WO2015092916A1 - 電縫溶接鋼管 - Google Patents

電縫溶接鋼管 Download PDF

Info

Publication number
WO2015092916A1
WO2015092916A1 PCT/JP2013/084255 JP2013084255W WO2015092916A1 WO 2015092916 A1 WO2015092916 A1 WO 2015092916A1 JP 2013084255 W JP2013084255 W JP 2013084255W WO 2015092916 A1 WO2015092916 A1 WO 2015092916A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
welded steel
strength
electric resistance
Prior art date
Application number
PCT/JP2013/084255
Other languages
English (en)
French (fr)
Inventor
秀樹 濱谷
井口 敬之助
雅和 尾▲崎▼
孝聡 福士
拓也 浅野
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2014519328A priority Critical patent/JP5644982B1/ja
Priority to CA2923586A priority patent/CA2923586C/en
Priority to US15/022,004 priority patent/US10738366B2/en
Priority to KR1020167007945A priority patent/KR101795979B1/ko
Priority to PCT/JP2013/084255 priority patent/WO2015092916A1/ja
Priority to CN201380079994.4A priority patent/CN105612267B/zh
Priority to EP13899650.9A priority patent/EP3085800B1/en
Publication of WO2015092916A1 publication Critical patent/WO2015092916A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/17Rigid pipes obtained by bending a sheet longitudinally and connecting the edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Definitions

