WO2010146794A1 - 耐熱性シール部材 - Google Patents

耐熱性シール部材 Download PDF

Info

Publication number
WO2010146794A1
WO2010146794A1 PCT/JP2010/003766 JP2010003766W WO2010146794A1 WO 2010146794 A1 WO2010146794 A1 WO 2010146794A1 JP 2010003766 W JP2010003766 W JP 2010003766W WO 2010146794 A1 WO2010146794 A1 WO 2010146794A1
Authority
WO
WIPO (PCT)
Prior art keywords
clay
temperature
substance
member according
film
Prior art date
Application number
PCT/JP2010/003766
Other languages
English (en)
French (fr)
Inventor
茂木克己
津田統
竹地佑介
Original Assignee
株式会社巴川製紙所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社巴川製紙所 filed Critical 株式会社巴川製紙所
Priority to US13/378,946 priority Critical patent/US20120091668A1/en
Priority to CN201080026774.1A priority patent/CN102459080B/zh
Publication of WO2010146794A1 publication Critical patent/WO2010146794A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/40Clays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0284Organic resins; Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component

Definitions

  • the present invention relates to a new material suitable for use as, for example, a gasket, which has heat resistance even in a high temperature range exceeding 600 ° C. and can exhibit excellent sealing performance.
  • a gasket, a metal gasket, or a glass sealing material mainly composed of rubber, fiber, or clay is generally used.
  • a gasket mainly composed of rubber, fiber, or clay cannot be used in a temperature range that is so high, for example, a temperature range of 500 ° C. or higher due to the heat resistance of rubber.
  • a metal gasket or a glass sealing material is used, but the metal gasket has problems such as a heavy weight and a high tightening pressure.
  • glass seals melt at high temperatures and stick due to lowering of temperature and develop sealing performance.
  • the glass component sodium elutes over a long period of use, corroding electrodes, metals, and other components. There is a problem that deteriorates. Further, in order to completely fix the seal portion, there is a problem that it is difficult to disassemble when the seal portion is disassembled for maintenance or the like.
  • Patent Document 1 a novel clay thin film having mechanical strength that can be used as a self-supporting film has recently been proposed as a new material having heat resistance.
  • the method described in this patent document disperses clay in water or a liquid that is a dispersion medium containing water as a main component. For example, the dispersion is poured into a tray and left horizontally to deposit clay particles. At the same time, the liquid as the dispersion medium is separated by solid-liquid separation means and formed into a film shape.
  • the clay thin film obtained by this method has a structure in which the lamination of clay particles is highly oriented.
  • the clay thin film has mechanical strength that can be used as a self-supporting film, has excellent flexibility even at a high temperature exceeding 250 ° C., and is excellent in gas / liquid barrier properties. have.
  • the clay thin film according to Patent Document 1 can be used under a high temperature condition exceeding 250 ° C. as described in the document, but in the case of a temperature exceeding 600 ° C., a structural hydroxyl group is used. It is not suitable for use in an environment where the temperature is too high (paragraph number 0001, etc. in Patent Document 1).
  • the clay thin film is used as a gasket, the gas barrier property seems to be as high as possible.
  • the gasket is not tightened enough to follow the shape of the flange surface, gas and liquid will escape into the flank. End up.
  • the clay thin film according to Patent Document 1 Even if the clay thin film according to Patent Document 1 is deformed and followed, the elasticity in the thickness direction is poor, so that sufficient sealing performance cannot be exhibited. Under temperature, the clay thin film itself hardens due to thermal degradation and may cause structural destruction such as cracks and cracks. Furthermore, the clay particles of the clay thin film are in an electrically neutralized state by interposing sodium ions between the negatively charged layers, but in an environment where moisture exists, the sodium ions between the layers elute out of the particles. End up. Therefore, when the clay thin film is used as a gasket for a solid oxide fuel cell, for example, it becomes an environment where the temperature is higher than 600 ° C. and moisture is present, it cannot be used because it causes structural change and sodium elution. I came.
  • Patent Document 2 discloses a technique for forming (expanding) voids in the film by heat-treating and evaporating moisture contained in the clay.
  • the porous clay film thus obtained has a characteristic that it is highly flexible.
  • the clay thin film according to the document also has elasticity compared to the clay thin film according to Patent Document 1, as described in Patent Document 1, Compared to the inferior strength, structural damage such as cracks and cracks is likely to occur during deformation following.
  • the present invention can achieve a sufficient sealing property even when a clay film excellent in heat resistance is used in a high temperature environment exceeding 600 ° C., and even in an environment where water is present at a high temperature exceeding 600 ° C.
  • An object of the present invention is to provide means for preventing deterioration of properties due to structural changes as much as possible and also preventing deterioration of product functions due to sodium elution.
  • the present inventors have prevented the deterioration of properties as much as possible even when placed at a temperature higher than the dehydroxylation temperature exceeding 600 ° C., which causes structural destruction, by incorporating it in a high-temperature load product exceeding 600 ° C. in a semi-finished product.
  • the sealing performance is greatly enhanced by adopting an action mechanism of expansion due to thermal decomposition of the additive, which is extremely easy to adjust the content.
  • the present invention has been completed by paying attention to the fact that sodium ions are dehydrated and bonded to silicate surface oxygen atoms in addition to destruction.
  • the present invention (1) has a structure in which clay particles are oriented, and the temperature at which the structural hydroxyl group of the clay particles exceeds 100 ° C. and is released as water between the clay particles or / and between the clay particle layers. It is a member that is made of a clay film containing a substance that decomposes at the following temperature and is placed in an environment that is equal to or higher than the decomposition temperature of the substance.
  • the present invention (2) is the member of the above invention (1), wherein the temperature equal to or higher than the decomposition temperature is equal to or higher than the temperature at which the structural hydroxyl groups of the clay particles are released as water.
  • the clay particles are kaolinite, dickite, halloysite, chrysotile, lizardite, amesite, pyrophyllite, talc, montmorillonite, beidellite, nontronite, stevensite, saponite, hectorite, soconite, 2 octahedron type vermiculite, 3 octahedron type vermiculite, muscovite, paragonite, illite, sericite, phlogopite, biotite, lipidoid and layered titanium, characterized in that it is one or more selected from the above, It is a member of invention (1) or (2).
  • the present invention (4) is the member according to any one of the inventions (1) to (3), wherein the substance is an organic substance.
  • the organic substance is one or more selected from the group consisting of cyclic monomers, carbon multiple bond monomers, monofunctional monomers, polyfunctional monomers, homopolymers thereof, and copolymers thereof. It is a member of the said invention (4).
  • the present invention (6) is the member of the invention (5), characterized in that the organic substance is ⁇ -caprolactam.
  • the present invention (7) is the member of the invention (4), wherein the organic substance is an organic onium ion.
  • the invention (8) is the member according to the invention (7), characterized in that the organic onium ion is at least one selected from the group consisting of ammonium ion, phosphonium ion, pyridinium ion and imidazolium ion. is there.
  • the present invention (9) is the member according to any one of the inventions (1) to (3), wherein the substance is a foaming agent.
  • the present invention (10) is the member of the invention (9), wherein the foaming agent is at least one selected from an organic foaming agent and an inorganic foaming agent.
  • the present invention (11) is the member according to any one of the inventions (1) to (10), wherein the member is a member that expands by heating at a temperature equal to or higher than the decomposition temperature of the substance and becomes a sealing material.
  • the member is a member that becomes a low sodium-eluting seal material in which the sodium extraction amount is 100 ppm or less by heating at a temperature higher than the temperature at which the structural hydroxyl groups of the clay particles are released as water.
  • the present invention (13) is formed by fixing and arranging the member of the invention (11) in a narrow fixed space having irregularities at a temperature lower than or equal to the decomposition temperature of the substance, and placing it in an environment at or above the temperature at which the substance decomposes. It is the sealing material which fills the unevenness
  • This invention (14) is the sealing material of the said invention (13) whose said sealing material is a gasket.
  • the member of the invention (12) is fixedly disposed in a space where sodium elution may be a problem at or below the decomposition temperature of the substance, and the temperature of the substance is above the decomposition temperature and the structure of the clay particles It is a low sodium-eluting sealant that is formed by being placed in an environment at a temperature equal to or higher than the temperature at which hydroxyl groups are released as water, and has a sodium extraction amount of 100 ppm or less.
  • the present invention (16) is the low sodium low elution seal material of the invention (13), wherein the low sodium low elution seal material is a fuel cell gasket.
  • the present invention (17) is a clay dispersion for producing any one member of the inventions (1) to (12), wherein the clay particles and the substance are mixed with water, an organic solvent or a mixture thereof. It is a clay dispersion obtained by dispersing in a solvent.
  • the present invention (18) includes any one of the above-described inventions (1) to (12), comprising the steps of applying the dispersion of the invention (17) to a substrate, drying, and peeling the substrate from the substrate. It is a manufacturing method.
  • Structural water exists as a hydroxyl group at normal temperature and does not exist in the form of water molecules, but is released as water when heated to a high temperature.
  • Structural hydroxyl group means a hydroxyl group in which the structural water contained in the clay is present in the clay.
  • FIG. 1A is a conceptual diagram showing a laminated structure of clay particles
  • FIG. 1B is an electron micrograph of clay particles (montmorillonite).
  • FIG. 2 is a photograph (cross-sectional photograph) obtained by observing the clay film according to Example 1 with a scanning electron microscope.
  • FIG. 3 is an X-ray diffraction chart of the clay film according to Example 1.
  • 4 is a thermogravimetric measurement (TG) result of ⁇ -caprolactam which is an additive used in the clay film according to Example 1.
  • FIG. FIG. 5 is an IR analysis result of the film heat-treated in each temperature range of 400 ° C., 600 ° C., and 800 ° C. for the clay film according to Example 1.
  • FIG. 6 is a photograph of a flange in which the clay film according to Example 1 is sandwiched.
  • FIG. 7 is a photograph showing the results of a crack / crack generation confirmation test and a sealability confirmation test of Example 1.
  • FIG. 8 is a photograph (cross-sectional photograph) showing the results of the crack / crack generation confirmation test and the sealability confirmation test of Example 1.
  • the main component of the clay film in the semi-finished product according to the present invention is natural clay and / or synthetic clay, such as kaolinite, dickite, halloysite, chrysotile, lizardite, amesite, pyrophyllite, talc, Montmorillonite, beidellite, nontronite, stevensite, saponite, hectorite, soconite, dioctahedral vermiculite, trioctahedral vermiculite, muscovite, paragonite, illite, sericite, phlogopite, biotite, lepidrite and layered titanium One or more acids.
  • natural clay and / or synthetic clay such as kaolinite, dickite, halloysite, chrysotile, lizardite, amesite, pyrophyllite, talc, Montmorillonite, beidellite, nontronite, stevensite, saponite,
  • clay is a particle having a particle size range of 2 ⁇ m or less determined by the International Soil Society (ISSS) method, and more specifically, a hydroxyl group-containing silicate mineral and a hydroxyl group-containing layered oxide.
  • ISSS International Soil Society
  • Smectite a layered clay mineral
