WO2010143545A1 - ディーゼルエンジン - Google Patents
ディーゼルエンジン Download PDFInfo
- Publication number
- WO2010143545A1 WO2010143545A1 PCT/JP2010/059116 JP2010059116W WO2010143545A1 WO 2010143545 A1 WO2010143545 A1 WO 2010143545A1 JP 2010059116 W JP2010059116 W JP 2010059116W WO 2010143545 A1 WO2010143545 A1 WO 2010143545A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mode
- diesel engine
- amount
- particulate matter
- diesel
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/029—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0812—Particle filter loading
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/60—Input parameters for engine control said parameters being related to the driver demands or status
- F02D2200/604—Engine control mode selected by driver, e.g. to manually start particle filter regeneration or to select driving style
Definitions
- the present invention relates to a diesel engine having an exhaust purification device. More specifically, the present invention relates to a technique for controlling a diesel engine having an exhaust purification device.
- diesel particulate filters that enable so-called continuous regeneration in which particulate matter contained in exhaust gas of a diesel engine is collected and oxidized are known.
- the particulate matter collected in the diesel particulate filter can be forced by using an intake throttle for adjusting the intake air amount or a common rail system that enables one or more fuel injections.
- a so-called forced regeneration technique in which oxidation is performed is also known.
- continuous regeneration performed mainly in the high-power operation region where the exhaust gas temperature is high and forced regeneration mainly performed in the low-power operation region where the exhaust gas temperature is low are mainly the diesel engine operating state and diesel particulate filter. Since the switching is automatically performed according to the amount of particulate matter accumulated in the engine (see, for example, Patent Document 1), the operator may mistakenly recognize that there is an abnormal change in engine sound or output characteristics.
- the present invention has been made to solve such a problem, and as a control pattern of a diesel engine, it is possible to select either a low fuel consumption mode or a low noise mode, thereby improving economy and quietness,
- oxidizing particulate matter in a diesel particulate filter it is possible to manually select either continuous regeneration mode or forced regeneration mode to prevent sudden changes in engine sound and output characteristics due to automatic mode switching.
- An object of the present invention is to provide a diesel engine that can prevent an operator from misidentifying an abnormality.
- the present invention provides a technique for preventing the operator from misidentifying by displaying the automatically or manually selected mode on the visual notification means.
- a first aspect of the present invention creates a control signal according to a selected mode and An electronic control controller for controlling the diesel engine, wherein the electronic control controller performs control so as to reduce fuel consumption of the diesel engine and a fuel efficiency mode for reducing noise of the diesel engine;
- the low noise mode to be performed can be arbitrarily selected, and when the output of the diesel engine is higher than a predetermined value, the accumulated amount of particulate matter collected by the diesel particulate filter is predetermined. So that the amount of oxidation is equal to the amount collected.
- a continuous regeneration mode is automatically selected, and the output of the diesel engine is lower than a predetermined value, and the amount of particulate matter collected in the diesel particulate filter is greater than or equal to a predetermined value.
- the forced regeneration mode for controlling the oxidation amount to be greater than the collected amount is automatically selected, and either the continuous regeneration mode or the forced regeneration mode is selected manually. Control can be started in accordance with the mode.
- the electronic controller automatically terminates the forced regeneration mode when the oxidation of the particulate matter deposited on the diesel particulate filter is completed. At the same time, it can be manually terminated.
- a third aspect of the present invention is the diesel engine according to the first aspect, wherein the electronic control controller displays a mode selected automatically or manually on the visual notification means.
- any one of the low fuel consumption mode and the low noise mode can be arbitrarily selected, so that the operation according to the operator's request is possible, and the economy and quietness are improved. be able to.
- either continuous regeneration mode or forced regeneration mode can be manually selected to prevent sudden changes in engine sound and output characteristics due to automatic mode switching. It is possible to prevent the operator from misidentifying it as an abnormality.
- the second aspect of the present invention by allowing manual termination of the forced regeneration mode, it is possible to prevent sudden changes in engine sound and output characteristics due to automatic termination of the forced regeneration mode, and the operator misidentifies it as an abnormality. Can be prevented.
- the operator can recognize the automatically selected mode or the manually selected mode, and the operator can be prevented from misidentifying it as an abnormality with respect to changes in engine sound or output characteristics.
- the block diagram of the diesel engine which concerns on this invention The figure which shows the display panel of the diesel engine which concerns on this invention.
- the flowchart which shows selection of each mode of the diesel engine which concerns on this invention.
- a diesel engine 100 is mainly composed of an engine body 1, an exhaust purification device 2, and an electronic controller 3.
- the display panel 4 which is a visual notification means electrically connected with the electronic controller 3 is arranged near the driver's seat when the diesel engine 100 is mounted on a work vehicle, for example, and can be visually recognized by the operator.
- the configuration of the engine body 1 will be described in detail.
- the arrow in a figure has shown the direction of the flow about intake air, recirculation gas, and exhaust gas.
- the engine main body 1 mainly includes an engine main body 11, a fuel injection pump 12, an intake passage 13, an exhaust passage 14, an EGR device 15, and the like.
- the engine body 1 is combusted by supplying fuel to compressed air, and obtains rotational power from the expansion energy generated by the combustion.
- the engine main body 11 mainly includes a main body such as a cylinder block 111 and a cylinder head 112, and a moving part such as a piston 113 and a crankshaft 114.
- the engine main body 11 includes a cylinder hole in which a combustion chamber is provided in the cylinder block 111, a piston 113 slidably provided in the cylinder hole, and a cylinder head disposed so as to face the piston 113. 112.
- the piston 113 is interlocked and connected to the crankshaft 114 by a connecting rod (not shown), and the crankshaft 114 is driven to rotate by sliding of the piston 113.
- the fuel injection pump 12 is driven via a gear or the like from a rotationally driven crankshaft 114 and is slidably fitted into a plunger barrel (not shown) provided in the fuel injection pump 12 and the plunger barrel.
- the fuel is pumped to the fuel injection nozzle 16 by a plunger.
- the fuel injection nozzle 16 is provided in the cylinder head 112 so that its tip protrudes into the combustion chamber of the engine main body 11, and receives a control signal from the electronic controller 3 one or more times. Fuel injection can be performed at any time.
- the intake passage 13 is a passage that guides intake air to the combustion chamber of the engine main body 11, and mainly includes an air cleaner 131, an intake throttle 132, and an intake manifold 133 along the air flow direction.
- the intake passage 13 is provided with a flow rate sensor for measuring the intake air amount, a temperature sensor for measuring the intake air temperature, and the like, which are omitted for simplicity.
- the air cleaner 131 filters the inhaled air using a filter paper or a sponge, thereby preventing foreign matters such as dust from entering the combustion chamber.
- the intake throttle 132 adjusts the amount of intake air supplied to the combustion chamber of the engine main body 11 by using, for example, a butterfly valve driven by a DC servo motor. That is, the intake throttle 132 adjusts the amount of intake air supplied to the combustion chamber by receiving the control signal from the electronic controller 3 and adjusting the opening of the butterfly valve and changing the passage cross-sectional area of the intake passage 13. The amount can be made.
- the intake manifold 133 is for evenly distributing the intake air, which is filtered by the air cleaner 131 and then metered by the intake throttle 132, to each combustion chamber. Since the engine body 1 according to this embodiment is a so-called in-line four-cylinder engine having four combustion chambers in series, the intake manifold 133 is also formed to branch into four passages and fixed to the cylinder head 112. Has been.
- the exhaust passage 14 is a passage that guides exhaust gas discharged from the engine main body 11 to an exhaust purification device 2 to be described later.
- the exhaust passage 141 mainly includes an exhaust manifold 141, an additive nozzle 142, and an exhaust throttle 143 along the flow direction of the exhaust gas. Consists of.