  • the present invention relates to an electric resistance welded steel pipe having a high strength and a high yield ratio that is optimal for oil well pipe applications such as shale gas mining.
  • Shale gas a kind of unconventional natural gas produced from other than ordinary oil or gas fields, is a natural material confined in a shale layer, which is a very hard rock layer that is several hundred to several thousand meters underground. Gas. In order to extract shale gas, it is necessary to hydraulically crush this very hard shale layer and collect the gas confined inside the rock layer from deep underground. Therefore, steel pipes used for shale gas mining have high strength. It has been demanded.
  • a steel pipe having an API standard 5CT P110 (hereinafter referred to as “P110”) equivalent strength (yield stress YS: 758 to 965 MPa, tensile strength TS: 862 MPa or more) is generally used. It has been. In order to ensure such strength, the entire steel pipe is quenched and tempered after pipe forming, but with the aim of reducing shale gas mining costs, it has high strength and does not perform heat treatment after pipe forming. There is an increasing demand for ERW steel pipes that have been formed into pipes (quenching and tempering omitted).
  • ERW molding becomes difficult to manufacture as the tensile strength (TS) increases. Therefore, it is desirable to ensure the formability by increasing the yield ratio (YS / TS: hereinafter referred to as “YR”), which is the ratio between the yield strength (YS) and TS, and obtaining the desired YS with a low TS.
  • YiR yield ratio
  • the yield ratio in the rolling direction (L direction) tends to decrease due to the Bauschinger effect.
  • the Baudinger effect appears remarkably, so that the yield ratio tends to decrease.
  • Patent Document 1 discloses an electric-welded steel pipe that uses work hardening in order to ensure the strength equivalent to P110 and can omit the heat treatment after pipe making.
  • This is not a duplex steel but a steel sheet having a uniform structure of bainite. That is, by using the cooling rate V C90 that becomes a hardness corresponding to a 90% martensitic structure estimated from the C content as an index of hardenability, controlling V C90 to an appropriate range, and making the uniform structure of bainite, A high strength and high yield ratio electric resistance welded steel pipe is disclosed.
  • a low carbon boron-added steel has a uniform bainite structure, a low Bausinger effect, a high YR, and a YS that satisfies P110 with a low TS hot-rolled steel sheet. It has been demonstrated that the strength of
  • the electric resistance welded steel pipe disclosed in Patent Document 1 controls VC90 , which is an index of hardenability, and lowers the coiling temperature after hot rolling, thereby suppressing the formation of polygonal ferrite and forming a uniform bainite structure. It has gained.
  • the electric resistance welded steel pipe requires the addition of a small amount of boron (B) (0.0005 mass% to 0.0030 mass%).
  • B has an effect of improving the hardenability and strength of the steel pipe, but the effect is saturated even when a certain amount or more is added.
  • B is inexpensive, the manufacturing condition range for obtaining stable characteristics is narrow, and careful attention is required for use. In particular, steel that realizes characteristics while being hot rolled without quenching and tempering needs to be manufactured under appropriate hot rolling conditions.
  • the present invention has been made in view of such circumstances, and has a strength equivalent to P110, without containing B, and without performing heat treatment after pipe making, while keeping the C content relatively high to ensure strength. It is another object of the present invention to provide an electric resistance welded steel pipe having a yield stress and a method for producing the electric resistance welded steel pipe.
  • ⁇ Dual phase steel undergoes work hardening by introducing dislocations into the soft phase around the hard phase during plastic deformation. Therefore, if the deformation of the hard phase is suppressed, the accumulation of dislocations into the soft phase is promoted, and the work hardening rate can be increased. Further, the refinement of ferrite, which is a soft phase, can increase the work hardening rate and suppress the Bauschinger effect, so that the strength of the steel pipe after ERW molding can be increased. Further, the cooling control after hot rolling to obtain the above structure can be applied to a steel plate having a relatively large thickness.
  • Component composition is mass%, C: 0.08 to 0.18%, Si: 0.01% to 0.50%, Mn: 1.30 to 2.1%, Al: 0.001 to 0.10%, Nb: 0.005 to 0.08% Ti: 0.005 to 0.03% Each containing N 0.008% or less, P: 0.020% or less, S: 0.010% or less, Limited to Steel with the balance being Fe and inevitable impurities,
  • the structure in the central portion of the thickness contains a ferrite phase with an equivalent circle diameter of 1.0 ⁇ m to 10.0 ⁇ m in an area ratio of 40% to 70%, and the balance is a low-temperature transformation generation phase containing a bainite phase.
  • Ceq C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) / 15
  • C, Mn, Cr, Mo, V, Cu, and Ni in (Equation 1) are values representing the content of each element in mass%, and when these elements are not included, the elements are Calculate as 0.
  • the component composition is further mass%, V: 0.08% or less, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Mo: 0.5% or less, Ca: 0.005% or less, REM: The ERW welded steel pipe according to [1], containing one or more of 0.005% or less.
  • the component composition is further mass%, B: The electric resistance welded steel pipe according to [1] or [2], which is limited to 0.0004% or less.
  • (A) is an observation result of the ERW steel pipe of the present invention by a high resolution crystal orientation analysis method, and (b) is a distribution state diagram of ferrite obtained by image analysis of the observation result.
  • (A) is an observation result of the ERW steel pipe of the present invention by a high resolution crystal orientation analysis method, and (b) is a distribution state diagram of ferrite obtained by image analysis of the observation result.
  • (A) is an observation result of the ERW steel pipe of the present invention by a high resolution crystal orientation analysis method, and (b) is a distribution state diagram of ferrite obtained by image analysis of the observation result.
  • the components of the ERW welded steel pipe of the present invention will be described.
  • the components of the hot rolled steel sheet, which is the material of the ERW steel pipe, are the same as the components of the ERW welded steel pipe.
  • “%” represents “% by mass” unless otherwise specified.
  • ⁇ C: 0.08 to 0.18%> C is effective for improving the strength. Since the strength of the steel can be increased by increasing the amount of C added to the steel, the lower limit of the C content is 0.08%. On the other hand, if the C content exceeds 0.18%, the strength of the steel becomes too high and the toughness is deteriorated, so the upper limit is made 0.18%. Further, from the viewpoint of ensuring the strength equivalent to P110, the lower limit of the C amount is preferably 0.1% or more. From the viewpoint of ensuring toughness without excessively increasing the strength, the upper limit of the C content is preferably 0.17%, more preferably 0.16%, and 0.15% or less to ensure toughness reliably. It is preferable to make it.
  • Si is effective as a deoxidizer.
  • addition of 0.01% or more is preferable.
  • Si is an element that increases the strength by solid solution strengthening, addition of 0.05% or more is more preferable, and addition of 0.10% or more is more preferable. If Si is added in an amount exceeding 0.50%, the low temperature toughness and further the electric resistance weldability are impaired, so the upper limit is made 0.50%. From the viewpoint of ensuring toughness, the Si content is preferably 0.40% or less, and more preferably 0.30% or less.
  • Mn is an element that enhances the hardenability of steel.
  • 1.30% or more of Mn is added to ensure strength.
  • the upper limit is made 2.10%.
  • the Mn content is preferably 1.40% or more, more preferably 1.50% or more.
  • the Mn content is preferably 2.0% or less, and more preferably 1.90% or less.
  • Al is effective as a deoxidizer.
  • 0.001% or more of addition is preferable.
  • 0.005% or more of Al is preferably added, and 0.01% or more of addition is more preferable.
  • Al is added in excess of 0.10%, inclusions increase and ductility and toughness are impaired, so the content is limited to 0.10% or less. From the viewpoint of ensuring toughness, the Al content is preferably 0.06% or less.
  • Nb is an element that lowers the recrystallization temperature, and suppresses the recrystallization of austenite and contributes to the refinement of the structure during hot rolling, so 0.005% or more is added. If Nb is added in excess of 0.08%, the toughness deteriorates due to coarse precipitates, so the content is made 0.08% or less. From the viewpoint of securing toughness, the upper limit is preferably 0.07%, and more preferably 0.05%. On the other hand, the lower limit is preferably 0.008%, more preferably 0.010%, and still more preferably 0.015% in order to ensure the effect of refining the structure.
  • Ti forms fine nitrides (TiN), suppresses the coarsening of austenite grains during slab heating, and contributes to the refinement of the structure.
  • TiN fine nitrides
  • 0.005% or more of Ti is added. If Ti is added excessively exceeding 0.030%, TiN coarsening and precipitation hardening due to TiC occur and toughness deteriorates, so 0.030% is made the upper limit.
  • the Ti content is preferably 0.008% or more, and more preferably 0.010% or more.
  • the Ti content is preferably 0.025% or less, and more preferably 0.020% or less.
  • N is inevitably present in the steel, but if the amount of N is too large, TiN and AlN will increase excessively, which may cause adverse effects such as surface defects and deterioration of toughness. Therefore, the upper limit is made 0.008%. Furthermore, from the viewpoint of suppressing the formation of inclusions, the upper limit of the N amount is preferably 0.007%, and a more preferable upper limit is 0.006%. Although the lower limit is not particularly set, it is preferably set to 0.002% in consideration of the cost of removing N and the economic efficiency.
  • P is an impurity, and the upper limit of the content is 0.02%. Since the toughness is improved by reducing the amount of P, the amount of P is preferably 0.015% or less, and more preferably 0.010% or less. Since it is preferable that the amount of P is small, there is no lower limit. Usually, 0.001% or more is contained from the balance between characteristics and cost.
  • S is an impurity, and the upper limit of the content is 0.010%.
  • the amount of S is preferably 0.003% or less, and more preferably 0.002% or less. Since a smaller amount of S is preferable, no lower limit is provided. Usually, 0.0001% or more is contained from the balance between characteristics and cost.
  • one or more of V, Ni, Cu, Cr, Mo, Ca, and REM can be added in order to further improve the hardenability of the steel and increase the strength.
  • a preferable lower limit value is described. This is a preferable lower limit value for obtaining the effect of improving the hardenability and increasing the strength by adding each element. Even if the content of each element is less than the preferred lower limit, the steel is not adversely affected.
  • V is an element that generates carbides and nitrides and improves the strength of the steel by precipitation strengthening. In order to effectively increase the strength, it is preferable to add 0.01% or more. If V is added excessively, carbides and nitrides are coarsened and toughness is deteriorated, so the upper limit of V content is 0.08%, more preferably 0.05%.
  • Cu is an element that improves the hardenability of steel and contributes to solid solution strengthening, so 0.05% or more may be added. Since excessive addition of Cu may impair the surface properties of the steel sheet, the upper limit is made 0.50% or less. From the economical viewpoint, the more preferable upper limit of the amount of Cu is 0.30% or less. When adding Cu, it is preferable to add Ni simultaneously from the viewpoint of preventing deterioration of surface properties.
  • Ni is an element that improves the hardenability of steel and contributes to the improvement of toughness.
  • the Ni content is preferably 0.05% or more.
  • the upper limit is 0.50% or less, preferably 0.30% or less.
  • Cr is an element effective for improving the strength, and it is preferable to add 0.05% or more. If Cr is added excessively, the electric resistance weldability may be deteriorated, so the upper limit is 0.5%, and preferably 0.2% or less.
  • Mo is an element that contributes to increasing the strength of steel, and it is preferable to add 0.05% or more.
  • Mo is an expensive element, and the upper limit is 0.50%.
  • a more preferable upper limit of the Mo amount is 0.30% or less, and further preferably 0.10% or less.
  • REM controls the form of sulfide inclusions, improves low temperature toughness, and further refines the oxide of the ERW weld to improve the toughness of the ERW weld, so either or both Is preferably added in an amount of 0.001% or more. If Ca and REM are added excessively, oxides and sulfides increase and adversely affect toughness. Therefore, the upper limit of the addition amount is set to 0.005%.
  • REM is a general term for Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • B is not an intentionally added element but is mixed as an inevitable impurity contained in the raw material, and its content is limited to 0.0004% or less.
  • Ceq is an index of hardenability and may be used as an index of strength. It calculates
  • Ceq needs to be 0.32 or more.
  • Ceq needs to be 0.60 or less.
  • the lower limit of Ceq is preferably 0.35 or more, and more preferably 0.4 or more.
  • the upper limit of Ceq is preferably 0.50 or less, more preferably 0.45 or less.
  • C, Mn, Cr, Mo, V, Ni, and Cu are the content [% by mass] of each element.
  • Cr, Mo, V, Ni, and Cu are elements that are selectively added in the present invention. When these elements are not included, the calculation is performed with 0 as the element in the above (formula 1).
