WO2010143914A2 - 전기 방사용 분사 노즐과 이를 사용한 전기 방사 장치 - Google Patents

전기 방사용 분사 노즐과 이를 사용한 전기 방사 장치 Download PDF

Info

Publication number
WO2010143914A2
WO2010143914A2 PCT/KR2010/003777 KR2010003777W WO2010143914A2 WO 2010143914 A2 WO2010143914 A2 WO 2010143914A2 KR 2010003777 W KR2010003777 W KR 2010003777W WO 2010143914 A2 WO2010143914 A2 WO 2010143914A2
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
nozzle body
body member
air
raw material
Prior art date
Application number
PCT/KR2010/003777
Other languages
English (en)
French (fr)
Other versions
WO2010143914A3 (ko
Inventor
조병광
서인용
서상철
김찬
김철현
이승훈
김재환
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Priority to CN201080035112.0A priority Critical patent/CN102459719B/zh
Priority to US13/376,682 priority patent/US8647090B2/en
Priority to JP2012514887A priority patent/JP5270797B2/ja
Priority to EP10786397.9A priority patent/EP2441863B1/en
Publication of WO2010143914A2 publication Critical patent/WO2010143914A2/ko
Publication of WO2010143914A3 publication Critical patent/WO2010143914A3/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/06Distributing spinning solution or melt to spinning nozzles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/02Spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/14Stretch-spinning methods with flowing liquid or gaseous stretching media, e.g. solution-blowing