- the exhaust manifold 141 collects exhaust gas discharged from each combustion chamber of the engine main body 11. As described above, since the engine body 1 according to the present embodiment is an in-line four-cylinder engine, the exhaust manifold 141 has a shape that joins four passages into one passage.
- the additive nozzle 142 is provided so that its tip protrudes into the exhaust passage 14 and receives a control signal from the electronic controller 3 to add fuel to the exhaust gas.
- it may be configured to perform so-called post injection, in which fuel is added to the exhaust gas by injecting fuel from the fuel injection nozzle 16 at a time that does not contribute to the output of the engine body 1.
- the supply method is not limited.
- the exhaust throttle 143 adjusts the exhaust pressure generated in the exhaust passage 14 by using, for example, a butterfly valve driven by a DC servo motor or a pressure diaphragm. In other words, the exhaust throttle 143 can adjust the exhaust pressure by adjusting the opening of the butterfly valve and changing the cross-sectional area of the exhaust passage 14.
- the EGR device 15 reduces a part of the exhaust gas from the exhaust manifold 141 to the intake manifold 133 as a recirculation gas. Thereby, the oxygen concentration of the intake air supplied to the combustion chamber can be reduced, and the generation of nitrogen oxides which are environmentally hazardous substances can be suppressed.
- the recirculation gas passage of the EGR device 15 is provided with an EGR valve 151.
- the EGR valve 151 adjusts the amount of recirculated gas returned to the intake manifold 133 by using, for example, a valve body driven by a DC servo motor or a step motor. That is, the EGR valve 151 receives the control signal from the electronic controller 3 and adjusts the opening degree of the valve body to change the recirculation gas passage so that the recirculation gas amount can be adjusted. Is.
- the exhaust purification device 2 removes particulate matter contained in the exhaust gas, and is mainly an oxidation catalyst carrier (hereinafter referred to as “DOC”) 21 and a diesel particulate filter (hereinafter referred to as “DPF”) 22. It comprises a differential pressure sensor 23 and a temperature sensor 24.
- the DOC 21 and the DPF 22 are disposed in a cylindrical exhaust passage so that the DOC 21 is positioned on the upstream side and the DPF 22 is positioned on the downstream side.
- the DOC 21 oxidizes and removes CO (carbon monoxide), HC (hydrocarbon) and SOF (organic soluble component) constituting particulate matter contained in the exhaust gas. Further, the exhaust gas temperature is changed by oxidizing NO (nitrogen monoxide) contained in the exhaust gas to NO 2 (nitrogen dioxide) or oxidizing the fuel added to the exhaust gas from the additive nozzle 142. It is also possible to raise.
- CO carbon monoxide
- HC hydrocarbon
- SOF organic soluble component
- the DPF 22 filters exhaust gas by collecting particulate matter mainly composed of soot and the like, and oxidizes and removes the collected particulate matter.
- the DPF 22 based on silicon carbide is used, and the particulate matter contained in the exhaust gas is collected when passing through the fine holes formed in the DPF 22. .
- the collected particulate matter on a condition that the exhaust gas is at a temperature which can be allowed to proceed oxidation reaction, is oxidized by NO 2 produced by the oxygen and DOC21 contained in the exhaust gas It will be.
- the DPF 22 can oxidize the particulate matter only when the exhaust gas temperature is high, the continuous regeneration that naturally oxidizes the particulate matter when the exhaust gas temperature is high, and the exhaust gas It is said that the forced regeneration in which the exhaust gas temperature is forcibly raised to oxidize the particulate matter when the temperature is low needs to be controlled according to the operating state of the engine body 1 or the like.
- the differential pressure sensor 23 includes an upstream sensor 23a disposed on the upstream side of the DOC 21 and a downstream sensor 23b disposed on the downstream side of the DPF 22, and detects a pressure difference from each measured value. is there.
- the differential pressure sensor 23 transmits the detection result to the electronic controller 3 every moment, and the electronic controller 3 estimates the amount of particulate matter accumulated in the DPF 22 by grasping the change with time of the pressure difference. It is possible.
- the temperature sensor 24 is arranged so that the tip thereof is located between the DOC 21 and the DPF 22 and measures the temperature of the exhaust gas introduced into the DPF 22.
- the temperature sensor 24 transmits the detection result to the electronic controller 3 every moment, and the electronic controller 3 creates an optimal control signal by feedback control using the exhaust gas temperature.
- the exhaust throttle 25 is disposed on the downstream side of the exhaust purification device 2 so that the exhaust pressure generated in the exhaust purification device 2 can be adjusted.
- the electronic controller 3 is electrically connected to an engine output setting means such as a differential pressure sensor 23 and a temperature sensor 24 provided in the exhaust purification device 2 and an accelerator pedal (not shown), and based on electric signals from these.
- the control signal is generated and the control signal is output to the above-described fuel injection nozzle 16 and the like.
- the electronic controller 3 is electrically connected to a display panel 4 that is a visual notification means disposed in a driver's seat or the like, so that an electric signal can be transmitted in both directions.
- the electronic controller 3 controls the engine body 1 according to the operator's request, and performs a fuel injection map, an EGR map, an intake throttle map, an exhaust throttle map so as to perform control necessary for continuous regeneration or forced regeneration of the DPF 22. Etc. are stored. These maps are set for each mode to be described later, and the map to be used is changed according to the mode selected automatically or manually.
- Each map such as a fuel injection map is examined in advance in order to ensure the engine speed and torque required by the operator, for example, and to ensure the exhaust gas temperature required for the oxidation of particulate matter.
- the optimum control factor is stored.
- the electronic controller 3 can optimally control the diesel engine 100 by calling a control factor from each map and creating a control signal.
- the modes that can be realized by the electronic controller 3 are a low fuel consumption mode that performs control so as to reduce fuel consumption, a low noise mode that performs control so as to reduce noise, and oxidation of particulate matter in the DPF 22.
- the low fuel consumption mode and the low noise mode can be arbitrarily selected by the operator, and the continuous regeneration mode and the forced regeneration mode are automatically selected according to the operating state of the diesel engine 100 or the like manually when the particulate matter is oxidized in the DPF 22. It is possible.
- the low fuel consumption mode refers to a control pattern configured to generate a high combustion pressure at a predetermined time in the combustion chamber of the engine main body 11, and each map for the low fuel consumption mode that realizes the control pattern is used. Thus, the fuel consumption of the diesel engine 100 can be reduced.
- the intake throttle 132 is fully opened to maximize the amount of intake air supplied to the combustion chamber, and the exhaust throttles 143 and 25 are maximized to smooth the exhaust gas. Can be discharged.
- a high combustion pressure is obtained in the combustion chamber by supplying the fuel injection amount according to the engine speed and torque required by the operator from the fuel injection nozzle 16 to the combustion chamber at an optimal time.
- the fuel consumption of the diesel engine 100 can be reduced in order to obtain rotational power by ensuring a high combustion pressure at an optimal time in the combustion chamber.
- the combustion noise increases as the combustion pressure increases, the noise generated by the diesel engine 100 increases.
- the low noise mode is a control pattern that is lower than that in the low fuel consumption mode in the combustion chamber of the engine main body 11 and is configured to generate a long-term combustion pressure. By using each map for the low noise mode, the noise of the diesel engine 100 can be reduced.
- the intake throttle 132 is fully opened to maximize the amount of intake air supplied to the combustion chamber, and the exhaust throttles 143 and 25 are maximized to smooth the exhaust gas. Can be discharged. Then, the fuel injection amount corresponding to the engine speed and torque required by the operator is divided into a plurality of times and supplied from the fuel injection nozzle 16 to the combustion chamber at an optimal time, so that the fuel injection amount is relatively low and long-term.
- either the low fuel consumption mode or the low noise mode can be arbitrarily selected by operating a selection switch 41 provided on the display panel 4. .
- the operation according to the operator's request becomes possible, and the economic efficiency and quietness can be improved.