  • Smectite is a layered silicate mineral having a 2: 1 type structure in which the negative charge of the silicate layer is 0.3 to 0.6. Therefore, the interlayer bond is weak, the interlayer cation has exchangeability, and water molecules and organic molecules are easily introduced between the layers.
  • the layer spacing varies greatly depending on the types of interlayer cations and interlayer molecules.
  • Smectites include montmorillonite, beidellite, nontronite, saponite, and hectorite, and can be preferably used as the clay of the present invention.
  • Smectite has a negative permanent layer charge on the surface of the crystal layer, and in order to compensate for the charge, between layers between the crystals, alkali metals such as Na + and K + , Ca 2+ and Mg 2+ are used. Alkaline earth metal cations are adsorbed. These cations exist in a hydrated state of water molecules, and can be freely ion-exchanged with other cations such as organic cations.
  • Na-type montmorillonite, Na + for electrical attraction between the aluminosilicate layers by intervention of ions is weak, water molecules hydrated intercalated water molecules in turn between the layers Na + ions, macroscopic volume Indicates swelling.
  • Organized clay modified so that it can be dispersed in an organic solvent or molten resin by replacing interlayer ions such as Na + ions with organic ions having high affinity for the solvent can also be used in the present invention.
  • organic ions used for modification include organic onium ions such as ammonium ion, phosphonium ion, pyridinium ion, and imidazolium ion.
  • mica such as muscovite, paragonite, illite, sericite, phlogopite, biotite, and lipidoid.
  • the mica in the present invention is preferably a swellable mica having a feature of adsorbing and swelling water molecules between crystal layers when it comes into contact with water, and finally falling apart and dispersing in water.
  • organic mica modified so as to be dispersed in an organic solvent or a molten resin by replacing the interlayer cation with an organic ion having a high affinity for the solvent can also be used.
  • Mica has a larger particle aspect ratio than smectite such as montmorillonite, and the layer charge of swellable mica is larger than the layer charge of smectite 0.3 to 0.6 and is 0.6 to 1.0. .
  • the electrical attraction between the aluminosilicate layers due to the interposition of Na + ions between the layers is strong, so the swelling property in the solvent is poorer than smectite, and the laminated structure of particles is several tens to several hundreds layers and the layer thickness is several tens of layers.
  • the particle size in the solvent is larger than that of smectite. Therefore, by using mica in combination with smectite such as montmorillonite as the main component, the solvent removal efficiency during drying to obtain the semi-finished product of the present invention can be increased, or the internal moisture in the high temperature region can be increased.
  • the expansion and expansion phenomenon in the film thickness direction can be controlled by the removal and the generation path of the generated gas.
  • the amount of mica added is adjusted as appropriate so as to obtain the optimum sealing effect due to the efficiency of the drying process and the foaming phenomenon at a high temperature region temperature where the semi-finished product is used.
  • the main constituent component becomes mica, and the dispersibility in the solvent is poorer than smectite such as montmorillonite. Since the diameter is large, the foam expansion property in the film thickness direction at the time of heating is poor, and it is difficult to obtain a sealing property that fills the unevenness of the narrow fixed space suitable for the present invention.
  • the member according to the present invention has a decomposition temperature of over 100 ° C. and the structural hydroxyl groups of the clay particles are released as water between and / or between the clay particles in addition to the main constituent clay. Substances that decompose at temperatures below the required temperature are essential.
  • an organic substance or a foaming agent is used as the substance having a decomposition temperature exceeding 100 ° C. and decomposing at a temperature lower than the temperature at which the structural hydroxyl group of the clay particles is released as water between the clay particles or / and between the clay particles. Can be mentioned. Hereinafter, the substance will be described in detail.
  • examples of organic substances include monomers, polymers, and organic onium ions.
  • examples of the monomer and polymer include a cyclic monomer, a carbon multiple bond monomer, a monofunctional monomer, a polyfunctional monomer, a homopolymer thereof, and a copolymer thereof.
  • epsilon caprolactam can be mentioned, it is not specifically limited.
  • examples of organic onium ions include ammonium ions, phosphonium ions, pyridinium ions, and imidazolium ions. These substances are usually present in the form of organic onium salts, and are present as ions in the solvent when added to the clay.
  • examples of the foaming agent include organic foaming agents and inorganic foaming agents.
  • the foaming agent is not particularly limited as long as it can be sufficiently decomposed and foamed in the temperature range to be used.
  • examples of the organic foaming agent include dinitropentamethylenetetramine (DPT), azodicarbonamide.
  • examples thereof include azo organic foaming agents such as (ADCA), and organic foaming agents such as hydrazine derivatives such as p, p′-oxybisbenzenesulfonyl hydrazide (OBSH) and hydrazodicarbonamide (HDCA).
  • examples of the inorganic foaming agent include sodium hydrogen carbonate and zirconium hydride.
  • the sealing effect related to the additive substances will be described.
  • the additive present between the clay particles or / and between the clay particle layers is decomposed and gasified to be removed from the member.
  • the clay particles are highly oriented and have high gas barrier performance, so there is not much escape of the gas components, and the clay particles or / and the clay layers are pushed and spread, thereby forming a narrow fixed space.
  • the member of the present invention expands in the film thickness direction, filling the gap and enhancing the sealing effect.
  • the additive substance When the additive substance is added, it is preferably used at a ratio of 1 to 30% by mass with respect to the total mass of the member raw material (solid content) of the present invention.
  • the additive amount When the additive amount is less than 1% by mass, the amount of gas generated is small, so that the above-mentioned sealing effect cannot be sufficiently obtained when used in applications such as gaskets.
  • the amount When the amount is more than 30% by mass, the number of components decomposed by heating increases, and the heat resistance of the member of the present invention decreases. After the gas is removed, the density becomes very small and a desired sealing effect is obtained. Disappear.
  • the member of the present invention may contain other materials (for example, graphite and metal fibers) in addition to clay as a main component. By combining such clay with other materials, physical properties such as mechanical strength can be appropriately controlled.
  • materials for example, graphite and metal fibers
  • the member according to the present invention has a structure in which the lamination of clay particles is oriented.
  • orienting the lamination of clay particles means that unit structure layers (thickness of about 1 nanometer) of clay particles are stacked with the direction of the layer surface being the same, and high periodicity is given in a direction perpendicular to the layer surface.
  • FIG. 1A is a conceptual diagram showing a laminated structure of clay particles
  • FIG. 1B is an electron micrograph of clay particles (montmorillonite).
  • the clay particles are composed of a plurality of layers, and each layer is negatively charged. Cations (sodium ions) are present between the layers and are electrically neutralized as a whole.
  • the shape, size, and thickness of the member according to the present invention should be determined according to the application, and are not particularly limited.
  • the shape there are a circle, an ellipse, a ring, a square such as a square or a rectangle, a polygon, and the like.
  • the thickness for example, a film having a thickness of 10 ⁇ m to 1 mm, preferably 10 to 200 ⁇ m can be mentioned.
  • the dispersion can be laminated by multiple coatings, or the members can be bonded to each other using an adhesive or a pressure-sensitive adhesive.
  • the member according to the present invention comprises a clay film containing a substance that decomposes at a temperature exceeding 100 ° C. and below the temperature at which the structural hydroxyl groups of the clay particles are released as water between the clay particles or / and between the clay particles. , It has the effect of improving the sealing performance at a temperature equal to or higher than the decomposition temperature of the substance.
  • the linear expansion coefficient of a plane direction is very small, and it is excellent in heat resistance. Specifically, it has a linear expansion coefficient in the planar direction of 15 ppm / ° C. or less in the above temperature range.
  • the value of the linear expansion coefficient is measured using TMA (Thermo Mechanical Analysis) which is a general thermomechanical analyzer. Specifically, the load is 49 mN, the temperature rise is 5.0 ° C./min, and the linear expansion coefficient measured in the air atmosphere has a value of 15 ppm / ° C. or less.
  • the member according to the present invention is prepared by preparing a dilute and uniform clay dispersion, forming the dispersion into a film on a substrate, and then separating the liquid as a dispersion medium by various solid-liquid separation methods such as centrifugation. Separating by filtration, vacuum drying, freeze vacuum drying, or heat evaporation, forming into a film, and then peeling it from the substrate, which is sufficient for use as a self-supporting film with a uniform thickness Manufacture is possible by adopting manufacturing conditions for obtaining strength. This will be described in more detail below.
  • natural clay or synthetic clay or a mixture thereof is used as the clay, and further additives are added, and these are added to water or an organic solvent or a mixed solvent thereof to prepare a dilute and uniform clay dispersion.
  • an organic treatment is performed by ion exchange with a cation between clay layers to be present between clay layers.
  • clay natural clay, synthetic clay or a mixture thereof is added to water or a mixed solvent of water and an organic solvent and uniformly dispersed.
  • a predetermined organic onium salt is added thereto and further stirred.
  • the cation and the organic onium ion in the clay layer are ion-exchanged, and the presence of the organic onium ion between the clay layer causes the clay to change from the hydrophilicity due to the cation to the hydrophobicity due to the organic onium ion.
  • Precipitation in a mixed solvent with an organic solvent The solvent is removed by solid-liquid separation to obtain an organically treated clay, and the organically treated clay is added to water or an organic solvent or a mixed solvent thereof and stirred to prepare a dilute and uniform clay dispersion.
  • the concentration of the clay dispersion is preferably from 0.5 to 20 mass percent, more preferably from 3 to 10 mass percent, based on the total mass of the liquid. At this time, if the concentration of the clay dispersion is too thin, there is a problem that it takes too much time for drying. Further, when the concentration of the clay dispersion is too high, there is a problem that a uniform film cannot be formed because clay does not disperse well.
  • the substrate may be a sheet-like substrate having a smooth surface, a three-dimensional shape such as a sphere, or a complicated shape such as a depression, and the material and thickness thereof are not limited.
  • various films, metal foils, metal plates, and various other things can be used.
  • a plastic sheet substrate having a thickness of 50 ⁇ m to 1 mm can be suitably used.
  • Materials include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), triacetyl cellulose (TAC), polyarylate, polyimide, polyether, polycarbonate (PC), polysulfone, polyethersulfone, cellophane, aromatic polyamide, polyethylene , Polypropylene, polyvinyl alcohol and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • TAC triacetyl cellulose
  • polyarylate polyimide
  • polyether polycarbonate
  • PC polysulfone
  • polyethersulfone cellophane
  • aromatic polyamide polyethylene
  • Polypropylene polyvinyl alcohol and the like.
  • surface treatment such as corona treatment, plasma treatment, etc. Or easy adhesion treatment.
  • the method for forming the film is not particularly limited as long as it can be uniformly applied.
  • Printing methods such as lithographic printing such as offset printing and stencil printing such as screen printing can be used. Or it can apply
  • the solvent is separated from the clay dispersion and formed into a film.