Definitions

  • the present invention relates to an electrospinning spray nozzle and an electrospinning apparatus using the same, and more particularly, it is invented to selectively perform pure electrospinning, air electrospinning, and air electrospinning using hot air.
  • electrospinning is to discharge a fiber solution to which a voltage is applied to obtain a fine diameter fiber.
  • the electrospinning is deformed during the electrostatic spraying process in which fine filaments are released from the surface of the droplets when high voltage is applied to the droplets suspended by the capillary ends by the surface tension.
  • the electrospinning is a phenomenon in which a fiber is formed when a polymer solution or a melt having a sufficient viscosity is applied with an electrostatic force, and thus a fiber having a fine diameter can be obtained in a fiber raw material solution. It is used to make nanofibers.
  • the nanofiber Compared with the conventional microfiber, the nanofiber has a high surface area per unit volume and has various surface properties and structures, which are essential materials for high-tech industries such as electrical, electronic, environmental, and life-cycle filter materials for the industrial, electrical and electronic industries, The range of their use is widening with medical biomaterials and the like.
  • the nanofibers are usually manufactured using an electrospinning nozzle for injecting a fiber raw material liquid through air.
  • the electrospinning injection nozzle is formed in the body of the spinneret and the raw material liquid discharge unit for discharging the fiber raw material liquid;
  • An air nozzle part formed around the raw material liquid discharge part in the body of the spinneret and having an air jetting hole communicating downwardly from the raw material liquid discharge part to discharge the fiber raw material liquid discharged from the raw material liquid discharge part; It is injected along with the compressed air supplied in the direction from the outside to the bottom of the raw material liquid discharge portion through.
  • the electrospinning apparatus also includes a collector for collecting the fibers spun from the electrospinning spray nozzle.
  • electrospinning is performed by connecting a + electrode and a-electrode to the electrospinning nozzle and the collector, respectively, due to the voltage difference.
  • the electrospinning nozzle is spraying a fiber raw material solution with compressed air to electrospin nanofibers having a diameter of several hundreds of nm.
  • the electrospinning nozzle is provided such that an end of the raw material liquid ejecting portion is recessed into the air jetting hole so as to smoothly spray the spraying nozzle.
  • the electrospinning nozzle has a problem in that when the fiber raw material is discharged in general electrospinning to discharge only the fiber raw material liquid, the emitted fiber is caught in the air injection hole to block the air injection hole. There is a problem that is used only to produce nanofibers having a fine diameter of several hundred nm.
  • Another electrospinning nozzle has also been proposed in which an end portion of the raw material liquid ejecting portion protrudes out of the air injection hole.
  • the other electrospinning nozzles are limited in the protruding length of the raw material liquid discharge part to 1 to 3 mm for stable electrospinning, and the protruding length is not capable of pure electrospinning by discharging only the fiber raw material liquid without air injection.
  • a product having various types of tissue layers having different fiber diameters is manufactured by using a pure electrospinning nozzle that discharges only a fiber raw material liquid from an electrospinning apparatus and a pure electrospinning nozzle that supplies air and an air electrospinning nozzle that supplies air. If you need to provide two types of nozzles separately, it requires a lot of equipment costs, there was a closed end that must be used to replace the electrospinning nozzle from time to time.
  • the electrode is directly connected to the body of the spinneret, so that a current flows in the solution supplied into the raw material discharge part, so that a magnetic field leaks from the body of the spinneret to the outside, thereby smoothing the electrospinning.
  • a current flows in the solution supplied into the raw material discharge part, so that a magnetic field leaks from the body of the spinneret to the outside, thereby smoothing the electrospinning.
  • the conventional electrospinning nozzle has a problem in that it is formed of a metallic material as a conductor to directly connect the electrodes, which is heavy in weight and expensive in manufacturing cost.
  • the present invention uses air electrospinning and high temperature, high pressure air to produce nanofibers having a small diameter by injecting the fiber raw material liquid into pure electrospinning or high pressure air spinning only the fiber raw material liquid.
  • the present invention provides a spray nozzle for electrospinning, and an electrospinning apparatus using the same, in which hot air electrospinning for producing nanofibers having a small diameter by spraying a fiber raw material solution is selectively possible.
  • An object of the present invention and the first nozzle body member is formed with a raw material liquid supply flow path through which the fiber raw liquid is introduced;
  • a second nozzle body member detachably mounted to a lower side of the first nozzle body member
  • the second nozzle body member is solved by providing an injection nozzle for inserting the nozzle member and having an insertion portion formed therein through which an injection hole surrounding the lower end of the nozzle member is formed, and an air supply passage for supplying air to the injection hole. Will be.
  • an object of the present invention and the first nozzle body member is formed with a raw material liquid supply flow path through which the fiber raw liquid is introduced;
  • a removable part mounted on a lower side of the first nozzle body member, the nozzle member being inserted, an injection hole formed to penetrate the lower end of the nozzle member, and having an air supply flow path for supplying air to the injection hole; 2 nozzle body member;
  • a raw material liquid voltage applying member connected to a raw material liquid supply passage of the first nozzle body member and storing a fiber raw material liquid to apply a voltage
  • a raw material liquid supply unit for supplying a fiber raw liquid to the raw material liquid voltage applying member
  • An air supply unit supplying air to the air supply passage
  • an electrospinning apparatus including a collector for collecting the spinning fibers discharged from the nozzle member in a web state.
  • pure electrospinning, air electrospinning, and hot air electrospinning can be selectively selected to freely adjust the shape of the radiation according to the structure of the nanoweb and the shape of the product. It can be.
  • the present invention can be used to mix the radial form in one line process has the effect of manufacturing a product laminated a variety of tissue layers of the form.
  • the present invention has the effect of enabling a stable electrospinning with a small voltage by applying a voltage to the fiber raw material liquid.
  • 1 to 2 are cross-sectional views of the present invention injection nozzle for electrospinning
  • FIG. 3 is a schematic view showing the present invention electrospinning apparatus
  • the nozzle member 10 of the present invention is configured to discharge the nozzle member 10, which is supplied through the flow path, to the lower needle part 11.
  • the needle part 11 communicates with the flow path therein and has a discharge hole having a smaller diameter, that is, a smaller diameter than the flow path, and is inserted into the injection hole 32 of the second nozzle body member 30 which will be described later, and the injection hole 32. ) Is to be positioned within.
  • the needle portion 11 is preferably detachably coupled to the end of the nozzle member 10 so that it can be replaced and maintained in case of damage.
  • the needle part 11 Since the needle part 11 has a fine diameter, it easily breaks or bends in an impact, so that the needle part 11 can be easily maintained by replacing it when damaged.
  • the needle part 11 is based on the detachable coupling to the end of the nozzle member 10 by screw coupling, and can be variously modified in addition to the known coupling structure.
  • the nozzle member 10 is made of a conductive material to achieve a smooth electrospinning.
  • the nozzle member 10 is mounted to the lower portion of the first nozzle body member 20 protrudes to the lower portion of the first nozzle body member 20 and the protruding portion and the first nozzle body member 20 and It is inserted into the second nozzle body member 30 to be separated from each other.
  • the lower surface of the first nozzle body member 20 is formed with a nozzle mounting portion 21 is inserted into the upper side of the nozzle member 10 is mounted.
  • the nozzle mounting portion 21 is provided with a screw coupling portion 21a to which the nozzle member 10 is mounted by screwing, and the nozzle member 10 is detachably mounted and fixed through the screw coupling portion 21a.
  • a first air passage 23 is formed in communication with 33.
  • a plurality of nozzle mounting portions 21 are formed below the first nozzle body member 20 so as to be spaced apart in a row so that the plurality of nozzle members 10 may be inserted and mounted therein.
  • the raw material liquid supply passage 22 is a main raw material liquid supply passage 22a and the first nozzle body member 20 communicating with the flow paths of the plurality of nozzle members 10 inserted into the plurality of nozzle mounting portions 21. And a plurality of connecting supply paths 22b communicating with the plurality of main raw material liquid supply paths 22a on the upper surface of the upper surface of the substrate.
  • the first pipe connector 20a connected to the raw material liquid supply unit 70 to be described later is coupled to the connection supply path 22b, and the first pipe connector 20a supplies the main raw material liquid from the raw material liquid supply unit. It supplies to the inside of the furnace 22a.
  • the plurality of nozzle members 10 is preferably mounted so that the upper end is constantly protruded into the raw material liquid supply passage 22, that is, the main raw material liquid supply passage 22a.
  • the nozzle member 10 is coupled to the nozzle mounting portion 21 so that the upper end portion thereof is uniformly protruded into the main raw material liquid supply passage 22a by using a nozzle mounting jig for holding the nozzle member 10. will be.
  • the nozzle mounting jig is configured such that a portion of the nozzle member 10 is caught by a lower portion of the first body member 20 while the upper end of the nozzle member 10 is constantly projected into the main raw material liquid supply passage 22a. To combine.
  • Protruding height of the nozzle member 10 may be modified according to the viscosity of the fiber raw material liquid, and in the present invention is based on protruding to a height within 3 ⁇ 5mm.
  • the nozzle member 10 protrudes irregularly into the raw material liquid supply passage 22, when the fiber raw material liquid is supplied through the connection supply path 22b, the nozzle member 10 protrudes from a low height. In turn, the fiber raw material liquid is discharged.
  • the fiber raw material liquid is supplied to the nozzle member 10 in the order of being close to the connection supply path 22b.
  • a deviation occurs in the collected fiber layer after being electrospun without electrospinning at the same time a plurality of nozzle members (10).
  • the raw material feed liquid is supplied to the raw material liquid supply flow passage 22 and then the main raw material liquid flow passage. After gradually rising from the bottom surface of 22a, the upper end portions of the plurality of nozzle members 10 are simultaneously supplied to the respective nozzle members 10 at the protruding heights.
  • the second nozzle body member 30 is detachably coupled to the lower portion of the first nozzle body member 20 as described above.
  • the second nozzle body member 30 is detachably coupled to the lower portion of the first nozzle body member 20, and an insertion portion 31 is formed in which an underside of the nozzle member 10 is inserted into an upper surface thereof. do.
  • the lower portion of the insertion portion 31 is formed with an injection hole 32 for injecting air from the lower end of the nozzle member 10, that is, around the needle portion 11 to the lower portion.
  • the nozzle member 10 is disposed in the injection hole 32, and air is injected to the outside of the nozzle member 10.
  • the injection port 32 receives air from an air supply flow path and injects air downwardly around the needle part 11.
  • the air supply flow path communicates with the first air flow path 23 formed in the first nozzle body member 20, the first air flow path 23, and the injection hole 32, and to the injection hole 32. And a second air flow passage 33 formed in the second nozzle body member 30 to supply air.
  • first air passage 23 penetrates into an upper surface of the first nozzle body member 20, and a second pipe connector (not shown) connected to the air supply unit 80 to be described later is coupled to the upper portion of the penetrating upper portion. .