- the low fuel consumption mode lamp 411 is turned on in accordance with the selection of the low fuel consumption mode or the low noise mode lamp 412 is turned on in accordance with the selection of the low noise mode, the operator immediately grasps the selected mode. It is possible.
- the electronic controller 3 determines from the detection result of the differential pressure sensor 23 provided in the exhaust purification device 2 that particulate matter of a predetermined value or more is accumulated on the DPF 22, the continuous regeneration mode or forced regeneration mode is set.
- the playback mode is automatically selected.
- the continuous regeneration mode refers to a control pattern configured such that the oxidation amount of the particulate matter in the DPF 22 is equal to the collected amount.
- the output of the diesel engine 100 is a predetermined value (hereinafter “Output limit value”.)
- the amount of particulate matter collected in the DPF 22 is equal to or greater than a predetermined value (hereinafter referred to as "deposition limit amount”) Vtr. Then, the control is performed using each map for the continuous reproduction mode.
- the intake throttle 132 is fully opened to maximize the amount of intake air supplied to the combustion chamber, and the exhaust throttles 143 and 25 are maximized to smooth the exhaust gas. Can be discharged.
- the fuel injection amount corresponding to the engine speed and torque required by the operator is divided into one time or a plurality of times and is supplied to the combustion chamber from the fuel injection nozzle 16 at an optimal time, and is collected in the DPF 22. The amount of particulate matter collected and the amount of oxidation oxidized by the DPF 22 are balanced.
- the combustion stroke in the combustion chamber is divided into an initial combustion that does not significantly affect the generation of particulate matter and a late combustion that greatly affects the generation of particulate matter.
- the injection timing to adjust the ratio between the initial combustion and the late combustion, it becomes possible to balance the trapped amount of particulate matter trapped in the DPF 22 and the oxidized amount. Since the oxidation rate of the particulate matter in the DPF 22 also changes depending on the exhaust gas temperature, feedback control is performed based on the detection result by the temperature sensor 24.
- the amount of particulate matter trapped in the DPF 22 and the amount of oxidation can be balanced, and the diesel engine 100 can be operated without forced regeneration.
- the forced regeneration mode refers to a control pattern configured such that the oxidation amount of the particulate matter in the DPF 22 is larger than the collected amount. As shown in FIG. 3, the output of the diesel engine 100 is lower than the output limit value Ptr. In this case (lower left side in the figure), control is performed using each map for forced regeneration mode when the amount of particulate matter collected in the DPF 22 exceeds the deposition limit amount Vtr.
- the amount of intake air supplied to the combustion chamber is limited by closing the opening of the intake throttle 132 to a predetermined opening, and the opening of the exhaust throttles 143 and 25 is set to a predetermined opening.
- the exhaust gas is suppressed by closing the valve.
- the fuel injection amount corresponding to the engine speed and torque required by the operator is divided into a plurality of times and supplied from the fuel injection nozzle 16 to the combustion chamber at an optimal time, and the fuel is introduced into the exhaust gas by the additive nozzle 142. Is added.
- the amount of oxidation oxidized to the DPF 22 is larger than the amount of particulate matter collected by the DPF 22.
- the exhaust gas temperature can be forcibly increased by oxidizing the fuel added to the exhaust gas from the additive nozzle 142 by the DOC 21.
- the amount of oxidation oxidized to the DPF 22 can be made larger than the amount of particulate matter collected by the DPF 22.
- the amount of particulate matter oxidized in the DPF 22 can be made larger than the amount collected, and the amount of particulate matter deposited on the DPF 22 can be reduced.
- the continuous regeneration mode or the forced regeneration mode is automatically selected depending on the operation state of the diesel engine 100, but the operator can arbitrarily select manually. Accordingly, the display panel 4 is provided with a continuous playback mode button 42 and a forced playback mode button 43 (see FIG. 2). As a result, any mode can be selected in advance, and sudden changes in engine sound and output characteristics due to automatic mode switching can be prevented, thereby preventing the operator from misidentifying it as an abnormality. Further, since the continuous playback mode lamp 413 is turned on with the selection of the continuous playback mode, or the forced playback mode lamp 414 is turned on with the selection of the forced playback mode, the operator immediately grasps the selected mode. It is possible. Furthermore, in any mode, it is shown that the particulate matter is oxidized by the lamp 415 being lit during the regeneration.
- the forced regeneration mode button 43 can be arbitrarily terminated when the forced regeneration is performed by automatic selection or manual selection.
- FIG. 4 is a flowchart showing steps in which each mode is selected.
- the electronic controller 3 confirms whether or not the selected mode is appropriate at every predetermined time, and updates the information immediately when it is determined that the selected mode is not appropriate.
- step S101 the electronic controller 3 estimates the accumulation amount V1 of the particulate matter in the DPF 22 based on the detection result from the differential pressure sensor 23. At this time, it is possible to estimate the deposition amount V1 with high accuracy by making corrections with reference to the operation history stored in the electronic controller 3.
- step S102 the deposition limit amount Vtr found in advance by a test and stored in the electronic controller 3 is compared with the deposition amount V1 estimated in step S101.
- the process proceeds to step S103.
- the accumulation limit amount Vtr is a value determined by a test based on the type and size of the base material of the DPF 22, an operation state in which the diesel engine 100 is frequently used, and does not limit a specific value.
- step S103 the electronic controller 3 determines whether the operator is requesting an operation pattern of the low fuel consumption mode or the low noise mode. Specifically, it is determined whether the selection switch 41 provided on the display panel 4 indicates the low fuel consumption mode or the low noise mode.
- the electronic controller 3 uses each map for the low fuel consumption mode. For example, when the operator requests the operation pattern in the low noise mode and operates the selection switch 41 to the low noise mode side, the electronic controller 3 uses each map for the low noise mode. Control will be performed.
- step S104 the output value P1 of the engine main body 1 is calculated from the engine speed, the fuel injection amount supplied to the combustion chamber, and the like. That is, the output value P1 of the engine main body 1 is calculated by referring to the engine speed detected by the engine speed sensor and the control signal for the fuel injection amount to the fuel injection nozzle 16.
- step S105 the output limit value Ptr found in advance by the test and stored in the electronic controller 3 is compared with the output value P1 calculated in step S104. If it is determined that the output value P1 estimated in step S104 is equal to or greater than the output limit value Ptr, the process proceeds to step S106.
- the output limit value Ptr is an output value of the engine main body 1 that can secure the exhaust gas temperature necessary for the DPF 22 to perform continuous regeneration, and changes because of the distance from the engine main body 1 to the exhaust purification device 2 or the like. The specific value is not limited.
- step S106 the electronic control controller 3 determines whether the operator is requesting an operation pattern of the continuous regeneration mode or the forced regeneration mode.
- the output value P1 of the engine main body 1 is equal to or higher than the output limit value Ptr, the exhaust gas temperature is high, so the continuous regeneration mode is usually automatically selected.
- the forced regeneration mode and completing the oxidation of the particulate matter in the DPF 22 in advance changes in engine sound and output characteristics due to automatic mode switching can be prevented during delicate work.
- the forced regeneration mode is selected. It is possible to perform control using each map.
- step S105 when it is determined in step S105 that the output value P1 calculated in step S104 is smaller than the output limit value Ptr, the process proceeds to step S107.
- step S107 the electronic control controller 3 determines whether the operator requests an operation pattern of the forced regeneration mode or the continuous regeneration mode.
- the output value P1 of the engine body 1 is lower than the output limit value Ptr, the exhaust gas temperature is also low, so that the forced regeneration mode is normally automatically selected.
- the continuous playback mode in advance, it is possible to prevent changes in engine sound and output characteristics due to automatic mode switching during delicate work.
- the continuous regeneration mode is selected. It is possible to perform control using each map.
