WO2006098376A1 - チョッパ回路 - Google Patents

チョッパ回路 Download PDF

Info

Publication number
WO2006098376A1
WO2006098376A1 PCT/JP2006/305150 JP2006305150W WO2006098376A1 WO 2006098376 A1 WO2006098376 A1 WO 2006098376A1 JP 2006305150 W JP2006305150 W JP 2006305150W WO 2006098376 A1 WO2006098376 A1 WO 2006098376A1
Authority
WO
WIPO (PCT)
Prior art keywords
main
switch
series connection
main switch
diode
Prior art date
Application number
PCT/JP2006/305150
Other languages
English (en)
French (fr)
Inventor
Atsuo Kawamura
Yukinori Tsuruta
Yoshihiro Ito
Original Assignee
National University Corporation Yokohama National University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Yokohama National University filed Critical National University Corporation Yokohama National University
Priority to JP2007508188A priority Critical patent/JP5023338B2/ja
Publication of WO2006098376A1 publication Critical patent/WO2006098376A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/342Active non-dissipative snubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a chitsuba circuit that constitutes a power supply that performs DC conversion.
  • a high-efficiency, high-power chiyotsuba circuit that operates in the output range of lOOkW is used for driving an electric vehicle such as a fuel cell vehicle.
  • an electric vehicle such as a fuel cell vehicle.
  • transformation by node switching is used.
  • a C-bridge chitsuba circuit as shown in FIG. 30 is known as a high-power chitsuba circuit.
  • the C-bridge chipper circuit shown in the figure uses two switches and one capacitor, and is suitable for high-current applications because it can cut off a large current with a lossless snubber circuit and is lossless.
  • this C-bridge chipper circuit has the problem that the overall power loss is large because the main switch and the diode are connected in series to the main circuit, and the main switches S and S Are turned on at the same time, the current is generated due to the recovery current during reverse recovery of the output diode D.
  • QRA S chopper circuit has a main switch S and an auxiliary switch S.
  • the main switch S has a rear tuttle SL.
  • Non-Patent Document 1 Proceedings of the IEICE Industrial Applications Division Tsuruda, Kamgami, Kawamura “High-efficiency, High-power Chipper Circuit QRAS” 2004-6 Disclosure of the invention
  • Switch S also has the problem of overcurrent overvoltage. Turn off this main switch
  • the voltage applied to the main switch S is the snubber capacitor clamp voltage (see the voltage characteristics (shown as V) between 49.960 and 49.965 sec in Fig. 32).
  • the main switch S is the snubber capacitor clamp voltage (see the voltage characteristics (shown as V) between 49.960 and 49.965 sec in Fig. 32).
  • FIG. 32 shows the simulation results.
  • 111 indicates the voltage of the main switch S
  • 211 indicates the current of the main switch S.
  • an object of the present invention is to solve the above-described conventional problems, to eliminate the heat loss that has occurred in the rear tuttle that is conventionally provided for soft switching, and to improve the conversion efficiency.
  • Another object of the present invention is to prevent an overcurrent overvoltage when the main switch is turned on.
  • Another object of the present invention is to prevent overvoltage due to reverse recovery of the output diode D.
  • the present invention is equivalent to two main rear turtles divided into two that constitute one rear tuttle, and one pole is connected to one end of a series connection body of the main rear tuttle, and the other pole is connected to one of the DC power supplies.
  • a main switch directly connected to the voltage terminal of the main switch, a series connection of a snubber diode and a snubber capacitor connected between the poles of the main switch, a connection point between the snubber diode and the snubber capacitor, and two main rear tuttles.
  • a snubber-assisted ZVZCT Snubber-Assisted Zero Voltage and Zero Current Transition chopper
  • the rear tuttle is conventionally used, but the present invention is provided with an auxiliary switch, and the auxiliary switch is turned on.
  • the voltage of the snubber capacitor is set to zero voltage
  • the voltage when the main switch is turned on is set to zero voltage
  • the regenerative resonance between the snubber capacitor and the main reactor is generated via the auxiliary switch, and becomes this zero voltage.
  • the current due to this regenerative resonance is passed in a direction that cancels the main current of the main switch, so that the current and voltage of the main switch at the time of turn-on become zero.
  • the present invention can be applied to various types of Tetsutsuba circuits such as a step-down type, a step-up type, a step-up / step-down type, a CUK type, a SEPIC type, and a ZETA type.
  • the auxiliary switch of the present invention when turned on, passes the charge accumulated in the output diode to the main rear tuttle on the DC power source side of the two main rear tuttles in the direction opposite to the main current of the main rear tuttle. And regenerate to a DC power source.
  • the output die of the output diode In addition to preventing overvoltage due to reverse recovery of the ode, the heat loss generated in the main rear tuttle can be reduced by setting the direction of flow to the main rear tuttle in the direction opposite to the main current of the main rear tuttle.
  • the main switch of the present invention when turned on, causes the electric charge accumulated in the snubber capacitor to be transferred to the DC power source side of the two main rear tuttles by regenerative resonance between the snubber capacitor and the main rear tuttle connected to the DC power source side.
  • the main rear tuttle is fed in the direction opposite to the main rear tuttle's main current and regenerated to the DC power supply.
  • the main switch When the main switch is turned on, the auxiliary switch is turned on after the auxiliary switch is turned on in order to perform soft switching with zero current and zero voltage. As a result, the main switch can be turned on with zero voltage and zero current state force.
  • the main rear tuttle can be integrally configured by a coupled rear tuttle having mutual inductance.
  • Another form of the chopper circuit of the present invention includes an output clamp diode between the snubber capacitor and the output capacitor. With this configuration, both node switching and soft switching operations can be used together.
  • Another form of the chitsuba circuit according to the present invention includes a main rear tuttle having one end connected to one terminal of a DC power source, one pole connected to the other end of the main rear tuttle, and the other pole connected to the DC power source.
  • the main switch directly connected to the low voltage terminal, the series connection of the output diode and output smoothing capacitor connected between the poles of the main switch, the capacitor connected between the poles of the main switch, and the capacitor
  • the regenerative reactor and auxiliary switch connected in series are connected between the high potential side and the high potential side terminal of the DC power supply.
  • a snubber diode and a snubber capacitor can be dispensed with, and a capacitor connected between both poles of the main switch can have a small capacity, so that it can be operated even in a mode in which a voltage remains.
  • Another embodiment of the chiyotsuba circuit of the present invention has one end connected to one terminal of a DC power source, and equivalently constitutes one rear tuttle, and is connected in series to two main rear tuttles divided into two.
  • An output diode with one pole connected to the other end of the series connection of the main rear tuttle and the other pole connected directly to the low voltage terminal of the DC power supply and between the poles of the main switch Auxiliary switch directly connected between the connection point of the series connection of the output smoothing capacitor and the other end of the series connection of the main switch and the main rear tuttle, and the connection point of the series connection of the two main rear tuttles It is set as the structure provided with.
  • a main rear tuttle having one end connected to one terminal of a DC power source, one pole connected to the other end of the main rear tuttle, and the other pole Of the main switch directly connected to the low voltage terminal of the DC power source, the series connection body of the output diode and the output smoothing capacitor, and the series connection body of the main switch and the main rear tail connected between the poles of the main switch.
  • a series connection body of a regenerative rear tuttle and an auxiliary switch connected between the connection point with the other end and the high potential side terminal of the DC power supply is provided.
  • the above two configurations are configurations using the stray capacitance of the main switch, and soft switching is possible with only three elements of the two switches and the main reactor.
  • Another embodiment of the chitsuba circuit of the present invention is such that one end is connected to one terminal of a DC power source and equivalently constitutes one rear tuttle, and is connected in series to two main rear tuttles divided into two.
  • a main switch in which the other pole is connected to the other end of the main rear tuttle and the other pole is directly connected to the low voltage terminal of the DC power supply, and an output diode and an output smoothing capacitor connected between both poles of the main switch,
  • the snubber diode can be deleted.
  • the main switch is switched between hard switching and soft switching by gate control of the auxiliary switch.
  • one end is connected to one terminal of a DC power source, and equivalently constitutes one rear tuttle.
  • a snubber connected between the series connection with the smoothing capacitor and both poles of the main switch It is configured to include a capacitor, a connection point between the high potential of the snubber capacitor, and an auxiliary switch that directly connects between the connection point of the series connection of the two main rear tuttles. According to this embodiment, the snubber diode can be eliminated.
  • the main rear tuttle can be provided on the high potential side or the low potential side of the DC power supply.
  • one pole of one main switch is connected to the high potential side terminal of the DC power supply, and one pole of the other main switch is connected to the low potential of the DC power supply.
  • a series of snubber diodes and snubber capacitors connected to the two main switches, one end connected to the connection point of the two main switches, and the other end connected to the terminal of the DC power source, equivalently constitutes one rear tuttle.
  • a series connection body of a snubber diode and a snapper capacitor is connected between both poles of the main switch, and one pole of the main switch is connected to the two main reactors.
  • Connect one end of one main rear tuttle and two poles of a diode connected in series or equivalently two inductances in series connect the other pole of the main switch directly to one voltage terminal of the DC power supply, A load is connected to the other pole of the output diode, and the snubber diode is connected between the connection point of the snubber capacitor and the connection point of the series connection body of the main rear tuttle or the connection point of the two inductances.
  • the auxiliary switch connected to the main switch, and before the main switch is turned on, the auxiliary switch is turned on by soft switching with the main reactor and stored. After switching off the charge and restoring the reverse blocking characteristics of the diode by soft switching, the main switch is turned on by soft switching by the resonance operation of the snubber capacitor and the main rear tuttle, and the main switch is turned off by soft switching by the snapper capacitor. The auxiliary switch is turned off by soft switching with zero current.
  • the invention's effect As described above, according to the present invention, by turning on the auxiliary switch, the voltage of the snubber capacitor is set to zero voltage, and the voltage at the turn-on of the main switch is set to zero voltage. At this point, the auxiliary switch is turned on to generate a regenerative resonance between the snubber capacitor and the main rear tuttle via the auxiliary switch, and the current caused by the regenerative resonance is passed in a direction that cancels the main current of the main switch.
  • the main switch can be turned on with zero voltage and zero current.
  • the auxiliary switch can regenerate the charge accumulated in the output diode to the direct current power supply, thereby preventing overvoltage due to reverse recovery of the output diode.
  • FIG. 1 is a circuit diagram for explaining an example of a boost type configuration of a chitsuba circuit according to the present invention.
  • FIG. 2 Explains the disappearance of the accumulated charge of the output diode D in the chitsuba circuit of the present invention
  • FIG. 1 A first figure.
  • FIG. 3 is a diagram for explaining a soft switching operation in the chitsuba circuit of the present invention.
  • FIG. 4 is a diagram showing the voltage and current of the main switch of the chopper circuit of the present invention.
  • FIG. 5 is a diagram showing the voltage / current of the auxiliary switch of the chitsuba circuit of the present invention.
  • FIG. 6 is a diagram showing the voltage / current of the output diode of the chitsuba circuit of the present invention.
  • FIG. 7 is an operation diagram for explaining an operation example of the chitsuba circuit of the present invention.
  • FIG. 8 is a basic operation waveform diagram of each part for explaining an operation example of the chitsuba circuit of the present invention.
  • FIG. 9 is a circuit diagram for explaining a second embodiment of the present invention.
  • FIG. 10 is a circuit diagram for explaining a third embodiment of the present invention.
  • FIG. 11 is a circuit diagram for explaining a fourth embodiment of the present invention.
  • FIG. 12 is a circuit diagram for explaining a fifth embodiment of the present invention.
  • FIG. 13 is a diagram showing voltage-current characteristics of the main switch in the form using the coupled rear tuttle of the present invention.
  • FIG. 14 is a diagram showing the voltage-current characteristics of the auxiliary switch in the form using the coupled rear tuttle of the present invention.
  • FIG. 15 is a diagram showing the voltage-current characteristics of the output diode in the form using the coupled rear tutor of the present invention.
  • FIG. 16 is a diagram showing an entire waveform in a form using the coupled rear tuttle of the present invention.
  • FIG. 17 is a circuit diagram for explaining a sixth embodiment of the present invention.
  • FIG. 18 is a diagram showing hard switching operation waveforms of the sixth exemplary embodiment of the present invention.
  • FIG. 19 is a diagram showing soft switching operation waveforms of the sixth exemplary embodiment of the present invention.
