WO2010140229A1 - 車両の制御装置および制御方法 - Google Patents

車両の制御装置および制御方法 Download PDF

Info

Publication number
WO2010140229A1
WO2010140229A1 PCT/JP2009/060133 JP2009060133W WO2010140229A1 WO 2010140229 A1 WO2010140229 A1 WO 2010140229A1 JP 2009060133 W JP2009060133 W JP 2009060133W WO 2010140229 A1 WO2010140229 A1 WO 2010140229A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
ecu
actuator
factor
vehicle
Prior art date
Application number
PCT/JP2009/060133
Other languages
English (en)
French (fr)
Inventor
貴彦 堤
一郎 北折
弘記 上野
圭介 関谷
俊成 鈴木
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/060133 priority Critical patent/WO2010140229A1/ja
Priority to US13/260,032 priority patent/US9611932B2/en
Priority to JP2011518121A priority patent/JP5196017B2/ja
Priority to DE112009004849.8T priority patent/DE112009004849B4/de
Priority to CN200980159660.1A priority patent/CN102459964B/zh
Publication of WO2010140229A1 publication Critical patent/WO2010140229A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/32Electric motors actuators or related electrical control means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/01Monitoring wear or stress of gearing elements, e.g. for triggering maintenance
    • F16H2057/016Monitoring of overload conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/32Electric motors actuators or related electrical control means therefor
    • F16H2061/326Actuators for range selection, i.e. actuators for controlling the range selector or the manual range valve in the transmission

