WO2010143293A1 - コンバータ制御装置 - Google Patents

コンバータ制御装置 Download PDF

Info

Publication number
WO2010143293A1
WO2010143293A1 PCT/JP2009/060714 JP2009060714W WO2010143293A1 WO 2010143293 A1 WO2010143293 A1 WO 2010143293A1 JP 2009060714 W JP2009060714 W JP 2009060714W WO 2010143293 A1 WO2010143293 A1 WO 2010143293A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
auxiliary
converter
duty
current
Prior art date
Application number
PCT/JP2009/060714
Other languages
English (en)
French (fr)
Inventor
晃太 真鍋
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/060714 priority Critical patent/WO2010143293A1/ja
Priority to CN200980159799.6A priority patent/CN102804573B/zh
Priority to DE112009004911T priority patent/DE112009004911T5/de
Priority to US13/259,280 priority patent/US8593845B2/en
Priority to JP2010518661A priority patent/JP5018966B2/ja
Publication of WO2010143293A1 publication Critical patent/WO2010143293A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/344Active dissipative snubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a converter control device that controls the output voltage of a fuel cell.
  • the output voltage of the fuel cell and the output voltage of the battery are controlled by a DC / DC converter.
  • a DC / DC converter that performs such control a type that performs voltage conversion by causing a switching element such as a power transistor, IGBT, or FET to perform PWM operation is widely used.
  • DC / DC converters are required to have further lower loss, higher efficiency, and lower noise in accordance with power saving, downsizing, and higher performance of electronic devices, and in particular, switching loss and switching surge associated with PWM operation. Reduction is desired.
  • the soft switching is a switching method for realizing ZVS (Zero Voltage Switching) or ZCS (Zero Current Switching), and the switching loss of the power semiconductor device and the stress applied thereto are low.
  • ZVS Zero Voltage Switching
  • ZCS Zero Current Switching
  • hard switching a switching method in which the voltage / current is directly turned on / off by the switching function of the power semiconductor device is called hard switching.
  • soft switching a method in which both or one of ZVS / ZCS is realized is called soft switching, and the other is called hard switching.
  • Soft switching is realized by, for example, a common buck-boost type DC / DC converter including an inductor, a switching element, and a diode to which an auxiliary circuit for reducing switching loss is added (so-called soft switching converter) (for example, a patent) Reference 1).
  • each phase converter is configured by a soft switching converter, it is possible to increase the speed, increase the capacity, etc., but there is a concern that the converter will be enlarged.
  • the multi-phase soft switching converter can be miniaturized.
  • the inductance characteristics of the auxiliary coil are deteriorated.
  • the maximum allowable current Imax is set on the assumption that a current for one phase flows (see FIG. 16) and the design is performed.
  • the current Iu that is, the current of two phases or more
  • the inductance characteristics of the auxiliary coil are deteriorated.
  • a current exceeding the rating flows in other circuit elements (for example, switching elements) constituting the auxiliary circuit, and in the worst case, there is a problem that the element is destroyed.
  • the present invention has been made in view of the circumstances described above, and in a multi-phase soft switching converter, it is possible to prevent element breakdown of auxiliary switches and the like by preventing operation interference of auxiliary circuits of each phase.
  • An object is to provide a possible converter control device.
  • a converter control device is a control device for a multi-phase soft switching converter that controls an output voltage of a fuel cell and includes an auxiliary circuit for each phase.
  • the auxiliary coil constituting the circuit is common to the auxiliary circuits of all phases, the calculating means for calculating the duty ratio of the auxiliary switch constituting the auxiliary circuit of each phase, and the duty deviation of the auxiliary switch between the phases
  • a control means for controlling a duty ratio related to the auxiliary switch of each phase so that each of the derived duty deviations does not exceed a set threshold value.
  • the duty deviation of the auxiliary switch between the phases is derived, and the duty ratio related to the auxiliary switch of each phase is set so that the derived duty deviation does not exceed the set threshold. Because of the control, the operation interference of the auxiliary circuits of each phase is prevented, and it is possible to prevent the occurrence of circuit abnormality (such as element destruction).
  • the converter of each phase includes a main booster circuit and the auxiliary circuit, and the main booster circuit has one end connected to a terminal on the high potential side of the fuel cell.
  • a coil one end connected to the other end of the main coil, the other end connected to a terminal on the low potential side of the fuel cell, a switching main switch, and a cathode connected to the other end of the main coil
  • a first capacitor, a smoothing capacitor provided between the anode of the first diode and the other end of the main switch, and the auxiliary circuit is connected in parallel to the main switch, and
  • a first series connection body including a second diode and a snubber capacitor, connected to the other end of the coil and a terminal on the low potential side of the fuel cell; a connection portion between the second diode and the snubber capacitor; Main carp Of which is connected between one end, and a secondary series connection comprising an auxiliary switch that is the common and the third diode and the auxiliary coil are preferred.
  • the converter of each phase includes a free wheel diode for continuously flowing a current in the same direction as the energized state when the auxiliary switch is turned off while the auxiliary coil is energized. Further, it is more preferable that the free wheel diode has an anode terminal connected to the low potential side of the fuel cell and a cathode terminal connected to a connection portion of the auxiliary coil and the auxiliary switch.
  • the driving frequency of the auxiliary switch is f
  • the number of driving phases is n
  • the energization time of the auxiliary coil is Tso
  • the energization time Tso of the auxiliary coil is represented by the following formula (11).
  • Another converter control device is a control device for a multi-phase soft switching converter that controls an output voltage of a fuel cell and includes an auxiliary circuit for each phase, and constitutes the auxiliary circuit for each phase.
  • the auxiliary coil to be shared is common to all phases of auxiliary circuits, and the lower limit of the current carrying capacity of the auxiliary coil is the sum of the currents flowing in the respective phases when the auxiliary switches of the respective phases are turned on. It is characterized by being set to a value larger than the value.
  • FIG. 6 is a diagram showing an operation in mode 1.
  • FIG. 6 is a diagram illustrating an operation in mode 2.
  • FIG. 6 is a diagram illustrating an operation in mode 3.
  • FIG. 10 is a diagram illustrating an operation in mode 4.
  • FIG. 10 is a diagram illustrating an operation in mode 5.
  • FIG. 10 is a diagram illustrating an operation in mode 6.
  • FIG. 1 shows a configuration of an FCHV system mounted on a vehicle according to the present embodiment.
  • a fuel cell vehicle FCHV
  • FCHV fuel cell vehicle
  • the present invention can also be applied to an electric vehicle.
  • the present invention can be applied not only to vehicles but also to various moving bodies (for example, ships, airplanes, robots, etc.), stationary power sources, and portable fuel cell systems.
  • the FCHV system 100 includes an FC converter 2500 between the fuel cell 110 and the inverter 140, and a DC / DC converter (hereinafter referred to as a battery converter) 180 between the battery 120 and the inverter 140. .
  • the fuel cell 110 is a solid polymer electrolyte cell stack in which a plurality of unit cells are stacked in series.
  • the fuel cell 110 is provided with a voltage sensor V0 for detecting the output voltage Vfcmes of the fuel cell 110 and a current sensor I0 for detecting the output current Ifcmes.
  • V0 for detecting the output voltage Vfcmes of the fuel cell 110
  • I0 for detecting the output current Ifcmes.
  • the oxidation reaction of the formula (1) occurs in the anode electrode
  • the reduction reaction of the formula (2) occurs in the cathode electrode
  • the electromotive reaction of the formula (3) occurs in the fuel cell 110 as a whole.
  • the unit cell has a structure in which a MEA in which a polymer electrolyte membrane is sandwiched between two electrodes, a fuel electrode and an air electrode, is sandwiched between separators for supplying fuel gas and oxidizing gas.
  • the anode electrode is provided with an anode electrode catalyst layer on the porous support layer
  • the cathode electrode is provided with a cathode electrode catalyst layer on the porous support layer.
  • the fuel cell 110 is provided with a system for supplying fuel gas to the anode electrode, a system for supplying oxidizing gas to the cathode electrode, and a system for supplying coolant (all not shown). By controlling the supply amount of the fuel gas and the supply amount of the oxidizing gas according to the signal, it is possible to generate desired power.
  • the FC converter 2500 plays a role of controlling the output voltage Vfcmes of the fuel cell 110, and converts the output voltage Vfcmes input to the primary side (input side: fuel cell 110 side) into a voltage value different from the primary side ( Step-up or step-down) and output to the secondary side (output side: inverter 140 side). Conversely, the voltage input to the secondary side is converted to a voltage different from the secondary side and output to the primary side.
  • the FC converter 2500 controls the output voltage Vfcmes of the fuel cell 110 to be a voltage corresponding to the target output.
  • the battery 120 is connected in parallel to the fuel cell 110 with respect to the load 130, and stores a surplus power storage source, a regenerative energy storage source during regenerative braking, and an energy buffer when the load fluctuates due to acceleration or deceleration of the fuel cell vehicle.
  • a secondary battery such as a nickel / cadmium storage battery, a nickel / hydrogen storage battery, or a lithium secondary battery is used.
  • the battery converter 180 plays a role of controlling the input voltage of the inverter 140 and has a circuit configuration similar to that of the FC converter 2500, for example. Note that a step-up converter may be employed as the battery converter 180, but a step-up / step-down converter capable of step-up and step-down operations may be employed instead, and the input voltage of the inverter 140 can be controlled. Any configuration can be adopted.
  • the inverter 140 is, for example, a PWM inverter driven by a pulse width modulation method, and converts DC power output from the fuel cell 110 or the battery 120 into three-phase AC power in accordance with a control command from the controller 160, thereby obtaining a traction motor.
  • the rotational torque of 131 is controlled.
  • the traction motor 131 is the main power of the vehicle, and generates regenerative power when decelerating.
  • the differential 132 is a reduction device that reduces the high-speed rotation of the traction motor 131 to a predetermined number of rotations and rotates the shaft on which the tire 133 is provided.
  • the shaft is provided with a wheel speed sensor (not shown) and the like, thereby detecting the vehicle speed of the vehicle.
  • all devices including the traction motor 131 and the differential 132) that can operate by receiving power supplied from the fuel cell 110 are collectively referred to as a load 130.
  • the controller 160 is a computer system for controlling the FCHV system 100 and includes, for example, a CPU, a RAM, a ROM, and the like.
  • the controller 160 inputs various signals (for example, a signal representing the accelerator opening, a signal representing the vehicle speed, a signal representing the output current and output terminal voltage of the fuel cell 110) supplied from the sensor group 170, and the load.
  • the required power of 130 (that is, the required power of the entire system) is obtained.
  • the required power of the load 130 is, for example, the total value of the vehicle travel power and the auxiliary power.
  • Auxiliary power is the power consumed by in-vehicle accessories (humidifiers, air compressors, hydrogen pumps, cooling water circulation pumps, etc.), and equipment required for vehicle travel (transmissions, wheel control devices, steering devices, and suspensions) Power consumed by devices, etc., and power consumed by devices (air conditioners, lighting fixtures, audio, etc.) disposed in the passenger space.