  • FIG. 20 is a diagram showing a circuit example in which the chitsuba circuit of the present invention is applied to each type.
  • FIG. 21 is a diagram showing an example of a circuit in which the chiyotsuba circuit of the present invention is applied to a buck-boost type.
  • FIG. 22 is a circuit diagram for explaining a seventh embodiment of the present invention.
  • FIG. 23 is a circuit diagram for explaining an eighth embodiment of the present invention.
  • FIG. 24 is a circuit diagram for explaining a ninth embodiment of the present invention.
  • FIG. 25 is a circuit diagram for explaining a tenth embodiment of the present invention.
  • FIG. 26 is a circuit diagram for explaining an eleventh embodiment of the present invention.
  • FIG. 27 is a circuit diagram for explaining a twelfth embodiment of the present invention.
  • FIG. 28 is a circuit diagram for explaining a thirteenth embodiment of the present invention.
  • FIG. 30 is a circuit diagram for explaining a conventional C-bridge chitotsuba circuit.
  • FIG. 31 is a circuit diagram for explaining a QRAS Chotsuba circuit.
  • FIG. 32 is a circuit diagram for explaining the voltage and current of the main switch of the QRAS chopper circuit.
  • FIG. 33 is a circuit diagram for explaining the voltage of the output diode of the QRAS chopper circuit. Explanation of symbols
  • boost type configuration example of the chitsuba circuit of the present invention will be described with reference to FIG. 1 to FIG. 20, taking the boost type chitsuba circuit as an example.
  • FIG. 1 is a circuit diagram for explaining an example of a step-up configuration of a snubber-assisted ZVZCT (Snubber-Assisted Zero Voltage and Zero Current Transition Chopper) chopper circuit of the present invention.
  • the main switch S the auxiliary switch S, the main rear tuttles L and L, and the snubber
  • the main rear tuttle L 1, L is a force that is a series connection of two divided rear tuttles Equivalently 1
  • Tsuchi S has one pole connected to the other end of the series connection of the main rear tuttles L and L, and the other pole
  • a load is connected in parallel to C. Also, snubber diodes between the poles of the main switch S
  • a series connection of D and snubber capacitor C is connected.
  • Auxiliary switch S is snubber
  • the QRAS chopper circuit described above is the point that diodes D and D are deleted, the auxiliary switch S is a reverse blocking IGBT, and the rear tuttle SL is
  • the regenerative diode D that was necessary in the past can be deleted.
  • the auxiliary switch S of the chopper circuit has a turn-off operation of zero current switching.
  • Diode D can be deleted.
  • the chopper circuit of the present invention can be extinguished by passing the accumulated charge of the output diode through a part of the main rear tuttle via the auxiliary switch, thereby suppressing the reverse recovery current.
  • FIG. 2 illustrates the extinction of charge accumulated in the output diode D in the chitsuba circuit of FIG.
  • FIG. 1 when the auxiliary switch S is turned on, the output die
  • the current I due to the charge accumulated in Aode D is the main current of the main rear tuttle L.
  • the accumulated charge in the output diode D disappears.
  • the chiyotsuba circuit of the present invention can reduce switching loss by creating a state of zero voltage and zero current by using the regenerative resonance phenomenon and turning it on.
  • FIG. 3 is a diagram for explaining a soft switching operation in the chopper circuit of FIG.
  • the current slowly rises when the main switch S is turned on.
  • the rear tuttle SL is used to lift it up.
  • the chopper circuit of the present invention is
  • This rear tuttle SL is deleted by forming a regenerative nose with the auxiliary switch S.
  • This regenerative path uses the regenerative resonance phenomenon of the snubber capacitor C.
  • the clamp voltage of the snubber capacitor which greatly exceeds the power supply voltage generated at the time of turn-on in the past, can be suppressed to a voltage as low as the power supply voltage. Therefore, the capacity of the snubber capacitor can be selected to be small in accordance with the turn-on time of the main switch, the snubber regenerative power itself can be reduced, and the efficiency of the entire Chotsuba circuit can be improved.
  • the turn-off of the main switch S is soft-switched.
  • the regenerative current Is reduces the conduction current of the main rear tuttle L.
  • the active power component A Ps Is 2 'R generated during regenerative action is
  • Rear tuttle L is to reduce the loss, and it works to increase the efficiency of the chiyotsuba circuit.
  • the R is the internal resistance of the main rear tuttle L.
  • the Chitsuba circuit of the present invention eliminates the accumulated charge in the output diode. In addition to acting as a reverse recovery current suppression circuit, it acts as soft switching that eliminates the need for a regenerative rear tuttle using regenerative resonance.
  • the chiyotsuba circuit of the present invention has a configuration in which the main rear tuttle is divided so that the regenerative rear tuttle is not required, and the energy stored in the output diode and the snubber capacitor is directly regenerated to the power supply side. In this case, the power loss in the main rear tuttle can be reduced by flowing the main rear tuttle in the direction that cancels the main current.
  • the chipper circuit of the present invention can shift the energy of the snubber capacitor directly to the main rear tuttle without using an auxiliary regenerative capacitor. For example, even if the charging voltage of the snubber capacitor is charged higher than the output voltage due to the influence of the wiring reactor, regenerative energy is transferred to the main rear tuttle L in the input power direction, and the output direction
  • the regenerative energy can be regenerated by transferring to the main rear tuttle L.
  • the efficiency can be made higher than that of a method using a rear tuttle separately from the main rear tuttle and regenerating via an auxiliary circuit nose other than the main circuit.
  • FIG. 4 shows the voltage / current of the main switch S
  • FIG. 5 shows the voltage / current of the auxiliary switch S.
  • Figure 6 shows the output diode D voltage.
  • voltage 101 has a voltage drop at 49.939 sec.
  • the voltage 102 indicates that the main switch S is on.
  • FIGS. Fig. 7 is an operation diagram
  • Fig. 8 is a basic operation waveform diagram of each part.
  • mode 1 (MODE1 in Fig. 7)
  • the auxiliary switch S is turned on at the time of -t2, and the main switch S is turned on. Turns off, and the carrier annihilation mode of the output diode D begins.
  • auxiliary switch S is turned on at the time of -t2
  • main switch S is turned on. Turns off, and the carrier annihilation mode of the output diode D begins.
  • auxiliary switch S is turned on at the time of -t2
  • the main switch S is turned on. Turns off, and the carrier annihilation mode of the output diode D begins.
  • auxiliary switch S is turned on at the time of -t2
  • the main switch S is turned on. Turns off, and the carrier annihilation mode of the output diode D begins.
  • auxiliary switch S is turned on at the time of -t2
  • main switch S is turned on. Turns off, and the carrier annihilation mode of the output diode D begins
  • T suchi S turns on from zero current and turns on with soft switching.
  • This mode ends when it is recovered and turned off.
  • the current flows in a direction that cancels the main current of the main switch S.
  • the main switch S
  • the regenerative energy that is supplied is an auxiliary current while offsetting the current of the main switch S as a negative current source
  • Auxiliary switch S becomes zero current turn-off, and both are turned off by soft switching.
  • the present invention is not limited to simultaneous off.
  • the auxiliary switch S becomes a variable current
  • both the main switch and the auxiliary switch operate with soft switching, and no overcurrent or overvoltage occurs due to the reverse recovery current of the output diode.
  • FIG. 9 is a circuit diagram for explaining the second embodiment. Here, it is shown in Fig. 1.
  • the form is the first form example.
  • the reverse blocking IGBT is used as the auxiliary switch S.
  • FIGS. 10 to 12 are circuit diagrams for explaining the third to fifth embodiments.
  • the main rear tuttles L and L are integrated with a coupled rear tuttle with mutual inductance.
  • the operation is similar to that of the first embodiment.
  • the resonance period can be shortened compared to the case where there is no coupling.
  • Fig. 13 shows the voltage-current characteristics of the main switch S in the form using a coupled rear tuttle.
  • Figure 14 shows the voltage-current characteristics of the auxiliary switch S in the form using a coupled rear tuttle.
  • FIG. 16 shows an overall waveform in the form using a coupling reactor.
  • the current 201 is generated after the voltage 101 becomes substantially zero voltage, and the voltage 202 rises in a state where the current 102 becomes almost zero current at the time of turn-off.
  • auxiliary switch S is connected to main switch S.
  • FIG. 15 shows FIGS. 13 to 14 together.
  • FIG. 17 is a circuit diagram for explaining a sixth embodiment.
  • soft switching does not always work for all load conditions, and some of the modes are hard switching.
  • the efficiency may be lower than that of conventional hard switching.
  • the gate assist circuit for soft switching is gate-blocked, and the zero voltage zero current operation is temporarily stopped only for a certain period, and hard switching only by the main switch is performed. It is good also as control to use together.
  • the circuit example shown in FIG. 17 is an example in the case of using both hard switching and soft switching, and an output clamp diode D is added to the snubber capacitor C. in this case
  • FIG. 18 (a) shows the voltage 1 of the main switch S when the auxiliary switch S is stopped.
  • Fig. 18 (b) shows the auxiliary switch when auxiliary switch S is stopped.
  • Fig. 19 (a) shows that auxiliary switch S is stopped.
  • FIG. 2 2 shows the voltage 101 and current 102 of the main switch S when it is stopped
  • Fig. 18 (b) shows the auxiliary switch
  • the voltage 201 and current 202 of the auxiliary switch S when the switch S is operated are shown.
  • the chiyotsuba circuit of the present invention can be applied to a step-down type, a step-up type, a step-up / step-down type, a CU K type, a SEPIC type, a ZETA type, and a step-up / step-down type.
  • FIG. 20 shows a case where the chitsuba circuit of the present invention is a step-down type (FIG. 20 (a)), a step-up type (FIG. 20 (b)), a step-up / down type (FIG. 20 (c)), a CUK type (FIG. 20 ( d)), SEPIC type (Fig. 20 (e)), ZETA type (Fig. 20 (f)) shows an example of the circuit, and Fig. 21 shows an example of the circuit applied to the buck-boost type.
  • FIG. 20 shows a case where the chitsuba circuit of the present invention is a step-down type (FIG. 20 (a)), a step-up type (FIG. 20 (b)), a step-up / down type (FIG. 20 (c)), a CUK type (FIG. 20 ( d)), SEPIC type (Fig. 20 (e)), ZETA type (Fig. 20 (f)) shows an example of the circuit, and Fig.
  • the step-up / step-down circuit example shown in Fig. 21 is equivalent to the integration of the step-down type circuit shown in Fig. 20 (a) and the step-up type circuit shown in Fig. 20 (b).
  • a snubber connected between the series connection of switches s and s and the poles of each of the main switches S and S '
  • connection point of the contacts s and s Connected to the connection point of the contacts s and s, and the other end is connected to the terminal of the DC power supply.
  • Auxiliary switch S connected between, snubber diode D 'and snubber capacitor C And an auxiliary switch S connected between the connection points of the main rear tuttle L and L in series.
  • the present invention may have the following forms (seventh to fourteenth forms).
  • a very small snubber capacitor C is connected in parallel with the main switch S without providing a series connection of a snubber capacitor and a snubber diode.
  • the regenerative rear tuttle L is provided separately, and the efficiency can be improved. Also, the capacity of the snubber capacitor C can be made very small, so that the voltage remains
  • the operation can be performed.
  • the ninth mode shown in FIG. 24 is a configuration example in which the regenerative rear tuttle L is placed separately.
  • the conventional snubber diode is eliminated, and only the snubber capacitor C and the auxiliary switch S are used, reducing the number of components and improving the efficiency.
  • the eleventh embodiment is such that the conventional snubber diode is deleted, and only the snubber capacitor C and the auxiliary switch S are provided, as shown in FIG.
  • the auxiliary switch S is in a state where current remains in the main rear tuttle L!
  • a diode is added to prevent overvoltage that occurs when 2 is turned off.
  • Aether D can be deleted.
  • the twelfth mode is a mode in which gate control is performed to switch between soft switching and hard switching, as shown in FIG. 27, and a mode in which voltage remains in the snubber capacitor C (step-up)
  • the auxiliary switch S is gate-blocked and the hard switch by the main switch S
  • step-up ratio is 2 or more.
  • 301 indicates the case of hard switching
  • 302 indicates the case of using V and hard switching and soft switching together in the present invention.
  • the main rear tails L 1 and L of the seventh to twelfth modes are arranged on the low potential side of the DC power supply.
  • the fourteenth form is shown in FIG.
  • the structure including the snubber diode D according to the first to sixteenth embodiments described above.
  • the main rear tuttles L and L are arranged on the low potential side of the DC power supply.
  • the wiring section and the low potential side are connected to the high potential side of the main switch S.
  • a minute wiring inductance is generated in the wiring section, and the snubber capacitor may rise slightly from the output voltage or cause high-frequency vibration due to these effects, but the present invention is effective even with such a parasitic regeneration phenomenon. It works.
  • the chitsubba circuit of the present invention may be configured by multiplexing the entire power supply system in addition to the main switch and the auxiliary switch connected in series and parallel.
  • main rear tuttle of the chiyotsuba circuit of the present invention may be divided or integrated.
  • the anti-parallel diode of the main switch may be deleted if soft switching of zero voltage and zero current is not performed.
  • the input smoothing capacitor may be deleted when the input power supply has a current ripple absorption capability.
  • the auxiliary switch is not limited to the reverse blocking IGBT. It may be a series circuit of a diode and an IGBT without reverse breakdown voltage, or a series circuit of a diode and an IGBT with an antiparallel diode.
  • the chiyotsuba circuit of the present invention can be applied not only to a fuel cell vehicle but also to a field using a semiconductor power converter.

