WO2010143433A1 - 高強度鋼管及びその製造方法 - Google Patents

高強度鋼管及びその製造方法 Download PDF

Info

Publication number
WO2010143433A1
WO2010143433A1 PCT/JP2010/003866 JP2010003866W WO2010143433A1 WO 2010143433 A1 WO2010143433 A1 WO 2010143433A1 JP 2010003866 W JP2010003866 W JP 2010003866W WO 2010143433 A1 WO2010143433 A1 WO 2010143433A1
Authority
WO
WIPO (PCT)
Prior art keywords
bainite
less
steel pipe
steel
strength
Prior art date
Application number
PCT/JP2010/003866
Other languages
English (en)
French (fr)
Inventor
長井健介
篠原康浩
坂本真也
原卓也
朝日均
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to US13/261,070 priority Critical patent/US8685182B2/en
Priority to CN2010800252074A priority patent/CN102803535A/zh
Priority to BRPI1012964A priority patent/BRPI1012964A2/pt
Priority to CA2764650A priority patent/CA2764650C/en
Priority to EP10785965.4A priority patent/EP2441854B1/en
Priority to JP2010541624A priority patent/JP4741715B2/ja
Priority to KR1020117030056A priority patent/KR101364392B1/ko
Publication of WO2010143433A1 publication Critical patent/WO2010143433A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Definitions

