WO2010137522A1 - 積層構造体及びその製造方法 - Google Patents

積層構造体及びその製造方法 Download PDF

Info

Publication number
WO2010137522A1
WO2010137522A1 PCT/JP2010/058594 JP2010058594W WO2010137522A1 WO 2010137522 A1 WO2010137522 A1 WO 2010137522A1 JP 2010058594 W JP2010058594 W JP 2010058594W WO 2010137522 A1 WO2010137522 A1 WO 2010137522A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
conductive layer
laminated structure
dielectric film
layer
Prior art date
Application number
PCT/JP2010/058594
Other languages
English (en)
French (fr)
Inventor
仁志 野口
直樹 田中
達也 仲村
健一 永光
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2011516000A priority Critical patent/JPWO2010137522A1/ja
Publication of WO2010137522A1 publication Critical patent/WO2010137522A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 

Definitions

  • the present invention relates to a laminated structure such as a circuit board or a capacitor element on which a capacitor circuit is formed, and a method for manufacturing the same.
  • This type of laminated structure is configured by interposing a dielectric layer between the first conductive layer and the second conductive layer.
  • the dielectric layer is formed by a sol-gel method, MOCVD (Metal Organic Chemical Vapor Deposition). ) Method, sputtering deposition method or the like, and is formed on the surface of the first conductive layer by using various known film forming methods (see, for example, Patent Document 1).
  • the second conductive layer is formed on the dielectric layer using a sputtering vapor deposition method or a plating method, the second conductive layer is formed. A part of the metal to be infiltrated into the pinhole or crack, and there is a possibility that the insulation between the first conductive layer and the second conductive layer is broken through the pinhole or crack.
  • an object of the present invention is to provide a laminated structure in which dielectric breakdown is unlikely to occur and a manufacturing method thereof.
  • the laminated structure according to the present invention is a laminated structure in which a dielectric layer is interposed between a first conductive layer and a second conductive layer, and the dielectric layer includes the first conductive layer and the second conductive layer. It is comprised from a pair of dielectric film formed in the surface facing a layer, and the contact bonding layer which adhere
  • the laminated structure includes a circuit board, a capacitor element, and a capacitor element in which a capacitor circuit configured by interposing a dielectric layer between the first conductive layer and the second conductive layer is formed on the substrate.
  • Various laminated structures such as a laminated sheet that can be cut out are included.
  • the sputtering film deposition method, plating method, screen printing method, etc. are used on the dielectric film formed on the first conductive layer.
  • the two conductive layers are formed, a part of the metal constituting the second conductive layer penetrates into the pinholes and cracks, thereby causing the gap between the first conductive layer and the second conductive layer through the pinholes and cracks. There is a possibility that the insulation of the metal is destroyed.
  • a pair of dielectric films are formed on the opposing surfaces of the first conductive layer and the second conductive layer, and the pair of dielectric films are bonded to each other by the adhesive layer. . Therefore, the positions of pinholes and cracks existing in both dielectric films are easily shifted from each other. Therefore, even if a part of the metal constituting the conductive layer penetrates into the pinhole or the crack, the metal in the pinhole or the crack is difficult to contact each other, thereby the first conductive layer and the second conductive layer. The insulation between the two is maintained.
  • the adhesive layer is formed by interposing a dispersion solution containing dielectric fine particles between the pair of dielectric films.
  • the dielectric fine particles are barium titanate, lithium niobate, lithium borate, lead zirconate titanate, strontium titanate, lead lanthanum zirconate titanate, lithium tantalate, zinc oxide, tantalum oxide, It contains at least one material as a main component. These dielectric fine particles may contain an additive for improving the dielectric characteristics.
  • the dielectric constant of the laminated structure may be lowered due to the influence of voids generated by the pinholes or cracks.
  • the dispersion solution enters the pinholes and cracks, and as a result, the pinholes and cracks are filled with dielectric fine particles. Accordingly, a decrease in dielectric constant is suppressed.
  • the dielectric fine particles are made of the same material as the main component of the dielectric material forming the dielectric film.
  • the difference in the coefficient of thermal expansion between the dielectric film and the adhesive layer can be reduced, so that internal defects due to thermal expansion can be prevented.
  • the adhesive layer is formed by interposing a dispersion solution containing dielectric fine particles between the pair of dielectric films and then annealing the dispersion solution. It may be. According to this configuration, the adhesion between the pair of dielectric films and / or the dielectric characteristics of the dielectric layer are improved.
  • the dielectric film is formed by any one of a sol-gel method, an MOCVD method, a sputtering deposition method, and a powder spray coating method.
  • the powder spray coating method includes various film forming methods such as an aerosol deposition method and a powder jet deposition method in which a dielectric powder is sprayed to form a dielectric film.
  • the manufacturing method of a laminated structure according to the present invention is a manufacturing method of a laminated structure in which a dielectric layer is interposed between a first conductive layer and a second conductive layer, wherein the first conductive layer and the second conductive layer are provided.
  • the adhesive layer used in the adhesion step is a dispersion containing dielectric fine particles between the dielectric films formed on the pair of metal members in the dielectric film formation step. It is formed by interposing a solution.
  • the dispersion solution contains dielectric fine particles composed of the same material as the main component of the dielectric material that constitutes the dielectric film.
  • a pressing pressure for sandwiching the dispersion solution may be applied to the dielectric film in the process of forming the adhesive layer with a dispersion solution interposed between the dielectric films. Good. Thereby, the adhesiveness of the dielectric films formed on the pair of metal members is improved.
  • the press pressure is preferably 6 kPa or more.
