( Next, examples and comparative examples of the present invention will be described. In addition, a present Example is an example for making an understanding easy, and is not restrict | limited to the following example. That is, the present invention encompasses all aspects or modifications other than the examples shown below within the scope of the technical idea described in the present specification.
In these examples, the copper plating solution and conditions are the same as those described in Japanese Patent Application Laid-Open No. 2004-107786.
また、これらの例では、銅めっき液・条件は、出願人が特開2004-107786で示した液・条件( Next, examples and comparative examples of the present invention will be described. In addition, a present Example is an example for making an understanding easy, and is not restrict | limited to the following example. That is, the present invention encompasses all aspects or modifications other than the examples shown below within the scope of the technical idea described in the present specification.
In these examples, the copper plating solution and conditions are the same as those described in Japanese Patent Application Laid-Open No. 2004-107786.
)を用いたが、これ以外の銅めっき液・条件であっても構わない。
However, other copper plating solutions and conditions may be used.
(実施例1)
箔厚18μmの電解銅箔を用いた。この電解銅箔をポリイミド樹脂基板に接着し銅張積層板とした。次に、この銅張積層板に20μmの銅めっき層を形成した。銅めっきは上記の条件とした。この結果、樹脂基板上の電解銅箔及び銅めっき層の合計厚みは38μmとなった。
次に、該銅めっき層の上に、上記金スパッタ条件で、付着量400μg/dm2の金スパッタ層を形成し、上記クロメート条件によりクロメート層を形成した。 Example 1
An electrolytic copper foil having a foil thickness of 18 μm was used. This electrolytic copper foil was bonded to a polyimide resin substrate to obtain a copper-clad laminate. Next, a copper plating layer of 20 μm was formed on this copper clad laminate. The copper plating was performed as described above. As a result, the total thickness of the electrolytic copper foil and the copper plating layer on the resin substrate was 38 μm.
Next, a gold sputter layer having an adhesion amount of 400 μg / dm 2 was formed on the copper plating layer under the above-mentioned gold sputtering conditions, and a chromate layer was formed under the above-mentioned chromate conditions.
箔厚18μmの電解銅箔を用いた。この電解銅箔をポリイミド樹脂基板に接着し銅張積層板とした。次に、この銅張積層板に20μmの銅めっき層を形成した。銅めっきは上記の条件とした。この結果、樹脂基板上の電解銅箔及び銅めっき層の合計厚みは38μmとなった。
次に、該銅めっき層の上に、上記金スパッタ条件で、付着量400μg/dm2の金スパッタ層を形成し、上記クロメート条件によりクロメート層を形成した。 Example 1
An electrolytic copper foil having a foil thickness of 18 μm was used. This electrolytic copper foil was bonded to a polyimide resin substrate to obtain a copper-clad laminate. Next, a copper plating layer of 20 μm was formed on this copper clad laminate. The copper plating was performed as described above. As a result, the total thickness of the electrolytic copper foil and the copper plating layer on the resin substrate was 38 μm.
Next, a gold sputter layer having an adhesion amount of 400 μg / dm 2 was formed on the copper plating layer under the above-mentioned gold sputtering conditions, and a chromate layer was formed under the above-mentioned chromate conditions.
この金スパッタ層を形成した銅張積層板に、レジスト塗布及び露光工程により10本の回路を印刷し、さらに銅箔の不要部分を除去するエッチング処理を実施した。
On the copper clad laminate on which the gold sputter layer was formed, 10 circuits were printed by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed.
(エッチング条件)
塩化第二鉄水溶液:(37wt%、ボーメ度:40°)
液温:50°C
スプレー圧:0.15MPa (Etching conditions)
Ferric chloride aqueous solution: (37 wt%, Baume degree: 40 °)
Liquid temperature: 50 ° C
Spray pressure: 0.15 MPa
塩化第二鉄水溶液:(37wt%、ボーメ度:40°)
液温:50°C
スプレー圧:0.15MPa (Etching conditions)
Ferric chloride aqueous solution: (37 wt%, Baume degree: 40 °)
Liquid temperature: 50 ° C
Spray pressure: 0.15 MPa
(回路形成条件)
回路ピッチ:30μmピッチ、100μmピッチの2種であるが、銅箔の厚みによって変更する。本実施例1の場合は、18μm厚の銅箔を用いたので、銅層の厚みの合計は38μmである。これに対して、次の条件で回路を形成した。
(100μmピッチ回路形成)
レジストL(ライン)/S(スペース)=73μm/27μm、仕上がり回路トップ(上部)幅:15μm、エッチング時間:210秒前後 (Circuit formation conditions)
Circuit pitch: 2 types, 30 μm pitch and 100 μm pitch, which are changed depending on the thickness of the copper foil. In the case of the present Example 1, since the 18-micrometer-thick copper foil was used, the sum total of the thickness of a copper layer is 38 micrometers. On the other hand, a circuit was formed under the following conditions.
(100 μm pitch circuit formation)
Resist L (line) / S (space) = 73 μm / 27 μm, finished circuit top (upper) width: 15 μm, etching time: around 210 seconds
回路ピッチ:30μmピッチ、100μmピッチの2種であるが、銅箔の厚みによって変更する。本実施例1の場合は、18μm厚の銅箔を用いたので、銅層の厚みの合計は38μmである。これに対して、次の条件で回路を形成した。
(100μmピッチ回路形成)
レジストL(ライン)/S(スペース)=73μm/27μm、仕上がり回路トップ(上部)幅:15μm、エッチング時間:210秒前後 (Circuit formation conditions)
Circuit pitch: 2 types, 30 μm pitch and 100 μm pitch, which are changed depending on the thickness of the copper foil. In the case of the present Example 1, since the 18-micrometer-thick copper foil was used, the sum total of the thickness of a copper layer is 38 micrometers. On the other hand, a circuit was formed under the following conditions.
(100 μm pitch circuit formation)
Resist L (line) / S (space) = 73 μm / 27 μm, finished circuit top (upper) width: 15 μm, etching time: around 210 seconds
(エッチングファクターの観察)
FIB-SIM(集束イオンビーム-走査イオン顕微鏡)により回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本実施例1では79°であり、良好な結果となった。エッチングファクター(EF)は5となり、この結果も良好であった。 (Observation of etching factor)
The tilt angle of the circuit was observed by FIB-SIM (focused ion beam-scanning ion microscope). Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 79 ° in Example 1, which is a good result. The etching factor (EF) was 5, and this result was also good.
FIB-SIM(集束イオンビーム-走査イオン顕微鏡)により回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本実施例1では79°であり、良好な結果となった。エッチングファクター(EF)は5となり、この結果も良好であった。 (Observation of etching factor)
The tilt angle of the circuit was observed by FIB-SIM (focused ion beam-scanning ion microscope). Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 79 ° in Example 1, which is a good result. The etching factor (EF) was 5, and this result was also good.
銅の回路間に形成された樹脂基板上のスペースの最も近接した幅は、(A)層及び(B)層を合わせた銅層の厚みの1.8倍であった。ソフトエッチング性は良好であり、処理残りも発生しなかった。
The closest width of the space on the resin substrate formed between the copper circuits was 1.8 times the thickness of the copper layer including the (A) layer and the (B) layer. The soft etching property was good, and no processing residue occurred.
(実施例2)
本実施例2では、厚み12μmの圧延銅箔を用い、この圧延銅箔をポリイミド樹脂基板に接着し銅張積層板とした。次に、この銅張積層板をソフトエッチングし、銅層の一部を除去した。これによって銅の厚みは5μmとなった。 (Example 2)
In Example 2, a rolled copper foil having a thickness of 12 μm was used, and the rolled copper foil was bonded to a polyimide resin substrate to obtain a copper-clad laminate. Next, this copper clad laminate was soft etched to remove a portion of the copper layer. This resulted in a copper thickness of 5 μm.
本実施例2では、厚み12μmの圧延銅箔を用い、この圧延銅箔をポリイミド樹脂基板に接着し銅張積層板とした。次に、この銅張積層板をソフトエッチングし、銅層の一部を除去した。これによって銅の厚みは5μmとなった。 (Example 2)
In Example 2, a rolled copper foil having a thickness of 12 μm was used, and the rolled copper foil was bonded to a polyimide resin substrate to obtain a copper-clad laminate. Next, this copper clad laminate was soft etched to remove a portion of the copper layer. This resulted in a copper thickness of 5 μm.