- the present invention is applicable to a diesel engine having an exhaust purification device.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
燃料消費量を低減する低燃費モードと騒音を低減する低騒音モードとのいずれかを任意に選択可能とし、ディーゼルエンジン100の出力値P1が所定の値Ptrより高い場合であってDPF22に捕集された粒子状物質の堆積量V1が所定の値Vtr以上となったときには連続再生モードを自動選択し、ディーゼルエンジン100の出力値P1が所定の値Ptrより低い場合であってDPF22に捕集された粒子状物質の堆積量V1が所定の値Vtr以上となったときには強制再生モードを自動選択し、前記連続再生モードおよび前記強制再生モードのいずれかを手動選択することによっても選択されたモードに応じて制御を開始することを可能とした。
Description
本発明は、排気浄化装置を有するディーゼルエンジンに関する。より詳細には、排気浄化装置を有するディーゼルエンジンの制御の技術に関する。
従来、ディーゼルエンジンの排気ガスに含まれる粒子状物質を捕集するとともに酸化させる、いわゆる連続再生を可能としたディーゼルパティキュレートフィルタが公知となっている。また、吸入空気量を調量するための吸気絞りや、一回又は複数回の燃料噴射を可能としたコモンレールシステム等を用いることによって、ディーゼルパティキュレートフィルタに捕集された粒子状物質を強制的に酸化させる、いわゆる強制再生の技術も公知となっている。
しかし、主に排気ガスの温度が高い高出力運転領域で行なわれる連続再生と、主に排気ガスの温度が低い低出力運転領域で行なわれる強制再生は、ディーゼルエンジンの運転状態やディーゼルパティキュレートフィルタにおける粒子状物質の堆積量によって自動で切り替えが行なわれるために(例えば特許文献1参照。)、突然のエンジン音や出力特性の変化に対してオペレータが異常と誤認する場合があった。
また、経済性向上のためにディーゼルエンジンの燃料消費量を低減したいという要望があったが、燃料消費量を低減するような制御を行なった場合にはディーゼルエンジンの発する騒音が大きくなるという問題があった。一方、静粛性向上のためにディーゼルエンジンが発する騒音を低減したいという要望もあったが、騒音を低減するような制御を行なった場合にはディーゼルエンジンの燃料消費量が増加するという問題もあった。
特開2005―282545号公報
本発明はかかる問題を解決すべくなされたものであり、ディーゼルエンジンの制御パターンとして、低燃費モードと低騒音モードのいずれかを選択可能とすることによって経済性ならびに静粛性の向上を図るとともに、ディーゼルパティキュレートフィルタにおける粒子状物質の酸化に際しては、連続再生モード又は強制再生モードのいずれかを手動選択可能とすることで、モードの自動切り替えによる突然のエンジン音や出力特性の変化を防止できて、オペレータが異常として誤認することを防ぐことができるディーゼルエンジンを提供することを目的とする。
更に、自動選択又は手動選択されたモードを視覚通知手段に表示することによって、オペレータの誤認を防止する技術を提供する。
更に、自動選択又は手動選択されたモードを視覚通知手段に表示することによって、オペレータの誤認を防止する技術を提供する。
本発明の解決しようとする課題を解決するための手段を説明する。
本発明の第一の態様は、排気ガスに含まれる粒子状物質を捕集するとともに酸化させるディーゼルパティキュレートフィルタが設けられたディーゼルエンジンにおいて、選択されたモードに応じて制御信号を作成して前記ディーゼルエンジンの制御を行なう電子制御コントローラを備え、前記電子制御コントローラは、前記ディーゼルエンジンの燃料消費量を低減するように制御を行なう低燃費モードと、前記ディーゼルエンジンの騒音を低減するように制御を行なう低騒音モードと、のいずれかを任意に選択可能とし、前記ディーゼルエンジンの出力が所定の値より高い場合であって、前記ディーゼルパティキュレートフィルタに捕集された粒子状物質の堆積量が所定の値以上となったときには、その酸化量が捕集量と同等となるように制御を行なう連続再生モードを自動選択し、前記ディーゼルエンジンの出力が所定の値より低い場合であって、前記ディーゼルパティキュレートフィルタに捕集された粒子状物質の堆積量が所定の値以上となったときには、その酸化量が捕集量より多くなるように制御を行なう強制再生モードを自動選択し、前記連続再生モードおよび前記強制再生モードのいずれか一方が手動選択されることによっても選択されたモードに応じて制御を開始することを可能としたものである。
本発明の第二の態様は、第一の態様のディーゼルエンジンにおいて、前記電子制御コントローラは、前記ディーゼルパティキュレートフィルタに堆積した粒子状物質の酸化が完了したときに前記強制再生モードを自動終了させるとともに、手動終了させることも可能としたものである。
本発明の第三の態様は、第一の態様のディーゼルエンジンにおいて、前記電子制御コントローラは、自動選択又は手動選択されたモードを視覚通知手段に表示するとしたものである。
本発明の効果として、以下に示すような効果を奏する。
本発明の第一の態様によれば、低燃費モードと低騒音モードのいずれかを任意に選択可能とすることでオペレータの要求に応じた運転が可能となり、経済性ならびに静粛性の向上を図ることができる。また、ディーゼルパティキュレートフィルタにおける粒子状物質の酸化に際しては、連続再生モード又は強制再生モードのいずれかを手動選択可能とすることで、モードの自動切り替えによる突然のエンジン音や出力特性の変化を防止できて、オペレータが異常として誤認することを防ぐことが可能となる。
本発明の第二の態様によれば、強制再生モードの手動終了を可能とすることで、強制再生モードの自動終了による突然のエンジン音や出力特性の変化を防止できて、オペレータが異常として誤認することを防ぐことが可能となる。
本発明の第三の態様によれば、自動選択又は手動選択されたモードをオペレータが認識することができて、エンジン音や出力特性の変化に対してオペレータが異常として誤認することを防止できる。
100 ディーゼルエンジン
1 エンジン本体
11 エンジン主体部
16 燃料噴射ノズル
2 排気浄化装置
21 酸化触媒担体(DOC)
22 ディーゼルパティキュレートフィルタ(DPF)
23 差圧センサ
24 温度センサ
3 電子制御コントローラ
4 視覚通知手段(表示パネル)
41 選択スイッチ
42 連続再生モードボタン
43 強制再生モードボタン
1 エンジン本体
11 エンジン主体部
16 燃料噴射ノズル
2 排気浄化装置
21 酸化触媒担体(DOC)
22 ディーゼルパティキュレートフィルタ(DPF)
23 差圧センサ
24 温度センサ
3 電子制御コントローラ
4 視覚通知手段(表示パネル)
41 選択スイッチ
42 連続再生モードボタン
43 強制再生モードボタン
次に、発明の実施の形態を説明する。
図1に示すように、本発明に係るディーゼルエンジン100は、主にエンジン本体1と、排気浄化装置2と、電子制御コントローラ3とから構成される。そして、電子制御コントローラ3と電気的に接続された視覚通知手段である表示パネル4は、例えば、ディーゼルエンジン100が作業車両に搭載される場合では運転席近傍に配置されてオペレータによって視認可能とされる。
まず、エンジン本体1の構成について詳細に説明する。なお、図中の矢印は吸入空気や再循環ガス、排気ガスについての流れの方向を示している。
エンジン本体1は、主にエンジン主体部11や燃料噴射ポンプ12、吸気通路13、排気通路14、EGR装置15等から構成される。エンジン本体1は、圧縮された空気に燃料を供給することによって燃焼させて、この燃焼による膨張エネルギーから回転動力を得るものとされる。
エンジン主体部11は、主にシリンダブロック111やシリンダヘッド112等の本体部と、ピストン113やクランク軸114等の運動部とからなる。エンジン主体部11には、燃焼室がシリンダブロック111に設けられたシリンダ穴と、該シリンダ穴に摺動可能に内設されたピストン113と、該ピストン113に対向するように配置されたシリンダヘッド112とで構成される。そして、ピストン113は図示しないコネクティングロッドによってクランク軸114と連動連結されて、該ピストン113の摺動によってクランク軸114が回転駆動するものとされる。
燃料噴射ポンプ12は、回転駆動されるクランク軸114からギヤ等を介して駆動されて、該燃料噴射ポンプ12に内設された図示しないプランジャバレルと該プランジャバレルに摺動可能に嵌挿されたプランジャとによって燃料噴射ノズル16へ燃料を圧送するものである。
なお、燃料噴射ノズル16は、その先端部をエンジン主体部11の燃焼室に突出するようにシリンダヘッド112に設けられており、電子制御コントローラ3からの制御信号を受けて一回又は複数回の燃料噴射を任意の時期に行なうことを可能としている。