  • the controller 160 determines the distribution of output power between the fuel cell 110 and the battery 120, and calculates a power generation command value.
  • the controller 160 obtains the required power for the fuel cell 110 and the battery 120
  • the controller 160 controls the operations of the FC converter 2500 and the battery converter 180 so that the required power is obtained.
  • the FC converter 2500 has a circuit configuration as a three-phase resonant converter composed of a U phase, a V phase, and a W phase.
  • the circuit configuration of the three-phase resonant converter combines an inverter-like circuit part that once converts an input DC voltage into AC, and a part that rectifies the AC again to convert it to a different DC voltage.
  • a multi-phase soft switching converter hereinafter referred to as a multi-phase FC soft switching converter
  • a freewheel circuit (details will be described later) is employed as the FC converter 2500.
  • A-2-1. 2 is a diagram showing a circuit configuration of a multi-phase FC soft switching converter 2500 mounted on the FCHV system 100
  • FIG. 3 is a diagram of the multi-phase FC soft switching converter 2500. It is a figure which shows the circuit structure for 1 phase.
  • FC soft switching converters 250a, 25b, and 250c the U-phase, V-phase, and W-phase FC soft switching converters constituting the multi-phase FC soft switching converter 2500 are referred to as FC soft switching converters 250a, 25b, and 250c, respectively, and need not be particularly distinguished. In some cases, it is simply called FC soft switching converter 250. Further, the voltage before boosting input to the FC soft switching converter 250 is called a converter input voltage Vin, and the voltage after boosting output from the FC soft switching converter 250 is called a converter output voltage Vout.
  • each FC soft switching converter 250 includes a main boosting circuit 22a for performing a boosting operation, an auxiliary circuit 22b for performing a soft switching operation, and a freewheel circuit 22c. .
  • the main booster circuit 22a switches the energy stored in the coil L1 to the load 130 via the diode D5 by the switching operation of the switching circuit composed of the first switching element S1 made of IGBT (Insulated Gate Bipolar Transistor) and the like and the diode D4.
  • the output voltage of the fuel cell 110 is boosted by releasing.
  • one end of the coil L1 is connected to the high potential side terminal of the fuel cell 110, one pole of the first switching element S1 is connected to the other end of the coil L1, and the other end of the first switching element S1. Is connected to the low potential side terminal of the fuel cell 110.
  • the cathode terminal of the diode D5 is connected to the other end of the coil L1, and the capacitor C3 functioning as a smoothing capacitor is connected between the anode terminal of the diode D5 and the other end of the first switching element S1.
  • the main booster circuit 22a is provided with a smoothing capacitor C1 on the fuel cell 110 side, which makes it possible to reduce the ripple of the output current of the fuel cell 110.
  • the voltage VH applied to the capacitor C3 becomes the converter output voltage Vout of the FC soft switching converter 150
  • the voltage VL applied to the smoothing capacitor C1 is the output voltage of the fuel cell 110 and the converter input voltage of the FC soft switching converter 150. Vin.
  • the auxiliary circuit 22b includes a first series connection body including a diode D3 connected in parallel to the first switching element S1 and a snubber capacitor C2 connected in series to the diode D3.
  • the cathode terminal of the diode D3 is connected to the other end of the coil L1, and the anode terminal of the diode D3 is connected to one end of the snubber capacitor C2. Further, the other end of the snubber capacitor C2 is connected to a terminal on the low potential side of the fuel cell 110.
  • the auxiliary circuit 22b includes a diode D2, a second switching element S2, a diode D1, and a second series connection body configured by an auxiliary coil L2 common to each phase.
  • the anode terminal of the diode D2 is connected to the connection portion between the diode D3 of the first series connection body and the snubber capacitor C2.
  • the cathode terminal of the diode D2 is connected to the pole at one end of the second switching element (auxiliary switch) S2.
  • the other end of the second switching element S2 is connected to a connection portion between the auxiliary coil L2 and the freewheel circuit 22c.
  • the anode terminal of the freewheel diode D6 is connected to the low potential side of the fuel cell 110, while the cathode terminal of the freewheel diode D6 is connected to the auxiliary coil L2.
  • the freewheel circuit 22c includes a common freewheel diode D6 for each phase, and the second switching element S2 is provided even when the second switching element S2 is open while the auxiliary coil L2 is energized. This is a circuit for realizing a fail-safe function provided in order to prevent the occurrence of a surge voltage that would break down. Note that the present invention can also be applied to a configuration that does not include the freewheel circuit 22c.
  • the controller 160 adjusts the switching duty ratio of the first switching element S1 of each phase, so that the boost ratio by the FC soft switching converter 25, that is, the converter input voltage Vin is adjusted.
  • the ratio of the converter output voltage Vout is controlled.
  • soft switching is realized by interposing the switching operation of the second switching element S2 of the auxiliary circuit 12b in the switching operation of the first switching element S1.
  • FIG. 4 is a flowchart showing one cycle of processing (hereinafter referred to as soft switching processing) of the FC soft switching converter 25 through the soft switching operation.
  • the controller 160 sequentially executes steps S101 to S106 shown in FIG. Form one cycle.
  • the modes representing the current and voltage states of the FC soft switching converter 25 are expressed as modes 1 to 6, respectively, and the states are shown in FIGS. 5 to 8, the current flowing through the circuit is indicated by an arrow.
  • the initial state in which the soft switching process shown in FIG. 4 is performed is a state where power required for the load 130 is supplied from the fuel cell 110, that is, both the first switching element S1 and the second switching element S2 are turned off. Thus, a current is supplied to the load 130 via the coil L1 and the diode D5.
  • step S101 the first switching element S1 is kept turned off while the second switching element S2 is turned on.
  • the current flowing to the load 130 side through the coil L1, the diode D3, the second switching element S2, and the auxiliary coil L2 due to the potential difference between the output voltage VH of the FC soft switching converter 150 and the input voltage VL. Then, it gradually shifts to the auxiliary circuit 12b side.
  • the state of current transfer from the load 130 side to the auxiliary circuit 12b side is indicated by a white arrow.
  • the transition completion time tmode1 from mode 1 to mode 2 is represented by the following equation (4). Ip; phase current L2id; inductance of auxiliary coil L2
  • FIG. 12 is a diagram showing the voltage / current behavior in the transition process from mode 2 to mode 3, wherein the voltage of the fuel cell 110 is a thick solid line, the voltage of the snubber capacitor C2 is a thin solid line, and the current of the snubber capacitor C2 is shown. It is indicated by a broken line.
  • the path Dm21 shown in FIG. 6 is started (see (A) in FIG. 12)
  • the path Dm22 shown in FIG. 6 is caused by the potential difference between the voltage VH of the snubber capacitor C2 and the voltage VL of the fuel cell 110.
  • Energization that is, energization of the auxiliary coil L2 is started (see (B) shown in FIG. 12).
  • the current of the snubber capacitor C ⁇ b> 2 continues to rise until the voltage of the snubber capacitor C ⁇ b> 2 reaches the voltage VL of the battery 110. More specifically, although the electric charge accumulated in the snubber capacitor C2 begins to be regenerated to the power source side due to the potential difference between the voltage VH of the snubber capacitor C2 and the voltage VL of the fuel cell 110 (arrow Dm22 shown in FIG.
  • the original potential difference is ( VH ⁇ VL)
  • the flow of electric charge (discharge) accumulated in the snubber capacitor C2 stops when it reaches the power supply voltage (that is, the voltage VL of the fuel cell 110) (timing Tt1 shown in FIG. 12).
  • the auxiliary coil L2 that is, the characteristic that the current is to continue to flow
  • the charge continues to flow even if the voltage of the snubber capacitor C2 becomes VL or less (see (C) in FIG. 12).
  • the following expression (4) ′ is satisfied, all the charges of the snubber capacitor C2 flow (discharge).
  • the current Il1 flowing in the coil L1 is the sum of the current Idm31 flowing on the auxiliary circuit 12b side indicated by the arrow Dm31 and the current Idm32 flowing through the first switching element S1 indicated by the arrow Dm32 (the following equation (6) reference).
  • the current Idm31 flowing through the first switching element S1 is determined according to the decreasing rate of the current Idm31 flowing through the auxiliary circuit 12b.
  • the current change rate of the current Idm31 flowing to the auxiliary circuit 12b side is expressed by the following equation (7). That is, the current Idm31 flowing to the auxiliary circuit 12b side decreases at the change rate of the following equation (7), so the first switching Even if the element S1 is turned on, the current flowing through the first switching element S1 does not suddenly rise, and ZCS (Zero Current Switching) is realized.
  • step S104 the state of step S103 continues, increasing the amount of current flowing into the coil L1 and gradually increasing the energy stored in the coil L1 (see arrow Dm42 in FIG. 8).
  • the auxiliary circuit 12b includes the diode D2
  • no reverse current flows through the auxiliary coil L2
  • the snubber capacitor C2 is not charged via the second switching element S2.
  • the first switching element S1 since the first switching element S1 is turned on, the snubber capacitor C2 is not charged via the diode D3. Therefore, the current of the coil L1 is equal to the current of the first switching element S1, and the energy stored in the coil L1 is gradually increased.
  • control period means a time period of the soft switching process when a series of processes from step S101 to step S106 is defined as one period (one cycle).
  • FIG. 11 shows the voltage of the snubber capacitor C2 in mode 5 (hereinafter referred to as snubber capacitor voltage) Vc, the voltage applied to the first switching element S1 (hereinafter referred to as element voltage) Ve, and the current flowing through the first switching element S1 (hereinafter referred to as “voltage”). , Element current) Ie.
  • the electric charge is extracted in mode 2 and the electric charge is charged to the snubber capacitor C2 which is in the low voltage state, whereby the snubber capacitor voltage Vc becomes the converter output voltage VH of the FC soft switching converter 150. Ascend toward.
  • the rising speed of the element voltage Ve is suppressed by charging the snubber capacitor C2 (that is, the rising of the element voltage is slowed down), and the region where the tail current exists in the element current Ve (see ⁇ shown in FIG. 11). It is possible to perform a ZVS operation that reduces switching loss.
  • the switching loss of the FC soft switching converter 150 can be suppressed as much as possible, and the output voltage of the fuel cell 110 can be increased to a desired voltage and supplied to the load 130. It becomes.
  • FIG. 13 is a diagram illustrating an energization pattern in each mode of the FC soft switching converter 25, in which the current flowing in the coil L1 is indicated by a thick solid line, and the current flowing in the auxiliary coil L2 is indicated by a broken line.
  • auxiliary circuit operating time when the time during which the current flows through the auxiliary coil L2 (hereinafter referred to as auxiliary circuit operating time) Tso overlaps, the operation of the auxiliary circuit of each phase interferes and exceeds the maximum allowable current Imax.
  • the current Iu that is, the current of two phases or more
  • the inductance characteristics of the auxiliary coil L2 are deteriorated (see the section on the problem to be solved by the invention and FIG. 16).
  • control is performed so that the deviation of the duty ratio set in the second switching element S2 of each phase does not exceed the allowable duty deviation value Dth expressed by the following equation (10).
  • n Number of drive phases
  • auxiliary circuit operating time Tso is expressed by the following equation (11).