  • the nozzle member 10 is mounted to the nozzle mounting portion 21 and the remaining portion is inserted into the insertion portion 31 to be mounted therein, and the needle portion (3) in the injection hole 32 formed in the lower portion of the insertion portion 31. 11) is mounted inside the first nozzle body member 20 and the second nozzle body member 30 coupled to each other in an arrangement.
  • the needle portion 11 is positioned with its end concaved at the outlet of the injection port 32.
  • the fiber raw material liquid is ejected by the flow rate of air and then sprayed together with the air strongly injected to the outside of the injection port 32 so that no beads are formed.
  • the injection hole 32 guides and concentrates the supplied air toward the end side of the discharge port of the needle portion 11 so that the fiber raw material liquid is smoothly injected.
  • the second air flow path 33 is a first flow path 33a and the second nozzle body member 30 penetrating the injection hole 32 horizontally through both side surfaces of the second nozzle body member 30 in the horizontal direction. And a second flow passage 33b penetrating into the first flow passage 33a at an upper surface of the second flow passage 33b.
  • a stopper member 40 is coupled to the first flow path 33a to block an open part of the side surface of the second nozzle body member 30.
  • the second air flow path 33 penetrates the first flow path 33a vertically from an upper surface thereof so as to communicate with the first air flow path 23, and to communicate the first flow path 33a with the injection hole 32. Since the second flow path 33b is horizontally drilled from both side surfaces of the second nozzle body member 30 in the horizontal direction, the second flow path 33b is drilled into both side sides of the second nozzle body member 30.
  • the plug member 40 blocks the perforated portion of the second flow path 33b as described above, so that the injection hole through the first flow path 33a and the second flow path 33b, that is, the second air flow path 33. 32 is to prevent the outflow of air, and to smoothly discharge the air to the injection port (32).
  • a plurality of fastening grooves 52 are formed on the upper surface of the second nozzle body member 30 so as to be spaced apart from each other in the horizontal direction, and the fastening groove 52 is formed in the first nozzle body member 20.
  • a bolt through hole corresponding to is formed.
  • the first nozzle body member 20 and the second nozzle body member 30 are detachably coupled to each other by a plurality of bolt members 50 that are fastened to the fastening grooves 52 through the bolt through-holes. It should be noted that various modifications can be made using the combination means.
  • the first air passage 23 and the second air passage 33 are connected to the lower surface of the first nozzle body member 20 and the upper surface of the second nozzle body member 30 so as to communicate with each other in a male and female structure.
  • the coupling portion is provided.
  • the coupling part protrudes on the upper surface of the second nozzle body member 30 and the coupling guide protrusion 34 through which the second air flow path 33 is opened, and the coupling on the lower surface of the first nozzle body member 20.
  • the guide protrusion 34 is coupled to the groove and includes a coupling groove 24 through which the first air flow path 23 is drilled.
  • the first nozzle body member 20 and the second nozzle body member 30 are coupled to the coupling guide protrusion 34 into the coupling groove 24, so that the first air passage 23 and the second air passage 33 are connected to each other. It is assembled while being exactly matched, and there is an effect of completely sealing between the first air passage 23 and the second air passage 33.
  • the coupling guide protrusion 34 is protruded in the lower surface of the first nozzle body member 20 by the first air passage 23, and the coupling groove 24 is opened by the second air passage 33. It may be formed on the upper surface of the nozzle body member (30).
  • the coupling guide protrusion 34 protrudes on either side of the lower surface of the first nozzle body member 20 and the upper surface of the second nozzle body member 30, and the coupling groove 24 is formed of the coupling guide protrusion 34.
  • One of the lower surface of the nozzle body member 20 and the upper surface of the second nozzle body member 30 can be modified to be formed on either side.
  • the first nozzle body member 20 and the second nozzle body member 30 are made of a synthetic resin material, any one of polyether ether ketone (PEEK), acetal (POM; Polyoxymethylene), MC nylon (Mono Cast Nylon) It is preferably prepared using.
  • PEEK polyether ether ketone
  • POM Polyoxymethylene
  • MC nylon Mono Cast Nylon
  • the polyether ether ketone (PEEK), acetal (POM; Polyoxymethylene), and MC nylon (Mono Cast Nylon) are engineering plastics having excellent mechanical properties such as heat resistance, chemical resistance, and durability. Most preferably, it is made of PEEK having heat resistance.
  • the first nozzle body member 20 and the second nozzle body member 30 are made of polyether ether ketone (PEEK), acetal (POM; Polyoxymethylene), MC nylon (Mono Cast Nylon), and thus have high temperature and high pressure. Hot air electrospinning is possible to inject fiber raw material liquid using air.
  • PEEK polyether ether ketone
  • POM Polyoxymethylene
  • MC nylon Mono Cast Nylon
  • the hot air electrospinning is used to produce nanofibers having a fine diameter
  • the electrospinning spray nozzle of the present invention supplies the fiber raw material liquid to the nozzle member 10 in a state in which the second nozzle body member 30 is coupled to the first nozzle body member 20,
  • the air raw material can be selectively air-spinning and heated air electrospinning to produce nanofibers having a fine diameter by air-injecting the fiber raw material liquid. It is.
  • the present invention the electrospinning injection nozzle, the needle portion 11 of the nozzle member 10 is separated when the second nozzle body member 30 is separated from the first nozzle body member 20 as shown in FIG. It is exposed to the outside.
  • the electrospinning injection nozzle of the present invention is capable of general electrospinning by electrospinning only the fiber raw material through the needle portion 11 without air injection.
  • the end portion of the needle part 11 is positioned to be recessed into the injection hole 32 in a state where the second nozzle body member 30 is coupled to the first nozzle body member 20, and thus does not inject air. Electric radiation is impossible.
  • the electrospinning apparatus using the electrospinning nozzle of the present invention as shown in Figure 3 and the first nozzle body member 20 is formed with a raw material liquid supply flow passage 22 through which the fiber raw material liquid from the outside;
  • a nozzle member (10) mounted to protrude under the first nozzle body member (20) and receiving the raw material liquid from the raw material liquid supply passage (22) and discharging it downward;
  • the insertion part 31 is detachably mounted to the lower side of the first nozzle body member 20 and the nozzle member 10 is inserted and the injection hole 32 surrounding the lower end of the nozzle member 10 is drilled downward.
  • a second nozzle body member 30 having an air supply passage for supplying air to the injection hole 32;
  • a raw material liquid voltage applying member 60 connected to the raw material liquid supply passage 22 of the first nozzle body member 20 to temporarily store the fiber raw liquid and apply a voltage to the fiber raw liquid;
  • An air supply unit 80 supplying air to the air supply passage
  • a collector 90 for collecting the spinning fibers discharged from the nozzle member 10 in a web state.
  • the voltage applying means 100 which is connected to the fiber raw material liquid stored in the raw material liquid voltage applying member 60, the electrode applying a voltage, the other electrode is grounded to generate a voltage difference It includes more.
  • the raw material liquid supply unit 70 is a raw material liquid storage tank 71 for storing the fiber raw material liquid and the first hose 72 connected to the raw material liquid voltage applying member 60 in the raw material liquid storage tank 71, the raw material liquid voltage Including the second hose (73) connected from the applying member 60 to the raw material liquid supply passage 22 for supplying the fiber raw liquid to the first air passage 23 through the raw material liquid voltage applying member 60 will be.
  • first hose 72 or the second hose 73 is equipped with a flow control valve for controlling the supply amount of the fiber raw material liquid to control the supply amount of the fiber raw material liquid supplied to the raw material liquid supply passage 22 It is desirable to.
  • the second hose 73 is connected to the first pipe connector 20a mounted on the raw material liquid supply passage 22 on the upper surface of the first nozzle body member 20 to supply a fiber raw material liquid through which current flows. It supplies to the supply flow path 22.
  • the fiber raw material liquid supplied from the raw material liquid storage tank 71 is temporarily stored in the raw material liquid voltage applying member 60 and then voltage is applied to the fiber raw material liquid.
  • One electrode of the voltage applying means 100 is connected to the fiber raw material liquid stored in the raw material liquid voltage applying member 60, and the other electrode is grounded, so that the nozzle member 10 and the nozzle member 10 are grounded. In order to provide a voltage difference capable of electrospinning between the collector 90 collecting the fibers of the electrospun web state.
  • the collector 90 includes: a first winding reel 91 in which a fiber collecting sheet member 91a, such as a mock paper, a nonwoven fabric, and a film, which receives electrospun fibers, is wound;
  • a fiber collecting sheet member 91a such as a mock paper, a nonwoven fabric, and a film, which receives electrospun fibers, is wound;
  • An end of the fiber collecting sheet member 91a wound around the first winding reel 91 and wound around the first winding reel 91 is connected and rotated by a motor to wind and wind the fiber collecting sheet 91a.
  • a space between the first winding reel 91 and the second winding reel 92 is provided to move the fiber collecting sheet member 91a that is moved from the first winding reel 91 to the second winding reel 92.
  • a third winding reel 94 provided on the second winding reel 92 side and wound by a motor to wind and wind the spinning fibers collected on the fiber collection sheet.
  • the fibers electrospun through the needle portion 11 of the nozzle member 10 are collected in a web state on the surface of the fiber collecting sheet member 91a and move together with the fiber collecting sheet member 91a. It will be wound on three reel 94.
  • the fiber collecting sheet member 91a wound around the second winding reel 92 may be separated and re-combined with the first winding reel 91 to be reused.
  • the second nozzle body member 30 is coupled to and separated from the first nozzle body member 20 so that the general electrospinning (Pure Electrospinning), air electrospinning and heating air electrospinning ) Can be optional.
  • Embodiments of the first nozzle body member 20, the second nozzle body member 30, and the nozzle member 10 including the same have been described in detail above.
  • the air supply unit 80 includes an air storage tank 81 for storing air;
  • An air control valve (83) mounted to the air supply pipe (82) to open and close a pipe of the air supply pipe (82);
  • valve controller 85 connected to the sensor 84 and the air control valve 83 to open and close the air control valve 83 with a signal sensed by the sensor 84.
  • the valve control unit 85 may be connected to the flow control valves of the first hose 72 and the second hose 73 to control the opening and closing of the flow control valve.
  • the senor 84 uses a contact detection sensor mounted on the lower surface of the first nozzle body member 20 and in contact with the upper surface of the second nozzle body member 30.
  • the sensor 84 is based on detecting a state in which the second nozzle body member 30 is coupled to or separated from the lower part of the first nozzle body member 20, and variously modified to other known sensors. It can be done.
  • the valve control unit 85 receives a signal that the sensor 84 detects that the second nozzle body member 30 is in a separated state, and the air control valve 83 opens the conduit of the air supply pipe 82. Control to prevent.
  • the sensor 84 detects this and transmits it to the valve control unit 85.
  • the valve control unit 85 receives the signal to operate the air control valve 83 to control to open the conduit of the air supply pipe 82.
  • the present invention electrospinning device automatically detects the engagement and separation of the second nozzle body member 30 to control the air supply, so that stable electrospinning is possible according to the form of electrospinning without a separate operation of controlling the air supply. will be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