吸気通路13は、エンジン主体部11の燃焼室に吸入空気を導く通路であり、空気の流れる方向に沿って主にエアクリーナ131、吸気絞り132、吸気マニホールド133で構成される。なお、吸気通路13には吸入空気量を計測するための流量センサや、吸入空気温度を計測するための温度センサ等が設けられることとなるが、本図では簡単のために省略している。
エアクリーナ131は、吸入された空気を濾紙又はスポンジ等を用いて濾過するものであり、これによって埃等の異物が燃焼室に混入することを防止している。
吸気絞り132は、例えばDCサーボモータによって駆動されるバタフライバルブを用いることで、エンジン主体部11の燃焼室へ供給される吸入空気量を調量するものである。つまり、吸気絞り132は、電子制御コントローラ3からの制御信号を受けてバタフライバルブの開度を調節し、吸気通路13の通路断面積を変化させることによって燃焼室へ供給される吸入空気量を調量可能とするものである。
吸気マニホールド133は、エアクリーナ131によって濾過された後に吸気絞り132によって調量された吸入空気を、各燃焼室に均等に配分するためのものである。本実施形態に係るエンジン本体1は直列に4箇所の燃焼室を備える、いわゆる直列4気筒エンジンであるために該吸気マニホールド133も4つの通路に分岐するように形成されてシリンダヘッド112に固設されている。
排気通路14は、エンジン主体部11から排出される排気ガスを後述する排気浄化装置2まで導く通路であり、排気ガスの流れる方向に沿って主に排気マニホールド141、添加剤ノズル142、排気絞り143で構成される。
排気マニホールド141は、エンジン主体部11の各燃焼室から排出された排気ガスを集合させるものである。前述したように本実施形態に係るエンジン本体1は直列4気筒エンジンであるために、該排気マニホールド141も4つの通路を一つの通路に合流させる形状となっている。
添加剤ノズル142は、その先端部を排気通路14の内部に突出するように設けられて、電子制御コントローラ3からの制御信号を受けて排気ガスに燃料を添加するものである。なお、エンジン本体1の出力に寄与しない時期に燃料噴射ノズル16から燃料を噴射することによって排気ガスに燃料を添加する、いわゆるポスト噴射を行なうように構成しても良く、添加剤としての燃料の供給方式について限定するものではない。
排気絞り143は、例えばDCサーボモータや圧力ダイヤフラムによって駆動されるバタフライバルブを用いることで、排気通路14の内部に生じる排気圧力を調整するものである。つまり、排気絞り143は、バタフライバルブの開度を調節し、排気通路14の通路断面積を変化させることによって排気圧力を調整可能とするものである。
EGR装置15は、排気マニホールド141から吸気マニホールド133へ排気ガスの一部を再循環ガスとして還元するものである。これにより、燃焼室に供給された吸入空気の酸素濃度を低減することができて、環境負荷物質である窒素酸化物の生成を抑制することが可能となる。また、EGR装置15の再循環ガス通路にはEGRバルブ151が備えられている。
EGRバルブ151は、例えばDCサーボモータやステップモータによって駆動される弁体を用いることで、吸気マニホールド133へ還元される再循環ガス量を調量するものである。つまり、EGRバルブ151は、電子制御コントローラ3からの制御信号を受けて弁体の開度を調節し、再循環ガス通路の通路断面積を変化させることによって再循環ガス量を調量可能とするものである。
次に、排気浄化装置2の構成について詳細に説明する。
排気浄化装置2は、排気ガスに含まれる粒子状物質を除去するものであり、主に酸化触媒担体(以降「DOC」という。)21やディーゼルパティキュレートフィルタ(以降「DPF」という。)22、差圧センサ23、温度センサ24で構成される。DOC21およびDPF22は、円筒形状の排気通路に内設されてDOC21が上流側に、DPF22が下流側に位置するように配置される。
DOC21は、排気ガスに含まれるCO(一酸化炭素)、HC(炭化水素)ならびに粒子状物質を構成するSOF(有機可溶成分)を酸化して除去するものである。また、排気ガスに多く含まれるNO(一酸化窒素)を酸化することによってNO2(二酸化窒素)に変化させたり、添加剤ノズル142から排気ガスに添加された燃料を酸化することによって排気ガス温度を上昇させたりすることも可能としている。
DPF22は、主に煤等からなる粒子状物質を捕集することで排気を濾過するとともに、捕集した粒子状物質を酸化して除去するものである。本実施形態においては、炭化ケイ素を基材としたDPF22が用いられており、排気ガスに含まれる粒子状物質は、DPF22に形成された微細な穴を通過する際に捕集されることとなる。このようにして捕集された粒子状物質は、排気ガスが酸化反応を進行させることができる温度であることを条件として、排気ガスに含まれる酸素ならびにDOC21で生成されたNO2によって酸化されることとなる。
つまり、DPF22は、排気ガス温度が高い状況でのみ粒子状物質の酸化を行なうことが可能とされるため、排気ガス温度が高い場合に自然に粒子状物質の酸化を行なう連続再生と、排気ガス温度が低い場合に強制的に排気ガス温度を上昇させて粒子状物質の酸化を行なう強制再生とをエンジン本体1の運転状態等に応じて制御する必要があるとされる。
差圧センサ23は、DOC21の上流側に配置される上流側センサ23aと、DPF22の下流側に配置される下流側センサ23bとから構成されて、それぞれの測定値から圧力差を検出するものである。そして、差圧センサ23は、電子制御コントローラ3に時々刻々と検出結果を伝達しており、電子制御コントローラ3は圧力差の経時変化を把握することによってDPF22における粒子状物質の堆積量を推定することが可能とされる。
温度センサ24は、その先端部をDOC21とDPF22の間に位置するように配置されており、DPF22に導入される排気ガスの温度を測定するものである。そして、温度センサ24は、電子制御コントローラ3に時々刻々と検出結果を伝達しており、電子制御コントローラ3は排気ガス温度を用いたフィードバック制御によって最適な制御信号を作成するものとされる。
なお、本実施形態に係るディーゼルエンジン100では、排気浄化装置2の下流側に排気絞り25が配置されて、排気浄化装置2の内部に生じる排気圧力を調整可能となっている。
次に、電子制御コントローラ3について詳細に説明する。
電子制御コントローラ3は、排気浄化装置2に設けられた差圧センサ23や温度センサ24、そして、図示しないアクセルペダル等のエンジン出力設定手段と電気的に接続されて、これらからの電気信号に基づいて制御信号を作成するとともに前述した燃料噴射ノズル16等に制御信号を出力するものである。なお、電子制御コントローラ3は、運転席等に配置された視覚通知手段である表示パネル4と電気的に接続されて、双方向に電気信号を伝達可能としている。
電子制御コントローラ3には、オペレータの要求に応じてエンジン本体1を制御するとともにDPF22の連続再生や強制再生等に必要な制御を行なうべく、燃料噴射マップ、EGRマップ、吸気絞りマップ、排気絞りマップ等の制御マップが記憶されている。また、これらのマップは後述するモード毎にそれぞれ設定されており、自動選択又は手動選択されたモードに応じて使用されるマップが変更されることとなる。
燃料噴射マップ等の各マップは、例えばオペレータが要求したエンジン回転数やトルクを確保したり、例えば粒子状物質の酸化に必要とされる排気ガス温度を確保したりするために、予め試験によって見出された最適な制御ファクターが記憶されたものである。そして、電子制御コントローラ3は、各マップから制御ファクターを呼出して制御信号を作成することによってディーゼルエンジン100を最適に制御可能としている。
電子制御コントローラ3によって実現可能とされるモードは、燃料消費量を低減するように制御を行なう低燃費モードと、騒音を低減するように制御を行なう低騒音モードと、DPF22における粒子状物質の酸化量が捕集量と同等となるように制御を行なう連続再生モードと、DPF22における粒子状物質の酸化量が捕集量より多くなるように制御を行なう強制再生モードである。低燃費モードと低騒音モードはオペレータによって任意に選択可能とされ、連続再生モードと強制再生モードは、DPF22における粒子状物質の酸化に際して、ディーゼルエンジン100の運転状態等によって自動選択又はオペレータによって手動選択可能とされる。
低燃費モードは、エンジン主体部11の燃焼室において、所定の時期に高い燃焼圧力を生じさせるように構成された制御パターンをいい、該制御パターンを成り立たせる低燃費モード用の各マップを用いることで、ディーゼルエンジン100の燃料消費量を低減可能としたものである。
具体的には、まず、吸気絞り132の開度を全開とすることで燃焼室に供給される吸入空気量を最大とし、排気絞り143・25の開度を最大とすることで排気ガスを円滑に排出可能とする。そして、オペレータが要求するエンジン回転数ならびにトルクに応じた燃料噴射量を最適な時期に燃料噴射ノズル16から燃焼室に供給することによって、燃焼室に高い燃焼圧力が得られるものとされる。
このようにして、燃焼室における最適な時期に高い燃焼圧力を確保することによって回転動力を得るために、ディーゼルエンジン100の燃料消費量を低減することが可能とされる。一方、燃焼圧力の上昇に伴って燃焼音は増加するために、ディーゼルエンジン100が発する騒音は大きくなる。