  • control is performed such that the duty deviation between the phases does not exceed the allowable duty deviation value Dth obtained by Expression (10). More specifically, control is performed so that the U-phase duty ratio D (u), the V-phase duty ratio D (v), and the W-phase duty ratio D (w) satisfy the following equations (12) to (14). .
  • FIG. 14 is a diagram illustrating a waveform diagram of the duty ratio control pulse in the three-phase FC soft switching converter 250 that is phase-shifted in the order of U phase ⁇ V phase ⁇ W phase.
  • the duty ratio control pulse of each phase shown in FIG. 14 is generated by a pulse generator (not shown) that generates a triangular wave that is phase-shifted by 120 °, and this duty ratio control pulse assists the U phase, V phase, and W phase.
  • the duty ratio of the second switching element S2 constituting the circuit 22b is controlled.
  • the duty deviation allowable time Tth of each phase when the duty ratio is 50% is expressed by the following equation (10) ′.
  • the duty deviation between the phases does not exceed the allowable duty deviation value Dth shown in Expression (10) (in other words, the duty deviation time between the phases is expressed by the expression ( 10)
  • the DC-DC converter 20 is controlled so as not to exceed the allowable duty deviation time Tth indicated by ').
  • the problem of the prior art that is, the occurrence of a circuit abnormality (such as element destruction).
  • interference prevention duty control details of the duty ratio control of the second switching element S2 for preventing the operation interference of the auxiliary circuit 22c of each phase (hereinafter referred to as interference prevention duty control) will be described with reference to the functional block shown in FIG. .
  • FIG. 15 is a functional block diagram for explaining an interference prevention duty control function realized by the controller 160 and the like. As described above, in the present embodiment, it is assumed that the output of the fuel cell 110 is controlled using the three-phase resonance type FC soft switching converter 2500 configured by the U phase, the V phase, and the W phase.
  • the FC required power input means 210 derives a required power command value (hereinafter referred to as FC required power command value) Preq for the fuel cell 110 based on the required power of the load 130, and outputs this to the command current calculation means 240.
  • FC required power command value a required power command value
  • the FC voltage input means 220 receives the output voltage Vfcmes of the fuel cell 110 detected by the voltage sensor V 0, and outputs it to the command current calculation means 240 and the deviation calculation means 250.
  • FC measured power input means 230 inputs an actual output power measurement value (hereinafter referred to as FC output power measurement value) Pfcmes of the fuel cell 110 and outputs it to the deviation calculation means 250.
  • FC output power measurement value Pfcmes may be obtained from the output voltage Vfcmes of the fuel cell 110 detected by the voltage sensor V0 and the output current Ifcmes of the fuel cell 110 detected by the current sensor I0.
  • the FC output power measurement value Pfcmes may be obtained directly using the second measuring means).
  • the command current calculation means 240 divides the FC required power command value Preq supplied from the FC required power means 210 by the output voltage Vfcmes of the fuel cell 110 supplied from the FC voltage input means 220, etc. A required current command value (hereinafter referred to as FC required current command value) Iref is derived. Then, the command current calculation unit 240 outputs the derived FC request current command value Iref to the command current correction unit 260.
  • Deviation calculation means 250 obtains a power deviation (difference) between FC required power command value Preq and FC output power measurement value Pfcmes, and outputs this to PID correction amount calculation means 270.
  • the PID correction amount calculation means 270 calculates the correction amount Icrt of the required current command value for the fuel cell 110 based on the PID control law together with the power deviation output from the deviation calculation means 250, and uses this to calculate the command current correction means.
  • the command current correction unit 260 adds the correction amount (PID correction term) Icrt output from the PID correction amount calculation unit 270 to the FC required current command value Iref output from the command current calculation unit 240, and the corrected FC current command Generate the value Iamref. Then, the command current correction unit 260 outputs the generated corrected FC current command value Iamref to the phase current distribution unit 280.
  • PID correction term PID correction term
  • the phase current distribution means 280 derives the target current command value for each phase by dividing the corrected FC current command value Iamref by the number of drive phases that maximizes the conversion efficiency of the FC converter 150.
  • the number of drive phases that maximizes the conversion efficiency of the FC converter 150 varies depending on the required power for the fuel cell 110, the operating environment, and the like (hereinafter, collectively referred to as “operating status”). Therefore, a correspondence relationship between the operation state and the number of drive phases that maximizes the conversion efficiency of the FC converter 150 is obtained in advance by experiments or the like, mapped, and stored as a drive phase number determination map.
  • the phase current distribution unit 280 grasps the operation state of the fuel cell 110 and refers to the drive phase number determination map, thereby determining the FC in the current operation state.
  • the target current command value of each phase specifically, the U-phase target current A value Iref (u), a V-phase target current value Iref (v), and a W-phase target current value Iref (w) are derived.
  • the U-phase measurement current input means 290a receives the U-phase reactor current measurement value Ilmes (u) detected by the current sensor I1, and outputs this to the U-phase deviation calculation means 300a.
  • the U-phase deviation calculating means 300a obtains the U-phase current deviation by subtracting the measured U-phase reactor current value Ilmes (u) from the U-phase target current value Iref (u).
  • the U-phase PID correction amount calculating means 310a calculates a U-phase duty ratio correction amount Dcrt (u) based on the PID control law based on the U-phase current deviation output from the U-phase deviation calculating means 300a. This is output to the U-phase duty ratio correction means 330a.
  • the U-phase basic duty ratio input means 320a inputs the U-phase basic duty ratio Ds and outputs it to the U-phase duty ratio correction means 330a.
  • the basic duty ratio Ds of the U phase is derived by the following equation (15). Since the basic duty ratio Ds is constant regardless of the phase (that is, common to the U phase, V phase, and W phase), hereinafter, it is simply referred to as the basic duty ratio Ds unless otherwise specified.
  • VH Inverter input voltage (high voltage side voltage)
  • VL FC voltage (low voltage)
  • the first U-phase duty ratio correction means (calculation means) 330a has a U-phase basic duty ratio Ds output from the U-phase duty ratio input means 320a and a U-phase output from the U-phase PID correction amount calculation means 310a.
  • the correction amount Dcrt (u) of the duty ratio is added to generate a corrected U-phase duty ratio Dam (u).
  • the first U-phase duty ratio correction unit 330a outputs the generated corrected U-phase duty ratio Dam (u) to the interference prevention duty control circuit 340.
  • the U-phase operation control has been described above as an example, but the same control is performed for the V-phase and the W-phase.
  • the V-phase PID correction amount calculating means 310b is based on the V-phase current deviation output from the V-phase deviation calculating means 300b and based on the PID control law, the V-phase duty ratio correction amount Dcrt (v ) And outputs this to the first V-phase duty ratio correction means 330b.
  • the first V-phase duty ratio correction means (calculation means) 330b has a V-phase basic duty ratio Ds output from the V-phase duty ratio input means 320b and a V-phase output from the V-phase PID correction amount calculation means 310b.
  • the correction amount Dcrt (v) of the duty ratio is added to generate a modified V-phase duty ratio Dam (v). Then, the first V-phase duty ratio correction unit 330b outputs the generated modified V-phase duty ratio Dam (v) to the interference prevention duty control circuit 340.
  • the W-phase PID correction amount calculation unit 310c calculates the correction amount Dcrt (w) of the W-phase duty ratio based on the PID control law based on the W-phase current deviation output from the W-phase deviation calculation unit 300c. This is calculated and output to the first W-phase duty ratio correction means 330c.
  • the first W-phase duty ratio correction means (calculation means) 330c has a W-phase basic duty ratio Ds output from the W-phase duty ratio input means 320c and a W-phase output from the W-phase PID correction amount calculation means 310c.
  • the correction amount Dcrt (w) of the duty ratio is added to generate a corrected W-phase duty ratio Dam (w).
  • the first W-phase duty ratio correction unit 330c outputs the generated corrected W-phase duty ratio Dam (w) to the interference prevention duty control circuit 340.
  • the interference prevention duty control circuit 340 includes a duty deviation calculation unit 341 and a duty threshold value input unit 342.
  • the duty threshold value input means 342 inputs the duty deviation allowable value obtained by the above equation (10).
  • the duty deviation calculation means (deviation derivation means) 341 has received the corrected U-phase duty ratio Dam (u), the corrected V-phase duty ratio Dam (v), and the corrected W-phase duty ratio Dam (w) as described above.
  • the duty deviation between the phases does not exceed the allowable duty deviation value Dth (see the following equations (12) ′ to (14) ′).
  • the phase duty ratio Dam (w) is corrected based on the PID control law, and corrected so as to satisfy the equations (12) ′ to (14) ′.
  • the interference prevention duty ratio Dv and the W phase interference prevention duty ratio Dw are output to the FC converter control circuit 350.
  • the duty deviation calculating means 34 when the calculation results satisfy the expressions (12) ′ to (14) ′, the corrected U-phase duty ratio Dam (u), the corrected V-phase duty ratio Dam (v), Without correcting the W-phase duty ratio Dam (w), this is output to the FC converter control circuit 350 as the U-phase interference prevention duty ratio Du, the V-phase interference prevention duty ratio Dv, and the W-phase interference prevention duty ratio Dw.
  • the corrected U-phase duty ratio Dam (u), the corrected V-phase duty ratio Dam (v), and the corrected W-phase duty ratio Dam (w) You may correct
  • the FC converter control circuit (control means) 350 outputs the U-phase interference prevention duty ratio Du, the V-phase interference prevention duty ratio Dv, and the W-phase interference prevention duty ratio Dw output from the interference prevention duty control circuit 340, respectively.
  • the operation of the auxiliary circuit 22b is controlled by setting the duty ratio of the phase second switching element S2.
  • the occurrence of circuit abnormality is prevented by preventing the operation interference of each phase of the auxiliary circuit 22c.
  • the maximum allowable current Imax of the auxiliary coil L2 constituting the auxiliary circuit 22c is expressed as ( The occurrence of a circuit abnormality may be prevented by setting a value that allows a current corresponding to the number of phases to flow.
  • the maximum allowable current Imax of the auxiliary coil L2 (see FIG. 16; lower current carrying capacity lower limit) Value) is set to a value larger than the current for three phases.
  • the maximum allowable current Imax of the auxiliary coil L2 is the current for the three phases. Therefore, the inductance characteristic of the auxiliary coil L2 does not deteriorate. Therefore, even with such a configuration, it is possible to prevent a problem that current exceeding the rating flows to other circuit elements (for example, switching elements) constituting the auxiliary circuit, and in the worst case, the element is destroyed. It becomes possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】多相のソフトスイッチングコンバータにおいて、各相の補助回路の動作干渉を防止することで補助スイッチ等の素子破壊を未然に防止することが可能なコンバータ制御装置を提供する。 【解決手段】デューティー閾値入力手段342は、求めたデューティー偏差許容値を入力する。一方、デューティー偏差演算手段341は、各相間のデューティー偏差がデューティー偏差許容値Dthを超えていないか判断する。デューティー偏差演算手段341は、各相間のデューティー偏差がデューティー偏差許容値Dthを超えている場合には、修正U相デューティー比Dam(u)、修正V相デューティー比Dam(v)、修正W相デューティー比Dam(w)をPID制御則に基づいてそれぞれ補正し、FCコンバータ制御回路350に出力する。一方、デューティー偏差演算手段341は、各相間のデューティー偏差がデューティー偏差許容値Dthを超えていない場合には、修正U相デューティー比Dam(u)、修正V相デューティー比Dam(v)、修正W相デューティー比Dam(w)を補正することなく、FCコンバータ制御回路350に出力する。