  • the remainder of the component composition of the electric resistance welded steel pipe according to the present invention other than those described above is iron and inevitable impurities.
  • Inevitable impurities are components contained in raw materials or mixed in during the manufacturing process, and are components not intentionally contained in steel.
  • P and S need to be controlled to be 0.02% or less and 0.010% or less, respectively, as described above. It is preferable to control O to be 0.006% or less.
  • Sb, Sn, W, Co, and As are usually unavoidable 0.1% or less, Mg, Pb, and Bi are 0.005% or less, and B and H are 0.0004% or less. There may be contamination as an impurity, but there is no need to control in the normal range.
  • Si, Al, Ni, Cu, Cr, Mo, V, Ca, and REM which are optional elements or optional elements in the steel pipe of the present invention, are mixed as inevitable impurities even if they are not intended to be contained.
  • the steel pipe of the present invention is not adversely affected as long as it is below the upper limit of the content when intentionally contained.
  • N may be treated as an inevitable impurity in steel, but in the electric resistance welded steel pipe of the present invention, it is necessary to control it within a certain range as described above.
  • the ERW welded steel pipe according to the present invention has a structure mainly composed of ferrite and a low-temperature transformation generation phase represented by bainite.
  • ferrite since B is not added, ferrite is likely to be generated, but the ferrite phase is refined in order to ensure yield strength while utilizing the properties of the ferrite to ensure toughness.
  • the overall strength is ensured by controlling the C content and Ceq.
  • tissues point out the structure
  • the wall thickness central portion refers to a portion corresponding to a depth of 1 ⁇ 4 to 3 ⁇ 4 of the plate thickness from the surface of the steel pipe in the cross section of the steel pipe.
  • the ferrite phase constituting the ERW welded steel pipe of the present invention has a circle equivalent diameter of 1.0 ⁇ m to 10.0 ⁇ m.
  • the lower limit is preferably 2.0 ⁇ m or more.
  • the equivalent circle diameter of the ferrite phase exceeds 10.0 ⁇ m, the Bausinger effect becomes remarkable, YR after ERW molding becomes low, and low temperature toughness is deteriorated.
  • the upper limit of the equivalent circle diameter of the ferrite phase is preferably 7 ⁇ m, more preferably 6 ⁇ m, and further preferably 5.0 ⁇ m to ensure the effect.
  • the area ratio of the ferrite phase needs to be 40% or more in order to ensure toughness and improve the yield ratio.
  • a preferable lower limit of the area ratio of the ferrite phase is 45%, and a more preferable lower limit is 50%.
  • the upper limit is set to 70% in comparison with the P110 standard. From the viewpoint of securing strength, the preferred upper limit is 65%, more preferably 60%.
  • the ERW welded steel pipe of the present invention is composed of a low-temperature transformation generation phase mainly composed of bainite, with the remainder excluding ferrite. Further, it may contain a retained austenite phase or martensite.
  • the area ratio of the bainite phase is preferably 90% or more of the balance excluding the ferrite phase.
  • the retained austenite is unstable and lowers the yield stress.
  • the upper limit of the area ratio of each of retained austenite and martensite is 1%. More preferably, it is 0.5% or less, and it is desirable that it is not present if possible.
  • the distribution state and area ratio of each of the ferrite phase, bainite phase, retained austenite phase, martensite phase, and the like are obtained by high resolution crystal orientation analysis (hereinafter referred to as “EBSP method”) and image analysis by software such as KAM. be able to.
  • EBSP method high resolution crystal orientation analysis
  • KAM KAM
  • FIG. 1 (a), FIG. 2 (a) and FIG. 3 (a) show the results of observing the ERW steel pipes T1 to T3 of the present invention by the EBSP method.
  • FIG. 1B, FIG. 2B, and FIG. 3B show the results of image analysis using software “KAM” with respect to FIG. 1A, FIG. 2A, and FIG. 3A. . From this image analysis, the area ratio of ferrite can be obtained.
  • the ferrite phase corresponds to that having an orientation difference of less than 1 ° by the KAM method, and is expressed by being color-coded in the image.
  • FIGS. 1 (a), 2 (a) and 3 (a) respectively show the electro-sewing of the present invention produced under the production conditions of Mn amount and hot rolling finishing temperature shown in Table 1-1.
  • 3 is a photographed image of welded steel pipes T1 to T3 by the EBSP method.
  • FIGS. 1B, 2B, and 3B show the results of image analysis of FIGS. 1A, 2A, and 3A by KAM, respectively.
  • the area ratio of the martensite phase and residual austenite of FIG. 1 (b), FIG. 2 (b) and FIG. 3 (b) was measured. As a result, the area ratio of both the martensite phase and the retained austenite was 1% or less. It was also confirmed that if the martensite phase and retained austenite had an area ratio of 1% or less, the properties of the ERW steel pipe of the present invention were not affected.
  • the yield ratio was obtained from a yield strength YS and a tensile strength TS by performing a tensile test.
  • the yield ratio exceeded 95% and the toughness was significantly reduced.
  • the area ratio of the ferrite phase exceeds 70%, the yield strength decreases and the yield ratio decreases to less than 85%.
  • the area ratio of the ferrite phase exceeds 70%, not only the yield strength but also the tensile strength is lowered, and the strength equivalent to P110 cannot be obtained.
  • the ERW steel pipe of the present invention can suppress the Bauschinger effect by containing a fine ferrite phase having an equivalent circle diameter of 1.0 ⁇ m to 10.0 ⁇ m in an area ratio of 40% to 70%, and yield strength can be reduced. And a yield ratio of 85 to 95% can be secured. Moreover, it has been confirmed that the ERW steel pipe of the present invention has no yield elongation in the stress strain curve of the tensile test.
  • the steel having the above-mentioned components is heated and hot-rolled, and then controlled cooling and winding are performed to produce a hot-rolled steel sheet.
  • the heating temperature of the steel is preferably 1150 ° C. or higher in order to dissolve the elements that form carbides such as Nb in the steel.
  • 1000 to 1250 ° C. is desirable to obtain a fine grain structure. If the heating temperature is too high, the structure becomes coarse. Therefore, 1250 ° C. or lower is preferable in order to prevent coarsening of the ferrite grain size.
  • Hot rolling needs to be performed in a temperature range where the steel structure is an austenite phase. This is because if the rolling is performed after the ferrite transformation has started, processed ferrite is generated and the anisotropy of the characteristics is increased. Therefore, the finishing temperature of hot rolling is preferably Ar 3 or higher at which ferrite transformation during cooling starts. If the finishing temperature is too high, the structure becomes coarse, so the upper limit of the finishing temperature for hot rolling is preferably 1000 ° C.
  • Ar 3 can be obtained from the thermal expansion behavior when heated and cooled using a test material having the same composition as the hot-rolled steel sheet. Moreover, it is also possible to obtain
  • C, Mn, Ni, Cu, Cr, and Mo are the content [% by mass] of each element.
  • Ni, Cu, Cr, and Mo are arbitrary additive elements in the present invention. When these elements are not added intentionally, the calculation is made as 0 in the above (Formula 2).
  • the amount of reduction at 950 ° C. or less is reduced to 70% or more.
  • the reduction amount of 950 ° C. or less is obtained as a percentage by dividing the difference between the plate thickness at 950 ° C. and the plate thickness after finish rolling by the plate thickness after finish rolling.
  • FT rolling finish temperature
  • the average cooling rate from 650 ° C. to 300 ° C. is preferably 15 ° C./s or more.
  • the transformation of bainite can be promoted and strength can be secured.
  • the upper limit of the cooling rate is set to 50 ° C./s.
  • the temperature is preferably 40 ° C./s, more preferably 30 ° C./s.
  • the subsequent stage cooling rate is 1.5 times or more, preferably 2 times or more, that of the preceding stage.
  • the end temperature of the cooling step is 300 ° C. or lower which is the bainite transformation temperature or lower. This is to obtain an appropriate amount of bainite phase.
  • the steel sheet is wound at 300 ° C. or lower.
  • the coiling temperature of the hot-rolled steel sheet in the present invention is 300 ° C. or less.
  • the lower limit may be room temperature.
  • the obtained hot-rolled steel sheet is air-cooled, formed into a tubular shape in the cold, and the end portions are butted together and electro-welded to produce an electro-welded steel pipe.
  • the present invention does not particularly define the thickness and outer shape of the ERW steel pipe, but the ratio t / D of the thickness t of the steel sheet and the outer diameter D of the ERW steel pipe is about 2.0 to 6.0%. And t can be suitably applied to those having a thickness of 7 mm to 12.7 mm.
  • a seam heat treatment may be applied in which only the ERW weld is heated and accelerated.
  • ERW welding the butt portion is heated and melted, pressure is applied, and solid phase bonding is performed. Therefore, the vicinity of the ERW weld portion is plastically deformed at a high temperature and then rapidly cooled. Therefore, the ERW welded portion is harder than the steel plate, and the low temperature toughness and deformation performance of the ERW steel pipe can be further improved by performing seam heat treatment.
  • Steels A to L and AA to AD having chemical components shown in Table 2-1 and Table 2-2 were cast into steel pieces. These steel slabs were heated to the heating temperatures shown in Table 3-1 and Table 3-2, and the rolling amount was 1000 ° C. or less and the rolling finishing temperature (FT in Tables 3-1 and 3-2). Hot rolling was performed and cooled to obtain a hot rolled steel sheet.
  • the cooling process is performed by two-stage cooling in which the cooling rate is changed at the intermediate temperature (MT in Table 3-1 and Table 3-2) as a boundary, and the cooling rate in the latter stage (MT or lower) is changed from the first stage (from the cooling start temperature).
  • the average cooling rate (up to MT) was 1.5 times or more.
  • the steel sheet after the cooling step was wound at a winding temperature (CT) described in Table 3-1 and Table 3-2 to obtain a hot rolled steel sheet.
  • CT winding temperature
  • the obtained hot-rolled steel sheet was air-cooled, it was formed into a tubular shape in a continuous roll forming process, and the ends of the hot-rolled steel sheet were butted together and subjected to electric resistance welding. Thereafter, if necessary, the ERW weld was heated, cooled at an accelerated rate, and subjected to seam heat treatment.
  • the amount of reduction” in Table 3-1 and Table 3-2 is the amount of reduction at 950 ° C. or less in the hot rolling process.
  • T indicates the thickness (mm) of the steel sheet, and “D” indicates the outer diameter (mm) of the steel pipe after pipe making.
  • Ar 3 in Table 2-1 and Table 2-2 was determined from the content [% by mass] of C, Mn, Ni, Cu, Cr, and Mo. Ni, Cu, Cr, and Mo are optional additive elements in the present invention. As shown in blanks in Tables 2-1 and 2-2, when not intentionally added, the following (formula In 2), it was calculated as 0.
  • a sample for observing the structure was taken from the obtained electric resistance welded steel pipe, and a cross section parallel to the longitudinal direction of the steel pipe was subjected to nital etching, and the structure was observed and photographed with an optical microscope. The observation position was 2t / 5 from the outer surface. Using these structure photographs, it was confirmed that structures other than ferrite phase or bainite phase such as pearlite and martensite were not generated. Thereafter, the area ratio of the ferrite phase was obtained by image analysis of the image observed by the EBSP method. About the area ratio of the ferrite phase, ten fields of view of 100 ⁇ m ⁇ 200 ⁇ m were measured, and an average value was obtained. Furthermore, the area ratio of austenite was measured by an X-ray diffraction method and confirmed to be 1% or less.
  • Each of 1 to 14 is a metal structure composed of ferrite and bainite having an appropriate area ratio.
  • the tensile strength of these electric resistance welded steel pipes is all 758 MPa or higher, and the yield ratio is 85% to 95%.
  • No. No. 22 has a C content lower than the range of the present invention, so that the area ratio of the ferrite phase becomes excessive, and the average ferrite equivalent grain size exceeds 10 ⁇ m, so that the ferrite structure of the steel is not refined. It was enough. Therefore, no. In No. 22, YS strength equivalent to P110 was not obtained, and the yield ratio in the rolling direction was less than 85%.
  • No. 23 is an example in which the strength is insufficient because Ceq is lower than the range of the present invention.
  • No. No. 24 is an example in which the strength is excessively increased because Ceq is higher than the range of the present invention, and the yield ratio in the rolling direction exceeds 95%.
  • No. No. 25 is an example in which the C content is higher than the range of the present invention and the strength is excessively increased.
  • the present invention aims to produce an ERW steel pipe at a low cost, and defines the conditions for satisfying the required characteristics as it is formed by ERW. If tempering is performed after ERW molding, there is a material change in which YR increases significantly and yield elongation appears.
  • an ERW welded steel pipe having strength equivalent to API standard 5CT P110, which is optimal for applications such as shale gas mining, without heat treatment after pipe making, that is, at low cost.
  • the availability is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 本発明は、シェールガス採掘等の用途に最適な電縫溶接鋼管であって、成分組成が質量%にて、C :0.08~0.18%、Si:0.01%~0.50%、Mn:1.30~2.1%、Al:0.001~0.10%、Nb:0.005~0.08%、Ti:0.005~0.03%をそれぞれ含有し、N 0.008%以下、P:0.020%以下、S:0.010%以下、に制限され、残部がFe及び不可避的不純物である鋼であって、肉厚中央部の組織が、面積率で40%~70%の円相当径1.0μm~10.0μmのフェライト相と、残部はベイナイト相を含有する低温変態生成相であり、Ceqが、0.32≦Ceq≦0.60を満たすことを特徴とする。