  • an annealing treatment may be performed on the dispersion solution interposed between the dielectric films.
  • the adhesiveness of the dielectric films formed on the pair of metal members is improved.
  • the annealing process at a temperature of 400 ° C. or more, in addition to improving the adhesion between the dielectric films, the dielectric characteristics of the dielectric layer are improved.
  • the dielectric film in the dielectric film forming step, is formed using any one of a sol-gel method, an MOCVD method, a sputtering deposition method, and a powder spray coating method. Form.
  • the powder spray coating method includes various film forming methods such as an aerosol deposition method and a powder jet deposition method in which a dielectric powder is sprayed to form a dielectric film.
  • Another method for manufacturing a laminated structure according to the present invention is a method for manufacturing a laminated structure in which a dielectric layer is interposed between a first conductive layer and a second conductive layer, the first conductive layer and A dielectric film forming step of forming a dielectric film in each of the surfaces of the pair of metal members to be the second conductive layer facing each other; and a dielectric film formed on the pair of metal members After laminating each other, both the dielectric films are subjected to a pressing pressure along these laminating directions and annealed to sinter the area near the interface between the two dielectric films, thereby allowing the dielectric films to dielectric. A dielectric layer formed by the dielectric film formed on the pair of metal members.
  • dielectric films are formed on the opposing surfaces of the first conductive layer and the second conductive layer, and the two dielectric films are joined to each other. . Therefore, the positions of pinholes and cracks existing in both dielectric films are easily shifted from each other. Therefore, even if a part of the metal constituting the conductive layer penetrates into the pinhole or the crack, the metal in the pinhole or the crack is difficult to contact each other, thereby the first conductive layer and the second conductive layer. The insulation between the two is maintained.
  • the press pressure is 9 kPa or more.
  • annealing is performed at a temperature of 800 ° C. or higher in the joining step.
  • the adhesiveness of the dielectric films formed on the pair of metal members is improved.
  • the dielectric properties of the dielectric layer are improved.
  • any one of a sol-gel method, an MOCVD method, a sputtering deposition method, and a powder spray coating method is used in the dielectric film forming step.
  • a dielectric film is formed.
  • the powder spray coating method includes various film forming methods such as an aerosol deposition method and a powder jet deposition method in which a dielectric powder is sprayed to form a dielectric film.
  • the dielectric structure according to the present invention hardly causes dielectric breakdown. Moreover, according to the manufacturing method according to the present invention, it is possible to manufacture a laminated structure that hardly causes dielectric breakdown.
  • FIG. 1 is a cross-sectional view showing a circuit board according to a first embodiment of the present invention.
  • 2A and 2B are cross-sectional views used for explaining the dielectric film forming step in the method for manufacturing the circuit board.
  • FIG. 3 is a cross-sectional view used for explaining the bonding process of the method for manufacturing the circuit board.
  • FIG. 4 is a diagram showing a film forming apparatus used in the aerosol deposition method.
  • FIG. 5 is a cross-sectional view showing an injection device used in the powder jet deposition method.
  • FIG. 6 is a cross-sectional view used for explaining a modification of the method for manufacturing the circuit board.
  • FIG. 7 is a diagram showing the relationship between the press pressure and the number of defects.
  • FIG. 8 is a diagram showing the relationship between the annealing temperature and the number of defects.
  • FIG. 9 is a diagram showing the relationship between the annealing temperature (top temperature) and the capacitance density ratio.
  • FIG. 10 is a sectional view showing a circuit board according to the second embodiment of the present invention.
  • FIG. 11A and FIG. 11B are cross-sectional views used for explaining the dielectric film forming step in the method of manufacturing the circuit board.
  • FIG. 12A and FIG. 12B are cross-sectional views used for explaining the bonding process in the method for manufacturing the circuit board.
  • FIG. 13 is a diagram showing the relationship between the press pressure and the number of defects.
  • FIG. 14 is a diagram showing the relationship between the annealing temperature and the number of defects.
  • a circuit board according to an embodiment of the present invention has a dielectric layer (3) interposed between a first conductive layer (1) and a second conductive layer (2).
  • This is a multilayer structure in which the capacitor circuit (40) configured as described above is formed on the substrate (4).
  • the first conductive layer (1) is a metal foil disposed on the substrate (4), and includes copper (Cu), nickel (Ni), cobalt (Co), gold (Au), platinum (Pt), aluminum ( It is composed of at least one metal selected from the group consisting of metals such as Al) or an alloy formed from at least two metals selected from the group.
  • the first conductive layer (1) may be formed using a sputtering vapor deposition method, a plating method, a screen printing method, or the like.
  • the second conductive layer (2) is a metal foil disposed opposite to the first conductive layer (1) at a position on the dielectric layer (3). Like the first conductive layer (1), the second conductive layer (2) is made of copper. (Cu), nickel (Ni), cobalt (Co), gold (Au), platinum (Pt), at least one metal selected from the group consisting of metals such as aluminum (Al), or the group It is comprised from the alloy formed from the at least 2 sort (s) of metal selected from these.
  • the dielectric layer (3) includes a pair of dielectric films (31) and (32) formed on opposing surfaces (1a) and (2a) of the first conductive layer (1) and the second conductive layer (2),
  • the pair of dielectric films (31) and (32) is composed of an adhesive layer (33) for adhering each other.
  • Each of the pair of dielectric films (31) and (32) is made of a dielectric material containing barium titanate (BaTiO3) as a main component.