(ソフトエッチング条件)
硫酸-過酸化水素混合溶液(硫酸165g/L、過酸化水素水21g/L)、35°C、浸漬・攪拌し、銅層の減厚を実施した。 (Soft etching conditions)
A sulfuric acid-hydrogen peroxide mixed solution (165 g / L of sulfuric acid, 21 g / L of hydrogen peroxide solution) was immersed and stirred at 35 ° C. to reduce the thickness of the copper layer.
硫酸-過酸化水素混合溶液(硫酸165g/L、過酸化水素水21g/L)、35°C、浸漬・攪拌し、銅層の減厚を実施した。 (Soft etching conditions)
A sulfuric acid-hydrogen peroxide mixed solution (165 g / L of sulfuric acid, 21 g / L of hydrogen peroxide solution) was immersed and stirred at 35 ° C. to reduce the thickness of the copper layer.
この銅張積層板に、上記白金スパッタ条件で、白金付着量75μg/dm2の白金めっき層を形成した。
次に、レジスト塗布及び露光工程により10本の回路を印刷し、さらに銅箔の不要部分を除去するエッチング処理を実施した。銅の回路間に形成された樹脂基板上のスペースの最も近接した幅は銅層の厚みの3.6倍であった。 A platinum plating layer having a platinum adhesion amount of 75 μg / dm 2 was formed on the copper-clad laminate under the above platinum sputtering conditions.
Next, ten circuits were printed by the resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed. The closest width of the space on the resin substrate formed between the copper circuits was 3.6 times the thickness of the copper layer.
次に、レジスト塗布及び露光工程により10本の回路を印刷し、さらに銅箔の不要部分を除去するエッチング処理を実施した。銅の回路間に形成された樹脂基板上のスペースの最も近接した幅は銅層の厚みの3.6倍であった。 A platinum plating layer having a platinum adhesion amount of 75 μg / dm 2 was formed on the copper-clad laminate under the above platinum sputtering conditions.
Next, ten circuits were printed by the resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed. The closest width of the space on the resin substrate formed between the copper circuits was 3.6 times the thickness of the copper layer.
回路形成条件については、30μmピッチ回路であり、レジストL/S=25μm/5μm、仕上がり回路トップ(上部)幅:10μm、エッチング時間:76秒前後とした。
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本実施例2では80°であり、良好な結果となった。エッチングファクター(EF)は5.5となり、この結果も良好であった。 The circuit formation conditions were a 30 μm pitch circuit, resist L / S = 25 μm / 5 μm, finished circuit top (upper) width: 10 μm, etching time: around 76 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 80 ° in Example 2, and a good result was obtained. The etching factor (EF) was 5.5, which was also good.
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本実施例2では80°であり、良好な結果となった。エッチングファクター(EF)は5.5となり、この結果も良好であった。 The circuit formation conditions were a 30 μm pitch circuit, resist L / S = 25 μm / 5 μm, finished circuit top (upper) width: 10 μm, etching time: around 76 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 80 ° in Example 2, and a good result was obtained. The etching factor (EF) was 5.5, which was also good.
上記の条件でエッチングを行って回路を形成し、さらにレジンを除いた後、ソフトエッチングを行った。
10本の回路の評価結果であるが、処理残りは少なく、ソフトエッチング性も良好(○)であった。 Etching was performed under the above conditions to form a circuit, and after removing the resin, soft etching was performed.
The results of evaluation of 10 circuits showed little processing residue and good soft etching property (◯).
10本の回路の評価結果であるが、処理残りは少なく、ソフトエッチング性も良好(○)であった。 Etching was performed under the above conditions to form a circuit, and after removing the resin, soft etching was performed.
The results of evaluation of 10 circuits showed little processing residue and good soft etching property (◯).
(実施例3)
本実施例では、樹脂基板(ポリイミド系樹脂)に予めNi付着量700μg/dm2のNiめっき層を形成した12μm圧延銅合金(Cu-0.2wt%Cr-0.1wt%Zr)箔を接着して銅張積層板を作製した。この銅張積層板にスルーホール形成後、さらに無電解めっきと電気めっきを合わせ計26μmの銅をめっきした。銅合金と銅めっき層の合計厚さは38μmとなった。 (Example 3)
In this example, a 12 μm-rolled copper alloy (Cu-0.2 wt% Cr-0.1 wt% Zr) foil in which a Ni plating layer having a Ni adhesion amount of 700 μg / dm 2 is formed in advance is bonded to a resin substrate (polyimide resin). Thus, a copper-clad laminate was produced. After forming a through hole in this copper clad laminate, a total of 26 μm of copper was plated by combining electroless plating and electroplating. The total thickness of the copper alloy and the copper plating layer was 38 μm.
本実施例では、樹脂基板(ポリイミド系樹脂)に予めNi付着量700μg/dm2のNiめっき層を形成した12μm圧延銅合金(Cu-0.2wt%Cr-0.1wt%Zr)箔を接着して銅張積層板を作製した。この銅張積層板にスルーホール形成後、さらに無電解めっきと電気めっきを合わせ計26μmの銅をめっきした。銅合金と銅めっき層の合計厚さは38μmとなった。 (Example 3)
In this example, a 12 μm-rolled copper alloy (Cu-0.2 wt% Cr-0.1 wt% Zr) foil in which a Ni plating layer having a Ni adhesion amount of 700 μg / dm 2 is formed in advance is bonded to a resin substrate (polyimide resin). Thus, a copper-clad laminate was produced. After forming a through hole in this copper clad laminate, a total of 26 μm of copper was plated by combining electroless plating and electroplating. The total thickness of the copper alloy and the copper plating layer was 38 μm.
この銅めっき層を形成した銅張積層板に、上記Pdスパッタ条件で、Pd付着量700μg/dm2のPdスパッタ層を形成した。次に、この上にレジスト塗布及び露光工程により10本の回路を印刷し、さらに銅箔の不要部分を除去するエッチング処理を実施した。
銅の回路間に形成された樹脂基板上のスペースの最も近接した幅は銅層の厚みの1.9であった。10本の回路の評価結果であるが、処理残りは少なく、ソフトエッチング性も良好(○)であった。 A Pd sputter layer having a Pd adhesion amount of 700 μg / dm 2 was formed on the copper clad laminate on which the copper plating layer was formed under the above Pd sputtering conditions. Next, 10 circuits were printed thereon by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed.
The closest width of the space on the resin substrate formed between the copper circuits was 1.9 of the thickness of the copper layer. The results of evaluation of 10 circuits showed little processing residue and good soft etching property (◯).
銅の回路間に形成された樹脂基板上のスペースの最も近接した幅は銅層の厚みの1.9であった。10本の回路の評価結果であるが、処理残りは少なく、ソフトエッチング性も良好(○)であった。 A Pd sputter layer having a Pd adhesion amount of 700 μg / dm 2 was formed on the copper clad laminate on which the copper plating layer was formed under the above Pd sputtering conditions. Next, 10 circuits were printed thereon by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed.
The closest width of the space on the resin substrate formed between the copper circuits was 1.9 of the thickness of the copper layer. The results of evaluation of 10 circuits showed little processing residue and good soft etching property (◯).
回路形成条件については、100μmピッチ回路であり、レジストL/S=73μm/27μm、仕上がり回路トップ(上部)幅:15μm、エッチング時間:210秒前後とした。
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本実施例3では81°であり、良好な結果となった。エッチングファクター(EF)は6.5となり、この結果も良好であった。 The circuit formation conditions were a 100 μm pitch circuit, resist L / S = 73 μm / 27 μm, finished circuit top (upper) width: 15 μm, etching time: around 210 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 81 ° in Example 3, and a good result was obtained. The etching factor (EF) was 6.5, and this result was also good.
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本実施例3では81°であり、良好な結果となった。エッチングファクター(EF)は6.5となり、この結果も良好であった。 The circuit formation conditions were a 100 μm pitch circuit, resist L / S = 73 μm / 27 μm, finished circuit top (upper) width: 15 μm, etching time: around 210 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 81 ° in Example 3, and a good result was obtained. The etching factor (EF) was 6.5, and this result was also good.
(実施例4)
本実施例では、樹脂基板(ポリイミド系樹脂)に、予めNi付着量700μg/dm2のNiめっき層を形成した12μm圧延銅合金(Cu-0.2wt%Cr-0.1wt%Zr)箔を接着して銅張積層板を作製した。この銅張積層板にスルーホール形成後、さらに無電解めっきと電気めっきを合わせ計26μmの銅をめっきした。銅合金と銅めっき層の合計厚さは38μmとなった。 Example 4
In this example, a 12 μm-rolled copper alloy (Cu-0.2 wt% Cr-0.1 wt% Zr) foil in which a Ni plating layer having a Ni adhesion amount of 700 μg / dm 2 was previously formed on a resin substrate (polyimide resin) was used. A copper clad laminate was produced by bonding. After forming a through hole in this copper clad laminate, a total of 26 μm of copper was plated by combining electroless plating and electroplating. The total thickness of the copper alloy and the copper plating layer was 38 μm.