Description

電縫溶接鋼管
 本発明は、シェールガス採掘等の油井管用途に最適な高強度・高降伏比の電縫溶接鋼管に関するものである。
 通常の油田或いはガス田以外から生産される非在来型天然ガスの一種であるシェールガスは、地下数百~数千メートルにある非常に硬い岩層である頁岩(シェール)層に閉じこめられた天然ガスである。シェールガスを取り出すには、この非常に硬い頁岩層を水圧破砕して岩層内部に閉じ込められたガスを地下深くから採取する必要があるため、シェールガス採掘に使用される鋼管には高強度化が求められている。
 シェールガス採掘用の高強度鋼管として、API規格 5CT P110(以下「P110」という。)相当の強度(降伏応力YS:758~965MPa、引張強さTS:862MPa以上)を有する鋼管が一般的に用いられている。このような強度を確保するために、造管後に鋼管全体に対して焼入れ焼戻しが施されているが、シェールガス採掘コストの削減を狙いとして、高強度であり、造管後の熱処理を実施しない造管成形まま(焼入れ焼戻し省略)の電縫鋼管に対する要求が強くなっている。
 高強度鋼管の電縫成形(ERW成形)は、引張強度(TS)が高くなるに従い、その製造が困難になってくる。したがって、降伏強度(YS)とTSの比である降伏比(YS/TS:以下「YR」という)を高くし、低いTSで目的のYSを得ることで成形性を確保することが望ましい。しかし、高強度鋼板をERW成形するとバウシンガー効果のために圧延方向(L方向)の降伏比が低下し易い。特に二相組織鋼では、バウジンガー効果が顕著に表れるため、降伏比が低下し易い。
 特許文献1には、P110相当の強度を確保するため加工硬化を利用し、造管後の熱処理を省略できる電縫鋼管が開示されている。これは、二相鋼ではなく、ベイナイトの均一組織からなる鋼板によるものである。即ち、C含有量から推定される90%マルテンサイト組織に相当する硬さとなる冷却速度VC90を焼入れ性の指標とし、VC90を適正範囲に制御し、且つベイナイトの均一組織にすることにより、高強度・高降伏比の電縫鋼管が開示されている。
 また、特許文献1によれば、低炭素ボロン添加鋼では均一なベイナイト組織になり、バウシンガー効果が小さく、YRが高くなり、低いTSの熱延鋼板でP110を満たすYSが得られ、この規格の強度が実現可能なことが実証されている。
国際公開WO2012/144248
 特許文献1に開示された電縫鋼管は、焼入れ性の指標であるVC90を制御し、熱延後の巻取温度を低下させることによりポリゴナルフェライトの生成を抑制して均一なベイナイト組織を得ている。しかし、当該電縫鋼管は、これらの効果を得るためにボロン(B)の微量添加(0.0005質量%~0.0030質量%)を必須としている。Bは鋼管の焼入れ性及び強度を向上する効果を有するが、一定量以上を添加しても効果が飽和する。Bは価格が安いが、安定して特性を得るための製造条件範囲が狭く、使用に際して細心の注意が必要である。特に、焼入れ焼戻しを行わず熱延のままで特性を実現する鋼においては、適正な熱延条件で製造する必要がある。
 本発明はこのような実情に鑑みてなされたものであり、強度確保のためC含有量を比較的高くしつつ、Bを含まず、造管後の熱処理を実施すること無く、P110相当の強度および降伏応力を有する電縫溶接鋼管及び電縫溶接鋼管の製造方法を提供することを目的とする。
 C含有量を比較的高くし、Bを添加しない鋼において、ベイナイトの均一組織とすることは難しく、フェライトが生成されてしまう。そのため、発明者らは、フェライトとベイナイトの二相鋼において具現化することを検討した。
 二相組織にするとバウシンガー効果が顕著になり、ERW成形後のYSが低下する。そのためフェライトの含有量を制御するとともに、フェライト組織の微細化を図ることとした。また、強度を確保する観点から、C量を比較的高くすることはもちろんのこと、炭素当量(Ceq)を適正化させることにより、強度を確保できることも見出した。これらの複合作用により、高TSでありながら高降伏比となる鋼板を得ることができることを見出した。
 二相鋼は、塑性変形中に硬質相の周りの軟質相に転位が導入されて加工硬化する。そのため、硬質相の変形を抑制すると、軟質相への転位の蓄積が促進され、加工硬化率を高めることができる。さらに軟質相であるフェライトの微細化により、加工硬化率を高めると共にバウシンガー効果を抑制することができるため、ERW成形後の鋼管としての高強度化も可能となる。さらに、上記組織を得るための熱延後の冷却制御は、比較的板厚の厚い鋼板にも適用可能である。
[1]成分組成が質量%にて、
C :0.08~0.18%、
Si:0.01%~0.50%、
Mn:1.30~2.1%、
Al:0.001~0.10%、
Nb:0.005~0.08%
Ti:0.005~0.03%
をそれぞれ含有し、
N 0.008%以下、
P:0.020%以下、
S:0.010%以下、
に制限され、
残部がFe及び不可避的不純物である鋼であって、
肉厚中央部の組織が、円相当径1.0μm~10.0μmのフェライト相を面積率で40%~70%含有し、残部はベイナイト相を含有する低温変態生成相であり、
下記(式1)で表わされるCeqが、0.32≦Ceq≦0.60を満たすことを特徴とする電縫溶接鋼管。
 Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15…(式1)
 ここで、(式1)におけるC、Mn、Cr、Mo、V、Cu、Niは、各元素の含有量を質量%で表した値であり、これらの元素を含まない場合は、その元素は0として計算する。
[2]成分組成が、さらに、質量%で、
V :0.08%以下、
Cu:0.5%以下、
Ni:0.5%以下、
Cr:0.5%以下、
Mo:0.5%以下、
Ca:0.005%以下、
REM:0.005%以下
の1種または2種以上を含有することを特徴とする[1]に記載の電縫溶接鋼管。
[3]成分組成が、さらに、質量%で、
B :0.0004%以下
に制限されることを特徴とする[1]又は[2]に記載の電縫溶接鋼管。
[4]全厚試験片による管軸方向引張試験による降伏強度が758MPa以上、965MPa以下の強度を有することを特徴とする[1]又は[2]に記載の電縫溶接鋼管。
[5]全厚試験片による管軸方向引張試験による降伏比が85~95%であることを特徴とする[1]又は[2]に記載の電縫溶接鋼管。
[6]引張り試験の応力歪曲線において、降伏伸びが無いことを特徴とする[1]又は[2]に記載の電縫溶接鋼管。
[7]板厚が7~12.7mmであることを特徴とする[1]又は[2]に記載の電縫溶接鋼管。
 本発明によれば、Bを含まず、造管ままでも、P110相当の強度および降伏応力を有する電縫溶接鋼管及びその製造方法を提供することができる。
(a)は本発明の電縫鋼管を高分解能結晶方位解析法による観察結果であり、(b)は前記観察結果を画像解析することによって得られたフェライトの分布状態図である。 (a)は、本発明の電縫鋼管を高分解能結晶方位解析法による観察結果であり、(b)は前記観察結果を画像解析することによって得られたフェライトの分布状態図である。 (a)は、本発明の電縫鋼管を高分解能結晶方位解析法による観察結果であり、(b)は前記観察結果を画像解析することによって得られたフェライトの分布状態図である。
 以下、本発明の電縫溶接鋼管及びその製造方法について詳細に説明する。
 まず、本発明の電縫溶接鋼管の成分について説明する。電縫鋼管の素材である熱延鋼板の成分は、電縫溶接鋼管の成分と同一である。以下「%」は、特にことわりのない限り「質量%」を表すものとする。
 <C:0.08~0.18%>
 Cは、強度の向上に有効である。鋼に添加するC量を増やすことによって、鋼の強度を高めることができるため、Cの含有量の下限を0.08%とする。一方、C量が0.18%を超えると、鋼の強度が高くなりすぎ、靭性を劣化させるので、上限を0.18%とする。また、P110相当の強度を確保する観点から、C量の下限を好ましくは0.1%以上にするとよい。強度を過剰に上昇させず、靱性を確保する観点からは、C量の上限を好ましくは0.17%、より好ましくは0.16%、確実に靭性を確保するためには0.15%以下にすることが好ましい。
 <Si:0.01~0.50%>
 Siは、脱酸剤として有効である。脱酸剤としての効果を得るためには、0.01%以上の添加が好ましい。また、Siは固溶強化によって強度を高める元素であるので、0.05%以上の添加がより好ましく、0.10%以上の添加がより好ましい。Siは、0.50%を超えて添加すると、低温靭性、さらには、電縫溶接性を損なうので、上限を0.50%とする。靱性を確保する観点からは、Si量を0.40%以下にすることが好ましく、0.30%以下がより好ましい。
 <Mn:1.3~2.1%>
 Mnは、鋼の焼入れ性を高める元素である。本発明では、強度を確保するために、1.30%以上のMnを添加する。しかし、Mnを過度に添加すると、マルテンサイトの生成を助長し、靱性が劣化するので、上限を2.10%とする。強度を確保する観点からは、Mn量を1.40%以上にすることが好ましく、1.50%以上がより好ましい。靱性を確保する観点からは、Mn量を2.0%以下にすることが好ましく、1.90%以下がより好ましい。
 <Al:0.001~0.10%>
 Alは、脱酸剤として有効である。脱酸剤としての効果を得るためには、0.001%以上の添加が好ましい。脱酸の効果を高めるためには、0.005%以上のAlの添加が好ましく、0.01%以上の添加がより好ましい。Alは、0.10%を超えて添加すると、介在物が増加して、延性や靭性を損なうので、0.10%以下に制限する。靱性を確保する観点からは、Al量を0.06%以下にすることが好ましい。
 <Nb:0.005~0.08%>
 Nbは、再結晶温度を低下させる元素であり、熱間圧延を行う際に、オーステナイトの再結晶を抑制して組織の微細化に寄与するので、0.005%以上を添加する。Nbを0.08%を超えて添加すると粗大な析出物によって靭性が劣化するので、その含有量は0.08%以下とする。靭性確保の観点から、上限は0.07%にすることが好ましく、より好ましい上限は、0.05%である。一方、下限は組織微細化効果を確実にするため、下限は、好ましくは0.008%、より好ましくは0.010%、さらに好ましくは0.015%とするとよい。
 <Ti:0.005~0.030%>