본 발명은 서로 분리 가능하게 장착되는 제 1 노즐 몸체부와 제 2 노즐 몸체부재, 상기 제 1 노즐 몸체부재와 제 2 노즐 몸체부재의 내부로 삽입되어 장착되는 노즐부재를 포함하여, 상기 노즐부재를 통해 섬유 원료액을 토출하면서 공기와 함께 분사하는 공기 전기 방사하는 것을 기본으로하며, 상기 제 2 노즐 몸체부재를 분리하면 상기 노즐부재의 하단부가 일정 길이 이상으로 노출되어 공기 분사 없이 하는 일반 전기 방사를 안정적으로 할 수 있는 것이다. 따라서 본 발명은 일반 전기 방사(Pure Electrospinning), 공기 전기 방사(Air Electrospinning) 및 가열 공기 전기 방사(Hot Air Electrospinning)를 선택적으로 할 수 있는 것이다.

Description

전기 방사용 분사 노즐과 이를 사용한 전기 방사 장치
본 발명은 전기 방사용 분사 노즐과 이를 사용한 전기 방사 장치에 관한 것으로 더 상세하게는 순수 전기 방사 및 공기 전기 방사, 뜨거운 공기를 이용한 공기 전기 방사를 선택적으로 할 수 있게 발명된 것이다.
일반적으로 전기 방사는 전압이 인가된 섬유 용액을 배출시켜 미세한 직경의 섬유를 얻는 것이다.
상기한 전기 방사는 표면장력에 의해 모세관 끝에 매달려 있는 물방울에 고전압을 부여할 때 물방울 표면에서 미세 필라멘트가 방출되는 정전 스프레이 과정에서 변형된 것이다.
상기 전기 방사는 충분한 점도를 가진 고분자용액이나 용융체가 정전기력을 부여받을 경우 섬유가 형성되는 현상을 이용한 것으로 섬유 원료액에 이다미세한 직경의 섬유를 얻을 수 있어 근래에 있어 수 ~ 수백 nm의 직경을 가지는 나노섬유를 제조하는데 사용되고 있다.
상기 나노 섬유는 종래의 극세사와 비교하여 단위 부피당 표면적이 높고, 다양한 표면 특성, 구조를 가지는 특성이 있어 전기·전자 및 환경·생명 등 첨단 산업의 필수 소재로 환경 산업용 여과재, 전기·전자 산업용 소재, 의료용 생체재료 등으로 그 사용 범위가 넓어지고 있다.
상기 나노 섬유는 통상 공기를 통해 섬유 원료액을 분사하는 전기 방사용 분사 노즐을 사용하여 제조하고 있다.
전기 방사용 분사 노즐은 방사구금의 몸체 내에 형성되어 섬유 원료액을 토출하는 원료액 토출부와;
방사구금의 몸체에서 상기 원료액 토출부의 둘레로 형성되며 상기 원료액 토출부의 둘레에서 하부로 연통된 공기 분사 구멍이 형성된 공기 노즐부를 포함하여, 원료액 토출부로부터 토출되는 섬유 원료액을 공기 분사 구멍를 통해 원료액 토출부의 외측에서 하부로 방향으로 공급되는 압축공기와 함께 분사되는 것이다.
또 상기 전기 방사 장치는 상기 전기 방사용 분사 노즐에서 방사된 섬유를 포집하는 콜렉터를 포함한다.
상기 전기 방사 장치는 상기 전기 방사용 분사 노즐과 콜렉터에 각각 +전극과 -전극을 연결하여 전압 차이로 인한 전기 방사가 이루어지는 것이다.
상기 전기 방사용 노즐은 수 ~ 수백 nm의 직경을 가지는 나노섬유를 전기 방사하기 위해서 섬유 원료액을 압축 공기와 함께 분사하고 있다.
상기 전기 방사용 노즐은 분사가 원활하게 이루어지도록 원료액 토출부의 단부가 공기 분사 구멍 내로 요입되게 구비된다.
그러나 상기 전기 방사용 노즐은 섬유 원료액만 토출시키는 일반 전기 방사를 할 경우에 섬유 원료액이 토출되면서 방사된 섬유가 공기 분사 구멍에서 걸려 공기 분사 구멍을 막는 문제점이 있어 고압의 공기 분사를 통해 수 ~ 수백 nm의 미세한 직경을 가지는 나노섬유를 제조하는 데에만 사용되는 문제점이 있는 것이다.
그리고 다른 전기 방사용 노즐은 상기 원료액 토출부의 단부가 공기 분사 구멍의 외측으로 돌출되게 한 것도 제안된 바 있다.
그러나, 상기 다른 전기 방사 노즐은 안정적인 전기 방사를 위해 원료액 토출부의 돌출 길이가 1~3mm로 제한되고 이러한 돌출 길이로는 공기 분사 없이 섬유 원료액만 토출 시켜 순수 전기 방사를 할 수 없는 것이다.
즉, 섬유 원료액만 토출시켜 순수 전기 방사하는 순수 전기 방사용 노즐과 공기를 공급하여 공기 전기 방사하는 전기 방사용 노즐은 별도로 제조되어 사용되고 있는 것이다.
따라서 전기 방사 장치에서 섬유 원료액만 토출시켜 순수 전기 방사하는 순수 전기 방사용 노즐과 공기를 공급하여 공기 전기 방사하는 전기 방사용 노즐을 각각 사용하여 섬유 직경이 다른 다양한 형태의 조직층을 가지는 제품을 제조할 경우 두가지 타입의 노즐을 별도로 구비해야 하므로 설비비가 많이 소요되고, 작업 중 수시로 전기 방사용 노즐을 교체하여 사용해야 하는 폐단이 있었던 것이다.
또, 상기한 종래의 전기 방사용 노즐은 전극이 방사구금의 몸체에 직접 연결되어 원료액 토출부 내로 공급되는 용액에 전류가 흐르게 하므로 방사구금의 몸체에서 외부로 자기장이 누수되어 전기 방사가 원활하지 못하고 불안정해짐은 물론, 자기장의 누수에 대한 보완으로 고전압을 인가해야하는 문제점이 있었던 것이다.
그리고, 종래의 전기 방사용 노즐은 전극을 직접 연결하기 위해 도체인 금속 재질로 형성되어 무게가 무겁고, 제조 비용이 많이 소요되는 문제점이 있었던 것이다.
본 발명은 섬유 원료액만 방사하는 일반 전기 방사(Pure Electrospinning) 또는 고압의 공기로 섬유 원료액을 분사시켜 직경이 미세한 나노 섬유를 제조하는 공기 전기 방사(Air Electrospinning) 및 고온, 고압의 공기를 사용하여 섬유 원료액을 분사시켜 직경이 미세한 나노 섬유를 제조하는 가열 공기 전기 방사(Hot Air Electrospinning)가 선택적으로 가능한 전기 방사용 분사 노즐과 이를 사용한 전기 방사 장치를 제공하는 데 있다.
본 발명의 과제는 외부로부터 섬유 원료액이 유입되는 원료액 공급 유로가 형성된 제 1 노즐 몸체부재와;
상기 제 1 노즐 몸체부재의 하부에 돌출되게 장착되며 상기 원료액 공급 유로로부터 원료액을 공급받아 하부로 토출하는 노즐부재와;
상기 제 1 노즐 몸체부재의 하부 측에 분리 가능하게 장착되는 제 2 노즐 몸체부재를 포함하며,
상기 제 2 노즐 몸체부재는 상기 노즐부재가 삽입되고 상기 노즐부재의 하단부를 감싸는 분사구가 하부로 뚫린 삽입부와, 상기 분사구로 공기를 공급하는 공기 공급 유로가 형성된 전기 방사용 분사 노즐을 제공함으로써 해결되는 것이다.
또 본 발명의 과제는 외부로부터 섬유 원료액이 유입되는 원료액 공급 유로가 형성된 제 1 노즐 몸체부재와;
상기 제 1 노즐 몸체부재의 하부에 돌출되게 장착되며 상기 원료액 공급 유로로부터 원료액을 공급받아 하부로 토출하는 노즐부재와;
상기 제 1 노즐 몸체부재의 하부 측에 분리 가능하게 장착되며 상기 노즐부재가 삽입되며 상기 노즐부재의 하단부를 감싸는 분사구가 하부로 뚫린 삽입부가 형성되며 상기 분사구로 공기를 공급하는 공기 공급 유로가 형성된 제 2 노즐 몸체부재와;
상기 제 1 노즐 몸체부재의 원료액 공급 유로로 연결되며 섬유 원료액을 저장하여 전압을 인가하는 원료액 전압 인가부재와;
상기 원료액 전압 인가부재에 섬유 원료액을 공급하는 원료액 공급부와;
상기 공기 공급 유로로 공기를 공급하는 공기 공급부와;
상기 노즐부재에서 토출된 방사 섬유를 웹상태로 포집하는 콜렉터를 포함한 전기 방사 장치를 제공함으로써 해결된다.
본 발명은 일반 전기 방사(Pure Electrospinning), 공기 전기 방사(Air Electrospinning) 및 가열 공기 전기 방사(Hot Air Electrospinning)를 선택적으로 할 수 있어 나노 웹의 조직과 제품의 형태에 따라 방사의 형태를 자유롭게 조정할 수 있는 것이다.
또 본 발명은 하나의 라인 공정 상에서 방사 형태를 혼용할 수 있어 다양한 형태의 조직 층을 적층시킨 제품을 제조할 수 있는 효과가 있다.
또한 본 발명은 섬유 원료액에 전압을 인가함으로써 작은 전압으로 안정적인 전기 방사가 가능하도록 한 효과가 있다.
도 1 내지 도 2는 본 발명인 전기 방사용 분사 노즐의 단면도
도 3은 본 발명인 전기 방사 장치를 도시한 개략도
도 1에서 도시한 바와 같이 본 발명의 노즐부재(10)는 상, 하로 관통된 유로가 형성되어 유로를 통해 내부로 공급받는 노즐부재(10)를 하부의 니들부(11)로 토출하는 것이다.
상기 니들부(11)는 내부에 상기 유로에 연통되며 유로보다 작은 직경, 즉, 미세 직경을 토출구가 형성되며, 후술될 제 2 노즐 몸체부재(30)의 분사구(32)에 삽입되며 분사구(32) 내에 요입되게 위치되는 것이다.
상기 니들부(11)는 상기 노즐부재(10)의 단부에 분리 가능하게 결합하여 손상 시 교체하여 정비할 수 있도록 하는 것이 바람직하다.
상기 니들부(11)는 미세한 직경을 가지므로 충격에 쉽게 부러지거나 휘어지는 변형이 발생되므로 손상 시 교체하여 간단히 정비할 수 있게 한 것이다.
상기 니들부(11)는 상기 노즐부재(10)의 단부에 나사 결합으로 분리 가능하게 결합하는 것을 기본으로 하며 이외에도 공지의 결합 구조로 다양하게 변형 실시 할 수 있는 것이다.
또 상기 노즐부재(10)는 도전성 재질로 제조하여 원활한 전기 방사가 이루어지도록 한다.
한편, 상기 노즐부재(10)는 제 1 노즐 몸체부재(20)의 하부에 장착되어 상기 제 1 노즐 몸체부재(20)의 하부로 돌출되며 돌출된 부분은 상기 제 1 노즐 몸체부재(20)와 서로 분리 가능하게 결합하는 제 2 노즐 몸체부재(30)의 내부로 삽입되는 것이다.
상기 제 1 노즐 몸체부재(20)의 하부면에는 상기 노즐부재(10)의 상부 측이 삽입되어 장착되는 노즐 장착부(21)가 형성된다.
상기 노즐 장착부(21)에는 상기 노즐부재(10)가 나사 결합으로 장착되는 나사 결합부(21a)가 구비되어 노즐부재(10)가 나사 결합부(21a)를 통해 분리 가능하게 장착 고정되는 것이다.