  • the thickness of each dielectric film (31) (32) is about 1/2 times the thickness of the dielectric layer (3), and the thickness of the dielectric layer (3) is about 0.5 ⁇ m. In some cases, the thickness of each dielectric film (31) (32) is about 0.25 ⁇ m.
  • the thickness of the dielectric layer (3) is not limited to 0.5 ⁇ m, and may be thicker or thinner.
  • the adhesive layer (33) is formed by interposing a dispersion solution containing dielectric fine particles containing barium titanate (BaTiO3) as a main component between a pair of dielectric films (31) and (32). is there.
  • the dielectric fine particles contained in the dispersion solution are nanoparticles having an average particle diameter of 50 nm or less, and the adhesive layer (33) is interposed between the pair of dielectric films (31) and (32). This is a thin layer formed by drying the intervening dispersion and agglomerating the dielectric fine particles.
  • barium titanate (BaTiO3) which is the same material, is used as a main component for both dielectric films (31) and (32) and dielectric fine particles constituting the adhesive layer (33).
  • the present invention is not limited to this, but lithium niobate (LiNbO3), lithium borate (Li2B4O7), lead zirconate titanate (PbZrTiO3), strontium titanate (SrTiO3), lead lanthanum zirconate titanate (PbLaZrTiO3), tantalum
  • dielectric materials mainly composed of lithium oxide (LiTaO3), zinc oxide (ZnO), tantalum oxide (Ta2O5), and the like can be used.
  • dielectric materials having different main components may be used for the dielectric films (31) and (32) and the dielectric fine particles constituting the adhesive layer (33).
  • the dielectric films (31) and (32) and the dielectric fine particles constituting the adhesive layer (33) may contain an additive in order to improve the dielectric characteristics.
  • a method for manufacturing the circuit board will be described.
  • a substrate (4) on which a metal foil (11) to be a first conductive layer (1) is arranged and a metal foil (12) to be a second conductive layer (2) are prepared. Is done.
  • the bonding step of bonding the dielectric films (31) and (32) is performed in this order.
  • the surface of the metal foil (11) is used as shown in FIG. 2 (a) by using any of the sol-gel method, MOCVD method, sputtering deposition method, and powder injection coating method.
  • the dielectric film (31) is formed in the region (11a) (region that becomes the facing surface (1a)) that faces the metal foil (12) in the bonding step.
  • the powder spray coating method includes various film forming methods such as an aerosol deposition method and a powder jet deposition method in which a dielectric powder is sprayed to form a dielectric film.
  • the sol-gel method is a well-known film forming method for forming a dielectric film at a low temperature of about room temperature to 150 ° C.
  • the MOCVD method and the sputtering deposition method are well-known film forming methods for forming a dielectric film in a vacuum. It is a membrane method.
  • a dielectric film is formed by aerosolizing dielectric powder using a film forming apparatus as shown in FIG. 4 and spraying the powder toward the surface on which the dielectric film is to be formed. It is a membrane method.
  • the film forming apparatus can maintain the inside in a vacuum state by an aerosol generator (71) that stirs and mixes dielectric powder with a high-pressure gas to form an aerosol, and a vacuum pump (73).
  • a possible film forming chamber (72) is connected by a thin transfer tube (74).
  • the space (high pressure space) in the aerosol generator (71) into which the high pressure gas flows and the film formation chamber (72) A pressure difference is generated between the space (low pressure space). Therefore, the dielectric powder aerosolized by the aerosol generator (71) flows in the transfer tube (74) toward the film forming chamber (72).
  • a stage (75) for installing an object having a surface on which a dielectric film is to be formed is disposed inside the film forming chamber (72), and the stage (75) is provided with the object. And a translation in the XY plane parallel to the installation surface (751), translation in the Z-axis direction perpendicular to the XY plane, and rotation around the Z-axis.
  • One end of the transfer tube (74) is located in the film forming chamber (72), and a slit-like nozzle (76) is attached to the one end of the transfer tube (74) with the tip thereof facing the installation surface (751) of the stage (75). It has been.
  • the nozzle (76) has a shape capable of accelerating the dielectric powder discharged from one end of the transfer tube (74) to about 100 m / sec.
  • the dielectric powder discharged at high speed from the tip of the nozzle (76) is sprayed onto the surface of the object on the stage (75).
  • the powder jet deposition method is a film forming method in which a dielectric film is formed by injecting a dielectric powder toward a surface on which a dielectric film is to be formed using an injection device as shown in FIG.
  • the injection device includes a stepped nozzle (81) having two regions (811) and (812) having different inner diameters.
  • the nozzle (81) includes a first region (811 having a larger inner diameter).
  • a through hole (82) for supplying dielectric powder is formed at a position close to the second region (812) having a small inner diameter.
  • the discharged dielectric powder is sprayed onto the surface of the object on the stage as in the case of the aerosol deposition method.
  • the dielectric film (31) when the dielectric film (31) is formed on the surface region (11a) of the metal foil (11) using the aerosol deposition method or the powder jet deposition method, the surface of the metal foil (11) Barium titanate (BaTiO3) dielectric powder having a particle size of about 1 ⁇ m is sprayed.
  • the dielectric powder sprayed on the surface of the metal foil (11) collides with the surface of the metal foil (11) or other dielectric powder and is crushed, and is applied to the surface region (11a) of the metal foil (11). As a result, a dielectric film (31) is formed on the surface region (11a). Therefore, the dielectric film (31) formed using the aerosol deposition method or the powder jet deposition method is a dense film.