Definitions

  • the present invention relates to control of a vehicle including a shift switching mechanism that switches a shift range of a transmission by driving an actuator.
  • Patent Document 1 discloses a rotation of an actuator that drives a shift switching mechanism that switches a shift range of a transmission using an encoder that can detect only relative position information.
  • Patent Document 2 discloses a rotation of an actuator that drives a shift switching mechanism that switches a shift range of a transmission using an encoder that can detect only relative position information.
  • a shift control system that can appropriately control the shift is disclosed.
  • the actuator is rotated so that the wall of the detent plate is pressed against the roller of the detent spring (hereinafter referred to as “pushing control” or “wall pushing”).
  • the position of the wall of the detent plate is detected by detecting the contact position.
  • JP 2004-308752 A Japanese Patent Laid-Open No. 2005-69406 JP 2002-323127 A JP 2006-336840 A JP 2007-247724 A
  • ECU Electronic Control Unit
  • the above-described wall contact control is performed each time the ECU is started (every time the ECU is turned on).
  • the number of executions of wall contact control that is, the number of times the wall of the detent plate is brought into contact with the roller of the detent spring, increases the durability of the components of the shift switching mechanism. There is a concern that it will get worse.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a component of a shift switching mechanism in a vehicle having a shift switching mechanism that switches a shift range of a transmission by driving an actuator. It is an object of the present invention to provide a control device and a control method capable of suppressing deterioration in durability.
  • the control device is a vehicle control device including a shift switching mechanism that switches a shift range of a transmission by driving an actuator.
  • the shift switching mechanism is in contact with a predetermined portion of the rotating member when the rotating member connected to the actuator and the rotation position of the rotating member in a predetermined direction become a reference position corresponding to a predetermined shift range by driving the actuator.
  • a regulating member that regulates rotation of the rotating member in a predetermined direction.
  • the control device is activated in response to a first device that detects a start operation of the vehicle by a user of the vehicle and when the first device detects the start operation or a factor different from the start operation occurs.
  • a second device for controlling the driving of the motor.
  • the second device determines whether the start factor of the second device is a start operation or a factor different from the start operation in response to the start of the second device, and the start factor of the second device is the start operation Further, in order to detect the reference position, the actuator is controlled to rotate the rotating member in a predetermined direction and press the predetermined portion of the rotating member against the regulating member, and the activation factor of the second device is started. When the factor is different from the operation, the actuator is controlled not to execute the pushing control.
  • the actuator needs an initial drive that is determined in advance before being driven by the pushing control.
  • the second device executes initial control for performing initial driving when the second device is started, and determines whether the starting factor of the second device is a starting operation or a factor different from the starting operation after completion of the initial control. .
  • the control device further includes a third device that transmits start information corresponding to the detection of the start operation by the first device to the second device.
  • the second device receives the start information from when the initial control is completed until the predetermined period elapses, the second device executes the pushing control assuming that the activation factor of the second device is the start operation, and from the time when the initial control is completed. If the start information is not received even after the predetermined period has elapsed, it is determined that the activation factor of the second device is a factor different from the activation operation, and the pushing control is not executed.
  • the second device temporarily maintains the actuator in a state after the initial control when the start information is not yet received when the initial control is completed until the predetermined period elapses from the completion of the initial control. If the start information is not received during the initial control, the actuator is temporarily maintained in the state after the initial control. If the start information is received before the predetermined period elapses after the initial control is completed, the start information is received. At that time, the pushing control is executed without re-executing the initial control, and if the start information is not received even after a predetermined period has elapsed since the completion of the initial control, the actuator is returned to the state before the initial control.
  • control device further includes a fourth device that performs an abnormality determination for determining whether or not the second device has an abnormality based on a result of the second device performing the pushing control.
  • the fourth device does not perform abnormality determination when the second device cannot execute the pushing control because the activation factor of the second device is different from the start operation.
  • the vehicle includes a power source that supplies power to the second device.
  • the second device sets the shift range to the parking range by executing the pushing control.
  • the control device further includes a fourth device that controls supply of power from the power source to the second device.
  • the fourth device has predetermined conditions including a condition that the shift range is a range different from the parking range when the second device performs the pushing control because the activation factor of the second device is a start operation.
  • the vehicle has at least an internal combustion engine as a drive source.
  • Factors different from the starting operation include the necessity of diagnosing an abnormality related to the internal combustion engine when the second device is not started.
  • a control method is a vehicle control method including a shift switching mechanism that switches a shift range of a transmission by driving an actuator.
  • the shift switching mechanism is in contact with a predetermined portion of the rotating member when the rotating member connected to the actuator and the rotation position of the rotating member in a predetermined direction become a reference position corresponding to a predetermined shift range by driving the actuator.
  • a regulating member that regulates rotation of the rotating member in a predetermined direction.
  • the vehicle is activated in response to a first device that detects a start operation of the vehicle by a user of the vehicle and when the first device detects the start operation, or when a factor different from the start operation occurs.
  • a second device for controlling driving The control method is a method performed by the second device.
  • a step of determining whether the start factor of the second device is a start operation or a factor different from the start operation in response to the start of the second device, and the start factor of the second device is the start operation In some cases, the step of controlling the actuator so as to execute the pressing control for pressing the predetermined portion of the rotating member against the regulating member in order to detect the reference position, and the factor that the starting factor of the second device is different from the starting operation And the step of controlling the actuator so as not to perform the pushing control.
  • the second device that controls the driving of the actuator performs pushing control when the activation factor of the second device is a vehicle start operation by the user, but the activation factor of the second device is When the factor is different from the operation, the pushing control is not executed. Therefore, compared with the case where the pushing control is performed every time the second device is activated, the number of times the pushing control is performed can be reduced, and deterioration of the durability of the components of the shift switching mechanism can be suppressed.
  • FIG. 6 is a process flowchart of the P-ECU.
  • FIG. 6 is a diagram (No. 1) showing a temporal change in an actuator control mode when a P-ECU 40 is activated.
  • FIG. 10 is a diagram (part 2) illustrating a temporal change in the actuator control mode when the P-ECU 40 is activated.
  • FIG. 10 is a diagram (No.
  • FIG. 3 shows a temporal change in the actuator control mode when the P-ECU 40 is activated.
  • FIG. (1) which shows the permanent retention mask flag of a main relay.
  • FIG. 10 is a second diagram illustrating a permanent retention mask flag of the main relay.
  • FIG. 1 shows a configuration of a vehicle 10 including a control device according to the present embodiment.
  • the vehicle 10 according to the present embodiment is a hybrid vehicle that uses an engine 11 and a motor generator (MG) 12 as drive sources.
  • a plurality of MGs 12 may be provided.
  • the vehicle to which the present invention is applicable is not particularly limited to a hybrid vehicle.
  • a vehicle to which the present invention can be applied may be a vehicle using an engine as a drive source, an electric vehicle using a motor generator as a drive source, a fuel cell vehicle, or the like.
  • Vehicle 10 includes a shift control system for switching a shift range of drive mechanism 70 including a continuously variable transmission mechanism, in addition to engine 11 and motor generator (MG) 12 which are drive sources.
  • This shift control system functions as a shift-by-wire system that switches the shift range by electrical control.
  • This shift control system includes a P switch 20, a shift switch 26, a start switch 28, a vehicle control device (hereinafter also referred to as “V-ECU”) 30, a parking control device (hereinafter also referred to as “P-ECU”) 40, A power management control device (hereinafter also referred to as “PM-ECU”) 50, a body control device (hereinafter also referred to as “B-ECU”) 60, a drive mechanism 70, an actuator 45, an encoder 46, and a shift switching mechanism 48 are included. .
  • the shift switching mechanism 48 is operated by driving the actuator 45 to switch the shift range.
  • the P switch 20 is a switch for switching the shift range between a parking range (hereinafter also referred to as “P range”) and a range other than parking (hereinafter also referred to as “non-P range”).
  • the P switch 20 includes an indicator 22 for indicating a switch state to the driver, and an input unit 24 for receiving an instruction from a user such as a driver.
  • the driver inputs an instruction to put the shift range into the P range through the input unit 24.
  • the input unit 24 may be a momentary switch.
  • the instruction from the driver received by the input unit 24 is transmitted to the P-ECU 40 via the V-ECU 30 and the V-ECU 30.
  • the shift switch 26 switches the shift range to a drive range (D), reverse range (R), neutral range (N), brake range (B), or the like, or when the shift range is the P range. It is a switch for canceling.
  • the instruction from the user received by the shift switch 26 is transmitted to the V-ECU 30.
  • the V-ECU 30 performs control to switch the shift range in the drive mechanism 70 based on an instruction from the driver.
  • the drive mechanism 70 is composed of a continuously variable transmission mechanism, but may be composed of a stepped transmission mechanism.
  • the V-ECU 30 comprehensively manages the operation of the vehicle 10 based on information from an accelerator pedal position sensor and a brake pedal force sensor (not shown) in addition to the P switch 20 and the shift switch 26.
  • the V-ECU 30 integrally includes an engine control device (ENG-ECU) for mainly controlling the system of the engine 11 and a hybrid control device (HV-ECU) for controlling the entire hybrid system.
  • ENG-ECU engine control device
  • HV-ECU hybrid control device
  • the V-ECU 30 is connected to the P-ECU 40, the PM-ECU 50, and the B-ECU 60 via a CAN (Controller Area Network) communication line 80, and communicates with each control device via the CAN communication line 80 as necessary.
  • the V-ECU 30 receives an IG state signal indicating whether or not an IG relay 52 (described later) is actually on.
  • the P-ECU 40 controls the operation of the actuator 45 that drives the shift switching mechanism 48 in order to switch the shift range between the P range and the non-P range.
  • the P-ECU 40 controls the operation of the actuator 45 so as to switch the shift range to the P range.
  • Actuator 45 is constituted by a switched reluctance motor (hereinafter also referred to as “SR motor”), and drives shift switching mechanism 48 in response to an instruction from P-ECU 40.
  • the encoder 46 rotates integrally with the actuator 45 and detects the rotation amount (rotation speed) of the SR motor.
  • the encoder 46 of this embodiment is a rotary encoder that outputs A-phase, B-phase, and Z-phase signals.
  • the P-ECU 40 obtains a signal output from the encoder 46, grasps the rotation state of the SR motor, and controls energization for driving the SR motor. It should be noted that the actuator 45 needs to be initially driven to adjust the initial phase at the beginning of driving. For this reason, the P-ECU 40 first performs control for initially driving the actuator 45 (hereinafter also referred to as “initial drive control”) when starting itself, and after completing the initial drive control, normal control and wall contact control ( (To be described later).
  • the start switch 28 is a switch for the user to input an operation for switching on / off the power of a plurality of electric devices constituting the entire hybrid system of the vehicle 10.
  • the start switch 28 is, for example, an ignition (IG) switch.
  • IG on operation When the start switch 28 detects that the user has performed an operation for starting the vehicle 10 (hereinafter, also referred to as “IG on operation”), the start switch 28 transmits information indicating the IG on operation to the PM-ECU 50.
  • PM-ECU 50 switches on / off the power of a plurality of electric devices mounted on vehicle 10.
  • the PM-ECU 50 receives information indicating the IG-on operation from the start switch 28, the PM-ECU 50 transmits an IG-on command signal for turning on the IG relay 52 to the IG relay 52.
  • a plurality of electric devices constituting a hybrid system including control devices such as the V-ECU 30, the P-ECU 40, and the B-ECU 60 are connected to a power source 54 such as a battery via an IG relay 52. Therefore, when the IG relay 52 is turned on, power is supplied to each control device. In response to this, each control device is activated, and the vehicle 10 enters a travelable state (READY-ON state). The electric power supplied to the actuator 45 is controlled by the P-ECU 40 after the P-ECU 40 is started.
  • the V-ECU 30 and the P-ECU 40 are also connected to the power source 54 via the main relay 35. Therefore, the V-ECU 30 and the P-ECU 40 are activated even when the main relay 35 is turned on.
  • On / off of the main relay 35 is controlled by the V-ECU 30.
  • the on / off of the main relay 35 may be controlled by the PM-ECU 50, or may be controlled by both the V-ECU 30 and the PM-ECU 50.