  • the present invention relates to a high-strength steel pipe excellent in deformation characteristics as it is manufactured (before aging) and after aging, and a manufacturing method thereof.
  • This application claims priority based on Japanese Patent Application No. 2009-140280 filed in Japan on June 11, 2009, the contents of which are incorporated herein by reference.
  • the line pipe is required to have a steel pipe for a line pipe that is excellent in internal pressure resistance, does not easily buckle against bending deformation, and has excellent strength and deformability.
  • Patent Documents 2 and 3 In order to suppress such strain aging caused by molding and heating, steel pipes utilizing Ni, Cu, and Mo have been proposed (for example, see Patent Documents 2 and 3).
  • the strength is increased by hard bainite, and the deformability is improved by soft ferrite. Therefore, it was necessary to control the amount of ferrite produced by the control cooling start temperature and the cooling rate after hot rolling.
  • the present inventors have found that in order to improve the deformation performance of a steel pipe having a bainite structure, it is effective to stop accelerated cooling at a high temperature before the bainite transformation is completed. Furthermore, the present inventors have found that the deformation performance of the steel pipe is improved and the deformation performance after aging is excellent due to recovery of strain caused by accelerated cooling and bainite transformation, that is, reduction of the dislocation density of the steel. When accelerated cooling is stopped at a high temperature, bainite transformation has not been completed, so austenite remains in the remainder of the bainite structure.
  • the remaining austenite is transformed into bainite, and the bainite transformation is carried out in a range from the accelerated cooling stop temperature to a temperature about 50 ° C. lower than the stop temperature.
  • the bainite generated during the accelerated cooling is relatively soft.
  • generated after the stop of accelerated cooling is harder than the bainite produced
  • the present invention has been made based on such knowledge, and the gist thereof is as follows.
  • the high-strength steel pipe according to one aspect of the present invention is, in mass%, C: 0.02 to 0.09%, Mn: 0.4 to 2.5%, Cr: 0.1 to 1.0 %, Ti: 0.005 to 0.03%, Nb: 0.005 to 0.3%, the balance containing iron and inevitable impurities, Si: 0.6% or less, Al: 0.1 % Or less, P: 0.02% or less, S: 0.005% or less, N: 0.008% or less, and a bainite transformation index BT determined by the formula (2) described later is 650 ° C.
  • the metal structure is a simple bainite structure including a first bainite and a second bainite, the first bainite is a texture of bainitic ferrite containing no carbide, and the second bainite is Bainitic ferrite containing no carbide and the bainitic It is a mixed structure of cementite during ferrite.
  • the high-strength steel pipe described in the above (1) is in mass%, Ni: 0.65% or less, Cu: 1.5% or less, Mo: 0.3% or less, V: 0.2% or less You may further contain at least 1 sort (s) of these.
  • the total amount of the first bainite and the second bainite may be 95% or more of the entire structure.
  • the product of the tensile strength in the pipe axis direction and the n value at a tensile strain of 1 to 5% may be 60 or more.
  • a steel slab satisfying the steel components described in the above (1) or (2) is heated, and the steel slab is heated to 750 to 870 ° C.
  • Hot rolling finish rolling is performed within the range of, and accelerated cooling with a cooling rate of 5 to 50 ° C./s is started at 750 ° C. or higher, and the accelerated cooling is stopped within the range of 500 to 600 ° C., and air cooling is performed.
  • a steel plate is produced, the steel plate is cold-formed into a tubular shape, and the butt portion is welded.
  • a high-strength steel pipe having a predetermined simple bainite structure advantageous for productivity and having sufficient deformation performance even after aging by heating such as a coating process, and a method for producing the same. And the industrial contribution is very significant.
  • the inventors first studied the relationship between the accelerated cooling stop temperature and the mechanical characteristics of a steel material whose components were adjusted so that the metal structure of the steel material had a bainite structure.
  • the product [TS ⁇ n] of the tensile strength TS and the n value was used as an index representing the balance between strength and ductility.
  • the n value is a general index for evaluating work hardening characteristics, and is obtained from the relationship (stress-strain curve) between the true stress ⁇ and the true strain ⁇ in the following equation (1).
  • n K ⁇ n (1) Since the correlation between the n value obtained by the tensile test within the range of 1 to 5% and the buckling characteristics of the steel pipe is remarkable, in the present invention, within the range of 1 to 5% strain.
  • the n value is obtained. That is, the relationship between the true stress ⁇ and the true strain ⁇ is obtained by a tensile test, and the exponent part (n) of the equation (1) is calculated from the relationship between the true stress ⁇ and the true strain ⁇ within the range of 1 to 5% of the strain amount. Value).
  • the parameter K in the above equation (1) is a constant determined by the material.
  • Fig. 1 shows the relationship between the accelerated cooling stop temperature (cooling stop temperature) and the strength-ductility balance [TS x n].
  • the strength-ductility balance [TS ⁇ n] increases. That is, the balance between the strength and ductility of the steel material having a simple bainite structure is improved by increasing the cooling stop temperature.
  • the balance between the strength and ductility of this steel material is considered to improve for the following reasons.
  • the remaining austenite is transformed into bainite, and the bainite transformation is completed in a range from the acceleration cooling stop temperature to a temperature about 50 ° C. lower than the stop temperature.
  • the strain generated by the accelerated cooling and the bainite transformation is recovered, so that the bainite generated during the accelerated cooling is relatively soft.
  • generated after the stop of accelerated cooling is harder than the bainite produced
  • the present inventors examined the influence of aging when applying anticorrosion coating to a steel pipe.
  • the temperature range for coating heating is about 150 to 300 ° C.
  • the present inventors examined changes in the strength-ductility balance [TS ⁇ n] with respect to aging temperature using three types of steel pipes having a simple bainite structure. The results are shown in FIG.
  • the strength-ductility balance [TS ⁇ n] of three types of steel pipes indicated by white circles “ ⁇ ”, white triangles “ ⁇ ”, and white squares “ ⁇ ” is as follows. The lowest aging temperature was found to be 200 ° C.
  • the stop temperature of accelerated cooling is increased to 500 ° C. or higher, in order to complete the bainite transformation, it is necessary to adjust the steel component composition to an appropriate range.
  • the present inventors examined the influence of steel components on the bainite transformation. As a result, it has been found that if the bainite transformation index BT obtained by the following equation (2) is 650 ° C. or less, the bainite transformation is completed even if accelerated cooling is stopped at 500 ° C. or more.
  • C 0.02 to 0.09% C is an extremely effective element for improving the strength of steel. In order to obtain sufficient strength, 0.02% or more of C is added to the steel. On the other hand, if the amount of C is more than 0.09%, the low temperature toughness of the base metal and the weld heat affected zone is lowered, and the on-site weldability is deteriorated. Therefore, the upper limit of the C amount is 0.09%. Therefore, the C content is 0.02% or more and 0.09% or less.
  • Mn 0.4 to 2.5% Mn is an extremely important element for improving the balance between strength and low temperature toughness. Therefore, 0.4% or more of Mn is added to the steel. On the other hand, if the amount of Mn is more than 2.4%, segregation (center segregation) at the center of the plate thickness parallel to the steel plate surface becomes significant. In order to suppress the deterioration of the low temperature toughness due to the center segregation, the upper limit of the Mn amount is set to 2.4%. Therefore, the amount of Mn is 0.4% or more and 2.5% or less.
  • Cr 0.1 to 1.0% Cr increases the strength of the base material and the weld. Therefore, 0.1% or more of Cr is added to the steel. However, if the Cr content is more than 1.0%, the HAZ toughness and on-site weldability deteriorate significantly, so the upper limit of the Cr content is set to 1.0% or less. Therefore, the Cr content is 0.1% or more and 1.0% or less.
  • Ti 0.005 to 0.03%
  • Ti forms fine TiN, refines the structure of the base material and the weld heat affected zone, and contributes to improved toughness. This effect appears very remarkably by the combined addition with Nb. In order to sufficiently exhibit this effect, 0.005% or more of Ti needs to be added to the steel.
  • the amount of Ti is more than 0.03%, TiN coarsening and precipitation hardening due to TiC occur, so the low-temperature toughness decreases. Therefore, the upper limit of Ti content is limited to 0.03%. Therefore, the Ti content is 0.005% or more and 0.03% or less.
  • Nb 0.005 to 0.3%
  • Nb not only suppresses recrystallization of austenite during controlled rolling to refine the structure, but also increases hardenability and improves steel toughness. In order to obtain this effect, 0.005% or more of Nb needs to be added to the steel. On the other hand, if the Nb amount is more than 0.3%, the toughness of the weld heat affected zone is lowered, so the upper limit of the Nb amount is made 0.3% or less. Therefore, the Nb amount is 0.005% or more and 0.3% or less.
  • Si 0.6% or less (including 0%) Si is an element that acts as a deoxidizer and contributes to strength improvement. If Si is added to the steel in an amount of more than 0.6%, the on-site weldability deteriorates significantly, so the upper limit of Si content is limited to 0.6%. Moreover, it is preferable to add 0.001% or more of Si for deoxidation. Furthermore, it is more preferable to add 0.1% or more of Si in order to increase the strength.
  • Al 0.1% or less (excluding 0%) Al is an element that is generally used as a deoxidizer and refines the structure. However, when the Al content exceeds 0.1%, Al-based non-metallic inclusions increase and the cleanliness of the steel is impaired. Therefore, the upper limit of Al content is limited to 0.1%. Moreover, in order to fix the solid solution N which influences age hardening by precipitation of AlN, it is preferable to add 0.001% or more of Al.
  • P 0.02% or less (including 0%)
  • P is an impurity.
  • the upper limit of the P content is limited to 0.02% or less.
  • the amount of P is reduced, grain boundary fracture is prevented and low temperature toughness is improved.
  • the amount of P is so preferable that it is small, from a balance with a characteristic and cost, 0.001% or more of P is usually contained in steel.
  • S 0.005% or less (including 0%) S is an impurity.
  • the upper limit of the amount of S is made 0.005% or less.
  • the amount of S is preferably as small as possible, but usually contains 0.0001% or more of S in the steel from the balance between characteristics and cost.
  • N 0.008% or less (including 0%)
  • N is an impurity. Since the low temperature toughness decreases due to the coarsening of TiN, the upper limit of the N content is limited to 0.008% or less. Moreover, N forms TiN and suppresses the coarsening of crystal grains in the base material and the weld heat affected zone. In order to improve low temperature toughness, it is preferable to contain 0.001% or more of N in the steel.
  • Bainite transformation index BT 650 ° C. or less
  • the content of C, Mn, Mo, Ni, Cr in the steel is adjusted, and the bainite transformation index BT determined by the above-described equation (1) is 650 ° C. or less. It is extremely important to do.
  • the bainite transformation index BT is set to 650 ° C. or lower, the bainite transformation is completed even if the accelerated cooling is stopped at 500 ° C. or higher.
  • the dislocation density decreases due to the recovery at the time of air cooling after the stop of the accelerated cooling, and the deformability as produced (before aging) and the deformability after aging, that is, the deformation characteristics are increased.
  • BT is calculated by setting the contents of Mo and Ni to zero.
  • the upper limit of BT is not prescribed
  • regulated 780.3 degreeC or less may be sufficient from the lower limit of content of C, Mn, and Cr.