  • the dielectric film forming step as in the case of forming the dielectric film (31) on the surface of the metal foil (11), any one of the sol-gel method, the MOCVD method, the sputtering deposition method, and the powder spray coating method is used. Using the method, as shown in FIG. 2 (b), the region (12a) (facing surface (2a)) that faces the metal foil (11) in the bonding process in the surface of the metal foil (12). The dielectric film (32) is formed in the region).
  • the powder spray coating method includes various film forming methods for forming a dielectric film by spraying a dielectric powder, such as the aerosol deposition method and the powder jet deposition method described above.
  • dielectric fine particles containing barium titanate (BaTiO3) as a main component on the dielectric film (31) formed on the metal foil (11) in the dielectric film forming process dielectric fine particles containing barium titanate (BaTiO3) as a main component on the dielectric film (31) formed on the metal foil (11) in the dielectric film forming process.
  • the dispersion solution (6) containing sapphire is applied, and then the dielectric film (32) formed on the metal foil (12) is overlaid on the dielectric film (31), and the dispersion solution (6) is applied to both dielectrics. It is sandwiched between body membranes (31) and (32).
  • the dispersion solution (6) used in the adhesion step contains nanoparticles having an average particle diameter of 50 nm or less as dielectric fine particles.
  • the dispersion solution is preferably one in which the nanoparticles are monodispersed in the solution in the form of primary particles.
  • the dielectric fine particles in the dispersion solution (6) are interposed between the dielectric films (31) and (32).
  • a dielectric fine particle film in which the particles are aggregated is formed. Therefore, at the interface between the dielectric fine particle film and the dielectric film (31), the dielectric fine particles in the dielectric fine particle film and the crystal particles in the dielectric film (31) are firmly bonded to each other, and as a result The dielectric fine particle film and the dielectric film (31) are bonded to each other. Similarly, the dielectric fine particle film and the dielectric film (32) are bonded to each other.
  • the dielectric fine particle film functions as an adhesive layer (33) that is interposed between the dielectric films (31) and (32) and adheres the dielectric films (31) and (32).
  • the first and second conductive layers (31) and (32) formed in the dielectric film forming step and the adhesive layer (33) formed in the bonding step are used.
  • a dielectric layer (3) interposed between (2) is formed.
  • a circuit board in which a capacitor circuit (40) is formed on a board (4) is formed. Will be completed.
  • pinholes (5) and cracks are likely to occur in the dielectric film (31) as shown in FIG. 2 (a), and therefore, formed in the first conductive layer (1).
  • Part of the metal constituting the second conductive layer (2) when the second conductive layer (2) is formed on the dielectric film (31) by sputtering, plating, screen printing or the like May penetrate into the pinhole (5) or the crack, and thereby the insulation between the first conductive layer (1) and the second conductive layer (2) may be broken through the pinhole (5) or the crack. There is.
  • the surface of the first conductive layer (1) has minute irregularities, when the dielectric film (31) is thinned, the first conductive layer (1) is not formed on the surface of the dielectric film (31). Some may be exposed. Therefore, when the second conductive layer (2) is formed directly on the dielectric film (31), the exposed portion of the first conductive layer (1) and the second conductive layer (2) are in contact with each other. There is a possibility that the insulation between the conductive layer (1) and the second conductive layer (2) is broken.
  • the pair of dielectric films (31) and (32) are formed on the opposing surfaces (1a) and (2a) of the first conductive layer (1) and the second conductive layer (2).
  • the pair of dielectric films (31) and (32) are bonded to each other by an adhesive layer (33). Therefore, the positions of pinholes (5) and cracks existing in both dielectric films (31) and (32) are easily shifted from each other. Therefore, even if part of the metal constituting the conductive layers (1) and (2) penetrates into the pinhole (5) and the crack, the metal in the pinhole (5) and the crack is difficult to contact each other. This maintains the insulation between the first conductive layer (1) and the second conductive layer (2).
  • both conductive layers (1) (2) are exposed.
  • the positions of the parts are easily displaced from each other. Accordingly, the exposed portions are unlikely to contact each other, thereby maintaining the insulation between the first conductive layer (1) and the second conductive layer (2).
  • the dielectric constant of the capacitor circuit on the circuit board is affected by the effect of the voids generated by the pinholes (5) and cracks. May decrease.
  • the dispersion solution (6) enters the pinhole (5) and the crack, and as a result, the pinhole (5) and the crack are filled with the dielectric fine particles. It will be. Accordingly, a decrease in dielectric constant is suppressed.
  • the adhesive layer (33) is made of the same material as the main component of the dielectric material constituting the dielectric films (31) and (32), the dielectric film (31) The difference in thermal expansion coefficient between (32) and the adhesive layer (33) is reduced, and as a result, the occurrence of internal defects due to thermal expansion is suppressed. Therefore, the quality of the circuit board is maintained high.
  • FIG. 6 is a cross-sectional view used for explaining a modification of the method for manufacturing the circuit board.
  • the bonding process in the process of forming the adhesive layer (33) by interposing the dispersion solution (6) between the dielectric films (31) and (32), the dielectric film (31) A pressing pressure for sandwiching the dispersion solution (6) may be applied to (32).
  • the pressing pressure is preferably 6 kPa or more.
  • the inventor of the present application has confirmed by experiments that the adhesion between the dielectric films (31) and (32) is improved by applying a pressing pressure to the dielectric films (31) and (32).
  • FIG. 7 is a diagram showing the relationship between the press pressure and the number of defects.
  • the number of occurrences of defects indicates the number of defective products generated in the 64 circuit boards manufactured, and the defective products have voids in the observation surface when the cut surface of the circuit board is observed by SEM. Existed even at one location. Therefore, the smaller the number of occurrences of defects, the higher the adhesion between the dielectric films (31) and (32).