상기 제 1 노즐 몸체부재(20)의 내부에는 상기 노즐부재(10)의 내부 즉, 유로로 섬유 원료액을 공급하는 원료액 공급 유로(22) 및 하부면으로 관통되어 후술될 제 2 공기 유로(33)와 연통되는 제 1 공기 유로(23)가 형성된다.
또한 상기 제 1 노즐 몸체부재(20)의 하부에는 복수의 노즐 장착부(21)가 일렬로 이격되게 형성되어 복수의 노즐부재(10)를 삽입하여 장착할 수 있는 것이다.
상기 원료액 공급 유로(22)는 상기 복수의 노즐 장착부(21)로 삽입된 복수의 노즐부재(10)의 유로에 연통되는 메인 원료액 공급로(22a) 및 상기 제 1 노즐 몸체부재(20)의 상부면에서 상기 복수의 메인 원료액 공급로(22a)로 연통시키는 복수의 연결 공급로(22b)를 포함한다.
상기 연결 공급로(22b)에는 후술될 원료액 공급부(70)에 연결되는 제 1 관 연결구(20a)가 결합되며, 제 1 관 연결구(20a)는 원료액 공급부로부터 섬유 원료액을 메인 원료액 공급로(22a) 내부로 공급하는 것이다.
또 상기 복수의 노즐부재(10)는 상단부가 상기 원료액 공급 유로(22) 즉, 메인 원료액 공급로(22a) 내로 일정하게 돌출되게 장착되는 것이 바람직하다.
상기 노즐부재(10)는 도시하지는 않았지만, 상기 노즐부재(10)를 파지하는 노즐 장착용 지그를 사용하여 상단부가 메인 원료액 공급로(22a) 내로 일정하게 돌출되게 노즐 장착부(21)로 결합하는 것이다.
상기 노즐 장착용 지그는 상기 노즐부재(10)를 파지한 부분이 상기 제 1몸체부재(20)의 하부에 걸리면서 노즐부재(10)의 상단부를 메인 원료액 공급로(22a) 내로 일정하게 돌출되게 결합시키는 것이다.
상기 노즐부재(10)의 돌출 높이는 섬유 원료액의 점성에 따라 변형 실시될 수 있으며 본 발명에서는 3 ~ 5mm 이내의 높이로 돌출시키는 것을 기본으로 한다.
상기 노즐부재(10)가 상기 원료액 공급 유로(22) 내부로 불규칙하게 돌출된 경우에는 상기 연결 공급로(22b)를 통해 섬유 원료액이 공급되면 높이가 낮게 돌출된 상기 노즐부재(10)부터 차례로 섬유 원료액을 토출하게 되는 것이다.
따라서, 복수의 노즐부재(10)에서 전기 방사되어 포집된 섬유층에 편차가 발생하는 문제가 있는 것이다.
상기 노즐부재(10)의 상단부가 상기 메인 원료액 유로(22a)의 내주면과 일치되게 위치된 경우에는 상기 연결 공급로(22b)에 근접한 순서로 상기 노즐부재(10)에 섬유 원료액이 공급되어 복수의 노즐부재(10)에서 동시에 전기 방사가 이루어지지 않고 전기 방사된 후 포집된 섬유층에 편차가 발생하는 문제가 있는 것이다.
반면에 상기 노즐부재(10)의 상단부가 상기 메인 원료액 유로(22a)의 내부로 일정한 높이로 돌출된 상태에서 상기 원료 공급액은 상기 원료액 공급 유로(22)로 공급된 후 상기 메인 원료액 유로(22a)의 바닥면부터 점차 차 오른 후 상기 복수의 노즐부재(10)의 상단부가 돌출된 높이에서 각 노즐부재(10)로 동시에 공급되는 것이다.
따라서 복수의 노즐부재(10)에서 동시에 섬유 원료액이 토출되어 전기 방사가 이루어지므로 전기 방사로 포집된 섬유층에 편차가 발생되지 않는 것이다.
한편, 상기 제 1 노즐 몸체부재(20)의 하부에는 상기한 바와 같이 제 2 노즐 몸체부재(30)가 분리 가능하게 결합한다.
상기 제 2 노즐 몸체부재(30)는 상기 제 1 노즐 몸체부재(20)의 하부로 분리 가능하게 결합하며, 상부면에 상기 노즐부재(10)의 하부 측이 삽입되는 삽입부(31)가 형성된다.
상기 삽입부(31)의 하부에는 상기 노즐부재(10)의 하단부 즉, 상기 니들부(11)의 둘레에서 하부로 공기를 분사하는 분사구(32)가 형성된다.
상기 분사구(32) 내에는 상기 노즐부재(10)가 배치되고, 상기 노즐부재(10)의 외측으로 공기가 분사 되는 것이다.
또 상기 분사구(32)는 공기 공급 유로로부터 공기를 공급받아 상기 니들부(11)의 둘레에서 하향되게 공기를 분사하는 것이다.
상기 공기 공급 유로는 상기 제 1 노즐 몸체부재(20)에 형성되는 상기 제 1 공기 유로(23)와, 상기 제 1 공기 유로(23) 및 상기 분사구(32)에 연통되며 상기 분사구(32)로 공기를 공급하고 상기 제 2 노즐 몸체부재(30)에 형성되는 제 2 공기 유로(33)를 포함한다.
또 상기 제 1 공기 유로(23)는 제 1 노즐 몸체부재(20)의 상부면으로 관통되며, 관통된 상부에는 후술될 공기 공급부(80)에 연결되는 제 2 관 연결구(미도시)가 결합된다.
상기 노즐부재(10)는 상기 노즐 장착부(21)에 장착되고 남은 부분이 상기 삽입부(31) 내로 삽입되어 장착되며, 상기 삽입부(31)의 하부에 형성되는 분사구(32) 내에 니들부(11)가 배치된 상태로 서로 결합된 상기 제 1 노즐 몸체부재(20)와 상기 제 2 노즐 몸체부재(30)의 내부에 장착된다.
상기 니들부(11)는 단부가 상기 분사구(32)의 출구에서 요입된 상태로 위치된다.
따라서 사용 중 상기 니들부(11)의 단부에서는 섬유 원료액이 공기의 유속에 의해 토출된 후 상기 분사구(32)의 외측으로로 강하게 분사되는 공기와 함께 분사되어 비이드가 형성되지 않는 것이다.
또한 상기 분사구(32)는 공급된 공기를 니들부(11)의 토출구의 단부 측으로 안내하여 집중시킴으로써 섬유 원료액이 원활히 분사되도록 한다.
상기 제 2 공기 유로(33)는 상기 제 2 노즐 몸체부재(30)의 횡방향 양 측면부를 통해 가로로 분사구(32)에 관통되는 제 1 유로(33a) 및 상기 제 2 노즐 몸체부재(30)의 상부면에서 상기 제 1 유로(33a)로 관통되는 제 2 유로(33b)를 포함한다.
상기 제 1 유로(33a)에는 제 2 노즐 몸체부재(30)의 측면부로 개방된 부분을 막는 마개부재(40)가 결합된다.
상기 제 2 공기 유로(33)는 제 1 공기 유로(23)와 연통되게 상부면에서 수직으로 제 1 유로(33a)를 뚫고, 상기 제 1 유로(33a)와 분사구(32)를 연통시키기 위해 상기 제 2 노즐 몸체부재(30)의 횡방향 양 측면부에서 제 2 유로(33b)를 수평으로 뚫기 때문에 제 2 유로(33b)가 제 2 노즐 몸체부재(30)의 횡방양 양 측면부로 뚫려지게 된다.
따라서 상기 마개부재(40)는 상기한 바와 같이 제 2 유로(33b)의 뚫린 부분을 막아 제 1 유로(33a)와 제 2 유로(33b), 즉, 제 2 공기 유로(33)를 통해 분사구(32)로 유입되는 공기의 유출을 방지하고, 분사구(32)로 공기가 원활히 배출되도록 하는 것이다.
또, 상기 제 2 노즐 몸체부재(30)의 상부면에는 횡방향 양 측에 각각 복수의 체결 홈(52)이 이격되게 형성되며, 상기 제 1 노즐 몸체부재(20)에는 상기 체결 홈(52)에 대응되는 볼트 관통 구멍이 형성된다.
상기 제 1 노즐 몸체부재(20)와 제 2 노즐 몸체부재(30)는 볼트 관통 구멍을 관통하여 체결 홈(52)으로 체결되는 복수의 볼트부재(50)로 서로 분리 가능하게 결합되며, 이외에도 공지의 결합수단을 사용하여 다양하게 변형 실시 할 수 있음을 밝혀둔다.
상기 제 1 노즐 몸체부재(20)의 하부면과 제 2 노즐 몸체부재(30)의 상부면에는 제 1 공기 유로(23) 및 제 2 공기 유로(33)가 연통되게 뚫려져 서로 암수 구조로 결합하는 결합부가 구비되는 것이다.
상기 결합부는 상기 제 2 노즐 몸체부재(30)의 상부면에 돌설되며 제 2 공기 유로(33)가 뚫린 결합 안내 돌기(34)와, 상기 제 1 노즐 몸체부재(20)의 하부면에 상기 결합 안내 돌기(34)가 결합하게 파여지며 제 1 공기 유로(23)가 뚫린 결합 홈(24)을 포함한다.
상기 제 1 노즐 몸체부재(20)와 제 2 노즐 몸체부재(30)는 결합 안내 돌기(34)가 결합 홈(24)내로 결합되면서 제 1 공기 유로(23) 및 제 2 공기 유로(33)가 정확히 일치되면서 조립되며, 제 1 공기 유로(23) 및 제 2 공기 유로(33) 사이도 완전히 실링하는 효과가 있는 것이다.
상기 결합 안내 돌기(34)는 제 1 공기 유로(23)가 뚫려 제 1 노즐 몸체부재(20)의 하부면에 돌출되고, 상기 결합 홈(24)은 제 2 공기 유로(33)가 뚫려 제 2 노즐 몸체부재(30)의 상부면에 형성될 수도 있다.
상기한 바와 같이 결합 안내 돌기(34)는 제 1 노즐 몸체부재(20)의 하부면과 상기 제 2 노즐 몸체부재(30)의 상부면 중 어느 한 측에 돌출되고, 결합 홈(24)은 제 1 노즐 몸체부재(20)의 하부면과 상기 제 2 노즐 몸체부재(30)의 상부면 중 어느 한 측에 형성되게 변형 실시 할 수 있는 것이다.
상기 제 1 노즐 몸체부재(20)와 제 2 노즐 몸체부재(30)는 합성수지재로 제조되며, PEEK(Poly ether ether ketone), 아세탈(POM; Polyoxymethylene), MC 나일론(Mono Cast Nylon) 중 어느 하나를 사용하여 제조되는 것이 바람직하다.
상기 PEEK(Poly ether ether ketone), 아세탈(POM; Polyoxymethylene), MC 나일론(Mono Cast Nylon)는 내열성, 내약품성, 내구성 등과 같은 기계적 성질이 우수한 엔지니어링 플라스틱으로써 그 중 용해 성형 가능한 결정성 수지로서 가장 높은 내열성을 가지는 PEEK로 제조하는 것이 가장 바람직하다.
상기 제 1 노즐 몸체부재(20)와 제 2 노즐 몸체부재(30)는 상기 PEEK(Poly ether ether ketone), 아세탈(POM; Polyoxymethylene), MC 나일론(Mono Cast Nylon)로 제조된되어 고온, 고압의 공기를 사용하여 섬유 원료액을 분사시키는 가열 공기 전기 방사(Hot Air Electrospinning)가 가능한 것이다.