 Tiは、微細な窒化物(TiN)を形成し、スラブ加熱時のオーステナイト粒の粗大化を抑制し組織の微細化に寄与する。その効果を得るため、0.005%以上のTiを添加する。Tiを0.030%を超えて過剰に添加するとTiNの粗大化や、TiCによる析出硬化が生じ、靭性が劣化するので、0.030%を上限とする。組織を微細化して靱性を確保する観点からは、Ti量を0.008%以上にすることが好ましく、0.010%以上がより好ましい。析出物に起因する靭性の低下を抑制する観点からは、Ti量は0.025%以下が好ましく、0.020%以下がより好ましい。
 <N:0.008%以下>
 Nは不可避的に鋼中に存在するが、N量が多すぎると、TiNやAlNが過度に増大して表面疵、靱性劣化等の弊害が生じるおそれがある。そのため、上限を0.008%とする。さらに、介在物の生成を抑制する観点から、N量の上限は、好ましくは0.007%であり、より好ましい上限は0.006%である。下限は特に設定しないが、脱Nのコストや経済性を考慮し、0.002%とすることが好ましい。
 <P:0.02%以下>
 Pは、不純物であり、含有量の上限を0.02%とする。P量の低減により、靭性が向上することから、P量は0.015%以下が好ましく、0.010%以下がより好ましい。P量は少ない方が好ましいので、下限は設けない。特性とコストのバランスから、通常は、0.001%以上が含有される。
 <S:0.010%以下>
 Sは、不純物であり、含有量の上限を0.010%とする。S量の低減により、熱間圧延によって延伸化するMnSを低減し、靭性を向上させることができることから、S量は0.003%以下が好ましく、0.002%以下がより好ましい。S量は少ない方が好ましいので、下限は設けない。特性とコストのバランスから、通常は、0.0001%以上が含有される。
 本発明においては、さらに、鋼の焼入れ性を向上させ、強度を高めるために、V、Ni、Cu、Cr、Mo、Ca、REMの1種又は2種以上を添加することができる。以下の説明において好ましい下限値を記載するが、これは各元素を添加することによる焼入れ性の向上や、強度を高める効果を得るための好ましい下限値である。各元素の含有量が好ましい下限値未満であっても、鋼に悪影響は及ぼさない。
 <V:0.08%以下>
 Vは、炭化物、窒化物を生成し、析出強化によって鋼の強度を向上させる元素であり、強度を効果的に上昇させるために、0.01%以上を添加することが好ましい。Vを過剰に添加すると、炭化物及び窒化物が粗大化し、靭性の劣化をもたらすため、V量の上限は0.08%とし、さらに好ましくは0.05%とする。
 <Cu:0.50%以下>
 Cuは、鋼の焼入れ性を向上させる元素であり、固溶強化にも寄与するので、0.05%以上を添加しても良い。Cuを過度に添加すると鋼板の表面性状を損なうことがあるため、上限は0.50%以下とする。経済性の観点から、Cu量のより好ましい上限は0.30%以下である。Cuを添加する場合は、表面性状劣化防止の観点から、同時にNiを添加することが好ましい。
 <Ni:0.50%以下>
 Niは、鋼の焼入れ性を向上させる元素であり、靭性の向上にも寄与する。強度を向上させるためには、Ni量を0.05%以上にすることが好ましい。また、Niは高価な元素であるため、上限は0.50%以下とし、0.30%以下とすることが好ましい。
 <Cr:0.50%以下>
 Crは、強度の向上に有効な元素であり、0.05%以上を添加することが好ましい。Crを過度に添加すると、電縫溶接性が劣化することがあるので、0.5%を上限とし、好ましくは0.2%以下である。
 <Mo:0.50%以下>
 Moは、鋼の高強度化に寄与する元素であり、0.05%以上を添加することが好ましい。ただし、Moは高価な元素であり、0.50%を上限とする。より好ましいMo量の上限は0.30%以下であり、さらに好ましくは0.10%以下とする。
 <Ca:0.005%以下> <REM:0.005%以下>
 Ca、REMは、硫化物系介在物の形態を制御し、低温靭性を向上させ、さらに、電縫溶接部の酸化物を微細化して電縫溶接部の靭性を向上させるので、一方、又は双方を0.001%以上添加することが好ましい。Ca、REMを過剰に添加すると、酸化物・硫化物が大きくなり靭性に悪影響を及ぼすので、添加量の上限は0.005%とする。ここでREMとは、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの総称である。
 本発明では、Bは意図的に添加する元素ではなく、原材料に含まれる不可避的不純物として混入するものであって、その含有量は0.0004%以下に制限される。
 <Ceq:0.32~0.60>
 炭素当量Ceqは、焼入れ性の指標であり、強度の指標としても使用されることがある。C、Mn、Cr、Mo、V、Ni、Cuの含有量[質量%]から、下記(式1)によって求める。強度を確保するためには、Ceqを0.32以上にすることが必要である。靱性を確保するためには、Ceqを0.60以下にすることが必要である。これらの効果を確実にするため、Ceqの下限は、0.35以上が好ましく、0.4以上がより好ましい。Ceqの上限は、0.50以下が好ましく、0.45以下がより好ましい、
 Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15 … (式1)
 ここで、C、Mn、Cr、Mo、V、Ni、Cuは各元素の含有量[質量%]である。なお、Cr、Mo、V、Ni、Cuは、本発明においては選択的に添加される元素であり、これらの元素を含まない場合は、上記(式1)ではその元素を0として計算する。
 本発明に係る電縫溶接鋼管の成分組成の、以上説明した以外の残部は、鉄、及び不可避的不純物である。不可避的不純物とは、原材料に含まれる、あるいは製造の過程で混入する成分であり、意図的に鋼に含有させたものではない成分のことをいう。
 具体的には、P、S、O、Sb、Sn、W、Co、As、Mg、Pb、Bi、B、及びHがあげられる。このうち、P、及びSは、上述のとおり、それぞれ、0.02%以下、0.010%以下となるように制御する必要がある。Oは0.006%以下となるように制御することが好ましい。
 その他の元素については、通常、Sb、Sn、W、Co、及びAsは0.1%以下、Mg、Pb及びBiは0.005%以下、B、及びHは0.0004%以下の不可避的不純物としての混入があり得るが、通常の範囲であれば、特に制御する必要はない。
 また、本発明の鋼管における選択必須、あるいは任意の添加元素である、Si、Al、Ni、Cu、Cr、Mo、V、Ca、REMも、含有を意図しなくても不可避的不純物として混入することがあり得るが、上述した意図的に含有させる場合の含有量の上限以下であれば本発明の鋼管に悪影響を与えるものではないので、問題はない。また、Nは、一般に、鋼において不可避的不純物として扱われることがあるが、本発明の電縫鋼管では、上述したとおり、一定の範囲に制御する必要がある。
 次に、本発明の電縫溶接鋼管の金属組織について説明する。
 本発明に係る電縫溶接鋼管は、フェライトと、ベイナイトに代表される低温変態生成相を主体とする組織構造を有する。本発明ではBを添加しないためフェライトが生成されやすくなるが、そのフェライトの特性を活用し靭性を確保しつつ、降伏強度を確保するためフェライト相を微細化させる。全体強度は、C含有量とCeqを制御することにより確保するようにしている。なお、以下の組織は電縫溶接鋼管の肉厚中央部の組織を指す。肉厚中央部とは、当該鋼管の鋼板断面において、鋼管表面から板厚の1/4~3/4の深さに相当する部分を指す。
 本発明の電縫溶接鋼管を構成するフェライト相は、円相当径が1.0μm~10.0μmである。フェライト相の円相当径が1.0μm未満になると、降伏比の増大に寄与しなくなる。その下限は、好ましくは2.0μm以上とするとよい。一方、フェライト相の円相当径が10.0μmを超えると、バウシンガー効果が顕著になり、ERW成形後のYRが低くなると共に、低温靭性を悪化させる。フェライト相の円相当径の上限は、好ましくは7μm、より好ましくは6μmであって、効果を確実にするために更に好ましくは5.0μmにするとよい。
 また、フェライト相の面積率は、靭性を確保し、降伏比を向上させるために、40%以上が必要となる。フェライト相の面積率の好ましい下限は45%であり、より好ましい下限は50%である。一方、フェライト相の面積率が高すぎると強度を確保することができないため、P110規格との対比からその上限は70%とする。強度確保の観点から、好ましい上限は65%であり、より好ましくは60%である。
 また、本発明の電縫溶接鋼管は、フェライトを除いた残部がベイナイトを主体とする低温変態生成相で構成される。さらに残留オーステナイト相またはマルテンサイトを含む場合もある。ベイナイト相の面積率は、フェライト相を除いた残部の90%以上であることが好ましい。残留オーステナイトは不安定であり、降伏応力を低下させるため、できるだけ少ない方がよい。また、マルテンサイトも増加すると靱性が低下するため、できるだけ少ない方がよい。このため、残留オーステナイトもマルテンサイトも、それぞれの面積率の上限は1%とする。より好ましくは0.5%以下とし、できれば存在しないことが望ましい。
 フェライト相、ベイナイト相、残留オーステナイト相、マルテンサイト相等のそれぞれの分布状態及び面積率は、高分解能結晶方位解析法(以下、「EBSP法」という。)及びKAM等のソフトウエアによる画像解析によって求めることができる。
 図1(a)、図2(a)及び図3(a)に、本発明の電縫鋼管T1~T3をEBSP法により観察した結果を示す。図1(a)、図2(a)及び図3(a)に対してソフトウエア「KAM」による画像解析した結果を図1(b)、図2(b)及び図3(b)に示す。この画像解析からフェライトの面積率を求めることができる。フェライト相はKAM法で1°未満の方位差があるものに相当し、画像中では色分けして表現される。
 図1(a)、図2(a)及び図3(a)はそれぞれ、表1-1に示されたMn量及び熱間圧延の仕上げ温度の製造条件にて製造された本発明の電縫溶接鋼管T1~T3のEBSP法による撮影画像である。図1(b)、図2(b)及び図3(b)は、図1(a)、図2(a)及び図3(a)をそれぞれKAMにより画像解析した結果である。
Figure JPOXMLDOC01-appb-T000001