本実施例では、樹脂基板(ポリイミド系樹脂)に、予めNi付着量700μg/dm2のNiめっき層を形成した12μm圧延銅合金(Cu-0.2wt%Cr-0.1wt%Zr)箔を接着して銅張積層板を作製した。この銅張積層板にスルーホール形成後、さらに無電解めっきと電気めっきを合わせ計26μmの銅をめっきした。銅合金と銅めっき層の合計厚さは38μmとなった。 Example 4
In this example, a 12 μm-rolled copper alloy (Cu-0.2 wt% Cr-0.1 wt% Zr) foil in which a Ni plating layer having a Ni adhesion amount of 700 μg / dm 2 was previously formed on a resin substrate (polyimide resin) was used. A copper clad laminate was produced by bonding. After forming a through hole in this copper clad laminate, a total of 26 μm of copper was plated by combining electroless plating and electroplating. The total thickness of the copper alloy and the copper plating layer was 38 μm.
この銅めっき層を形成した銅張積層板に、上記Pt-Pdスパッタ条件で、Pt-Pd付着量800μg/dm2のPt-Pdスパッタ層を形成した。次に、この上にレジスト塗布及び露光工程により10本の回路を印刷し、さらに銅箔の不要部分を除去するエッチング処理を実施した。10本の回路の評価結果であるが、処理残りは少なく、ソフトエッチング性も良好(○)であった。
銅の回路間に形成された樹脂基板上のスペースの最も近接した幅は銅層の厚みの1.9倍であった。 A Pt—Pd sputtered layer having a Pt—Pd deposition amount of 800 μg / dm 2 was formed on the copper clad laminate on which the copper plating layer was formed under the above Pt—Pd sputtering conditions. Next, 10 circuits were printed thereon by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed. The results of evaluation of 10 circuits showed little processing residue and good soft etching property (◯).
The closest width of the space on the resin substrate formed between the copper circuits was 1.9 times the thickness of the copper layer.
銅の回路間に形成された樹脂基板上のスペースの最も近接した幅は銅層の厚みの1.9倍であった。 A Pt—Pd sputtered layer having a Pt—Pd deposition amount of 800 μg / dm 2 was formed on the copper clad laminate on which the copper plating layer was formed under the above Pt—Pd sputtering conditions. Next, 10 circuits were printed thereon by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed. The results of evaluation of 10 circuits showed little processing residue and good soft etching property (◯).
The closest width of the space on the resin substrate formed between the copper circuits was 1.9 times the thickness of the copper layer.
回路形成条件については、100μmピッチ回路であり、レジストL/S=73μm/27μm、仕上がり回路トップ(上部)幅:15μm、エッチング時間:210秒前後とした。
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本実施例4では82°であり、良好な結果となった。
エッチングファクター(EF)は6.8となり、この結果も良好であった。 The circuit formation conditions were a 100 μm pitch circuit, resist L / S = 73 μm / 27 μm, finished circuit top (upper) width: 15 μm, etching time: around 210 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 82 ° in Example 4, and a good result was obtained.
The etching factor (EF) was 6.8, and this result was also good.
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本実施例4では82°であり、良好な結果となった。
エッチングファクター(EF)は6.8となり、この結果も良好であった。 The circuit formation conditions were a 100 μm pitch circuit, resist L / S = 73 μm / 27 μm, finished circuit top (upper) width: 15 μm, etching time: around 210 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 82 ° in Example 4, and a good result was obtained.
The etching factor (EF) was 6.8, and this result was also good.
(実施例5)
本実施例では、樹脂基板(ポリイミド系樹脂)を予めプラズマ処理した後、スパッタリングによりタイコート(Ni-20wt%Cr)層及び金属シード層を形成し、次に電気めっきにより8μの銅層を形成した銅樹脂積層板を製作した。次に、この銅樹脂積層板に、30μmの銅めっき層を形成した。これにより合計銅層の厚みは、38μmとなった。
さらに、この銅層の上に、上記のニッケルめっき条件で、付着量1200μg/dm2のニッケルめっき層を形成した。 (Example 5)
In this embodiment, a resin substrate (polyimide resin) is preliminarily plasma-treated, and then a tie coat (Ni-20 wt% Cr) layer and a metal seed layer are formed by sputtering, and then an 8 μ copper layer is formed by electroplating. A copper resin laminate was produced. Next, a 30 μm copper plating layer was formed on this copper resin laminate. As a result, the total copper layer thickness was 38 μm.
Further, a nickel plating layer having an adhesion amount of 1200 μg / dm 2 was formed on the copper layer under the above nickel plating conditions.
本実施例では、樹脂基板(ポリイミド系樹脂)を予めプラズマ処理した後、スパッタリングによりタイコート(Ni-20wt%Cr)層及び金属シード層を形成し、次に電気めっきにより8μの銅層を形成した銅樹脂積層板を製作した。次に、この銅樹脂積層板に、30μmの銅めっき層を形成した。これにより合計銅層の厚みは、38μmとなった。
さらに、この銅層の上に、上記のニッケルめっき条件で、付着量1200μg/dm2のニッケルめっき層を形成した。 (Example 5)
In this embodiment, a resin substrate (polyimide resin) is preliminarily plasma-treated, and then a tie coat (Ni-20 wt% Cr) layer and a metal seed layer are formed by sputtering, and then an 8 μ copper layer is formed by electroplating. A copper resin laminate was produced. Next, a 30 μm copper plating layer was formed on this copper resin laminate. As a result, the total copper layer thickness was 38 μm.
Further, a nickel plating layer having an adhesion amount of 1200 μg / dm 2 was formed on the copper layer under the above nickel plating conditions.
次に、この上にレジスト塗布及び露光工程により10本の回路を印刷し、さらに銅箔の不要部分を除去するエッチング処理を実施した。銅の回路間に形成された樹脂基板上のスペースの最も近接した幅は銅層の厚みの1.7倍であった。
Next, 10 circuits were printed thereon by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed. The closest width of the space on the resin substrate formed between the copper circuits was 1.7 times the thickness of the copper layer.
回路形成条件については、100μmピッチ回路であり、レジストL/S=73μm/27μm、仕上がり回路トップ(上部)幅:15μm、エッチング時間:210秒前後とした。
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本実施例5では76°であり、良好な結果となった。
10本の回路の評価結果であるが、処理残りは少なく、ソフトエッチング性も良好(○)であった。エッチングファクター(EF)は4となり、この結果も良好であった。 The circuit formation conditions were a 100 μm pitch circuit, resist L / S = 73 μm / 27 μm, finished circuit top (upper) width: 15 μm, etching time: around 210 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 76 ° in Example 5, and a good result was obtained.
The results of evaluation of 10 circuits showed little processing residue and good soft etching property (◯). The etching factor (EF) was 4, and this result was also good.
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本実施例5では76°であり、良好な結果となった。
10本の回路の評価結果であるが、処理残りは少なく、ソフトエッチング性も良好(○)であった。エッチングファクター(EF)は4となり、この結果も良好であった。 The circuit formation conditions were a 100 μm pitch circuit, resist L / S = 73 μm / 27 μm, finished circuit top (upper) width: 15 μm, etching time: around 210 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 76 ° in Example 5, and a good result was obtained.
The results of evaluation of 10 circuits showed little processing residue and good soft etching property (◯). The etching factor (EF) was 4, and this result was also good.
(実施例6)
本実施例では、樹脂基板(ポリイミド系樹脂)を予めプラズマ処理した後、スパッタリングによりタイコート(Ni-20wt%Cr)層及び金属シード層を形成し、次に電気めっきにより8μの銅層を形成した銅樹脂積層板を製作した。次に、この銅樹脂積層板に、30μmの銅めっき層を形成した。これにより合計銅層の厚みは、38μmとなった。
さらに、この銅層の上に、上記のニッケルーコバルトめっき条件で、付着量1800μg/dm2のニッケルーコバルトめっき層を形成した。 (Example 6)
In this embodiment, a resin substrate (polyimide resin) is preliminarily plasma-treated, and then a tie coat (Ni-20 wt% Cr) layer and a metal seed layer are formed by sputtering, and then an 8 μ copper layer is formed by electroplating. A copper resin laminate was produced. Next, a 30 μm copper plating layer was formed on this copper resin laminate. As a result, the total copper layer thickness was 38 μm.