Description

コンバータ制御装置
 本発明は、燃料電池の出力電圧を制御するコンバータ制御装置に関する。
 自動車等に搭載される燃料電池システムにおいては、燃料電池の発電能力を超える急な負荷の変化等に対応するため、動力源として燃料電池とバッテリとを備えたハイブリッド型の燃料電池システムが種々提案されている。
 ハイブリッド型の燃料電池システムにおいては、燃料電池の出力電圧やバッテリの出力電圧をDC/DCコンバータで制御している。このような制御を行うDC/DCコンバータとしては、パワートランジスタ、IGBT、FET等のスイッチング素子をPWM動作させて電圧の変換を行う形式のものが広く利用されている。DC/DCコンバータは、電子機器の省電力化、小型化及び高性能化に伴い、一層の低損失、高効率及び低ノイズ化が望まれており、特に、PWM動作に伴うスイッチング損失やスイッチングサージの低減が望まれている。
 このようなスイッチング損失、スイッチングサージを低減させる技術のひとつにソフトスイッチング技術がある。ここで、ソフトスイッチングは、ZVS(Zero Voltage Switching)又はZCS(Zero Current Switching)を実現するためのスイッチング方式であり、パワー半導体デバイスのスイッチング損失やそれに与えるストレスが低い。これに対してパワー半導体デバイスの持つスイッチング機能により電圧・電流を直接ターンオン・オフするスイッチング方式はハードスイッチングと称されている。以下の記述においてはZVS/ZCSの双方もしくはその一方が実現されている方式をソフトスイッチング、それ以外をハードスイッチングという。
 ソフトスイッチングは、例えばインダクタ、スイッチング素子、ダイオードを備えた一般的な昇降圧型DC/DCコンバータにスイッチング損失を低減するための補助回路を付加したもの(いわゆるソフトスイッチングコンバータ)によって実現される(例えば特許文献1参照)。
 一方、高速化や大容量化や低リップル化を実現するために、従来より複数個のDC/DCコンバータを並列に接続したマルチフェーズDC/DCコンバータ(多相コンバータ)が利用されている。
 このような多相コンバータについて、各相のコンバータをソフトスイッチングコンバータによって構成した場合には、高速化や大容量化などが可能となるものの、コンバータが大型化してしまう問題が懸念される。かかる問題に鑑み、各相のソフトスイッチングコンバータを構成する補助回路の一部の部品、例えば補助コイルを共通化することが考えられる。これにより、多相のソフトスイッチングコンバータの小型化が可能となる。
特開2005-102438号公報
 しかしながら、多相のソフトスイッチングコンバータにおいては、各相の補助回路の動作が干渉して二相分以上の電流が補助コイルに流れると、補助コイルのインダクタンス特性が悪化してしまう。
 その理由について説明すると、通常、補助コイルについては、一相分の電流が流れることを前提として最大許容電流Imaxを設定し(図16参照)、設計を行うが、各相の補助回路の動作が干渉して最大許容電流Imax以上の電流Iu(すなわち二相分以上の電流)が補助コイルに流れると、補助コイルのインダクタンス特性が悪化してしまう。これにより補助回路を構成する他の回路素子(例えばスイッチング素子)に定格以上の電流が流れて、最悪の場合には素子破壊を招いてしまうという問題があった。
 本発明は以上説明した事情を鑑みてなされたものであり、多相のソフトスイッチングコンバータにおいて、各相の補助回路の動作干渉を防止することで補助スイッチ等の素子破壊を未然に防止することが可能なコンバータ制御装置を提供することを目的とする。
 上記課題を解決するため、本発明に係るコンバータ制御装置は、燃料電池の出力電圧を制御する、相毎に補助回路を備えた多相ソフトスイッチングコンバータの制御装置であって、前記各相の補助回路を構成する補助コイルは、全相の補助回路について共通化されており、各相の補助回路を構成する補助スイッチのデューティー比を算出する算出手段と、前記各相間での補助スイッチのデューティー偏差を導出する偏差導出手段と、導出された前記各デューティー偏差が設定閾値を超えないように、前記各相の補助スイッチに係るデューティー比を制御する制御手段とを備えることを特徴とする。
 かかる構成によれば、多相ソフトスイッチングコンバータについて、各相間での補助スイッチのデューティー偏差を導出し、導出した各デューティー偏差が設定閾値を超えないように、各相の補助スイッチに係るデューティー比を制御するため、各相の補助回路の動作干渉は防止され、回路異常(素子破壊など)の発生を未然に防止することが可能となる。
 ここで、上記構成にあっては、前記各相のコンバータは、主昇圧回路と前記補助回路とを備え、前記主昇圧回路は、一端が前記燃料電池の高電位側の端子に接続された主コイルと、一端が前記主コイルの他端に接続され、他端が前記燃料電池の低電位側の端子に接続された、スイッチングを行う主スイッチと、カソードが前記主コイルの他端に接続された第一ダイオードと、前記第一ダイオードのアノードと前記主スイッチの他端との間に設けられた平滑コンデンサとを有し、前記補助回路は、前記主スイッチに並列に接続され、かつ前記主コイルの他端と前記燃料電池の低電位側の端子に接続された、第二ダイオードとスナバコンデンサとを含む第一直列接続体と、前記第二ダイオードと前記スナバコンデンサとの接続部位と前記主コイルの一端との間に接続された、第三ダイオードと補助コイルと前記共通化された補助スイッチとを含む第二直列接続体とを有する態様が好ましい。
 また、上記構成にあっては、前記各相のコンバータは、前記補助コイルが通電した状態で、前記補助スイッチがオフした場合に、前記通電時と同一方向に電流を流し続けるためのフリーホイールダイオードを備え、前記フリーホイールダイオードは、アノード端子が前記燃料電池の低電位側に接続されるとともに、カソード端子が前記補助コイルと前記補助スイッチの接続部位に接続されている態様がさらに好ましい。
 さらにまた、上記構成にあっては、前記設定閾値は、該設定閾値をDth、前記補助スイッチの駆動周波数をf、駆動相数をn、前記補助コイルの通電時間をTsoとした場合、下記式(10)によって示される態様が好ましい。 
Figure JPOXMLDOC01-appb-I000003
 また、上記構成にあっては、前記補助コイルの通電時間Tsoは、下記式(11)によって示される態様も好ましい。
Figure JPOXMLDOC01-appb-I000004
 また、本発明に係る別のコンバータ制御装置は、燃料電池の出力電圧を制御する、相毎に補助回路を備えた多相ソフトスイッチングコンバータの制御装置であって、前記各相の補助回路を構成する補助コイルは、全相の補助回路について共通化されており、かつ、該補助コイルの通電容量下限値は、前記各相の補助スイッチをターンオンしたときに各相に流れる電流を合算した合計電流値よりも大きな値に設定されていることを特徴とする。
 本発明によれば、多相のソフトスイッチングコンバータにおいて、各相の補助回路の動作干渉を防止することで補助スイッチ等の素子破壊を未然に防止することが可能となる。
本実施形態に係るFCHVシステムのシステム構成図である。 同実施形態に係る多相のFCソフトスイッチングコンバータの回路構成を示す図である。 同実施形態に係るFCソフトスイッチングコンバータの1相分の回路構成を示す図である。 同実施形態に係るソフトスイッチング処理を示すフローチャートである。 モード1の動作を示す図である。 モード2の動作を示す図である。 モード3の動作を示す図である。 モード4の動作を示す図である。 モード5の動作を示す図である。 モード6の動作を示す図である。 モード5のスナバコンデンサ電圧Vc、素子電圧Ve、素子電流Ieの関係を例示した図である。 モード2からモード3への遷移過程における電圧・電流挙動を示す図である。 各モードにおける通電パターンを例示した図である。 U相→V相→W相の順番に位相シフトさせた三相のFCソフトスイッチングコンバータにおけるデューティー比制御パルスの波形図を例示した図である。 干渉防止デューティー制御機能を説明するための機能ブロック図である。 補助コイルのインダクタンス特性を示す図である。
A.本実施形態
 以下、各図を参照しながら本発明に係わる実施形態について説明する。 図1は本実施形態に係る車両に搭載されたFCHVシステムの構成を示す。なお、以下の説明では車両の一例として燃料電池自動車(FCHV;Fuel Cell Hybrid Vehicle)を想定するが、電気自動車などにも適用可能である。また、車両のみならず各種移動体(例えば、船舶や飛行機、ロボットなど)や定置型電源、さらには携帯型の燃料電池システムにも適用可能である。
A-1.システムの全体構成
 FCHVシステム100は、燃料電池110とインバータ140の間にFCコンバータ2500が設けられるとともに、バッテリ120とインバータ140の間にDC/DCコンバータ(以下、バッテリコンバータ)180が設けられている。
 燃料電池110は、複数の単位セルを直列に積層してなる固体高分子電解質型セルスタックである。燃料電池110には、燃料電池110の出力電圧Vfcmesを検出するための電圧センサV0、及び出力電流Ifcmesを検出するための電流センサI0が取り付けられている。燃料電池110においては、アノード極において(1)式の酸化反応が生じ、カソード極において(2)式の還元反応が生じ、燃料電池110全体としては(3)式の起電反応が生じる。
 H2 → 2H++2e- ・・・(1)
 (1/2)O2+2H++2e- → H2O ・・・(2)
 H2+(1/2)O2 → H2O ・・・(3)
 単位セルは、高分子電解質膜等を燃料極及び空気極の二つの電極で挟み込んだMEAを燃料ガスと酸化ガスとを供給するためのセパレータで挟み込んだ構造を有している。アノード極はアノード極用触媒層を多孔質支持層上に設けてあり、カソード極はカソード極用触媒層を多孔質支持層上に設けてある。
 燃料電池110には、燃料ガスをアノード極に供給する系統、酸化ガスをカソード極に供給する系統、及び冷却液を提供する系統(いずれも図示略)が設けられており、コントローラ160からの制御信号に応じて、燃料ガスの供給量や酸化ガスの供給量を制御することにより、所望の電力を発電することが可能となっている。
 FCコンバータ2500は、燃料電池110の出力電圧Vfcmesを制御する役割を担っており、一次側(入力側:燃料電池110側)に入力された出力電圧Vfcmesを、一次側と異なる電圧値に変換(昇圧または降圧)して二次側(出力側:インバータ140側)に出力し、また逆に、二次側に入力された電圧を、二次側と異なる電圧に変換して一次側に出力する双方向の電圧変換装置である。このFCコンバータ2500により、燃料電池110の出力電圧Vfcmesが目標出力に応じた電圧となるように制御する。