低騒音モードは、エンジン主体部11の燃焼室において、低燃費モード時と比較して低く、且つ、長期間の燃焼圧力を生じさせるように構成された制御パターンをいい、該制御パターンを成り立たせる低騒音モード用の各マップを用いることで、ディーゼルエンジン100の騒音を低減可能としたものである。
具体的には、まず、吸気絞り132の開度を全開とすることで燃焼室に供給される吸入空気量を最大とし、排気絞り143・25の開度を最大とすることで排気ガスを円滑に排出可能とする。そして、オペレータが要求するエンジン回転数ならびにトルクに応じた燃料噴射量を複数回に分割して最適な時期に燃料噴射ノズル16から燃焼室に供給することによって、比較的に低く、且つ、長期間の燃焼圧力が得られるものとされる。
このようにして、燃焼室内に比較的に低く、且つ、長期間の燃焼圧力を確保することによって燃焼圧力の変化を穏やかなものとし、これによって、燃焼音を抑制できることからディーゼルエンジン100が発する騒音を低減することが可能とされる。一方、燃焼室内に生じる燃焼圧力は低燃費モード時と比較して低いために、ディーゼルエンジン100の燃料消費量は増加する。
本実施形態に係るディーゼルエンジン100では、図2に示すように、表示パネル4に設けられた選択スイッチ41を操作することによって、低燃費モードと低騒音モードのいずれかを任意に選択可能としている。これによって、オペレータの要望に応じた運転が可能となり、経済性ならびに静粛性の向上を図ることができる。また、低燃費モードの選択に伴って低燃費モードランプ411が点灯する、又は低騒音モードの選択に伴って低騒音モードランプ412が点灯するために、オペレータは選択されたモードを即座に把握することが可能とされる。
また、電子制御コントローラ3は、排気浄化装置2に設けられた差圧センサ23の検出結果からDPF22に所定の値以上の粒子状物質が堆積していると判断した場合に、連続再生モード又は強制再生モードを自動選択するものとされる。
連続再生モードは、DPF22における粒子状物質の酸化量が捕集量と同等となるように構成された制御パターンをいい、図3に示すように、ディーゼルエンジン100の出力が所定の値(以降「出力限界値」という。)Ptrより高い場合(図示右上方側)であって、DPF22に捕集された粒子状物質の堆積量が所定の値(以降「堆積限界量」という。)Vtr以上となったときに連続再生モード用の各マップを用いて制御を行なうものとされる。
具体的には、まず、吸気絞り132の開度を全開とすることで燃焼室に供給される吸入空気量を最大とし、排気絞り143・25の開度を最大とすることで排気ガスを円滑に排出可能とする。そして、オペレータが要求するエンジン回転数ならびにトルクに応じた燃料噴射量を一回又は複数回に分割して最適な時期に燃料噴射ノズル16から燃焼室に供給することによって、DPF22に捕集される粒子状物質の捕集量と該DPF22に酸化される酸化量とを平衡させる。
詳細に説明すると、燃焼室での燃焼行程は、粒子状物質の生成にさほど大きな影響を与えない初期燃焼と、粒子状物質の生成に大きな影響を与える後期燃焼とに分けられるために、例えば燃料噴射時期を調整して初期燃焼と後期燃焼との割合を調整することによって、DPF22に捕集される粒子状物質の捕集量と酸化量とを平衡させることが可能となる。なお、排気ガスの温度によってDPF22における粒子状物質の酸化速度も変化するために、温度センサ24による検出結果に基づいてフィードバック制御が行なわれるものとされる。
このようにして、連続再生モードでは、DPF22における粒子状物質の捕集量と酸化量とを平衡させることができて、強制再生を行なうことなくディーゼルエンジン100の運転を行なうことが可能となる。
強制再生モードは、DPF22における粒子状物質の酸化量が捕集量よりも多くなるように構成された制御パターンをいい、図3に示すように、ディーゼルエンジン100の出力が出力限界値Ptrより低い場合(図示左下方側)であって、DPF22に捕集された粒子状物質の堆積量が堆積限界量Vtr以上となったときに強制再生モード用の各マップを用いて制御を行なうものとされる。
具体的には、まず、吸気絞り132の開度を所定の開度まで閉弁することで燃焼室に供給される吸入空気量を制限し、排気絞り143・25の開度を所定の開度まで閉弁することで排気ガスの排出を抑制させる。そして、オペレータが要求するエンジン回転数ならびにトルクに応じた燃料噴射量を複数回に分割して最適な時期に燃料噴射ノズル16から燃焼室に供給するとともに、添加剤ノズル142によって排気ガス中に燃料の添加が行なわれる。これによって、DPF22に捕集される粒子状物質の捕集量より該DPF22に酸化される酸化量が多くなる。
詳細に説明すると、エンジン主体部11の燃焼室内に供給される吸入空気量を制限するとともに燃料噴射時期等を調整することによって、供給された燃料に対する排気ガスの温度を上昇させることが可能となり、更に、添加剤ノズル142から排気ガス中に添加された燃料をDOC21によって酸化することで、強制的に排気ガス温度を上昇させることが可能となる。これによって、DPF22に酸化される酸化量をDPF22に捕集される粒子状物質の捕集量よりも多くすることが可能となる。
このようにして、強制再生モードでは、DPF22における粒子状物質の酸化量を捕集量よりも多くすることができて、DPF22に堆積された粒子状物質を減らすことが可能となる。
本実施形態に係るディーゼルエンジン100では、通常、該ディーゼルエンジン100の運転状態等によって連続再生モード又は強制再生モードを自動選択するものとされるが、オペレータが任意に手動選択することを可能とすべく、表示パネル4には連続再生モードボタン42と強制再生モードボタン43とが備えられている(図2参照。)。これによって、予めいずれかのモードを選択することができて、モードの自動切り替えによる突然のエンジン音や出力特性の変化を防止し、オペレータが異常として誤認することを防ぐことが可能となる。また、連続再生モードの選択に伴って連続再生モードランプ413が点灯する、又は強制再生モードの選択に伴って強制再生モードランプ414が点灯するために、オペレータは選択されたモードを即座に把握することが可能とされる。更に、いずれのモードにおいても再生中ランプ415が点灯することによって粒子状物質を酸化していることが示される。
なお、強制再生モードによる制御によって、DPF22における粒子状物質の酸化が完了した際には、低燃費モード又は低騒音モードへ自動選択されることとなるためにエンジン音や出力特性の変化が生じる場合があったが、本実施形態に係るディーゼルエンジン100では、自動選択又は手動選択されて強制再生を行なっているときに強制再生モードボタン43を押すことによって任意に終了可能とされる。
これにより、オペレータが任意に強制再生モードを終了することができて、モードの自動切り替えによるエンジン音や出力特性の変化が生じることを防止できる。
以上のような構成において、上述した各モードが選択されるステップについて図4を用いて詳細に説明する。
図4は、各モードが選択されるステップを示すフロー図である。電子制御コントローラ3は、選択されているモードが妥当であるか否かを所定の時間ごとに確認するとともに、妥当でないと判断した場合には速やかに更新するとしている。
ステップS101において、電子制御コントローラ3は、差圧センサ23からの検出結果に基づいてDPF22における粒子状物質の堆積量V1を推定する。このとき、電子制御コントローラ3に記憶された運転履歴を参照して補正を加えることによって、高精度に堆積量V1を推定することが可能とされる。
ステップS102において、予め試験によって見出されて電子制御コントローラ3に記憶されている堆積限界量VtrとステップS101にて推定された堆積量V1とが比較される。そして、堆積限界量VtrよりステップS101で推定された堆積量V1が少ないと判断された場合にはステップS103へ移行する。なお、堆積限界量Vtrは、DPF22の基材の種類や大きさ、ディーゼルエンジン100が多用される運転状態等から試験によって定められる値であり、具値的な値を限定するものではない。
ステップS103において、電子制御コントローラ3は、オペレータが低燃費モード又は低騒音モードのいずれの運転パターンを要求しているかの判断を行なう。具体的には表示パネル4に備えられた選択スイッチ41が低燃費モード又は低騒音モードのどちらを指示しているかが判断される。
このようにして、例えばオペレータが低燃費モードによる運転パターンを要求して選択スイッチ41を低燃費モード側に操作していた場合には、電子制御コントローラ3は、低燃費モード用の各マップを用いた制御を行ない、例えばオペレータが低騒音モードによる運転パターンを要求して選択スイッチ41を低騒音モード側に操作していた場合には、電子制御コントローラ3は、低騒音モード用の各マップを用いた制御を行なうこととなる。