Further, a nickel-cobalt plating layer having an adhesion amount of 1800 μg / dm 2 was formed on the copper layer under the above nickel-cobalt plating conditions.
本実施例では、樹脂基板(ポリイミド系樹脂)を予めプラズマ処理した後、スパッタリングによりタイコート(Ni-20wt%Cr)層及び金属シード層を形成し、次に電気めっきにより8μの銅層を形成した銅樹脂積層板を製作した。次に、この銅樹脂積層板に、30μmの銅めっき層を形成した。これにより合計銅層の厚みは、38μmとなった。
さらに、この銅層の上に、上記のニッケルーコバルトめっき条件で、付着量1800μg/dm2のニッケルーコバルトめっき層を形成した。 (Example 6)
In this embodiment, a resin substrate (polyimide resin) is preliminarily plasma-treated, and then a tie coat (Ni-20 wt% Cr) layer and a metal seed layer are formed by sputtering, and then an 8 μ copper layer is formed by electroplating. A copper resin laminate was produced. Next, a 30 μm copper plating layer was formed on this copper resin laminate. As a result, the total copper layer thickness was 38 μm.
Further, a nickel-cobalt plating layer having an adhesion amount of 1800 μg / dm 2 was formed on the copper layer under the above nickel-cobalt plating conditions.
次に、この上にレジスト塗布及び露光工程により10本の回路を印刷し、さらに銅箔の不要部分を除去するエッチング処理を実施した。銅の回路間に形成された樹脂基板上のスペースの最も近接した幅は銅層の厚みの1.7倍であった。
Next, 10 circuits were printed thereon by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed. The closest width of the space on the resin substrate formed between the copper circuits was 1.7 times the thickness of the copper layer.
回路形成条件については、100μmピッチ回路であり、レジストL/S=73μm/27μm、仕上がり回路トップ(上部)幅:15μm、エッチング時間:210秒前後とした。
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本実施例6では76°であり、良好な結果となった。
10本の回路の評価結果であるが、処理残りは少なく、ソフトエッチング性も良好(○)であった。エッチングファクター(EF)は4となり、この結果も良好であった。 The circuit formation conditions were a 100 μm pitch circuit, resist L / S = 73 μm / 27 μm, finished circuit top (upper) width: 15 μm, etching time: around 210 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 76 ° in Example 6, and a good result was obtained.
The results of evaluation of 10 circuits showed little processing residue and good soft etching property (◯). The etching factor (EF) was 4, and this result was also good.
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本実施例6では76°であり、良好な結果となった。
10本の回路の評価結果であるが、処理残りは少なく、ソフトエッチング性も良好(○)であった。エッチングファクター(EF)は4となり、この結果も良好であった。 The circuit formation conditions were a 100 μm pitch circuit, resist L / S = 73 μm / 27 μm, finished circuit top (upper) width: 15 μm, etching time: around 210 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 76 ° in Example 6, and a good result was obtained.
The results of evaluation of 10 circuits showed little processing residue and good soft etching property (◯). The etching factor (EF) was 4, and this result was also good.
(実施例7)
本実施例では、樹脂基板(ポリイミド系樹脂)を予めプラズマ処理した後、スパッタリングによりタイコート(Ni-20wt%Cr)層及び金属シード層を形成し、次に電気めっきにより8μの銅層を形成した銅樹脂積層板を製作した。次に、この銅樹脂積層板に、30μmの銅めっき層を形成した。これにより合計銅層の厚みは、38μmとなった。
さらに、この銅層の上に、上記のニッケルめっき条件で、付着量2500μg/dm2のニッケルめっき層を形成した。 (Example 7)
In this embodiment, a resin substrate (polyimide resin) is preliminarily plasma-treated, and then a tie coat (Ni-20 wt% Cr) layer and a metal seed layer are formed by sputtering, and then an 8 μ copper layer is formed by electroplating. A copper resin laminate was produced. Next, a 30 μm copper plating layer was formed on this copper resin laminate. As a result, the total copper layer thickness was 38 μm.
Further, a nickel plating layer having an adhesion amount of 2500 μg / dm 2 was formed on the copper layer under the above nickel plating conditions.
本実施例では、樹脂基板(ポリイミド系樹脂)を予めプラズマ処理した後、スパッタリングによりタイコート(Ni-20wt%Cr)層及び金属シード層を形成し、次に電気めっきにより8μの銅層を形成した銅樹脂積層板を製作した。次に、この銅樹脂積層板に、30μmの銅めっき層を形成した。これにより合計銅層の厚みは、38μmとなった。
さらに、この銅層の上に、上記のニッケルめっき条件で、付着量2500μg/dm2のニッケルめっき層を形成した。 (Example 7)
In this embodiment, a resin substrate (polyimide resin) is preliminarily plasma-treated, and then a tie coat (Ni-20 wt% Cr) layer and a metal seed layer are formed by sputtering, and then an 8 μ copper layer is formed by electroplating. A copper resin laminate was produced. Next, a 30 μm copper plating layer was formed on this copper resin laminate. As a result, the total copper layer thickness was 38 μm.
Further, a nickel plating layer having an adhesion amount of 2500 μg / dm 2 was formed on the copper layer under the above nickel plating conditions.
次に、この上にレジスト塗布及び露光工程により10本の回路を印刷し、さらに銅箔の不要部分を除去するエッチング処理を実施した。銅の回路間に形成された樹脂基板上のスペースの最も近接した幅は銅層の厚みの1.8倍であった。
Next, 10 circuits were printed thereon by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed. The closest width of the space on the resin substrate formed between the copper circuits was 1.8 times the thickness of the copper layer.
回路形成条件については、100μmピッチ回路であり、レジストL/S=73μm/27μm、仕上がり回路トップ(上部)幅:15μm、エッチング時間:210秒前後とした。
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本実施例7では77°であり、良好な結果となった。
10本の回路の評価結果であるが、処理残りは少なく、ソフトエッチング性も良好(○)であった。エッチングファクター(EF)は4.5となり、この結果も良好であった。 The circuit formation conditions were a 100 μm pitch circuit, resist L / S = 73 μm / 27 μm, finished circuit top (upper) width: 15 μm, etching time: around 210 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 77 ° in Example 7, and a good result was obtained.
The results of evaluation of 10 circuits were that there was little processing residue and soft etching property was good (◯). The etching factor (EF) was 4.5, and this result was also good.
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本実施例7では77°であり、良好な結果となった。
10本の回路の評価結果であるが、処理残りは少なく、ソフトエッチング性も良好(○)であった。エッチングファクター(EF)は4.5となり、この結果も良好であった。 The circuit formation conditions were a 100 μm pitch circuit, resist L / S = 73 μm / 27 μm, finished circuit top (upper) width: 15 μm, etching time: around 210 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 77 ° in Example 7, and a good result was obtained.
The results of evaluation of 10 circuits were that there was little processing residue and soft etching property was good (◯). The etching factor (EF) was 4.5, and this result was also good.
(比較例1)
箔厚18μmの電解銅箔を用い、樹脂基板に接着した。次に、次に、この銅張積層板に20μmの銅めっき層を形成した。銅めっきの条件は、上記の銅めっき条件とした。この結果、樹脂基板上の電解銅箔及び銅めっき層の合計厚みは38μmとなった。 (Comparative Example 1)
An electrolytic copper foil having a foil thickness of 18 μm was used and adhered to a resin substrate. Next, a 20 μm copper plating layer was formed on the copper clad laminate. The copper plating conditions were the above copper plating conditions. As a result, the total thickness of the electrolytic copper foil and the copper plating layer on the resin substrate was 38 μm.
箔厚18μmの電解銅箔を用い、樹脂基板に接着した。次に、次に、この銅張積層板に20μmの銅めっき層を形成した。銅めっきの条件は、上記の銅めっき条件とした。この結果、樹脂基板上の電解銅箔及び銅めっき層の合計厚みは38μmとなった。 (Comparative Example 1)
An electrolytic copper foil having a foil thickness of 18 μm was used and adhered to a resin substrate. Next, a 20 μm copper plating layer was formed on the copper clad laminate. The copper plating conditions were the above copper plating conditions. As a result, the total thickness of the electrolytic copper foil and the copper plating layer on the resin substrate was 38 μm.
次に、この上にレジスト塗布及び露光工程により10本の回路を印刷し、さらに銅箔の不要部分を除去するエッチング処理を実施した。銅の回路間に形成された樹脂基板上のスペースの最も近接した幅は銅層の厚みの0.7倍であった。
Next, 10 circuits were printed thereon by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed. The closest width of the space on the resin substrate formed between the copper circuits was 0.7 times the thickness of the copper layer.