 バッテリ120は、負荷130に対して燃料電池110と並列に接続されており、余剰電力の貯蔵源、回生制動時の回生エネルギ貯蔵源、燃料電池車両の加速又は減速に伴う負荷変動時のエネルギーバッファとして機能する。バッテリ120としては、例えば、ニッケル・カドミウム蓄電池、ニッケル・水素蓄電池、リチウム二次電池等の二次電池が利用される。
 バッテリコンバータ180は、インバータ140の入力電圧を制御する役割を担っており、例えばFCコンバータ2500と同様の回路構成を有している。なお、バッテリコンバータ180として昇圧型のコンバータを採用しても良いが、これに代えて昇圧動作および降圧動作が可能な昇降圧型のコンバータを採用しても良く、インバータ140の入力電圧の制御が可能なあらゆる構成を採用することができる。
 インバータ140は、例えばパルス幅変調方式で駆動されるPWMインバータであり、コントローラ160からの制御指令に従って、燃料電池110またはバッテリ120から出力される直流電力を三相交流電力に変換して、トラクションモータ131の回転トルクを制御する。
 トラクションモータ131は、本車両の主動力となるものであり、減速時には回生電力を発生するようにもなっている。ディファレンシャル132は減速装置であり、トラクションモータ131の高速回転を所定の回転数に減速し、タイヤ133が設けられたシャフトを回転させる。シャフトには図示せぬ車輪速センサ等が設けられ、これにより当該車両の車速等が検知される。なお、本実施形態では、燃料電池110から供給される電力を受けて動作可能な全ての機器(トラクションモータ131、ディファレンシャル132を含む)を負荷130と総称している。
 コントローラ160は、FCHVシステム100の制御用のコンピュータシステムであり、例えばCPU、RAM、ROM等を備えている。コントローラ160は、センサ群170から供給される各種の信号(例えば、アクセル開度をあらわす信号や車速をあらわす信号、燃料電池110の出力電流や出力端子電圧をあらわす信号など)を入力して、負荷130の要求電力(すなわち、システム全体の要求電力)を求める。
 負荷130の要求電力は、例えば車両走行電力と補機電力との合計値である。補機電力には車載補機類(加湿器、エアコンプレッサ、水素ポンプ、及び冷却水循環ポンプ等)で消費される電力、車両走行に必要な装置(変速機、車輪制御装置、操舵装置、及び懸架装置等)で消費される電力、乗員空間内に配設される装置(空調装置、照明器具、及びオーディオ等)で消費される電力などが含まれる。
 そして、コントローラ(コンバータ制御装置)160は、燃料電池110とバッテリ120とのそれぞれの出力電力の配分を決定し、発電指令値を演算する。コントローラ160は、燃料電池110及びバッテリ120に対する要求電力を求めると、これらの要求電力が得られるようにFCコンバータ2500及びバッテリコンバータ180の動作を制御する。
A-2.FCコンバータの構成
 図1に示すように、FCコンバータ2500は、U相、V相、W相によって構成された三相の共振型コンバータとしての回路構成を備えている。三相共振型コンバータの回路構成は、入力された直流電圧を一旦交流に変換するインバータ類似の回路部分と、その交流を再び整流して異なる直流電圧に変換する部分とが組み合わされている。本実施形態では、FCコンバータ2500としてフリーホイール回路(詳細は後述)を備えた多相のソフトスイッチングコンバータ(以下、多相のFCソフトスイッチングコンバータ)を採用している。
A-2-1.多相のFCソフトスイッチングコンバータの説明
 図2は、FCHVシステム100に搭載される多相のFCソフトスイッチングコンバータ2500の回路構成を示す図であり、図3は、多相のFCソフトスイッチングコンバータ2500の1相分の回路構成を示す図である。
 以下の説明では、多相のFCソフトスイッチングコンバータ2500を構成するU相、V相、W相のFCソフトスイッチングコンバータを、それぞれFCソフトスイッチングコンバータ250a、25b、250cと呼び、特に区別する必要がない場合には、単にFCソフトスイッチングコンバータ250と呼ぶ。また、FCソフトスイッチングコンバータ250に入力される昇圧前の電圧をコンバータ入力電圧Vinと呼び、FCソフトスイッチングコンバータ250から出力される昇圧後の電圧をコンバータ出力電圧Voutと呼ぶ。
 図3に示すように、各FCソフトスイッチングコンバータ250は、昇圧動作を行うための主昇圧回路22aと、ソフトスイッチング動作を行うための補助回路22bと、フリーホイール回路22cを備えて構成されている。
 主昇圧回路22aは、IGBT(Insulated Gate Bipolar Transistor)などからなる第1スイッチング素子S1とダイオードD4で構成されるスイッチング回路のスイッチ動作によって、コイルL1に蓄えられたエネルギを負荷130にダイオードD5を介して解放することで燃料電池110の出力電圧を昇圧する。
 詳述すると、コイルL1の一端が燃料電池110の高電位側の端子に接続され、第1スイッチング素子S1の一端の極がコイルL1の他端に接続され、第1のスイッチング素子S1の他端の極が燃料電池110の低電位側の端子に接続されている。また、ダイオードD5のカソード端子がコイルL1の他端に接続され、さらに、平滑コンデンサとして機能するコンデンサC3は、ダイオードD5のアノード端子と第1スイッチング素子S1の他端との間に接続されている。主昇圧回路22aには、燃料電池110側に平滑コンデンサC1が設けられており、これにより燃料電池110の出力電流のリップルを低減することが可能となる。
 ここで、コンデンサC3にかかる電圧VHは、FCソフトスイッチングコンバータ150のコンバータ出力電圧Voutとなり、平滑コンデンサC1にかかる電圧VLは、燃料電池110の出力電圧であってFCソフトスイッチングコンバータ150のコンバータ入力電圧Vinとなる。
 補助回路22bには、第1スイッチング素子S1に並列に接続された、ダイオードD3とこのダイオードD3に直列に接続されたスナバコンデンサC2とを含む第1直列接続体が含まれている。第1直列接続体は、ダイオードD3のカソード端子がコイルL1の他端に接続され、ダイオードD3のアノード端子がスナバコンデンサC2の一端に接続されている。さらに、スナバコンデンサC2の他端は、燃料電池110の低電位側の端子に接続されている。
 さらに、補助回路22bには、ダイオードD2と第2スイッチング素子S2及びダイオードD1と、各相に共通の補助コイルL2によって構成された第2直列接続体が含まれる。
 第2直列接続体は、ダイオードD2のアノード端子が第1直列接続体のダイオードD3とスナバコンデンサC2との接続部位に接続されている。さらに、ダイオードD2のカソード端子が第2スイッチング素子(補助スイッチ)S2の一端の極に接続されている。また、第2スイッチング素子S2の他端の極は、補助コイルL2とフリーホイール回路22cの接続部位に接続されている。フリーホイールダイオードD6のアノード端子は、燃料電池110の低電位側に接続される一方、フリーホイールダイオードD6のカソード端子は補助コイルL2に接続されている。このフリーホイール回路22cは、各相に共通のフリーホイールダイオードD6を備えており、補助コイルL2が通電中に第2スイッチング素子S2がオープン故障などした場合であっても、第2スイッチング素子S2を破壊するようなサージ電圧の発生を未然に防ぐために設けられたフェールセーフ機能を実現するための回路である。なお、フリーホイール回路22cを備えていない構成にも本発明を適用可能である。
 このように構成されるFCソフトスイッチングコンバータ25においては、コントローラ160が各相の第1スイッチング素子S1のスイッチングデューティー比を調整することで、FCソフトスイッチングコンバータ25による昇圧比、すなわちコンバータ入力電圧Vinに対するコンバータ出力電圧Voutの比が制御される。また、第1スイッチング素子S1のスイッチング動作において補助回路12bの第2スイッチング素子S2のスイッチング動作を介在させることで、ソフトスイッチングが実現される。
 次に、FCソフトスイッチングコンバータ25によるソフトスイッチング動作について、図4~図8を参照しながら説明する。図4は、ソフトスイッチング動作を介したFCソフトスイッチングコンバータ25の一サイクルの処理(以下、ソフトスイッチング処理)を示すフローチャートであり、コントローラ160が図4に示すステップS101~S106を順次実行することによって一サイクルを形成する。なお、以下の説明では、FCソフトスイッチングコンバータ25の電流、電圧の状態をあらわすモードをそれぞれモード1~モード6として表現し、その状態を図5~図8に示す。また、図5~図8では回路を流れる電流を矢印で示す。
<ソフトスイッチング動作>
 まず、図4に示すソフトスイッチング処理が行われる初期状態は、燃料電池110から負荷130に要求される電力が供給されている状態、すなわち第1スイッチング素子S1、第2スイッチング素子S2がともにターンオフされることで、コイルL1、ダイオードD5を介して電流が負荷130に供給される状態にある。
(モード1;図5参照)
 ステップS101においては、第1スイッチング素子S1のターンオフを保持する一方、第2スイッチング素子S2をターンオンする。かかるスイッチング動作を行うと、FCソフトスイッチングコンバータ150の出力電圧VHと入力電圧VLの電位差により、負荷130側に流れていた電流がコイルL1、ダイオードD3、第2スイッチング素子S2、補助コイルL2を介して補助回路12b側に徐々に移行してゆく。なお、図5中では、負荷130側から補助回路12b側への電流の移行の様子を白抜き矢印で示している。
 また、第2スイッチング素子S2をターンオンすることにより、図5に示す矢印Dm11の向きに電流の循環が発生する。ここで、第2スイッチング素子S2の電流変化速度は、補助コイルL2の両端電圧(VH-VL)と補助コイルL2のインダクタンスに従い増加していくが、第2スイッチング素子S2に流れる電流は補助コイルL2により抑制されるため、結果としてダイオードD5を介して負荷130側に流れる電流(図5に示す矢印Dm12参照)のソフトターンオフが実現される。
 ここで、モード1からモード2への遷移完了時間tmode1は下記式(4)によって表される。
Figure JPOXMLDOC01-appb-I000005