一方、ステップS102において、ステップS101で推定された堆積量V1が堆積限界量Vtr以上であると判断された場合にはステップS104へ移行する。ステップS104では、エンジン回転数や燃焼室に供給された燃料噴射量等からエンジン本体1の出力値P1の算出が行なわれる。つまり、エンジン回転センサによって検出されたエンジン回転数と、燃料噴射ノズル16への燃料噴射量の制御信号を参照することによって、エンジン本体1の出力値P1の算出が行なわれる。
ステップS105において、予め試験によって見出されて電子制御コントローラ3に記憶されている出力限界値PtrとステップS104にて算出された出力値P1とが比較される。そして、ステップS104で推定された出力値P1が出力限界値Ptr以上であると判断された場合にはステップS106へ移行する。なお、出力限界値Ptrは、DPF22が連続再生を行なうために必要な排気ガス温度を確保できるエンジン本体1の出力値をいい、エンジン本体1から排気浄化装置2までの距離等によって変化するために具値的な値を限定するものではない。
ステップS106において、電子制御コントローラ3は、オペレータが連続再生モード又は強制再生モードのいずれの運転パターンを要求しているかの判断を行なう。エンジン本体1の出力値P1が出力限界値Ptr以上である場合は排気ガス温度も高いために、通常では連続再生モードが自動選択されることとなるが、例えばオペレータが繊細な作業を行なう場合には、強制再生モードを選択してDPF22における粒子状物質の酸化を予め完了しておくことで繊細な作業中にモードの自動切り替えによるエンジン音や出力特性の変化が生じることを防止できる。
このように、通常では連続再生モードが自動選択される場合であっても、例えばオペレータが強制再生モードによる運転パターンを要求して強制再生モードボタン43を押した場合には、強制再生モード用の各マップを用いた制御を行なうことを可能としている。
一方、ステップS105において、出力限界値PtrよりステップS104で算出された出力値P1が小さいと判断された場合にはステップS107へ移行するものとされる。ステップS107では、電子制御コントローラ3は、オペレータが強制再生モード又は連続再生モードのいずれの運転パターンを要求しているかの判断を行なう。エンジン本体1の出力値P1が出力限界値Ptrよりも低い場合は排気ガス温度も低いために、通常では強制再生モードが自動選択されることとなるが、例えばオペレータが繊細な作業を行なう場合には、予め連続再生モードを選択しておくことで繊細な作業中にモードの自動切り替えによるエンジン音や出力特性の変化が生じることを防止できる。
このように、通常では強制再生モードが自動選択される場合であっても、例えばオペレータが連続再生モードによる運転パターンを要求して連続再生モードボタン42を押した場合には、連続再生モード用の各マップを用いた制御を行なうことを可能としている。
本発明は、排気浄化装置を有するディーゼルエンジンに利用可能である。
Claims (3)
- 排気ガスに含まれる粒子状物質を捕集するとともに酸化させるディーゼルパティキュレートフィルタが設けられたディーゼルエンジンにおいて、
選択されたモードに応じて制御信号を作成して前記ディーゼルエンジンの制御を行なう電子制御コントローラを備え、
前記電子制御コントローラは、
前記ディーゼルエンジンの燃料消費量を低減するように制御を行なう低燃費モードと、
前記ディーゼルエンジンの騒音を低減するように制御を行なう低騒音モードと、のいずれかを任意に選択可能とし、
前記ディーゼルエンジンの出力が所定の値より高い場合であって、前記ディーゼルパティキュレートフィルタに捕集された粒子状物質の堆積量が所定の値以上となったときには、その酸化量が捕集量と同等となるように制御を行なう連続再生モードを自動選択し、
前記ディーゼルエンジンの出力が所定の値より低い場合であって、前記ディーゼルパティキュレートフィルタに捕集された粒子状物質の堆積量が所定の値以上となったときには、その酸化量が捕集量より多くなるように制御を行なう強制再生モードを自動選択し、
前記連続再生モードおよび前記強制再生モードのいずれか一方が手動選択されることによっても選択されたモードに応じて制御を開始することを可能とした、ことを特徴とするディーゼルエンジン。 - 前記電子制御コントローラは、前記ディーゼルパティキュレートフィルタに堆積した粒子状物質の酸化が完了したときに前記強制再生モードを自動終了させるとともに、手動終了させることも可能とした、ことを特徴とする請求項1に記載のディーゼルエンジン。
- 前記電子制御コントローラは、自動選択又は手動選択されたモードを視覚通知手段に表示する、ことを特徴とする請求項1に記載のディーゼルエンジン。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/377,092 US8656707B2 (en) | 2009-06-08 | 2010-05-28 | Diesel engine |
EP10786076.9A EP2441931A4 (en) | 2009-06-08 | 2010-05-28 | Diesel engine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-137651 | 2009-06-08 | ||
JP2009137651A JP5281488B2 (ja) | 2009-06-08 | 2009-06-08 | ディーゼルエンジン |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010143545A1 true WO2010143545A1 (ja) | 2010-12-16 |
Family
ID=43308800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/059116 WO2010143545A1 (ja) | 2009-06-08 | 2010-05-28 | ディーゼルエンジン |
Country Status (4)
Country | Link |
---|---|
US (1) | US8656707B2 (ja) |
EP (1) | EP2441931A4 (ja) |
JP (1) | JP5281488B2 (ja) |
WO (1) | WO2010143545A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5307056B2 (ja) | 2010-03-05 | 2013-10-02 | ヤンマー株式会社 | エンジン装置 |
CN102383905B (zh) * | 2011-11-08 | 2012-12-26 | 上海三一重机有限公司 | 一种工程机械用发动机后处理再生的智能控制方法 |
JP2013241936A (ja) * | 2013-06-26 | 2013-12-05 | Yanmar Co Ltd | エンジン装置 |
JP5643389B2 (ja) * | 2013-06-26 | 2014-12-17 | ヤンマー株式会社 | エンジン装置 |
DE102014225321A1 (de) * | 2014-12-09 | 2016-06-09 | Robert Bosch Gmbh | Verfahren, Computerprogramm, elektronisches Speichermedium und elektronisches Steuergerät zurSteuerung einer Brennkraftmaschine |
US10319357B2 (en) * | 2017-01-20 | 2019-06-11 | Wipro Limited | System and a method for attenuating sound produced by a vehicle |
US10364765B2 (en) * | 2017-02-15 | 2019-07-30 | GM Global Technology Operations LLC | Method to select optimal mode on a multi-mode engine with charging |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10159606A (ja) * | 1996-12-03 | 1998-06-16 | Yanmar Agricult Equip Co Ltd | 電子ガバナー機構付エンジン搭載乗用田植機 |
JP2000213332A (ja) * | 1999-01-26 | 2000-08-02 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2005282545A (ja) | 2004-03-31 | 2005-10-13 | Isuzu Motors Ltd | 排気ガス浄化システムの制御方法及び排気ガス浄化システム |
JP2006083828A (ja) * | 2004-09-17 | 2006-03-30 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2006316731A (ja) * | 2005-05-13 | 2006-11-24 | Honda Motor Co Ltd | 内燃機関の排ガス浄化装置 |