상기 가열 공기 전기 방사(Hot Air Electrospinning)는 직경이 미세한 나노 섬유를 제조하는
즉, 상기한 본 발명인 전기 방사용 분사 노즐은 상기 제 2 노즐 몸체부재(30)가 상기 제 1 노즐 몸체부재(20)에 결합된 상태에서 상기 노즐부재(10)로 섬유 원료액을 공급하고, 상기 분사구(32)로 고압의 공기를 공급함으로써 섬유 원료액을 공기 분사시켜 미세한 직경을 가지는 나노 섬유를 제조하는 공기 전기 방사(Air Electrospinning) 및 가열 공기 전기 방사(Hot Air Electrospinning)를 선택적으로 행할 수 있는 것이다.
또한 본 발명인 전기 방사용 분사 노즐은 도 2에서 도시한 바와 같이 제 2 노즐 몸체부재(30)를 상기 제 1 노즐 몸체부재(20)에서 분리하면 상기 노즐부재(10)의 니들부(11)가 외부로 노출되는 것이다.
즉, 본 발명인 전기 방사용 분사 노즐은 공기 분사 없이 니들부(11)를 통해 섬유 원료만 토출시켜 전기방사하는 일반 전기 방사가 가능한 것이다.
상기 니들부(11)의 단부는 상기 제 2 노즐 몸체부재(30)가 상기 제 1 노즐 몸체부재(20)에 결합된 상태에서 상기 분사구(32)의 내부로 요입되게 위치되므로 공기를 분사시키지 않고 전기 방사가 불가능한 것이다.
이는 공기를 분사하지 않으면 요입된 니들부(11)의 단부에서 토출되는 섬유 원료액이 분사구(32)에 걸려 원활한 전기 방사가 이루어지지 않기 때문인 것이다.
따라서 상기 제 2 노즐 몸체부재(30)를 분리하여 상기 노즐부재(10)의 니들부(11)를 외부로 완전히 노출시킴으로써 공기를 분사하지 않는 일반 전기 방사가 안정적으로 가능해지는 것이다.
한편, 상기한 본 발명인 전기 방사용 노즐을 사용한 전기 방사 장치는 도 3에서 도시한 바와 같이 외부로부터 섬유 원료액이 유입되는 원료액 공급 유로(22)가 형성된 제 1 노즐 몸체부재(20)와;
상기 제 1 노즐 몸체부재(20)의 하부에 돌출되게 장착되며 상기 원료액 공급 유로(22)로부터 원료액을 공급받아 하부로 토출하는 노즐부재(10)와;
상기 제 1 노즐 몸체부재(20)의 하부 측에 분리 가능하게 장착되며 상기 노즐부재(10)가 삽입되며 상기 노즐부재(10)의 하단부를 감싸는 분사구(32)가 하부로 뚫린 삽입부(31)가 형성되며 상기 분사구(32)로 공기를 공급하는 공기 공급 유로가 형성된 제 2 노즐 몸체부재(30)와;
상기 제 1 노즐 몸체부재(20)의 원료액 공급 유로(22)로 연결되며 섬유 원료액을 일시적으로 저장하여 섬유 원료액에 전압을 인가하는 원료액 전압 인가부재(60)와;
상기 원료액 전압 인가부재(60)에 섬유 원료액을 공급하는 원료액 공급부(70)와;
상기 공기 공급 유로로 공기를 공급하는 공기 공급부(80)와;
상기 노즐부재(10)에서 토출된 방사 섬유를 웹상태로 포집하는 콜렉터(90)를 포함한다.
또한 본 발명인 전기 방사 장치는 전압을 인가하는 어느 한 전극이 상기 원료액 전압 인가부재(60)에 저장된 섬유 원료액에 연결되고, 다른 한 전극이 접지되어 전압 차를 발생시키는 전압 부여 수단(100)을 더 포함한다.
상기 원료액 공급부(70)는 섬유 원료액을 저장하는 원료액 저장 탱크(71) 및 원료액 저장 탱크(71)에서 원료액 전압 인가부재(60)로 연결된 제 1 호스(72), 원료액 전압 인가부재(60)에서 원료액 공급 유로(22)로 연결되는 제 2 호스(73)를 포함하여 섬유 원료액을 상기 원료액 전압 인가부재(60)를 통해 제 1 공기 유로(23)로 공급하는 것이다.
또한 제 1 호스(72) 또는 제 2 호스(73)에는 섬유 원료액의 공급량을 제어하는 유량 제어 밸브가 장착되어 상기 원료액 공급 유로(22)로 공급되는 섬유 원료액의 공급량을 제어할 수 있게 하는 것이 바람직하다.
상기 제 2 호스(73)는 상기 제 1 노즐 몸체부재(20)의 상부면에서 원료액 공급 유로(22)에 장착되는 제 1 관 연결구(20a)에 연결되어 전류가 흐르는 섬유 원료액을 원료액 공급 유로(22)로 공급하는 것이다.
본 발명인 전기 방사 장치는 상기한 바와 같이 원료액 저장 탱크(71)로부터 공급받은 섬유 원료액을 원료액 전압 인가부재(60)의 내부에 일시적으로 저장시킨 후 섬유 원료액에 전압을 인가하는 것이다.
그리고 전압 부여 수단(100)의 어느 한 전극은 원료액 전압 인가부재(60)의 내부에 저장된 섬유 원료액에 연결되고, 다른 한 전극은 접지되어 상기 노즐부재(10)와, 상기 노즐부재(10)에서 전기 방사된 웹 상태의 섬유를 포집하는 상기 콜렉터(90) 사이에 전기 방사가 가능한 전압 차를 부여하는 것이다.
상기 콜렉터(90)는 전기 방사 섬유를 받아 내는 모조지, 부직포, 필름 등의 섬유 포집 시트부재(91a)가 권취된 제 1 권취 릴(91)과;
상기 제 1 권취 릴(91)과 이격되게 구비되어 상기 제 1 권취 릴(91)에 감긴 섬유 포집 시트부재(91a)의 단부가 연결되며 모터에 의해 회전하여 섬유 포집 시트(91a)를 감아 권취하는 제 2 권취 릴(92)과;
상기 제 1 권취 릴(91)과 제 2 권취 릴(92) 사이에 이격되게 구비되어 제 1 권취 릴(91)에서 제 2 권취 릴(92)로 이동되는 섬유 포집 시트부재(91a)의 이동을 안내하는 복수의 가이드 롤(93)과;
상기 제 2 권취 릴(92) 측에 구비되며 모터에 의해 회전하여 섬유 포집 시트 상에 포집된 방사 섬유를 감아 권취하는 제 3 권취 릴(94)을 포함한다.
즉, 섬유 원료액에 전압이 인가되어 전기 방사가 이루어므로, 상기 제 1 노즐 몸체부재(20)와 상기 제 2 노즐 몸체부재(30)의 외부로 자기장이 누수되어 전기 방사가 원활하지 못하고 불안정해지는 것을 방지함은 물론, 상기 콜렉터(90) 측과의 작은 전압 차이로도 안정적인 전기 방사를 할 수 있는 것이다.
또 상기 노즐부재(10)의 니들부(11)를 통해 전기 방사된 섬유는 상기 섬유 포집 시트부재(91a)의 표면에 웹상태로 포집되어 상기 섬유 포집 시트부재(91a)와 함께 이동하면서 상기 제 3 권취 릴(94)에 감기게 되는 것이다.
상기 제 2 권취 릴(92)에 감겨진 상기 섬유 포집 시트부재(91a)는 분리되어 상기 제 1 권취 릴(91)에 재결합하여 재 사용이 가능한 것이다.
한편, 상기 제 2 노즐 몸체부재(30)는 상기 제 1 노즐 몸체부재(20)에 결합, 분리되어 일반 전기 방사(Pure Electrospinning), 공기 전기 방사(Air Electrospinning) 및 가열 공기 전기 방사(Hot Air Electrospinning)를 선택적으로 할 수 있는 것이다.
이를 포함한 상기 제 1 노즐 몸체부재(20)와 상기 제 2 노즐 몸체부재(30), 노즐부재(10)의 실시 예는 상기에서 상세히 설명한 바, 중복하여 설명하는 것을 생략함을 밝혀둔다.
그리고 상기 공기 공급부(80)는 공기를 저장한 공기 저장 탱크(81)와;
상기 공기 저장 탱크(81)에서 제 1 공기 유로(23)로 연결되는 공기 공급관(82)과;
상기 공기 공급관(82)에 장착되어 공기 공급관(82)의 관로를 개폐하는 공기 조절 밸브(83)와;
상기 제 1 노즐 몸체부재(20)와 제 2 노즐 몸체부재(30) 사이에 개재되어 제 2 노즐 몸체부재(30)가 분리, 결합된 상태를 감지하는 센서(84)와;
상기 센서(84)와 상기 공기 조절 밸브(83)에 연계되어 센서(84)에서 감지된 신호로 공기 조절 밸브(83)를 개폐하는 밸브 제어부(85)를 포함한다.
상기 밸브 제어부(85)는 상기한 제 1 호스(72) 및 제 2 호스(73)의 유량 제어 밸브에도 연계되어 유량 제어 밸브의 개폐 및 개폐량을 제어할 수 있다.
또 상기 센서(84)는 상기 제 1 노즐 몸체부재(20)의 하부면에 장착되어 상기 제 2 노즐 몸체부재(30)의 상부면에 접촉되는 접촉식 감지 센서를 사용한다.
상기 센서(84)는 상기 제 2 노즐 몸체부재(30)가 제 1 노즐 몸체부재(20)의 하부에 결합되거나, 분리된 상태를 감지하는 것을 기본으로 하며, 이외의 공지의 센서로 다양하게 변형 실시 할 수 있는 것이다.
상기 밸브 제어부(85)는 상기 센서(84)에서 상기 제 2 노즐 몸체부재(30)가 분리된 상태임을 감지한 신호를 전달받아 상기 공기 조절 밸브(83)가 상기 공기 공급관(82)의 관로를 막도록 제어한다.
따라서 상기 제 2 노즐 몸체부재(30)가 상기 제 1 노즐 몸체부재(20)에서 분리되면 불필요한 공기 공급을 차단되고, 공기 분사 없이 섬유 원료액만 상기 니들부(11)로 토출시켜 일반 전기 방사가 이루어지게 되는 것이다.
반면에 상기 제 2 노즐 몸체부재(30)가 결합된 상태에서는 상기 센서(84)에서 이를 감지하여 상기 밸브 제어부(85)로 전달한다.
상기 밸브 제어부(85)는 상기 신호를 전달 받아 상기 공기 조절 밸브(83)를 작동시켜 상기 공기 공급관(82)의 관로를 열도록 제어한다.
따라서, 상기 제 2 노즐 몸체부재(30)가 상기 제 1 노즐 몸체부재(20)로 결합되면 상기 분사구(32)로 공기 또는 가열 공기가 공급되고, 상기 노즐부재(10)로 섬유 원료액이 공급되어 공기 전기 방사(Air Electrospinning) 또는 가열 공기 전기 방사(Hot Air Electrospinning)가 이루어지게 되는 것이다.
본 발명인 전기 방사 장치는 상기 제 2 노즐 몸체부재(30)의 결합, 분리 상태를 자동으로 감지하여 공기 공급을 제어하므로 공기 공급을 제어하는 별도의 조작 없이 전기 방사의 형태에 따른 안정적인 전기 방사가 가능한 것이다.
본 발명은 상기한 실시 예에 한정되는 것이 아니라, 본 발명의 요지에 벗어나지 않는 범위에서 다양하게 변경하여 실시할 수 있으며 이는 본 발명의 구성에 포함됨을 밝혀둔다.