  • the PM-ECU 50 is connected to the P-ECU 40 through a LIN (Local Interconnect Network) communication line 90, and performs communication with the P-ECU 40 through the LIN communication line 90 as necessary.
  • LIN Local Interconnect Network
  • the B-ECU 60 transmits a signal indicating the body state of the vehicle 10 (for example, a PKB signal indicating the parking brake state) to each control device via the CAN communication line 80.
  • the B-ECU 60 receives an IG state signal indicating whether or not the IG relay 52 is actually on.
  • the B-ECU 60 transmits an IG (CAN) signal to the P-ECU 40 through the CAN communication line 80.
  • activation of the V-ECU 30 and the P-ECU 40 will be described.
  • the activation of the V-ECU 30 and the P-ECU 40 is mainly divided into the following two layers.
  • the first activation is a normal activation based on the user performing an IG on operation. That is, as described above, when the user performs an IG on operation in the IG off state, PM-ECU 50 turns IG relay 52 on. As a result, electric power is supplied from power supply 54 to V-ECU 30 and P-ECU 40, and V-ECU 30 and P-ECU 40 are activated.
  • the second activation is an activation based on a factor (hereinafter also referred to as “external factor”) such as OBD that is not based on the user's IG ON operation.
  • the V-ECU 30 (more specifically, the ENG-ECU included in the V-ECU 30) has a predetermined frequency (for example, five times per day) after the IG is turned off. Diagnose whether fuel is leaking from the tank (hereinafter also referred to as “leak check”). This leak check is an example of the aforementioned external factor.
  • the V-ECU 30 activates itself by turning on the main relay 35 at a predetermined frequency for a leak check even after the IG is turned off.
  • the PM-ECU 50 may turn on the main relay 35 to activate the V-ECU 30 during a leak check. Then, the main relay 35 is turned on during the leak check, and the P-ECU 40 is also activated. Note that, after the leak check is completed, the V-ECU 30 turns on the main relay 35 to stop itself. Along with this, the P-ECU 40 is also stopped.
  • the shift switching mechanism 48 will be described with reference to FIG. FIG. 2 shows the configuration of the shift switching mechanism 48.
  • the shift range means the P range and the non-P range, and does not include the R, N, D, and B ranges in the non-P range.
  • the shift switching mechanism 48 is connected to the actuator 45 through the shaft 102 and rotates with the rotation of the actuator 45, the rod 104 that operates with the rotation of the detent plate 100, and the output shaft of the transmission (not shown).
  • a parking gear 108 fixed to the parking gear 108, a parking lock pole 106 for locking the parking gear 108, a detent spring 110 and a roller 112 for restricting the rotation of the detent plate 100 to a predetermined range and fixing the shift range.
  • the detent plate 100 is driven by the actuator 45 to switch the shift range.
  • the shaft 102, the detent plate 100, the rod 104, the detent spring 110, and the rollers 112 serve as a shift switching mechanism.
  • FIG. 2 shows a state when the shift range is the non-P range. In this state, since the parking lock pole 106 does not lock the parking gear 108, the rotation of the drive shaft of the vehicle is not hindered.
  • the shaft 45 is rotated clockwise by the actuator 45 from this state, the rod 104 is pushed in the direction of the arrow A shown in FIG. 2 via the detent plate 100, and parking is performed by the tapered portion provided at the tip of the rod 104.
  • the lock pole 106 is pushed up in the direction of arrow B shown in FIG.
  • the roller 112 of the detent spring 110 existing in the non-P range position 120 which is one of the two valleys provided at the top of the detent plate 100 is accompanied by the clockwise rotation of the detent plate 100.
  • the roller 112 is provided on the detent spring 110 so as to be rotatable in its axial direction.
  • the detent plate 100 rotates until the roller 112 reaches the P range position 124, the parking lock pole 106 is pushed up to a position where it engages with the parking gear 108.
  • the drive shaft of the vehicle is mechanically fixed, and the shift range is switched to the P range.
  • FIG. 3 shows the configuration of the detent plate 100.
  • a P wall 200 and a non-P wall 210 are provided on the surfaces located on the side away from the mountain 122 at the P range position 124 and the non-P range position 120, respectively.
  • the rotation of the detent plate 100 (that is, the rotation of the actuator 45) is restricted by the P wall 200 and the non-P wall 210 colliding with the roller 112.
  • FIG. 4 is a diagram for explaining the P range determination process performed by the P-ECU 40.
  • the P range determination process is a process for actually detecting that the shift range is the P range.
  • FIG. 4 conceptually shows the position of the P wall 200 when the P-ECU 40 performs the P range determination process.
  • the range from the P wall position to the non-P wall position shown in FIG. 4 is the movable rotation range of the actuator 45.
  • the P-ECU 40 sets the P lock determination position at a position away from the P wall position by a predetermined range. Then, P-ECU 40 determines that the shift range is the P range when the relative position of actuator 45 to the P wall position is included in the range between the P wall position and the P lock determination position.
  • the P wall position becomes a reference position for actually detecting that the shift range is the P range by the P range determination process. Therefore, in order to determine that the shift range is the P range by the P range determination process, it is necessary to detect the P wall position.
  • the encoder 46 can detect the relative position of the actuator 45, but cannot detect the absolute position of the actuator 45.
  • the P-ECU 40 performs control to rotate the actuator 45 and press the P wall 200 against the roller 112 (hereinafter also referred to as “P wall contact control”), and the actuator detected by the encoder 46 during the P wall contact control.
  • the P wall position is detected using 45 relative positions.
  • the shift range is set to the P range by executing this P wall contact control.
  • FIG. 5 is a diagram for explaining the P wall contact control performed to detect the P wall position.
  • the P-ECU 40 causes the actuator 45 to rotate the detent plate 100 in the clockwise direction, that is, the direction in which the P wall 200 faces the roller 112 of the detent spring 110, thereby bringing the P wall 200 into contact with the roller 112.
  • the roller 112 restricts the clockwise rotation of the actuator 45 at the P range position.
  • an arrow F ⁇ b> 1 indicates a rotational force by the actuator 45
  • an arrow F ⁇ b> 2 indicates a spring force by the detent spring 110
  • an arrow F ⁇ b> 3 indicates a push-back force by the rod 104.
  • a detent plate 100A indicated by a dotted line indicates a position where the P wall 200 and 112 are in contact with each other. Therefore, detecting the position of the detent plate 100A corresponds to detecting the P wall position.
  • the detent plate 100 is rotated against the spring force of the detent spring 110 in the clockwise direction by the rotational force F1 of the actuator 45 from the position indicated by the dotted line even after contact with the P wall 200 and 112. As a result, the detent spring 110 is deflected, the spring force F2 is increased, and the pushing back force F3 by the rod 104 is also increased. The rotation of the detent plate 100 stops when the rotational force F1 is balanced with the spring force F2 and the pushing back force F3.
  • the rotation stop of the detent plate 100 is determined based on the detection value of the encoder 46 (relative position of the actuator 45). Specifically, when the detection value of the encoder 46 does not change for a predetermined time, it is determined that the rotation of the detent plate 100 and the actuator 45 has stopped.
  • the P-ECU 40 detects the position of the detent plate 100 when the rotation is stopped as a provisional P wall position (hereinafter also referred to as “provisional P wall position”), and calculates a deflection amount or a deflection angle of the detent spring 110. .
  • provisional P wall position a provisional P wall position
  • the calculation of the deflection amount or the deflection angle is performed using a map that is held in advance in the P-ECU 40 and shows the relationship between the deflection amount or the deflection angle corresponding to the voltage applied to the actuator 45.
  • the P-ECU 40 calculates a deflection amount or a deflection angle corresponding to a voltage applied to the actuator 45 when the temporary P wall position is detected from the map.
  • the P-ECU 40 corrects the temporary P wall position from the calculated deflection amount or deflection angle, and determines the corrected position as the P wall position. By determining the P wall position, the P lock determination process can be performed. Note that the method for calculating the deflection amount or the deflection angle of the detent spring 110 is not particularly limited to using the map described above.
  • the actuator 45 is rotated to bring the P wall 200 of the detent plate 100 and the roller 112 of the detent spring 110 into contact with each other. Then, the P wall position is detected by detecting the contact position.
  • this P wall position as a reference position, it is possible to properly grasp the rotational position of the actuator 45 even if an encoder 46 that can detect only relative position information is used, and the shift range is actually the P range. Can be detected.
  • the P-ECU 40 is activated not only when the user performs the IG on operation, but also by an external factor such as a leak check after the IG is turned off. Therefore, if the P wall contact control is performed every time the P-ECU 40 is activated, the number of executions of the P wall contact control, that is, the number of times the P wall 200 is pressed against the rollers 112 increases, and the durability of the components of the shift switching mechanism 48 increases. Can get worse.
  • the P-ECU 40 determines whether its own starting is due to an IG on operation or an external factor, and is based on an IG on operation. In this case, the P wall contact control is executed, and when the activation is based on an external factor, the P wall contact control is not executed. This is the most characteristic point of the present invention.
  • FIG. 6 shows a functional block diagram of the P-ECU 40.
  • P-ECU 40 includes an input interface 41, a calculation processing unit 42, a storage unit 43, and an output interface 44.
  • each sensor and each ECU such as an IG (LIN) signal from the PM-ECU 50, an IG (CAN) signal from the B-ECU 60, and the rotation amount of the actuator 45 from the encoder 46 are input to the input interface 41.
  • IG LIN
  • IG CAN
  • the rotation amount of the actuator 45 from the encoder 46 are input to the input interface 41.
  • the storage unit 43 stores various information, programs, threshold values, maps, and the like, and data is read from and stored in the arithmetic processing unit 42 as necessary.
  • the arithmetic processing unit 42 performs arithmetic processing based on information from the input interface 41 and the storage unit 43.
  • the processing result of the arithmetic processing unit 42 is output to each device via the output interface 44.
  • the arithmetic processing unit 42 sets the control mode of the actuator 45 to any one of the initial standby mode, the initial drive mode, the wall contact control mode, and the normal mode, and controls the actuator 45 in the set control mode.
  • the initial standby mode is a mode in which energization of the actuator 45 is cut off and the actuator 45 is kept on standby.
  • the initial drive mode is a mode in which energization to the actuator 45 is started and the actuator 45 is initially driven. After completion of the initial drive, it is possible to shift to wall contact control or normal control.
  • the wall contact control mode is a mode in which wall contact control is performed to detect the P wall position.
  • the normal mode is a mode in which the P range and the non-P range are switched according to the operation of the P switch 20 and the shift switch 26 by the user.
  • the arithmetic processing unit 42 includes an initial drive unit 42A, an IG determination unit 42B, a wall contact control unit 42C, a maintenance control unit 42D, and a standby control unit 42E.
  • the initial drive unit 42A performs initial drive control when the P-ECU 40 is activated (when power is supplied from the power source 54 to the P-ECU 40). Specifically, the initial drive unit 42A starts energization of the actuator 45 when the P-ECU 40 is activated, and performs initial drive of the actuator 45 until a predetermined time T1 elapses from the start of energization.
  • the predetermined time T1 is stored in advance in the storage unit 43 as a time required for completing the initial drive.
  • the IG determination unit 42B determines whether the activation of the P-ECU 40 is an activation due to an IG on operation by the user or an activation due to an external factor. Specifically, the IG determination unit 42B determines whether or not at least one of the IG (LIN) signal and the IG (CAN) signal is received. The determination whether or not the IG signal is received is continued until the predetermined time T2 elapses from the completion of the initial drive control until the IG signal is determined to be received, and the predetermined time T2 elapses. However, if it is not determined that the IG signal has been received, the process is terminated when the predetermined time T2 has elapsed. The predetermined time T2 is set in advance and stored in the storage unit 43 in consideration of the communication delay of the IG (LIN) signal or the IG (CAN) signal.
  • the wall contact control unit 42C When the wall contact control unit 42C receives the IG signal from the completion of the initial drive control until the predetermined period T2 elapses, the wall contact control unit 42C determines that the activation of the P-ECU 40 is the activation by the IG ON operation, and the IG signal The wall-to-wall control is executed when it is received. In addition, after completion of P wall contact control, it transfers to normal mode.
  • the maintenance control unit 42D temporarily maintains the actuator 45 in the state where the initial drive control is completed when the IG signal has not been received yet when the initial drive control is completed. Then, the maintenance control unit 42D continues to temporarily maintain the actuator 45 in the state where the initial drive control is completed until the IG signal is received from when the initial drive control is completed until the predetermined period T2 elapses. To do.
  • the standby control unit 42E performs the initial standby control when the IG signal is not received even after the predetermined period T2 has elapsed from the completion of the initial drive control. Specifically, the standby control unit 42E cuts off the power supply to the actuator 45 and returns the actuator to the initial standby state before the initial drive control.
  • FIG. 7 is a processing flow of the P-ECU 40 when the above-described functions are realized by software. This process is executed when the P-ECU 40 is activated.
  • step (hereinafter abbreviated as S) 100 P-ECU 40 starts the above-described initial drive control.