Abstract

 等価的に1つのリアクトルを構成する2分割した2つの主リアクトルと、一方の極を主リアクトルの直列接続体の一端に接続し、他方の極を直流電源の一方の電圧端子に直接に接続した主スイッチと、この主スイッチの両極間に接続した、スナバダイオードとスナバコンデンサの直列接続体と、このスナバダイオードとスナバコンデンサとの接続点と、2つの主リアクトルの直列接続体の接続点との間に接続した補助スイッチとを備え、スナバ補助ZVZCT(Snubber-Assisted Zero Voltage and Zero Current Transition chopper)チョッパ回路を構成する。上記構成によって、ソフトスイッチングのために備えていたリアクトルで発生していた熱損失を無くし、変換効率を向上させ、主スイッチのターンオンおよびターンオフ時における過電流過電圧を防ぎ、出力ダイオードの逆回復による過電圧を防ぐ。

Description

チヨッパ回路
技術分野
[0001] 本発明は、直流変換を行う電源を構成するチヨツバ回路に関する。
背景技術
[0002] 燃料電池自動車等の電気自動車駆動用では lOOkWの出力レンジで動作する高 効率で大電力のチヨツバ回路が用いられる。従来、この電気自動車の分野では、ノ、 一ドスイッチングによる変翻が使用されている。
[0003] 燃料電池自動車に限らず、半導体電力変換装置を用いる分野では低損失が求め られるため、ソフトスィッチングによるチヨッパ回路が求められている。
[0004] 従来、大電力用チヨツバ回路としては、図 30に示すような Cブリッジチヨツバ回路が 知られている。図示する Cブリッジチヨッパ回路は、 2つのスィッチと 1つのコンデンサ を用いた構成であり、ロスレススナバ回路による大電流遮断が可能で、無損失である 点で大電流用途に適している。
[0005] し力しながら、この Cブリッジチヨッパ回路は、主スィッチとダイオードが主回路に直 列接続されているため、全体の電力損失が大きいという課題があり、また、主スィッチ Sと Sを同時ターンオンすると、出力ダイオード Dの逆回復時のリカノリ電流により発
1 2 3
生する過電圧と、スナバコンデンサの充電電圧が重畳することで、大きな過電圧が発 生し、出力ダイオード Dが破損するおそれがあるという課題がある。
3
[0006] そこで、本出願の発明者らは、準共振形回生アクティブスナバ(Quasi-resonant Re generating Active Snubber: QRAS)方式のチヨッパ回路を提案している(例えば、 非特許文献 1参照)。図 31はこの QRASチヨッパ回路の一構成例である。この QRA Sチヨッパ回路では、主スィッチ Sと補助スィッチ Sを備え、主スィッチ Sにリアタトル SL
1 2 1
を直列接続する構成によって、主スイッチング sに流れる電流を遅延させて、主スィ
1 1
ツチ Sのターンオン時に電流が零となるようにして!/、る(図 32)。
1
非特許文献 1 :電気学会産業応用部門大会講演論文集 弦田,神頭、河村「高効率 大電力チヨッパ回路 QRAS」 2004-6 発明の開示
発明が解決しょうとする課題
[0007] 上記した QRASチヨッパ回路では、主スィッチ Sにリアタトル SLを接続することでソ
1 1
フトスイッチングを実現している力 リアタトル SLに電流が流れることによる内部抵抗
1
で発生する熱損失によって変換効率が低下するという問題がある。
[0008] また、 QRASチヨッパ回路の主スィッチ Sのターンオンおよびターンオフ時に、主ス
1
イッチ Sも過電流過電圧が発生するという問題がある。この主スィッチのターンオフ過
1
電圧は、スナバコンデンサのクランプ電圧が(図 32中の 49.960〜49.965secの間の電 圧特性 (Vで示す)を参照)主スィッチ Sに過電圧として印加される。また主スィッチ S
1 1 のターンオン時に、出力ダイオード Dの逆回復により主スィッチ Sに過大な電流が流
5 1
れる(図 32中の 49.940secの電流特性 (Iで示す)を参照)。
[0009] また、出力ダイオード Dの逆回復によって、出力ダイオード Dに大きな逆スノイク電
5 5
圧が発生し(図 33中の 49.9400secの電圧特性 (Vで示す)を参照)、出力ダイオード 自体が破損するおそれがあるという問題もある。なお、図 32, 33はシミュレーション結 果であり、図 32中の 111は主スィッチ Sの電圧を示し、 211は主スィッチ Sの電流を
1 1 示し、図 33中の 113は出力ダイオード Dの電圧を示している。
5
[0010] そこで、本発明は前記した従来の問題点を解決し、従来ソフトスイッチングのために 備えるリアタトルで発生していた熱損失を無くし、変換効率を向上させることを目的と する。
[0011] また、本発明は主スィッチのターンオン時における過電流過電圧を防ぐことを目的 とする。
[0012] また、本発明は出力ダイオード Dの逆回復による過電圧を防ぐことを目的とする。
5
課題を解決するための手段
[0013] 本発明は、等価的に 1つのリアタトルを構成する 2分割した 2つの主リアタトルと、一 方の極を主リアタトルの直列接続体の一端に接続し、他方の極を直流電源の一方の 電圧端子に直接に接続した主スィッチと、この主スィッチの両極間に接続した、スナ バダイオードとスナバコンデンサの直列接続体と、このスナバダイオードとスナバコン デンサとの接続点と、 2つの主リアタトルの直列接続体の接続点との間に接続した補 助スィッチとを備え、スナバ補助 ZVZCT (Snubber- Assisted Zero Voltage and Zero Current Transition chopper)チヨッノ 回路を構成す 。
[0014] 主スィッチのターンオン時における電流を零とするために、従来はリアタトルを用い た構成とするのに対して、本発明は、補助スィッチを備えた構成とし、この補助スイツ チをオンさせることによってスナバコンデンサの電圧を零電圧として、主スィッチのタ ーンオン時の電圧を零電圧とし、また、補助スィッチを介してスナバコンデンサと主リ ァクトルとの回生共振を生成し、この零電圧となる時点で、主スィッチをオンさせること で、この回生共振による電流を主スィッチの主電流を打ち消す方向に通流させること で、ターンオン時の主スィッチの電流及び電圧を零とする。
[0015] これによつて、従来のチヨッパ回路のようにリアタトルを用いることなぐ主スィッチの ターンオン時において零電圧で、かつ零電流でソフトスィッチングを行って、熱損失 を無くしてチヨツバ回路の変換効率を向上させることができ、また、過電流過電圧を防 ぐことができる。
[0016] また、補助スィッチにより、出力ダイオードに蓄積された電荷を直流電源に回生させ ることで、出力ダイオードの逆回復による過電圧を防ぐことができる。
[0017] 本発明は、降圧型、昇圧型、昇降圧型、 CUK型、 SEPIC型、 ZETA型等の各種 チヨツバ回路に適用することができる。
[0018] 本発明を昇圧型チヨツバ回路に適用した場合の、より詳細な形態は、一端を直流電 源の高電位側端子に接続した、等価的に 1つのリアタトルを構成する 2分割した 2つ の主リアタトルの直列接続体と、一方の極を主リアタトルの直列接続体の他端に接続 し、他方の極を直流電源の低電圧端子に直接に接続した主スィッチと、主スィッチの 両極間に接続した、出力ダイオードと出力平滑コンデンサとの直列接続体と、主スィ ツチの両極間に接続した、スナバダイオードとスナバコンデンサの直列接続体と、ス ナパダイオードとスナバコンデンサとの接続点と、 2つの主リアタトルの直列接続体の 接続点との間に接続した補助スィッチとを備える構成である。
[0019] 本発明の補助スィッチは、ターンオン時に、出力ダイオードに蓄積される電荷を、 2 つの主リアタトルの内の直流電源側の主リアタトルに対して、主リアタトルの主電流と 逆方向に通流して、直流電源に回生する。これによつて、出力ダイオードの出力ダイ オードの逆回復による過電圧を防ぐ他に、主リアタトルに通流させる方向を主リアタト ルの主電流と逆方向とすることによって、主リアタトルで発生する熱損失を低減させる ことができる。
[0020] 本発明の主スィッチは、ターンオン時に、スナバコンデンサと直流電源側に接続し た主リアタトルとの回生共振によって、スナバコンデンサに蓄積された電荷を、 2つの 主リアタトルの内の直流電源側の主リアタトルに、主リアタトルの主電流と逆方向に通 流して、直流電源に回生する。この主リアタトルに通流させる回生電流を主リアタトル の主電流と逆方向とすることによって、主リアタトルで発生する熱損失を低減させるこ とがでさる。
[0021] 主スィッチのターンオン時において、零電流かつ零電圧によるソフトスイッチングを 行わせるために、補助スィッチをオン動作させた後に主スィッチをオン動作させる。こ れによって、主スィッチを零電圧かつ零電流の状態力もオン動作させることができる。 本発明のチヨッパ回路の他の一形態として、主リアタトルは、相互インダクタンスを持 つ結合リアタトルにより一体に構成することができる。
[0022] 本発明のチヨッパ回路の他の一形態は、スナバコンデンサと出力コンデンサとの間 に出力クランプダイオードを備える。この構成によって、ノ、一ドスイッチングとソフトスィ ツチングの両動作を併用させることができる。
[0023] 本発明のチヨツバ回路の他の一形態は、一端を直流電源の一方の端子に接続した 主リアタトルと、一方の極を主リアタトルの他端に接続し、他方の極を直流電源の低電 圧端子に直接に接続した主スィッチと、主スィッチの両極間に接続した、出力ダイォ ードと出力平滑コンデンサとの直列接続体と、主スィッチの両極間に接続したコンデ ンサ、コンデンサの高電位側と直流電源の高電位側端子との間に接続した回生リア タトルと補助スィッチとの直列接続体を備える構成とする。この形態によれば、スナバ ダイオードとスナバコンデンサを不要とすることができ、主スィッチの両極間に接続し たコンデンサは小容量で済むため、電圧が残留するモードでも動作させることができ る。
[0024] 本発明のチヨツバ回路の他の一形態は、一端を直流電源の一方の端子に接続した 、等価的に 1つのリアタトルを構成する 2分割した 2つの主リアタトルの直列接続体と、 一方の極を主リアタトルの直列接続体の他端に接続し、他方の極を直流電源の低電 圧端子に直接に接続した主スィッチと、主スィッチの両極間に接続した、出力ダイォ ードと出力平滑コンデンサとの直列接続体と、主スィッチと主リアタトルの直列接続体 の他端との接続点と、 2つの主リアタトルの直列接続体の接続点との間に直接に接続 した補助スィッチとを備える構成とする。