Ip;相電流
L2id;補助コイルL2のインダクタンス
(モード2;図6参照)
 上記遷移完了時間が経過し、ステップS102に移行すると、ダイオードD5を流れる電流はゼロとなり、コイルL1及びダイオードD5を介して補助回路12b側に電流が流れ込むとともに(図6に示す矢印Dm21参照)、代わってスナバコンデンサC2と燃料電池110の電圧VLとの電位差により、スナバコンデンサC2にチャージされていた電荷が補助回路12b側に流れてゆく(図6に示す矢印Dm22参照)。このスナバコンデンサC2の容量に応じて、第1スイッチング素子S1にかかる電圧が決定される。
 ここで、図12はモード2からモード3への遷移過程における電圧・電流挙動を示す図であり、燃料電池110の電圧を太実線、スナバコンデンサC2の電圧を細実線、スナバコンデンサC2の電流を破線で示している。
 図6に示すDm21の経路の通電が開始された後(図12に示す(A)参照)、スナバコンデンサC2の電圧VHと燃料電池110の電圧VLとの電位差により、図6に示すDm22の経路の通電、すなわち補助コイルL2への通電が開始される(図12に示す(B)参照)。ここで、図12に示すように、スナバコンデンサC2の電流は、スナバコンデンサC2の電圧が料電池110の電圧VLに到達するまで上昇し続ける。詳述すると、スナバコンデンサC2の電圧VHと燃料電池110の電圧VLの電位差によってスナバコンデンサC2に蓄積された電荷が電源側に回生され始めるが(図6に示す矢印Dm22)、もともとの電位差は(VH-VL)であるため、スナバコンデンサC2に蓄積された電荷の流れ(放電)は電源電圧(すなわち燃料電池110の電圧VL)に到達したところ(図12に示すタイミングTt1)でとまってしまうところ、補助コイルL2の特性(すなわち、電流を流し続けようとする特性)により、スナバコンデンサC2の電圧がVL以下になっても電荷を流し続けようとする(図12に示す(C)参照)。このとき、下記式(4)’が成立すれば、スナバコンデンサC2の電荷はすべて流れる(放電)ことになる。
Figure JPOXMLDOC01-appb-I000006

左辺;補助コイルL2に蓄積されたエネルギ
右辺;スナバコンデンサC2に残存するエネルギ
 スナバコンデンサC2に蓄積された電荷がなくなると、図6に示すDm23の経路でフリーホイール動作を行い、通電を継続する(図12に示す(D)参照)。これにより、補助コイルL2に蓄積されたエネルギが全て放出される。なお、補助コイルL2の一端にはダイオードD2のアノードが接続されているため、LC共振は半波で止まる。このため、スナバコンデンサC2は、放電後に0Vを保持することになる。
 ここで、モード2からモード3への遷移完了時間tmode2は下記式(5)によって表される。 
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000009

C2d;コンデンサC2の容量
(モード3;図7参照)
 図6に示すDm22の経路で電流が流れる動作が終了し、スナバコンデンサC2の電荷が抜けきる、あるいは最小電圧(MIN電圧)となると、第1スイッチング素子S1がターンオンされ、ステップS103に移行する。スナバコンデンサC2の電圧がゼロとなった状態では、第1スイッチング素子S1にかかる電圧もゼロとなるため、ZVS(Zero Voltage Switching)が実現される。かかる状態では、コイルL1に流れる電流Il1は、矢印Dm31に示す補助回路12b側に流れる電流Idm31と矢印Dm32に示す第1スイッチング素子S1を介して流れる電流Idm32の和となる(下記式(6)参照)。
Figure JPOXMLDOC01-appb-I000010
 ここで、第1スイッチング素子S1に流れる電流Idm31は、補助回路12b側に流れる電流Idm31の減少速度に応じて決定される。補助回路12b側に流れる電流Idm31の電流変化速度は下記式(7)によって表わされる、すなわち補助回路12b側に流れる電流Idm31は下記式(7)の変化速度で減少していくため、第1スイッチング素子S1をターンオンしたとしても第1スイッチング素子S1に流れる電流が急に立ち上がることはなく、ZCS(Zero Current Switching)が実現される。
Figure JPOXMLDOC01-appb-I000011
(モード4;図8参照)
 そして、ステップS104では、ステップS103の状態が継続することで、コイルL1に流れ込んでいく電流量を増加させてコイルL1に蓄えられるエネルギを徐々に増加してゆく(図8に矢印Dm42参照)。ここで、補助回路12bにはダイオードD2が存在するため、補助コイルL2に逆電流は流れず、第2スイッチング素子S2を介してスナバコンデンサC2に充電が行われることはない。また、この時点で第1スイッチング素子S1はターンオンしているため、ダイオードD3を経由してスナバコンデンサC2に充電が行われることもない。従って、コイルL1の電流=第1スイッチング素子S1の電流となり、コイルL1に蓄えられるエネルギを徐々に増加してゆく。ここで、第1スイッチング素子S1のターンオン時間Ts1は、下記式(8)によって近似的に表される。
Figure JPOXMLDOC01-appb-I000012

 Tcon;制御周期
 なお、制御周期とは、ステップS101~ステップS106までの一連の処理を一周期(一サイクル)としたときのソフトスイッチング処理の時間周期を意味する。
(モード5;図9参照)
 ステップS104においてコイルL1に所望のエネルギが蓄えられると、第1スイッチング素子S12がターンオフされ、図9に矢印Dm51で示す経路に電流が流れる。ここで、図11は、モード5におけるスナバコンデンサC2の電圧(以下、スナバコンデンサ電圧)Vc、第1スイッチング素子S1にかかる電圧(以下、素子電圧)Ve、第1スイッチング素子S1を流れる電流(以下、素子電流)Ieの関係を例示した図である。上記スイッチング動作が行われると、モード2において電荷が抜かれて低電圧状態となっているスナバコンデンサC2に電荷がチャージされ、これにより、スナバコンデンサ電圧VcはFCソフトスイッチングコンバータ150のコンバータ出力電圧VHに向かって上昇する。このとき、素子電圧Veの上昇速度は、スナバコンデンサC2への充電により抑制され(すなわち、素子電圧の立ち上がりが鈍化され)、素子電流Veにおいてテール電流が存在する領域(図11に示すα参照)でのスイッチング損失を低減するZVS動作をすることが可能となる。
(モード6;図10参照)
 スナバコンデンサC2が電圧VHまで充電されると、コイルL1に蓄えられたエネルギが負荷130側に解放される(図9に示す矢印Dm61参照)。ここで、第1スイッチング素子S1のターンオフ時間Ts2は、下記式(9)によって近似的に表される。
Figure JPOXMLDOC01-appb-I000013
 以上説明したソフトスイッチング処理を行うことでFCソフトスイッチングコンバータ150のスイッチング損失を可及的に抑制した上で、燃料電池110の出力電圧を所望の電圧に上昇し、負荷130に供給することが可能となる。
 ここで、図13は、FCソフトスイッチングコンバータ25の各モードにおける通電パターンを例示した図であり、コイルL1に流れる電流を太実線で示し、補助コイルL2に流れる電流を破線で示す。
 図13に示すように、第2スイッチング素子がターンオンされると、補助回路12bが作動して補助コイルL2に電流が流れる(図13に示すモード1及びモード2参照)。各相のFCソフトスイッチングコンバータ25において、補助コイルL2に電流が流れている時間(以下、補助回路作動時間)Tsoが重なると、各相の補助回路の動作が干渉して最大許容電流Imax以上の電流Iu(すなわち二相分以上の電流)が補助コイルL2に流れて、補助コイルL2のインダクタンス特性が悪化してしまう(発明が解決しようとする課題の項及び図16参照)。
 かかる問題を解消するために、本実施形態では、各相の第2スイッチング素子S2に設定されるデューティー比の偏差が、下記式(10)によって示されるデューティー偏差許容値Dthを超えないように制御する。
Figure JPOXMLDOC01-appb-I000014

 f;スイッチング素子S2の駆動周波数
 Tsc;1周期時間(=1/f)
 n;駆動相数
 ここで、補助回路動作時間Tsoは、下記(11)式によって表わされる。
Figure JPOXMLDOC01-appb-I000015
 本実施形態では、各相間のデューティー偏差が、式(10)によって求めたデューティー偏差許容値Dthを超えない制御を実施する。より詳細には、U相のデューティー比D(u)、V相のデューティー比D(v)、W相のデューティー比D(w)が下記式(12)~(14)を満たすように制御する。
Figure JPOXMLDOC01-appb-I000016