回路形成条件については、100μmピッチ回路であり、レジストL/S=73μm/27μm、仕上がり回路トップ(上部)幅:15μm、エッチング時間:210秒前後とした。
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本比較例1では52°であり、回路のダレが観察され不良となった。
以上については、10本の回路の評価結果であるが、処理残りは少なく、ソフトエッチング性も良好であったが、エッチングファクター(EF)は1.3となり、不良であった。 The circuit formation conditions were a 100 μm pitch circuit, resist L / S = 73 μm / 27 μm, finished circuit top (upper) width: 15 μm, etching time: around 210 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, in this comparative example 1, it is 52 °, and the sagging of the circuit is observed, resulting in a failure.
About the above, although it was an evaluation result of 10 circuits, there were few process remainders and soft etching property was favorable, but the etching factor (EF) was 1.3 and was unsatisfactory.
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本比較例1では52°であり、回路のダレが観察され不良となった。
以上については、10本の回路の評価結果であるが、処理残りは少なく、ソフトエッチング性も良好であったが、エッチングファクター(EF)は1.3となり、不良であった。 The circuit formation conditions were a 100 μm pitch circuit, resist L / S = 73 μm / 27 μm, finished circuit top (upper) width: 15 μm, etching time: around 210 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, in this comparative example 1, it is 52 °, and the sagging of the circuit is observed, resulting in a failure.
About the above, although it was an evaluation result of 10 circuits, there were few process remainders and soft etching property was favorable, but the etching factor (EF) was 1.3 and was unsatisfactory.
(比較例2)
箔厚12μmの圧延銅箔を用い、樹脂基板に接着した。次に、この銅張積層板をエッチングし、銅層の一部を除去した。これによって銅の厚みは5μmとなった。
この銅張積層板に、上記Niめっき条件で、付着量25μg/dm2のNiめっき層を形成した。 (Comparative Example 2)
A rolled copper foil having a foil thickness of 12 μm was used and adhered to a resin substrate. Next, this copper clad laminate was etched to remove a part of the copper layer. This resulted in a copper thickness of 5 μm.
On this copper-clad laminate, an Ni plating layer having an adhesion amount of 25 μg / dm 2 was formed under the Ni plating conditions.
箔厚12μmの圧延銅箔を用い、樹脂基板に接着した。次に、この銅張積層板をエッチングし、銅層の一部を除去した。これによって銅の厚みは5μmとなった。
この銅張積層板に、上記Niめっき条件で、付着量25μg/dm2のNiめっき層を形成した。 (Comparative Example 2)
A rolled copper foil having a foil thickness of 12 μm was used and adhered to a resin substrate. Next, this copper clad laminate was etched to remove a part of the copper layer. This resulted in a copper thickness of 5 μm.
On this copper-clad laminate, an Ni plating layer having an adhesion amount of 25 μg / dm 2 was formed under the Ni plating conditions.
次に、レジスト塗布及び露光工程により10本の回路を印刷し、さらに銅箔の不要部分を除去するエッチング処理を実施した。銅の回路間に形成された樹脂基板上のスペースの最も近接した幅は銅層の厚みの2.6倍であった。
Next, 10 circuits were printed by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed. The closest width of the space on the resin substrate formed between the copper circuits was 2.6 times the thickness of the copper layer.
回路形成条件については、30μmピッチ回路であり、レジストL/S=25μm/5μm、仕上がり回路トップ(上部)幅:10μm、エッチング時間:76秒前後とした。
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本比較例2では54°であり、回路のダレが観察され不良となった。
以上については、10本の回路の評価結果であるが、処理残りは少なく、ソフトエッチング性も良好であったが、エッチングファクター(EF)は1.4となり、不良であった。 The circuit formation conditions were a 30 μm pitch circuit, resist L / S = 25 μm / 5 μm, finished circuit top (upper) width: 10 μm, etching time: around 76 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 54 ° in the present comparative example 2, and the sagging of the circuit is observed, resulting in a failure.
About the above, although it was an evaluation result of 10 circuits, there were few process remainders and soft etching property was favorable, but the etching factor (EF) was 1.4 and was unsatisfactory.
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本比較例2では54°であり、回路のダレが観察され不良となった。
以上については、10本の回路の評価結果であるが、処理残りは少なく、ソフトエッチング性も良好であったが、エッチングファクター(EF)は1.4となり、不良であった。 The circuit formation conditions were a 30 μm pitch circuit, resist L / S = 25 μm / 5 μm, finished circuit top (upper) width: 10 μm, etching time: around 76 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 54 ° in the present comparative example 2, and the sagging of the circuit is observed, resulting in a failure.
About the above, although it was an evaluation result of 10 circuits, there were few process remainders and soft etching property was favorable, but the etching factor (EF) was 1.4 and was unsatisfactory.
(比較例3)
本比較例3では、樹脂基板(ポリイミド系樹脂)を予めプラズマ処理した後、スパッタリングによりタイコート(Ni-20wt%Cr)層及び金属シード層を形成し、次に電気めっきにより8μの銅層を形成した銅樹脂積層板を製作した。
次に、この銅樹脂積層板に、30μmの銅めっき層を形成した。これにより合計銅層の厚みは、38μmとなった。 (Comparative Example 3)
In Comparative Example 3, a resin substrate (polyimide resin) was previously plasma-treated, and then a tie coat (Ni-20 wt% Cr) layer and a metal seed layer were formed by sputtering, and then an 8 μ copper layer was formed by electroplating. The formed copper resin laminate was manufactured.
Next, a 30 μm copper plating layer was formed on this copper resin laminate. As a result, the total copper layer thickness was 38 μm.
本比較例3では、樹脂基板(ポリイミド系樹脂)を予めプラズマ処理した後、スパッタリングによりタイコート(Ni-20wt%Cr)層及び金属シード層を形成し、次に電気めっきにより8μの銅層を形成した銅樹脂積層板を製作した。
次に、この銅樹脂積層板に、30μmの銅めっき層を形成した。これにより合計銅層の厚みは、38μmとなった。 (Comparative Example 3)
In Comparative Example 3, a resin substrate (polyimide resin) was previously plasma-treated, and then a tie coat (Ni-20 wt% Cr) layer and a metal seed layer were formed by sputtering, and then an 8 μ copper layer was formed by electroplating. The formed copper resin laminate was manufactured.
Next, a 30 μm copper plating layer was formed on this copper resin laminate. As a result, the total copper layer thickness was 38 μm.
次に、この上にレジスト塗布及び露光工程により10本の回路を印刷し、さらに銅箔の不要部分を除去するエッチング処理を実施した。銅の回路間に形成された樹脂基板上のスペースの最も近接した幅は銅層の厚みの0.7倍であった。
Next, 10 circuits were printed thereon by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed. The closest width of the space on the resin substrate formed between the copper circuits was 0.7 times the thickness of the copper layer.
回路形成条件については、100μmピッチ回路であり、レジストL/S=73μm/27μm、仕上がり回路トップ(上部)幅:15μm、エッチング時間:210秒前後とした。
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本比較例3では52°であり、ダレが発生し、不良となった。
以上については、10本の回路の評価結果であるが、処理残りは少なく、ソフトエッチング性も良好であったが、エッチングファクター(EF)は1.3となり、不良であった。 The circuit formation conditions were a 100 μm pitch circuit, resist L / S = 73 μm / 27 μm, finished circuit top (upper) width: 15 μm, etching time: around 210 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 52 ° in the present comparative example 3, which causes sagging and becomes defective.
About the above, although it was an evaluation result of 10 circuits, there were few process remainders and soft etching property was favorable, but the etching factor (EF) was 1.3 and was unsatisfactory.
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本比較例3では52°であり、ダレが発生し、不良となった。
以上については、10本の回路の評価結果であるが、処理残りは少なく、ソフトエッチング性も良好であったが、エッチングファクター(EF)は1.3となり、不良であった。 The circuit formation conditions were a 100 μm pitch circuit, resist L / S = 73 μm / 27 μm, finished circuit top (upper) width: 15 μm, etching time: around 210 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that a good result is obtained when the inclination angle is 63 ° or more, it is 52 ° in the present comparative example 3, which causes sagging and becomes defective.
About the above, although it was an evaluation result of 10 circuits, there were few process remainders and soft etching property was favorable, but the etching factor (EF) was 1.3 and was unsatisfactory.