  • one or more of Ni, Cu, Mo, and V may be added to the steel.
  • Ni 0.65% or less (including 0%) Ni is an element that improves strength without degrading low-temperature toughness. When the addition amount of Ni exceeds 0.65%, the HAZ toughness decreases. Therefore, it is preferable to set the upper limit of the Ni amount to 0.65% or less.
  • Cu 1.5% or less (including 0%) Cu is an element that improves the strength of the base material and the weld heat affected zone. If the added amount of Cu exceeds 1.5%, the on-site weldability decreases. Therefore, it is preferable that the upper limit of the amount of Cu is 1.5% or less.
  • Mo 0.3% or less (including 0%) Mo is an element that improves hardenability and increases strength. If the amount of Mo exceeds 0.3%, the HAZ toughness deteriorates. Therefore, it is preferable that the upper limit of the Mo amount be 0.3% or less.
  • V 0.2% or less (including 0%) V, like Nb, contributes to refinement of the structure and increase of hardenability, and increases the toughness of the steel. However, the effect of adding V is small compared to Nb. V is effective for suppressing softening of the weld. From the viewpoint of ensuring the toughness of the welded portion, the upper limit of the V amount is preferably 0.2% or less.
  • FIG. 3 is an example of a mixed structure of ferrite and bainite
  • FIG. 4 is an example of a simple bainite structure.
  • ferrite is defined as ferrite crystal grains (ferrite phase) that do not contain lath grain boundaries and carbides, as indicated by arrows in FIG.
  • This ferrite is, for example, pro-eutectoid ferrite.
  • the steel structure is, for example, a simple bainite structure shown in FIG.
  • the components of the steel are adjusted in order to increase the strength and toughness of the weld heat affected zone. Therefore, with this steel component, it is difficult to generate ferrite as shown by the arrows in FIG.
  • the ferrite (ferrite fraction) contained in this simple bainite structure is limited to 5% or less of the entire structure, the strength characteristics due to aging Can be ignored. Therefore, 5% or less of ferrite may be contained in the steel.
  • the ferrite and the bainite structure can be distinguished using an optical microscope.
  • the simple bainite structure may contain 3% or less of martensite-austenite composite, so-called MA (Martensite-Austenite constituents). However, if the MA is 3% or less, the influence on the mechanical properties can be ignored, and therefore 3% or less of MA may be contained in the steel.
  • the simple bainite structure mainly includes a first bainite and a second bainite among the following three types of bainite.
  • the first bainite (high-temperature bainite) 10 is a structure in which elongated bainitic ferrites 2a mainly grown from the prior austenite grain boundaries 1 are gathered.
  • residual austenite 3 may exist between the bainitic ferrites 2a. Since this first bainite 10 has a small amount of C and is susceptible to strain recovery due to holding at a high temperature, it contains almost no carbide and is relatively soft. Therefore, this first bainite 10 can enhance the deformation performance of the steel pipe. Further, as shown in FIG.
  • the second bainite (medium temperature bainite) 11 is a mixed structure of elongated bainitic ferrite 2a and cementite 4 between bainitic ferrite 2a.
  • the second bainite 11 is harder than the first bainite 10.
  • the bainitic ferrite 2a contained in the first bainite 10 and the second bainite 11 does not contain carbide. That is, the simple bainite structure contains bainitic ferrite 2a that does not contain carbide. Further, as shown in FIG.
  • the third bainite (low-temperature bainite) 12 is a mixed structure of elongated bainitic ferrite 2b in which carbides 5 are formed in grains and cementite 4 between the bainitic ferrite 2b. is there.
  • the third bainite 12 is present, the strain of the first bainite 10 is not sufficiently recovered, so that the structure non-uniformity in strength is less likely to occur, and the deformation performance of the steel pipe is difficult to improve. Therefore, it is preferable that the third bainite 12 is as few as possible. In order to sufficiently recover the strain of the first bainite 10, it is necessary to limit the bainitic ferrite 2b containing the third bainite 12 or carbide to 1% or less.
  • the cementite 4 may contain a carbide such as niobium carbide as an impurity. Therefore, in the present invention, the simple bainite structure mainly contains the first bainite and the second bainite. The total amount of the first bainite and the second bainite is preferably 95% or more of the entire structure. In this simple bainite structure, a third bainite may be generated unexpectedly. Therefore, 1% or less of the third bainite may be included in the simple bainite structure. In order to distinguish the three types of bainite, a transmission microscope (TEM) can be used.
  • TEM transmission microscope
  • the steel pipe having the above-described steel components and structure is excellent in deformation characteristics, particularly strength-ductility balance after aging.
  • a steel pipe for a line pipe manufactured by controlled rolling and accelerated cooling is heated to 150 to 300 ° C. when a resin coating is applied.
  • the aging temperature at which the strength-ductility balance decreases most is 200 ° C.
  • the product of the tensile strength TS in the tube axis direction and the n value (work hardening coefficient) at a tensile strain of 1 to 5% is 60 or more.
  • This steel pipe is excellent in deformation characteristics after aging even when heat treatment is performed at an aging temperature at which the strength-ductility balance decreases most.
  • the manufacturing method of the steel pipe in one Embodiment of this invention is demonstrated.
  • a steel pipe according to the present embodiment after melting steel, it is cast to produce a steel slab, this steel slab is heated and hot rolled, then cooled to produce a steel sheet, and the steel sheet is cooled.
  • a steel pipe is manufactured by forming the tube into a cylindrical shape and welding the ends together. The manufactured steel pipe is heated to a temperature of 150 to 350 ° C. when coating the surface of the steel pipe with a resin film or the like for corrosion prevention.
  • the heating temperature of the hot-rolled steel slab is not specified, it is preferably 1000 ° C. or higher in order to reduce the deformation resistance. Moreover, in order to make Nb and Cr carbides dissolve in steel, it is more preferable to heat the steel piece to 1050 ° C. or higher. On the other hand, when the heating temperature exceeds 1300 ° C., the crystal grains become coarse and the toughness may be lowered. Therefore, the heating temperature is preferably 1300 ° C. or lower.
  • finish rolling of hot rolling is performed at less than 750 ° C.
  • ferrite is generated before rolling, and processed ferrite is generated during rolling.
  • the hot rolling finish rolling is performed at 750 ° C. or higher in order to impair the deformation performance of the steel pipe.
  • finish rolling is performed at 870 ° C. or lower.
  • start temperature of finish rolling is 870 ° C. or lower
  • end temperature is 750 ° C. or higher.
  • Accelerated cooling starts immediately after hot rolling.
  • the start temperature of accelerated cooling is significantly lower than 750 ° C.
  • layered ferrite is generated in the steel, and the strength and toughness are reduced.
  • the start of accelerated cooling is delayed, the dislocations introduced by the non-recrystallized zone rolling recover and the strength decreases.
  • Acceleration cooling stop temperature is extremely important to obtain a steel pipe with excellent deformation characteristics. As shown in FIG. 1 described above, generally, as the cooling stop temperature increases, the strength-ductility balance [TS ⁇ n] increases. FIG. 1 shows that when the cooling stop temperature is set to 500 ° C. or higher, the strength-ductility balance [TS ⁇ n] rapidly increases. In this example, in order to reduce the dislocation density in the steel, the lower limit of the stop temperature of accelerated cooling is set to 500 ° C. or higher. After the accelerated cooling is stopped, air cooling (for example, less than 5 ° C./s) is performed to produce a steel plate.
  • air cooling for example, less than 5 ° C./s
  • the density of dislocations introduced during bainite transformation decreases, dislocations (strains) recover during air cooling, and the deformation characteristics of a steel pipe having a simple bainite structure can be improved.
  • the upper limit of the stop temperature of accelerated cooling exceeds 600 ° C., layered ferrite is generated in the steel, and the strength and toughness are lowered. Therefore, the accelerated cooling stop temperature is 500 to 600 ° C.
  • the cooling rate of this accelerated cooling is 5 to 50 ° C./s.
  • the cooling rate of this accelerated cooling is preferably 10 to 50 ° C./s.
  • the first bainite is mainly generated, and the second bainite is mainly generated immediately before the stop of the accelerated cooling and after the stop of the accelerated cooling. Therefore, by controlling the cooling rate and the cooling stop temperature in this way, a mixed structure of the first bainite and the second bainite can be obtained as described above.
  • a 3rd bainite produces
  • the steel plate after manufacture is formed into a tubular shape in the cold, and the butt portion is welded to manufacture a steel pipe. From the viewpoint of productivity, the UOE process or the bend process is preferable. Moreover, it is preferable to use submerged arc welding for welding of a butt
  • Steel pipes are usually subjected to anticorrosion coating such as resin coating.
  • the temperature range for coating heating of the steel pipe is 150 ° C. to 300 ° C.
  • the metal structure of the manufactured steel pipe was observed with an optical microscope to confirm the presence or absence of ferrite. Moreover, the kind of bainite was confirmed using the scanning electron microscope (SEM) or the transmission electron microscope (TEM). Furthermore, after cutting out a part of steel pipe and performing an aging treatment at 200 degreeC using a salt bath, the arc-shaped full thickness tensile test piece (API specification) was extract
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the work hardening coefficient (n value) is calculated by using the formula (1) from the relationship (stress-strain curve) between the true stress ⁇ and the true strain ⁇ at a tensile strain of 1 to 5%. Calculated. Further, the strength-ductility balance [TS ⁇ n] was calculated from the product of the tensile strength TS and the work hardening coefficient (n value).
  • Table 1 shows the chemical composition of the steel
  • Table 2 shows a method for manufacturing the steel pipe.
  • the steel pipes of Examples 1 to 10 had a simple bainite structure having the first bainite (B1) and the second bainite (B2) described above. Further, in this simple bainite structure, ferrite (F) and third bainite (B3) were not confirmed.
  • Comparative Example 1 not only the first bainite (B1) and the second bainite (B2) but also the third bainite (B3) was generated in the metal structure.
  • Comparative Example 2 ferrite (F) was also generated in the metal structure in addition to the above three types of bainite (B1, B2, B3).
  • the bainite transformation index BT exceeds 650 ° C.
  • the strength-ductility balance [TS ⁇ n] was less than 60, and ferrite (F) and third bainite (B3) were generated in the metal structure.
  • the bainite transformation index BT is 650 ° C. or less and that the amount of ferrite (F) and third bainite (B3) produced is limited.
  • the steel pipes of these comparative examples 3 to 5 satisfy the composition of the present invention with respect to the conditions regarding the chemical components excluding the bainite transformation index BT.
  • the steel pipes of Comparative Examples 6 to 9 are steels (A, E, B) satisfying the composition of the present invention shown in Table 1 and the stop temperature of accelerated cooling is less than 500 ° C. as shown in Table 2. It is a steel pipe manufactured under certain manufacturing conditions (production Nos. 16 to 19).
  • the strength-ductility balance [TS ⁇ n] was less than 60, and the third bainite (B3) was generated in the metal structure. Therefore, it can be seen that in these Comparative Examples 6 to 9, good characteristics (deformation performance) cannot be obtained. Therefore, it can be seen that it is important to limit the amount of third bainite (B3) produced in order to sufficiently secure the deformation performance. Furthermore, the steel pipes of Comparative Examples 1 to 9 had a strength-ductility balance [TS ⁇ n] of less than 60 when aging treatment was performed at 200 ° C.
  • the symbol “B” in Table 3 is a structure including the first bainite (B1), the second bainite (B2), and the third bainite (B3).