  • it is not particularly limited as long as it is a means capable of separating the solvent which is the dispersion liquid, but preferably, for example, various solid-liquid separation methods, preferably, for example, centrifugation, filtration, etc. Any of vacuum drying, freeze vacuum drying, heat evaporation, or a combination of these methods can be used to obtain the member of the present invention.
  • a dispersion liquid previously deaerated by vacuuming or defoaming treatment is formed on a support film, preferably a PET film, in a film form by coating.
  • a support film preferably a PET film
  • it is dried under a temperature condition of 60 to 170 ° C. to obtain a clay film.
  • These drying conditions are set to be sufficient to remove various liquid components by evaporation. At this time, if the temperature is too low, there is a problem that drying takes time.
  • the kind of solvent to be used is suitably adjusted with quantity.
  • the member of the present invention can be obtained by peeling from the PET film. Further, the member of the present invention peeled from the PET film may be further heated to completely remove the solvent, or may be pressed and subjected to press or calender roll treatment as density adjustment or surface flattening treatment.
  • the clay film itself which is a member according to the present invention, uses a layered silicate as a main raw material, and has a basic constitution such as a natural or synthetic hydroxyl-containing layered layer having a layer thickness of about 1 nm, a particle diameter of about 2 ⁇ m, and an aspect ratio of about 1000 Examples include a composition of 90% by weight of silicate and 10% by weight of a natural or synthetic additive of low and high molecular weight.
  • This clay film is produced, for example, by densely laminating layered crystals having a thickness of about 1 nm, oriented in the same direction.
  • the member according to the present invention is fixedly disposed in a narrow fixed space having irregularities at a temperature equal to or lower than the decomposition temperature of the additive, and is used as a sealing material for preventing leakage of liquid or gas from the irregularities.
  • the narrow fixed space having irregularities include a flange surface of a pipe and an electrode surface of a fuel cell.
  • the member according to the present invention is in an environment at or above the decomposition temperature of the substance contained between the clay particles or / and between the clay particle layers, or more preferably at or above the temperature at which the structural hydroxyl group in the self-supporting clay film is released as water. Arranged.
  • the “decomposition temperature of the substance” is a temperature at which mass reduction of the substance starts when the temperature is gradually raised, and indicates gasification by vaporization, evaporation, and sublimation. It refers to a value measured by thermogravimetry (TG), which is a general thermal analysis method.
  • TG thermogravimetry
  • the weight loss up to a temperature of around 100 ° C. is the weight loss due to evaporation of moisture contained in or adsorbed on the substance.
  • the decreasing temperature in the range is defined as the thermal decomposition temperature in the present invention.
  • the peak temperature of the differential thermogravimetric curve (DTG curve) in which the mass change ratio with respect to the temperature is plotted is defined as the thermal decomposition temperature of the present invention.
  • the “temperature at which the structural hydroxyl group in the free-standing clay thin film is released as water” can be measured using infrared spectroscopy (IR), which is a general analytical method. That is, it refers to the temperature at which the peak due to the structural hydroxyl group in the clay, more specifically the peak at 3710 to 3620 cm ⁇ 1 representing the absorption due to the stretching vibration of structural water, disappears from the IR.
  • IR infrared spectroscopy
  • the member according to the present invention is placed in an environment that is equal to or higher than the decomposition temperature of a substance contained between clay particles or / and between clay layers.
  • the decomposition temperature varies depending on the type of substance contained.
  • the substance to be contained is appropriately selected, and the decomposition temperature also varies.
  • the member according to the present invention is arranged in such an environment, a mechanism for spreading between the clay particles or / and the clay layer by the decomposition gas of the substance contained in the clay film appears, and the volume in the film thickness direction appears. Expands and fills the irregularities between the flanges. Therefore, it is useful as a semi-finished product for gaskets or seal members in fields where high sealability is required in addition to heat resistance.
  • the member according to the present invention may be disposed in an environment at a temperature equal to or higher than the temperature at which the structural hydroxyl group in the self-supporting clay film is released as water.
  • the self-supporting clay film according to the present invention when the self-supporting clay film according to the present invention is disposed in such an environment of “the temperature at which the structural hydroxyl group in the self-supporting clay thin film is released as water” or more, the structural failure of the self-supporting clay film may occur.
  • the self-supporting clay film according to the present invention is disposed in such an environment of “the temperature at which the structural hydroxyl group in the self-supporting clay thin film is released as water” or more, the structural failure of the self-supporting clay film may occur.
  • it is incorporated in the product in the form of a member in advance and placed in such an environment (for example, sandwiched between flanges) it is possible to prevent the heat resistance and the sealing performance from being lowered as much as possible due to the structural failure of the self-support
  • the sodium elution performance as described in detail below is exhibited. Therefore, it is useful as a gasket for fuel cell applications where sodium elution is a problem.
  • the method of attaching this member to a product by heating this member more than the said temperature and making it a member with low sodium elution property may be sufficient.
  • the member obtained by heating the member becomes hard, and as a result, cracks and cracks are likely to occur.
  • an ideal usage mode of this member is to heat the product to the above temperature by operating the product after attaching the member according to the present invention to the target product.
  • the crack and crack of the said member can be prevented effectively, and it becomes possible to ensure sealing performance by filling the unevenness
  • the sodium low release member formed by heating the member according to the present invention (above the temperature at which the structural hydroxyl group in the self-supporting clay film is released as water) has a sodium ion extraction amount of 100 ppm or less (preferably Is 50 ppm or less).
  • the “sodium ion extraction amount” in the present invention is sealed by putting 5.0 g of a measurement member and 50 ml of pure water in an extraction container, and putting the whole extraction container in a dryer at 121 ° C. for 20 hours. After cooling to room temperature, it refers to a value obtained by quantifying the amount of sodium ions with an atomic absorption photometer after 10-fold dilution.
  • Example 1 Manufacture of clay film as a member As a clay , 15 g of natural montmorillonite “Kunipia G” (manufactured by Kunimine Kogyo Co., Ltd.) and 4 g of synthetic mica “Somasif ME-100” (manufactured by Coop Chemical Co., Ltd.), as additives 1 g of ⁇ -caprolactam (manufactured by Wako Pure Chemical Industries, Ltd.) is added to 330 g of distilled water and stirred for 60 minutes at 5,000 rpm using an ace homogenizer “AM-001” (manufactured by Nihon Seiki Seisakusho Co., Ltd.).
  • a clay dispersion having a concentration of about 6% was obtained.
  • the clay dispersion is evacuated in a vacuum dryer to remove bubbles, and coated on a PET “Embret S50” (manufactured by Unitika Ltd.) using an applicator, in a forced air oven. It was dried for 1 hour under a temperature condition of 100 ° C. and peeled off from PET to obtain a self-supporting clay film having a thickness of about 40 ⁇ m.
  • FIG. 2 shows that the clay particles are highly oriented.
  • An X-ray diffraction chart of this clay thin film is shown in FIG. A series of sharp bottom surface reflection peaks (001), (002), (003), (004), (005) were observed, indicating that the clay film particles were well aligned.
  • the amount of sodium ion elution was measured with an atomic absorption photometer. For comparison, the amount of sodium elution when heated at 400 ° C. and 600 ° C. lower than the lower limit of the range was also measured. The results are shown in Table 1. As can be seen from this table, the extraction amount of sodium ions after heating was less than 1/10 before heating, and was confirmed to be 100 ppm or less.
  • FIG. 8A shows the state of the film cross-sectional structure during low-temperature heating (400 ° C.), and FIG. 8B shows the state of the film cross-sectional structure during high-temperature heating (800 ° C.).
  • FIG. 8A when heated at a temperature exceeding the decomposition temperature of the used additive ⁇ -caprolactam, between the clay particles due to the decomposition gas resulting from the decomposition of ⁇ -caprolactam contained in the clay film and / or It was confirmed that a structure that spreads between clay layers appeared and a structure whose volume expands in the film thickness direction was built in the film. Further, as shown in FIG.
  • Example 2 to 3 “Kunipia G” (manufactured by Kunimine Industries Co., Ltd.), a natural montmorillonite as clay, “Somasif ME-100” (manufactured by Corp Chemical Co.) as synthetic mica, and ⁇ caprolactam (manufactured by Wako Pure Chemical Industries, Ltd.) as additive.
  • a self-supporting clay film having a thickness of about 40 micrometers was obtained by the same method as in Example 1 except that the blending amount was changed to the ratio shown in the following table.
  • Example 4 As clay, 40 g of natural montmorillonite “Kunipia G” (manufactured by Kunimine Industries Co., Ltd.) was added to 2000 g of distilled water, stirred and dispersed with a stirrer, and then 1-ethyl-3-methylimidazolium-bromide (EMI). -Br) (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) 10 g was charged. Montmorillonite containing 1-ethyl-2-butylimidazolium ion between layers was deposited in the liquid by an ion exchange reaction between sodium ions and imidazolium ions in natural montmorillonite.
  • EMI 1-ethyl-3-methylimidazolium-bromide
  • This solution was subjected to solid-liquid separation with a centrifugal separator to obtain a montmorillonite clay cake containing 1-ethyl-2-butylimidazolium ions between layers having a water content of 85%.
  • a dispersed organic solvent 40 g was added, and the mixture was stirred for 60 minutes at 5,000 rpm using an ace homogenizer “AM-001” (manufactured by Nippon Seiki Seisakusho) and distilled.
  • a montmorillonite dispersion containing 1-ethyl-2-butylimidazolium having a concentration of about 11% swollen in a mixed solvent of water and DMF was obtained.
  • This clay dispersion is vacuumed in a vacuum dryer to remove bubbles, and coated on PET “Emblet S50” (manufactured by Unitika Ltd.) using an applicator.
  • the film was dried at 100 ° C. for 1 hour, peeled off from PET, and further dried at 170 ° C. for 1 hour to obtain a self-supporting clay film having a thickness of about 40 micrometers.
  • the compounding ratio of “Kunipia G”, which is a natural montmorillonite, and 1-ethyl-3-methylimidazolium (EMI) in the film is obtained by conducting an elemental analysis of carbon using an element analyzer EA1108 type (manufactured by Carlo Elba). As a result of calculating the blending ratio from the analysis value, the blending ratio of Kunipia G and EMI was about 91: 9 wt%.
  • Example 5 A self-supporting clay film having a thickness of about 40 micrometers was obtained in the same manner as in Example 1 except that “polyvinyl alcohol (GOHSENOL NH-18)” (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) was used as an additive.
  • polyvinyl alcohol GHSENOL NH-18
  • Example 6 A self-supporting clay film having a thickness of about 40 micrometers was obtained by the same method as in Example 1 except that “sodium hydrogen carbonate” (manufactured by Wako Pure Chemical Industries, Ltd.), which is an inorganic foaming agent, was used as an additive.
  • “sodium hydrogen carbonate” manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 7 A self-supporting clay film having a thickness of about 40 micrometers was obtained in the same manner as in Example 1 except that “NTS-5 (solid content: 6%)” (manufactured by Topy Industries, Ltd.) was used as the synthetic mica.
  • Example 1 A self-supporting clay film having a thickness of about 40 micrometers was obtained by the same method as in Example 1 using only “Kunipia G” (Kunimine Kogyo Co., Ltd.), which is natural montmorillonite, as clay.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Sealing Material Composition (AREA)