(比較例4)
本比較例4では、樹脂基板(ポリイミド系樹脂)を予めプラズマ処理した後、スパッタリングによりタイコート(Ni-20wt%Cr)層及び金属シード層を形成し、次に電気めっきにより8μの銅層を形成した銅樹脂積層板を製作した。
次に、この銅樹脂積層板に、30μmの銅めっき層を形成した。これにより合計銅層の厚みは、38μmとなった。
さらに、この銅層の上に、上記のニッケルめっき条件で、付着量3200μg/dm2のニッケルめっき層を形成した。 (Comparative Example 4)
In this comparative example 4, a resin substrate (polyimide resin) is preliminarily plasma-treated, then a tie coat (Ni-20 wt% Cr) layer and a metal seed layer are formed by sputtering, and then an 8 μ copper layer is formed by electroplating. The formed copper resin laminate was manufactured.
Next, a 30 μm copper plating layer was formed on this copper resin laminate. As a result, the total copper layer thickness was 38 μm.
Further, a nickel plating layer having an adhesion amount of 3200 μg / dm 2 was formed on the copper layer under the above nickel plating conditions.
本比較例4では、樹脂基板(ポリイミド系樹脂)を予めプラズマ処理した後、スパッタリングによりタイコート(Ni-20wt%Cr)層及び金属シード層を形成し、次に電気めっきにより8μの銅層を形成した銅樹脂積層板を製作した。
次に、この銅樹脂積層板に、30μmの銅めっき層を形成した。これにより合計銅層の厚みは、38μmとなった。
さらに、この銅層の上に、上記のニッケルめっき条件で、付着量3200μg/dm2のニッケルめっき層を形成した。 (Comparative Example 4)
In this comparative example 4, a resin substrate (polyimide resin) is preliminarily plasma-treated, then a tie coat (Ni-20 wt% Cr) layer and a metal seed layer are formed by sputtering, and then an 8 μ copper layer is formed by electroplating. The formed copper resin laminate was manufactured.
Next, a 30 μm copper plating layer was formed on this copper resin laminate. As a result, the total copper layer thickness was 38 μm.
Further, a nickel plating layer having an adhesion amount of 3200 μg / dm 2 was formed on the copper layer under the above nickel plating conditions.
次に、この上にレジスト塗布及び露光工程により10本の回路を印刷し、さらに銅箔の不要部分を除去するエッチング処理を実施した。銅の回路間に形成された樹脂基板上のスペースの最も近接した幅は銅層の厚みの1.8倍であった。
Next, 10 circuits were printed thereon by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed. The closest width of the space on the resin substrate formed between the copper circuits was 1.8 times the thickness of the copper layer.
回路形成条件については、100μmピッチ回路であり、レジストL/S=73μm/27μm、仕上がり回路トップ(上部)幅:15μm、エッチング時間:210秒前後とした。
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本比較例3では78°であった。また、エッチングファクター(EF)は4.6となり、良好であった。しかしながら、ソフトエッチングでニッケル層を除去しようとしたところ、処理残りが発生した。 The circuit formation conditions were a 100 μm pitch circuit, resist L / S = 73 μm / 27 μm, finished circuit top (upper) width: 15 μm, etching time: around 210 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that the inclination angle is 63 ° or more, it is a good result, but in Comparative Example 3, it was 78 °. The etching factor (EF) was 4.6, which was good. However, when an attempt was made to remove the nickel layer by soft etching, a processing residue occurred.
FIB-SIMにより回路の傾斜角を観察した。傾斜角が63°以上で良好な結果と言えるが、本比較例3では78°であった。また、エッチングファクター(EF)は4.6となり、良好であった。しかしながら、ソフトエッチングでニッケル層を除去しようとしたところ、処理残りが発生した。 The circuit formation conditions were a 100 μm pitch circuit, resist L / S = 73 μm / 27 μm, finished circuit top (upper) width: 15 μm, etching time: around 210 seconds.
The inclination angle of the circuit was observed by FIB-SIM. Although it can be said that the inclination angle is 63 ° or more, it is a good result, but in Comparative Example 3, it was 78 °. The etching factor (EF) was 4.6, which was good. However, when an attempt was made to remove the nickel layer by soft etching, a processing residue occurred.
本発明は、銅張積層板で、銅箔のエッチングにより回路形成を行う一連の工程に、銅よりもエッチング速度が遅い層を薄く形成する工程を加えることにより、目的とする回路幅のより均一な回路を形成できるという効果を有し、エッチングによる処理残りがなく、ダレの発生を防止し、エッチングによる回路形成の時間を短縮することが可能になるという効果を有する。これによってパターンエッチングでのエッチング性の向上、ショートや回路幅の不良の発生を防止できるので、銅張り積層板(リジッド及びフレキ用)としての利用、プリント基板の電子回路の形成への利用が可能である。
The present invention is a copper-clad laminate, and by adding a step of forming a thin layer having a slower etching rate than copper to a series of steps of forming a circuit by etching a copper foil, the intended circuit width is made more uniform. This has the effect that a simple circuit can be formed, there is no processing residue due to etching, the occurrence of sagging is prevented, and the time for circuit formation by etching can be shortened. This can improve the etching performance in pattern etching and prevent the occurrence of short circuits and circuit width defects, so it can be used as a copper-clad laminate (for rigid and flexible) and used for the formation of electronic circuits on printed circuit boards. It is.
Claims (17)
- 樹脂基板の片面または両面に形成された銅又は銅合金の層(A)、該(A)層上の一部または全面に形成された銅又は銅合金の層(B)、該(B)層上の一部又は全面に形成された銅エッチング液に対して銅よりもエッチング速度が遅い層(C)から構成される積層体であって、前記(A)層、(B)層及び(C)層の積層部の一部を樹脂基板表面までエッチングして除去することにより形成された銅回路からなることを特徴とする電子回路。 A copper or copper alloy layer (A) formed on one or both surfaces of a resin substrate, a copper or copper alloy layer (B) formed partially or entirely on the (A) layer, and the (B) layer A layered body composed of a layer (C) having an etching rate slower than that of copper with respect to a copper etching solution formed on a part or the entire surface of the upper layer, the layer (A), the layer (B) and An electronic circuit comprising a copper circuit formed by etching and removing a part of the laminated portion of the layer to the surface of the resin substrate.
- 樹脂基板の片面または両面に形成された銅又は銅合金の層(A)、該(A)層上の一部又は全面に形成された銅エッチング液に対して銅よりもエッチング速度が遅い層(C)から構成される積層体であって、前記(A)層及び(C)層の積層部の一部を樹脂基板表面までエッチングして除去することにより形成された銅回路からなることを特徴とする電子回路。 Layer (A) of copper or copper alloy formed on one side or both sides of the resin substrate, a layer having a slower etching rate than copper with respect to a copper etching solution formed on a part or the whole of the layer (A) ( C), and a copper circuit formed by etching and removing a part of the layered portion of the layers (A) and (C) to the surface of the resin substrate. An electronic circuit.
- 前記銅エッチング液に対して銅よりもエッチング速度が遅い層(C)が、ニッケル、コバルト、鉄、白金族元素、金、パラジウム族元素、銀のいずれか1種の金属、若しくはこれらの組合せ又はこれらを主成分とする合金であることを特徴とする請求項1~2のいずれか一項に記載の電子回路。 The layer (C) whose etching rate is slower than copper with respect to the copper etchant is any one metal of nickel, cobalt, iron, platinum group element, gold, palladium group element, silver, or a combination thereof. 3. The electronic circuit according to claim 1, wherein the electronic circuit is an alloy containing these as main components.
- 前記層(C)の被着量が、50μg/dm2~3000μg/dm2であることを特徴とする請求項1~3のいずれか一項に記載の電子回路。 The electronic circuit according to any one of claims 1 to 3, wherein the deposition amount of the layer (C) is 50 袖 g / dm 2 to 3000 袖 g / dm 2 .
- 銅又は銅合金の層(A)層の樹脂に接する面の逆側の面が、酸洗処理、ソフトエッチング又は表面を荒らす処理の一以上で処理された面であることを特徴とする請求項1~4のいずれか一項に記載の電子回路。 The surface opposite to the surface in contact with the resin of the copper or copper alloy layer (A) is a surface treated by at least one of pickling treatment, soft etching, or surface roughening treatment. The electronic circuit according to any one of 1 to 4.
- 銅又は銅合金の層(A)層の樹脂に接する面の逆側の面が、酸洗処理、ソフトエッチング又は表面を荒らす処理の一以上の処理により減厚された面であることを特徴とする請求項1~5のいずれか一項に記載の電子回路。 The surface of the copper or copper alloy layer (A) layer opposite to the surface in contact with the resin is a surface that is reduced by pickling, soft etching, or one or more treatments that roughen the surface. The electronic circuit according to any one of claims 1 to 5.