JP2009057888A (ja) * | 2007-08-31 | 2009-03-19 | Iseki & Co Ltd | ディーゼルエンジン |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4884398A (en) * | 1987-10-19 | 1989-12-05 | Shin Caterpillar Mitsubishi Ltd. | Method of and apparatus for reducing engine smoke emissions |
JP4273911B2 (ja) * | 2003-10-07 | 2009-06-03 | 三菱ふそうトラック・バス株式会社 | 車両の排気浄化装置 |
JP2005264785A (ja) * | 2004-03-17 | 2005-09-29 | Nissan Motor Co Ltd | ディーゼルエンジンの排気後処理装置 |
JP2005282533A (ja) * | 2004-03-30 | 2005-10-13 | Isuzu Motors Ltd | ディーゼルエンジンの排気ガス後処理装置 |
JP4175282B2 (ja) * | 2004-03-31 | 2008-11-05 | いすゞ自動車株式会社 | 排気ガス浄化システムの制御方法及び排気ガス浄化システム |
JP4148178B2 (ja) * | 2004-04-08 | 2008-09-10 | いすゞ自動車株式会社 | 排気ガス浄化システムの制御方法及び排気ガス浄化システム |
JP4161932B2 (ja) * | 2004-04-09 | 2008-10-08 | いすゞ自動車株式会社 | 排気ガス浄化システムの制御方法及び排気ガス浄化システム |
FR2872202B1 (fr) * | 2004-06-23 | 2006-11-03 | Peugeot Citroen Automobiles Sa | Systeme d'aide a la regeneration de moyens de depollution pour moteur de vehicule automobile |
JP3824003B2 (ja) * | 2005-02-24 | 2006-09-20 | いすゞ自動車株式会社 | 排気ガス浄化システム |
JP3988785B2 (ja) * | 2006-02-01 | 2007-10-10 | いすゞ自動車株式会社 | 排気ガス浄化システムの制御方法及び排気ガス浄化システム |
JP4928335B2 (ja) * | 2007-04-17 | 2012-05-09 | 日野自動車株式会社 | 排気浄化装置 |
JP5122896B2 (ja) * | 2007-09-25 | 2013-01-16 | 日立建機株式会社 | 建設機械の排気ガス浄化システム |
-
2009
- 2009-06-08 JP JP2009137651A patent/JP5281488B2/ja not_active Expired - Fee Related
-
2010
- 2010-05-28 EP EP10786076.9A patent/EP2441931A4/en not_active Withdrawn
- 2010-05-28 US US13/377,092 patent/US8656707B2/en active Active
- 2010-05-28 WO PCT/JP2010/059116 patent/WO2010143545A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10159606A (ja) * | 1996-12-03 | 1998-06-16 | Yanmar Agricult Equip Co Ltd | 電子ガバナー機構付エンジン搭載乗用田植機 |
JP2000213332A (ja) * | 1999-01-26 | 2000-08-02 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2005282545A (ja) | 2004-03-31 | 2005-10-13 | Isuzu Motors Ltd | 排気ガス浄化システムの制御方法及び排気ガス浄化システム |
JP2006083828A (ja) * | 2004-09-17 | 2006-03-30 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2006316731A (ja) * | 2005-05-13 | 2006-11-24 | Honda Motor Co Ltd | 内燃機関の排ガス浄化装置 |
JP2009057888A (ja) * | 2007-08-31 | 2009-03-19 | Iseki & Co Ltd | ディーゼルエンジン |
Non-Patent Citations (1)
Title |
---|
See also references of EP2441931A4 |
Also Published As
Publication number | Publication date |
---|---|
EP2441931A1 (en) | 2012-04-18 |
JP5281488B2 (ja) | 2013-09-04 |
JP2010281311A (ja) | 2010-12-16 |
US20120079815A1 (en) | 2012-04-05 |
EP2441931A4 (en) | 2017-11-15 |
US8656707B2 (en) | 2014-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5281488B2 (ja) | ディーゼルエンジン | |
JP5345301B2 (ja) | ディーゼル粒子フィルターの再生管理 | |
JP4177863B2 (ja) | 車両用エンジンの制御装置 | |
JP4692220B2 (ja) | 内燃機関の排気浄化装置 | |
JP2005256713A (ja) | 内燃機関の排気浄化装置 | |
EP1255031B1 (en) | Control system and method for vehicle having an internal combustion engine with turbocharger and a transmission | |
JP2003269223A (ja) | 内燃機関の排気浄化装置 | |
JP2009540208A (ja) | 内燃機関の排気ガス領域内に配置された排気ガス浄化システムの作動方法 | |
JP6098595B2 (ja) | エンジンの排気還流制御装置 | |
JP2010077919A (ja) | エンジン制御装置 | |
JP4012043B2 (ja) | パティキュレートフィルタの再生方法 | |
WO2010143546A1 (ja) | ディーゼルエンジン | |
JP4447510B2 (ja) | 内燃機関の排ガス浄化装置 | |
US8109082B2 (en) | System and method for assisting regeneration of a diesel engine particulate filter | |
JP2007064055A (ja) | 内燃機関の排気浄化装置 | |
JP3551160B2 (ja) | 車両の制御装置 | |
JP4779785B2 (ja) | エンジンの排気系温度制御装置 | |
JP3841070B2 (ja) | ハイブリッド車両の制御装置 | |
JP2005048623A (ja) | ハイブリッド車両の制御装置 | |
EP1627136B1 (en) | Regeneration of diesel particulate filters using lambda variation | |
JP2005006378A (ja) | ハイブリッドエンジン | |
JP3812552B2 (ja) | ハイブリッド車両の制御装置 | |
JP4325580B2 (ja) | 内燃機関の制御装置 | |
JP5286672B2 (ja) | 車載ディーゼルエンジンの排気浄化装置 | |
JP4063743B2 (ja) | 内燃機関の燃料噴射時期制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10786076 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13377092 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010786076 Country of ref document: EP |