Figure JPOXMLDOC01-appb-I000017

Figure JPOXMLDOC01-appb-I000018
 ここで、各相のデューティー比が50%の場合を例に、各相のデューティー偏差許容時間Tthについて図13を参照しながら説明する。図14は、U相→V相→W相の順番に位相シフトさせた三相のFCソフトスイッチングコンバータ250におけるデューティー比制御パルスの波形図を例示した図である。
 図14に示す各相のデューティー比制御パルスは、120°ずつ位相シフトされた三角波を発生するパルスジェネレータ(図示略)によって生成され、このデューティー比制御パルスによりU相、V相、W相の補助回路22bを構成する第2スイッチング素子S2のデューティー比が制御される。
 図14に示すように、デューティー比が50%の場合における各相のデューティー偏差許容時間Tthは、下記式(10)’のようにあらわされる。
Figure JPOXMLDOC01-appb-I000019
 以上説明したように、本実施形態では、各相間のデューティー偏差が、式(10)に示されるデューティー偏差許容値Dthを超えないように(別言すれば各相間のデューティー偏差時間が、式(10)’によって示されるデューティー偏差許容時間Tthを超えないように)、DC-DCコンバータ20を制御する。このようにして各相の補助回路22cの動作干渉を防止することで、従来技術の問題、すなわち回路異常(素子破壊など)の発生を未然に防止することが可能となる。以下、各相の補助回路22cの動作干渉を防止するための第2スイッチング素子S2のデューティー比の制御(以下、干渉防止デューティー制御)の詳細について、図15に示す機能ブロックを参照しながら説明する。
<干渉防止デューティー制御>
 図15はコントローラ160などによって実現される干渉防止デューティー制御機能を説明するための機能ブロック図である。上述したように、本実施形態ではU相、V相、W相によって構成された三相共振型のFCソフトスイッチングコンバータ2500を用いて燃料電池110の出力を制御する場合を想定する。
 FC要求電力入力手段210は、負荷130の要求電力に基づき、燃料電池110に対する要求電力指令値(以下、FC要求電力指令値)Preqを導出し、これを指令電流演算手段240に出力する。
 FC電圧入力手段220は、電圧センサV0によって検出される燃料電池110の出力電圧Vfcmesを入力し、これを指令電流演算手段240、偏差演算手段250に出力する。
 FC測定電力入力手段230は、燃料電池110の実際の出力電力測定値(以下、FC出力電力測定値)Pfcmesを入力し、これを偏差演算手段250に出力する。ここで、FC出力電力測定値Pfcmesは、電圧センサV0によって検出される燃料電池110の出力電圧Vfcmesと電流センサI0によって検出される燃料電池110の出力電流Ifcmesから求めても良いが、電力計(第2測定手段)などを用いて直接、FC出力電力測定値Pfcmesを求めても良い。
 指令電流演算手段240は、FC要求電力手段210から供給されるFC要求電力指令値Preqを、FC電圧入力手段220から供給される燃料電池110の出力電圧Vfcmesで除するなどして、燃料電池110に対する要求電流指令値(以下、FC要求電流指令値)Irefを導出する。そして、指令電流演算手段240は、導出したFC要求電流指令値Irefを指令電流補正手段260に出力する。
 偏差演算手段250は、FC要求電力指令値PreqとFC出力電力測定値Pfcmesとの電力偏差(差分)を求め、これをPID補正量演算手段270に出力する。
 PID補正量演算手段270は、偏差演算手段250から出力される電力偏差をもともに、PID制御則に基づいて燃料電池110に対する要求電流指令値の補正量Icrtを演算し、これを指令電流補正手段260に出力する。
 指令電流補正手段260は、指令電流演算手段240から出力されるFC要求電流指令値Irefに、PID補正量演算手段270から出力される補正量(PID補正項)Icrtを加算し、修正FC電流指令値Iamrefを生成する。そして、指令電流補正手段260は、生成した修正FC電流指令値Iamrefを相電流分配手段280に出力する。
 相電流分配手段280は、FCコンバータ150の変換効率を最大化する駆動相数にて、修正FC電流指令値Iamrefを除することにより、各相の目標電流指令値を導出する。ここで、FCコンバータ150の変換効率を最大化する駆動相数は、燃料電池110に対する要求電力や運転環境など(以下、「運転状況」と総称)に応じて異なる。よって、運転状況とFCコンバータ150の変換効率を最大化する駆動相数との対応関係を予め実験などによって求め、これをマップ化し、これを駆動相数決定マップとして保持しておく。相電流分配手段280は、指令電流補正手段260から修正FC電流指令値Iamrefを受け取ると、燃料電池110の運転状況を把握し、駆動相数決定マップを参照することで、現運転状況にてFCコンバータ150の変換効率を最大化する駆動相数を決定し、この駆動相数にて修正FC電流指令値Iamrefを除することにより、各相の目標電流指令値、具体的にはU相目標電流値Iref(u)、V相目標電流値Iref(v)、W相目標電流値Iref(w)を導出する。
 U相測定電流入力手段290aは、電流センサI1によって検知されるU相リアクトル電流測定値Ilmes(u)を入力し、これをU相偏差演算手段300aに出力する。U相偏差演算手段300aは、U相目標電流値Iref(u)からU相リアクトル電流測定値Ilmes(u)を減ずることにより、U相電流偏差を求める。
 U相PID補正量演算手段310aは、U相偏差演算手段300aから出力されるU相電流偏差をもとに、PID制御則に基づいてU相デューティー比の補正量Dcrt(u)を演算し、これをU相デューティー比補正手段330aに出力する。
 U相基本デューティー比入力手段320aは、U相の基本デューティー比Dsを入力し、これをU相デューティー比補正手段330aに出力する。ここで、U相の基本デューティー比Dsは、下記式(15)によって導出される。なお、基本デューティー比Dsは、相によらず一定であるため(すなわち、U相、V相、W相において共通)、以下では、ことわりがない限り、単に基本デューティー比Dsと呼ぶ。
Figure JPOXMLDOC01-appb-I000020
VH;インバータ入力電圧(高圧側電圧)
VL;FC電圧(低圧側電圧)
 第1のU相デューティー比補正手段(算出手段)330aは、U相デューティー比入力手段320aから出力されるU相の基本デューティー比Dsに、U相PID補正量演算手段310aから出力されるU相デューティー比の補正量Dcrt(u)を加算し、修正U相デューティー比Dam(u)を生成する。そして、第1のU相デューティー比補正手段330aは、生成した修正U相デューティー比Dam(u)を、干渉防止デューティー制御回路340に出力する。
 以上、U相の動作制御を例に説明したが、V相、W相も同様の制御が行われる。簡単に説明すると、V相PID補正量演算手段310bは、V相偏差演算手段300bから出力されるV相電流偏差をもとに、PID制御則に基づいてV相デューティー比の補正量Dcrt(v)を演算し、これを第1のV相デューティー比補正手段330bに出力する。第1のV相デューティー比補正手段(算出手段)330bは、V相デューティー比入力手段320bから出力されるV相の基本デューティー比Dsに、V相PID補正量演算手段310bから出力されるV相デューティー比の補正量Dcrt(v)を加算し、修正V相デューティー比Dam(v)を生成する。そして、第1のV相デューティー比補正手段330bは、生成した修正V相デューティー比Dam(v)を干渉防止デューティー制御回路340に出力する。
 同様に、W相PID補正量演算手段310cは、W相偏差演算手段300cから出力されるW相電流偏差をもとに、PID制御則に基づいてW相デューティー比の補正量Dcrt(w)を演算し、これを第1のW相デューティー比補正手段330cに出力する。第1のW相デューティー比補正手段(算出手段)330cは、W相デューティー比入力手段320cから出力されるW相の基本デューティー比Dsに、W相PID補正量演算手段310cから出力されるW相デューティー比の補正量Dcrt(w)を加算し、修正W相デューティー比Dam(w)を生成する。そして、第1のW相デューティー比補正手段330cは、生成した修正W相デューティー比Dam(w)を、干渉防止デューティー制御回路340に出力する。
<干渉防止デューティー制御回路340>
 干渉防止デューティー制御回路340は、デューティー偏差演算手段341と、デューティー閾値入力手段342とを備えている。
 デューティー閾値入力手段342は、上述した式(10)によって求めたデューティー偏差許容値を入力する。 一方、デューティー偏差演算手段(偏差導出手段)341は、入力される修正U相デューティー比Dam(u)、修正V相デューティー比Dam(v)、修正W相デューティー比Dam(w)を、上述した式(12)~(14)に代入することで、各相間のデューティー偏差がデューティー偏差許容値Dthを超えていないか判断する(下記式(12)’~(14)’参照)。
Figure JPOXMLDOC01-appb-I000021

Figure JPOXMLDOC01-appb-I000022

Figure JPOXMLDOC01-appb-I000023
 デューティー偏差演算手段341は、演算の結果、式(12)’~(14)’を満たさない場合には、修正U相デューティー比Dam(u)、修正V相デューティー比Dam(v)、修正W相デューティー比Dam(w)をPID制御則に基づいてそれぞれ補正し、式(12)’~(14)’を満たすように補正を行い、これをU相の干渉防止デューティー比Du、V相の干渉防止デューティー比Dv、W相の干渉防止デューティー比DwとしてFCコンバータ制御回路350に出力する。一方、デューティー偏差演算手段341は、演算の結果、式(12)’~(14)’を満たす場合には、修正U相デューティー比Dam(u)、修正V相デューティー比Dam(v)、修正W相デューティー比Dam(w)を補正することなく、これをU相の干渉防止デューティー比Du、V相の干渉防止デューティー比Dv、W相の干渉防止デューティー比DwとしてFCコンバータ制御回路350に出力する。なお、式(12)’~(14)’を満たす場合であっても、修正U相デューティー比Dam(u)、修正V相デューティー比Dam(v)、修正W相デューティー比Dam(w)をPID制御則に基づいてそれぞれ補正しても良い。
 FCコンバータ制御回路(制御手段)350は、干渉防止デューティー制御回路340から出力されるU相の干渉防止デューティー比Du、V相の干渉防止デューティー比Dv、W相の干渉防止デューティー比Dwを、各相の第2スイッチング素子S2のデューティー比として設定することにより補助回路22bの動作を制御する。以上説明した干渉防止デューティー制御により、各相の補助回路22cの動作干渉は防止され、回路異常(素子破壊など)の発生を未然に防止することが可能となる。
B.変形例
 以上説明した本実施形態では、各相の補助回路22cの動作干渉を防止することで回路異常の発生を防止したが、例えば補助回路22cを構成する補助コイルL2の最大許容電流Imaxを(解決しようとする課題の項参照)、相数分の電流が流れても良い値に設定することで回路異常の発生を防止しても良い。
 例えば、図2に示すようなU相、V相、W相によって構成された三相共振型のFCソフトスイッチングコンバータ250であれば、補助コイルL2の最大許容電流Imax(図16参照;通電容量下限値)を三相分の電流よりも大きな値に設定する。これにより、たとえ何らかの理由で補助回路22bの動作干渉が生じ、補助コイルL2に三相分の電流(合計電流値)が流れたとしても、補助コイルL2の最大許容電流Imaxは三相分の電流よりも大きな値に設定されているため、補助コイルL2のインダクタンス特性が悪化することはない。よって、かかる構成によっても、補助回路を構成する他の回路素子(例えばスイッチング素子)に定格以上の電流が流れて、最悪の場合には素子破壊を招いてしまうという問題も未然に防止することが可能となる。
100,300…FCHVシステム、110…燃料電池、120…バッテリ、130…負荷、140…インバータ、2500…FCコンバータ、160…コントローラ、170…センサ群、180…バッテリコンバータ、250…FCソフトスイッチングコンバータ、400…ゲート電圧制御回路、410…電源、420…ターンオン制御部、430…ターンオフ制御部、440…ドライブ回路、22a…主昇圧回路、22b…補助回路、22c…フリーホイール回路、S1,S2…スイッチング素子、C1,C3…平滑コンデンサ、C2…スナバコンデンサ、L1,L2,…コイル、D1,D2,D3,D4,D5…ダイオード、D6…フリーホイールダイオード。