- 樹脂基板の片面または両面に銅又は銅合金の層(A)を、次いで、該(A)層上の一部または全面に銅又は銅合金の層(B)を、さらに、該(B)層上の一部又は全面に、銅エッチング液に対して銅よりもエッチング速度が遅い層(C)を形成して銅張積層板を作製し、次に、この銅張積層板の前記(A)層と(B)層及び(C)層からなる積層部の一部を樹脂基板表面までエッチングして除去することにより銅回路を形成する工程からなることを特徴とする電子回路の形成方法。 A copper or copper alloy layer (A) on one or both sides of the resin substrate, then a copper or copper alloy layer (B) on a part or the entire surface of the (A) layer, and the (B) layer A layer (C) having a slower etching rate than copper is formed on a part or the entire surface of the copper etchant to produce a copper-clad laminate, and then the copper-clad laminate (A) A method of forming an electronic circuit comprising a step of forming a copper circuit by etching and removing a part of a laminated portion composed of a layer, a (B) layer, and a (C) layer to the resin substrate surface.
- 樹脂基板の片面または両面に銅又は銅合金の層(A)を形成して銅張積層板を作製し、この銅張積層板にスルーホールを形成し、さらに前記(A)層上の一部又は全面及びスルーホール内に、銅又は銅合金の層(B)からなるめっき層を形成した後、該(B)層上の一部又は全面に、銅エッチング液に対して銅よりもエッチング速度が遅い層(C)を形成し、さらに前記(A)層と(B)層及び(C)層からなる積層部の一部を樹脂基板表面までエッチングして除去することにより銅回路を形成する工程からなることを特徴とする電子回路の形成方法。 A copper-clad laminate is formed by forming a copper or copper alloy layer (A) on one or both sides of a resin substrate, a through-hole is formed in the copper-clad laminate, and a part on the (A) layer Alternatively, after a plating layer made of a copper or copper alloy layer (B) is formed on the entire surface and in the through-hole, a part or the entire surface of the (B) layer is etched more than copper with respect to the copper etching solution. A slow layer (C) is formed, and a part of the layered portion composed of the (A) layer, the (B) layer, and the (C) layer is etched and removed to the surface of the resin substrate to form a copper circuit. A method of forming an electronic circuit comprising the steps.
- 樹脂基板の片面または両面に銅又は銅合金の層(A)を、次いで、該(A)層上の一部または全面に、銅エッチング液に対して銅よりもエッチング速度が遅い層(C)を形成して銅張積層板を作製し、次に、この銅張積層板の前記(A)層と(C)層からなる積層部の一部を樹脂基板表面までエッチングして除去することにより銅回路を形成する工程からなることを特徴とする電子回路の形成方法。 A layer of copper or copper alloy (A) on one or both sides of the resin substrate, and then a layer (C) having an etching rate slower than that of copper with respect to the copper etchant on a part or the whole of the layer (A) By forming a copper-clad laminate, and then etching and removing a part of the laminate part composed of the layers (A) and (C) of the copper-clad laminate to the resin substrate surface. A method of forming an electronic circuit comprising the step of forming a copper circuit.
- 樹脂基板の片面または両面に形成した銅又は銅合金の層(A)をエッチングにより、銅又は銅合金の層(A)の厚さを調節し、これらの厚さを調節した層の上に、銅よりもエッチング速度が遅い層(C)形成して銅張積層板を作製し、次に前記(A)層及び(C)層の積層部の一部を樹脂基板表面までエッチングにより除去して銅回路を形成することを特徴とする電子回路の形成方法。 By etching the copper or copper alloy layer (A) formed on one side or both sides of the resin substrate, the thickness of the copper or copper alloy layer (A) is adjusted, and the thickness of these layers is adjusted, A layer (C) whose etching rate is slower than that of copper is formed to produce a copper-clad laminate, and then a part of the layered portion of the layers (A) and (C) is removed by etching to the resin substrate surface. A method of forming an electronic circuit, comprising forming a copper circuit.
- 前記樹脂基板の片面または両面に銅又は銅合金の層(A)が、層を形成するときに用いる銅箔として、予め銅箔表面に銅エッチング液に対して銅よりもエッチング速度が遅い層(C´)を備える銅箔を用いることを特徴とする請求項7から10のいずれか一項に記載の電子回路の形成方法。 As the copper foil used when the copper or copper alloy layer (A) forms a layer on one side or both sides of the resin substrate, a layer having a slower etching rate than copper on the copper foil surface in advance with respect to the copper etchant ( The method for forming an electronic circuit according to claim 7, wherein a copper foil provided with C ′) is used.
- 前記(C)又は(C´)層上に、耐熱層及び又は防錆層を形成されていることを特徴とする請求項7~11のいずれか一項に記載の電子回路の形成方法。 12. The method of forming an electronic circuit according to claim 7, wherein a heat-resistant layer and / or a rust-proof layer is formed on the (C) or (C ′) layer.
- 前記銅エッチング液に対して銅よりもエッチング速度が遅い層(C)又は層(C´)として、ニッケル、コバルト、鉄、白金族元素、金、パラジウム族元素、銀のいずれか1種の金属、若しくはこれらの組合せ又はこれらを主成分とする合金を用いることを特徴とする請求項7~12のいずれか一項に記載の電子回路の形成方法。 As a layer (C) or a layer (C ′) whose etching rate is slower than copper with respect to the copper etchant, any one metal of nickel, cobalt, iron, platinum group element, gold, palladium group element, and silver The method for forming an electronic circuit according to any one of claims 7 to 12, wherein a combination thereof or an alloy containing these as a main component is used.
- 前記層(C)又は層(C´)の被着量を、50μg/dm2~3000μg/dm2に調節することを特徴とする請求項7~13のいずれか一項に記載の電子回路の形成方法。 The deposition amount of the layer (C) or layer (C'), the electronic circuit according to any one of claims 7 to 13, characterized in that adjusting the 50μg / dm 2 ~ 3000μg / dm 2 Forming method.
- 銅又は銅合金の層(A)層を、酸洗処理、ソフトエッチング又は表面を荒らす処理の一以上で処理することを特徴とする請求項7~14のいずれか一項に記載の電子回路の形成方法。 The electronic circuit according to any one of claims 7 to 14, wherein the layer (A) of copper or copper alloy is treated by one or more of pickling treatment, soft etching or surface roughening treatment. Forming method.
- 銅又は銅合金の層(A層)を、酸洗処理、ソフトエッチング又は表面を荒らす処理の一以上の処理により減厚することを特徴とする請求項7~15のいずれか一項に記載の電子回路の形成方法。 The thickness of the copper or copper alloy layer (A layer) is reduced by one or more of pickling treatment, soft etching, or surface roughening treatment, according to any one of claims 7 to 15. Method for forming an electronic circuit.