Abstract

 この高強度鋼管は、質量%で、C:0.02~0.09%、Mn:0.4~2.5%、Cr:0.1~1.0%、Ti:0.005~0.03%、Nb:0.005~0.3%を含有し、残部が鉄および不可避的不純物を含み、Si:0.6%以下、Al:0.1%以下、P:0.02%以下、S:0.005%以下、N:0.008%以下に制限し、ベイナイト変態指標BTが650℃以下であり、金属組織が、第一のベイナイトと第二のベイナイトとを含む単純ベイナイト組織であり、前記第一のベイナイトが、炭化物を含まないベイニティックフェライトの集合組織であり、前記第二のベイナイトが、前記炭化物を含まないベイニティックフェライトとこのベイニティックフェライトの間のセメンタイトとの混合組織である。

Description

高強度鋼管及びその製造方法
 本発明は、製造したまま(時効前)及び時効後の変形特性に優れた高強度鋼管及びその製造方法に関する。
 本願は、2009年6月11日に、日本に出願された特願2009-140280号に基づき優先権を主張し、その内容をここに援用する。
 近年、石油及び天然ガスの長距離輸送システムとして非常に重要であるパイプラインの敷設環境がより苛酷になっている。例えば、不連続凍土地帯では周期的な凍土の溶解及び凍結の影響、地震地帯では地すべりの影響、海底では海流の影響によって、パイプラインの曲げ変形が無視できなくなってきた。そのため、ラインパイプには、耐内圧性に優れ、曲げ変形に対して座屈が生じにくく、強度及び変形能に優れたラインパイプ用鋼管が要求されている。
 このような要求に対して、ベイナイト組織にフェライトを分散させた、高変形能鋼管が提案されている(例えば、特許文献1、参照)。また、ラインパイプには、防食の観点から塗装が施される。その際、冷間で成形された鋼管は、300℃程度まで加熱されるため、時効される。そのため、鋼管の製造時(塗装前)と比較すると、例えば降伏伸びが見られるなど、応力歪み曲線が大きく変化する。
 このような成形及び加熱による歪み時効を抑制するため、Ni、Cu、Moを活用した鋼管が提案されている(例えば、特許文献2、3、参照)。特許文献1~3に開示されている鋼管では、硬質のベイナイトによって強度を高め、軟質のフェライトによって変形能を向上させている。そのため、熱間圧延後の制御冷却の開始温度及び冷却速度によってフェライトの生成量を制御する必要があった。
特開2003-293089号公報 特開2006-144037号公報 特開2006-283147号公報
 しかし、ベイナイトによって鋼管の強度を向上させる場合には、鋼の成分組成を調整して焼入れ性を高める必要がある。その結果、冷却中に粒状のフェライト(初析フェライト)を生成させ難くなり、例えば、層状のフェライトが生じて、靭性を損なう。本発明では、このような実情に鑑み、生産性に有利な所定の単純ベイナイト組織を有し、例えば塗装処理などの加熱によって時効した後であっても、十分な変形性能を有する高強度鋼管およびその製造方法を提供する。
 本発明者らは、ベイナイト組織を有する鋼管の変形性能を向上させるためには、ベイナイト変態が終了する前に高温で加速冷却を停止することが有効であることを見出した。更に、本発明者らは、加速冷却及びベイナイト変態に起因する歪みの回復、即ち、鋼の転位密度の低下によって、鋼管の変形性能が向上し、時効後の変形性能も優れることを見出した。高温で加速冷却を停止すると、ベイナイト変態が完了していないため、ベイナイト組織の残部にオーステナイトが残留する。加速冷却の停止後(緩冷却中、例えば、空冷中)も、この残部のオーステナイトがベイナイトに変態し、加速冷却の停止温度からこの停止温度よりも50℃程度低い温度までの範囲でベイナイト変態が完了する。高温での加速冷却の停止によってベイナイト中の歪みが回復するため、加速冷却の途中で生成したベイナイトは、比較的軟質である。また、加速冷却の停止後に生成したベイナイトは、比較的低い温度で変態が完了するため、加速冷却の途中で生成したベイナイトよりも硬質である。このように加速冷却の停止温度を高くすると、二種類のベイナイトが生成し、組織の不均一性を高める。さらに、鋼管を比較的長い時間高温に保つこと(すなわち、加速冷却後の緩冷却)により、組織全体の歪が回復する。このように組織の不均一性と歪の回復との両方によって高い変形性能を有する鋼材を製造することができる。
 本発明は、このような知見に基づいてなされ、その要旨は、以下のとおりである。
 (1)本発明の一態様に係る高強度鋼管は、質量%で、C:0.02~0.09%、Mn:0.4~2.5%、Cr:0.1~1.0%、Ti:0.005~0.03%、Nb:0.005~0.3%を含有し、残部が鉄および不可避的不純物を含み、Si:0.6%以下、Al:0.1%以下、P:0.02%以下、S:0.005%以下、N:0.008%以下に制限し、後述の(2)式によって求められるベイナイト変態指標BTが650℃以下であり、金属組織が、第一のベイナイトと第二のベイナイトとを含む単純ベイナイト組織であり、前記第一のベイナイトが、炭化物を含まないベイニティックフェライトの集合組織であり、前記第二のベイナイトが、前記炭化物を含まないベイニティックフェライトとこのベイニティックフェライトの間のセメンタイトとの混合組織である。
 (2)上記(1)に記載の高強度鋼管は、質量%で、Ni:0.65%以下、Cu:1.5%以下、Mo:0.3%以下、V:0.2%以下の少なくとも1種をさらに含有してもよい。
 (3)上記(1)に記載の高強度鋼管では、前記第一のベイナイトと前記第二のベイナイトとを合計した組織の量が、組織全体の95%以上であってもよい。
 (4)上記(1)に記載の高強度鋼管は、200℃で時効処理を行った場合に、管軸方向の引張強度と、1~5%の間の引張歪みにおけるn値との積が60以上になってもよい。
 (5)本発明の一態様に係る高強度鋼管の製造方法では、上記(1)または(2)に記載の鋼成分を満足する鋼片を加熱し、この鋼片に対して750~870℃の範囲内で熱間圧延の仕上圧延を行い、冷却速度が5~50℃/sである加速冷却を750℃以上で開始し、500~600℃の範囲内で前記加速冷却を停止し、空冷して鋼板を作製し、この鋼板を冷間で管状に成形し、突合せ部を溶接する。
 本発明によれば、生産性に有利な所定の単純ベイナイト組織を有し、例えば塗装処理などの加熱によって時効した後であっても、十分な変形性能を有する高強度鋼管およびその製造方法を提供することが可能であり、産業上の貢献が極めて顕著である。
加速冷却の停止温度と強度-延性バランスとの関係を示す図である。 時効温度と時効後の強度-延性バランスとの関係を示す図である。 フェライトとベイナイトとを有する金属組織の一例である。 単純ベイナイト組織を有する金属組織の一例である。 第一のベイナイトの一例を示す概略図である。 第二のベイナイトの一例を示す概略図である。 第三のベイナイトの一例を示す概略図である。
 本発明者らは、まず、鋼材の金属組織がベイナイト組織になるように成分を調整した鋼材について、加速冷却の停止温度と、機械的特性との関係を検討した。この機械的特性には、強度と延性とのバランスを表す指標として、引張強度TSとn値との積[TS×n]を用いた。ここで、n値は、加工硬化特性を評価する一般的な指標であり、下記(1)式の真応力σと真歪みεとの関係(応力-歪み曲線)から求められる。
 σ=Kε・・・(1)
 引張試験によって歪み量が1~5%の範囲内で求められたn値と、鋼管の座屈特性との相関が顕著であるため、本発明では、1~5%の歪み量の範囲内でn値を求めている。すなわち、真応力σと真歪みεとの関係を引張試験によって求め、歪み量が1~5%の範囲内における上記真応力σと真歪みεとの関係から(1)式の指数部(n値)が求められる。なお、上記(1)式におけるパラメータKは、材料により定まる定数である。
 加速冷却の停止温度(冷却停止温度)と強度-延性バランス[TS×n]との関係を図1に示す。図1に示されるように、冷却停止温度が高くなると、強度-延性バランス[TS×n]が高くなる。即ち、単純ベイナイト組織を有する鋼材の強度と延性とのバランスは、冷却停止温度の上昇によって向上する。この鋼材の強度と延性とのバランスは、次の理由により向上すると考えられる。比較的高温で加速冷却を停止すると、ベイナイト変態が完了していないため、ベイナイト組織の残部にオーステナイトが残留する。加速冷却の停止後(例えば、空冷中)も、この残部のオーステナイトがベイナイトに変態し、加速冷却の停止温度からこの停止温度よりも50℃程度低い温度までの範囲でベイナイト変態が完了する。高温で加速冷却を停止すると、加速冷却及びベイナイト変態によって生じた歪みが回復するため、加速冷却の途中で生成したベイナイトは、比較的軟質である。また、加速冷却の停止後に生成したベイナイトは、比較的低い温度で変態が完了するため、加速冷却の途中で生成したベイナイトよりも硬質である。このように加速冷却の停止温度を高くすると、二種類のベイナイトが生成し、組織の不均一性を高める。さらに、鋼管を比較的長い時間高温に保つこと(例えば、加速冷却後の空冷)により、組織全体の歪が回復する。このように組織の不均一性と歪の回復との両方によって高い強度-延性バランス(変形性能)を有する鋼材を製造することができる。
 次に、本発明者らは、鋼管に防食塗装を施す際の時効の影響について検討を行った。塗装加熱の温度範囲は、150~300℃程度である。本発明者らは、単純ベイナイト組織を有する3種の鋼管を用いて、時効温度に対する強度-延性バランス[TS×n]の変化について検討を行った。結果を図2に示す。図2に示されるように、白抜きの丸「○」、白抜きの三角「△」、白抜きの四角「□」で示される3種の鋼管について、強度-延性バランス[TS×n]が最も小さくなる時効温度は、200℃であることがわかった。