  • nickel (Ni) foil was used as the metal foils (11) and (12), and the dielectric films (31) and (32) and the dielectric particles constituting the dielectric fine particles were respectively used as barium titanate (BaTiO3). Was used. This experiment was performed at room temperature.
  • the dispersion solution (6) interposed between the dielectric films (31) and (32) may be annealed.
  • the inventor of the present application has confirmed through experiments that the adhesion between the dielectric films (31) and (32) is improved by the annealing treatment for the dispersion solution (6).
  • FIG. 8 is a diagram showing the relationship between the annealing temperature and the number of defects.
  • the number of occurrences of defects indicates the number of defective products generated in the 64 circuit boards manufactured, and the defective products have voids in the observation surface when the cut surface of the circuit board is observed by SEM. Existed even at one location. Therefore, the smaller the number of occurrences of defects, the higher the adhesion between the dielectric films (31) and (32).
  • nickel (Ni) foil was used as the metal foils (11) and (12), and the dielectric films (31) and (32) and the dielectric particles constituting the dielectric fine particles were respectively used as barium titanate (BaTiO3).
  • BaTiO3 barium titanate
  • the inventors of the present application have confirmed by experiments that the dielectric properties of the dielectric layer (3) are improved by annealing at a temperature of 400 ° C. or higher.
  • FIG. 9 is a diagram showing the relationship between the annealing temperature (top temperature) and the capacitance density ratio.
  • the capacitance density ratio is the ratio of the capacitance density of the circuit board manufactured by performing the annealing process to the capacitance density of the circuit board manufactured without performing the annealing process (at room temperature).
  • nickel (Ni) foil was used as the metal foils (11) and (12), and the dielectric films (31) and (32) and the dielectric particles constituting the dielectric fine particles were respectively used as barium titanate (BaTiO3).
  • the annealing temperature was increased from room temperature to the top temperature at a rate of 10 ° C / min. The annealing temperature was maintained at the top temperature for 1 hour, and then the annealing temperature was lowered by natural cooling. I let you. Furthermore, this experiment was carried out without applying a pressing pressure.
  • the capacitance ratio hardly changes from 1, whereas the annealing temperature (top temperature).
  • the temperature is set to 400 ° C. or higher, it can be seen that the capacitance density ratio is greater than 1.
  • the capacitance density ratio also increases.
  • the annealing temperature should be set to a temperature at which the metal foils (11) and (12) to be the first conductive layer (1) and the second conductive layer (2) are not deformed. It depends on the type of metal or alloy constituting the metal foil (11) (12). In order to further improve the dielectric characteristics of the dielectric layer (3), the annealing time is preferably set to 10 minutes or more. Furthermore, when the metal foil (11) (12) is configured using a metal or an alloy that is easily oxidized, the metal foil (11) (12) is oxidized by performing an annealing treatment in a reducing atmosphere. Can be prevented.
  • the above-described annealing treatment may be performed in parallel with the application of the press pressure to the dielectric films (31) and (32). Thereby, it is possible to obtain a circuit board having high adhesion and good dielectric characteristics.
  • each part structure of this invention is not restricted to the said 1st Embodiment, A various deformation
  • the above-described various configurations and manufacturing methods adopted for the circuit board on which the capacitor circuit (40) is formed can also be adopted for a capacitor element and a laminated sheet from which the capacitor element can be cut out.
  • the capacitor element and the laminated sheet may not have a configuration corresponding to the substrate (4) constituting the circuit substrate.
  • the adhesive layer (33) is formed by interposing a dispersion solution (6) containing dielectric fine particles between a pair of dielectric films (31) and (32).
  • the present invention is not limited to this, and may be formed by interposing a resin such as an adhesive between the pair of dielectric films (31) and (32), for example.
  • a circuit board according to another embodiment of the present invention has a dielectric layer (34) interposed between the first conductive layer (1) and the second conductive layer (2) as shown in FIG. This is a laminated structure in which the capacitor circuit (41) configured as described above is formed on the substrate (4).
  • the first conductive layer (1) is a metal foil disposed on the substrate (4), and includes copper (Cu), nickel (Ni), cobalt (Co), gold (Au), platinum (Pt), aluminum ( It is composed of at least one metal selected from the group consisting of metals such as Al) or an alloy formed from at least two metals selected from the group.
  • the first conductive layer (1) may be formed using a sputtering vapor deposition method, a plating method, a screen printing method, or the like.
  • the second conductive layer (2) is a metal foil disposed opposite the first conductive layer (1) at a position on the dielectric layer (34), and like the first conductive layer (1), copper is used.
  • Cu nickel (Ni), cobalt (Co), gold (Au), platinum (Pt), at least one metal selected from the group consisting of metals such as aluminum (Al), or the group It is comprised from the alloy formed from the at least 2 sort (s) of metal selected from these.
  • the dielectric layer (34) is composed of a pair of dielectric films (35) and (36) formed on the opposing surfaces (1a) and (2a) of the first conductive layer (1) and the second conductive layer (2).
  • the pair of dielectric films (35) and (36) are joined so as to overlap each other.
  • each of the pair of dielectric films (35) and (36) is made of a dielectric material containing barium titanate (BaTiO3) as a main component.
  • both dielectric films (35) (36) include barium titanate (BaTiO3), lithium niobate (LiNbO3), lithium borate (Li2B4O7), lead zirconate titanate (PbZrTiO3), strontium titanate
  • Various dielectric materials mainly composed of (SrTiO3), lead lanthanum zirconate titanate (PbLaZrTiO3), lithium tantalate (LiTaO3), zinc oxide (ZnO), tantalum oxide (Ta2O5) and the like can be used.