- 樹脂基板の片面または両面に銅又は銅合金の層(A)を形成して銅張積層板を作製し、この銅張積層板にスルーホールを形成し、さらに前記(A)層上の一部又は全面及びスルーホール内に、銅又は銅合金の層(B)からなるめっき層を形成した後、該(B)層上の一部又は全面に銅エッチング液に対して銅よりもエッチング速度が遅い層(C)を形成し、さらに前記(A)層と(B)層及び(C)層からなる積層部の一部を樹脂基板表面までエッチングして除去することにより銅回路を形成する電子回路形成用銅張積層板であって、スルーホール形成前の樹脂基板の片面または両面に銅又は銅合金の層(A)および、その後に形成される銅又は銅合金の層(B)からなるめっき層(スルーホールめっき層)の少なくとも一方を、酸洗又は/及びソフトエッチングにより減厚処理されていることを特徴とする電子回路形成用銅張積層板。 A copper-clad laminate is formed by forming a copper or copper alloy layer (A) on one or both sides of a resin substrate, a through-hole is formed in the copper-clad laminate, and a part on the (A) layer Or after forming the plating layer which consists of a layer (B) of copper or a copper alloy in the whole surface and a through hole, an etching rate is more than copper with respect to a copper etching liquid in part or the whole surface on this (B) layer. Electrons forming a copper circuit by forming a slow layer (C) and further etching and removing a part of the layered portion composed of the layers (A), (B) and (C) to the surface of the resin substrate A copper clad laminate for circuit formation, comprising a copper or copper alloy layer (A) on one or both sides of a resin substrate before through-hole formation, and a copper or copper alloy layer (B) formed thereafter At least one of the plating layers (through-hole plating layer) is pickled or And electronic circuit-forming copper-clad laminate characterized in that it is thickness reduction processing by soft etching.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011519752A JP5676443B2 (en) | 2009-06-18 | 2010-06-11 | Electronic circuit, method for forming the same, and copper-clad laminate for forming electronic circuit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009145863 | 2009-06-18 | ||
JP2009-145863 | 2009-06-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010147059A1 true WO2010147059A1 (en) | 2010-12-23 |
Family
ID=43356377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/059947 WO2010147059A1 (en) | 2009-06-18 | 2010-06-11 | Electronic circuit, method for forming same, and copper-clad laminate for electronic circuit formation |
Country Status (3)
Country | Link |
---|---|
JP (2) | JP5676443B2 (en) |
TW (1) | TWI487437B (en) |
WO (1) | WO2010147059A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012128009A1 (en) * | 2011-03-18 | 2012-09-27 | Jx日鉱日石金属株式会社 | Copper foil for printed wiring boards, and laminate using same |
JP2012186211A (en) * | 2011-03-03 | 2012-09-27 | Jx Nippon Mining & Metals Corp | Copper foil for printed wiring board and laminate sheet using the same |
WO2013027444A1 (en) * | 2011-08-24 | 2013-02-28 | Jx日鉱日石金属株式会社 | Copper foil for printed wiring board and laminated body using same |
JP2013080735A (en) * | 2011-09-30 | 2013-05-02 | Jx Nippon Mining & Metals Corp | Copper foil for printed wiring board having excellent productivity and laminate sheet using the same |
CN106341942A (en) * | 2016-11-18 | 2017-01-18 | 东莞市五株电子科技有限公司 | Circuit board of quick-charging battery |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001210934A (en) * | 2000-01-28 | 2001-08-03 | Sanyo Electric Co Ltd | Mounting substrate, method of manufacturing it, and method of mounting electronic circuit element |
JP2002176242A (en) * | 2000-12-05 | 2002-06-21 | Nikko Materials Co Ltd | Copper foil for electronic circuit and method for forming electronic circuit |
JP2005217344A (en) * | 2004-02-02 | 2005-08-11 | Matsushita Electric Ind Co Ltd | Metal foil for printed circuit board, its manufacturing method, and printed circuit board using it |
JP2008251596A (en) * | 2007-03-29 | 2008-10-16 | Matsushita Electric Ind Co Ltd | Wiring pattern of printed wiring substrate |
JP2008277749A (en) * | 2007-04-02 | 2008-11-13 | Shinko Electric Ind Co Ltd | Wiring board and its manufacturing method |
JP2009117706A (en) * | 2007-11-08 | 2009-05-28 | Hitachi Cable Ltd | Copper foil for flexible printed wiring board and manufacturing method thereof, and flexible printed wiring board |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW499508B (en) * | 1999-12-10 | 2002-08-21 | Nippon Denkai Kk | Roughening treated copper foil and producing method therefor |
JP2001177248A (en) * | 1999-12-15 | 2001-06-29 | Hitachi Ltd | Wiring board, manufacturing method therefor, and electronic apparatus |
JP4131080B2 (en) * | 2000-07-17 | 2008-08-13 | 株式会社トッパンNecサーキットソリューションズ | Manufacturing method of multilayer printed wiring board |
US7026059B2 (en) * | 2000-09-22 | 2006-04-11 | Circuit Foil Japan Co., Ltd. | Copper foil for high-density ultrafine printed wiring boad |
FR2929549B1 (en) * | 2008-04-08 | 2012-04-20 | Monnier Marc Le | METHOD FOR MANUFACTURING ALVEOLAR STRUCTURE, CORRESPONDING ALVEOLAR STRUCTURE AND INSTALLATION |
-
2010
- 2010-06-11 WO PCT/JP2010/059947 patent/WO2010147059A1/en active Application Filing
- 2010-06-11 JP JP2011519752A patent/JP5676443B2/en active Active
- 2010-06-18 TW TW099119839A patent/TWI487437B/en active
-
2013
- 2013-11-06 JP JP2013230550A patent/JP5738964B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001210934A (en) * | 2000-01-28 | 2001-08-03 | Sanyo Electric Co Ltd | Mounting substrate, method of manufacturing it, and method of mounting electronic circuit element |
JP2002176242A (en) * | 2000-12-05 | 2002-06-21 | Nikko Materials Co Ltd | Copper foil for electronic circuit and method for forming electronic circuit |
JP2005217344A (en) * | 2004-02-02 | 2005-08-11 | Matsushita Electric Ind Co Ltd | Metal foil for printed circuit board, its manufacturing method, and printed circuit board using it |
JP2008251596A (en) * | 2007-03-29 | 2008-10-16 | Matsushita Electric Ind Co Ltd | Wiring pattern of printed wiring substrate |
JP2008277749A (en) * | 2007-04-02 | 2008-11-13 | Shinko Electric Ind Co Ltd | Wiring board and its manufacturing method |
JP2009117706A (en) * | 2007-11-08 | 2009-05-28 | Hitachi Cable Ltd | Copper foil for flexible printed wiring board and manufacturing method thereof, and flexible printed wiring board |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012186211A (en) * | 2011-03-03 | 2012-09-27 | Jx Nippon Mining & Metals Corp | Copper foil for printed wiring board and laminate sheet using the same |
WO2012128009A1 (en) * | 2011-03-18 | 2012-09-27 | Jx日鉱日石金属株式会社 | Copper foil for printed wiring boards, and laminate using same |
WO2013027444A1 (en) * | 2011-08-24 | 2013-02-28 | Jx日鉱日石金属株式会社 | Copper foil for printed wiring board and laminated body using same |
JP2013045881A (en) * | 2011-08-24 | 2013-03-04 | Jx Nippon Mining & Metals Corp | Copper foil for printed wiring board and laminate sheet using the same |
JP2013080735A (en) * | 2011-09-30 | 2013-05-02 | Jx Nippon Mining & Metals Corp | Copper foil for printed wiring board having excellent productivity and laminate sheet using the same |
CN106341942A (en) * | 2016-11-18 | 2017-01-18 | 东莞市五株电子科技有限公司 | Circuit board of quick-charging battery |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010147059A1 (en) | 2012-12-06 |
TWI487437B (en) | 2015-06-01 |
JP5738964B2 (en) | 2015-06-24 |
TW201116174A (en) | 2011-05-01 |
JP2014053636A (en) | 2014-03-20 |
JP5676443B2 (en) | 2015-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI539875B (en) | An electronic circuit and an electrolytic copper foil or rolled copper foil using a method of forming such electronic circuits | |
JP5248684B2 (en) | Electronic circuit, method for forming the same, and copper-clad laminate for forming electronic circuit | |
JP5358586B2 (en) | Rolled copper foil or electrolytic copper foil for electronic circuit and method for forming electronic circuit using these | |
US8580390B2 (en) | Rolled copper foil or electrolytic copper foil for electronic circuit, and method of forming electronic circuit using same | |
JP4955104B2 (en) | Method for forming an electronic circuit | |
JP5738964B2 (en) | Electronic circuit, method for forming the same, and copper-clad laminate for forming electronic circuit | |
WO2017141985A1 (en) | Copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate, and printed circuit board production method using copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate | |
WO2017141983A1 (en) | Printed circuit board production method | |
JP2011210993A (en) | Copper foil for printed wiring board and layered body which have superior etching property | |
JP5467009B2 (en) | RESIST-FORMED WIRING BOARD AND ELECTRONIC CIRCUIT MANUFACTURING METHOD | |
WO2012132578A1 (en) | Copper foil with copper carrier, method for producing same, copper foil for electronic circuit, method for producing same, and method for forming electronic circuit | |
JP5506497B2 (en) | Copper foil for printed wiring board for forming circuit with excellent electric transmission characteristics and laminate using the same | |
WO2012132572A1 (en) | Copper foil with copper carrier, method for producing said copper foil, copper foil for electronic circuit, method for producing said copper foil, and method for forming electronic circuit | |
WO2011122645A1 (en) | Copper foil for printed wiring board with excellent etching properties and layered body using same | |
WO2011122643A1 (en) | Copper foil for printed wiring board and layered body using same | |
JP2013028823A (en) | Laminate and printed wiring board using the same | |
JP2011210988A (en) | Copper foil for printed wiring board and layered body which have superior etching property | |
JP2011207092A (en) | Laminate of copper foil or copper layer and insulating substrate for printed wiring board, having excellent etching property | |
JP2011253854A (en) | Formation method of circuit board for printed wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10789434 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2011519752 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10789434 Country of ref document: EP Kind code of ref document: A1 |