  • the P-ECU 40 determines whether or not the initial drive control is completed. This determination is made based on whether or not a predetermined time T1 has elapsed since the start of the initial drive control. If a positive determination is made in this process (YES in S102), the process proceeds to S104. Otherwise (NO in S102), the process returns to S102 and is repeated until a predetermined time T1 has elapsed. Note that an initial drive completion flag (a flag indicating that the initial drive has been completed) is turned on when a predetermined time T1 has elapsed since the start of the initial drive control.
  • P-ECU 40 determines whether or not at least one of the IG (LIN) signal and the IG (CAN) signal has been received. If a positive determination is made in this process (YES in S104), the process proceeds to S106. Otherwise (NO in S104), the process proceeds to S108. If neither the IG (LIN) signal nor the IG (CAN) signal is received when the initial drive is completed, a timer for counting a predetermined time T2 is started from the completion of the initial drive.
  • the P-ECU 40 executes the above-described P wall contact control. In addition, after the completion of the P wall contact control, the mode is shifted to the normal mode.
  • the P-ECU 40 determines whether or not a predetermined time T2 has elapsed since the completion of the initial drive control. If a positive determination is made in this process (YES in S108), the process proceeds to S112. Otherwise (NO in S108), the process proceeds to S110.
  • the P-ECU 40 temporarily maintains the actuator 45 in a state where the initial drive control is completed. Thereafter, the process returns to S104.
  • the P-ECU 40 performs the initial standby control described above. Note that, along with the start of the initial standby control, the initial drive completion flag is turned off and the initial drive transition prohibition flag (flag indicating prohibition of transition to the initial drive mode) is turned on.
  • FIG. 8 is a diagram showing a temporal change in the actuator control mode when the P-ECU 40 is activated by an external factor.
  • the P-ECU 40 is also activated accordingly. With the activation of the P-ECU 40, the P-ECU 40 starts energizing the actuator 45 and performs the initial drive of the actuator 45 until time t2 when a predetermined time T1 elapses. At time t2, the initial drive control is completed and the initial drive completion flag is turned on.
  • the P-wall contact control is started at the time t2 when the initial drive control is completed, as indicated by the one-dot chain line.
  • P-ECU 40 does not receive either the IG (LIN) signal or the IG (CAN) signal at time t2 (OFF) (NO in S104). Is activated in response to the activation of the V-ECU 30 for the leak check, and the actuator 45 is temporarily maintained in the state where the initial drive has been completed without shifting to the P wall contact control (S108). NO, S110).
  • the P-ECU 40 when the activation of the P-ECU 40 is not an activation due to the IG ON operation but an activation due to an external factor (activation according to the activation of the V-ECU 30 for leak check), Since it is not necessary to perform the confirmation process, the P-ECU 40 does not execute the P wall contact control. Therefore, the number of executions of the P wall contact control can be reduced and the deterioration of the durability of the components of the shift switching mechanism 48 can be suppressed as compared with the case where the P wall contact control is performed every time the P-ECU 40 is activated. .
  • the P-ECU 40 cuts off the power supply to the actuator 45 at time t3. Then, the actuator 45 is returned to the initial standby state (NO in S104, YES in S108, S112). This prevents the energization of the actuator 45 from being continued, so that the thermal durability of the actuator 45 is improved.
  • FIG. 9 is a diagram showing a temporal change in the actuator control mode at the normal start-up by the IG-on operation.
  • a plurality of electric devices including the P-ECU 40 are activated.
  • the P-ECU 40 starts energizing the actuator 45 and performs the initial drive of the actuator 45 until time t5 when a predetermined time T1 elapses.
  • the IG (LIN) signal from the PM-ECU 50 and the IG (CAN) signal from the B-ECU 60 are received by the P-ECU 40 with a slight delay from time t4.
  • the P-ECU 40 starts the initial drive from time t4, and determines whether the IG (LIN) signal and the IG (CAN) signal are received at time t5 when the initial drive is completed (S102). YES, S104). For this reason, it is possible to start the initial drive earlier than in the case where the initial drive is started after the reception determination of the IG signal.
  • FIG. 10 also shows the temporal change of the actuator control mode at the normal startup by the IG on operation.
  • the P-ECU 40 is activated, and at time t8, which is from when the initial driving is completed until a predetermined time T2 has elapsed (from time t7 to t9), IG (CAN ) Shows a temporal change of the actuator control mode when a signal is received.
  • the IG signal is not received at time t7 when the initial drive is completed, but if the predetermined time T2 has not elapsed (NO in S108), the actuator 45 is temporarily maintained in the state where the initial drive is completed. (S110). Therefore, even if the IG (CAN) signal is received at the subsequent time t8 due to the influence of communication delay or the like, the IG (CAN) signal is received at the time t8 from the time t8 without performing the initial drive again. At that time, the P wall contact control can be started at an early stage.
  • the P-ECU determines whether its own activation is an activation due to an IG on operation or an activation due to an external factor.
  • the wall contact control is executed, and the P wall contact control is not executed when the activation is caused by an external factor. Therefore, the number of executions of the P wall contact control can be reduced and the deterioration of the durability of the components of the shift switching mechanism 48 can be suppressed as compared with the case where the P wall contact control is performed every time the P-ECU 40 is activated. .
  • FIG. 11 is a functional block diagram of the V-ECU 30 according to the present embodiment.
  • V-ECU 30 includes an input interface 31, a calculation processing unit 32, a storage unit 33, and an output interface 34.
  • the storage unit 33 stores various types of information, programs, threshold values, maps, and the like, and data is read or stored from the arithmetic processing unit 32 as necessary.
  • the arithmetic processing unit 32 performs arithmetic processing based on information from the input interface 31 and the storage unit 33.
  • the processing result of the arithmetic processing unit 32 is output to each device via the output interface 34.
  • the calculation processing unit 32 includes a permanent holding unit 32A, an abnormality detection unit 32B, a determination unit 32C, a first permission unit 32D, and a second permission unit 32E.
  • the permanent holding unit 32A has a permanent holding function of the main relay 35. Specifically, the permanent holding unit 32A permanently holds the main relay 35 when the IG is off and the N range is set.
  • “permanent holding” means that the main relay 35 is always kept on. Thereby, the V-ECU 30 and the P-ECU 40 are maintained in the activated state. Note that the PM-ECU 50 may have this permanent holding function.
  • the vehicle 10 is provided with a function of switching the vehicle state to the IG off state when the user keeps pressing the start switch 28 for a long time while the vehicle is running when the IG is on. This is a fail-safe function for allowing the user to appropriately reduce the driving force even when an abnormality occurs in the hybrid system.
  • P shift range to P range
  • the main relay 35 is permanently held, and the P-ECU 40 that performs P-locking is maintained in the activated state. This is the reason why the main relay 35 needs to be kept permanently. Note that the main relay 35 may be permanently held in the case of “IG off” and “non-P range”.
  • the abnormality detection unit 32B has a function of detecting a response abnormality of the P-ECU 40. Specifically, the abnormality detection unit 32B transmits a request for switching to the P range (or a request for switching to the non-P range) to the P-ECU 40, and a response indicating that the P range is from the P-ECU 40. Is not received, it is determined that the response of the P-ECU 40 is abnormal.
  • the P-ECU 40 does not execute the P wall contact control at the time of activation due to an external factor. At this time, if the V-ECU 30 permits the permanent holding function of the main relay 35 and the abnormality detection function of the V-ECU 30, Problems arise.
  • the vehicle is originally in the IG off state and the P-ECU 40 does not execute the P wall contact control (the shift range is not necessarily P lock).
  • the range is the N range
  • the condition “IG off and N range” is satisfied.
  • the main relay 35 cannot be turned off although it is not necessary to perform the P lock.
  • the P-ECU 40 when the P-ECU 40 is activated by an external factor, the P-ECU 40 does not execute the P wall contact control, and therefore does not perform the P range determination process and the control of the actuator 45 thereafter. Even if the V-ECU 30 transmits a request for switching to the P range to the P-ECU 40 in such a state, the P-ECU 40 cannot switch to the P range and the V-ECU 30 is in the P range. Can't send a response. Therefore, although the P-ECU 40 is normal, it is erroneously determined that the P-ECU 40 is abnormal in response.
  • the V-ECU 30 allows the permanent holding of the main relay 35 and the V-ECU 40 when the P-ECU 40 cannot execute the P wall contact control because the activation of the P-ECU 40 is an external factor. -The abnormality detection of the ECU 30 is not performed. This function is realized by the determination unit 32C, the first permission unit 32D, and the second permission unit 32E.
  • the determination unit 32C determines whether the activation of the P-ECU 40 is due to an external factor. For example, the determination unit 32C determines that the current IG state signal is OFF, there is no IG ON history during the current trip, and that the current V-ECU 30 is activated due to an external factor (for leak check) In the case of activation), it is determined that activation of the P-ECU 40 is activation due to an external factor.
  • 1st permission part 32D permits execution of the permanent retention function of main relay 35 by permanent retention part 32A, when activation of P-ECU 40 is not the activation by an external factor. Specifically, the permanent holding mask flag is set to “off”. On the other hand, when the activation of the P-ECU 40 is an activation due to an external factor, the first permission unit 32D prohibits the permanent holding function of the main relay 35 by the permanent holding unit 32A. Specifically, the permanent holding mask flag is turned “ON”.
  • the second permission unit 32E permits the abnormality detection unit 32B to execute the abnormality detection function of the P-ECU 40. Specifically, the abnormality detection mask flag is set to “off”. On the other hand, when the activation of the P-ECU 40 is an activation due to an external factor, the second permission unit 32E prohibits the abnormality detection unit 32B from executing the abnormality detection function of the P-ECU 40. Specifically, the abnormality detection mask flag is turned “ON”.
  • FIG. 12 is a processing flow of the V-ECU 30 when the functions of the determination unit 32C, the first permission unit 32D, and the second permission unit 32E described above are realized by software. This process is executed in a predetermined cycle when the IG is on.
  • V-ECU 30 determines whether or not the current IG state signal is OFF. If a positive determination is made in this process (YES in S200), the process proceeds to S202. Otherwise (NO in S200), the process proceeds to S210.
  • V-ECU 30 determines whether there is no history of IG on during the current trip. If a positive determination is made in this process (YES in S202), the process proceeds to S204. Otherwise (NO in S202), the process proceeds to S210.
  • the V-ECU 30 determines whether or not the current activation of the V-ECU 30 is an activation due to an external factor (activation for leak check). If a positive determination is made in this process (YES in S204), the process proceeds to S206. Otherwise (NO in S204), the process proceeds to S210.
  • the V-ECU 30 prohibits execution of the permanent holding function of the main relay 35 described above. Specifically, the V-ECU 30 sets the permanent holding mask flag to “ON”. Note that the permanent holding mask flag is set to “off” in the initial state.
  • the V-ECU 30 prohibits execution of the abnormality detection function of the P-ECU 40. Specifically, the abnormality detection mask flag is turned “ON”. Note that the abnormality detection mask flag is set to “off” in the initial state.
  • the V-ECU 30 permits execution of the permanent holding function described above. Specifically, the V-ECU 30 sets the permanent retention mask flag to “off”.
  • the V-ECU 30 permits execution of the abnormality detection function of the P-ECU 40 described above. Specifically, the abnormality detection mask flag is set to “off”.
  • V-ECU 30 The operation of the V-ECU 30 according to this embodiment based on the above-described structure and flowchart will be described with reference to FIGS. 13 and 14, the operation in which the V-ECU 30 sets the permanent holding mask flag will be described.
  • FIG. 13 shows a permanent holding mask flag when the user traveling on the vehicle presses the start switch 28 for a long time.
  • FIG. 13 shows a case where the IG is turned off by pressing and holding the start switch 28 at time t11 (actually, the accessory state (ACC state) is set) and the shift range is the N range.
  • the IG is off (YES in S200), but since there is an IG on history (NO in S202), the permanent holding mask flag is “off” (S210). Therefore, as shown in FIG. 13, the permanent holding function is activated at time t11, and the permanent holding request is turned on. As a result, since the P-ECU 40 is maintained in the activated state, the P lock can be applied even after that.
  • FIG. 14 shows a permanent holding mask flag when the V-ECU 30 is activated for a leak check.
  • the IG is off (YES at S200), and there is no IG on history (NO at S202), and the current activation of V-ECU 30 is the activation by an external factor. (YES in S204), the permanent holding mask flag is turned “ON” (S206).
  • the V-ECU 30 when the activation factor of the P-ECU 40 is the IG on operation, the V-ECU 30 according to the present embodiment permanently holds the main relay 35 when “IG off and N range”. As a result, it is avoided that the P lock cannot be performed when the IG is turned off by the fail safe function.
  • the activation factor of P-ECU 40 when the activation factor of P-ECU 40 is an external factor, V-ECU 30 does not permanently hold main relay 35 even in the “IG off and N range”. As a result, it is possible to avoid that the main relay 35 cannot be turned off when the P-ECU 40 is activated for a leak check, and it is possible to prevent the power of the power source 54 from being wasted.
  • the V-ECU 30 does not detect the abnormality of the V-ECU 30 when the P-ECU 40 cannot execute the P wall contact control because the activation of the P-ECU 40 is an external factor. . Therefore, it is possible to prevent the V-ECU 30 from erroneously determining that the P-ECU 40 is normal even though the P-ECU 40 is normal.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear-Shifting Mechanisms (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 P-ECUは、シフト切換機構を駆動するアクチュエータの初期駆動制御の完了時点で(S102にてYES)、IG信号を受信しているか否かを判断する(S104)。P-ECUは、初期駆動制御の完了時にIG信号を受信していない場合(S104にてNO)、アクチュエータを一時的に初期駆動制御が完了した状態に維持し(S108にてNO、S110)、初期駆動制御の完了時から所定時間T2が経過するまでにIG信号を受信した場合(S108にてNO、S104にてYES)、IG信号を受信した時点でP壁当制御を実行する(S106)。