Abstract

【課題】 耐熱性に優れた粘土膜を600℃超の高温環境下で使用した場合でも、十分なシール性を達成できるとともに、600℃を超える高温となり且つ水分が存在する環境下でも、構造変化による性質劣化を極力防止すると共に、ナトリウム溶出による製品機能低下をも防止する手段の提供。 【解決手段】 粘土粒子を配向させた構造を有し、該粘土粒子間又は/及び粘土粒子層間に、100℃を超え且つ該粘土粒子の構造水酸基が水として放出される温度以下の温度で分解する物質を含有する粘土膜からなる、前記物質の分解温度以上の環境下に配される部材。

Description

耐熱性シール部材
 本発明は、600℃を超える高温域でも耐熱性を有しており且つ優れたシール性能を発揮し得る、例えばガスケットとしての使用に適した新素材に関するものである。
 シール材として、高温域においては、一般的にはゴムや繊維、クレーを主成分としたガスケットや金属ガスケット、ガラスシール材が使用されている。ゴムや繊維、クレーを主成分としたガスケットは、ゴムの耐熱性によりそれほど高い温度域、例えば500℃以上の温度域では使用ができない。このような高温域では、金属ガスケットやガラスシール材が使用されるが、金属ガスケットは重量が重い、締め付け圧力を高くしなければならない等の問題点を抱えている。一方、ガラスシールは、高温域で溶融し、温度低下により固着し、シール性能を発現するが、長時間の使用でガラス成分であるナトリウムが溶出し、電極や金属、その他部材を腐食させたり性能を劣化させたりする問題点がある。また、完全に固着する為に、メンテナンス等でシール部分を解体する場合、解体することが困難であるという問題点を有する。
 ここで、耐熱性を有する新素材として、自立膜として利用可能な機械的強度を有する新規な粘土薄膜が近年提案されている(特許文献1)。この特許文献に記載された方法は、粘土を水あるいは水を主成分とする分散媒である液体に分散させ、例えば、この分散液をトレイに流し込み、水平に静置し、粘土粒子を沈積させると共に、分散媒である液体を固液分離手段により分離し、膜状に成形するという手法である。当該手法で得られた粘土薄膜は、粘土粒子の積層が高度に配向した構造を有する。そして、当該粘土薄膜は、自立膜として利用可能な機械的強度を有し、しかも、250℃を超える高温でも優れたフレキシビリティーを有し、気体・液体のバリア性にも優れているという特性を持っている。
 ここで、特許文献1に係る粘土薄膜は、当該文献に記載されているように250℃を超える高温度条件下で使用することが可能であるが、600℃を超える温度の場合には構造水酸基の脱出による構造変化を起こしてしまうため余り高温過ぎる環境下での使用には適さない(特許文献1の段落番号0001等)。また、当該粘土薄膜をガスケットとして用いることを想定した場合、ガスバリア性は限りなく高いと思われるが、ガスケットがフランジ面の形状に充分変形追従するところまで締め付けないとガスや液体がスカスカに抜けてしまう。この際、特許文献1に係る粘土薄膜を変形追従させたとしても、厚さ方向での弾力性に乏しいので十分なシール性を発揮できないことに加え、粘土膜の場合に前述した600℃を超える温度下では粘土薄膜自体の熱劣化で硬化してしまうのでヒビや割れ等の構造破壊を起こす場合もある。更には、当該粘土薄膜の粘土粒子は、負に帯電した層間にナトリウムイオンを介在させることで電気的中和状態にあるが、水分が存在する環境下では層間のナトリウムイオンが粒子外に溶出してしまう。したがって、600℃を超える高温となり且つ水分が存在する環境となる、例えば固体酸化物型燃料電池用ガスケットとして当該粘土薄膜を用いると、構造変化とナトリウム溶出を起こしてしまうために使用できないと考えられてきた。
 更に、特許文献2には、粘土に含まれる水分を加熱処理して蒸発させることで、膜内に空隙を形成させる(膨張させる)手法が開示されている。このようにして得られた多孔質粘土膜は、柔軟性が高いという特性を有している。しかしながら、当該文献に係る粘土薄膜についても、特許文献1に係る粘土薄膜と比べて弾力性はあるものと理解されるものの、特許文献1で述べたことと同様、特許文献1に係る粘土薄膜と比較し強度に劣る分、変形追従の際にヒビや割れ等の構造破壊を起こし易い。更には、特許文献2に係る多孔質粘土膜の製造に際しては、水分含有量及びその蒸発速度の制御が重要であり、加熱前の湿潤環境下での保管や急激な加熱が求められる。そのため、特許文献2に係る多孔質粘土膜に対してガスケットとして好適な弾力性を持たせるには製法上の困難性もある。
 そこで、本発明は、耐熱性に優れた粘土膜を600℃超の高温環境下で使用した場合でも、十分なシール性を達成できるとともに、600℃を超える高温となり且つ水分が存在する環境下でも、構造変化による性質劣化を極力防止すると共に、ナトリウム溶出による製品機能低下をも防止する手段を提供することを目的とする。
特許第3855003 特開2006-188418
 本発明者らは、上記課題の下、半製品の状態で600℃を超える高温負荷製品に組み込むことで、構造破壊が生じる600℃超の脱水酸基温度以上に配しても性質劣化が極力防止できることに加え、含有量の調整が極めて容易な添加物の熱分解による膨張という作用機序を採用することによりシール性が非常に高まることを見出し、また、このレベルの温度に配すると前述した構造破壊に加えてナトリウムイオンが脱水和してシリケート表面酸素原子と結合することに着目し、本発明を完成させたものである。
 即ち、本発明(1)は、粘土粒子を配向させた構造を有し、該粘土粒子間又は/及び粘土粒子層間に、100℃を超え且つ該粘土粒子の構造水酸基が水として放出される温度以下の温度で分解する物質を含有する粘土膜からなる、前記物質の分解温度以上の環境下に配される部材である。
 本発明(2)は、前記分解温度以上の温度が、該粘土粒子の構造水酸基が水として放出される温度以上である、前記発明(1)の部材である。
 本発明(3)は、前記粘土粒子が、カオリナイト、ディッカイト、ハロイサイト、クリソタイル、リザーダイド、アメサイト、パイロフィライト、タルク、モンモリロナイト、バイデライト、ノントロナイト、スチーブンサイト、サポナイト、ヘクトライト、ソーコナイト、2八面体型バーミキュライト、3八面体型バーミキュライト、白雲母、パラゴナイト、イライト、セリサイト、金雲母、黒雲母、レピドライト及び層状チタンからなる群より選択される一種以上であることを特徴とする、前記発明(1)又は(2)の部材である。
 本発明(4)は、前記物質が、有機物であることを特徴とする、前記発明(1)~(3)のいずれか一つの部材である。
 本発明(5)は、前記有機物が、環状モノマー、炭素多重結合系モノマー、単官能性モノマー、多官能性モノマー、これらの単独重合体及びこれらの共重合体からなる群より選択される一種以上である、前記発明(4)の部材である。
 本発明(6)は、前記有機物が、εカプロラクタムであることを特徴とする、前記発明(5)の部材である。
 本発明(7)は、前記有機物が、有機オニウムイオンであることを特徴とする、前記発明(4)の部材である。
 本発明(8)は、前記有機オニウムイオンが、アンモニウムイオン、ホスホニウムイオン、ピリジニウムイオン及びイミダゾリウムイオンからなる群より選択される一種以上であることを特徴とする、前記発明(7)の部材である。
 本発明(9)は、前記物質が、発泡剤であることを特徴とする、前記発明(1)~(3)のいずれか一つの部材である。
 本発明(10)は、前記発泡剤が、有機系発泡剤及び無機系発泡剤より選択される一種以上である、前記発明(9)の部材である。
 本発明(11)は、前記部材が、前記物質の分解温度以上の加熱により膨張してシール材となる部材である、前記発明(1)~(10)のいずれか一つの部材である。
 本発明(12)は、前記部材が、該粘土粒子の構造水酸基が水として放出される温度以上の加熱によりナトリウム抽出量が100ppm以下となる低ナトリウム溶出性シール材となる部材である、前記発明(1)~(11)のいずか一つの部材である。
 本発明(13)は、前記発明(11)の部材を、凹凸を有する狭固定空間に該物質の分解温度以下で固定配置し、該物質が分解する温度以上の環境下に配することにより形成された、該凹凸を有する狭固定空間の凹凸を埋めるシール材である。
 本発明(14)は、前記シール材が、ガスケットである、前記発明(13)のシール材である。
 本発明(15)は、前記発明(12)の部材を、ナトリウム溶出が問題となり得る空間に該物質の分解温度以下で固定配置し、該物質が分解する温度以上であり且つ該粘土粒子の構造水酸基が水として放出される温度以上の環境下に配することにより形成された、ナトリウム抽出量が100ppm以下となる低ナトリウム溶出性シール材である。
 本発明(16)は、前記低ナトリウム低溶出性シール材が、燃料電池用ガスケットである、前記発明(13)の低ナトリウム低溶出性シール材である。
 本発明(17)は、前記発明(1)~(12)のいずれか一つの部材を製造するための粘土分散液であって、前記粘土粒子及び前記物質を、水、有機溶剤又はこれらの混合溶媒に分散させることにより得られる粘土分散液である。
 本発明(18)は、前記発明(17)の前記分散液を基材に塗布し、乾燥し、基材から剥離する工程を含む、前記発明(1)~(12)のいずれか一つの部材の製造方法である。
 ここで、本明細書において使用する各用語の意味を説明する。「構造水」とは、常温では水酸基として存在し、水分子の形で存在しないが、高温に加熱すると水として放出されるものである。「構造水酸基」とは、粘土に含まれる構造水が粘土中に存在する形態である、水酸基を意味する。