Claims (10)

  1. 외부로부터 섬유 원료액이 유입되는 원료액 공급 유로가 형성된 제 1 노즐 몸체부재와;
    상기 제 1 노즐 몸체부재의 하부에 돌출되게 장착되며 상기 원료액 공급 유로로부터 원료액을 공급받아 하부로 토출하는 노즐부재와;
    상기 제 1 노즐 몸체부재의 하부 측에 분리 가능하게 장착되는 제 2 노즐 몸체부재를 포함하며,
    상기 제 2 노즐 몸체부재는 상기 노즐부재가 삽입되고 상기 노즐부재의 하단부를 감싸는 분사구가 하부로 뚫린 삽입부와, 상기 분사구로 공기를 공급하는 공기 공급 유로가 형성된 것을 특징으로 하는 전기 방사용 분사 노즐.
  2. 청구항 1에 있어서,
    상기 제 1 노즐 몸체부재의 하단에 분리 가능하게 결합하며 상기 분사구 내로 위치하는 니들부를 더 포함한 것을 특징으로 하는 전기 방사용 분사 노즐.
  3. 청구항 1에 있어서,
    상기 공기 공급 유로는 상기 제 1 노즐 몸체부재에 형성되는 상기 제 1 공기 유로와, 상기 제 1 공기 유로 및 상기 분사구에 연통되며 상기 분사구로 공기를 공급하고 상기 제 2 노즐 몸체부재에 형성되는 제 2 공기 유로를 포함하며,
    상기 제 2 공기 유로는 상기 제 2 노즐 몸체부재의 횡방향 양 측면부를 통해 가로로 삽입부에 관통되는 제 1 유로와, 상기 제 2 노즐 몸체부재의 상부면에서 상기 제 1 유로로 관통되는 제 2 유로를 포함한 것을 특징으로 하는 전기 방사용 분사 노즐.
  4. 청구항 3에 있어서,
    상기 제 1 유로의 양 단부에 결합하여 제 1 유로에서 제 2 노즐 몸체부재의 측면부로 개방된 부분을 막는 마개부재를 더 포함한 것을 특징으로 하는 전기 방사용 분사 노즐.
  5. 청구항 1에 있어서,
    상기 제 1 노즐 몸체부재의 하부면과 제 2 노즐 몸체부의 상부면에는 제 1 공기 유로 및 제 2 공기 유로가 연통되게 뚫려져 서로 암수 구조로 결합하는 결합부가 구비되는 것을 특징으로 하는 전기 방사용 분사 노즐.
  6. 청구항 1에 있어서,
    상기 제 1 노즐 몸체부재와 제 2 노즐 몸체부재는 PEEK(Poly ether ether ketone), 아세탈(POM; Polyoxymethylene), MC 나일론(Mono Cast Nylon) 중 어느 하나를 사용하여 제조되는 것을 특징으로 하는 전기 방사용 분사 노즐.
  7. 청구항 1에 있어서,
    상기 제 1 노즐 몸체부재의 하부에는 상기 노즐부재가 장착되는 복수의 노즐 장착부가 이격되게 형성되고,
    상기 원료액 공급 유로는 상기 복수의 노즐 장착부로 장착된 복수의 노즐부재의 유로에 연통되고 각각의 노즐부재로 섬유 원료액을 공급하는 메인 원료액 공급로를 포함하며,
    상기 복수의 노즐부재는 상단부가 상기 메인 원료액 유로 내로 일정하게 돌출되게 장착되는 것을 특징으로 하는 전기 방사용 분사 노즐.
  8. 청구항 1에 있어서,
    상기 제 1 노즐 몸체부재와 제 2 노즐 몸체부재 사이에 제 2 노즐 몸체부재가 분리, 결합된 상태를 감지하는 센서가 개재되는 것을 특징으로 하는 전기 방사용 분사 노즐.
  9. 외부로부터 섬유 원료액이 유입되는 원료액 공급 유로가 형성된 제 1 노즐 몸체부재와;
    상기 제 1 노즐 몸체부재의 하부에 돌출되게 장착되며 상기 원료액 공급 유로로부터 원료액을 공급받아 하부로 토출하는 노즐부재와;
    상기 제 1 노즐 몸체부재의 하부 측에 분리 가능하게 장착되며 상기 노즐부재가 삽입되며 상기 노즐부재의 하단부를 감싸는 분사구가 하부로 뚫린 삽입부가 형성되며 상기 분사구로 공기를 공급하는 공기 공급 유로가 형성된 제 2 노즐 몸체부재와;
    상기 제 1 노즐 몸체부재의 원료액 공급 유로로 연결되며 섬유 원료액을 저장하여 전압을 인가하는 원료액 전압 인가부재와;
    상기 원료액 전압 인가부재 내로 섬유 원료액을 공급하는 원료액 공급부와;
    상기 공기 공급 유로로 공기를 공급하는 공기 공급부와;
    상기 노즐부재에서 토출된 방사 섬유를 웹상태로 포집하는 콜렉터를 포함한 것을 특징으로 하는 전기 방사 장치.
  10. 청구항 9에 있어서,
    상기 공기 공급부는 공기를 저장한 공기 저장 탱크와;
    상기 공기 저장 탱크에서 공기 공급 유로로 연결되는 공기 공급관과;
    상기 공기 공급관에 장착되어 상기 공기 공급관의 관로를 개폐하는 공기 조절 밸브와;
    상기 제 2 노즐 몸체부재가 상기 제 1 노즐 몸체부재에 분리, 결합된 상태를 감지하는 센서와;
    상기 센서와 상기 공기 조절 밸브에 연계되어 센서에서 감지된 신호로 상기 공기 조절 밸브를 개폐하는 밸브 제어부를 포함한 것을 특징으로 하는 전기 방사 장치.
PCT/KR2010/003777 2009-06-12 2010-06-11 전기 방사용 분사 노즐과 이를 사용한 전기 방사 장치 WO2010143914A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080035112.0A CN102459719B (zh) 2009-06-12 2010-06-11 用于静电纺丝的注射喷嘴及使用该喷嘴的静电纺丝设备
US13/376,682 US8647090B2 (en) 2009-06-12 2010-06-11 Injection nozzle for electrospinning and electrospinning device using the same
JP2012514887A JP5270797B2 (ja) 2009-06-12 2010-06-11 電気紡糸用噴射ノズル及びこれを用いた電気紡糸装置
EP10786397.9A EP2441863B1 (en) 2009-06-12 2010-06-11 Injection nozzle for electrospinning and electrospinning device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0052113 2009-06-12
KR1020090052113A KR101143315B1 (ko) 2009-06-12 2009-06-12 전기 방사용 분사 노즐과 이를 사용한 전기 방사 장치

Publications (2)