  • the dielectric films (35) and (36) may contain an additive in order to improve the dielectric characteristics.
  • each dielectric film (35) (36) is about 1 ⁇ 2 times the thickness of the dielectric layer (34), and the thickness of the dielectric layer (34) is about 0.5 ⁇ m
  • the thickness of each dielectric film (35) (36) is about 0.25 ⁇ m.
  • the thickness of the dielectric layer (34) is not limited to 0.5 ⁇ m, and may be thicker or thinner.
  • a method for manufacturing the circuit board will be described.
  • a substrate (4) on which a metal foil (11) to be a first conductive layer (1) is arranged and a metal foil (12) to be a second conductive layer (2) are prepared. Is done.
  • a dielectric film forming step for forming dielectric films (35) and (36) on the surfaces of both metal foils (11) and (12), respectively and FIG.
  • the bonding step of bonding the dielectric films (35) and (36) to each other is executed in this order.
  • a dielectric film (35) is formed in a region (11a) (a region to be the facing surface (1a)) that will face the metal foil (12) in the bonding step in the surface of the metal foil (11). .
  • a dielectric film (36) is formed in a region (12a) (region to be the facing surface (2a)) that will face the metal foil (11).
  • a dielectric film is formed by spraying dielectric powder, such as the aerosol deposition method (see FIG. 4) and the powder jet deposition method (see FIG. 5) described in the first embodiment.
  • Various film forming methods are included.
  • the metal foil (12) is formed on the dielectric film (35) formed on the surface of the metal foil (11) in the dielectric film forming process.
  • the dielectric film (36) formed on the surface of () is superposed and laminated. As a result, the exposed surfaces of the dielectric films (35) and (36) come into contact with each other.
  • the press pressure is set to 9 kPa or more.
  • the annealing process is performed at a temperature of 800 ° C. or higher (annealing temperature).
  • the annealing temperature should be set to a temperature at which the metal foils (11) and (12) to be the first conductive layer (1) and the second conductive layer (2) are not deformed. It depends on the type of metal or alloy constituting the metal foil (11) (12).
  • the metal foil (11) (12) is configured using a metal or an alloy that is easily oxidized, the metal foil (11) (12) is oxidized by performing an annealing treatment in a reducing atmosphere. Can be prevented.
  • the capacitor circuit (41) is formed on the board (4) is completed.
  • dielectric films (35) are formed on the opposing surfaces (1a) and (2a) of the first conductive layer (1) and the second conductive layer (2), respectively. ) (36) is formed, and both dielectric films (35) and (36) are joined to each other. Therefore, the positions of pinholes (5) and cracks existing in both dielectric films (35) and (36) are easily shifted from each other. Therefore, even if part of the metal constituting the conductive layers (1) and (2) penetrates into the pinhole (5) and the crack, the metal in the pinhole (5) and the crack is difficult to contact each other. As a result, the insulation between the first conductive layer (1) and the second conductive layer (1) is maintained.
  • both conductive layers (1) (2) are exposed.
  • the positions of the parts are easily displaced from each other. Accordingly, the exposed portions are unlikely to contact each other, thereby maintaining the insulation between the first conductive layer (1) and the second conductive layer (2).
  • the press pressure in the joining process is set to 9 kPa or more, and the annealing process in the joining process is performed at a temperature of 800 ° C. or more. Therefore, the adhesion between the dielectric films (35) and (36) is improved in the produced circuit board. Furthermore, the dielectric properties of the dielectric layer (34) are improved.
  • the inventor of the present application has confirmed by experiments that the adhesiveness between the dielectric films (35) and (36) is improved by setting the pressing pressure in the joining process to 9 kPa or more.
  • FIG. 13 is a diagram showing the relationship between the press pressure and the number of defects.
  • the number of occurrences of defects indicates the number of defective products generated in the 64 circuit boards manufactured, and the defective products have voids in the observation surface when the cut surface of the circuit board is observed by SEM. Existed even at one location. Accordingly, the smaller the number of occurrences of defects, the higher the adhesion between the dielectric films (35) and (36).
  • nickel (Ni) foil was used as the metal foils (11) and (12)
  • barium titanate (BaTiO3) was used as the dielectric material constituting the dielectric films (35) and (36), respectively.
  • the annealing process in the joining process was performed at 1000 ° C.
  • the inventors of the present application have confirmed by experiments that the adhesion between the dielectric films (35) and (36) is improved by performing the annealing process in the bonding process at a temperature of 800 ° C. or higher.
  • FIG. 14 is a diagram showing the relationship between the annealing temperature and the number of defects.
  • the number of occurrences of defects indicates the number of defective products generated in the 64 circuit boards manufactured, and the defective products have voids in the observation surface when the cut surface of the circuit board is observed by SEM. Existed even at one location. Accordingly, the smaller the number of occurrences of defects, the higher the adhesion between the dielectric films (35) and (36).
  • nickel (Ni) foil was used as the metal foils (11) and (12)
  • barium titanate (BaTiO3) was used as the dielectric material constituting the dielectric films (35) and (36), respectively.
  • the press pressure in the joining process was set to about 11.8 kPa.
  • each part structure of this invention is not restricted to the said 2nd Embodiment, A various deformation
  • the above-described various configurations and manufacturing methods employed for the circuit board on which the capacitor circuit (41) is formed can also be employed for a capacitor element and a laminated sheet from which the capacitor element can be cut out.