図1(A)は、粘土粒子の積層構造を示した概念図であり、図1(B)は、粘土粒子(モンモリノナイト)の電子顕微鏡写真である。 図2は、実施例1に係る粘土膜を走査型電子顕微鏡で観察した写真(断面写真)である。 図3は、実施例1に係る粘土膜のX線回折チャートである。 図4は、実施例1に係る粘土膜に使用した添加剤であるεカプロラクタムの熱重量測定(TG)結果である。 図5は、実施例1に係る粘土膜についての、未加熱、400、600、800℃の各温度域で加熱処理した膜のIR分析結果である。 図6は、実施例1に係る粘土膜が挟み込まれるフランジの写真である。 図7は、実施例1の割れ・ヒビ発生確認試験及びシール性確認試験の結果を示した写真である。 図8は、実施例1の割れ・ヒビ発生確認試験及びシール性確認試験の結果を示した写真(断面写真)である。
発明を実施するための最良形態
《部材の構成》
(構成成分)
*粘土薄膜
 本発明に係る半製品における粘土膜の主要構成成分は、天然粘土及び/又は合成粘土であり、例えば、カオリナイト、ディッカイト、ハロイサイト、クリソタイル、リザーダイド、アメサイト、パイロフィライト、タルク、モンモリロナイト、バイデライト、ノントロナイト、スチーブンサイト、サポナイト、ヘクトライト、ソーコナイト、2八面体型バーミキュライト、3八面体型バーミキュライト、白雲母、パラゴナイト、イライト、セリサイト、金雲母、黒雲母、レピドライト及び層状チタン酸のうち一種以上である。これらの内、好適には、スメクタイトであるモンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライトである。ここで、本発明において「粘土」とは、国際土壌学会(ISSS)法にて定める粒度範囲が2μm以下の粒子であり、更に詳しくは含水酸基珪酸塩鉱物及び含水酸基層状酸化物を指す。以下、好適な粘土成分について詳述する。
 層状粘土鉱物であるスメクタイトは、ケイ酸塩層のもつ負電荷が、0.3~0.6である2:1型構造を持つ層状珪酸塩鉱物である。そのため層間結合が弱く、層間陽イオンが交換性を有し、水分子や有機分子を層間に導入しやすい。層間隔は、層間陽イオン及び層間分子の種類によって大きく変化する。スメクタイトには、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライトがあり、本発明の粘土としては、好適に使用することができる。
 スメクタイトは、結晶層面にマイナスの永久層電荷を帯び、その電荷を補償するために結晶同士の間である層間には、Na、Kのようなアルカリ金属やCa2+、Mg2+のようなアルカリ土類金属の陽イオンが吸着されている。これらの陽イオンは、水分子を水和した状態で存在し、他の陽イオン、例えば有機陽イオン等と自由にイオン交換することが可能である。Na型モンモリロナイトは、Naイオンの介在によるアルミノシリケート層同士の電気的引力が弱いため、Naイオンに水分子が水和して層間に次々に水分子をインターカレートし、巨視的な体積膨張を示す。このNa+イオンのような層間イオンを溶媒に親和性の高い有機イオンに置き換えることで有機溶媒や溶融樹脂に分散できるように改質した有機化粘土を本発明で用いることもできる。改質に用いる有機物イオンとして代表的なものとして、例えば、アンモニウムイオン、ホスホニウムイオン、ピリジニウムイオン、イミダゾリウムイオン等の有機オニウムイオンを挙げることができる。
 ここで、本発明においてモンモリロナイト等のスメクタイトを主要構成成分とした場合、白雲母、パラゴナイト、イライト、セリサイト、金雲母、黒雲母、レピドライトなどの雲母(マイカ)を併用することが好適である。この場合、部材原料(固形分)の全体質量に対し、マイカを1~50質量%使用することが好適である。本発明におけるマイカは、好適には水と接触すると結晶の層間に水分子を吸着して膨潤し、ついにはバラバラになって水中に分散する特徴をもった膨潤性マイカが用いられる。また、層間陽イオンを溶媒に親和性の高い有機イオンに置き換えることで有機溶媒や溶融樹脂に分散するように改質した有機化マイカを用いることもできる。マイカは、モンモリロナイト等のスメクタイトに比べて、粒子のアスペクト比が大きく、また膨潤性マイカの層電荷は、スメクタイトの層電荷0.3~0.6より大きく、0.6~1.0である。そのため、層間のNaイオンの介在によるアルミノシリケート層同士の電気的引力が強いため溶媒中での膨潤性がスメクタイトより乏しく、粒子の積層構造体は数十~数百層で層厚みは数十から数百nm程度の大きさを持っており、スメクタイトより溶媒中での粒径が大きい。そのために、モンモリロナイト等のスメクタイトを主要構成成分とした場合にマイカを併用することで、本発明の半製品を得る乾燥時の溶媒除去効率をアップさせることができたり、高温領域での内部水分の除去や発生ガスの放出経路形成により、膜厚方向の発泡膨張現象を制御することができる。マイカの添加量は乾燥工程の効率、半製品が利用される高温領域温度での発泡現象による最適なシール効果が得られるように適宜調整させる。但し、本発明の半製品全体質量の50質量%より多い場合は、主要構成成分がマイカとなってしまい、モンモリロナイト等のスメクタイトより溶媒中の分散性が乏しいために粘土膜強度の低下、且つ粒子径が大きい為に、加熱時の膜厚方向の発泡膨張性が乏しく、本発明に好適な狭固定空間の凹凸を埋めるシール性が得られにくいので好ましくない。
*添加物質
 本発明に係る部材は、主要構成成分である粘土に加えて、分解温度が100℃超であり且つ粘土粒子間あるいは/及び粘土粒子層間に該粘土粒子の構造水酸基が水として放出される温度以下の温度で分解する物質を必須的に含む。ここで、分解温度が100℃超であり且つ粘土粒子間あるいは/及び粘土粒子層間に該粘土粒子の構造水酸基が水として放出される温度以下の温度で分解する物質としては、有機物あるいは発泡剤を挙げることができる。以下、当該物質について詳述する。
 まず、有機物としては、モノマー、ポリマー、有機オニウムイオンを挙げることができる。具体的には、モノマーやポリマーとしては、環状モノマー、炭素多重結合系モノマー、単官能性モノマー、多官能性モノマー、これらの単独重合体及びこれらの共重合体を例示でき、その中でも好適にはεカプロラクタムを挙げることができるが特に限定されるものではない。また、有機オニウムイオンとしては、アンモニウムイオン、ホスホニウムイオン、ピリジニウムイオン、イミダゾリウムイオンを例示することができる。これらの物質は通常有機オニウム塩の形で存在しており、粘土に添加される際の溶媒中でイオンとして存在するものである。
 また、発泡剤としては、有機発泡剤、無機発泡剤を挙げることができる。発泡剤は、使用する温度域において、十分に分解し、発泡が可能なものであれば特に制限はなく、具体的には、有機発泡剤としては、ジニトロペンタメチレンテトラミン(DPT)、アゾジカルボンアミド(ADCA)等のアゾ系有機発泡剤、p,p'-オキシビスベンゼンスルホニルヒドラジド(OBSH)やヒドラゾジカルボンアミド(HDCA)等のヒドラジン誘導体等の有機発泡剤を挙げることができる。無機発泡剤としては、炭酸水素ナトリウム、水素化ジルコニウム等を挙げることができる。
 前記添加物質が関わるシール効果について説明する。粘土粒子間あるいは/及び粘土粒子層間に存在する添加物は分解しガス化して該部材より除去される。除去される際に、粘土粒子が高度に配向しガスバリア性能が高いために、前記ガス成分の抜け道があまりなく、粘土粒子間あるいは/及び粘土層間を押し広げ、それにより配置された狭固定空間内で本発明の部材が膜厚方向に膨張して、隙間を埋めてシール効果を高めることになる。
 前記添加物質を添加する場合には、本発明の部材原料(固形分)の全体質量に対し、1~30質量%の割合で使用することが好適である。添加剤の添加量が1質量%より少ない場合には、発生するガスの量が少ないため、ガスケットのような用途で使用した際に上記のシール効果が十分に得られない。30質量%より多い場合には、加熱により分解するものが多くなり、本発明の部材の耐熱性が低下するとともに、ガスが除去されたあとでは密度が非常に小さくなり所望のシール効果が得られなくなる。
*他の任意成分
 本発明の部材は、主要構成要素である粘土の他、他の材料(例えば、グラファイトや金属繊維)を含んでいてもよい。このような粘土と他の材料との複合化により、機械強度等の物性を適宜コントロールすることが可能となる。
(構造・形状等)
 本発明に係る部材は、粘土粒子の積層を配向させた構造を有する。ここで、粘土粒子の積層を配向させるとは、粘土粒子の単位構造層(厚さ約1ナノメートル)を、層面の向きを一にして積み重ね、層面に垂直な方向に高い周期性を持たせることを意味する。図1(A)は、粘土粒子の積層構造を示した概念図であり、図1(B)は、粘土粒子(モンモリノナイト)の電子顕微鏡写真である。尚、粘土粒子のサイズとして50~300nm、原子比としてNa=0.33が記載されているがあくまで例示である。図1から分かるように、粘土粒子は複数の層から構成されており、各層はマイナスに帯電している。そして、層間には陽イオン(ナトリウムイオン)が存在しており、全体として電気的に中和された状態にある。
 また、本発明に係る部材の形状・大きさ・厚さは、用途に応じて決定されるべきものであり、特に限定されない。例えば、形状に関しては、円、楕円、リング、正方形や長方形等の方形、多角形等が挙げられる。厚さに関しては、例えば、膜厚が10μm~1mm、好適には10~200μmであるものが挙げられる。また、所望の厚みあるいは厚さ1mm以上の部材を得る為に、分散液の複数回塗工による積層や、接着剤や粘着剤等を用いての部材同士の張り合わせを行うこともできる。
(性質)
 本発明に係る部材は、粘土粒子間又は/及び粘土粒子層間に、100℃を超え且つ該粘土粒子の構造水酸基が水として放出される温度以下の温度で分解する物質を含有する粘土膜からなり、前記物質の分解温度以上でシール性能を高める効果を有する。上記温度域では、平面方向の線膨張係数が非常に小さく、耐熱性に優れている。具体的には上記温度範囲において15ppm/℃以下の平面方向の線膨張係数を有する。線膨張係数の値は、一般的な熱機械分析装置であるTMA(Thermo Mechanical Analysis)を用いて測定されたものである。具体的には、荷重49mN、昇温5.0℃/min、大気雰囲気中で測定した線膨張係数が15ppm/℃以下の値を有する。