[0025] また、本発明のチヨツバ回路の他の一形態は、一端を直流電源の一方の端子に接 続した主リアタトルと、一方の極を前記主リアタトルの他端に接続し、他方の極を前記 直流電源の低電圧端子に直接に接続した主スィッチと、主スィッチの両極間に接続 した、出力ダイオードと出力平滑コンデンサとの直列接続体と、主スィッチと主リアタト ルの直列接続体の他端との接続点と、直流電源の高電位側端子との間に接続した 回生リアタトルと補助スィッチとの直列接続体を備える構成とする。
[0026] 上記 2つの形態は、主スィッチの浮遊容量を用いた構成であり 2つのスィッチと主リ ァクトルの 3要素のみでソフトスイッチングが可能とする。
[0027] 本発明のチヨツバ回路の他の一形態は、一端を直流電源の一方の端子に接続した 、等価的に 1つのリアタトルを構成する 2分割した 2つの主リアタトルの直列接続体と、 一方の極を前記主リアタトルの他端に接続し、他方の極を前記直流電源の低電圧端 子に直接に接続した主スィッチと、主スィッチの両極間に接続した、出力ダイオードと 出力平滑コンデンサとの直列接続体と、主スィッチの両極間を直接に接続するコン デンサ、コンデンサの高電位側と 2つの主リアタトルの直列接続体の接続点との間を 直接に接続する補助スィッチとを備える構成とする。この形態によれば、スナバダイォ ードを削除することができる。
[0028] また、本発明のチヨツバ回路の他の一形態は、補助スィッチのゲート制御によって、 主スィッチをハードスイッチングとソフトスイッチングを切り替えるものである。
[0029] 本発明のチヨツバ回路の他の一形態は、一端を直流電源の一方の端子に接続した 、等価的に 1つのリアタトルを構成する 2分割した 2つの主リアタトルの直列接続体と、 一方の極を前記主リアタトルの直列接続体の他端に接続し、他方の極を前記直流電 源の低電圧端子に直接に接続した主スィッチと、主スィッチの両極間に、出力ダイォ ードと出力平滑コンデンサとの直列接続体と、主スィッチの両極間に接続したスナバ コンデンサと、スナバコンデンサの高電位との接続点と、 2つの主リアタトルの直列接 続体の接続点との間を直接に接続する補助スィッチとを備える構成とする。この形態 によれば、スナバダイオードを削除することができる。
[0030] 本発明のチヨッパ回路の形態では、主リアタトルは、直流電源の高電位側又は低電 位側に設けることができる。
[0031] また、本発明のチヨツバ回路の昇降圧型の形態では、一方の主スィッチの一方の極 を直流電源の高電位側端子に接続し、他方の主スィッチの一方の極を直流電源の 低電位側端子に接続し、両主スィッチの他方の極を接続してなる 2つの主スィッチの 直列接続体と、各主スィッチの両極間に直流電源の高電位力も低電位に向力つて順 方向に接続するスナバダイオードとスナバコンデンサの 2つの直列接続体と、一端を 前記 2つの主スィッチの接続点に接続し、他端を直流電源の端子に接続した、等価 的に 1つのリアタトルを構成する 2分割した 2つの主リアタトルの直列接続体と、スナバ ダイオードとスナバコンデンサとの 2つの接続点と、 2つの主リアタトルの直列接続体 の接続点との間をそれぞれに接続した 2つの補助スィッチとを備える。
[0032] また、本発明のチヨッパ回路の他の形態では、主スィッチの両極間にスナバダイォ 一ドとスナパコンデンサの直列接続体を接続し、主スィッチの一方の極を 2つの主リ ァクトルの直列接続体もしくは等価的に 2つのインダクタンスを直列接続した 1つの主 リアタトルの一端およびダイオードの一方の極に接続し、主スィッチの他方の極を直 流電源の一方の電圧端子に直接接続し、前記出力ダイオードの他方の極に負荷が 接続された構成であって、前記スナバダイオードをスナバコンデンサとの接続点と前 記主リアタトルの直列接続体の接続点もしくは 2つのインダクタンスの接続点との間に 接続した補助スィッチとを備え、主スィッチのターンオン前に、補助スィッチを主リアク トルによりソフトスィッチングでターンオンさせ、蓄積電荷を消してソフトスイッチングで 前記ダイオードの逆阻止特性を回復させた後の前記スナバコンデンサと主リアタトル の共振動作により主スィッチをソフトスイッチングでターンオンし、主スィッチは前記ス ナパコンデンサによりソフトスイッチングでターンオフさせ、補助スィッチは零電流でソ フトスィッチングでターンオフさせる構成とする。
発明の効果 [0033] 以上説明したように、本発明によれば、補助スィッチをオンさせることによって、スナ バコンデンサの電圧を零電圧として主スィッチのターンオン時の電圧を零電圧とし、 また、この零電圧となる時点で、補助スィッチをオンさせることで、補助スィッチを介し てスナバコンデンサと主リアタトルとの回生共振を生成させ、この回生共振による電流 を主スィッチの主電流を打ち消す方向に通流させることで、主スィッチを零電圧、零 電流の状態でターンオンさせることができる。
[0034] これによつて、従来のチヨッパ回路のようにリアタトルを用いることなぐ主スィッチの ターンオン時において零電圧で、かつ零電流でソフトスィッチングを行って、熱損失 を無くしてチヨツバ回路の変換効率を向上させることができ、また、過電流過電圧を防 ぐことができる。
[0035] また、本発明によれば、補助スィッチにより、出力ダイオードに蓄積された電荷を直 流電源に回生させることで、出力ダイオードの逆回復による過電圧を防ぐことができる 図面の簡単な説明
[0036] [図 1]本発明のチヨツバ回路の昇圧型の構成例を説明するための回路図である。
[図 2]本発明のチヨツバ回路における出力ダイオード Dの蓄積電荷の消滅を説明する
5
ための図である。
[図 3]本発明のチヨツバ回路におけるソフトスイッチング動作を説明するための図であ る。
[図 4]本発明のチヨッパ回路の主スィッチの電圧電流を示す図である。
[図 5]本発明のチヨツバ回路の補助スィッチの電圧電流を示す図である。
[図 6]本発明のチヨツバ回路の出力ダイオードの電圧電流を示す図である。
[図 7]本発明のチヨツバ回路の動作例を説明するための動作図である。
[図 8]本発明のチヨツバ回路の動作例を説明するための各部の基本動作波形図であ る。
[図 9]本発明の第 2の形態例を説明するための回路図である。
[図 10]本発明の第 3の形態例を説明するための回路図である。
[図 11]本発明の第 4の形態例を説明するための回路図である。 圆 12]本発明の第 5の形態例を説明するための回路図である。
圆 13]本発明の結合リアタトルを用いた形態での主スィッチの電圧電流特性を示す 図である。
圆 14]本発明の結合リアタトルを用いた形態での補助スィッチの電圧電流特性を示 す図である。
圆 15]本発明の結合リアタトルを用いた形態での出力ダイオードの電圧電流特性を 示す図である。
圆 16]本発明の結合リアタトルを用いた形態での全体波形を示す図である。
圆 17]本発明の第 6の形態例を説明するための回路図である。
圆 18]本発明の第 6の形態例のハードスイッチング動作波形を示す図である。
圆 19]本発明の第 6の形態例のソフトスイッチング動作波形を示す図である。
圆 20]本発明のチヨツバ回路を各タイプに適用した回路例を示す図である。
圆 21]本発明のチヨツバ回路を昇降圧型に適用した回路例を示す図である。
圆 22]本発明の第 7の形態例を説明するための回路図である。
圆 23]本発明の第 8の形態例を説明するための回路図である。
圆 24]本発明の第 9の形態例を説明するための回路図である。
圆 25]本発明の第 10の形態例を説明するための回路図である。
圆 26]本発明の第 11の形態例を説明するための回路図である。
圆 27]本発明の第 12の形態例を説明するための回路図である。
圆 28]本発明の第 13の形態例を説明するための回路図である。
圆 29]本発明の第 14の形態例を説明するための回路図である。
圆 30]従来の Cブリッジチヨツバ回路を説明するための回路図である。
[図 31]QRASチヨツバ回路を説明するための回路図である。
[図 32]QRASチヨッパ回路の主スィッチの電圧電流を説明するための回路図である。
[図 33]QRASチヨッパ回路の出力ダイオードの電圧を説明するための回路図である。 符号の説明
E…直流電源
1
S…主スィッチ s…補助スィッチ
2
c…スナノ コンデンサ
1
D…スナバダイオード
1
L, L…主リアク卜ル
1 2
D…出力ダイオード
5
C…平滑出力コンデンサ
101· '·電圧 (主スィッチ S )
1
102· '·電圧 (補助スィッチ S )
2
103· '·電圧(出力ダイオード D )
5
201· '·電流(主スィッチ S )
1
202· '·電流 (補助スィッチ S )
2
203· '·電流(出力ダイオード D )
5
111· '·電圧 (主スィッチ S )
1
211· '·電流(主スィッチ S )
1
213· '·電圧(出力ダイオード D )
5
発明を実施するための最良の形態
[0038] 以下、本発明の実施の形態について、図を参照しながら詳細に説明する。
[0039] 以下本発明のチヨツバ回路の昇圧型の構成例について、昇圧型チヨツバ回路を例 として図 1〜図 20を用いて説明する。
[0040] 図 1は本発明のスナバ補助 ZVZCT (Snubber- Assisted Zero Voltage and Zero Cur rent Transition chopper)チヨッパ回路の昇圧型の構成例を説明するための回路図で ある。図 1の構成例では、主スィッチ Sと補助スィッチ Sと、主リアタトル L ,Lと、スナバ
1 2 1 2 ダイオード 及びスナバコンデンサ Cと、出力ダイオード D及び出力平滑コンデンサ
1 1 3
Cとを備える。
0
[0041] 主リアタトル L , Lは 2分割したリアタトルを直列接続したものである力 等価的に 1
1 2
つのリアタトルを構成し、一端を直流電源 Eの高電位側端子に接続している。主スィ
1
ツチ Sは、一方の極を主リアタトル L , Lの直列接続体の他端に接続し、他方の極を
1 1 2
直流電源 Eの低電圧端子に直接に接続する。主スィッチ Sの両極間は、出力ダイォ ード Dと出力平滑コンデンサ Cとの直列接続体を並列に接続し、出力平滑コンデン
5 0
サ Cには負荷が並列に接続される。また、主スィッチ Sの両極間にはスナバダイォー
0 1
ド Dとスナバコンデンサ Cの直列接続体を接続している。補助スィッチ Sは、スナバダ
1 1 2 ィオード Dとスナバコンデンサ Cとの接続点と、 2つの主リアタトル Lとしの直列接続
1 1 1 2
体の接続点との間に接続する。
[0042] なお、このチヨッパ回路の構成において、前記した QRASチヨッパ回路とは、ダイォ ード D ,Dを削除した点、補助スィッチ Sは逆阻止型の IGBTである点、リアタトル SLを
3 4 2 1 削除した点、主スィッチのターンオン時において零電流のみではなぐ零電流でかつ 零電圧によりスイッチングを行う点で相違している。補助スィッチ Sとして逆阻止型の I
2
GBTを用いることで、従来必要であった回生ダイオード Dを削除することができる。
3
[0043] また、このチヨッパ回路の補助スィッチ Sは、ターンオフ動作が零電流スイッチングと
2
なるため、スイッチング手段 Sと補助スィッチ Sの共通スナバ保護機能を持たせるた
1 2
めのダイオード Dを削除することができる。
4
[0044] 本発明のチヨッパ回路は、補助スィッチを介して主リアタトルの一部に出力ダイォー ドの蓄積電荷を通流させることで消滅させ、これにより逆回復電流を抑制することが できる。
[0045] 図 2は、図 1のチヨツバ回路における出力ダイオード Dの蓄積電荷の消滅を説明す
5
るための図である。図 2において、補助スィッチ Sのターンオン時において、出力ダイ
2
オード Dに蓄積していた電荷による電流 Iは、主リアタトル Lを主リアタトルの主電流
5 R 2
の方向とは逆方向に流れる。したがって、電流 Iは主リアタトル Lの通電電流を減少
R 2
させることになる。そのため、この主リアタトル Lで発生する有効電力分 A PR=I 2-R
2 R 2 は、主リアタトル Lの抵抗分 Rによる損失分を減少させるものとして働く。なお、主スィ
2 2
ツチ Sをオンとする前に補助スィッチ Sをオンとすることで、出力ダイオード Dに蓄積さ
1 2 5 れた電荷を入力側に回生する。
[0046] したがって、本発明のチヨツバ回路によれば、出力ダイオード Dの蓄積電荷が消滅
5
する際の電流 Iは主リアタトルの損失を減らす方向となり、チヨツバ回路の効率を高め
R
る方向に作用する。
[0047] 従来の QRASチヨッパ回路では、リアタトル Lが大きいため、出力ダイオード Dの蓄 積電荷を消滅することができず、出力ダイオードのターンオフ時に、蓄積電荷による 大きな逆回復サージ電圧が発生する。一方、本発明のチヨツバ回路では、効率を高 める方向に作用する蓄積電荷消滅電流が流れるため逆回復電流抑制回路とし、出 力ダイオードによる大きな逆回復サージ電圧は発生しない。
[0048] また、本発明のチヨツバ回路は、回生共振現象を利用することで零電圧零電流の状 態を作り出してターンオンさせることでスイッチング損失を低減することができる。
[0049] 図 3は、図 1のチヨッパ回路におけるソフトスイッチング動作を説明するための図であ る。従来の QRASチヨッパ回路では、主スィッチ Sのターンオン時に電流がゆっくり立
1
ち上がるように、リアタトル SLを用いている。これに対して、本発明のチヨッパ回路は、
1
補助スィッチ Sによって回生ノ スを形成することによって、このリアタトル SLを削除し
2 1 ている。この回生パスは、スナバコンデンサ Cの回生共振現象を利用するものであり
1
、これによつて主スィッチ Sに零電圧零電流の状態を作り出す。
1
[0050] これによつて、従来ターンオン時に発生していた電源電圧を大幅に越えるスナバコ ンデンサのクランプ電圧を電源電圧までの低 、電圧に抑制することができる。そのた め、スナバコンデンサの容量を主スィッチのターンオン時間に合わせて小さく選択す ることができ、スナバ回生電力自体を小さくすることができ、チヨツバ回路全体の効率 を向上させることができる。
[0051] 本発明のチヨッパ回路では、主スィッチ Sのターンオフをソフトスイッチング化するた
1
めにスナバコンデンサ Cを設けている力 このスナバコンデンサ Cに蓄積されたエネ
1 1
ルギーを主スィッチ Sのターンオン時に、補助スィッチ S及び入力側を通って、主スィ
1 2
ツチ Sに接続される逆並列ダイオードに流れることで主スィッチ Sに流れ込む電流を
1 1
零とし、さらにスナバコンデンサ Cの放電によって主スィッチ Sの両端にカゝかる電圧を
1 1
零とする。
[0052] また、本発明のチヨッパ回路では、回生電流 Isは、主リアタトル Lの通電電流を減少
2
させる方向で回生するため、回生作用時に発生する有効電力分 A Ps=Is2'Rは、主
2 リアタトル Lの損失を減らす方向になり、チヨツバ回路の効率を高める方向に作用す
2
る。なお、 Rは主リアタトル Lの内部抵抗である。
2 2
[0053] 上記したように、本発明のチヨツバ回路は、出力ダイオードの蓄積電荷を消滅させる 逆回復電流抑制回路として作用する他、回生共振を用いて回生リアタトルを不要とす るソフトスイッチングとして作用する。
[0054] また、本発明のチヨツバ回路は、主リアタトルを分割した構成とすることで、回生リア タトルを不要とする他、出力ダイオードやスナバコンデンサの蓄積されるエネルギー を直接に電源側に回生するのではなぐ主リアタトルの主電流を打ち消す方向で流 すことで、主リアタトルでの電力損失を低減させることができる。
[0055] 本発明のチヨッパ回路は、スナバコンデンサのエネルギーを、補助的な回生コンデ ンサを用いることなぐ直接に主リアタトル移行させることができる。例えば、配線のリ ァクトルの影響でスナバコンデンサの充電電圧が出力電圧よりも高く充電された場合 でも、入力電源方向へは主リアタトル Lに回生エネルギーを移行し、また、出力方向
2
への回生エネルギーは、主リアタトル Lにそれぞれ移行させて回生させることができる
1
。そのため、主リアタトルと別にリアタトルを用いて主回路以外の補助回路ノ スを介し て回生する方式よりも高い効率とすることができる。
[0056] なお、図 4は主スィッチ Sの電圧電流を示し、図 5は補助スィッチ Sの電圧電流を示
1 2
し、図 6は出力ダイオード Dの電圧を示している。
5
[0057] 図 4に示す主スィッチ Sの電圧電流特性では、電圧 101は 49.939secで電圧降下を
1
開始した後 49.941secで零電圧となる。一方、電流 201は 49.941secまでは零電流で あるため主スィッチ Sのターンオン時には零電圧零電流が実現される。
1
[0058] 図 5に示す補助スィッチ Sの電圧電流特性では、電圧 102は、主スィッチ Sがオンと
2 1 なる前の時点でオンとなり、電流 202は 49.940secを挟んで増加し減少する。なお、タ ーンオフ時(図 5中の 49.960sec付近)において、電圧 102にピークが見られるが、こ のピークはシミュレーション上発生している力 実測では発生しないことが確認されて おり、問題ない。
[0059] 図 6に示す出力ダイオード Dの電圧特性では、電圧 103は、従来、主スィッチ Sの
5 1 ターンオン時に発生して 、た逆回復電流によるピーク電圧が解消されて 、る。
[0060] 次に、図 7,図 8を用いて本発明のチヨッパ回路の動作例について説明する。図 7は 動作図であり、図 8は各部の基本動作波形図である。
[0061] モード 1 (図 7の MODE1)では、 -t2の時点で補助スィッチ Sがオンし、主スィッチ S がオフして、出力ダイオード Dのキャリア消滅のモードが始まる。この瞬間、補助スィ
5
ツチ Sは電流零からのオンとなり、ソフトスイッチングでターンオンする。この間、スナ
2
ノ《コンデンサ Cの電圧は放電せずほぼ一定電圧を維持する。補助スィッチ Sの電流
1 2 が増加し、ほぼ負荷電流に達した時点から出力ダイオード Dのキャリアが消滅し、逆
5
回復してオフ状態となることで、このモードは終了する。
[0062] モード 2 (図 7の MODE2)では、 -tlの時点において、出力ダイオード Dがオフ、スナ
5
ノ《コンデンサ Cの電圧 V は正弦波状に共振を起こし正力 零へと向かう。
1 cl
[0063] モード 3 (図 7の MODE3)では、スナバコンデンサ Cに蓄積していた電荷を全て放電
1
し、電圧 V が零電圧となる時点 toにおいて、主スィッチ Sがオンとなり、共振回生電 cl 1
流は、主スィッチ Sの主電流を打ち消す方向に通流する。このとき、主スィッチ Sは電
1 1 流零からのターンオンとなる。主リアクトル Lへモード 1及びモード 2の期間中に蓄え
2
られた回生エネルギーは、負の電流源として主スィッチ Sの電流を相殺しつつ、補助
1
スィッチ Sを介して入力電源へと回生され、ほぼ直線状に減少して零となる。
2
[0064] モード 4 (図 7の MODE4)では、 tlにおいて、主リアクトノレ Lの回生電流が減少して
2
零となり、ダイオード がオフ、主リアタトル L及び Lの電流は、主スィッチ Sを介して
1 1 2 1 再び直線状に増加に向かう。
[0065] モード 5 (図 7の MODE5)では、 t2において、主スィッチ S、補助スィッチ Sが同時に
1 2 オフされる。このとき、主スィッチ Sはスナバコンデンサ Cによる零電圧からのターンォ
1 1
フとなり、補助スィッチ Sは零電流ターンオフとなり、共にソフトスイッチングでオフする
2
。但し、本発明は同時オフに限定されない。補助スィッチ Sは変電流となった時点で
2
主スィッチ Sより先に、ターンオフしてもよい。
1
[0066] モード 6 (図 7の MODE6)では、 t3において、出力ダイオード Dがオンし、主リアクト
5
ル L ,Lに蓄えられたエネルギーが負荷へ供給される。 t4で補助スィッチ Sが再びォ
1 2 2 ンし、モード 1より次サイクルが開始される。
[0067] 以上のようにして、主スィッチ ·補助スィッチともにソフトスィッチングで動作し、出力 ダイオード の逆回復電流による過電流、過電圧が発生しない。
5
[0068] 以下、本発明のチヨッパ回路の他の形態について、図 9〜図 19を用いて説明する。
[0069] 図 9は、第 2の形態例を説明するための回路図である。なお、ここでは、図 1に示す 形態を第 1の形態例とする。第 2の形態例は、補助スィッチ Sとして逆阻止 IGBTに代
2
えて、通常のが逆並列ダイオード付き IGBTとダイオード Dとの直列接続を用いた例
3
であり、第 1の形態例と同様に動作する。
[0070] 図 10〜図 12は、第 3〜第 5の形態例を説明するための回路図である。第 4〜第 6の 形態例は、主リアタトル L ,Lを相互インダクタンスを持つ結合リアタトルで一体に構成
1 2
する例であり、第 1の形態例とほぼ同様に動作する。
[0071] 結合インダクタンスによる形態では、補助スィッチ Sをオンすると、相互インダクタン
2
スの作用で、主リアタトル Lへの出力ダイオード Dのキャリア消滅に必要な電荷が流
1 5
れ、その分、電流の減少が早まるので、補助スィッチ Sと主スィッチ S間の時間差を少
2 1
なくすることができ、結合がない場合と比較して、共振期間を短縮することができる。
[0072] なお、図 13は結合リアタトルを用いた形態での主スィッチ Sの電圧電流特性を示し
1
、図 14は結合リアタトルを用いた形態での補助スィッチ Sの電圧電流特性を示し、図
2
15は結合リアタトルを用いた形態での出力ダイオード Dの電圧電流特性を示し、また
5
、図 16は結合リァクトルを用 、た形態での全体波形を示して 、る。
[0073] 図 13に示す主スィッチ Sの電圧電流特性において、主スィッチ Sのターンオン時で
1 1
は、電圧 101がほぼ零電圧となった後に電流 201が発生し、また、ターンオフ時では 、電流 102がほぼ零電流となる状態で電圧 202が立ち上がつている。
[0074] 図 14に示す補助スィッチ Sの電圧電流特性では、補助スィッチ Sは、主スィッチ S
2 2 1 よりわずかに早いタイミングの少ない時間差で動作している。図 15に示す出力ダイォ ード Dの電圧電流特性では、補助スィッチ Sのオンによって蓄積電荷が主リアタトル
5 2
側に流れ、電圧 103、電流 203の特性を示す。なお、図 15は、図 13〜図 14を合わ せて示している。
[0075] 図 17は、第 6の形態例を説明するための回路図である。前記した各形態では、す ベての負荷条件に亘つてソフトスイッチングで動作するとは限らず、モードによっては 一部ハードスイッチングとなる。この場合には、補助回路に電流が流れるため、従来 のハードスイッチングよりも効率が低下する場合があり得る。
[0076] そこで、ソフトスイッチングにためのネ ΐ助回路をゲートブロックして、ある期間のみ、 零電圧零電流動作を一時的に停止させ、主スィッチのみによるハードスイッチングを 併用する制御としてもよい。
[0077] 図 17に示す回路例は、このハードスイッチングとソフトスイッチングとを併用する場 合の例であり、スナバコンデンサ Cに出力クランプダイオード Dを追加する。この場合
1 6
には、図 18に示すハードスイッチング動作波形と、図 19に示すソフトスイッチング動 作波形との間で変化する。なお、図 18のハードスイッチングは、補助スィッチ Sを
2 一 時停止させることで行い、図 19のソフトスイッチングは補助スィッチ Sを動作させること
2
で行う。
[0078] なお、図 18 (a)は、補助スィッチ Sを停止させた場合における主スィッチ Sの電圧 1
2 1
01と電流 102を示し、図 18 (b)は、補助スィッチ Sを停止させた場合における補助ス
2
イッチ Sの電圧 201と電流 202を示している。また、図 19 (a)は、補助スィッチ Sを停
2 2 止させた場合における主スィッチ Sの電圧 101と電流 102を示し、図 18 (b)は、補助
1
スィッチ Sを動作させた場合における補助スィッチ Sの電圧 201と電流 202を示して
2 2
いる。
[0079] 本発明のチヨツバ回路を前記した昇圧型以外に、降圧型、昇圧型、昇降圧型、 CU K型、 SEPIC型、 ZETA型、昇降圧型に適用することができる。
[0080] 図 20は、本発明のチヨツバ回路を降圧型(図 20 (a) )、昇圧型(図 20 (b) )、昇降圧 型(図 20 (c) )、 CUK型(図 20 (d) )、 SEPIC型(図 20 (e) )、 ZETA型(図 20 (f) )に 適用した回路例を示し、図 21は昇降圧型に適用した回路例を示している。
[0081] 図 21に示す昇降圧型の回路例は、図 20 (a)に示す降圧型の回路と、図 20 (b)に 示す昇圧型の回路を一体化したものと等価であり、一方の主スィッチ Sの一方の極を
1
直流電源 Eの高電位側端子に接続し、他方の主スィッチ S の一方の極を直流電源
1 1
Eの低電位側端子に接続し、両主スィッチ S ,S 'の他方の極を接続してなる 2つの主
1 1 1
スィッチ s , s の直列接続体と、各主スィッチ S , S 'の両極間に接続した、スナバダ
1 1 1 1
ィオード D,D 'とスナバコンデンサ C,C 'の 2つの直列接続体と、一端を 2つの主スィ
1 1 1 1
ツチ s , s の接続点に接続し、他端を直流電源の端子に接続した、等価的に 1つの
1 1
リアタトルを構成する 2分割した 2つの主リアタトル L ,Lの直列接続体と、スナバダイォ
1 2
ード Dとスナバコンデンサ Cと接続点と主リアタトル L ,Lの直列接続体の接続点との
1 1 1 2
間を接続した補助スィッチ Sと、スナバダイオード D 'とスナバコンデンサ C と接続点 と主リアタトル L ,Lの直列接続体の接続点との間を接続した補助スィッチ S とを備え
1 2 2 る。
[0082] 上記したいずれの回路構成においても、第 1の形態と同様に、等価的に 1つのリア タトルを構成する 2分割した 2つの主リアタトルと、一方の極を前記主リアタトルの直列 接続体の一端に接続し、他方の極を直流電源の一方の電圧端子に直接に接続した 主スィッチと、主スィッチの両極間に接続した、スナバダイオードとスナバコンデンサ の直列接続体と、スナバダイオードとスナバコンデンサとの接続点と、 2つの主リアタト ルの直列接続体の接続点との間に接続した補助スィッチとを備えた構成の点では共 通している。
[0083] また、本発明は以下に示す形態 (第 7の形態〜第 14の形態)とすることもできる。
[0084] 第 7の形態は、図 22に示すように、スナバコンデンサとスナバダイオードの直列接 続体を設けずに、主スィッチ Sの並列に非常に小さなスナバコンデンサ Cを接続し、
1 1 また、回生リアタトル Lを別置きで備える構成であり、効率を向上させることができる。 また、スナバコンデンサ Cの容量は非常に小さくすることができるため、電圧が残留
1
するモードであっても、動作させることができる。
[0085] 第 8、 9の形態は、図 23, 24に示すように、前記したスナバコンデンサを削除し、代 わりに主スィッチ Sの浮遊容量を用いてソフトスィッチングを行う構成である。主スイツ
1
チ Sの半導体デバイスの浮遊容量を利用することで、 2つのスィッチ素子と主リアタト
1
ルの 3要素だけでソフトスイッチングを行うことができ、効率を高めることができる。なお 、図 24に示す第 9の形態は、回生リアタトル Lを別置きした構成例である。
[0086] 第 10の形態は、図 25に示すように、従来のスナバダイオードを削除し、スナバコン デンサ Cと補助スィッチ Sのみの回路とするものであり、部品点数を削減し、効率を
1 2
高めることができる。また、スナバコンデンサ Cは、充電電圧が残留している状態から
1
主スィッチ Sがターンオンしても、主スィッチ Sの半導体デバイスが破損しない程度の
1 1
非常にちいさな容量とすることができる。
[0087] 第 11の形態は、前記第 10の形態と同様に、図 26に示すように、従来のスナバダイ オードを削除し、スナバコンデンサ Cと補助スィッチ Sのみの回路とするものであり、
1 2
部品点数を削減し、効率を高めることができる。 [0088] この第 11の形態では、主リアタトル Lに電流が残留して!/、る状態で補助スィッチ S
2 2 をオフした時、発生する過電圧を防止するために、ダイオード を追加している。
4
[0089] なお、第 10の形態では、補助スィッチ Sの最小オン時間を設けることによって、ダイ
2
オード Dを削除することができる。
4
[0090] 第 12の形態は、図 27に示すように、ソフトスイッチングとハードスイッチングを切り替 えるゲート制御を行う形態であり、スナバコンデンサ Cに電圧が残留するモード (昇圧
1
率が 2以下)では、補助スィッチ Sをゲートブロックして、主スィッチ Sによるハードスィ
2 1
ツチングを行 、、効率が高くなる領域 (昇圧率が 2以上)ではソフトスイッチングを行う
[0091] なお、図 27において、 301はハードスイッチングの場合を示し、 302は本発明にお V、て、ハードスイッチングとソフトスィッチングを併用した場合を示して 、る。
[0092] このソフトスイッチングとハードスイッチングは、前記した各形態に適用することがで きる。
[0093] 第 13の形態は、図 28に示すように、前記した第 7の形態〜第 12の形態の主リアタト ル L ,Lを直流電源の低電位側に配置する形態である。また、第 14の形態は、図 29
1 2
に示すように、前記した第 1の形態〜第 16の形態のスナバダイオード Dを備える構
1
成において、主リアタトル L ,Lを直流電源の低電位側に配置する形態である。
1 2
[0094] なお、本発明のチヨッパ回路では、主スィッチ Sの高電位側に配線部や低電位側の
1
配線部に微小の配線インダクタンスが生じ、これらの影響によって、スナバコンデンサ が出力電圧より若干上昇したり、高周波振動が生じる場合があるが、本発明はこのよ うな寄生回生現象を伴っても有効に動作するものである。
[0095] なお、以下の表は、昇圧型の場合を例とした場合の効率を比較したものである。
[0096] [表 1]
SAZZ
比較条件: C一 Bridge QRAS
QRAS SPICE
25k[Hz] 試験結果 試験結果 SPICE 8k[W] 8k[W] (実測) (実測) (C仁 0·05[〃 F]時) 入力電力 W 7744 8370 8345 8038 出力電力 W 7440 81 60 81 60 7912 効率% 95.9 97.5 97.8 98.4 全損失 W 304 21 0 1 85 1 26 [0097] また、本発明のチヨツバ回路では、補助スィッチを主スィッチよりわずかに早くオンさ せることでソフトスィッチングを行うが、主スィッチと補助スィッチを同時にもしくは補助 スィッチを主スィッチよりも後に才ンさせることでターン才ンのソフトスイッチングを行わ ず、回生動作のみを行うように動作させることもできる。
[0098] また、本発明のチヨツバ回路は、主スィッチと補助スィッチを直並列接続して構成す る他に、電源システム全体を多重化構成としてもよい。
[0099] また、本発明のチヨツバ回路の主リアタトルは分割構造としても、一体構造としてもよ い。
[0100] また、本発明のチヨッパ回路において、主スィッチの逆並列ダイオードは、零電圧零 電流のソフトスィッチングを行わな 、場合には、削除してもよ 、。
[0101] また、本発明のチヨツバ回路において、入力電源に回生する電流リプル吸収能力 がある場合には、入力平滑コンデンサを削除してもよい。
[0102] なお、本発明は前記各実施の形態に限定されるものではない。本発明の趣旨に基 づいて種々変形することが可能であり、これらを本発明の範囲力 排除するものでは ない。
[0103] なお、本発明のチヨッパ回路において、補助スィッチは逆阻止 IGBTのみに限定さ れるものではない。ダイオードと逆耐圧のない IGBTの直列回路もしくは、ダイオード と逆並列ダイオード付き IGBTの直列回路であってもよい。
産業上の利用可能性
[0104] 本発明のチヨツバ回路は、燃料電池自動車に限らず、半導体電力変換装置を用い る分野に適用することができる。

Claims

請求の範囲
[1] 等価的に 1つのリアタトルを構成する 2分割した 2つの主リアタトルと、
一方の極を前記主リアタトルの直列接続体の一端に接続し、他方の極を直流電源 の一方の電圧端子に直接に接続した主スィッチと、
前記主スィッチの両極間に接続した、スナバダイオードとスナバコンデンサの直列 接続体と、
前記スナバダイオードとスナバコンデンサとの接続点と、前記 2つの主リアタトルの 直列接続体の接続点との間に接続した補助スィッチとを備え、
当該補助スィッチは、スナバコンデンサの電圧を零電圧とすることにより主スィッチ のターオン時の電圧を零電圧とすることを特徴とする、チヨツバ回路。
[2] 前記チヨッパ回路は、降圧型、昇圧型、昇降圧型、 CUK型、 SEPIC型、 ZETA型 の何れかであることを特徴とする請求項 1に記載のチヨツバ回路。
[3] 一端を直流電源の高電位側端子に接続した、等価的に 1つのリアタトルを構成する 2分割した 2つの主リアタトルの直列接続体と、
一方の極を前記主リアタトルの直列接続体の他端に接続し、他方の極を前記直流 電源の低電圧端子に直接に接続した主スィッチと、
前記主スィッチの両極間に接続した、出力ダイオードと出力平滑コンデンサとの直 列接続体と、
前記主スィッチの両極間に接続した、スナバダイオードとスナバコンデンサの直列 接続体と、
前記スナバダイオードとスナバコンデンサとの接続点と、前記 2つの主リアタトルの 直列接続体の接続点との間に接続した補助スィッチとを備え、
当該補助スィッチは、スナバコンデンサの電圧を零電圧とすることにより主スィッチ のターオン時の電圧を零電圧とすることを特徴とする、チヨツバ回路。
[4] 前記補助スィッチは、ターンオン時に、出力ダイオードに蓄積される電荷を、前記 2 つの主リアタトルの内の直流電源側の主リアタトルに、当該主リアタトルの主電流と逆 方向に通流して、前記直流電源に回生することを特徴とする、請求項 3に記載のチヨ ッパ回路。
[5] 前記主スィッチは、ターンオン時に、当該スナバコンデンサと直流電源側に接続し た主リアタトルとの回生共振によって、スナバコンデンサに蓄積された電荷を、前記 2 つの主リアタトルの内の直流電源側の主リアタトルに、当該主リアタトルの主電流と逆 方向に通流して、前記直流電源に回生することを特徴とする、請求項 3に記載のチヨ ッパ回路。
[6] 前記補助スィッチをオン動作させた後に主スィッチをオン動作させることによって、 主スィッチを零電圧かつ零電流の状態力もオン動作させることを特徴とする、請求項 1乃至 5のいずれかに記載のチヨッパ回路。
[7] 前記主リアタトルは、相互インダクタンスを持つ結合リアタトルにより一体に構成する ことを特徴とする、請求項 1乃至 6のいずれかに記載のチヨッパ回路。
[8] 前記スナバコンデンサと出力コンデンサとの間に出力クランプダイオードを備えるこ とを特徴とする、請求項 3に記載のチヨツバ回路。
[9] 一端を直流電源の一方の端子に接続した主リアタトルと、
一方の極を前記主リアタトルの他端に接続し、他方の極を前記直流電源の低電圧 端子に直接に接続した主スィッチと、
前記主スィッチの両極間に接続した、出力ダイオードと出力平滑コンデンサとの直 列接続体と、
前記主スィッチの両極間に接続したコンデンサ、
前記コンデンサの高電位側と直流電源の高電位側端子との間に接続した回生リア タトルと補助スィッチとの直列接続体を備えることを特徴とするチヨツバ回路。
[10] 一端を直流電源の一方の端子に接続した、等価的に 1つのリアタトルを構成する 2 分割した 2つの主リアタトルの直列接続体と、
一方の極を前記主リアタトルの直列接続体の他端に接続し、他方の極を前記直流 電源の低電圧端子に直接に接続した主スィッチと、
前記主スィッチの両極間に接続した、出力ダイオードと出力平滑コンデンサとの直 列接続体と、
前記主スィッチと前記主リアタトルの直列接続体の他端との接続点と、前記 2つの 主リアタトルの直列接続体の接続点との間に直接に接続した補助スィッチとを備える ことを特徴とするチヨツバ回路。
[11] 一端を直流電源の一方の端子に接続した主リアタトルと、
一方の極を前記主リアタトルの他端に接続し、他方の極を前記直流電源の低電圧 端子に直接に接続した主スィッチと、
前記主スィッチの両極間に接続した、出力ダイオードと出力平滑コンデンサとの直 列接続体と、
前記主スィッチと前記主リアタトルの直列接続体の他端との接続点と、直流電源の 高電位側端子との間に接続した回生リアタトルと補助スィッチとの直列接続体を備え ることを特徴とするチヨツバ回路。
[12] 一端を直流電源の一方の端子に接続した、等価的に 1つのリアタトルを構成する 2 分割した 2つの主リアタトルの直列接続体と、
一方の極を前記主リアタトルの他端に接続し、他方の極を前記直流電源の低電圧 端子に直接に接続した主スィッチと、
前記主スィッチの両極間に接続した、出力ダイオードと出力平滑コンデンサとの直 列接続体と、
前記主スィッチの両極間を直接に接続するコンデンサと、
前記コンデンサの高電位側と前記 2つの主リアタトルの直列接続体の接続点との間 に接続した補助スィッチとを備えることを特徴とするチヨツバ回路。
[13] 前記補助スィッチのゲート制御によって、前記主スィッチをノヽードスイッチングとソフ トスイッチングを切り替えることを特徴とする請求項 9乃至 12の何れかに記載のチヨッ パ回路。
[14] 一端を直流電源の一方の端子に接続した、等価的に 1つのリアタトルを構成する 2 分割した 2つの主リアタトルの直列接続体と、
一方の極を前記主リアタトルの直列接続体の他端に接続し、他方の極を前記直流 電源の低電圧端子に直接に接続した主スィッチと、
前記主スィッチの両極間に接続した、出力ダイオードと出力平滑コンデンサとの直 列接続体と、
前記主スィッチの両極間スナバコンデンサと、 前記スナバコンデンサの高電位との接続点と、前記 2つの主リアタトルの直列接続 体の接続点との間を直接に接続する補助スィッチとを備えることを特徴とするチヨツバ 回路。
[15] 前記主リアタトルは、直流電源の高電位側又は低電位側に設けることを特徴とする 請求項 9乃至 14の何れかに記載のチヨッパ回路。
[16] 一端を直流電源の低電位側端子に接続した、等価的に 1つのリアタトルを構成する 2分割した 2つの主リアタトルの直列接続体と、
一方の極を前記主リアタトルの直列接続体の他端に直接に接続し、他方の極を前 記直流電源の高電圧端子に直接に接続した主スィッチと、
前記主スィッチの両極間に接続した、出力ダイオードと出力平滑コンデンサとの直 列接続体と、
前記主スィッチの両極間に接続した、スナバダイオードとスナバコンデンサの直列 接続体と、
前記スナバダイオードとスナバコンデンサとの接続点と、前記 2つの主リアタトルの 直列接続体の接続点との間を直接に接続する補助スィッチとを備えることを特徴とす る、チヨツバ回路。
[17] 一方の主スィッチの一方の極を直流電源の高電位側端子に接続し、他方の主スィ ツチの一方の極を直流電源の低電位側端子に接続し、両主スィッチの他方の極を接 続してなる 2つの主スィッチの直列接続体と、
前記各主スィッチの両極間に、直流電源の高電位力 低電位に向かって順方向に 接続するスナバダイオードとスナバコンデンサの 2つの直列接続体と、
一端を前記 2つの主スィッチの接続点に接続し、他端を直流電源の端子に接続し た、等価的に 1つのリアタトルを構成する 2分割した 2つの主リアタトルの直列接続体と 前記スナバダイオードとスナバコンデンサとの 2つの接続点と、前記 2つの主リアタト ルの直列接続体の接続点との間をそれぞれに接続した 2つの補助スィッチとを備え ることを特徴とする、チヨツバ回路。
[18] 主スィッチの両極間にスナバダイオードとスナバコンデンサの直列接続体を接続し 、主スィッチの一方の極を 2つの主リアタトルの直列接続体もしくは等価的に 2つのィ ンダクタンスを直列接続した 1つの主リアタトルの一端およびダイオードの一方の極に 接続し、主スィッチの他方の極を直流電源の一方の電圧端子に直接接続し、前記出 力ダイオードの他方の極に負荷が接続された構成であって、
前記スナバダイオードをスナバコンデンサとの接続点と前記主リアタトルの直列接 続体の接続点もしくは 2つのインダクタンスの接続点との間に接続した補助スィッチと を備え、
主スィッチのターンオン前に、補助スィッチを主リアタトルによりソフトスイッチングで ターンオンさせ、蓄積電荷を消してソフトスィッチングで前記ダイオードの逆阻止特性 を回復させた後の前記スナバコンデンサと主リアタトルの共振動作により主スィッチを ソフトスイッチングでターンオンし、
主スィッチは前記スナバコンデンサによりソフトスイッチングでターン才フさせ、 補助スィッチは零電流でソフトスィッチングでターンオフさせることを特徴とするチヨ ッパ回路。
前記補助スィッチは、逆並列ダイオード付き IGBTとダイオードの直列接続で構成 することを特徴とする請求項 1に記載のチヨツバ回路。
PCT/JP2006/305150 2005-03-16 2006-03-15 チョッパ回路 WO2006098376A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007508188A JP5023338B2 (ja) 2005-03-16 2006-03-15 チョッパ回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005075269 2005-03-16
JP2005-075269 2005-03-16

Publications (1)

Publication Number Publication Date
WO2006098376A1 true WO2006098376A1 (ja) 2006-09-21

Family

ID=36991719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305150 WO2006098376A1 (ja) 2005-03-16 2006-03-15 チョッパ回路

Country Status (2)

Country Link
JP (1) JP5023338B2 (ja)
WO (1) WO2006098376A1 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099421A (ja) * 2006-10-11 2008-04-24 Honda Motor Co Ltd Dc−dcコンバータ
JP2008099423A (ja) * 2006-10-11 2008-04-24 Honda Motor Co Ltd Dc−dcコンバータ
JP2008125187A (ja) * 2006-11-09 2008-05-29 Nissan Motor Co Ltd Dc−dcコンバータ
WO2009084649A1 (ja) * 2007-12-28 2009-07-09 Toyota Jidosha Kabushiki Kaisha 燃料電池システム、及び燃料電池用昇圧コンバータ
JP2009165335A (ja) * 2007-12-28 2009-07-23 Ind Technol Res Inst H−ブリッジdc−dcコンバーターに応用する共振回路
WO2010140217A1 (ja) * 2009-06-02 2010-12-09 トヨタ自動車株式会社 電源システム
WO2010140255A1 (ja) * 2009-06-05 2010-12-09 トヨタ自動車株式会社 コンバータ制御装置
WO2010150338A1 (ja) * 2009-06-22 2010-12-29 トヨタ自動車株式会社 コンバータ制御装置
WO2011004492A1 (ja) * 2009-07-10 2011-01-13 トヨタ自動車株式会社 コンバータ制御装置
JP2011029032A (ja) * 2009-07-27 2011-02-10 Toyota Motor Corp 燃料電池システム
WO2011024063A2 (en) * 2009-08-28 2011-03-03 Toyota Jidosha Kabushiki Kaisha Capacitor for dc-dc converter, dc-dc converter, and fuel cell system
JP2011239545A (ja) * 2010-05-10 2011-11-24 Sanken Electric Co Ltd Dc−dcコンバータ
JP2012029396A (ja) * 2010-07-21 2012-02-09 Nichicon Corp 昇圧コンバータのスナバ回路
EP2482440A1 (en) * 2009-09-24 2012-08-01 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
JP2013090499A (ja) * 2011-10-20 2013-05-13 Ihi Corp 双方向チョッパ回路
US8593845B2 (en) 2009-06-11 2013-11-26 Toyota Jidosha Kabushiki Kaisha Converter controller
CN103490625A (zh) * 2013-09-27 2014-01-01 华为技术有限公司 一种升压式直流变换器
US8653802B2 (en) 2010-03-05 2014-02-18 Toyota Jidosha Kabushiki Kaisha Chopper circuit, DC/DC converter, and fuel cell system
US8765312B2 (en) 2009-06-03 2014-07-01 Toyota Jidosha Kabushiki Kaisha Converter controlling apparatus
US8797774B2 (en) 2010-04-30 2014-08-05 Toyota Jidosha Kabushiki Kaisha Manufacturing method for chopper circuit, chopper circuit, DC/DC converter, fuel cell system, and control method
US9203314B2 (en) 2009-07-09 2015-12-01 Toyota Jidosha Kabushiki Kaisha Converter controlling apparatus and multiphase converter
US9231474B2 (en) 2012-07-21 2016-01-05 Nlt Technologies, Ltd. DC/DC converter and display device
JP5971607B1 (ja) * 2015-04-27 2016-08-17 パナソニックIpマネジメント株式会社 電源回路
CN106452088A (zh) * 2016-11-18 2017-02-22 佛山市新光宏锐电源设备有限公司 一种隔离型双向dc‑dc变换装置及其控制方法
JP2017123710A (ja) * 2016-01-05 2017-07-13 田淵電機株式会社 非絶縁型昇圧スイッチング電源装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795766A (ja) * 1992-06-03 1995-04-07 Sawafuji Electric Co Ltd 電源装置
JP2002034238A (ja) * 2000-07-13 2002-01-31 Toshiba Corp 電力変換装置
JP2003033013A (ja) * 2001-07-19 2003-01-31 Honda Motor Co Ltd 共振形双方向dc−dcコンバータ、及びその制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795766A (ja) * 1992-06-03 1995-04-07 Sawafuji Electric Co Ltd 電源装置
JP2002034238A (ja) * 2000-07-13 2002-01-31 Toshiba Corp 電力変換装置
JP2003033013A (ja) * 2001-07-19 2003-01-31 Honda Motor Co Ltd 共振形双方向dc−dcコンバータ、及びその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GENDA Y. ET AL.: "Kokoritsu Daidenryoku Chopper Kairo QRAS", NATIONAL CONVENTION RECORD, I.E.E. JAPAN, INDUSTRY APPLICATIONS SOCIETY, 2004, pages I-295 - I-300 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099421A (ja) * 2006-10-11 2008-04-24 Honda Motor Co Ltd Dc−dcコンバータ
JP2008099423A (ja) * 2006-10-11 2008-04-24 Honda Motor Co Ltd Dc−dcコンバータ
JP2008125187A (ja) * 2006-11-09 2008-05-29 Nissan Motor Co Ltd Dc−dcコンバータ
WO2009084649A1 (ja) * 2007-12-28 2009-07-09 Toyota Jidosha Kabushiki Kaisha 燃料電池システム、及び燃料電池用昇圧コンバータ
JP2009165246A (ja) * 2007-12-28 2009-07-23 Toyota Motor Corp 燃料電池システム、及び燃料電池用昇圧コンバータ
JP2009165335A (ja) * 2007-12-28 2009-07-23 Ind Technol Res Inst H−ブリッジdc−dcコンバーターに応用する共振回路
CN101909924B (zh) * 2007-12-28 2013-04-24 丰田自动车株式会社 燃料电池系统及燃料电池用升压转换器
US8673514B2 (en) 2007-12-28 2014-03-18 Toyota Jidosha Kabushiki Kaisha Fuel cell system and boost converter for fuel cell
DE112009004843B4 (de) * 2009-06-02 2019-01-17 Toyota Jidosha Kabushiki Kaisha Leistungsversorgungssystem
US8773874B2 (en) 2009-06-02 2014-07-08 Toyota Jidosha Kabushiki Kaisha Power supply system and plurality parallel resonant converters having current blocking circuit
WO2010140217A1 (ja) * 2009-06-02 2010-12-09 トヨタ自動車株式会社 電源システム
JP5446054B2 (ja) * 2009-06-02 2014-03-19 トヨタ自動車株式会社 電源システム
US8765312B2 (en) 2009-06-03 2014-07-01 Toyota Jidosha Kabushiki Kaisha Converter controlling apparatus
WO2010140255A1 (ja) * 2009-06-05 2010-12-09 トヨタ自動車株式会社 コンバータ制御装置
US8593845B2 (en) 2009-06-11 2013-11-26 Toyota Jidosha Kabushiki Kaisha Converter controller
WO2010150338A1 (ja) * 2009-06-22 2010-12-29 トヨタ自動車株式会社 コンバータ制御装置
DE112009004991B4 (de) * 2009-06-22 2018-02-15 Toyota Jidosha Kabushiki Kaisha Wandlersteuervorrichtung
US9024598B2 (en) 2009-06-22 2015-05-05 Toyota Jidosha Kabushiki Kaisha Converter control device
JP5327486B2 (ja) * 2009-06-22 2013-10-30 トヨタ自動車株式会社 コンバータ制御装置
US9203314B2 (en) 2009-07-09 2015-12-01 Toyota Jidosha Kabushiki Kaisha Converter controlling apparatus and multiphase converter
WO2011004492A1 (ja) * 2009-07-10 2011-01-13 トヨタ自動車株式会社 コンバータ制御装置
US8896282B2 (en) 2009-07-10 2014-11-25 Toyota Jidosha Kabushiki Kaisha Converter controller
JP5464451B2 (ja) * 2009-07-10 2014-04-09 トヨタ自動車株式会社 コンバータ制御装置
JP2011029032A (ja) * 2009-07-27 2011-02-10 Toyota Motor Corp 燃料電池システム
WO2011024063A2 (en) * 2009-08-28 2011-03-03 Toyota Jidosha Kabushiki Kaisha Capacitor for dc-dc converter, dc-dc converter, and fuel cell system
WO2011024063A3 (en) * 2009-08-28 2011-06-16 Toyota Jidosha Kabushiki Kaisha Capacitor for dc-dc converter, dc-dc converter, and fuel cell system
EP2482440A4 (en) * 2009-09-24 2015-04-08 Toshiba Mitsubishi Elec Inc POWER CONVERSION DEVICE
EP2482440A1 (en) * 2009-09-24 2012-08-01 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
US8653802B2 (en) 2010-03-05 2014-02-18 Toyota Jidosha Kabushiki Kaisha Chopper circuit, DC/DC converter, and fuel cell system
US8797774B2 (en) 2010-04-30 2014-08-05 Toyota Jidosha Kabushiki Kaisha Manufacturing method for chopper circuit, chopper circuit, DC/DC converter, fuel cell system, and control method
JP2011239545A (ja) * 2010-05-10 2011-11-24 Sanken Electric Co Ltd Dc−dcコンバータ
JP2012029396A (ja) * 2010-07-21 2012-02-09 Nichicon Corp 昇圧コンバータのスナバ回路
JP2013090499A (ja) * 2011-10-20 2013-05-13 Ihi Corp 双方向チョッパ回路
US9231474B2 (en) 2012-07-21 2016-01-05 Nlt Technologies, Ltd. DC/DC converter and display device
CN103490625A (zh) * 2013-09-27 2014-01-01 华为技术有限公司 一种升压式直流变换器
JP5971607B1 (ja) * 2015-04-27 2016-08-17 パナソニックIpマネジメント株式会社 電源回路
JP2017123710A (ja) * 2016-01-05 2017-07-13 田淵電機株式会社 非絶縁型昇圧スイッチング電源装置
CN106452088A (zh) * 2016-11-18 2017-02-22 佛山市新光宏锐电源设备有限公司 一种隔离型双向dc‑dc变换装置及其控制方法

Also Published As

Publication number Publication date
JPWO2006098376A1 (ja) 2008-08-28
JP5023338B2 (ja) 2012-09-12

Similar Documents

Publication Publication Date Title
WO2006098376A1 (ja) チョッパ回路
Elasser et al. Soft switching active snubbers for dc/dc converters
JP4378400B2 (ja) 双方向dc−dcコンバータ及び双方向dc−dcコンバータの制御方法
US9876423B2 (en) DC-to-DC converter
Stillwell et al. Design of a 1 kV bidirectional DC-DC converter with 650 V GaN transistors
KR20150040115A (ko) 모터 구동 장치
CN103780086A (zh) 基于耦合电感倍压结构的双输出母线型高增益变换器
JP6008079B2 (ja) 電力変換装置
JP4834865B2 (ja) 双方向昇降圧チョッパ回路
JP6452226B2 (ja) Dc−dcコンバータの補助回路及びその補助回路を用いた双方向昇降圧dc−dcコンバータ
Khan et al. A family of high efficiency bidirectional dc-dc converters using switching cell structure
JP2006034069A (ja) 昇降圧チョッパ回路
Mishima et al. A new family of ZCS-PWM DC-DC converters with clamping Diodes-assisted active edge-resonant cell
CN105529924B (zh) 一种准z源降压dc-dc变换电路
Moradisizkoohi et al. A quasi-resonant bi-directional buck-boost converter for Electric Vehicle applications
JP2001309647A (ja) チョッパ回路
WO2010113762A1 (ja) Dc/dcコンバータ
TWI501527B (zh) 單輔助開關之交錯式高升壓比柔切式轉換器
Asano et al. A common grounded Z-source buck-boost converter
Kajiwara et al. Performance Mechanism of Active Clamp Resonant SEPIC Converter in Renewable Energy Systems
JP4806325B2 (ja) Dc−dcコンバータ
CN210744740U (zh) 一种用于氢燃料电池系统的主动放电电路
Mishima et al. A new family of soft switching PWM non-isolated DC-DC converters with Active auxiliary Edge-Resonant Cell
JP7243838B2 (ja) Dc-dcコンバータ
JP4806324B2 (ja) Dc−dcコンバータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007508188

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729171

Country of ref document: EP

Kind code of ref document: A1