 本発明の電縫溶接鋼管T1~T3の硬さ及びTSと、図1(b)、図2(b)及び図3(b)の画像解析に基づいて測定されたフェライト分率及び平均フェライト粒径を表1-2に示す。
Figure JPOXMLDOC01-appb-T000002
 なお、図1(b)、図2(b)及び図3(b)のマルテンサイト相および残留オーステナイトの面積率を測定した。その結果、マルテンサイト相も残留オースナイトも面積率はいずれも1%以下であった。マルテンサイト相も残留オーステナイトも面積率が1%以下であれば、本発明の電縫鋼管の特性には影響を及ぼさないことも確認した。
 降伏比は、引張試験を行い、降伏強度YSおよび引張強度TSから求めた。フェライト相の面積率と降伏比の関係を調査した結果、フェライト相の面積率が40%未満になると、降伏比が95%超となり、靱性の低下が著しくなることを確認した。また、フェライト相の面積率が70%超になると、降伏強度が低下し、降伏比が85%未満に低下することを確認した。さらに、フェライト相の面積率が70%を超えると、降伏強度だけでなく引張強度も低下し、P110相当の強度が得られなくなることも確認された。
 本発明の電縫鋼管は、円相当径1.0μm~10.0μmの微細なフェライト相を面積率で40%~70%含有することによって、バウシンガー効果を抑制することが可能で、降伏強度を高め、降伏比85~95%を確保することが可能となる。また、本発明の電縫鋼管は、引張試験の応力歪曲線において、降伏伸びが無いことが確認されている。
 次に、本発明の電縫溶接鋼管の製造方法について説明する。
 まず、本発明の電縫溶接鋼管の素材である熱延鋼板の製造条件について説明する。
 本発明では、上述した成分を有する鋼を加熱して熱間圧延後、制御冷却を行い、巻取って、熱延鋼板を製造する。
 鋼の加熱温度は、Nbなど、炭化物を形成する元素を鋼中に固溶させるために、1150℃以上が好ましい。一方、細粒組織を得るためには、1000~1250℃が望ましい。加熱温度が高すぎると組織が粗大になるので、フェライトの粒径の粗大化を防止するため、1250℃以下が好ましい。
 熱間圧延は、鋼の組織がオーステナイト相である温度域で行うことが必要である。これは、フェライト変態が開始した後に圧延すると、加工されたフェライトが生成し、特性の異方性が大きくなるためである。したがって、熱間圧延の仕上温度は、冷却時のフェライト変態が開始するAr以上が好ましい。仕上温度が高すぎると組織が粗大になるので、熱間圧延の仕上温度の上限は1000℃が好ましい。
 Arは、熱延鋼板と同成分の試験材を用いて、加熱及び冷却した際の熱膨張挙動から求めることができる。また、熱延鋼板の成分から、下記(式2)によって求めることも可能である。
 Ar(℃)=910-310C-80Mn-55Ni-20Cu
       -15Cr-80Mo … (式2)
 ここで、C、Mn、Ni、Cu、Cr、Moは各元素の含有量[質量%]である。Ni、Cu、Cr、Moは、本発明においては任意の添加元素である。これらの元素を意図的に添加しない場合は、上記(式2)では0として計算する。
 熱間圧延では、鋼のフェライト組織を微細にするためにはオーステナイト粒を細粒にする必要があり、そのために、950℃以下の圧下量を70%以上にすることが好ましい。圧延対象の鋼の厚みによっては、950℃以下の圧下量は、950℃での板厚と仕上圧延後の板厚との差を、仕上圧延後の板厚で除し、百分率として求める。圧延仕上げ温度(FT)がArを下回ると、フェライトが加工されて、鋼板の異方性が大きくなるため、FTはAr以上とする。
 熱間圧延後、適正なフェライト量を得ることと、残部のベイナイト相を得る目的から、ベイナイト変態が開始する650℃近傍を中間点とする2段階の制御冷却を行う。前段の冷却でフェライトを生成させ、後段で冷却速度を上げることにより、主にベイナイト相の組織を得るためである。
 まず前段の冷却は、熱間圧延の仕上げ圧延終了後、Ar温度から650℃までの平均冷却速度を10~25℃/sにて冷却を行うのが望ましい。熱間圧延後、温度が低下しすぎると、粗大なポリゴナルフェライトが生成し、強度が低下したり、靭性が劣化することがあるので、FT-50℃以上から水冷するのが望ましい。
 後段の冷却工程は、650℃~300℃までの平均冷却速度を15℃/s以上とするとよい。これにより、ベイナイトの変態を促進し、強度を確保することができる。一方、後段の冷却速度を速くしすぎると、強度が過剰に高くなり、靭性劣化を招くため、冷却速度の上限を50℃/sとする。好ましくは40℃/sであり、より好ましくは30℃/sとするとよい。後段の冷却速度は前段の冷却速度の1.5倍以上、好ましくは2倍以上とするとよい。
 冷却工程の終了温度は、ベイナイト変態温度以下である300℃以下とする。適正量のベイナイト相を得るためである。冷却後、300℃以下にて鋼板を巻取る。巻取温度を300℃超とすると、変態が不十分となり、グラニューベイナイトが生成し、十分な強度が確保できないおそれがある。したがって、本発明における熱延鋼板の巻取温度は300℃以下とする。下限は、室温で良い。
 次に、本発明では、得られた熱延鋼板を空冷し、冷間で管状に成形し、端部同士を突合せて電縫溶接し、電縫溶接鋼管を製造する。本発明は、電縫鋼管の板厚や外形を特に規定するものではないが、鋼板の肉厚tと電縫鋼管の外径Dの比t/Dは、2.0~6.0%程度であり、tが7mm以上乃至12.7mm以下のものに好適に適用できる。
 さらに、電縫溶接部のみを加熱し、加速冷却するシーム熱処理を施してもよい。電縫溶接では、突き合わせ部を加熱して溶融させ、圧力を負荷して、固相接合することから、電縫溶接部近傍は高温で塑性変形した後、急冷された状態になっている。そのため、電縫溶接部は鋼板に比べて硬化しており、シーム熱処理を施すことにより、電縫鋼管の低温靭性、変形性能をさらに高めることができる。
 以下、本発明の効果を実施例により具体的に説明する。なお、本発明は、以下の実施例で用いた条件に限定されるものではない。また、表中の空欄は、その元素を意図的に添加していないことを示す。鋼A~Lは本発明の成分組成の規定を満たす鋼であり、鋼AA~ADは、本発明の成分組成の規定を満たさない鋼である。
 表2-1及び表2-2に示す化学成分を有する鋼A~L及びAA~ADを鋳造し、鋼片とした。これらの鋼片を、表3-1及び表3-2に示した加熱温度に加熱し、1000℃以下の圧下量、圧延仕上温度(表3-1及び表3-2中のFT)にて熱間圧延を施し、冷却し、熱延鋼板を得た。冷却工程は、中間温度(表3-1及び表3-2中のMT)を境に冷却速度を変える2段冷却にて行い、後段(MT以下)の冷却速度が、前段(冷却開始温度からMTまで)の平均冷却速度の1.5倍以上になるようにした。冷却工程後の鋼板は、表3-1及び表3-2に記載の巻取温度(CT)で巻き取り、熱延鋼板とした。
 次いで、得られた熱延鋼板を空冷したのち、連続ロール成形工程で管状に成形し、熱延鋼板の端部を突合わせて電縫溶接を行った。その後、必要に応じて、電縫溶接部を加熱後、加速冷却し、シーム熱処理を施した。
 表3-1及び表3-2中の「圧下量」とは、熱間圧延工程での950℃以下における圧下量である。また、「t」は鋼板の厚さ(mm)、「D」は造管後の鋼管の外径(mm)を示す。
 表2-1及び表2-2のArは、C、Mn、Ni、Cu、Cr、Moの含有量[質量%]から求めた。なお、Ni、Cu、Cr、Moは、本発明においては任意の添加元素であり、表2-1及び表2-2に空欄で示されるように、意図的に添加しない場合は、下記(式2)では0として計算した。
 Ar(℃)=910-310C-80Mn-55Ni-20Cu
       -15Cr-80Mo ・・・ (式2)
 次に、得られた電縫溶接鋼管から、組織観察用の試料を採取し、鋼管長手方向と平行な断面にナイタールエッチングを施し、光学顕微鏡で組織観察及び写真撮影を行った。観察位置は、外表面から2t/5位置とした。これらの組織写真を用いて、パーライト、マルテンサイトなど、フェライト相或いはベイナイト相以外の組織が生成していないことを確認した。その後、EBSP法により観察された画像を画像解析によりフェライト相の面積率を求めた。フェライト相の面積率については、100μm×200μmの視野10箇所測定して、平均値を求めた。さらに、X線回折法でオーステナイトの面積率を測定し、1%以下であることを確認した。
 次に、電縫溶接鋼管から、JIS Z 2241に準拠して、鋼管長手方向に弧状引張試験片を採取し、室温で引張試験を行い、降伏応力と引張強度を求めた。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表4に示したように、本発明例No.1~14はいずれも、適正な面積率のフェライトとベイナイトとからなる金属組織である。また、これらの電縫溶接鋼管の引張強度はいずれも引張強度758MPa以上であり、降伏比がいずれも85%以上95%以下と良好である。
 No.20は巻取温度が300℃超であり、また、MT以下の平均冷却速度が15℃/s未満であったために、変態温度が高くなった。そのため、No.20は、フェライト相の面積率が過剰になる一方でベイナイトの生成が不十分になり、降伏強度が低下した例である。No.21は、FT-50℃よりも低い温度から水冷されているので、フェライト平均円相当粒径が10μmを超えていた。そのため、No.21は、圧延方向(L方向)の降伏比が85%を下回っている。
 No.22はC量が本発明の範囲よりも低いために、フェライト相の面積率が過剰になり、また、フェライト平均円相当粒径が10μmを超えており、鋼のフェライト組織の細粒化が不十分であった。そのため、No.22はP110相当のYSの強度が得られておらず、圧延方向の降伏比が85%を下回っている。
 No.23はCeqが本発明の範囲よりも低いために、強度が不足している例である。No.24はCeqが本発明の範囲よりも高いために強度が過剰に上昇した例であり、圧延方向の降伏比が95%を超過している。No.25はCの含有量が本発明の範囲よりも高く、強度が過剰に上昇した例である。
 本発明は、低コストでERW鋼管を製造することを目的としており、ERW成形ままで要求特性を満足する条件を規定している。もしERW成形後に焼戻しを行うと、YRが大幅に上昇し、降伏伸びが現れる材質的な変化がある。
 本発明によれば、シェールガス採掘等の用途に最適なAPI規格 5CT P110相当の強度を有する電縫溶接鋼管を、造管後の熱処理を行うことなく、すなわち安価に提供できるので、産業上の利用可能性は大きい。