(製造方法)
 本発明に係る部材は、希薄で均一な粘土分散液を調製し、該分散液を基材上に膜状に成形した後、分散媒である液体を種々の固液分離方法、例えば、遠心分離、ろ過、真空乾燥、凍結真空乾燥、又は加熱蒸発法で分離し、膜状に成形した後、これを基材から剥離すること、その際に、均一な厚さで自立膜として用いるに十分な強度を得るための製造条件を採用することにより製造可能である。以下、より詳細に説明する。
 まず、粘土として、天然粘土又は合成粘土あるいはそれらの混合物を用い、さらに添加物を加え、これらを水又は有機溶剤、あるいはこれらの混合溶媒に加え、希薄で均一な粘土分散液を調製する。
 ここで、添加物質として、有機オニウムイオンを用いる場合、粘土層間の陽イオンとイオン交換して、粘土層間に存在させる処理である、有機化処理を行う。まず、粘土として、天然粘土又は合成粘土あるいはそれらの混合物を、水、あるいは水と有機溶媒の混合溶媒に加え均一に分散させる。そこに所定の有機オニウム塩を加えて、さらに攪拌する。この時、粘土層間中の陽イオンと有機オニウムイオンがイオン交換し、粘土層間に有機オニウムイオンが存在することにより、粘土が陽イオンによる親水性から有機オニウムイオンによる疎水性へとかわり、水あるいは有機溶媒との混合溶媒中で沈殿する。固液分離により溶媒を除去して有機化処理粘土を得て、水あるいは有機溶媒、それらの混合溶媒に前記有機化処理粘土を加えて、攪拌し、希薄で均一な粘土分散液を調製する。
 粘土分散液の濃度は、好適には、液の全質量に対して0.5~20質量パーセント、より好ましくは3~10質量パーセントである。このとき、粘土分散液の濃度が薄すぎる場合、乾燥に時間がかかりすぎるという問題点がある。また、粘土分散液の濃度が濃すぎる場合、よく粘土が分散しないため、均一な膜ができないという問題がある。
 次に、この粘土分散液を基材上に膜状に成形する。基材としては、表面が平滑なシート状基材や球形等の立体形状や窪み等の複雑形状でも良く、その材質や厚さは限定されるものではない。具体的には、各種フィルムや金属箔、金属板、その他様々なものを用いることができる。さらに、具体的には、厚さ50μm~1mmのプラスチックシート基材を好適に用いることができる。材質としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、トリアセチルセルロース(TAC)、ポリアリレート、ポリイミド、ポリエーテル、ポリカーボネート(PC)、ポリスルホン、ポリエーテルスルホン、セロファン、芳香族ポリアミド、ポリエチレン、ポリプロピレン、ポリビニルアルコール等を例示することができる。また、粘土膜との剥離性向上の為に、これらのプラスチックシート表面に離けい剤処理をしたり、粘土膜との密着性や濡れ性改善の為に、コロナ処理、プラズマ処理等の表面処理や易接着処理を施すこともできる。
 膜状に成形する方法としては、均一に塗布することができれば特に限定するものではないが、例えば、アプリケーターコーティング、バーコーティング、エアドクターコーティング、ブレードコーティング、ナイフコーティング、リバースコーティング、トランスファロールコーティング、グラビアロールコーティング、キスコーティング、キャストコーティング、スプレーコーティング、スロットオリフィスコーティング、カレンダーコーティング、電着コーティング、ディップコーティング、ダイコーティング等のコーティングやフレキソ印刷等の凸版印刷、ダイレクトグラビア印刷、オフセットグラビア印刷等の凹版印刷、オフセット印刷等の平版印刷、スクリーン印刷等の孔版印刷等の印刷手法を用いることができる。あるいは、ヘラや刷毛その他の道具を用いて気泡が入らないように、手作業で塗布し、膜状に成形することもできる。
 次に、粘土分散液から溶媒を分離し、膜状に成形する。この場合、分散液である溶媒を分離することができる手段であれば特に限定されるものではないが、好適には、例えば、種々の固液分離方法、好適には、例えば、遠心分離、ろ過、真空乾燥、凍結真空乾燥、加熱蒸発法の何れかあるいはこれらの方法を組み合わせて本発明の部材を得る。
 これらの方法のうち、例えば、加熱蒸発法を用いる場合、真空引きあるいは脱泡処理により事前に脱気した分散液を支持フィルム上に、好ましくはPETフィルム上に、塗工による膜状に形成し、例えば60~170℃の温度条件下で乾燥し粘土膜を得る。これらの乾燥条件は、種々の液体分を蒸発によって取り除くに十分であるように設定される。このとき、温度が低すぎると乾燥に時間がかかるという問題点がある。また、温度が高すぎると対流が起こり、粘土粒子の配向度が低下するという問題点がある為に、使用する溶媒の種類は量により適宜調整される。乾燥後は、PETフィルムより剥離して本発明の部材を得ることができる。また、PETフィルムより剥離した本発明の部材を更に加熱して溶媒を完全に除去したり、加圧して密度の調整や表面の平坦化処理としてプレスやカレンダーロール処理を施してもよい。
 本発明に係る部材である粘土膜自体は、層状珪酸塩を主原料として用い、基本構成として、例えば、層厚約1nm、粒子径~2μm、アスペクト比~1000程度の天然又は合成の含水酸基層状珪酸塩が90重量%と、天然又は合成の低分子・高分子の添加物が10重量%の構成、が例示される。この粘土膜は、例えば、厚さ約1nmの層状結晶を同じ向きに配向させて重ねて緻密に積層することで作製される。
《部材の使用方法》
 次に、本発明に係る部材の使用方法を説明する。本発明に係る部材は、添加物の分解温度以下の温度で凹凸を有する狭固定空間に固定配置され、凹凸から液体やガスの漏れを防止するためのシール材として使用される。凹凸を有する狭固定空間の例として配管のフランジ面や燃料電池の電極面などが挙げられる。本発明に係る部材は、当該粘土粒子間あるいは/及び粘土粒子層間に含有する物質の分解温度以上、場合により更には当該自立粘土膜中の構造水酸基が水として放出される温度以上の環境下に配される。ここで、「物質の分解温度」とは、温度を徐々に上げていった際に物質の質量減少が始まる温度のことであり、気化、蒸発、昇華によるガス化のことを指す。一般的な熱分析方法である熱重量測定(TG)によって測定された値を指す。但し、上記測定において100℃付近の温度までの重量減少は物質に含有や吸着する水分の蒸発による重量減少であるために、熱重量測定(TG)により得られた熱重量曲線で100℃以上の範囲における減少温度を本発明でいう熱分解温度とする。詳細には、温度に対する質量の変化割合をプロットした微分熱重量曲線(DTG曲線)のピーク温度を本発明の熱分解温度とする。また、「自立粘土薄膜中の構造水酸基が水として放出される温度」とは、一般的な分析方法である赤外分光法(IR)を用いて測定することができる。すなわち、IRより粘土中の構造水酸基に起因するピーク、具体的には構造水の伸縮振動による吸収を表す3710~3620cm-1のピークが消失する温度を指す。以下、使用方法{部材を製品(例えばシール材)に変換する方法}を詳述する。
 まず、本発明に係る部材は、粘土粒子間あるいは/及び粘土層間に含有する物質の分解温度以上の環境下に配される。ここで、含有する物質の種類により当該分解温度は異なる。本発明の部材が使用される環境及び用途により、含有する物質は適宜選択され、分解温度もかわってくる。このような環境下に本発明に係る部材が配された場合、粘土膜内部に含有する物質の分解ガスによる粘土粒子間あるいは/及び粘土層間をおし広げる機構が出現して膜厚方向に体積が膨張し、フランジ間の凹凸を埋める。そのため、耐熱性の他、高いシール性が要求される分野のガスケット用あるいはシール部材の半製品として有用である。
 更には、本発明に係る部材は、当該自立粘土膜中の構造水酸基が水として放出される温度以上の環境下に配されてもよい。ここで、このような「自立粘土薄膜中の構造水酸基が水として放出される温度以上」の環境下に本発明に係る自立粘土膜が配された場合、自立粘土膜の構造破壊が生じることが知られている。しかしながら、予め部材の形態で製品に組み込み、このような環境に配された場合(例えばフランジ間に挟む形態)、自立粘土膜の構造破壊に伴う耐熱性やシール性の低下を極力防止することが可能となる。更には、当該レベルの高温に晒した場合、シリケート表面酸素原子にナトリウムイオンが結合する層間固着現象の結果、下記で詳述するようなナトリウム低溶出性能を奏するようになる。そのため、ナトリウム溶出が問題となる用途、例えば、燃料電池用のガスケットとして有用である。ここで、本発明に係る部材を使用するに際しては、製品に取り付ける前に本部材を前記温度以上に加熱し、ナトリウム低溶出性の部材とし、当該部材を製品に取り付ける手法でもよい。但し、製品に取り付ける前に部材を加熱するこの手法の場合、部材を加熱することにより得られる当該部材が硬くなってしまう結果、割れやヒビが生じ易くなる。そのため、製品に当該部材を取り付けた際にシール性が悪くなる等の、期待していた性質を満足させることが通常困難である。そこで、本部材の理想的な使用態様は、対象となる製品に本発明に係る部材を取り付けた後、当該製品を作動させる等して前記温度以上に加熱することである。これにより、当該部材の割れやヒビを効果的に防止することができ、凹凸を有する狭固定空間の凹凸を粘土膜の膨張により埋めることでシール性を担保することが可能となる。
《使用時のナトリウム低放出性部材の物性》