Description

車両の制御装置および制御方法
 本発明は、アクチュエータの駆動によって変速機のシフトレンジを切り換えるシフト切換機構を備えた車両の制御に関する。
 従来より、運転者によるシフトレバーの操作に従い、自動変速機のシフトレンジを電気制御により切り替えるシフト制御システムが知られている。このようなシフト制御システムとして、特開2004-308752号公報(特許文献1)には、相対位置情報しか検出できないエンコーダを用いて、変速機のシフトレンジを切り換えるシフト切換機構を駆動するアクチュエータの回転を適切に制御することができるシフト制御システムが開示されている。
 特開2004-308752号公報に開示されたシフト制御システムは、アクチュエータを回転させて、ディテントプレートの壁をディテントスプリングのころに押し当てて接触させる制御(以下、「押当制御」あるいは「壁当制御」ともいう)を行ない、その接触位置を検出することにより、ディテントプレートの壁位置を検出する。この壁位置を基準位置として設定することにより、相対位置情報しか検出できないエンコーダを用いても、アクチュエータの回転を適切に制御することができる。
特開2004-308752号公報 特開2005-69406号公報 特開2002-323127号公報 特開2006-336840号公報 特開2007-247724号公報
 ところで、近年、OBD(On Board Diagnostics)などの要因から、ユーザが車両を始動させる操作を行なった場合だけではなく、ユーザが車両を始動させる操作を行なっていない場合にも、シフト切換機構を駆動するアクチュエータなどを含む車両の電気機器を制御するための電子制御装置(Electronic Control Unit、以下、「ECU」という)を起動して、車両状態をチェックする必要が生じている。
 従来においては、ECUの起動毎(ECUの電源を入れる毎)に上述の壁当制御を行なっていた。しかしながら、ECUの起動毎に壁当制御を行なうと、壁当制御の実行回数、すなわちディテントプレートの壁と、ディテントスプリングのころとを接触させる回数が増加し、シフト切換機構の構成部品の耐久性が悪化することが懸念される。
 本発明は、上述の課題を解決するためになされたものであって、その目的は、アクチュエータの駆動によって変速機のシフトレンジを切り換えるシフト切換機構を備えた車両において、シフト切換機構の構成部品の耐久性の悪化を抑制することができる制御装置および制御方法を提供することである。
 この発明に係る制御装置は、アクチュエータの駆動によって変速機のシフトレンジを切り換えるシフト切換機構を備えた車両の制御装置である。シフト切換機構は、アクチュエータに連結された回転部材と、アクチュエータの駆動によって回転部材の所定方向の回転位置が所定のシフトレンジに対応する基準位置となったときに回転部材の所定部位に当接して回転部材の所定方向の回転を規制する規制部材とを含む。制御装置は、車両のユーザによる車両の始動操作を検出する第1装置と、第1装置が始動操作を検出したこと、あるいは、始動操作とは異なる要因が生じたことに応じて起動され、アクチュエータの駆動を制御する第2装置とを含む。第2装置は、第2装置の起動に応じて第2装置の起動要因が始動操作および始動操作とは異なる要因のいずれであるのかを判断し、第2装置の起動要因が始動操作である場合に、基準位置を検出するために回転部材を所定方向に回転させて回転部材の所定部位を規制部材に押し当てる押当制御を実行するようにアクチュエータを制御し、第2装置の起動要因が始動操作とは異なる要因である場合に、押当制御を実行しないようにアクチュエータを制御する。
 好ましくは、アクチュエータは、押当制御による駆動前に予め定められた初期駆動が必要である。第2装置は、第2装置の起動時に初期駆動を行なう初期制御を実行し、初期制御の完了後に第2装置の起動要因が始動操作および始動操作とは異なる要因のいずれであるのかを判断する。
 さらに好ましくは、制御装置は、第1装置が始動操作を検出したことに応じた始動情報を第2装置に送信する第3装置をさらに含む。第2装置は、初期制御の完了時から所定期間が経過するまでに始動情報を受信した場合は第2装置の起動要因が始動操作であるとして押当制御を実行し、初期制御の完了時から所定期間が経過しても始動情報を受信しない場合は第2装置の起動要因が始動操作とは異なる要因であると判断して押当制御を実行しない。
 さらに好ましくは、第2装置は、初期制御の完了時に始動情報を未だ受信していない場合はアクチュエータを初期制御後の状態に一時的に維持し、初期制御の完了時から所定期間が経過するまでに始動情報を受信しない場合はアクチュエータを初期制御後の状態に一時的に維持することを継続し、初期制御の完了時から所定期間が経過するまでに始動情報を受信した場合は始動情報を受信した時点で初期制御を再実行することなく押当制御を実行し、初期制御の完了時から所定期間が経過しても始動情報を受信しない場合はアクチュエータを初期制御前の状態に戻す。
 さらに好ましくは、制御装置は、第2装置が押当制御を行なった結果に基づいて、第2装置に異常がないか否かを判断する異常判断を行なう第4装置をさらに含む。第4装置は、第2装置の起動要因が始動操作とは異なる要因であることによって第2装置が押当制御を実行できない場合は、異常判断を行なわない。
 さらに好ましくは、車両は、第2装置に電力を供給する電源を備える。第2装置は、押当制御の実行によってシフトレンジをパーキングレンジに設定する。制御装置は、電源から第2装置への電力の供給を制御する第4装置をさらに含む。第4装置は、第2装置の起動要因が始動操作であることによって第2装置が押当制御を実行した場合には、シフトレンジがパーキングレンジとは異なるレンジであるという条件を含む所定条件が成立したときに電源から第2装置への電力の供給の遮断を禁止し、第2装置の起動要因が始動操作とは異なる要因であることによって第2装置が押当制御を実行できない場合には、所定条件が成立した場合であっても電源から第2装置への電力の供給の遮断を許容する。
 さらに好ましくは、車両は、少なくとも内燃機関を駆動源とする。始動操作とは異なる要因は、第2装置の非起動時に内燃機関に関する異常を診断する必要が生じたことを含む。
 この発明の別の局面に係る制御方法は、アクチュエータの駆動によって変速機のシフトレンジを切り換えるシフト切換機構を備えた車両の制御方法である。シフト切換機構は、アクチュエータに連結された回転部材と、アクチュエータの駆動によって回転部材の所定方向の回転位置が所定のシフトレンジに対応する基準位置となったときに回転部材の所定部位に当接して回転部材の所定方向の回転を規制する規制部材とを含む。車両は、車両のユーザによる車両の始動操作を検出する第1装置と、第1装置が始動操作を検出したこと、あるいは、始動操作とは異なる要因が生じたことに応じて起動され、アクチュエータの駆動を制御する第2装置とを含む。制御方法は、第2装置が行なう方法である。この制御方法は、第2装置の起動に応じて第2装置の起動要因が始動操作および始動操作とは異なる要因のいずれであるのかを判断するステップと、第2装置の起動要因が始動操作である場合に、基準位置を検出するために回転部材の所定部位を規制部材に押し当てる押当制御を実行するようにアクチュエータを制御するステップと、第2装置の起動要因が始動操作とは異なる要因である場合に、押当制御を実行しないようにアクチュエータを制御するステップとを含む。
 本発明によれば、アクチュエータの駆動を制御する第2装置は、第2装置の起動要因がユーザによる車両の始動操作である場合は押当制御を実行するが、第2装置の起動要因が始動操作とは異なる要因である場合には押当制御を実行しない。そのため、第2装置の起動毎に押当制御を行なう場合に比べて、押当制御の実行回数を低減して、シフト切換機構の構成部品の耐久性の悪化を抑制することができる。
車両の構成を示す図である。 シフト切換機構の構成を示す図である。 ディテントプレートの構成を示す図である。 アクチュエータの制御方法を説明するための図である。 P壁位置を検出する制御方法を説明するための図である。 P-ECUの機能ブロック図である。 P-ECUの処理フロー図である。 P-ECU40が起動された場合のアクチュエータ制御モードの時間的な変化を示す図(その1)である。 P-ECU40が起動された場合のアクチュエータ制御モードの時間的な変化を示す図(その2)である。 P-ECU40が起動された場合のアクチュエータ制御モードの時間的な変化を示す図(その3)である。 V-ECUの機能ブロック図である。 V-ECUの処理フロー図である。 メインリレーの永久保持マスクフラグを示す図(その1)である。 メインリレーの永久保持マスクフラグを示す図(その2)である。
 以下、図面を参照しつつ、本発明の実施例について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰返さない。
 <第1の実施例>
 図1は、本実施例に係る制御装置を備えた車両10の構成を示す。本実施例に係る車両10は、エンジン11とモータジェネレータ(MG)12とを駆動源とするハイブリッド車両である。なお、MG12は、複数であってもよい。また、本発明を適用可能な車両は、特にハイブリッド車両に限定されるものではない。たとえば、本発明を適用可能な車両は、エンジンを駆動源とする車両、モータジェネレータを駆動源とする電気自動車あるいは燃料電池車両等であってもよい。
 車両10は、駆動源であるエンジン11およびモータジェネレータ(MG)12の他、無段変速機構から構成される駆動機構70のシフトレンジを切り換えるためのシフト制御システムを備える。このシフト制御システムは、電気制御によりシフトレンジを切り換えるシフトバイワイヤシステムとして機能する。このシフト制御システムは、Pスイッチ20、シフトスイッチ26、スタートスイッチ28、車両制御装置(以下、「V-ECU」ともいう)30、パーキング制御装置(以下、「P-ECU」ともいう)40、パワーマネージメント制御装置(以下、「PM-ECU」ともいう)50、ボデー制御装置(以下、「B-ECU」ともいう)60、駆動機構70、アクチュエータ45、エンコーダ46、およびシフト切換機構48を含む。アクチュエータ45の駆動によってシフト切換機構48が作動されてシフトレンジの切換が行なわれる。
 Pスイッチ20は、シフトレンジをパーキングレンジ(以下、「Pレンジ」ともいう)とパーキング以外のレンジ(以下、「非Pレンジ」ともいう)との間で切り換えるためのスイッチである。Pスイッチ20は、スイッチの状態をドライバに示すためのインジケータ22、およびドライバなどのユーザからの指示を受付ける入力部24を含む。ドライバは、入力部24を通じて、シフトレンジをPレンジに入れる指示を入力する。入力部24はモーメンタリスイッチであってもよい。入力部24が受付けたドライバからの指示は、V-ECU30、およびV-ECU30を経由してP-ECU40に伝達される。
 シフトスイッチ26は、シフトレンジをドライブレンジ(D)、リバースレンジ(R)、ニュートラルレンジ(N)、ブレーキレンジ(B)などのレンジに切り換えたり、またシフトレンジがPレンジであるときにPレンジを解除したりするためのスイッチである。シフトスイッチ26が受付けたユーザからの指示はV-ECU30に伝達される。V-ECU30は、ドライバからの指示に基づき、駆動機構70におけるシフトレンジを切り換える制御を行なう。駆動機構70は、無段変速機構から構成されているが、有段変速機構から構成されてもよい。
 V-ECU30は、Pスイッチ20およびシフトスイッチ26の他、図示しないアクセルペダルポジションセンサやブレーキ踏力センサなどからの情報に基づいて、車両10の動作を統括的に管理する。V-ECU30は、主としてエンジン11の系統を制御するためのエンジン制御装置(ENG-ECU)と、ハイブリッドシステム全体を制御するハイブリッド制御装置(HV-ECU)とを一体的に含んでいる。
 V-ECU30は、P-ECU40、PM-ECU50、B-ECU60と、CAN(Controller Area Network)通信線80により接続され、必要に応じて各制御装置との通信をCAN通信線80を通じて行なう。また、V-ECU30には、実際にIGリレー52(後述)がオン状態であるか否かを示すIG状態信号が入力される。
 P-ECU40は、シフトレンジをPレンジと非Pレンジとの間で切り換えるために、シフト切換機構48を駆動するアクチュエータ45の動作を制御する。シフトレンジが非Pレンジであるときにユーザが入力部24を押すと、P-ECU40はシフトレンジをPレンジに切り換えるようにアクチュエータ45の動作を制御する。
 アクチュエータ45は、スイッチドリラクタンスモータ(以下、「SRモータ」ともいう)により構成され、P-ECU40からの指示を受けてシフト切換機構48を駆動する。エンコーダ46は、アクチュエータ45と一体的に回転し、SRモータの回転量(回転速度)を検出する。本実施例のエンコーダ46は、A相、B相およびZ相の信号を出力するロータリーエンコーダである。
 P-ECU40は、エンコーダ46から出力される信号を取得してSRモータの回転状況を把握し、SRモータを駆動するための通電の制御を行なう。なお、アクチュエータ45は、駆動開始初期においては、初期位相を調整するための初期駆動が必要である。そのため、P-ECU40は、自らの起動時にまずアクチュエータ45を初期駆動させる制御(以下、「初期駆動制御」ともいう)を行ない、初期駆動制御の完了後に、アクチュエータ45の通常制御や壁当制御(後述)を開始する。
 スタートスイッチ28は、ユーザが車両10のハイブリッドシステム全体を構成する複数の電気機器の電源のオン・オフを切り換える操作を入力するためのスイッチである。スタートスイッチ28は、たとえば、イグニッション(IG)スイッチである。スタートスイッチ28は、ユーザが車両10を始動させるための操作(以下、「IGオン操作」ともいう)を行なったことを検出すると、IGオン操作を示す情報をPM-ECU50に伝達する。
 PM-ECU50は、車両10に搭載される複数の電気機器の電源のオン・オフを切り換える。PM-ECU50は、スタートスイッチ28からIGオン操作を示す情報を受信すると、IGリレー52をオン状態にするためのIGオン指令信号をIGリレー52に送信する。
 V-ECU30、P-ECU40、B-ECU60などの各制御装置などを含むハイブリッドシステムを構成する複数の電気機器は、バッテリなどの電源54にIGリレー52を介して接続されている。そのため、IGリレー52がオン状態になると、各制御装置に電力が供給される。これに応じて各制御装置が起動し、車両10が走行可能状態(READY-ON状態)となる。アクチュエータ45へ供給される電力は、P-ECU40の起動後、P-ECU40によって制御される。
 V-ECU30およびP-ECU40は、メインリレー35を介しても、電源54に接続されている。そのため、V-ECU30およびP-ECU40は、メインリレー35がオン状態になった場合にも起動する。メインリレー35のオンオフは、V-ECU30によって制御される。なお、メインリレー35のオンオフは、PM-ECU50によって制御されるようにしてもよく、また、V-ECU30およびPM-ECU50の双方によって制御されるようにしてもよい。
 PM-ECU50は、LIN(Local Interconnect Network)通信線90によってP-ECU40と接続され、必要に応じてP-ECU40との通信をLIN通信線90を通じて行なう。PM-ECU50は、IGオン指令信号をIGリレー52に送信した時に、LIN通信線90を通じて、IGオン指令信号をIGリレー52に送信したことを示すIG(LIN)信号を、P-ECU40に送信する。
 B-ECU60は、車両10のボデーの状態を示す信号(たとえばパーキングブレーキの状態を示すPKB信号など)をCAN通信線80を通じて各制御装置に送信する。B-ECU60には、実際にIGリレー52がオン状態であるか否かを示すIG状態信号が入力される。B-ECU60は、IG状態信号がIGリレー52がオン状態であることを示す場合、CAN通信線80を通じてIG(CAN)信号をP-ECU40に送信する。