 この時効による強度-延性バランスの低下については、種々の鋼管で同様の傾向を示す。また、製造したまま(時効前)の状態で強度-延性バランスが優れている鋼管は、時効後であっても優れた強度-延性バランスを有することがわかった。加速冷却及びベイナイト変態によって導入された歪みの回復に起因して、製造したまま(時効前)の鋼管の変形性能が向上するため、時効後であっても優れた強度-延性バランスが得られると考えられる。したがって、本発明では、鋼管の組織中の転位密度が低下しており、時効後の鋼管の変形性能が優れている。
 また、加速冷却の停止温度を500℃以上に高めても、ベイナイト変態を完了させるためには、鋼の成分組成を適正な範囲に調節する必要がある。本発明者らは、鋼成分がベイナイト変態に与える影響について検討を行った。その結果、下記(2)式によって求められるベイナイト変態指標BTを650℃以下にすれば、加速冷却を500℃以上で停止しても、ベイナイト変態が完了することを見出した。
 BT=830-270[C]-90[Mn]-37[Mo]-70[Ni]-83[Cr]・・・(2)
 なお、[C]、[Mn]、[Mo]、[Ni]、[Cr]は、それぞれ、C、Mn、Mo、Ni、Crの含有量である。
 以下、本発明について、詳細に説明する。
 まず、鋼管の成分について説明する。なお、成分の量(%)は、いずれも質量%である。
 C:0.02~0.09%
 Cは、鋼の強度向上に極めて有効な元素である。十分な強度を得るためには、鋼中に0.02%以上のCを添加する。一方、C量が0.09%よりも多いと、母材及び溶接熱影響部の低温靭性が低下して、現地溶接性が劣化する。そのため、C量の上限は、0.09%である。したがって、C量は、0.02%以上0.09%以下である。
 Mn:0.4~2.5%
 Mnは、強度と低温靭性とのバランスを向上させるために極めて重要な元素である。そのため、鋼中に0.4%以上のMnを添加する。一方、Mn量が2.4%よりも多いと、鋼板表面に平行な板厚中心部の偏析(中心偏析)が顕著になる。この中心偏析による低温靭性の劣化を抑制するために、Mn量の上限を2.4%にする。したがって、Mn量は、0.4%以上2.5%以下である。
 Cr:0.1~1.0%
 Crは、母材及び溶接部の強度を増加させる。そのため、鋼中に0.1%以上のCrを添加する。しかし、Cr量が1.0%よりも多いと、HAZ靱性及び現地溶接性が著しく劣化するため、Cr量の上限を1.0%以下にする。したがって、Cr量は、0.1%以上1.0%以下である。
 Ti:0.005~0.03%
 Tiは、微細なTiNを形成して、母材および溶接熱影響部の組織を微細化し、靭性向上に寄与する。この効果は、Nbとの複合添加により極めて顕著に現れる。この効果を十分に発現させるためには、0.005%以上のTiを鋼中に添加する必要がある。一方、Ti量が0.03%より多いと、TiNの粗大化及びTiCによる析出硬化が生じるため、低温靭性が低下する。そのため、Ti量の上限を0.03%に限定する。したがって、Ti量は、0.005%以上0.03%以下である。
 Nb:0.005~0.3%
 Nbは、制御圧延時にオーステナイトの再結晶を抑制して組織を微細化するだけでなく、焼入れ性を増大させて鋼の靭性を向上させる。この効果を得るためには、鋼中にNbを0.005%以上添加する必要がある。一方、Nb量が0.3%よりも多いと、溶接熱影響部の靭性が低下するため、Nb量の上限を0.3%以下にする。したがって、Nb量は、0.005%以上0.3%以下である。
 Si:0.6%以下(0%を含む)
 Siは、脱酸剤として作用し、強度向上に寄与する元素である。Siを鋼中に0.6%より多く添加すると現地溶接性が著しく劣化するので、Si量の上限を0.6%に制限する。また、脱酸のために、0.001%以上のSiを添加することが好ましい。更に、強度を高めるために、Siを0.1%以上添加することがより好ましい。
 Al:0.1%以下(0%を含まない)
 Alは、脱酸剤として一般的に使用され、組織を微細化する元素である。しかし、Al量が0.1%を超えるとAl系非金属介在物が増加して鋼の清浄度を害する。そのため、Al量の上限を0.1%に制限する。また、時効硬化に影響を及ぼす固溶NをAlNの析出によって固定するために、0.001%以上のAlを添加することが好ましい。
 P:0.02%以下(0%を含む)
 Pは、不純物である。母材及び溶接熱影響部の低温靭性を向上させるために、P量の上限を0.02%以下に制限する。P量を低減すると、粒界破壊が防止され、低温靭性が向上する。なお、P量は、少ないほど望ましいが、特性とコストとのバランスから、通常、鋼中に0.001%以上のPを含有する。
 S:0.005%以下(0%を含む)
 Sは、不純物である。母材及び溶接熱影響部の低温靭性を向上させるために、S量の上限を0.005%以下にする。S量を低減すると、熱間圧延によって延伸されるMnSの量を低減し、延性と靭性とを向上させることができる。S量は、少ないほど望ましいが、特性とコストとのバランスから、通常、鋼中に0.0001%以上のSを含有する。
 N:0.008%以下(0%を含む)
 Nは、不純物である。TiNの粗大化によって低温靭性が低下するため、N量の上限を0.008%以下に制限する。また、Nは、TiNを形成し、母材及び溶接熱影響部の結晶粒の粗大化を抑制する。低温靭性を向上させるためには、鋼中に0.001%以上のNを含有させることが好ましい。
 ベイナイト変態指標BT:650℃以下
 本発明では、鋼中のC、Mn、Mo、Ni、Crの含有量を調節して、上述した(1)式によって求められるベイナイト変態指標BTを650℃以下にすることが極めて重要である。上述のように、ベイナイト変態指標BTを650℃以下にすれば、加速冷却を500℃以上で停止しても、ベイナイト変態が完了する。その結果、加速冷却の停止後の空冷時の回復によって転位密度が低下し、製造したまま(時効前)での変形能及び時効後の変形能、即ち、変形特性が高まる。なお、Mo、Niを含有しない場合には、Mo、Niの含有量を0としてBTを求める。BTの上限は、規定されないが、C、Mn、Crの含有量の下限値から、780.3℃以下であってもよい。
 更に、強度を向上させるために、鋼中にNi、Cu、Mo、Vの1種以上を添加してもよい。
 Ni:0.65%以下(0%を含む)
 Niは、低温靭性を劣化させることなく強度を向上させる元素である。Niの添加量が、0.65%を超えると、HAZ靭性が低下する。そのため、Ni量の上限を0.65%以下にすることが好ましい。
 Cu:1.5%以下(0%を含む)
 Cuは、母材及び溶接熱影響部の強度を向上させる元素である。Cuの添加量が、1.5%を超えると、現地溶接性が低下する。そのため、Cu量の上限を1.5%以下にすることが好ましい。
 Mo:0.3%以下(0%を含む)
 Moは、焼入れ性を向上させ、強度を高める元素である。Moの添加量が、0.3%を超えると、HAZ靭性が劣化する。そのため、Mo量の上限を0.3%以下にすることが好ましい。
 V:0.2%以下(0%を含む)
 Vは、Nbと同様、組織の微細化及び焼入れ性の増大に寄与し、鋼の靭性を高める。しかしながら、Vを添加する効果は、Nbと比べると小さい。また、Vは、溶接部の軟化の抑制に有効である。溶接部の靭性確保の観点から、V量の上限を0.2%以下にすることが好ましい。
 次に、鋼の組織の形態について述べる。図3は、フェライトとベイナイトとの混合組織の一例であり、図4は、単純ベイナイト組織の一例である。なお、本明細書においては、フェライトを、図3中の矢印で示されるような、内部にラス粒界及び炭化物を含まないフェライト結晶粒(フェライト相)と定義する。このフェライトは、例えば初析フェライトである。本発明では、鋼の組織は、例えば図4に示す単純ベイナイト組織である。本発明では、強度及び溶接熱影響部の靭性を高めるため、鋼の成分を調整している。そのため、この鋼の成分では、連続冷却プロセスにおいて、図3の矢印で示されるようなフェライトを生成し難い。また、鋼中にフェライトが予期せず生成した場合であっても、この単純ベイナイト組織中に含まれるフェライト(フェライト分率)を組織全体に対して5%以下に制限すれば、時効による強度特性の変化を無視することができる。したがって、鋼中に5%以下のフェライトが含まれてもよい。なお、光学顕微鏡を用いて、このフェライトとベイナイト組織とを区別することができる。さらに、単純ベイナイト組織中には、3%以下のマルテンサイト-オーステナイト混成物、いわゆる、MA(Martensite-Austenite constituents)が含まれることがある。しかし、MAが3%以下であれば、機械的特性への影響が無視できるため、鋼中に3%以下のMAが含まれてもよい。この単純ベイナイト組織には、以下の3種のベイナイトのうち、第一のベイナイト及び第二のベイナイトが主に含まれる。図5Aに示すように、第一のベイナイト(高温ベイナイト)10は、主に旧オーステナイト粒界1から成長した細長いベイニティックフェライト2aが集合した組織である。このベイニティックフェライト2aの間には、例えば、残留オーステナイト3が存在してもよい。この第一のベイナイト10は、C量が少なく高温保持による歪みの回復を受けやすいため、炭化物をほとんど含まず、比較的軟質である。そのため、この第一のベイナイト10は、鋼管の変形性能を高めることができる。また、図5Bに示すように、第二のベイナイト(中温ベイナイト)11は、細長いベイニティックフェライト2aとベイニティックフェライト2aの間のセメンタイト4との混合組織である。この第二のベイナイト11は、第一のベイナイト10に比べて、硬質である。そのため、鋼中の組織に第一のベイナイト10と第二のベイナイト11とが含まれることによって、組織の不均一性が高まり、鋼管の変形性能をさらに向上させる。上記第一のベイナイト10と第二のベイナイト11とに含まれるベイニティックフェライト2aは、炭化物を含まない。すなわち、上記単純ベイナイト組織は、炭化物を含まないベイニティックフェライト2aを含有する。さらに、図5Cに示すように、第三のベイナイト(低温ベイナイト)12は、粒内に炭化物5が生成した細長いベイニティックフェライト2bとベイニティックフェライト2bの間のセメンタイト4との混合組織である。この第三のベイナイト12が存在すると、第一のベイナイト10の歪みの回復が十分でないため、強度における組織の不均一性が生じにくく、鋼管の変形性能が向上しにくい。そのため、第三のベイナイト12は、できる限り少ないことが好ましい。第一のベイナイト10の歪みが十分に回復するためには、第三のベイナイト12または炭化物を含むベイニティックフェライト2bを1%以下に制限する必要がある。なお、セメンタイト4には、例えば、ニオブカーバイドのような炭化物が不純物として含まれても良い。
 したがって、本発明では、単純ベイナイト組織は、第一のベイナイトと、第二のベイナイトとを主に含有する。この第一のベイナイトと第二のベイナイトとを合計した組織の量は、組織全体の95%以上であることが好ましい。なお、この単純ベイナイト組織中には、予期せず第三のベイナイトが生成する場合もある。そのため、単純ベイナイト組織中に、第三のベイナイトが、1%以下含まれてもよい。3種のベイナイトを区別するためには、透過型顕微鏡(TEM)を用いることができる。
 上述した鋼成分及び組織を有する鋼管は、変形特性、特に時効後の強度-延性バランスに優れる。通常、制御圧延及び加速冷却によって製造されたラインパイプ用鋼管は、樹脂コーティングを施す際に、150~300℃に加熱される。上述した図2に示されるように、最も強度-延性バランスが低下する時効温度は、200℃である。本発明では、200℃で時効処理を行った場合に、管軸方向の引張強度TSと、1~5%の間の引張歪みにおけるn値(加工硬化係数)との積が60以上である鋼管を提供することができる。この鋼管は、最も強度-延性バランスが低下する時効温度で熱処理が行われても時効後の変形特性に優れる。
 次に、本発明の一実施形態における鋼管の製造方法について説明する。
 本実施形態による鋼管の製造方法では、鋼を溶製後、鋳造して鋼片を作製し、この鋼片を加熱して熱間圧延した後、冷却して鋼板を作製し、その鋼板を冷間で筒状に成形して端部同士を溶接し、鋼管を製造する。なお、製造後の鋼管は、防食のために樹脂等の皮膜を鋼管表面にコーティングする際に、150~350℃の温度に加熱される。
 熱間圧延の鋼片の加熱温度は、規定しないが、変形抵抗を低下させるために、1000℃以上であることが好ましい。また、Nb、Crの炭化物を鋼中に固溶させるためには、1050℃以上に鋼片を加熱することがより好ましい。一方、加熱温度が1300℃を超えると、結晶粒が粗大になり、靭性が低下することがある。そのため、加熱温度を1300℃以下にすることが好ましい。
 熱間圧延の仕上圧延を750℃未満で行うと、圧延前にフェライトが生成し、圧延途中で加工フェライトが生成する。加工フェライトが生成すると、鋼管の変形性能を損なうため、熱間圧延の仕上圧延を750℃以上で行う。一方、強度及び靭性を向上させるために、未再結晶温度域で熱間圧延(熱間圧延の仕上圧延)を完了させる必要がある。したがって、仕上圧延を870℃以下で行う。通常、複数回の仕上圧延を行うため、仕上圧延の開始温度は、870℃以下であり、終了温度は、750℃以上である。
 熱間圧延後、直ちに、加速冷却を開始する。特に、加速冷却の開始温度が750℃よりも大幅に低下すると、鋼中に層状のフェライトが生成し、強度及び靭性が低下する。また、加速冷却の開始が遅れると、未再結晶域圧延によって導入された転位が回復して強度が低下する。
 加速冷却の停止温度は、変形特性に優れた鋼管を得るために、極めて重要である。上述した図1に示されるように、一般に、冷却停止温度が高くなると、強度-延性バランス[TS×n]が高くなる。図1においては、冷却停止温度を500℃以上にすると、強度-延性バランス[TS×n]が急上昇することが示されている。本実施例では、鋼中の転位密度を低下させるために、加速冷却の停止温度の下限を500℃以上にする。加速冷却を停止した後、空冷(例えば、5℃/s未満)を行って、鋼板を作製する。その結果、ベイナイト変態時に導入される転位の密度が低下し、空冷時に転位(歪み)が回復し、単純ベイナイト組織である鋼管の変形特性を向上させることができる。一方、加速冷却の停止温度の上限が、600℃を超えると、鋼中に層状のフェライトが生成し、強度及び靭性が低下する。したがって、加速冷却の停止温度は、500~600℃である。ここで、この加速冷却の冷却速度は、5~50℃/sである。また、ある程度の焼入れ性を確保するために、この加速冷却の冷却速度は、10~50℃/sであることが好ましい。加速冷却中には、第一のベイナイトが主に生成し、加速冷却の停止直前及び加速冷却の停止後には、第二のベイナイトが主に生成する。したがって、このように冷却速度及び冷却停止温度を制御することにより、上述したように第一のベイナイトと第二のベイナイトとの混合組織を得ることができる。なお、第三のベイナイトは、例えば450℃以下で生成するため、この場合には、ほとんど生成しない。
 製造後の鋼板を、冷間で管状に成形し、突合せ部を溶接して鋼管を製造する。生産性の観点から、UOEプロセスまたはベンドプロセスが好ましい。また、突合せ部の溶接には、サブマージドアーク溶接を用いることが好ましい。
 鋼管には、通常、樹脂コーティングなどの防食塗装を行う。この場合には、鋼管の塗装加熱の温度範囲は、150℃~300℃である。
 表1に示す成分の鋼を溶製し、鋳造して得られた鋼片を、表2に示す条件で熱間圧延し、鋼板を製造した。次に、製造された鋼板を、UOEプロセスで管状に成形した。さらに、管状に成形された鋼板の内外面を1層のサブマージドアーク溶接で溶接し、板厚(肉厚)14~22mmの鋼管を製造した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 製造された鋼管の金属組織を光学顕微鏡を用いて観察し、フェライトの生成の有無を確認した。また、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)を用いて、ベイナイトの種類を確認した。更に、鋼管の一部を切り出し、ソルトバスを用いて200℃で時効処理を行った後、弧状全厚引張り試験片(API規格)を採取して、管軸方向について引張試験を行った。この引張試験により、応力-歪曲線を求め、0.2%耐力YSと、引張強度TSと、加工硬化係数(n値)とを評価した。なお、加工硬化係数(n値)は、上述したように、1~5%の間の引張歪みにおける真応力σと真歪みεとの関係(応力-歪曲線)から(1)式を用いて算出した。また、引張強度TSと加工硬化係数(n値)との積から強度-延性バランス[TS×n]を計算した。
 結果を表3に示す。表1には、鋼の化学成分を示し、表2には、鋼管の製造方法を示した。表3に示されるように、実施例1~10の鋼管は、上述の第一のベイナイト(B1)と第二のベイナイト(B2)とを有する単純ベイナイト組織であった。また、この単純ベイナイト組織中には、フェライト(F)及び第三のベイナイト(B3)は、確認されなかった。また、表1に示される本発明の組成を満たす鋼(A~J)を用いて表2に示される本発明の製造条件(製造No.1~10)で製造した鋼管(実施例1~10)は、優れた強度(550MPa以上の0.2%耐力YS、650MPa以上の引張強度TS)と60以上の強度-延性バランス[TS×n]とを有することがわかる。そのため、実施例1~10の鋼管は、一様伸びuElが優れている。さらに、これらの実施例1~10の鋼管は、200℃で時効処理を行った場合であっても、60以上の強度-延性バランス[TS×n]を有していた。
Figure JPOXMLDOC01-appb-T000003
 これに対して、鋼(K、L、M、N、O)を使用した比較例1~5の鋼管は、鋼の化学成分が本発明の組成を満たさないため、強度-延性バランス[TS×n]が60未満であった。そのため、比較例1~5の鋼管では、良好な特性(変形性能)が得られないことがわかる。鋼(K、L)を使用した比較例1及び2では、C、Mnの含有量が少ないため、強度(500MPa未満の0.2%耐力YS、600MPa未満の引張強度TS)が低下した。そのため、強度-延性バランス[TS×n]が60未満であった。比較例1では、金属組織中に、第一のベイナイト(B1)及び第二のベイナイト(B2)だけでなく、第三のベイナイト(B3)も生成した。また、比較例2では、金属組織中に、上記3種のベイナイト(B1、B2、B3)に加え、フェライト(F)も生成した。また、鋼(M、N、O)を使用した比較例3~5では、ベイナイト変態指標BTが650℃を超えている。これらの比較例3~5では、強度-延性バランス[TS×n]が60未満であり、金属組織中に、フェライト(F)及び第三のベイナイト(B3)が生成した。したがって、ベイナイト変態指標BTが650℃以下であること及びフェライト(F)及び第三のベイナイト(B3)の生成量を制限することが強度-延性バランス[TS×n]の確保に重要であることが分かる。なお、これらの比較例3~5の鋼管は、ベイナイト変態指標BTを除く化学成分に関する条件については、本発明の組成を満足している。また、比較例6~9の鋼管は、表1に示される本発明の組成を満たす鋼(A、E、B)を用いて表2に示されるように加速冷却の停止温度が500℃未満である製造条件(製造No.16~19)で製造した鋼管である。これらの比較例6~9では、強度-延性バランス[TS×n]が60未満であり、金属組織中に、第三のベイナイト(B3)が生成した。そのため、これらの比較例6~9では、良好な特性(変形性能)が得られないことがわかる。したがって、変形性能を十分に確保するためには、第三のベイナイト(B3)の生成量を制限することが重要であることが分かる。さらに、比較例1~9の鋼管は、200℃で時効処理を行った場合に、強度-延性バランス[TS×n]が60未満であった。なお、表3中の記号「B」は、第一のベイナイト(B1)と、第二のベイナイト(B2)と、第三のベイナイト(B3)とを含む組織である。
 本発明によれば、生産性に有利な単純ベイナイト組織を有し、塗装処理などの加熱によって時効した後であっても、十分な変形性能を有する高強度鋼管およびその製造方法を提供することが可能になり、産業上の貢献が極めて顕著である。

Claims (5)

  1.  質量%で、
    C:0.02~0.09%、
    Mn:0.4~2.5%、
    Cr:0.1~1.0%、
    Ti:0.005~0.03%、
    Nb:0.005~0.3%
    を含有し、残部が鉄および不可避的不純物を含み、
    Si:0.6%以下、
    Al:0.1%以下、
    P:0.02%以下、
    S:0.005%以下、
    N:0.008%以下
    に制限し、
     下記(3)式によって求められるベイナイト変態指標BTが650℃以下であり、
     金属組織が、第一のベイナイトと第二のベイナイトとを含む単純ベイナイト組織であり、前記第一のベイナイトが、炭化物を含まないベイニティックフェライトの集合組織であり、前記第二のベイナイトが、前記炭化物を含まないベイニティックフェライトとこのベイニティックフェライトの間のセメンタイトとの混合組織である
    ことを特徴とする高強度鋼管。
     BT=830-270[C]-90[Mn]-37[Mo]-70[Ni]-83[Cr]・・・(3)
    ここで、[C]、[Mn]、[Mo]、[Ni]、[Cr]は、それぞれ、C、Mn、Mo、Ni、Crの含有量である。
  2.  質量%で、
    Ni:0.65%以下、
    Cu:1.5%以下、
    Mo:0.3%以下、
    V:0.2%以下
    の少なくとも1種をさらに含有することを特徴とする請求項1に記載の高強度鋼管。
  3.  前記第一のベイナイトと前記第二のベイナイトとを合計した組織の量が、組織全体の95%以上であることを特徴とする請求項1又は2に記載の高強度鋼管。
  4.  200℃で時効処理を行った場合に、管軸方向の引張強度と、1~5%の間の引張歪みにおけるn値との積が60以上になることを特徴とする請求項1又は2に記載の高強度鋼管。
  5.  請求項1又は2に記載の鋼成分を満足する鋼片を加熱し、この鋼片に対して750~870℃の範囲内で熱間圧延の仕上圧延を行い、冷却速度が5~50℃/sである加速冷却を750℃以上で開始し、500~600℃の範囲内で前記加速冷却を停止し、空冷して鋼板を作製し、この鋼板を冷間で管状に成形し、突合せ部を溶接することを特徴とする高強度鋼管の製造方法。
PCT/JP2010/003866 2009-06-11 2010-06-10 高強度鋼管及びその製造方法 WO2010143433A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/261,070 US8685182B2 (en) 2009-06-11 2010-06-10 High-strength steel pipe and producing method thereof
CN2010800252074A CN102803535A (zh) 2009-06-11 2010-06-10 高强度钢管及其制造方法
BRPI1012964A BRPI1012964A2 (pt) 2009-06-11 2010-06-10 tubo de aço de alta resistência e método de produção do mesmo
CA2764650A CA2764650C (en) 2009-06-11 2010-06-10 High-strength steel pipe and producing method thereof
EP10785965.4A EP2441854B1 (en) 2009-06-11 2010-06-10 High strength steel pipe and method for producing same
JP2010541624A JP4741715B2 (ja) 2009-06-11 2010-06-10 高強度鋼管及びその製造方法
KR1020117030056A KR101364392B1 (ko) 2009-06-11 2010-06-10 고강도 강관 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009140280 2009-06-11
JP2009-140280 2009-06-11

Publications (1)

Publication Number Publication Date
WO2010143433A1 true WO2010143433A1 (ja) 2010-12-16

Family

ID=43308695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003866 WO2010143433A1 (ja) 2009-06-11 2010-06-10 高強度鋼管及びその製造方法

Country Status (8)

Country Link
US (1) US8685182B2 (ja)
EP (1) EP2441854B1 (ja)
JP (1) JP4741715B2 (ja)
KR (1) KR101364392B1 (ja)
CN (1) CN102803535A (ja)
BR (1) BRPI1012964A2 (ja)
CA (1) CA2764650C (ja)
WO (1) WO2010143433A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2599755C (en) * 2005-12-15 2015-03-31 Jfe Steel Corporation Local buckling performance evaluating method for steel pipe, steel pipe designing methiod, steel pipe manufacturing method, and steel pipe
CN108350540A (zh) * 2015-12-04 2018-07-31 株式会社神户制钢所 抑制了焊接热影响部的低温韧性劣化和焊接热影响部的硬度的具有高屈服强度的非调质钢板
CA3028930C (en) * 2016-06-22 2021-08-03 Jfe Steel Corporation Hot-rolled steel sheet for heavy-wall, high-strength line pipe, welded steel pipe for heavy-wall, high-strength line pipe, and method for producing the welded steel pipe
KR102200224B1 (ko) * 2018-12-19 2021-01-08 주식회사 포스코 취성파괴 저항성이 우수한 구조용 강재 및 그 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363686A (ja) * 2001-06-12 2002-12-18 Nkk Corp 高強度鋼管用鋼板及びその製造方法
JP2006299414A (ja) * 2005-03-24 2006-11-02 Jfe Steel Kk 低温靭性に優れた低降伏比電縫鋼管の製造方法
JP2006299413A (ja) * 2005-03-24 2006-11-02 Jfe Steel Kk 低温靭性に優れた低降伏比電縫鋼管の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4116762B2 (ja) 2000-09-25 2008-07-09 新日本製鐵株式会社 耐水素疲労特性の優れた高強度ばね用鋼およびその製造方法
JP3869747B2 (ja) 2002-04-09 2007-01-17 新日本製鐵株式会社 変形性能に優れた高強度鋼板、高強度鋼管および製造方法
JP4336294B2 (ja) 2004-11-16 2009-09-30 新日本製鐵株式会社 時効後の変形特性に優れたパイプライン用高強度鋼管の製造方法
JP4684002B2 (ja) 2004-12-28 2011-05-18 株式会社神戸製鋼所 耐水素脆化特性に優れた超高強度薄鋼板
JP4696615B2 (ja) * 2005-03-17 2011-06-08 住友金属工業株式会社 高張力鋼板、溶接鋼管及びそれらの製造方法
JP3889769B2 (ja) 2005-03-31 2007-03-07 株式会社神戸製鋼所 塗膜密着性、加工性及び耐水素脆化特性に優れた高強度冷延鋼板並びに自動車用鋼部品
JP4510680B2 (ja) 2005-04-01 2010-07-28 新日本製鐵株式会社 時効後の変形特性に優れたパイプライン用高強度鋼管およびその製造方法
JP4751224B2 (ja) * 2006-03-28 2011-08-17 新日本製鐵株式会社 靭性と溶接性に優れた機械構造用高強度シームレス鋼管およびその製造方法
JP4977876B2 (ja) * 2007-03-30 2012-07-18 Jfeスチール株式会社 母材および溶接部靱性に優れた超高強度高変形能溶接鋼管の製造方法
KR101228610B1 (ko) * 2008-05-26 2013-02-01 신닛테츠스미킨 카부시키카이샤 저온 인성과 연성 파괴 정지 성능이 우수한 라인 파이프용 고강도 열연 강판 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363686A (ja) * 2001-06-12 2002-12-18 Nkk Corp 高強度鋼管用鋼板及びその製造方法
JP2006299414A (ja) * 2005-03-24 2006-11-02 Jfe Steel Kk 低温靭性に優れた低降伏比電縫鋼管の製造方法
JP2006299413A (ja) * 2005-03-24 2006-11-02 Jfe Steel Kk 低温靭性に優れた低降伏比電縫鋼管の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2441854A4 *

Also Published As

Publication number Publication date
EP2441854A4 (en) 2013-01-16
CA2764650C (en) 2014-07-15
KR101364392B1 (ko) 2014-02-17
EP2441854B1 (en) 2017-09-27
CA2764650A1 (en) 2010-12-16
BRPI1012964A2 (pt) 2018-01-16
CN102803535A (zh) 2012-11-28
KR20120012835A (ko) 2012-02-10
US20120118425A1 (en) 2012-05-17
US8685182B2 (en) 2014-04-01
EP2441854A1 (en) 2012-04-18
JPWO2010143433A1 (ja) 2012-11-22
JP4741715B2 (ja) 2011-08-10

Similar Documents

Publication Publication Date Title
JP4969915B2 (ja) 耐歪時効性に優れた高強度ラインパイプ用鋼管及び高強度ラインパイプ用鋼板並びにそれらの製造方法
US8765269B2 (en) High strength steel pipe for low-temperature usage having excellent buckling resistance and toughness of welded heat affected zone and method for producing the same
JP5776398B2 (ja) 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP5900303B2 (ja) 鋼板内の材質均一性に優れた耐サワーラインパイプ用高強度鋼板とその製造方法
WO2015030210A1 (ja) 耐サワー性、耐圧潰特性及び低温靭性に優れた厚肉高強度ラインパイプ用鋼板とラインパイプ
WO2013011791A1 (ja) 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP5055774B2 (ja) 高変形性能を有するラインパイプ用鋼板およびその製造方法。
JP2003293089A (ja) 変形性能に優れた高強度鋼板、高強度鋼管および製造方法
WO2015092916A1 (ja) 電縫溶接鋼管
JP5884201B2 (ja) 引張強さ540MPa以上の高強度ラインパイプ用熱延鋼板
JP4072009B2 (ja) 圧潰強度の高いuoe鋼管の製造方法
CN110088346B (zh) 具有优异纵向均匀延伸率的用于焊接钢管的钢材、其制造方法和使用其的钢管
JP4700740B2 (ja) 耐サワーラインパイプ用鋼板の製造方法
JP2010189722A (ja) 靭性に優れた厚肉耐サワーラインパイプ用鋼板の製造方法
WO2016056216A1 (ja) ラインパイプ用鋼板及びその製造方法とラインパイプ用鋼管
JP3941211B2 (ja) 耐hic性に優れた高強度ラインパイプ用鋼板の製造方法
JP4741715B2 (ja) 高強度鋼管及びその製造方法
JP5157387B2 (ja) 高変形能を備えた厚肉高強度高靭性鋼管素材の製造方法
KR20190077180A (ko) 저온인성이 우수한 저항복비 고강도 강관용 강재 및 그 제조방법
JP5151034B2 (ja) 高張力ラインパイプ用鋼板の製造方法および高張力ラインパイプ用鋼板
JP2018100436A (ja) 低温靭性に優れた低降伏比高強度熱延鋼板の製造方法
JP6631353B2 (ja) 耐サワー鋼板及び耐サワー鋼管
KR20140130324A (ko) 파이프용 열연강판 및 그 제조 방법
JP2001192773A (ja) ラインパイプ用鋼
JP5020691B2 (ja) 低温靱性に優れた高強度ラインパイプ用鋼板および高強度ラインパイプならびにこれらの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025207.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010541624

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10785965

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2764650

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010785965

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010785965

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117030056

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13261070

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI1012964

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111208