Publication Number Publication Date
WO2010143914A2 true WO2010143914A2 (ko) 2010-12-16
WO2010143914A3 WO2010143914A3 (ko) 2011-04-28

Family

ID=43309386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003777 WO2010143914A2 (ko) 2009-06-12 2010-06-11 전기 방사용 분사 노즐과 이를 사용한 전기 방사 장치

Country Status (6)

Country Link
US (1) US8647090B2 (ko)
EP (1) EP2441863B1 (ko)
JP (1) JP5270797B2 (ko)
KR (1) KR101143315B1 (ko)
CN (1) CN102459719B (ko)
WO (1) WO2010143914A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114737267A (zh) * 2022-04-11 2022-07-12 金凤 一种纳米纤维静电纺丝设备

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102124716B1 (ko) * 2010-02-15 2020-06-19 코넬 유니버시티 전기방사 장치 및 이로부터 제조된 나노섬유
KR101511284B1 (ko) * 2012-06-04 2015-04-10 주식회사 아모그린텍 전도성 점착 테이프 및 그 제조방법
CN103014885B (zh) * 2013-01-18 2016-05-25 厦门大学 一种集成稳定鞘层气体约束聚焦功能的电纺直写喷头装置
CN103409819B (zh) * 2013-08-09 2016-01-27 厦门大学 一种近场气流电纺直写装置
CN103484952B (zh) * 2013-10-17 2016-05-04 厦门大学 鞘层气体可加热式聚焦电纺直写喷头装置
JP6209480B2 (ja) * 2014-04-23 2017-10-04 花王株式会社 溶融エレクトロスピニング装置及び繊維の製造方法
CN105200545B (zh) * 2015-10-27 2017-07-11 唐山开滦化工科技有限公司 一种聚甲醛微米纤维的制备方法
JP6543199B2 (ja) * 2016-01-15 2019-07-10 株式会社リメディオ ノズル、乾式紡糸装置、ノズルセット、及び、ノズル取付方法
JP2017145533A (ja) * 2016-02-18 2017-08-24 株式会社東芝 ノズルヘッド、および電界紡糸装置
US9941034B2 (en) * 2016-05-10 2018-04-10 Honeywell Federal Manufacturing & Technologies, Llc Direct write dispensing apparatus and method
CN107475783A (zh) * 2017-10-17 2017-12-15 天津瑞创微纳科技有限公司 一种同轴静电纺丝喷头
WO2020095331A1 (en) * 2018-11-11 2020-05-14 E-Spin Nanotech Pvt Ltd Capillary type multi-jet nozzle for fabricating high throughput nanofibers
EP3884089A4 (en) 2018-11-19 2023-04-05 Octet Medical, Inc. DEVICE, SYSTEMS AND METHODS FOR APPLYING A TREATMENT SOLUTION TO A TREATMENT SITE
KR102264884B1 (ko) * 2019-11-15 2021-06-14 (주)파이 나노섬유 제조를 위한 전기방사 장치 및 전기방사 방법
KR102264885B1 (ko) * 2020-01-03 2021-06-14 (주)파이 모듈화식 나노섬유 용융전기방사 장치
CN111005078A (zh) * 2020-01-14 2020-04-14 中原工学院 一种气流辅助静电纺丝喷头及其使用方法
JP7347911B2 (ja) 2021-10-05 2023-09-20 三菱ロジスネクスト株式会社 フォークリフト遠隔操作システム
CN114293270B (zh) * 2022-01-20 2023-04-11 苏州大学 用于海岛纤维的湿法纺丝设备及制备工艺

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3534770C1 (de) * 1985-09-30 1986-11-13 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Verfahren und Anordnung zum materialverlustarmen Anfahren einer Mehrfachstrangpresse zum Herstellen von aus verschiedenen Kautschuk- oder Kunststoffmischungen bestehendenProfilstraengen,beispielsweise fuer Lauf- oder Seitenstreifen von Fahrzeugreifen
JPS6290320A (ja) * 1985-10-16 1987-04-24 Toa Nenryo Kogyo Kk 繊維状ピツチの製造法及び紡糸ダイ
US5476616A (en) * 1994-12-12 1995-12-19 Schwarz; Eckhard C. A. Apparatus and process for uniformly melt-blowing a fiberforming thermoplastic polymer in a spinnerette assembly of multiple rows of spinning orifices
DE69601661T2 (de) * 1995-05-26 1999-07-22 Japan Vilene Co Ltd Schmelzblasdüse
JP3682737B2 (ja) * 1995-05-26 2005-08-10 日本バイリーン株式会社 メルトブロー装置用ダイ
DE69631660T2 (de) * 1995-07-26 2004-12-23 University Of Georgia Research Foundation, Inc. Elektrostatische düsen für abrasive und leitende flüssigkeiten
US5765761A (en) 1995-07-26 1998-06-16 Universtiy Of Georgia Research Foundation, Inc. Electrostatic-induction spray-charging nozzle system
US6200120B1 (en) * 1997-12-31 2001-03-13 Kimberly-Clark Worldwide, Inc. Die head assembly, apparatus, and process for meltblowing a fiberforming thermoplastic polymer
US6336801B1 (en) * 1999-06-21 2002-01-08 Kimberly-Clark Worldwide, Inc. Die assembly for a meltblowing apparatus
US6641773B2 (en) * 2001-01-10 2003-11-04 The United States Of America As Represented By The Secretary Of The Army Electro spinning of submicron diameter polymer filaments
KR100458946B1 (ko) * 2002-08-16 2004-12-03 (주)삼신크리에이션 나노섬유 제조를 위한 전기방사장치 및 이를 위한방사노즐팩
DE10252414B4 (de) * 2002-11-12 2007-04-26 Corovin Gmbh Nichtrunde Spinnplattenbohrung
JP2008502868A (ja) * 2004-06-10 2008-01-31 ファーメンタ、インコーポレイテッド プロセス・ロックアウト・フィードバック手段を有するカップリング状態の監視システム
US7887311B2 (en) 2004-09-09 2011-02-15 The Research Foundation Of State University Of New York Apparatus and method for electro-blowing or blowing-assisted electro-spinning technology
KR200431592Y1 (ko) * 2006-09-13 2006-11-23 박종수 중공니들을 갖는 이중노즐
KR100879785B1 (ko) * 2007-05-09 2009-01-22 주식회사 에이엠오 나노섬유 제조 장치용 분사 노즐
KR100895328B1 (ko) 2007-06-20 2009-05-07 주식회사 에이엠오 전기 방사용 분사 노즐
KR100874982B1 (ko) * 2007-08-21 2008-12-19 주식회사 에이엠오 전기 방사용 분사 노즐

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2441863A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114737267A (zh) * 2022-04-11 2022-07-12 金凤 一种纳米纤维静电纺丝设备

Also Published As

Publication number Publication date
US20120082744A1 (en) 2012-04-05
EP2441863B1 (en) 2014-08-27
EP2441863A4 (en) 2012-11-07
KR101143315B1 (ko) 2012-05-09
WO2010143914A3 (ko) 2011-04-28
KR20100133523A (ko) 2010-12-22
CN102459719A (zh) 2012-05-16
US8647090B2 (en) 2014-02-11
EP2441863A2 (en) 2012-04-18
CN102459719B (zh) 2014-12-24
JP5270797B2 (ja) 2013-08-21
JP2012529574A (ja) 2012-11-22

Similar Documents

Publication Publication Date Title
WO2010143914A2 (ko) 전기 방사용 분사 노즐과 이를 사용한 전기 방사 장치
WO2010143916A2 (ko) 전기 방사용 분사 노즐과 이를 사용한 전기 방사 장치
WO2014171625A1 (ko) 전기방사장치
WO2012077868A1 (ko) 나노섬유 제조장치 및 나노섬유 제조방법
KR100879785B1 (ko) 나노섬유 제조 장치용 분사 노즐
WO2012077867A1 (ko) 나노섬유 제조장치
CN1985030A (zh) 改进的电吹纤维网形成工艺
KR20100077913A (ko) 원심전기방사장치
WO2013100638A1 (ko) 나노섬유웹 제조장치 및 방법
WO2019117603A1 (ko) 동축제어용 이중노즐
WO2012077864A1 (ko) 전계방사장치 및 나노섬유제조장치
WO2018074819A1 (ko) 전기방사장치
US10907275B2 (en) Electro-spinning apparatus
CN217418877U (zh) 一种喷丝板
WO2021172753A1 (ko) 필터의 효율 및 수명이 향상된 나노 필터 및 이의 제조방법
KR101030824B1 (ko) 전기방사용 절연 노즐팩 및 이를 포함하는 전기방사장치
WO2021256678A1 (en) Aerosol generating device including extractor for removing aerosol generating article
CN106702505A (zh) 喷丝板和喷丝机构
US3097056A (en) Melt-spinning of polymers
WO2012077866A1 (ko) 나노섬유 제조장치
WO2012077865A1 (ko) 전계방사장치 및 나노섬유 제조장치
WO2017131299A1 (ko) Pet 더스트 배출 시스템이 구비된 사출 금형
CN213624492U (zh) 用于静电纺丝的矩阵式针头装置
WO2024063473A1 (en) Aerosol generating device and method of manufacturing the same
KR20110035056A (ko) 전기방사용 노즐블록 및 이를 포함하는 전기방사장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035112.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786397

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13376682

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012514887

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010786397

Country of ref document: EP