  • the capacitor element and the laminated sheet may not have a configuration corresponding to the substrate (4) constituting the circuit substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

【課題】絶縁破壊が発生し難い積層構造体及びその製造方法を提供する。 【解決手段】本発明に係る積層構造体は、第1導電層1と第2導電層2との間に誘電体層3を介在させた積層構造体であって、誘電体層3は、第1導電層1と第2導電層2との対向面1a,2aに形成された一対の誘電体膜31,32と、該一対の誘電体膜31,32どうしを接着する接着層33とから構成されている。本発明に係る積層構造体の製造方法は、第1導電層1及び第2導電層2となる一対の金属部材の表面の内、互いに対向することとなる領域にそれぞれ誘電体膜31,32を形成する誘電体膜形成工程と、一対の金属部材に形成された誘電体膜31,32どうしを、これらの間に接着層33を介在させて接着する接着工程とを有し、両誘電体膜31,32と接着層33とによって誘電体層3が構成される。

Description

積層構造体及びその製造方法
 本発明は、コンデンサ回路が形成されている回路基板やコンデンサ素子等の積層構造体及びその製造方法に関する。
 この種の積層構造体は、第1導電層と第2導電層との間に誘電体層を介在させて構成されており、誘電体層は、ゾル‐ゲル法、MOCVD(Metal Organic Chemical Vapor Deposition)法、スパッタリング蒸着法等、周知の種々の成膜法を用いて、第1導電層の表面に形成されている(例えば、特許文献1参照)。
特許第3841814号公報
 しかし、上記成膜法では、誘電体層にピンポールやクラックが発生し易いため、スパッタリング蒸着法やメッキ法を用いて誘電体層上に第2導電層を形成した場合、第2導電層を構成する金属の一部がピンホールやクラック内に浸入し、これによってピンホールやクラックを介して第1導電層と第2導電層との間の絶縁が破壊される虞があった。
 又、第1導電層の表面には微小な凹凸が存在するため、誘電体膜を薄膜化した場合、誘電体膜の表面に第1導電層の一部が露出する虞があった。このため、誘電体層上に直接、第2導電層を形成した場合、第1導電層の露出部分と第2導電層とが接触して第1導電層と第2導電層との間の絶縁が破壊される虞があった。
 そこで本発明の目的は、絶縁破壊が発生し難い積層構造体及びその製造方法を提供することである。
 本発明に係る積層構造体は、第1導電層と第2導電層との間に誘電体層を介在させた積層構造体であって、前記誘電体層は、第1導電層と第2導電層との対向面に形成された一対の誘電体膜と、該一対の誘電体膜どうしを接着する接着層とから構成されている。
 尚、積層構造体には、第1導電層と第2導電層との間に誘電体層を介在させて構成されたコンデンサ回路が基板上に形成されている回路基板、コンデンサ素子、コンデンサ素子を切り出すことが可能な積層シート等、種々の積層構造体を含むものとする。
 上記積層構造体においては、誘電体膜にピンホールやクラックが発生し易いため、第1導電層に形成されている誘電体膜上にスパッタリング蒸着法、メッキ法、スクリーン印刷法等を用いて第2導電層を形成した場合、第2導電層を構成する金属の一部がピンホールやクラック内に浸入し、これによってピンホールやクラックを介して第1導電層と第2導電層との間の絶縁が破壊される虞がある。
 又、第1導電層の表面には微小な凹凸が存在するため、誘電体膜を薄膜化した場合、誘電体膜の表面に第1導電層の一部が露出する虞がある。このため、前記誘電体膜上に直接、第2導電層を形成した場合、第1導電層の露出部分と第2導電層とが接触して第1導電層と第2導電層との間の絶縁が破壊される虞がある。
 しかしながら、本発明に係る積層構造体においては、第1導電層と第2導電層との対向面に一対の誘電体膜が形成され、該一対の誘電体膜どうしが接着層によって接着されている。よって、両誘電体膜に存在しているピンホールやクラックどうしの位置が互いにずれ易い。従って、導電層を構成する金属の一部がピンホールやクラック内に浸入していたとしても、ピンホールやクラック内の金属どうしは互いに接触し難く、これによって第1導電層と第2導電層との間の絶縁が維持されることになる。
 又、各誘電体膜の表面に第1又は第2導電層の一部が露出していたとしても、両導電層の露出部分どうしの位置が互いにずれ易い。従って、該露出部分どうしは互いに接触し難く、これによって第1導電層と第2導電層との間の絶縁が維持されることになる。
 上記積層構造体の具体的構成において、前記接着層は、前記一対の誘電体膜の間に誘電体微粒子を含んだ分散溶液を介在させて形成されたものである。ここで、前記誘電体微粒子は、チタン酸バリウム、ニオブ酸リチウム、ホウ酸リチウム、チタン酸ジルコン酸鉛、チタン酸ストロンチウム、チタン酸ジルコン酸ランタン鉛、タンタル酸リチウム、酸化亜鉛、酸化タンタルの内、少なくとも1つの材料を主成分として含んでいる。尚、これらの誘電体微粒子には、誘電特性を向上させるべく添加物が含まれていてもよい。
 上述の如く誘電体膜にピンホールやクラックが発生した場合、積層構造体の誘電率がピンホールやクラックによって生じた空隙の影響により低下する虞がある。これに対し、上記具体的構成においては、ピンホールやクラック内に分散溶液が入り込み、その結果、該ピンホールやクラックが誘電体微粒子によって充填されることとなる。従って、誘電率の低下が抑制されることになる。