Claims (7)

  1.  成分組成が質量%にて、
    C :0.08~0.18%、
    Si:0.01%~0.50%、
    Mn:1.30~2.1%、
    Al:0.001~0.10%、
    Nb:0.005~0.08%、
    Ti:0.005~0.03%、
    をそれぞれ含有し、
    N:0.008%以下、
    P:0.020%以下、
    S:0.010%以下、
    に制限され、
    残部がFe及び不可避的不純物である鋼であって、
    肉厚中央部の組織が、面積率で40%~70%の円相当径1.0μm~10.0μmのフェライト相と、残部はベイナイト相を含有する低温変態生成相であり、
    下記(式1)で表わされるCeqが、0.32≦Ceq≦0.60を満たすことを特徴とする電縫溶接鋼管。
     Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15…(式1)
     ここで、(式1)におけるC、Mn、Cr、Mo、V、Cu、Niは、各元素の含有量を質量%で表した値であり、これらの元素を含まない場合は、その元素は0として計算する。
  2.  前記成分組成が、さらに、質量%で、
    V :0.08%以下、
    Cu:0.5%以下、
    Ni:0.5%以下、
    Cr:0.5%以下、
    Mo:0.5%以下、
    Ca:0.005%以下、
    REM:0.005%以下
    の1種または2種以上を含有することを特徴とする請求項1に記載の電縫溶接鋼管。
  3.  前記成分組成が、さらに、質量%で、
    B :0.0004%以下
    に制限されることを特徴とする請求項1又は請求項2に記載の電縫溶接鋼管。
  4.  全厚試験片による管軸方向引張試験による降伏強度が758MPa以上、965MPa以下の強度を有することを特徴とする請求項1又は2に記載の電縫溶接鋼管。
  5.  全厚試験片による管軸方向引張試験による降伏比が85~95%であることを特徴とする請求項1又は2に記載の電縫溶接鋼管。
  6.  引張り試験の応力歪曲線において、降伏伸びが無いことを特徴とする請求項1又は2に記載の電縫溶接鋼管。
  7.  板厚が7~12.7mmであることを特徴とする請求項1又は2に記載の電縫溶接鋼管。
PCT/JP2013/084255 2013-12-20 2013-12-20 電縫溶接鋼管 WO2015092916A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2014519328A JP5644982B1 (ja) 2013-12-20 2013-12-20 電縫溶接鋼管
CA2923586A CA2923586C (en) 2013-12-20 2013-12-20 Electric-resistance welded steel pipe
US15/022,004 US10738366B2 (en) 2013-12-20 2013-12-20 Electric-resistance welded steel pipe
KR1020167007945A KR101795979B1 (ko) 2013-12-20 2013-12-20 전봉 용접 강관
PCT/JP2013/084255 WO2015092916A1 (ja) 2013-12-20 2013-12-20 電縫溶接鋼管
CN201380079994.4A CN105612267B (zh) 2013-12-20 2013-12-20 电阻焊钢管
EP13899650.9A EP3085800B1 (en) 2013-12-20 2013-12-20 Electric resistance welded steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/084255 WO2015092916A1 (ja) 2013-12-20 2013-12-20 電縫溶接鋼管

Publications (1)

Publication Number Publication Date
WO2015092916A1 true WO2015092916A1 (ja) 2015-06-25

Family

ID=52139212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084255 WO2015092916A1 (ja) 2013-12-20 2013-12-20 電縫溶接鋼管

Country Status (7)

Country Link
US (1) US10738366B2 (ja)
EP (1) EP3085800B1 (ja)
JP (1) JP5644982B1 (ja)
KR (1) KR101795979B1 (ja)
CN (1) CN105612267B (ja)
CA (1) CA2923586C (ja)
WO (1) WO2015092916A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019116658A (ja) * 2017-12-27 2019-07-18 Jfeスチール株式会社 疲労強度に優れた電縫鋼管およびその製造方法
JP6575734B1 (ja) * 2019-03-04 2019-09-18 日本製鉄株式会社 ラインパイプ用電縫鋼管
JP2020059887A (ja) * 2018-10-10 2020-04-16 日本製鉄株式会社 油井用電縫鋼管およびその製造方法
JP6813128B1 (ja) * 2019-11-13 2021-01-13 日本製鉄株式会社 鋼材
WO2021085036A1 (ja) * 2019-10-31 2021-05-06 Jfeスチール株式会社 電縫鋼管およびその製造方法ならびにラインパイプおよび建築構造物