 次に、本発明に係る部材を加熱(自立粘土膜中の構造水酸基が水として放出される温度以上)することにより形成されるナトリウム低放出性部材は、ナトリウムイオン抽出量が100ppm以下(好適には50ppm以下)である。ここで、本発明での「ナトリウムイオン抽出量」は、抽出容器に測定部材5.0g及び純水50mlを入れ密封し、121℃の乾燥機に抽出容器ごと入れて20時間放置し、その後、室温まで放冷した後、10倍希釈したものを原子吸光光度計によってナトリウムイオン量を定量した値を指す。
(実施例1)
1.部材である粘土膜の製造
 粘土として、15gの天然モンモリロナイトである「クニピアG」(クニミネ工業株式会社製)と4g合成マイカである「ソマシフME-100」(コープケミカル株式会社製)、添加物として1gのεカプロラクタム(和光純薬工業社製)を330gの蒸留水に加え、エースホモジナイザー「AM-001」(株式会社日本精機製作所製)を用い5,000rpmの回転数で60分間攪拌し、均一な濃度約6%の粘土分散液を得た。この粘土分散液を、真空乾燥機内で真空に引くことで泡を除去し、PET「エンブレットS50」(ユニチカ社製)上にアプリケーターを用いて膜状に塗工し、強制送風式オーブン中で100℃の温度条件下で1時間乾燥し、PETより剥離して厚さ約40マイクロメートルの自立粘土膜を得た。
2.部材である粘土膜の物性
 この粘土膜の走査型電子顕微鏡で観察した写真を図2に示す。図2より、粘土粒子が高度に配向している様子が伺える。この粘土薄膜のX線回折チャートを図3に示す。シャープな一連の底面反射ピーク(001),(002),(003),(004),(005)が観察され、粘土膜の粒子の配向がよく揃っていることが示された。
3.εカプロラクタムの分解温度の測定
 次に、当該膜中に含まれるεカプロラクタムの分解温度を決定するため、TG/DTA6200,EXSTAR6000ステーション(セイコーインスツメント(株)社製)を用い、室温から800℃の温度範囲、300ml/minの空気雰囲気下、昇温5℃/minでεカプロラクタムの熱重量測定(TG)を行った(図4)。その結果、182℃で当該物質が分解することを確認した。
4.部材である粘土膜の「自立粘土膜中の構造水酸基が水として放出される温度」の決定
 次に、当該膜の構造水酸基が水として放出される温度を決定するため、当該膜について未加熱(一番下の線)、400℃(下から二番目の線)、600℃(上から二番目の線)、800℃(一番上の線)の各温度域で加熱処理した膜のIR分析をおこなった(図5)。IR分析より構造水の伸縮振動による吸収を表す3622cm-1のピークを確認し、ピークが消失した加熱処理膜の加熱温度を当該膜の構造水酸基が水として放出される温度とした。その結果、600℃~800℃の温度範囲で当該薄膜の構造水が放出されること、即ち、当該膜の粘土粒子の構造水酸基が水として放出される温度以下で当該物質が分解することを確認した。
5.部材である粘土膜の加熱後におけるナトリウム溶出量測定試験
 次に、3及び4の試験結果から、当該粘土膜における「物質の分解温度」が182℃であり且つ「自立粘土薄膜中の構造水酸基が水として放出される温度」が600℃~800℃であることを確認したので、これら温度範囲の上限である800℃で当該粘土膜を加熱した。尚、加熱条件は、昇温1時間→1時間保持→自然冷却とした。その後、抽出容器に測定部材5.0g及び純水50mlを入れ密封し、121℃の乾燥機に抽出容器ごと入れて20時間放置し、その後、室温まで放冷した後、10倍希釈したものを原子吸光光度計によってナトリウムイオン溶出量を測定した。また、比較のため、当該範囲の下限値よりも低い400℃、600℃で加熱した場合におけるナトリウム溶出量も測定した。その結果を表1に示す。この表から分かるように、加熱後におけるナトリウムイオン抽出量は、加熱前の1/10未満となり、100ppm以下であることが確認された。
Figure JPOXMLDOC01-appb-T000001
6.部材である粘土膜を製品に取り付けた後に加熱することによる割れ・ヒビ発生確認試験及びシール性確認試験
 半製品である粘土膜を適当な形状に切断した後、図6に示すフランジ間に挟み、面圧4MPaで締めつけ、5と同一条件で加熱した。その結果を図7に示す。図7から分かるように、加熱した後の部材(半製品の加熱により形成された部材)には、割れやヒビが発生していないことが確認できた。更には、加熱により内部に空隙が発生することで膜が膨張した結果、フランジ面の凹凸が埋まり、よりシール性が高まることも確認された。図8(A)は、低温加熱時(400℃)の膜断面構造の様子を示したものであり、図8(B)は、高温加熱時(800℃)の膜断面構造の様子を示したものである。図8(A)のように、使用した添加物であるεカプロラクタムの分解温度を超える温度で加熱した場合、粘土膜内部に含有するεカプロラクタムの分解に起因した分解ガスによる粘土粒子間あるいは/及び粘土層間をおし広げる構造が出現して膜厚方向に体積が膨張する構造が膜内に構築されることが確認された。更に、図8(B)のように、自立粘土膜中の構造水酸基が水として放出される温度で加熱した場合、構造水酸基が水として放出されることで粘土粒子間あるいは/及び粘土層間を更におし広げる構造が出現して膜厚方向に体積が膨張する構造が膜内に構築されることが確認された。
(実施例2~3)
 粘土として、天然モンモリロナイトである「クニピアG」(クニミネ工業株式会社製)、合成マイカとして「ソマシフME-100」(コープケミカル株式会社製)、添加物としてεカプロラクタム(和光純薬工業社製)の配合量を以下の表に示す割合にした以外は、実施例1と同様の方法により厚さ約40マイクロメートルの自立粘土膜を得た。
Figure JPOXMLDOC01-appb-T000002
(実施例4)
 粘土として、40gの天然モンモリロナイトである「クニピアG」(クニミネ工業株式会社製)を蒸留水2000gに加え、スターラーにて攪拌し分散させた後、1-エチル-3-メチルイミダゾリウム-ブロミド(EMI-Br)(日本合成化学工業社製)10g投入した。天然モンモリロナイト内のナトリウムイオンとイミダゾリウムイオンのイオン交換反応により、層間に1-エチル-2-ブチルイミダゾリウムイオンを含むモンモリロナイトが液中に析出した。この溶液を遠心分離機で固液分離し、含水率85%の層間に1-エチル-2-ブチルイミダゾリウムイオンを含むモンモリロナイト粘土ケーキを得た。この粘土ケーキ120gに分散有機溶剤であるジメチルホルムアミド(DMF)を40g添加し、エースホモジナイザー「AM-001」(株式会社日本精機製作所製)を用い5,000rpmの回転数で60分間攪拌し、蒸留水とDMFの混合溶媒中に膨潤した濃度約11%の1-エチル-2-ブチルイミダゾリウム含有モンモリロナイト分散液を得た。この粘土分散液を、真空乾燥機に内で真空に引くことで泡を除去し、PET「エンブレットS50」(ユニチカ社製)上にアプリケーターを用いて膜状に塗工し、強制送風式オーブン中で100℃の温度条件下で1時間乾燥し、PETより剥離して、更に170℃の温度条件下で1時間乾燥して、厚さ約40マイクロメートルの自立粘土膜を得た。天然モンモリロナイトである「クニピアG」と1-エチル-3-メチルイミダゾリウム(EMI)の膜中の配合比率は、元素分析計EA1108型(カルロ・エルバ社製)により炭素の元素分析を行い、その分析値より計算により配合比率を求めた結果、クニピアGとEMIの配合比率は約91:9wt%であった。
(実施例5)
 添加物として「ポリビニルアルコール(ゴーセノールNH-18)」(日本合成化学工業社製)を用いた以外は、実施例1と同様の方法により厚さ約40マイクロメーターの自立粘土膜を得た。
(実施例6)
 添加物として無機発泡剤である「炭酸水素ナトリウム」(和光純薬工業社製)を用いた以外は、実施例1と同様の方法により、厚さ約40マイクロメーターの自立粘土膜を得た。
(実施例7)
 合成マイカとして「NTS-5(固形分6%)」(トピー工業株式会社製)を用いた以外は、実施例1と同様の方法により、厚さ約40マイクロメーターの自立粘土膜を得た。
(比較例1)
 粘土として、天然モンモリロナイトである「クニピアG」(クニミネ工業株式会社製)のみを用いて実施例1と同様の方法により厚さ約40マイクロメートルの自立粘土膜を得た。
7.部材である粘土膜を製品に取り付けた後に加熱することによるシール性確認試験(体積膨張による厚み変化)
 部材である粘土膜を適当な形状に切断した後、図6に示すフランジ間に挟み、5と同一条件で加熱した(いずれの実施例についても、「3」と同様の手法により、分解温度が600℃未満であることは確認済み)。その後、その粘土膜の厚さをDIGITAL MICROMETER μ-mate(SONY社製)で厚さを測定し、フランジ間に挟む前の厚さを基準に膜厚方向に体積膨張していることを確認した。結果を表3に示す。比較例1で得た粘土だけで作製した膜は、フランジ間に挟み加熱した後、ワレやヒビが発生し、シール性能を得ることができなかった。
Figure JPOXMLDOC01-appb-T000003
8.部材である粘土膜を製品に取り付けた後に加熱することによるシール性確認試験(フランジ面の凹凸シール性)
 部材である粘土膜を適当な形状に切断した後、図6に示すフランジ間に挟み、5と同一条件で加熱した。その後、粘土膜表面の粗さを接触式表面粗さ計サーフコーダーSE1700α(小坂研究所社製)を用いて測定し、使用したフランジ表面の凹凸部分の表面粗さと比較し、フランジ表面の凹凸部分との表面粗さの差によって、フランジ表面の凹凸部分のシール性を確認した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表3及び表4より明らかなとおり、添加物が分解し、ガス化して粘土膜の厚さ方向に膨張し、フランジのすき間を埋めてシール性能を発揮していることが確認できた。更に、粘土の構造水酸基が水として放出される800℃では、更に厚さ方向の膨張が大きく、フランジ間のすき間を埋めてシールする効果が更に増していることが確認できた。

Claims (18)

  1.  粘土粒子を配向させた構造を有し、該粘土粒子間又は/及び粘土粒子層間に、100℃を超え且つ該粘土粒子の構造水酸基が水として放出される温度以下の温度で分解する物質を含有する粘土膜からなる、前記物質の分解温度以上の環境下に配される部材。
  2.  前記分解温度以上の温度が、該粘土粒子の構造水酸基が水として放出される温度以上である、請求項1記載の部材。
  3.  前記粘土粒子が、カオリナイト、ディッカイト、ハロイサイト、クリソタイル、リザーダイド、アメサイト、パイロフィライト、タルク、モンモリロナイト、バイデライト、ノントロナイト、スチーブンサイト、サポナイト、ヘクトライト、ソーコナイト、2八面体型バーミキュライト、3八面体型バーミキュライト、白雲母、パラゴナイト、イライト、セリサイト、金雲母、黒雲母、レピドライト及び層状チタン酸からなる群より選択される一種以上であることを特徴とする、請求項1又は2記載の部材。 
  4.  前記物質が、有機物であることを特徴とする、請求項1~3のいずれか一項記載の部材。
  5.  前記有機物が、環状モノマー、炭素多重結合系モノマー、単官能性モノマー、多官能性モノマー、これらの単独重合体及びこれらの共重合体からなる群より選択される一種以上である、請求項4記載の部材。
  6.  前記有機物が、εカプロラクタムであることを特徴とする、請求項5記載の部材。
  7.  前記有機物が、有機オニウムイオンであることを特徴とする、請求項4記載の部材。
  8.  前記有機オニウムイオンが、アンモニウムイオン、ホスホニウムイオン、ピリジニウムイオン及びイミダゾリウムイオンからなる群より選択される一種以上であることを特徴とする、請求項7記載の部材。
  9.  前記物質が、発泡剤であることを特徴とする、請求項1~3のいずれか一項記載の部材。
  10.  前記発泡剤が、有機系発泡剤及び無機系発泡剤より選択される一種以上である、請求項9記載の部材。
  11.  前記部材が、前記物質の分解温度以上の加熱により膨張してシール材となる部材である、請求項1~10のいずれか一項記載の部材。
  12.  前記部材が、該粘土粒子の構造水酸基が水として放出される温度以上の加熱によりナトリウム抽出量が100ppm以下となる低ナトリウム溶出性シール材となる部材である、請求項1~11のいずれか一項記載の部材。
  13.  請求項11記載の部材を、凹凸を有する狭固定空間に該物質の分解温度以下で固定配置し、該物質が分解する温度以上の環境下に配することにより形成された、該凹凸を有する狭固定空間の凹凸を埋めるシール材。
  14.  前記シール材が、ガスケットである、請求項13記載のシール材。
  15.  請求項12記載の部材を、ナトリウム溶出が問題となり得る空間に該物質の分解温度以下で固定配置し、該物質が分解する温度以上であり且つ該粘土粒子の構造水酸基が水として放出される温度以上の環境下に配することにより形成された、ナトリウム抽出量が100ppm以下となる低ナトリウム溶出性シール材。
  16.  前記低ナトリウム溶出性シール材が、燃料電池用ガスケットである、請求項15記載の低ナトリウム溶出性シール材。
  17.  請求項1~12のいずれか一項記載の部材を製造するための粘土分散液であって、前記粘土粒子及び前記物質を、水、有機溶剤又はこれらの混合溶媒に分散させることにより得られる粘土分散液。
  18.  請求項17記載の前記分散液を基材に塗布し、乾燥し、基材から剥離する工程を含む、請求項1~12のいずれか一項記載の部材の製造方法。
PCT/JP2010/003766 2009-06-19 2010-06-04 耐熱性シール部材 WO2010146794A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/378,946 US20120091668A1 (en) 2009-06-19 2010-06-04 Heat-resistant seal member
CN201080026774.1A CN102459080B (zh) 2009-06-19 2010-06-04 耐热性密封部件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-146659 2009-06-19
JP2009146659A JP5582731B2 (ja) 2009-06-19 2009-06-19 耐熱性シール部材

Publications (1)

Publication Number Publication Date
WO2010146794A1 true WO2010146794A1 (ja) 2010-12-23

Family

ID=43356128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003766 WO2010146794A1 (ja) 2009-06-19 2010-06-04 耐熱性シール部材

Country Status (4)

Country Link
US (1) US20120091668A1 (ja)
JP (1) JP5582731B2 (ja)
CN (1) CN102459080B (ja)
WO (1) WO2010146794A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105531341B (zh) 2013-08-01 2018-03-16 霓佳斯株式会社 由薄片状粘土矿物构成的薄片及其制造方法
EP3605686A1 (en) 2015-06-15 2020-02-05 Ngk Spark Plug Co., Ltd. Fuel cell stack and method for manufacturing fuel cell stack
GB2550317B (en) 2016-03-09 2021-12-15 Ceres Ip Co Ltd Fuel cell
GB201614946D0 (en) 2016-09-02 2016-10-19 Flexitallic Ltd And Flexitallic Invest Inc Gasket sealing material
US20230125655A1 (en) * 2021-10-26 2023-04-27 Meta Platforms Technologies, Llc Electrostatic zipper with ionoelastomer membranes for decreased operating voltage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695290A (ja) * 1992-09-10 1994-04-08 Tdk Corp 粘土薄膜およびその製造方法
JP2004292235A (ja) * 2003-03-26 2004-10-21 Sekisui Chem Co Ltd 層状珪酸塩、硬化性組成物、シーリング材及び接着剤
JP2006160593A (ja) * 2004-12-10 2006-06-22 National Institute Of Advanced Industrial & Technology 繊維強化粘土膜及びその製造方法
JP2007277078A (ja) * 2006-03-11 2007-10-25 National Institute Of Advanced Industrial & Technology 変性粘土を用いた膜

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799395B2 (en) * 2003-09-08 2010-09-21 National Institute Of Advanced Industrial Science And Technology Clay film
WO2006062209A1 (ja) * 2004-12-10 2006-06-15 National Institute Of Advanced Industrial Science And Technology 粘土膜製品
JP5436841B2 (ja) * 2007-11-13 2014-03-05 株式会社巴川製紙所 粘土分散液の製造方法
JP5283210B2 (ja) * 2008-01-18 2013-09-04 本田技研工業株式会社 燃料電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695290A (ja) * 1992-09-10 1994-04-08 Tdk Corp 粘土薄膜およびその製造方法
JP2004292235A (ja) * 2003-03-26 2004-10-21 Sekisui Chem Co Ltd 層状珪酸塩、硬化性組成物、シーリング材及び接着剤
JP2006160593A (ja) * 2004-12-10 2006-06-22 National Institute Of Advanced Industrial & Technology 繊維強化粘土膜及びその製造方法
JP2007277078A (ja) * 2006-03-11 2007-10-25 National Institute Of Advanced Industrial & Technology 変性粘土を用いた膜

Also Published As

Publication number Publication date
US20120091668A1 (en) 2012-04-19
JP2011001231A (ja) 2011-01-06
CN102459080A (zh) 2012-05-16
CN102459080B (zh) 2015-09-02
JP5582731B2 (ja) 2014-09-03

Similar Documents

Publication Publication Date Title
Naguib et al. Ti 3 C 2 T x (MXene)–polyacrylamide nanocomposite films
JP5582731B2 (ja) 耐熱性シール部材
EP1832553B1 (en) Clay film product
CN101374766B (zh) 粘土膜及其制造方法
KR101049428B1 (ko) 투명막
CA2538173C (en) Clay film
US20120145038A1 (en) Clay dispersion liquid, and method for producing the same, clay film, and method for producing the same, and transparent material
EP2444374B1 (en) Moisture-proof film for electronic devices
Wang et al. Preparation of reduced graphene oxide/gelatin composite films with reinforced mechanical strength
WO2013031578A1 (ja) 水蒸気バリアフィルム、水蒸気バリアフィルム用分散液、水蒸気バリアフィルムの製造方法、太陽電池バックシート、及び、太陽電池
US10894397B2 (en) Process for producing graphene foam laminate based sealing materials
JP2006077237A (ja) 粘土配向膜からなる保護膜
JP5190905B2 (ja) 表面処理粘土膜
JP4162049B2 (ja) 透明膜
JP4691721B2 (ja) 布と粘土からなる複合膜
JP5137050B2 (ja) ナイロン複合粘土膜及びその製造方法
JP2006160593A (ja) 繊維強化粘土膜及びその製造方法
JP5534303B2 (ja) 透明材、その製造方法及び部材
US20200010748A1 (en) Graphene foam laminate-based sealing materials
JP5614524B2 (ja) 粘土分散液及びその製造方法、ならびに粘土膜
JP4344211B2 (ja) 熱可塑性樹脂組成物、フィルム及び基板用材料
JP2006265517A (ja) ガス遮蔽材及びガス遮蔽方法
JP5652672B2 (ja) 表面処理粘土膜
JP2004323797A (ja) 熱可塑性樹脂組成物、フィルム及び基板用材料
JP2017053826A (ja) X線透過窓材及びそれを使用するx線回折計測用の試料ホルダ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026774.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789178

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13378946

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789178

Country of ref document: EP

Kind code of ref document: A1