Claims (6)

  1.  燃料電池の出力電圧を制御する、相毎に補助回路を備えた多相ソフトスイッチングコンバータの制御装置であって、
     前記各相の補助回路を構成する補助コイルは、全相の補助回路について共通化されており、
     各相の補助回路を構成する補助スイッチのデューティー比を算出する算出手段と、
     前記各相間での補助スイッチのデューティー偏差を導出する偏差導出手段と、
     導出された前記各デューティー偏差が設定閾値を超えないように、前記各相の補助スイッチに係るデューティー比を制御する制御手段とを備える、コンバータ制御装置。
  2.  前記各相のコンバータは、主昇圧回路と前記補助回路とを備え、
     前記主昇圧回路は、
     一端が前記燃料電池の高電位側の端子に接続された主コイルと、
     一端が前記主コイルの他端に接続され、他端が前記燃料電池の低電位側の端子に接続された、スイッチングを行う主スイッチと、
     カソードが前記主コイルの他端に接続された第一ダイオードと、
     前記第一ダイオードのアノードと前記主スイッチの他端との間に設けられた平滑コンデンサとを有し、
     前記補助回路は、
     前記主スイッチに並列に接続され、かつ前記主コイルの他端と前記燃料電池の低電位側の端子に接続された、第二ダイオードとスナバコンデンサとを含む第一直列接続体と、
     前記第二ダイオードと前記スナバコンデンサとの接続部位と前記主コイルの一端との間に接続された、第三ダイオードと補助コイルと前記共通化された補助スイッチとを含む第二直列接続体とを有する請求項1に記載のコンバータ制御装置。
  3.  前記各相のコンバータは、前記補助コイルが通電した状態で、前記補助スイッチがオフした場合に、前記通電時と同一方向に電流を流し続けるためのフリーホイールダイオードを備え、
     前記フリーホイールダイオードは、アノード端子が前記燃料電池の低電位側に接続されるとともに、カソード端子が前記補助コイルと前記補助スイッチの接続部位に接続されている請求項2に記載のコンバータ制御装置。
  4.  前記設定閾値は、該設定閾値をDth、前記補助スイッチの駆動周波数をf、駆動相数をn、前記補助コイルの通電時間をTsoとした場合、下記式(10)によって示される、請求項1~3のいずれか1の請求項に記載のコンバータ制御装置。 
    Figure JPOXMLDOC01-appb-I000001
  5.  前記補助コイルの通電時間Tsoは、下記式(11)によって示される、請求項4に記載のコンバータ制御装置。 
    Figure JPOXMLDOC01-appb-I000002
  6.  燃料電池の出力電圧を制御する、相毎に補助回路を備えた多相ソフトスイッチングコンバータの制御装置であって、
     前記各相の補助回路を構成する補助コイルは、全相の補助回路について共通化されており、かつ、該補助コイルの通電容量下限値は、前記各相の補助スイッチをターンオンしたときに各相に流れる電流を合算した合計電流値よりも大きな値に設定されている、コンバータ制御装置。
     
PCT/JP2009/060714 2009-06-11 2009-06-11 コンバータ制御装置 WO2010143293A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2009/060714 WO2010143293A1 (ja) 2009-06-11 2009-06-11 コンバータ制御装置
CN200980159799.6A CN102804573B (zh) 2009-06-11 2009-06-11 转换器控制装置
DE112009004911T DE112009004911T5 (de) 2009-06-11 2009-06-11 Wandler-Steuereinheit
US13/259,280 US8593845B2 (en) 2009-06-11 2009-06-11 Converter controller
JP2010518661A JP5018966B2 (ja) 2009-06-11 2009-06-11 コンバータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/060714 WO2010143293A1 (ja) 2009-06-11 2009-06-11 コンバータ制御装置

Publications (1)

Publication Number Publication Date
WO2010143293A1 true WO2010143293A1 (ja) 2010-12-16

Family

ID=43308561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060714 WO2010143293A1 (ja) 2009-06-11 2009-06-11 コンバータ制御装置

Country Status (5)

Country Link
US (1) US8593845B2 (ja)
JP (1) JP5018966B2 (ja)
CN (1) CN102804573B (ja)
DE (1) DE112009004911T5 (ja)
WO (1) WO2010143293A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021069231A (ja) * 2019-10-25 2021-04-30 トヨタ自動車株式会社 電気自動車のモータ駆動装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009004991B4 (de) * 2009-06-22 2018-02-15 Toyota Jidosha Kabushiki Kaisha Wandlersteuervorrichtung
DE112011102229T5 (de) * 2010-06-29 2013-06-06 Honda Motor Co., Ltd. Elektrisches Automobil
WO2012088447A1 (en) * 2010-12-24 2012-06-28 Marc Henness Electrical circuit for controlling electrical power to drive an inductive load
US9768607B2 (en) * 2015-05-11 2017-09-19 Infineon Technologies Ag System and method for a multi-phase snubber circuit
DE102015214231A1 (de) * 2015-07-28 2017-02-02 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines elektrischen Systems
CN108347167B (zh) 2017-01-25 2021-07-13 通用电气公司 用于软切换dc—dc转换器的系统和方法
CN108418424A (zh) * 2018-03-07 2018-08-17 北京亿华通科技股份有限公司 一种直流升压变换器控制方法
CN108429457A (zh) * 2018-03-07 2018-08-21 北京亿华通科技股份有限公司 一种直流升压变换器控制方法
CN108429458A (zh) * 2018-03-07 2018-08-21 北京亿华通科技股份有限公司 一种直流升压变换器控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1094249A (ja) * 1996-09-12 1998-04-10 Toshiba Corp チョッパ回路

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018469A (en) 1997-02-05 2000-01-25 Computer Products, Inc. Low cost high efficiency power converter
JP4265354B2 (ja) 2003-09-26 2009-05-20 株式会社豊田自動織機 双方向dc−dcコンバータ
WO2006098376A1 (ja) 2005-03-16 2006-09-21 National University Corporation Yokohama National University チョッパ回路
WO2006121425A2 (en) * 2005-05-05 2006-11-16 Atlas Marine Systems, Lp System and method for electrical power conversion
JP4877459B2 (ja) 2005-06-01 2012-02-15 ミツミ電機株式会社 電流共振型マルチフェーズdc/dcコンバータおよびその制御方法
JP2006340535A (ja) 2005-06-03 2006-12-14 Mitsumi Electric Co Ltd 電流共振型マルチ出力dc/dcコンバータおよびその制御方法
JP2007006669A (ja) 2005-06-27 2007-01-11 Mitsumi Electric Co Ltd 電流共振型マルチフェーズdc/dcコンバータおよびその制御方法
JP4337797B2 (ja) * 2005-09-29 2009-09-30 トヨタ自動車株式会社 電力制御装置および電動車両
JP5118913B2 (ja) * 2007-07-24 2013-01-16 トヨタ自動車株式会社 電源システムおよびそれを備えた電動車両ならびに電源システムの制御方法
JP4873260B2 (ja) * 2007-12-25 2012-02-08 トヨタ自動車株式会社 燃料電池システム
DE102009008549A1 (de) * 2009-02-12 2010-08-19 Bombardier Transportation Gmbh Anordnung zum Betreiben von Verbrauchern in einem Schienenfahrzeug mit elektrischer Energie, wahlweise aus einem Energieversorgungsnetz oder aus einer Motor-Generator-Kombination
JP5446054B2 (ja) 2009-06-02 2014-03-19 トヨタ自動車株式会社 電源システム
US8765312B2 (en) * 2009-06-03 2014-07-01 Toyota Jidosha Kabushiki Kaisha Converter controlling apparatus
DE112009004991B4 (de) * 2009-06-22 2018-02-15 Toyota Jidosha Kabushiki Kaisha Wandlersteuervorrichtung
CN102474176B (zh) * 2009-07-09 2015-05-27 丰田自动车株式会社 转换器控制装置及多相转换器
WO2011004492A1 (ja) * 2009-07-10 2011-01-13 トヨタ自動車株式会社 コンバータ制御装置
US8228014B2 (en) * 2009-07-30 2012-07-24 GM Global Technology Operations LLC Multi-phase DC/DC boost converter
EP2476192A2 (en) * 2009-09-07 2012-07-18 Koninklijke Philips Electronics N.V. Electrical energy conversion circuit device
JP5435292B2 (ja) * 2010-08-05 2014-03-05 アイシン・エィ・ダブリュ株式会社 制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1094249A (ja) * 1996-09-12 1998-04-10 Toshiba Corp チョッパ回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021069231A (ja) * 2019-10-25 2021-04-30 トヨタ自動車株式会社 電気自動車のモータ駆動装置
JP7188355B2 (ja) 2019-10-25 2022-12-13 トヨタ自動車株式会社 電気自動車のモータ駆動装置

Also Published As

Publication number Publication date
CN102804573B (zh) 2015-11-25
US8593845B2 (en) 2013-11-26
DE112009004911T5 (de) 2012-06-14
JP5018966B2 (ja) 2012-09-05
US20120026757A1 (en) 2012-02-02
CN102804573A (zh) 2012-11-28
JPWO2010143293A1 (ja) 2012-11-22

Similar Documents

Publication Publication Date Title
JP5018966B2 (ja) コンバータ制御装置
JP5447520B2 (ja) コンバータ制御装置及び多相コンバータ
JP5327486B2 (ja) コンバータ制御装置
JP5464451B2 (ja) コンバータ制御装置
JP5435028B2 (ja) コンバータ制御装置
JP4513130B2 (ja) 燃料電池システム及び移動体
JP5862918B2 (ja) 多相コンバータおよび多相コンバータの設計方法
JP5464323B2 (ja) コンバータ制御装置
JP2011019338A (ja) コンバータ制御装置
WO2010140255A1 (ja) コンバータ制御装置
JP5333007B2 (ja) 燃料電池システム
JP2010288366A (ja) コンバータ制御装置
WO2010140227A1 (ja) コンバータ制御装置
JP5655449B2 (ja) 電力変換装置及び電源供給装置
JP2011109775A (ja) コンバータ制御装置
JP2010288365A (ja) コンバータ制御装置
JP2011019337A (ja) コンバータ制御装置
JP5083275B2 (ja) 燃料電池システム及び移動体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159799.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010518661

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845818

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13259280

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120090049117

Country of ref document: DE

Ref document number: 112009004911

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845818

Country of ref document: EP

Kind code of ref document: A1