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3428299B1 (en) * 2016-07-06 2020-07-22 Nippon Steel Corporation Electroseamed steel pipe for line pipe
MX2019002653A (es) * 2016-10-03 2019-07-15 Nippon Steel Corp Tubo de acero soldado por resistencia electrica para viga de torsion.
DE102016124852A1 (de) * 2016-12-19 2018-06-21 Benteler Steel/Tube Gmbh Rohrelement für Hydraulik- oder Pneumatikleitung, Verwendung des Rohrelementes und Verwendung eines Werkstoffes zur Herstellung eines Rohrelementes
KR101899689B1 (ko) 2016-12-23 2018-09-17 주식회사 포스코 길이방향 균일 연신율이 우수한 용접강관용 강재, 이의 제조방법 및 이를 이용한 강관
RU2648426C1 (ru) * 2017-08-24 2018-03-26 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения", АО "НПО "ЦНИИТМАШ" Хладостойкая сталь
US11739866B2 (en) * 2018-10-12 2023-08-29 Nippon Steel Corporation Electric resistance welded steel pipe for torsion beam
JP7207245B2 (ja) * 2019-09-17 2023-01-18 Jfeスチール株式会社 鋼管杭継手、鋼管杭および鋼管杭の施工方法
CN110964978B (zh) * 2019-12-04 2021-11-09 山东钢铁股份有限公司 一种工程机械用钢板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080621A1 (ja) * 2004-02-19 2005-09-01 Nippon Steel Corporation バウシンガー効果の発現が小さい鋼板または鋼管およびその製造方法
JP2006283147A (ja) * 2005-04-01 2006-10-19 Nippon Steel Corp 時効後の変形特性に優れたパイプライン用高強度鋼管およびその製造方法
JP2009057620A (ja) * 2007-09-03 2009-03-19 Sumitomo Metal Ind Ltd ハイドロフォーム用電縫管及びその素材鋼板と、これらの製造方法
WO2012144248A1 (ja) 2011-04-19 2012-10-26 新日本製鐵株式会社 油井用電縫鋼管及び油井用電縫鋼管の製造方法
JP5293903B1 (ja) * 2011-08-23 2013-09-18 新日鐵住金株式会社 厚肉電縫鋼管及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0494448A1 (en) * 1990-12-25 1992-07-15 Nkk Corporation Method for manufacturing electric-resistance-welded steel pipe with high strength
WO2002103069A1 (en) * 2000-01-28 2002-12-27 Kawasaki Steel Corporation Steel pipe having high formability and method for production thereof
JP3869747B2 (ja) 2002-04-09 2007-01-17 新日本製鐵株式会社 変形性能に優れた高強度鋼板、高強度鋼管および製造方法
JP4997805B2 (ja) * 2005-03-31 2012-08-08 Jfeスチール株式会社 高強度厚鋼板およびその製造方法、ならびに高強度鋼管
KR100917914B1 (ko) * 2005-04-04 2009-09-16 신닛뽄세이테쯔 카부시키카이샤 연성 파괴 특성이 우수한 고강도 강판 및 고강도 용접 강관및 그들의 제조 방법
EP1951519A4 (en) * 2005-10-24 2008-12-31 Exxonmobil Upstream Res Co HIGH-RESISTANCE TWO-PHASE STEEL WITH LOW LIMITING RATIO, HIGH HARDNESS AND EXCEPTIONAL WELDABILITY
JP5251089B2 (ja) * 2006-12-04 2013-07-31 新日鐵住金株式会社 低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管及びその製造方法
JP5126857B2 (ja) * 2007-03-29 2013-01-23 新日鐵住金株式会社 加工性に優れた肌焼鋼管の製造方法
JP5369663B2 (ja) * 2008-01-31 2013-12-18 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
US8110292B2 (en) * 2008-04-07 2012-02-07 Nippon Steel Corporation High strength steel plate, steel pipe with excellent low temperature toughness, and method of production of same
WO2011052095A1 (ja) * 2009-10-28 2011-05-05 新日本製鐵株式会社 強度、延性の良好なラインパイプ用鋼板およびその製造方法
CN104350168B (zh) 2012-09-27 2016-08-24 新日铁住金株式会社 电阻焊钢管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080621A1 (ja) * 2004-02-19 2005-09-01 Nippon Steel Corporation バウシンガー効果の発現が小さい鋼板または鋼管およびその製造方法
JP2006283147A (ja) * 2005-04-01 2006-10-19 Nippon Steel Corp 時効後の変形特性に優れたパイプライン用高強度鋼管およびその製造方法
JP2009057620A (ja) * 2007-09-03 2009-03-19 Sumitomo Metal Ind Ltd ハイドロフォーム用電縫管及びその素材鋼板と、これらの製造方法
WO2012144248A1 (ja) 2011-04-19 2012-10-26 新日本製鐵株式会社 油井用電縫鋼管及び油井用電縫鋼管の製造方法
JP5293903B1 (ja) * 2011-08-23 2013-09-18 新日鐵住金株式会社 厚肉電縫鋼管及びその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019116658A (ja) * 2017-12-27 2019-07-18 Jfeスチール株式会社 疲労強度に優れた電縫鋼管およびその製造方法
JP2020059887A (ja) * 2018-10-10 2020-04-16 日本製鉄株式会社 油井用電縫鋼管およびその製造方法
JP7216902B2 (ja) 2018-10-10 2023-02-02 日本製鉄株式会社 油井用電縫鋼管およびその製造方法
JP6575734B1 (ja) * 2019-03-04 2019-09-18 日本製鉄株式会社 ラインパイプ用電縫鋼管
WO2020178943A1 (ja) * 2019-03-04 2020-09-10 日本製鉄株式会社 ラインパイプ用電縫鋼管
WO2021085036A1 (ja) * 2019-10-31 2021-05-06 Jfeスチール株式会社 電縫鋼管およびその製造方法ならびにラインパイプおよび建築構造物
JPWO2021085036A1 (ja) * 2019-10-31 2021-05-06
JP6947333B2 (ja) * 2019-10-31 2021-10-13 Jfeスチール株式会社 電縫鋼管およびその製造方法ならびにラインパイプおよび建築構造物
JP6813128B1 (ja) * 2019-11-13 2021-01-13 日本製鉄株式会社 鋼材
WO2021095184A1 (ja) * 2019-11-13 2021-05-20 日本製鉄株式会社 鋼材

Also Published As

Publication number Publication date
CN105612267B (zh) 2018-10-19
EP3085800A4 (en) 2017-07-05
KR101795979B1 (ko) 2017-11-08
EP3085800A1 (en) 2016-10-26
CN105612267A (zh) 2016-05-25
EP3085800B1 (en) 2019-02-06
CA2923586A1 (en) 2015-06-25
CA2923586C (en) 2020-10-06
KR20160048155A (ko) 2016-05-03
JP5644982B1 (ja) 2014-12-24
JPWO2015092916A1 (ja) 2017-03-16
US20160222480A1 (en) 2016-08-04
US10738366B2 (en) 2020-08-11

Similar Documents

Publication Publication Date Title
JP5644982B1 (ja) 電縫溶接鋼管
JP6288390B1 (ja) ラインパイプ用アズロール電縫鋼管
JP5776398B2 (ja) 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP5679114B2 (ja) 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
US9726305B2 (en) Electric resistance welded steel pipe
US11214847B2 (en) High-strength hot-rolled steel sheet for electric resistance welded steel pipe and manufacturing method therefor
EP2799575B1 (en) Hot rolled high tensile strength steel sheet and method for manufacturing same
JP5958450B2 (ja) 耐硫化物応力腐食割れ性に優れた油井用低合金高強度継目無鋼管およびその製造方法
EP2692875B1 (en) Electroseamed steel pipe and process for producing same
WO2013047702A1 (ja) ラインパイプ用ホットコイル及びその製造方法
JP6048621B1 (ja) 高強度電縫鋼管、高強度電縫鋼管用の鋼板の製造方法、及び高強度電縫鋼管の製造方法
KR20120062006A (ko) 저항복비, 고강도 및 고일정 연신을 가진 강판 및 그 제조 방법
JP5768603B2 (ja) 高一様伸び特性を備え、かつ溶接部低温靱性に優れた高強度溶接鋼管、およびその製造方法
JP6519024B2 (ja) 低温靭性に優れた低降伏比高強度熱延鋼板の製造方法
JP2012031509A (ja) 高一様伸び特性を備えた高強度低降伏比鋼、その製造方法、および高強度低降伏比溶接鋼管
JP6197767B2 (ja) 低降伏比高強度スパイラル鋼管杭およびその製造方法
WO2010143433A1 (ja) 高強度鋼管及びその製造方法
CN111655872B (zh) 管线管用钢材及其制造方法以及管线管的制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014519328

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2923586

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15022004

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167007945

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013899650

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013899650

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE