WO2010140289A1 - 光通信システム、その光受信機、その光通信方法 - Google Patents
光通信システム、その光受信機、その光通信方法 Download PDFInfo
- Publication number
- WO2010140289A1 WO2010140289A1 PCT/JP2010/002174 JP2010002174W WO2010140289A1 WO 2010140289 A1 WO2010140289 A1 WO 2010140289A1 JP 2010002174 W JP2010002174 W JP 2010002174W WO 2010140289 A1 WO2010140289 A1 WO 2010140289A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- signal
- communication system
- intensity
- dispersion value
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0795—Performance monitoring; Measurement of transmission parameters
- H04B10/07951—Monitoring or measuring chromatic dispersion or PMD
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/06—Polarisation multiplex systems
Definitions
- the present invention includes an optical transmitter that transmits an optical signal and an optical receiver that receives the optical signal, the carrier wave is provided in the same frequency band, and the two independent polarization states that are orthogonal to each other.
- the present invention relates to a polarization multiplexing / demultiplexing optical communication system that demultiplexes an optical signal, an optical receiver thereof, and an optical communication method thereof.
- the polarization demultiplexing technique multiplexes two independent optical signals whose carrier waves are arranged in the same frequency band and whose polarization states are orthogonal to each other in the optical transmitter, and in the optical receiver, This is a technology that realizes twice the transmission rate by separating two optical signals.
- the symbol rate (baud rate) of the optical signal can be halved, the operation speed of the electric device can be reduced, and thus the device cost can be reduced.
- optical communication system (hereinafter referred to as an optical communication system) using the polarization demultiplexing technique will be described with reference to the drawings.
- FIG. 10 shows a configuration example of the optical transmitter 10 in the conventional optical communication system.
- the conventional optical transmitter 10 includes data source 101, data dividing unit 102, light source 103, optical branching unit 104, optical transmission unit 105-1, optical transmission unit 105-2, and polarization multiplexing unit 106. .
- the data source 101 generates transmission data and transmits it to the data dividing unit 102.
- the transmission data is normally supplied from another communication device connected to the optical transmitter, but here, for simplicity, it is assumed that the optical transmitter 10 itself generates transmission data.
- the data division unit 102 divides the transmission data sent from the data source 101 into two (demultiplexing) and transmits the divided data to the optical transmission unit 105-1 and the optical transmission unit 105-2, respectively.
- various methods such as a method of dividing each bit (bit interleaving) and a method of dividing each byte (byte interleaving) can be used.
- the light source 103 outputs a laser beam having a predetermined frequency and transmits it to the optical branching unit 104.
- the optical branching unit 104 bifurcates the laser light transmitted from the light source 103 and transmits the laser light having the same intensity to the optical transmitting unit 105-1 and the optical transmitting unit 105-2, respectively.
- a method of supplying laser light from different light sources having the same optical frequency and the same light intensity can be applied to the optical transmitter 105-1 and the optical transmitter 105-2. Since it is desirable that the carrier frequency of the optical signal transmitted from each of the transmission unit 105-1 and the optical transmission unit 105-2 matches the line width, including the line width, a configuration in which the above-described single light source is bifurcated is recommended.
- the optical transmission unit 105-1 and the optical transmission unit 105-2 use the laser beam transmitted from the optical branching unit 104 as a carrier wave and perform optical modulation with the data transmitted from the data dividing unit 102.
- the type of the light modulation method is not limited.
- the optical signals generated by the optical transmission units 105-1 and 105-2 are sent to the polarization multiplexing unit 106, respectively.
- the polarization multiplexing unit 106 multiplexes the optical signals transmitted from the optical transmission unit 105-1 and the optical transmission unit 105-2 so that their polarization states are orthogonal to each other, and then transmits the multiplexed optical signal to the optical transmission line 200. .
- the optical signal generated by the optical transmitter 10 propagates through the optical transmission line 200 and is then received by the optical receiver 30.
- FIG. 11 shows a configuration example of the optical receiver 30 in the conventional optical communication system.
- the optical receiver 30 includes an optical waveform equalization unit 301, a polarization separation unit 302, an optical reception unit 303-1, an optical reception unit 303-2, a data identification unit 304-1, a data identification unit 304-2, and a data multiplexing unit. 305.
- the optical waveform equalization unit 301 optically compensates for waveform distortion due to chromatic dispersion that the optical signal received during propagation through the optical transmission line 200, and then transmits the compensated optical signal to the polarization separation unit 302.
- the polarization separation unit 302 separates the optical signal received from the optical waveform equalization unit 301 into two optical signals generated by the optical transmission units 105-1 and 105-2, and the optical reception unit 302-1 and the optical signal, respectively.
- the data is transmitted to the receiving unit 302-2.
- the light receiving unit 303-1 converts the optical signal sent from the polarization separation unit 302 into an electrical signal and transmits it to the data identification unit 304-1. The same applies to the optical receiver 303-2.
- the data identification unit 304-1 converts the electrical signal sent from the optical reception unit 303-1 into digital data based on a predetermined identification condition suitable for the optical modulation scheme, and transmits the digital data to the data multiplexing unit 305. The same applies to the data identification unit 304-2.
- the data multiplexing unit 305 reproduces the original transmission data by multiplexing (multiplexing) the digital data sent from the data identification unit 304-1 and the data identification unit 304-2.
- the configuration of the optical receiver 31 is that the optical signal received from the optical transmission line 200 is converted into an electrical signal by the optical receiver 303, and then the above-mentioned optical signal is converted from the electrical signal.
- a method is also conceivable in which the electrical signals generated by the receiving units 303-1 and 303-2 are separated from each other.
- FIG. 11A shows a configuration that optically performs polarization separation
- FIG. 11B shows a configuration that performs polarization separation electrically.
- the optical signal polarization-multiplexed by the optical transmitter is separated into independent optical signals by the optical receiver, and the original transmission data is reproduced.
- a chromatic dispersion measuring device that does not depend on residual intensity modulation and accurately measures the group velocity dispersion of an optical component at a point where the input and output ends are separated such as a transmission line optical fiber (not shown).
- chromatic dispersion measuring apparatus In the chromatic dispersion measuring apparatus, light emitted from a plurality of semiconductor lasers having different wavelengths is modulated by a plurality of light intensity modulators based on an electric signal pulse, and then synthesized by an optical coupler.
- the synthesized light passes through the optical component to be measured and is detected by the photodiode.
- the intensity of the DC component and i / NT (i is an integer from 1 to N-1) frequency component contained in the electric signal of the detection light is detected by a bandpass filter and a power meter.
- the average photocurrent flowing through the photodiode is measured with an ammeter.
- a dispersion value of the optical component to be measured is calculated from information on the measured i / NT component intensity, average photocurrent, pulse shape, and light source frequency (see, for example, Patent Document 1).
- the optical transmission unit modulates and outputs any of the wavelength, transmission timing, and intensity of the light that is the transmission wave, using the low-frequency signal transmitted from the low-frequency generator.
- the polarization multiplexer synthesizes the two modulated output lights in the orthogonal polarization state to generate a polarization multiplexed signal.
- the polarization separator extracts and separates two orthogonal polarization components from the polarization multiplexed signal whose polarization state is controlled by the polarization controller.
- the band pass filter extracts a component that passes through the pass band from the output signal of the optical receiver, and outputs the intensity of this component.
- the control circuit generates a feedback control signal for maximizing the ratio of the components of the low frequency signal based on the output intensity from the band pass filter, and the polarization control unit uses the feedback control signal to generate the polarization multiplexed signal.
- the polarization state is controlled (see, for example, Patent Document 2).
- the propagation characteristics of the optical waveform equalization unit must match the inverse characteristics of the propagation characteristics of the optical transmission line. There is.
- the propagation characteristic of the optical waveform equalizer is fixedly set after measuring the chromatic dispersion value of the optical transmission line in advance before the operation of the optical communication system.
- the present invention has been made in view of the problems as described above, and does not adversely affect the transmission quality, and can easily and inexpensively reset the propagation characteristics of the optical waveform equalizer.
- the optical receiver and the optical communication method are provided.
- the optical communication system of the present invention has an optical transmitter that transmits an optical signal and an optical receiver that receives the optical signal, and the carrier waves are arranged in the same frequency band, and the polarization states are independent from each other.
- a polarization multiplexing / demultiplexing type optical communication system for demultiplexing two optical signals, wherein an optical transmitter provides deviation providing means for giving a predetermined frequency deviation between carrier frequencies of optical signals to be transmitted, and light to be transmitted
- Fluctuation applying means for applying periodic fluctuations having a predetermined frequency to the light intensity of the signal, and an information extraction means for the optical receiver to extract intensity information of frequency components of the periodic fluctuations from the received optical signal;
- Dispersion value calculation means for calculating a chromatic dispersion value of the optical transmission line based on the extracted intensity information.
- An optical receiver includes an optical transmitter that transmits an optical signal and an optical receiver that receives an optical signal, the carrier waves are arranged in the same frequency band, and the polarization states are independent from each other.
- An optical receiver of a polarization multiplexing / demultiplexing optical communication system that demultiplexes two optical signals, information extracting means for extracting intensity information of frequency components of periodic fluctuations from the received optical signal, and extracted intensity information Dispersion value calculating means for calculating the chromatic dispersion value of the optical transmission line based on the above.
- the optical communication method of the present invention includes an optical transmitter that transmits an optical signal and an optical receiver that receives the optical signal, the carrier waves are arranged in the same frequency band, and the polarization states are independent from each other.
- An optical communication method of a polarization multiplexing / demultiplexing optical communication system that demultiplexes two optical signals, a deviation giving operation for giving a predetermined frequency deviation between the carrier frequencies of the optical signal to be transmitted, and the optical signal to be transmitted
- Fluctuation applying operation for applying periodic fluctuations having a predetermined frequency to the light intensity of the light, information extracting operation for extracting intensity information of frequency components of the cyclic fluctuation from the received optical signal, and optical transmission based on the extracted intensity information
- a dispersion value calculating operation for calculating a wavelength dispersion value of the path.
- the various components of the present invention need only be formed so as to realize their functions.
- dedicated hardware that exhibits a predetermined function
- data processing in which a predetermined function is provided by a computer program It can be realized as an apparatus, a predetermined function realized in the data processing apparatus by a computer program, an arbitrary combination thereof, or the like.
- a plurality of components are formed as a single member, and a single component is formed of a plurality of members. It may be that a certain component is a part of another component, a part of a certain component overlaps with a part of another component, or the like.
- the deviation adding means of the optical transmitter gives a predetermined frequency deviation between the carrier frequencies of the optical signals to be transmitted, and transmits the light.
- the variation applying means applies a periodic variation having a predetermined frequency to the light intensity of the signal.
- the information extraction unit of the optical receiver extracts the intensity information of the frequency component of the periodic fluctuation from the received optical signal, and the dispersion value calculation unit calculates the chromatic dispersion value of the optical transmission line based on the extracted intensity information To do. For this reason, it is possible to measure the chromatic dispersion value of the optical transmission line while operating the optical communication system. Therefore, it is possible to reset the propagation characteristics of the optical waveform equalization unit easily and at low cost without adversely affecting the transmission quality.
- (a) is a block diagram showing the configuration of the optical transmitter of the optical communication system according to the embodiment of the present invention
- (b) is a block diagram showing the configuration of the optical receiver. It is a block diagram which shows the structure of a light modulation part.
- (A) is a characteristic diagram showing the time change of the electric signal generated by the intensity modulation signal generation unit
- (b) is a characteristic diagram showing the time change of the electric signal generated by the intensity modulation signal generation unit. It is a characteristic view which shows the time change of the intensity
- (A) is a characteristic diagram showing the time change of the electric signal generated by the phase modulation signal generation unit
- (b) is a characteristic diagram showing the time change of the electric signal generated by the phase modulation signal generation unit. It is a characteristic view which shows the optical spectrum of the optical signal which an optical transmission part or an optical phase modulator sends out.
- It is a block diagram which shows the structure of a wavelength dispersion value measurement part.
- It is a block diagram which shows the structure of the optical receiver of this invention using an electrical waveform equalization part.
- It is a block diagram which shows the structure of an electrical waveform equalization part.
- (A) is a block diagram showing a configuration of a conventional optical receiver
- (b) is a block diagram showing a configuration of the optical receiver.
- the optical communication system 1000 includes an optical transmitter 100 that transmits an optical signal and an optical receiver 300 that receives the optical signal.
- An optical communication system 1000 according to the present embodiment is a polarization multiplexing / demultiplexing optical communication system 1000 that multiplexes two independent optical signals whose carrier waves are arranged in the same frequency band and whose polarization states are orthogonal to each other. To separate.
- the optical transmitter 100 includes a deviation imparting unit that imparts a predetermined frequency deviation between the carrier frequencies of the optical signal to be transmitted, and a variation imparting unit that imparts a periodic variation having a predetermined frequency to the optical intensity of the optical signal to be transmitted.
- the optical receiver 300 includes an information extraction unit that extracts intensity information of a frequency component of a periodic variation from a received optical signal, a dispersion value calculation unit that calculates a chromatic dispersion value of an optical transmission line based on the extracted intensity information, Have.
- the configuration of the optical transmitter 100 of the present embodiment is different from the configuration of the conventional optical transmitter in that an optical modulation unit 107 is newly provided as shown in FIG. .
- the optical modulation unit 107 is a block that applies a predetermined carrier frequency deviation and a predetermined fluctuation of light intensity to the optical signals generated by the optical transmission unit 105-1 and the optical transmission unit 105-2.
- the light modulation unit 107 corresponds to a deviation applying unit that applies a frequency deviation to the above-described optical signal and a variation applying unit that applies a periodic variation.
- the magnitude (2 ⁇ f) of the carrier frequency deviation given to the optical signal and the frequency (f AM ) of fluctuation of the optical intensity are determined in advance and are shared by both the optical transmitter 100 and the optical receiver 300. To do.
- FIG. 1B shows a configuration example of the optical receiver 300 of the present invention.
- the configuration of the optical receiver 300 of the present invention is different from the configuration of the conventional optical receiver in that an optical branching unit 306 and a chromatic dispersion value measuring unit 307 are newly added.
- the optical branching unit 306 bifurcates the optical signal sent from the optical transmission line 200, sends one to the optical waveform equalizing unit 301, and sends the other to the chromatic dispersion value measuring unit 307.
- the only difference between the optical signals is the light intensity.
- the light intensity of the optical signal transmitted to the chromatic dispersion value measuring unit 307 needs to be limited to a level that does not significantly affect the transmission quality.
- the chromatic dispersion value measurement unit 307 calculates the chromatic dispersion value of the optical transmission line 200 based on the optical signal received from the optical branching unit 306 and then notifies the chromatic dispersion value to the optical waveform equalization unit 301. Therefore, the optical branching unit 306 corresponds to an information extracting unit that extracts intensity information from the above-described optical signal, and the chromatic dispersion value measuring unit 307 corresponds to a dispersion value calculating unit that calculates a chromatic dispersion value based on the intensity information. To do.
- the optical waveform equalization unit 301 controls its own propagation characteristic to be the inverse characteristic of the propagation characteristic of the optical transmission line 200. An optical signal in which waveform distortion occurs due to wavelength dispersion of the transmission line 200 is compensated. Therefore, the chromatic dispersion of the optical transmission line can be measured in the optical receiver 300.
- FIG. 2 shows a configuration example of the light modulation unit 107 in the present embodiment.
- the optical modulation unit 107 includes an optical intensity modulator 400-1 and an optical intensity modulator 400-2, an intensity modulation signal generation unit 401-1 and an intensity modulation signal generation unit 401-2, an optical phase modulator 402-1 and
- the optical phase modulator 402-2 includes a phase modulation signal generation unit 403-1 and a phase modulation signal generation unit 403-2.
- the intensity modulation signal generation unit 401-1 is a block that generates a periodic electrical signal that drives the light intensity modulator 400-1. The same applies to the intensity modulation signal generation unit 401-2.
- FIGS. 3A and 3B show temporal changes in the electrical signals generated by the intensity modulation signal generation unit 401-1 and the intensity modulation signal generation unit 401-2, respectively.
- any both electrical signal that is a sum of sinusoidal predetermined fixed value and the frequency f AM.
- the phases of the sine waves are different from each other by ⁇ .
- the amplitude of the sine wave is made sufficiently small with respect to a fixed value in order to minimize the influence on the transmission characteristics.
- the above fixed value is 1 for simplicity.
- the amplitude of the sine wave is A ⁇ 1.
- a sine wave is used as the periodic electrical signal, but other periodic functions such as a sawtooth wave can also be used.
- the optical intensity modulator 400-1 changes the optical intensity of the optical signal transmitted from the optical transmission unit 105-1 so as to be proportional to the electrical signal input from the intensity modulation signal generation unit 401-1, and outputs the optical signal. .
- P 0 is the average light intensity of the optical signals transmitted from the optical transmitters 105-1 and 105-2.
- 4 (a) and 4 (b) show temporal changes in the light intensity of the optical signals transmitted from the optical transmitter 105-1 and the optical transmitter 105-2, respectively. From the figure, it can be seen that optical pulses having the same amplitude are continuously transmitted from the optical transmitter 105-1 and the optical transmitter 105-2.
- 4 (c) and 4 (d) show temporal changes in the optical signal intensity of the optical signals transmitted from the optical intensity modulator 400-1 and the optical intensity modulator 400-2, respectively. It can be seen that the amplitude of the optical pulse periodically changes in proportion to the periodic electrical signal generated by the intensity modulation signal generation unit 401-1 and the intensity modulation signal generation unit 401-2 shown in FIG.
- the method using the light intensity modulator has been described as a method for changing the optical signal intensity.
- the method can be easily realized by using an optical attenuator.
- a Mach-Zehnder optical modulator is often used as a device that performs optical modulation in the optical transmitter.
- a periodic signal having a predetermined frequency may be applied to the bias voltage of the Mach-Zehnder optical modulator.
- the Mach-Zehnder type optical modulator operates stably by this method, the optical signal intensity periodically fluctuates at twice the frequency of the drive signal. Accordingly, it is possible to periodically change the optical signal intensity by using a Mach-Zehnder type optical modulator for optical modulation.
- This method has an advantage over the above-described method in that the number of parts can be reduced.
- the phase modulation signal generation unit 403-1 is a block that generates an electric signal for driving the optical phase modulator 402-1. The same applies to the phase modulation signal generation unit 402-2.
- FIGS. 5A and 5B show electric signals generated by the phase modulation signal generation unit 403-1 and the phase modulation signal generation unit 403-2, respectively. Each electrical signal is represented as a linear function having a different slope.
- the optical phase modulator 401-1 is a device that changes the optical phase of the optical signal generated by the optical transmission unit 105-1 by an amount proportional to the electrical signal input from the electrical signal generation unit 400-1. The same applies to the optical phase modulator 401-2.
- the time derivative of the optical phase becomes a frequency displacement, so the carrier frequency of the optical signal that passes through the optical phase modulator 401-1 is It varies by an amount proportional to the time derivative of the electrical signal that drives the optical phase modulator.
- FIGS. 6A and 6C show optical spectra of optical signals transmitted by the optical transmission unit 105-1 and the optical transmission unit 105-2, respectively.
- the center frequency (carrier frequency) f 0 of each optical signal is the oscillation frequency of the laser light transmitted from the light source 103.
- FIGS. 6B and 6D show optical spectra of optical signals transmitted by the optical phase modulator 400-1 and the optical phase modulator 400-2, respectively.
- the center frequency of the optical signal transmitted from the optical phase modulator 400-1 is shifted from f 0 to f 0 + ⁇ f, and the center frequency of the optical signal transmitted from the optical phase modulator 400-2 is changed from f 0 to f 0 ⁇ . It can be seen that it is displaced to ⁇ f.
- the carrier frequency deviation of the optical signals transmitted from the optical phase modulator 402-1 and the optical phase modulator 402-2 is 2 ⁇ f.
- the electrical signal that can be input to the optical phase modulator it is necessary to generate a sawtooth wave as shown in FIG.
- Optical phase modulation by sawtooth wave is generally called serodyne modulation. As described above, it is possible to add the carrier frequency deviation and the periodic fluctuation of the light intensity to the optical signals generated by the optical transmission unit 105-1 and the optical transmission unit 105-2.
- FIG. 7 shows a configuration example of the chromatic dispersion value measurement unit 307.
- the chromatic dispersion value measurement unit 307 includes an optical reception unit 500, a bandpass filter 501, and a chromatic dispersion value detection unit 502.
- the optical receiving unit 500 converts the optical signal received from the optical branching unit 306 into an electrical signal, and transmits it to the bandpass filter 501.
- the band pass filter 501 extracts a predetermined frequency component (component of the above-mentioned frequency f AM ) of the electrical signal sent from the optical receiver 500 and transmits the intensity information to the chromatic dispersion value detector 502.
- the chromatic dispersion value detection unit 502 calculates the chromatic dispersion value from the intensity information sent from the bandpass filter 501, and notifies the optical waveform equalization unit 301 of the calculation result.
- ⁇ 0 is an arbitrary constant
- ⁇ 1 is group delay
- ⁇ 2 is group velocity dispersion
- ⁇ 3 is third-order dispersion.
- the terms after the second order are omitted because they are very small.
- the components of the frequency f AM of the optical signals output from the light intensity modulator 400-1 and the light intensity modulator 400-2 are P 0 Asin (2 ⁇ f AM t), respectively.
- the transmission line loss of the optical transmission line 200 is ⁇
- the component of the frequency f AM of the optical signal received by the optical receiving unit 500 is Psin (2 ⁇ f AM (t ⁇ 1 ))
- Psin (2 ⁇ f AM (t ⁇ 2 )) Psin (2 ⁇ f AM D ⁇ ) sin (2 ⁇ f AM (t ⁇ L ⁇ 1 )) It can be expressed as.
- the output of the bandpass filter 501 is Psin (2 ⁇ f AM D ⁇ ) It is expressed. Since the values of P, f AM and ⁇ are known fixed values, the chromatic dispersion value D can be calculated. As described above, according to the present invention, it is possible to measure the chromatic dispersion value of an optical transmission line even during operation of an optical communication system.
- the optical receiver 300 according to the second embodiment does not include the optical waveform equalization unit 301 as compared with the optical receiver 300 according to the first embodiment, and includes an optical receiver 303-1 and an optical receiver 303.
- -2 is provided with an electrical waveform equalization unit 308-1 and an electrical waveform equalization unit 308-2, respectively, and the chromatic dispersion value measurement unit 307 includes an electrical waveform equalization unit 308-1 and an electrical waveform. It differs from the optical receiver in the first embodiment in that the wavelength dispersion value is notified to both equalization units 308-2.
- FIG. 9 shows a configuration example of the electrical waveform equalization unit 308-1.
- the configuration of the electrical waveform equalizer 308-2 is the same.
- the electrical waveform equalization unit 308-1 includes a filter processing unit 600 and a filter coefficient generation unit 601.
- the filter processing unit 600 is a filter that can reproduce an arbitrary transfer function according to the parameters specified by the filter coefficient generation unit 601. For example, when performing digital signal processing, FIR (Finite Impulse Response) filters are frequently used. Also, frequency domain equalization using fast Fourier transform may be used.
- FIR Finite Impulse Response
- the filter coefficient generation unit 601 calculates a parameter for generating a filter having a reverse characteristic of the propagation characteristic of the optical transmission path from the chromatic dispersion value acquired from the chromatic dispersion value measurement unit 307 and notifies the filter processing unit 600 of the parameter. To do.
- the coefficient of each tap of the FIR filter (hereinafter referred to as tap coefficient) is designated.
- the propagation characteristic (transfer function) of the optical transmission line having a value obtained by inverting the sign of the chromatic dispersion value of the optical transmission line 200 is calculated on the frequency domain, and then subjected to inverse Fourier transform.
- the impulse response is obtained.
- the obtained impulse response may be notified to the filter processing unit 600 as each tap coefficient of the FIR filter.
- the propagation characteristics on the frequency domain used for the calculation of the impulse response described above may be notified as they are.
- the present invention can be applied even when the waveform equalization is performed electrically.
- the present invention is not limited to the present embodiment, and various modifications are allowed without departing from the scope of the present invention.
- the optical receiver 30 having the configuration shown in FIG.
- the present invention can be applied to any configuration of the optical receiver 30 in FIG. 11A and the optical receiver 31 in FIG. 11B (not shown).
- the content of the present invention has been described by taking an optical communication system using one carrier frequency as an example.
- WDM wavelength division multiplexing
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
Abstract
Description
本発明の実施の第一の形態を図1ないし図7を参照して以下に説明する。ただし、本実施の形態に関して前述した一従来例と同一の部分は、同一の名称を使用して詳細な説明は省略する。なお、本発明は前述した図11(a)と図11(b)の何れの構成にも適用可能であるが、簡単のため以降では図11(a)の構成を有する光受信機について説明する。
e1(t)=1+Asin(2πfAMt)
と表せ、強度変調信号生成部401-2が生成する電気信号は
e2(t)=1-Asin(2πfAMt)
と表せる。
P1(t)=P0e1(t)=P0(1+Asin(2πfAMt))
P2(t)=P0e2(t)=P0(1-Asin(2πfAMt))
と表せる。ここでP0は光送信部105-1および光送信部105-2から送信される光信号の平均光強度である。
β(ω)=β0+β1dω+(1/2)β2dω2+(1/3!)β3dω3+…
と表すことができる。ここでβ0は任意の定数、β1は群遅延、β2は群速度分散、β3は三次分散である。
τ=(dβ(ω)/dω)L=(β1+β2dω)L=Lβ1+Ddω
である。なお二次以降の項は微少であるため省略した。
P0Asin(2πfAMt)
-P0Asin(2πfAMt)
である。
Psin(2πfAM(t-τ1))-Psin(2πfAM(t-τ2))=Psin(2πfAMDΔω)sin(2πfAM(t-Lβ1))
と表すことができる。
P=P0AΓ、Δω=2πΔf、τ1=Lβ1+DΔω、τ2=Lβ1-DΔω
である。
Psin(2πfAMDΔω)
と表される。P、fAM、Δωの値は既知の固定値であるから、波長分散値Dを算出することが可能である。以上に説明したように、本発明によれば、光通信システムの運用中においても、光伝送路の波長分散値を測定することが可能である。
実施の第二の形態においては電気的に波長分散を補償する場合の構成を説明する。実施の第二の形態における光送信機100の構成は実施の第一の形態と同一である。実施の第二の形態における光受信機300の構成例を図8に示す。
Claims (12)
- 光信号を送信する光送信機と前記光信号を受信する光受信機とを有し、搬送波が同一の周波数帯に配備され、かつ、偏光状態が互いに直交する独立した二つの前記光信号を多重分離する偏光多重分離方式の光通信システムであって、
前記光送信機が、
送信する前記光信号の搬送波周波数の間に所定の周波数偏差を付与する偏差付与手段と、
送信する前記光信号の光強度に所定の周波数を有する周期変動を付与する変動付与手段と、を有し、
前記光受信機が、
受信した前記光信号から前記周期変動の周波数成分の強度情報を抽出する情報抽出手段と、
抽出された前記強度情報に基づいて光伝送路の波長分散値を算出する分散値算出手段と、を有することを特徴とする光通信システム。 - 前記偏差付与手段は、
前記光信号の光位相をそれぞれ変化させる光位相変調器と、
前記光位相変調器の駆動信号を生成する信号生成手段と、
を備えることを特徴とする請求項1に記載の光通信システム。 - 前記信号生成手段は、前記光信号により異なる傾きを有する時刻の一次関数で表される前記駆動信号を生成することを特徴とする請求項2に記載の光通信システム。
- 前記偏差付与手段は、前記光位相変調器によりセロダイン変調を実行し、前記セロダイン変調に用いるノコギリ波の傾きが光信号により異なることを特徴とする請求項2に記載の光通信システム。
- 前記変動付与手段が、
前記光信号の光強度を入力される強度制御信号に比例するように変化させる光強度変調器と、
前記光強度変調器の前記強度制御信号を生成する強度制御手段と、
を有することを特徴とする請求項1に記載の光通信システム。 - 前記変動付与手段が、
前記光信号の光強度を入力される減衰制御信号に対応して減衰させる光減衰器と、
前記光減衰器の前記減衰制御信号を生成する強度制御手段と、
を有することを特徴とする請求項1に記載の光通信システム。 - 前記変動付与手段が、
安定制御のためにバイアス端子に印加される安定制御信号により前記光信号の光強度を変化させるマッハツェンダ型光変調器と、
前記マッハツェンダ型光変調器の前記安定制御信号を生成する強度制御手段と、
を有することを特徴とする請求項1に記載の光通信システム。 - 前記強度制御手段が、
前記光信号の光強度の周期変動が、その周波数が同一で、かつ、互いに同相又は逆相の何れかとなる、前記制御信号を生成することを特徴とする請求項6ないし8の何れか一項に記載の光通信システム。 - 前記情報抽出手段が、バンドパスフィルタからなることを特徴とする請求項1ないし8の何れか一項に記載の光通信システム。
- 前記分散値算出手段が算出した前記波長分散値に基づいて光伝送路の波長分散による波形歪みを補償する波形等化手段を、さらに有することを特徴とする請求項1ないし9の何れか一項に記載の光通信システム。
- 光信号を送信する光送信機と前記光信号を受信する光受信機とを有し、搬送波が同一の周波数帯に配備され、かつ、偏光状態が互いに直交する独立した二つの前記光信号を多重分離する偏光多重分離方式の光通信システムの前記光受信機であって、
受信した前記光信号から周期変動の周波数成分の強度情報を抽出する情報抽出手段と、
抽出された前記強度情報に基づいて光伝送路の波長分散値を算出する分散値算出手段と、を有することを特徴とする光受信機。 - 光信号を送信する光送信機と前記光信号を受信する光受信機とを有し、搬送波が同一の周波数帯に配備され、かつ、偏光状態が互いに直交する独立した二つの前記光信号を多重分離する偏光多重分離方式の光通信システムの光通信方法であって、
送信する前記光信号の搬送波周波数の間に所定の周波数偏差を付与する偏差付与動作と、
送信する前記光信号の光強度に所定の周波数を有する周期変動を付与する変動付与動作と、
受信した前記光信号から前記周期変動の周波数成分の強度情報を抽出する情報抽出動作と、
抽出された前記強度情報に基づいて光伝送路の波長分散値を算出する分散値算出動作と、
を有することを特徴とする光通信方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011518219A JP5316639B2 (ja) | 2009-06-05 | 2010-03-26 | 光通信システム、その光受信機、その光通信方法 |
US13/376,121 US8538263B2 (en) | 2009-06-05 | 2010-03-26 | Optical communication system, optical receiver of same, and optical communication method of same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009136215 | 2009-06-05 | ||
JP2009-136215 | 2009-06-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010140289A1 true WO2010140289A1 (ja) | 2010-12-09 |
Family
ID=43297432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/002174 WO2010140289A1 (ja) | 2009-06-05 | 2010-03-26 | 光通信システム、その光受信機、その光通信方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8538263B2 (ja) |
JP (1) | JP5316639B2 (ja) |
WO (1) | WO2010140289A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013136652A1 (ja) * | 2012-03-12 | 2013-09-19 | 日本電気株式会社 | 光通信システム、光送信装置、光受信装置、光通信方法、光送信方法、及び光受信方法 |
WO2013136651A1 (ja) * | 2012-03-12 | 2013-09-19 | 日本電気株式会社 | 光通信システム、光送信装置、光受信装置、光通信方法、光送信方法、位相回転設定装置、及び光受信方法 |
JP2014064275A (ja) * | 2012-09-14 | 2014-04-10 | Fujitsu Ltd | 相補型電力変調を使用する帯域内管理データ変調 |
WO2014115519A1 (ja) * | 2013-01-22 | 2014-07-31 | 日本電気株式会社 | 偏光多重分離光通信受信機、偏光多重分離光通信システム、および偏光多重分離光通信方法 |
JP2014220822A (ja) * | 2014-06-30 | 2014-11-20 | 日本電信電話株式会社 | 偏波多重光伝送システム |
JP2016023955A (ja) * | 2014-07-16 | 2016-02-08 | 横河電機株式会社 | 光ファイバ温度分布測定装置 |
WO2016043036A1 (ja) * | 2014-09-17 | 2016-03-24 | 三菱電機株式会社 | 光周波数制御装置 |
JP2020017836A (ja) * | 2018-07-25 | 2020-01-30 | 富士通株式会社 | 光伝送装置および光伝送システム |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6107815B2 (ja) * | 2012-04-10 | 2017-04-05 | 日本電気株式会社 | 光送信装置、光通信システム、光受信装置、光送信装置の調整方法、光送信方法、及び光受信方法 |
US10003133B2 (en) * | 2016-01-22 | 2018-06-19 | Telekom Malaysia Berhad | Reusable carrier based polarization diversity for uplink of full-duplex radio-over-fiber system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005531169A (ja) * | 2002-05-10 | 2005-10-13 | シーメンス アクチエンゲゼルシヤフト | 光学的偏光多重化信号の信号劣化を低減するための方法及び装置 |
JP2007074273A (ja) * | 2005-09-06 | 2007-03-22 | National Institute Of Information & Communication Technology | コヒーレント光伝送方法 |
JP2008263590A (ja) * | 2007-03-20 | 2008-10-30 | Fujitsu Ltd | 偏波多重光送信機、偏波多重光受信機、偏波多重光送受信システムおよび偏波多重光送受信システムの制御方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6081360A (en) * | 1997-08-20 | 2000-06-27 | Fujitsu Limited | Method and apparatus for optimizing dispersion in an optical fiber transmission line in accordance with an optical signal power level |
JP3221422B2 (ja) | 1998-12-28 | 2001-10-22 | 日本電気株式会社 | 波長分散測定装置 |
JP5181770B2 (ja) | 2008-03-27 | 2013-04-10 | 富士通株式会社 | 光伝送システム |
JP5316149B2 (ja) | 2009-03-24 | 2013-10-16 | 日本電気株式会社 | 光信号品質モニタシステム、光信号品質モニタ装置及び光信号品質モニタ方法 |
-
2010
- 2010-03-26 US US13/376,121 patent/US8538263B2/en active Active
- 2010-03-26 WO PCT/JP2010/002174 patent/WO2010140289A1/ja active Application Filing
- 2010-03-26 JP JP2011518219A patent/JP5316639B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005531169A (ja) * | 2002-05-10 | 2005-10-13 | シーメンス アクチエンゲゼルシヤフト | 光学的偏光多重化信号の信号劣化を低減するための方法及び装置 |
JP2007074273A (ja) * | 2005-09-06 | 2007-03-22 | National Institute Of Information & Communication Technology | コヒーレント光伝送方法 |
JP2008263590A (ja) * | 2007-03-20 | 2008-10-30 | Fujitsu Ltd | 偏波多重光送信機、偏波多重光受信機、偏波多重光送受信システムおよび偏波多重光送受信システムの制御方法 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013136652A1 (ja) * | 2012-03-12 | 2013-09-19 | 日本電気株式会社 | 光通信システム、光送信装置、光受信装置、光通信方法、光送信方法、及び光受信方法 |
WO2013136651A1 (ja) * | 2012-03-12 | 2013-09-19 | 日本電気株式会社 | 光通信システム、光送信装置、光受信装置、光通信方法、光送信方法、位相回転設定装置、及び光受信方法 |
JPWO2013136652A1 (ja) * | 2012-03-12 | 2015-08-03 | 日本電気株式会社 | 光通信システム、光送信装置、光受信装置、光通信方法、光送信方法、及び光受信方法 |
JP2014064275A (ja) * | 2012-09-14 | 2014-04-10 | Fujitsu Ltd | 相補型電力変調を使用する帯域内管理データ変調 |
WO2014115519A1 (ja) * | 2013-01-22 | 2014-07-31 | 日本電気株式会社 | 偏光多重分離光通信受信機、偏光多重分離光通信システム、および偏光多重分離光通信方法 |
US9722697B2 (en) | 2013-01-22 | 2017-08-01 | Nec Corporation | Polarization division multiplexing optical communication reception device, polarization division multiplexing optical communication system, and polarization division multiplexing optical communication method |
JP2014220822A (ja) * | 2014-06-30 | 2014-11-20 | 日本電信電話株式会社 | 偏波多重光伝送システム |
JP2016023955A (ja) * | 2014-07-16 | 2016-02-08 | 横河電機株式会社 | 光ファイバ温度分布測定装置 |
WO2016043036A1 (ja) * | 2014-09-17 | 2016-03-24 | 三菱電機株式会社 | 光周波数制御装置 |
US10185164B2 (en) | 2014-09-17 | 2019-01-22 | Mitsubishi Electric Corporation | Optical frequency control device |
JP2020017836A (ja) * | 2018-07-25 | 2020-01-30 | 富士通株式会社 | 光伝送装置および光伝送システム |
JP7099125B2 (ja) | 2018-07-25 | 2022-07-12 | 富士通株式会社 | 光伝送装置および光伝送システム |
Also Published As
Publication number | Publication date |
---|---|
JP5316639B2 (ja) | 2013-10-16 |
JPWO2010140289A1 (ja) | 2012-11-15 |
US8538263B2 (en) | 2013-09-17 |
US20120087654A1 (en) | 2012-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5316639B2 (ja) | 光通信システム、その光受信機、その光通信方法 | |
JP5273262B2 (ja) | 偏波多重光受信機 | |
JP5476697B2 (ja) | 光信号送信装置 | |
JP5712935B2 (ja) | 波長分散を検出する方法及び装置並びに波長分散を補償する方法及び装置 | |
JP4781094B2 (ja) | 光送信装置 | |
JP2006262452A (ja) | 自動分散補償型光伝送システム | |
JP5068240B2 (ja) | 光伝送方式、送信器及び受信器 | |
JP6107815B2 (ja) | 光送信装置、光通信システム、光受信装置、光送信装置の調整方法、光送信方法、及び光受信方法 | |
JP4320573B2 (ja) | 光受信方法、光受信装置及びこれを用いた光伝送システム | |
EP1617576A1 (en) | Bandwidth limited frequency shift keying modulation format | |
KR20050096145A (ko) | 광전송 방법 및 광전송 장치 | |
JP5365271B2 (ja) | 光受信装置、光送信装置、通信システム、光信号多重方法、光信号分離方法及びプログラム | |
JP2008167235A (ja) | 偏波スクランブラ装置、送信装置、中継装置および偏波スクランブラ方法 | |
JP6047056B2 (ja) | マルチキャリア光送信器及びマルチキャリア光送信方法 | |
JP2019200379A (ja) | 波長変換装置、伝送装置、及び伝送システム | |
JP5316593B2 (ja) | 光送信装置 | |
US7319823B2 (en) | Modulation scheme and transmission system for NRZ signals with left and right side filtering | |
JP2000324054A (ja) | 光送信器及びそれを用いた光伝送装置 | |
JP3788417B2 (ja) | 分散測定方法 | |
JP2002164850A (ja) | 光送信器及び光変調方法 | |
JP2000321171A (ja) | 分散測定装置および分散測定方法 | |
JP2005006176A (ja) | 光位相検知装置、光位相制御装置及び光送信装置 | |
JP2006333311A (ja) | 波長分散モニタ安定化方法および波長分散モニタ装置 | |
Nezam et al. | DOP-based PMD monitoring in optical subcarrier multiplexed systems by carrier/sideband equalization | |
JP2009081484A (ja) | Fm変調測定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10783077 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13376121 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011518219 Country of ref document: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10783077 Country of ref document: EP Kind code of ref document: A1 |