 ここで、V-ECU30およびP-ECU40の起動について説明する。本実施例において、V-ECU30およびP-ECU40の起動は、主として以下の2つに層別される。
 1つめの起動は、ユーザがIGオン操作を行なったことに基づく通常起動である。すなわち、上述したように、IGオフ状態でユーザがIGオン操作を行なうと、PM-ECU50がIGリレー52をオン状態にする。これにより、V-ECU30およびP-ECU40に電源54から電力が供給され、V-ECU30およびP-ECU40は起動される。
 2つめの起動は、OBDなどの、ユーザのIGオン操作には基づかない要因(以下、「外的要因」ともいう)に基づく起動である。本実施例においては、V-ECU30(より具体的にはV-ECU30の内部に含まれるENG-ECU)が、IGオフ後の所定頻度(たとえば1日当たり5回の頻度)で、エンジン11の燃料タンクから燃料が漏れていないかどうかの診断(以下、「リークチェック」ともいう)を行なう。このリークチェックが上述の外的要因の一例である。
 すなわち、V-ECU30は、IGオフ後においても、リークチェックのために所定頻度でメインリレー35をオンして自らを起動させる。なお、リークチェック時にPM-ECU50がメインリレー35をオンしてV-ECU30を起動させるようにしてもよい。そして、リークチェック時にメインリレー35がオンされたことになって、P-ECU40も起動される。なお、V-ECU30は、リークチェック完了後、メインリレー35をオン状態して自らを停止させる。これに伴ない、P-ECU40も停止される。
 図2を参照して、シフト切換機構48について説明する。図2は、シフト切換機構48の構成を示す。以下、シフトレンジは、Pレンジ、非Pレンジを意味し、非Pレンジにおける、R、N、D、Bの各レンジを含まない。
 シフト切換機構48は、シャフト102を介してアクチュエータ45に連結されてアクチュエータ45の回転に伴って回転するディテントプレート100、ディテントプレート100の回転に伴って動作するロッド104、図示しない変速機の出力軸に固定されたパーキングギア108、パーキングギア108をロックするためのパーキングロックポール106、ディテントプレート100の回転を所定範囲に規制してシフトレンジを固定するディテントスプリング110およびころ112を含む。
 ディテントプレート100は、アクチュエータ45により駆動されてシフトレンジを切り換える。シャフト102、ディテントプレート100、ロッド104、ディテントスプリング110およびころ112は、シフト切換機構の役割を果たす。
 エンコーダ46は、アクチュエータ45の回転量、すなわちアクチュエータ45の相対的な位置を検出する。
 図2は、シフトレンジが非Pレンジであるときの状態を示している。この状態では、パーキングロックポール106がパーキングギア108をロックしていないので、車両の駆動軸の回転は妨げられない。この状態からアクチュエータ45によりシャフト102を時計回り方向に回転させると、ディテントプレート100を介してロッド104が図2に示す矢印Aの方向に押され、ロッド104の先端に設けられたテーパ部によりパーキングロックポール106が図2に示す矢印Bの方向に押し上げられる。また、ディテントプレート100の頂部に設けられた2つの谷のうちの一方である非Pレンジ位置120に存在していたディテントスプリング110のころ112は、ディテントプレート100の時計回り方向の回転に伴って、山122を乗り越えて他方の谷であるPレンジ位置124へ移る。ころ112は、その軸方向に回転可能にディテントスプリング110に設けられている。ころ112がPレンジ位置124に来るまでディテントプレート100が回転したとき、パーキングロックポール106は、パーキングギア108と嵌合する位置まで押し上げられる。これにより、車両の駆動軸が機械的に固定され、シフトレンジがPレンジに切り換わる。
 図3は、ディテントプレート100の構成を示す。図3に示すように、Pレンジ位置124および非Pレンジ位置120において、山122から離れた側に位置する面には、それぞれP壁200および非P壁210が設けられている。ディテントプレート100の回転(すなわちアクチュエータ45の回転)は、これらのP壁200および非P壁210がころ112に衝突することによって規制される。
 図4は、P-ECU40が行なうPレンジ確定処理を説明するための図である。Pレンジ確定処理とは、シフトレンジがPレンジであることを実際に検出する処理である。図4は、P-ECU40がPレンジ確定処理を行なう上でのP壁200の位置を概念的に示す。図4に示すP壁位置から非P壁位置までの範囲が、アクチュエータ45の可動回転範囲である。
 P-ECU40は、P壁位置から所定範囲だけ離れた位置に、Pロック判定位置を設定する。そして、P-ECU40は、アクチュエータ45のP壁位置に対する相対的な位置がP壁位置とPロック判定位置との間の範囲に含まれるときには、シフトレンジがPレンジであることを確定する。
 このように、P壁位置は、Pレンジ確定処理によってシフトレンジがPレンジであることを実際に検出するための基準位置となる。したがって、Pレンジ確定処理によってシフトレンジがPレンジであることを確定させるためには、P壁位置が検出されていることが必要となる。しかしながら、エンコーダ46は、アクチュエータ45の相対的な位置を検出することはできるが、アクチュエータ45の絶対的な位置を検出することはできない。
 そこで、P-ECU40は、アクチュエータ45を回転させてP壁200をころ112に押し当てる制御(以下、「P壁当制御」ともいう)を行ない、P壁当制御時にエンコーダ46で検出されたアクチュエータ45の相対的な位置を用いてP壁位置を検出する。なお、このP壁当制御の実行によって、シフトレンジはPレンジに設定される。
 図5は、P壁位置を検出するために行なうP壁当制御を説明するための図である。P-ECU40は、まず、アクチュエータ45によりディテントプレート100を時計回り方向、すなわちP壁200がディテントスプリング110のころ112に向かう方向に回転させ、P壁200をころ112に接触させる。ころ112は、Pレンジ位置において、アクチュエータ45の時計回り方向の回転を規制する。図5において、矢印F1は、アクチュエータ45による回転力、矢印F2は、ディテントスプリング110によるばね力、矢印F3は、ロッド104による押し戻し力を示す。点線で示すディテントプレート100Aは、P壁200ところ112とが接触した位置を示す。したがって、ディテントプレート100Aの位置を検出することがP壁位置を検出することに相当する。
 ディテントプレート100は、P壁200ところ112との接触後も、点線で示す位置から、アクチュエータ45の回転力F1により時計回り方向に、ディテントスプリング110のばね力に抗して回転される。これによりディテントスプリング110に撓みが生じて、ばね力F2が増加し、またロッド104による押し戻し力F3も増加する。回転力F1が、ばね力F2および押し戻し力F3と釣り合ったところでディテントプレート100の回転が停止する。
 ディテントプレート100の回転停止は、エンコーダ46の検出値(アクチュエータ45の相対的な位置)に基づいて判定される。具体的には、エンコーダ46の検出値が所定時間変化しない場合に、ディテントプレート100およびアクチュエータ45の回転が停止したと判定される。
 P-ECU40は、回転停止時のディテントプレート100の位置を暫定的なP壁位置(以下、「暫定P壁位置」ともいう)として検出するとともに、ディテントスプリング110の撓み量または撓み角を算出する。撓み量または撓み角の算出は、P-ECU40に予め保持されている、アクチュエータ45への印加電圧に対応する撓み量または撓み角の関係を示すマップを用いて行なわれる。P-ECU40は、マップから暫定P壁位置検出時のアクチュエータ45への印加電圧に対応する撓み量ないし撓み角を算出する。P-ECU40は、このマップを用いて、算出した撓み量または撓み角から、暫定P壁位置を補正し、補正した位置をP壁位置として確定する。P壁位置を確定することにより、Pロック確定処理を行なうことができる。なお、ディテントスプリング110の撓み量または撓み角の算出手法は、特に上述したマップを用いることに限定されない。
 このように、アクチュエータ45を回転させて、ディテントプレート100のP壁200と、ディテントスプリング110のころ112とを接触させる。そして、その接触位置を検出することによりP壁位置を検出する。このP壁位置を基準位置とすることにより、相対位置情報しか検出できないエンコーダ46を用いても、アクチュエータ45の回転位置を適切に把握することが可能となり、シフトレンジがPレンジであることを実際に検出することができる。
 なお、非P壁位置の検出についてもP壁位置の検出手法と同様である。そのため、詳細な説明は繰り返さない。
 以上のように、Pレンジ確定処理を行なうには、P壁当制御を行なってP壁位置を検出しておく必要がある。シフトレンジの切換が数万回行なわれた場合には、ディテントプレート100やころ112が摩耗や変形などによって経時的に変化するため、P壁当制御によるP壁位置の検出は、トリップ毎(P-ECU40の起動毎)に行なうことが望ましい。
 しかしながら、上述したように、本実施例においては、P-ECU40は、ユーザがIGオン操作を行なった場合だけではなく、IGオフ後においてもリークチェックなどの外的要因によっても起動される。そのため、P-ECU40の起動毎にP壁当制御を行なうと、P壁当制御の実行回数、すなわちP壁200をころ112に押し当てる回数が増加し、シフト切換機構48の構成部品の耐久性が悪化する可能性がある。
 そこで、本実施例においては、P-ECU40は、自らの起動後に、自らの起動がIGオン操作による起動であるのかそれとも外的要因による起動であるのかを判断し、IGオン操作による起動である場合にP壁当制御を実行し、外的要因による起動である場合にP壁当制御を実行しない。この点が本発明の最も特徴的な点である。
 図6に、P-ECU40の機能ブロック図を示す。P-ECU40は、入力インターフェイス41と、演算処理部42と、記憶部43と、出力インターフェイス44とを含む。
 入力インターフェイス41には、PM-ECU50からのIG(LIN)信号、B-ECU60からのIG(CAN)信号、エンコーダ46からのアクチュエータ45の回転量など、各センサや各ECUからの情報が入力される。
 記憶部43は、各種情報、プログラム、しきい値、マップ等が記憶され、必要に応じて演算処理部42からデータが読み出されたり格納されたりする。
 演算処理部42は、入力インターフェイス41および記憶部43からの情報に基づいて演算処理を行なう。演算処理部42の処理結果は出力インターフェイス44経由で各機器に出力される。
 演算処理部42は、アクチュエータ45の制御モードを、初期待機モード、初期駆動モード、壁当制御モード、通常モードのいずれかの制御モードに設定し、設定された制御モードでアクチュエータ45を制御する。初期待機モードは、アクチュエータ45への通電を遮断してアクチュエータ45を待機させておくモードである。初期駆動モードは、アクチュエータ45への通電を開始し、アクチュエータ45の初期駆動を行なうモードである。初期駆動の完了後に、壁当制御あるいは通常制御への移行が可能となる。壁当制御モードは、P壁位置の検出のために壁当制御を行なうモードである。通常モードは、ユーザによるPスイッチ20やシフトスイッチ26の操作に応じてPレンジと非Pレンジとの切換を行なうモードである。
 演算処理部42は、初期駆動部42A、IG判断部42B、壁当制御部42C、維持制御部42D、待機制御部42Eを含む。
 初期駆動部42Aは、P-ECU40が起動された時(電源54からP-ECU40に電力が供給された時)に、初期駆動制御を行なう。具体的には、初期駆動部42Aは、P-ECU40が起動された時にアクチュエータ45への通電を開始し、通電開始から所定時間T1が経過するまでアクチュエータ45の初期駆動を行なう。なお、所定時間T1は、初期駆動の完了に必要な時間として予め記憶部43に記憶される。
 IG判断部42Bは、P-ECU40の起動がユーザによるIGオン操作による起動であるのかそれとも外的要因による起動であるのかを判断する。具体的には、IG判断部42Bは、IG(LIN)信号およびIG(CAN)信号のうちの少なくともいずれかのIG信号を受信しているか否かを判断する。IG信号を受信しているか否かの判断は、初期駆動制御の完了時から所定時間T2が経過するまでの間、IG信号を受信したと判断されるまでは継続され、所定時間T2が経過してもIG信号を受信したと判断されない場合は、所定時間T2が経過した時点で終了される。なお、所定時間T2は、IG(LIN)信号あるいはIG(CAN)信号の通信遅れを考慮して予め設定されて記憶部43に記憶される。
 壁当制御部42Cは、初期駆動制御の完了時から所定期間T2が経過するまでにIG信号を受信した場合に、P-ECU40の起動がIGオン操作による起動であると判断し、IG信号を受信した時点で壁当制御を実行する。なお、P壁当制御の完了後は通常モードに移行される。
 維持制御部42Dは、初期駆動制御の完了時にIG信号を未だ受信していない場合に、アクチュエータ45を初期駆動制御が完了した状態に一時的に維持する。そして、維持制御部42Dは、初期駆動制御の完了時から所定期間T2が経過するまでの間、IG信号を受信するまでアクチュエータ45を初期駆動制御が完了した状態に一時的に維持することを継続する。
 待機制御部42Eは、初期駆動制御の完了時から所定期間T2が経過してもIG信号を受信しない場合に、初期待機制御を実行する。具体的には、待機制御部42Eは、アクチュエータ45への通電を遮断して、アクチュエータを初期駆動制御前の初期待機状態に戻す。
 上述した各機能は、ソフトウェアによって実現されるようにしてもよく、ハードウェアにより実現されるようにしてもよい。
 図7は、上述した機能をソフトウェアによって実現する場合のP-ECU40の処理フローである。なお、この処理は、P-ECU40が起動された時に実行される。
 図7に示すように、ステップ(以下、ステップをSと略す)100にて、P-ECU40は、上述の初期駆動制御を開始する。
 S102にて、P-ECU40は、初期駆動制御が完了したか否かを判断する。この判断は、初期駆動制御の開始から所定時間T1が経過したか否かに基づいて行なわれる。この処理で肯定的な判断がなされると(S102にてYES)、処理はS104に移される。そうでないと(S102にてNO)、処理はS102に戻され、所定時間T1が経過するまで繰り返される。なお、初期駆動制御の開始から所定時間T1が経過したことに応じて、初期駆動完了フラグ(初期駆動が完了したことを示すフラグ)がオンされる。
 S104にて、P-ECU40は、IG(LIN)信号およびIG(CAN)信号のうちの少なくともいずれかのIG信号を受信しているか否かを判断する。この処理で肯定的な判断がなされると(S104にてYES)、処理はS106に移される。そうでないと(S104にてNO)、処理はS108に移される。なお、初期駆動完了時にIG(LIN)信号およびIG(CAN)信号のいずれも受信していない場合は、初期駆動完了時から所定時間T2をカウントするタイマが開始される。
 S106にて、P-ECU40は、上述のP壁当制御を実行する。なお、P壁当制御の完了後は、通常モードに移行される。
 S108にて、P-ECU40は、初期駆動制御の完了時から所定時間T2が経過したか否かを判断する。この処理で肯定的な判断がなされると(S108にてYES)、処理はS112に移される。そうでないと(S108にてNO)、処理はS110に移される。
 S110にて、P-ECU40は、アクチュエータ45を初期駆動制御が完了した状態に一時的に維持する。その後、処理は、S104に戻される。
 S112にて、P-ECU40は、上述の初期待機制御を実行する。なお、初期待機制御の開始に伴なって、初期駆動完了フラグがオフされるとともに、初期駆動移行禁止フラグ(初期駆動モードへの移行を禁止することを示すフラグ)がオンされる。
 以上のような構造およびフローチャートに基づくP-ECU40の動作について、図8~10を参照しつつ説明する。
 図8は、外的要因によってP-ECU40が起動された場合のアクチュエータ制御モードの時間的な変化を示した図である。
 時刻t1にて、V-ECU30がリークチェックのためにメインリレー35をオンすると、これに応じてP-ECU40も起動される。P-ECU40の起動に伴なって、P-ECU40は、アクチュエータ45への通電を開始し、所定時間T1が経過する時刻t2までアクチュエータ45の初期駆動を行なう。時刻t2にて、初期駆動制御が完了し、初期駆動完了フラグがオンされる。
 従来においては、P-ECU40の起動要因に関わらず、初期駆動制御が完了する時刻t2にて、一点鎖線に示すように、P壁当制御を開始していた。
 これに対し、本実施例に係るP-ECU40は、時刻t2にてIG(LIN)信号およびIG(CAN)信号のいずれも受信していない(OFFである)ため(S104にてNO)、自らの起動がリークチェックのためのV-ECU30の起動に応じた起動であると判断し、P壁当制御に移行せずに、アクチュエータ45を初期駆動が完了した状態に一時的に維持する(S108にてNO、S110)。
 このように、本実施例においては、P-ECU40の起動がIGオン操作による起動ではなく外的要因による起動(リークチェックのためのV-ECU30の起動に応じた起動)である場合、Pレンジ確定処理を行なう必要がないため、P-ECU40は、P壁当制御を実行しない。そのため、P-ECU40の起動毎にP壁当制御を行なう場合に比べて、P壁当制御の実行回数を低減して、シフト切換機構48の構成部品の耐久性の悪化を抑制することができる。
 さらに、P-ECU40は、所定時間T2が経過する時刻t3まで、IG(LIN)信号およびIG(CAN)信号のいずれもOFFのままであると、時刻t3にてアクチュエータ45への通電を遮断して、アクチュエータ45を初期待機状態に戻す(S104にてNO、S108にてYES、S112)。これにより、アクチュエータ45への通電が連続することが防止されるので、アクチュエータ45の熱耐久性が向上する。
 図9は、IGオン操作による通常起動時のアクチュエータ制御モードの時間的な変化を示した図である。
 時刻t4にて、ユーザによるIGオン操作に応じてPM-ECU50がIGリレー52をオンすると、P-ECU40を含む複数の電気機器が起動される。P-ECU40の起動に伴なって、P-ECU40は、アクチュエータ45への通電を開始し、所定時間T1が経過する時刻t5までアクチュエータ45の初期駆動を行なう。
 図9に示すように、PM-ECU50からのIG(LIN)信号およびB-ECU60からのIG(CAN)信号は、時刻t4から多少遅れてP-ECU40に受信される。本実施例に係るP-ECU40は、時刻t4から初期駆動を開始し、初期駆動が完了した時刻t5でIG(LIN)信号およびIG(CAN)信号が受信されているか否かを判断する(S102にてYES、S104)。そのため、IG信号の受信判断後に初期駆動を開始する場合に比べて、早期に初期駆動を開始することができる。
 図10にも、IGオン操作による通常起動時のアクチュエータ制御モードの時間的な変化を示す。ただし、図10には、時刻t6でP-ECU40が起動し、初期駆動の完了時から所定時間T2が経過するまでの間(時刻t7~t9までの間)である時刻t8に、IG(CAN)信号が受信された場合のアクチュエータ制御モードの時間的な変化を示している。なお、初期駆動の完了後にIG(LIN)信号やIG(CAN)信号を受信する場合としては、送信元ECU(PM-ECU50、B-ECU60)の処理時間や送信元ECUとの間のCAN通信やLIN通信の遅れが生じた場合、あるいは燃料タンクのリークチェック中にユーザがIGオン操作を行なった場合などが考えられる。
 この場合、初期駆動が完了した時刻t7ではIG信号を受信していないが、所定時間T2の経過前であれば(S108にてNO)、アクチュエータ45は初期駆動が完了した状態に一時的に維持される(S110)。そのため、通信遅れなどの影響でその後の時刻t8にIG(CAN)信号を受信した場合であっても、時刻t8から、再び初期駆動を行なう必要ななく、時刻t8にIG(CAN)信号を受信した時点で、早期にP壁当制御を開始することができる。
 以上のように、本実施例に係るP-ECUは、自らの起動がIGオン操作による起動であるのかそれとも外的要因による起動であるのかを判断し、IGオン操作による起動である場合にP壁当制御を実行し、外的要因による起動である場合にP壁当制御を実行しない。そのため、P-ECU40の起動毎にP壁当制御を行なう場合に比べて、P壁当制御の実行回数を低減して、シフト切換機構48の構成部品の耐久性の悪化を抑制することができる。
 <第2の実施例>
 以下、本発明の第2の実施例に係る制御装置について説明する。本実施例においては、前述の第1の実施例に比べて、以下に述べるV-ECU30の機能が追加されている。その他の構造、機能、処理は、前述の第1の実施例と同じであるため、ここでの詳細な説明は繰返さない。
 図11に、本実施例に係るV-ECU30の機能ブロック図を示す。V-ECU30は、入力インターフェイス31と、演算処理部32と、記憶部33と、出力インターフェイス34とを含む。
 入力インターフェイス31には、各センサや各ECUからの情報が入力される。
 記憶部33は、各種情報、プログラム、しきい値、マップ等が記憶され、必要に応じて演算処理部32からデータが読み出されたり格納されたりする。
 演算処理部32は、入力インターフェイス31および記憶部33からの情報に基づいて演算処理を行なう。演算処理部32の処理結果は出力インターフェイス34経由で各機器に出力される。
 演算処理部32は、永久保持部32A、異常検出部32B、判断部32C、第1許可部32D、第2許可部32Eを含む。
 永久保持部32Aは、メインリレー35の永久保持機能を有する。具体的には、永久保持部32Aは、IGオフかつNレンジである場合、メインリレー35を永久保持する。ここでいう「永久保持」とは、メインリレー35を常にオン状態に維持しておくことを意味する。これにより、V-ECU30やP-ECU40は起動状態に維持される。なお、この永久保持機能は、PM-ECU50が有していてもよい。
 ここで、メインリレー35の永久保持が必要な理由を以下に示す。車両10には、IGオン時の車両走行中にユーザがスタートスイッチ28を長く押し続けた場合、車両状態をIGオフ状態に切り換える機能が設けられている。これは、ハイブリッドシステムの異常が生じた場合でもユーザが適切に駆動力を低下させることを可能とするためのフェールセーフ機能である。このフェールセーフ機能によってIGオフ状態に切り換えた際に、Pロックをかける(シフトレンジをPレンジにする)ことができなくなることを回避するために、「IGオフかつNレンジ」の場合には、メインリレー35を永久保持して、Pロックを行なうP-ECU40を起動状態に維持する。これが、メインリレー35の永久保持が必要な理由である。なお、「IGオフ」かつ「非Pレンジ」の場合にメインリレー35を永久保持するようにしてもよい。
 異常検出部32Bは、P-ECU40の応答異常を検出する機能を有する。具体的には、異常検出部32Bは、P-ECU40に対してPレンジへの切換要求(あるいは非Pレンジへの切換要求)を送信し、P-ECU40からのPレンジであることを示す応答を受信しない場合に、P-ECU40の応答異常と判断する。
 P-ECU40は、外的要因による起動時にはP壁当制御を実行しないが、この際にV-ECU30がメインリレー35の永久保持機能およびV-ECU30の異常検出機能の実行を許容すると、以下の問題が生じる。
 第1に、P-ECU40が外的要因で起動された時にはそもそも車両はIGオフ状態でありかつP-ECU40はP壁当制御を実行しない(シフトレンジがPロックとは限らない)ため、シフトレンジがNレンジである場合には「IGオフかつNレンジ」という条件が成立する。この際、メインリレー35の永久保持機能が実行されると、Pロックを行なう必要がないにも関わらず、メインリレー35をオフすることができなくなってしまう。
 第2に、P-ECU40が外的要因で起動された時にはP-ECU40はP壁当制御を実行しないため、Pレンジ確定処理およびその後のアクチュエータ45の制御も行なわない。このような状態でV-ECU30がP-ECU40に対してPレンジへの切換要求を送信しても、P-ECU40はPレンジへの切換を行なうことができずV-ECU30にPレンジであることを示す応答を送信できない。そのため、P-ECU40が正常であるにも関わらず、P-ECU40の応答異常と誤って判断されてしまう。
 そこで、本実施例に係るV-ECU30は、P-ECU40の起動が外的要因による起動であることによってP-ECU40がP壁当制御を実行できない場合には、メインリレー35の永久保持およびV-ECU30の異常検出を行なわない。この機能は、判断部32C、第1許可部32D、第2許可部32Eによって実現される。
 判断部32Cは、P-ECU40の起動が外的要因による起動であるか否かを判断する。たとえば、判断部32Cは、現在のIG状態信号がオフであり、かつ現在のトリップ中にIGオンの履歴がなく、かつ今回のV-ECU30の起動が外的要因による起動(リークチェックのための起動)である場合に、P-ECU40の起動が外的要因による起動であると判断する。
 第1許可部32Dは、P-ECU40の起動が外的要因による起動でない場合、永久保持部32Aによるメインリレー35の永久保持機能の実行を許可する。具体的には、永久保持マスクフラグを「オフ」にする。一方、P-ECU40の起動が外的要因による起動である場合、第1許可部32Dは、永久保持部32Aによるメインリレー35の永久保持機能の実行を禁止する。具体的には、永久保持マスクフラグを「オン」にする。
 第2許可部32Eは、P-ECU40の起動が外的要因による起動でない場合、異常検出部32BによるP-ECU40の異常検出機能の実行を許可する。具体的には、異常検出マスクフラグを「オフ」にする。一方、P-ECU40の起動が外的要因による起動である場合、第2許可部32Eは、異常検出部32BによるP-ECU40の異常検出機能の実行を禁止する。具体的には、異常検出マスクフラグを「オン」にする。
 上述した各機能は、ソフトウェアによって実現されるようにしてもよく、ハードウェアにより実現されるようにしてもよい。
 図12は、上述した判断部32C、第1許可部32D、第2許可部32Eの機能をソフトウェアによって実現する場合のV-ECU30の処理フローである。なお、この処理は、IGオン状態である場合に所定のサイクルで実行される。
 S200にて、V-ECU30は、現在のIG状態信号がオフであるか否かを判断する。この処理で肯定的な判断がなされると(S200にてYES)、処理はS202に移される。そうでないと(S200にてNO)、処理はS210に移される。
 S202にて、V-ECU30は、現在のトリップ中にIGオンの履歴がないか否かを判断する。この処理で肯定的な判断がなされると(S202にてYES)、処理はS204に移される。そうでないと(S202にてNO)、処理はS210に移される。
 S204にて、V-ECU30は、今回のV-ECU30の起動が外的要因による起動(リークチェックのための起動)であるか否かを判断する。この処理で肯定的な判断がなされると(S204にてYES)、処理はS206に移される。そうでないと(S204にてNO)、処理はS210に移される。
 S206にて、V-ECU30は、上述のメインリレー35の永久保持機能の実行を禁止する。具体的には、V-ECU30は、永久保持マスクフラグを「オン」にする。なお、永久保持マスクフラグは、初期状態では「オフ」に設定されている。
 S208にて、V-ECU30は、P-ECU40の異常検出機能の実行を禁止する。具体的には、異常検出マスクフラグを「オン」にする。なお、異常検出マスクフラグは、初期状態では「オフ」に設定されている。
 S210にて、V-ECU30は、上述の永久保持機能の実行を許可する。具体的には、V-ECU30は、永久保持マスクフラグを「オフ」にする。
 S212にて、V-ECU30は、上述のP-ECU40の異常検出機能の実行を許可する。具体的には、異常検出マスクフラグを「オフ」にする。
 以上のような構造およびフローチャートに基づく、本実施例に係るV-ECU30の動作について、図13、14を参照しつつ説明する。なお、図13、14では、V-ECU30が永久保持マスクフラグを設定する動作について説明する。
 図13は、車両走行中のユーザがスタートスイッチ28を長押しした場合の永久保持マスクフラグを示す。なお、図13では、時刻t11にて、スタートスイッチ28の長押しによってIGオフされる(実際にはアクセサリ状態(ACC状態)となる)とともに、シフトレンジがNレンジである場合を示す。
 この場合、時刻t11においては、IGオフ状態であるが(S200にてYES)、IGオン履歴があるため(S202にてNO)、永久保持マスクフラグは「オフ」となる(S210)。そのため、図13に示すように、時刻t11にて、永久保持機能が作用し、永久保持要求がオンされる。これにより、P-ECU40が起動状態で維持されるため、その後においてもPロックをかけることが可能となる。
 一方、図14は、リークチェックのためにV-ECU30が起動された場合の永久保持マスクフラグを示す。図14に示すように、リークチェック時は、IGオフ状態であり(S200にてYES)、かつIGオン履歴がなく(S202にてNO)、今回のV-ECU30の起動が外的要因による起動であるため(S204にてYES)、永久保持マスクフラグが「オン」される(S206)。これにより、「IGオフかつNレンジ」という条件が成立した場合であっても、メインリレー35の永久保持要求はオンされない。そのため、メインリレー35をオフすることができなくなってしまうということを回避でき、電源54の電力が無駄に消費されることを防止できる。
 以上のように、本実施例に係るV-ECU30は、P-ECU40の起動要因がIGオン操作である場合には、「IGオフかつNレンジ」のときにメインリレー35の永久保持を行なう。これにより、フェールセーフ機能によってIGオフ状態に切り換えた際にPロックできなくなることを回避される。一方、V-ECU30は、P-ECU40の起動要因が外的要因である場合には、「IGオフかつNレンジ」であっても、メインリレー35の永久保持を行なわない。これにより、リークチェックのためにP-ECU40を起動させた場合にメインリレー35をオフすることができなくなることを回避でき、電源54の電力が無駄に消費されることを防止できる。
 また、P-ECU40の起動が外的要因による起動であることによってP-ECU40がP壁当制御が実行できない場合は、P-ECU40は正常であるにも関わらずPレンジであることを示す応答をV-ECU30に送信できない状態である。そこで、本実施例に係るV-ECU30は、P-ECU40の起動が外的要因による起動であることによってP-ECU40がP壁当制御が実行できない場合は、V-ECU30の異常検出を行なわない。そのため、V-ECU30がP-ECU40が正常であるにも関わらず異常であると誤って判断することが抑制される。
 今回開示された実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 車両、11 エンジン、20 Pスイッチ、22 インジケータ、24 入力部、26 シフトスイッチ、28 スタートスイッチ、30 V-ECU、31 入力インターフェイス、32 演算処理部、32A 永久保持部、32B 異常検出部、32C 判断部、32D 許可部、32E 許可部、33 記憶部、34 出力インターフェイス、35 メインリレー、40 P-ECU、41 入力インターフェイス、42 演算処理部、42A 初期駆動部、42B 判断部、42C 壁当制御部、42D 維持制御部、42E 待機制御部、43 記憶部、44 出力インターフェイス、45 アクチュエータ、46 エンコーダ、48 シフト切換機構、52 IGリレー、54 電源、70 駆動機構、80 CAN通信線、90 LIN通信線、100 ディテントプレート、102 シャフト、104 ロッド、106 パーキングロックポール、108 パーキングギア、110 ディテントスプリング、120 非Pレンジ位置、122 山、124 Pレンジ位置、200 P壁、210 非P壁。

Claims (8)

  1.  アクチュエータ(45)の駆動によって変速機のシフトレンジを切り換えるシフト切換機構(48)を備えた車両の制御装置であって、前記シフト切換機構(48)は、前記アクチュエータ(45)に連結された回転部材(100)と、前記アクチュエータ(45)の駆動によって前記回転部材(100)の所定方向の回転位置が所定のシフトレンジに対応する基準位置となったときに前記回転部材(100)の所定部位(200)に当接して前記回転部材(100)の前記所定方向の回転を規制する規制部材(112)とを含み、
     前記制御装置は、
     前記車両のユーザによる前記車両の始動操作を検出する第1装置(28)と、
     前記第1装置(28)が前記始動操作を検出したこと、あるいは、前記始動操作とは異なる要因が生じたことに応じて起動され、前記アクチュエータ(45)の駆動を制御する第2装置(40)とを含み、
     前記第2装置(40)は、前記第2装置(40)の起動に応じて前記第2装置(40)の起動要因が前記始動操作および前記始動操作とは異なる要因のいずれであるのかを判断し、前記第2装置(40)の起動要因が前記始動操作である場合に、前記基準位置を検出するために前記回転部材(100)を前記所定方向に回転させて前記回転部材(100)の所定部位(200)を前記規制部材(112)に押し当てる押当制御を実行するように前記アクチュエータ(45)を制御し、前記第2装置(40)の起動要因が前記始動操作とは異なる要因である場合に、前記押当制御を実行しないように前記アクチュエータ(45)を制御する、車両の制御装置。
  2.  前記アクチュエータ(45)は、前記押当制御による駆動前に予め定められた初期駆動が必要であり、
     前記第2装置(40)は、前記第2装置(40)の起動時に前記初期駆動を行なう初期制御を実行し、前記初期制御の完了後に前記第2装置(40)の起動要因が前記始動操作および前記始動操作とは異なる要因のいずれであるのかを判断する、請求の範囲第1項に記載の車両の制御装置。
  3.  前記制御装置は、前記第1装置(28)が前記始動操作を検出したことに応じた始動情報を前記第2装置(40)に送信する第3装置(50、60)をさらに含み、
     前記第2装置(40)は、前記初期制御の完了時から所定期間が経過するまでに前記始動情報を受信した場合は前記第2装置(40)の起動要因が前記始動操作であるとして前記押当制御を実行し、前記初期制御の完了時から前記所定期間が経過しても前記始動情報を受信しない場合は前記第2装置(40)の起動要因が前記始動操作とは異なる要因であると判断して前記押当制御を実行しない、請求の範囲第2項に記載の車両の制御装置。
  4.  前記第2装置(40)は、前記初期制御の完了時に前記始動情報を未だ受信していない場合は前記アクチュエータ(45)を前記初期制御後の状態に一時的に維持し、前記初期制御の完了時から前記所定期間が経過するまでに前記始動情報を受信しない場合は前記アクチュエータ(45)を前記初期制御後の状態に一時的に維持することを継続し、前記初期制御の完了時から前記所定期間が経過するまでに前記始動情報を受信した場合は前記始動情報を受信した時点で前記初期制御を再実行することなく前記押当制御を実行し、前記初期制御の完了時から前記所定期間が経過しても前記始動情報を受信しない場合は前記アクチュエータ(45)を前記初期制御前の状態に戻す、請求の範囲第3項に記載の車両の制御装置。
  5.  前記制御装置は、前記第2装置(40)が前記押当制御を行なった結果に基づいて、前記第2装置(40)に異常がないか否かを判断する異常判断を行なう第4装置(30)をさらに含み、
     前記第4装置(30)は、前記第2装置(40)の起動要因が前記始動操作とは異なる要因であることによって前記第2装置(40)が前記押当制御を実行できない場合は、前記異常判断を行なわない、請求の範囲第1項に記載の車両の制御装置。
  6.  前記車両は、前記第2装置(40)に電力を供給する電源(54)を備え、
     前記第2装置(40)は、前記押当制御の実行によって前記シフトレンジをパーキングレンジに設定し、
     前記制御装置は、前記電源(54)から前記第2装置(40)への電力の供給を制御する第4装置(30)をさらに含み、
     前記第4装置(30)は、前記第2装置(40)の起動要因が前記始動操作であることによって前記第2装置(40)が前記押当制御を実行した場合には、前記シフトレンジが前記パーキングレンジとは異なるレンジであるという条件を含む所定条件が成立したときに前記電源(54)から前記第2装置(40)への電力の供給の遮断を禁止し、前記第2装置(40)の起動要因が前記始動操作とは異なる要因であることによって前記第2装置(40)が前記押当制御を実行できない場合には、前記所定条件が成立した場合であっても前記電源(54)から前記第2装置(40)への電力の供給の遮断を許容する、請求の範囲第1項に記載の車両の制御装置。
  7.  前記車両は、少なくとも内燃機関(11)を駆動源とし、
     前記始動操作とは異なる要因は、前記第2装置(40)の非起動時に前記内燃機関(11)に関する異常を診断する必要が生じたことを含む、請求の範囲第1項に記載の車両の制御装置。
  8.  アクチュエータ(45)の駆動によって変速機のシフトレンジを切り換えるシフト切換機構(48)を備えた車両の制御方法であって、前記シフト切換機構(48)は、前記アクチュエータ(45)に連結された回転部材(100)と、前記アクチュエータ(45)の駆動によって前記回転部材(100)の所定方向の回転位置が所定のシフトレンジに対応する基準位置となったときに前記回転部材(100)の所定部位(200)に当接して前記回転部材(100)の前記所定方向の回転を規制する規制部材(112)とを含み、前記車両は、前記車両のユーザによる前記車両の始動操作を検出する第1装置(28)と、前記第1装置(28)が前記始動操作を検出したこと、あるいは、前記始動操作とは異なる要因が生じたことに応じて起動され、前記アクチュエータ(45)の駆動を制御する第2装置(40)とを含み、
     前記制御方法は、前記第2装置(40)が行なう方法であって、
     前記制御方法は、
     前記第2装置(40)の起動に応じて前記第2装置(40)の起動要因が前記始動操作および前記始動操作とは異なる要因のいずれであるのかを判断するステップと、
     前記第2装置(40)の起動要因が前記始動操作である場合に、前記基準位置を検出するために前記回転部材(100)の所定部位(200)を前記規制部材(112)に押し当てる押当制御を実行するように前記アクチュエータ(45)を制御するステップと、
     前記第2装置(40)の起動要因が前記始動操作とは異なる要因である場合に、前記押当制御を実行しないように前記アクチュエータ(45)を制御するステップとを含む、車両の制御方法。
PCT/JP2009/060133 2009-06-03 2009-06-03 車両の制御装置および制御方法 WO2010140229A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2009/060133 WO2010140229A1 (ja) 2009-06-03 2009-06-03 車両の制御装置および制御方法
US13/260,032 US9611932B2 (en) 2009-06-03 2009-06-03 Control apparatus and control method for vehicle
JP2011518121A JP5196017B2 (ja) 2009-06-03 2009-06-03 車両の制御装置および制御方法
DE112009004849.8T DE112009004849B4 (de) 2009-06-03 2009-06-03 Steuerungsvorrichtung und Steuerungsverfahren für ein Fahrzeug
CN200980159660.1A CN102459964B (zh) 2009-06-03 2009-06-03 车辆的控制装置以及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/060133 WO2010140229A1 (ja) 2009-06-03 2009-06-03 車両の制御装置および制御方法

Publications (1)

Publication Number Publication Date
WO2010140229A1 true WO2010140229A1 (ja) 2010-12-09

Family

ID=43297376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060133 WO2010140229A1 (ja) 2009-06-03 2009-06-03 車両の制御装置および制御方法

Country Status (5)

Country Link
US (1) US9611932B2 (ja)
JP (1) JP5196017B2 (ja)
CN (1) CN102459964B (ja)
DE (1) DE112009004849B4 (ja)
WO (1) WO2010140229A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108553A (ja) * 2011-11-18 2013-06-06 Mitsubishi Motors Corp 電動車両
JP2016200170A (ja) * 2015-04-07 2016-12-01 トヨタ自動車株式会社 車両用シフト位置切換装置の制御装置
JP2016215825A (ja) * 2015-05-20 2016-12-22 トヨタ自動車株式会社 車両
JP2017053479A (ja) * 2015-09-11 2017-03-16 トヨタ自動車株式会社 パーキングロック装置の制御装置
JP2018017294A (ja) * 2016-07-27 2018-02-01 本田技研工業株式会社 車両の制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235458A (ja) * 1992-11-25 1994-08-23 Eaton Corp x−yシフト装置の較正方法
JP2002188722A (ja) * 2000-12-19 2002-07-05 Luk Lamellen & Kupplungsbau Beteiligungs Kg オートマティックトランスミッションシステムを較正する方法及び較正された1つ又は複数の他のギヤ比位置からギヤ比の位置が計算される方法
JP2004308848A (ja) * 2003-04-09 2004-11-04 Denso Corp シフト制御システムおよびシフト制御方法
JP2005042890A (ja) * 2003-07-25 2005-02-17 Calsonic Kansei Corp 自動変速機のセレクトアシスト装置
JP2008286346A (ja) * 2007-05-21 2008-11-27 Mazda Motor Corp 変速機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2898045B2 (ja) 1990-03-01 1999-05-31 マツダ株式会社 車両用自動変速機の操作装置
JP2762834B2 (ja) 1992-03-03 1998-06-04 トヨタ自動車株式会社 自動変速機の変速制御装置
DE19625019A1 (de) 1996-06-22 1998-01-02 Bayerische Motoren Werke Ag Kraftfahrzeug mit automatisch geschaltetem Getriebe
JP3905326B2 (ja) * 2001-04-25 2007-04-18 株式会社デンソー 自動変速機のシフトレンジ切換装置
US7312595B2 (en) * 2002-07-09 2007-12-25 Denso Corporation Motor control apparatus
JP4248290B2 (ja) * 2003-04-04 2009-04-02 株式会社デンソー シフト制御システムおよびシフト制御方法
WO2004090387A1 (en) * 2003-04-04 2004-10-21 Toyota Jidosha Kabushiki Kaisha Shift control system, shift control method and shift switching device
JP4376576B2 (ja) 2003-08-26 2009-12-02 トヨタ自動車株式会社 自動変速機のシフトレンジ切替装置
JP4302039B2 (ja) 2004-11-02 2009-07-22 株式会社デンソー モータ制御装置
JP4320648B2 (ja) 2005-06-06 2009-08-26 株式会社デンソー シフトレンジ切替装置
JP4577243B2 (ja) 2006-03-14 2010-11-10 トヨタ自動車株式会社 変速機のシフト制御装置
JP4361927B2 (ja) * 2006-08-08 2009-11-11 株式会社デンソー シフトバイワイヤシステム
JP4179388B1 (ja) 2007-05-24 2008-11-12 トヨタ自動車株式会社 車両用制御装置
JP2009293706A (ja) 2008-06-05 2009-12-17 Toyota Motor Corp 車両の制御装置および制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235458A (ja) * 1992-11-25 1994-08-23 Eaton Corp x−yシフト装置の較正方法
JP2002188722A (ja) * 2000-12-19 2002-07-05 Luk Lamellen & Kupplungsbau Beteiligungs Kg オートマティックトランスミッションシステムを較正する方法及び較正された1つ又は複数の他のギヤ比位置からギヤ比の位置が計算される方法
JP2004308848A (ja) * 2003-04-09 2004-11-04 Denso Corp シフト制御システムおよびシフト制御方法
JP2005042890A (ja) * 2003-07-25 2005-02-17 Calsonic Kansei Corp 自動変速機のセレクトアシスト装置
JP2008286346A (ja) * 2007-05-21 2008-11-27 Mazda Motor Corp 変速機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108553A (ja) * 2011-11-18 2013-06-06 Mitsubishi Motors Corp 電動車両
JP2016200170A (ja) * 2015-04-07 2016-12-01 トヨタ自動車株式会社 車両用シフト位置切換装置の制御装置
JP2016215825A (ja) * 2015-05-20 2016-12-22 トヨタ自動車株式会社 車両
JP2017053479A (ja) * 2015-09-11 2017-03-16 トヨタ自動車株式会社 パーキングロック装置の制御装置
JP2018017294A (ja) * 2016-07-27 2018-02-01 本田技研工業株式会社 車両の制御装置

Also Published As

Publication number Publication date
US20120072083A1 (en) 2012-03-22
DE112009004849B4 (de) 2021-06-17
US9611932B2 (en) 2017-04-04
JPWO2010140229A1 (ja) 2012-11-15
CN102459964B (zh) 2014-12-17
DE112009004849T5 (de) 2012-09-06
JP5196017B2 (ja) 2013-05-15
CN102459964A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
US8814752B2 (en) Shift control device for vehicle
US7713168B2 (en) Control apparatus for shift range changeover device
US8718885B2 (en) Shift control device for vehicle
JP5177043B2 (ja) 車両の制御装置および制御方法
JP4535174B2 (ja) 車両の制御装置および制御方法
JP5196017B2 (ja) 車両の制御装置および制御方法
US20090292431A1 (en) Control apparatus for shift range changeover device
US20130006486A1 (en) Shift-by-wire system
US9156475B2 (en) Actuator control apparatus
WO2009139250A1 (ja) シフト切換機構の異常判定装置および異常判定方法
JP2016161111A (ja) レンジ切換制御装置
CN101749424A (zh) 建立手动变速器的啮合状态的方法和设备
JP5413325B2 (ja) エンジン停止始動制御装置
CN111731258B (zh) 车辆的控制装置
GB2466188A (en) Automatic starting and stopping of an engine
JP4333957B2 (ja) 車両制御システム
JP5578102B2 (ja) 自動変速機の制御装置
JP2011247304A (ja) レンジ切換制御装置
US9541192B2 (en) Motor control apparatus
JP5846394B2 (ja) アクチュエータ制御装置
JP5835189B2 (ja) 電子制御装置
US11215281B2 (en) Control device for vehicle
GB2466185A (en) Method and apparatus for confirming gear engagement state
JP2017219166A (ja) 車両の制御装置
CN118144707A (zh) 车辆的控制装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159660.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845514

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13260032

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011518121

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120090048498

Country of ref document: DE

Ref document number: 112009004849

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845514

Country of ref document: EP

Kind code of ref document: A1