 より具体的な構成において、前記誘電体微粒子は、前記誘電体膜を構成する誘電体材料と主成分が同じ材料から構成されている。
 該具体的構成によれば、誘電体膜と接着層との熱膨張率の差を小さくすることが出来るので、熱膨張による内部欠陥の発生を防止することが出来る。
 上記積層構造体において、前記接着層は、前記一対の誘電体膜の間に誘電体微粒子を含んだ分散溶液を介在させた後、該分散溶液に対してアニール処理を施すことにより形成されたものであってもよい。この構成によれば、一対の誘電体膜どうしの密着性、及び/又は誘電体層の誘電特性が向上することになる。
 上記積層構造体の他の具体的構成において、前記誘電体膜は、ゾル‐ゲル法、MOCVD法、スパッタリング蒸着法、及び粉末噴射コーティング法の何れかの方法によって形成されている。
 尚、粉末噴射コーティング法には、エアロゾルデポジション法、パウダージェットデポジション法等、誘電体粉末を噴射して誘電体膜を形成する種々の成膜法を含むものとする。
 本発明に係る積層構造体の製造方法は、第1導電層と第2導電層との間に誘電体層を介在させた積層構造体の製造方法であって、前記第1導電層及び第2導電層となる一対の金属部材の表面の内、互いに対向することとなる領域にそれぞれ誘電体膜を形成する誘電体膜形成工程と、前記一対の金属部材に形成された誘電体膜どうしを、これらの間に接着層を介在させて接着する接着工程とを有し、前記一対の金属部材に形成された誘電体膜と前記接着層とによって前記誘電体層が構成される。
 上記製造方法の具体的構成において、前記接着工程にて用いる接着層は、前記誘電体膜形成工程にて前記一対の金属部材に形成された誘電体膜の間に、誘電体微粒子を含んだ分散溶液を介在させて形成されるものである。
 より具体的な構成において、前記分散溶液は、前記誘電体膜を構成する誘電体材料と主成分が同じ材料から構成された誘電体微粒子を含んだものである。
 又、前記接着工程では、前記誘電体膜の間に分散溶液を介在させて前記接着層を形成する過程で、該誘電体膜に対して、前記分散溶液を挟圧するプレス圧力を印加してもよい。これにより、一対の金属部材に形成された誘電体膜どうしの密着性が向上することになる。ここで、誘電体膜どうしの密着性をより向上させるべく、前記プレス圧力は、6kPa以上であることが好ましい。
 更に又、前記接着工程では、前記誘電体膜の間に介在させた分散溶液に対してアニール処理を施してもよい。これにより、一対の金属部材に形成された誘電体膜どうしの密着性が向上することになる。ここで、アニール処理を400℃以上の温度で実行することにより、誘電体膜どうしの密着性の向上に加えて、誘電体層の誘電特性が向上することになる。
 上記製造方法の他の具体的構成において、前記誘電体膜形成工程では、ゾル‐ゲル法、MOCVD法、スパッタリング蒸着法、及び粉末噴射コーティング法の何れかの方法を用いて、前記誘電体膜を形成する。
 尚、粉末噴射コーティング法には、エアロゾルデポジション法、パウダージェットデポジション法等、誘電体粉末を噴射して誘電体膜を形成する種々の成膜法を含むものとする。
 本発明に係る他の積層構造体の製造方法は、第1導電層と第2導電層との間に誘電体層を介在させた積層構造体の製造方法であって、前記第1導電層及び第2導電層となる一対の金属部材の表面の内、互いに対向することとなる領域にそれぞれ誘電体膜を形成する誘電体膜形成工程と、前記一対の金属部材に形成された誘電体膜を互いに重ね合わせて積層した後、両誘電体膜に対して、これらの積層方向に沿うプレス圧力を印加すると共にアニール処理を施すことにより、両誘電体膜の界面近傍の領域を焼結させて誘電体膜どうしを互いに接合する接合工程とを有し、前記一対の金属部材に形成された誘電体膜によって前記誘電体層が構成される。
 上記他の製造方法により作製された積層構造体においては、第1導電層と第2導電層との対向面にそれぞれ誘電体膜が形成され、両誘電体膜どうしが互いに接合されることになる。よって、両誘電体膜に存在しているピンホールやクラックどうしの位置は互いにずれ易い。従って、導電層を構成する金属の一部がピンホールやクラック内に浸入していたとしても、ピンホールやクラック内の金属どうしは互いに接触し難く、これによって第1導電層と第2導電層との間の絶縁が維持されることになる。
 又、各誘電体膜の表面に第1又は第2導電層の一部が露出していたとしても、両導電層の露出部分どうしの位置が互いにずれ易い。従って、該露出部分どうしは互いに接触し難く、これによって第1導電層と第2導電層との間の絶縁が維持されることになる。
 上記他の製造方法の具体的構成において、前記プレス圧力は、9kPa以上である。これにより、一対の金属部材に形成された誘電体膜どうしの密着性が向上することになる。
 上記他の製造方法の他の具体的構成において、前記接合工程では、アニール処理が800℃以上の温度で実行される。これにより、一対の金属部材に形成された誘電体膜どうしの密着性が向上することになる。更には、誘電体層の誘電特性が向上することになる。
 上記他の製造方法の更なる他の具体的構成において、前記誘電体膜形成工程では、ゾル‐ゲル法、MOCVD法、スパッタリング蒸着法、及び粉末噴射コーティング法の何れかの方法を用いて、前記誘電体膜を形成する。
 尚、粉末噴射コーティング法には、エアロゾルデポジション法、パウダージェットデポジション法等、誘電体粉末を噴射して誘電体膜を形成する種々の成膜法を含むものとする。
 本発明に係る積層構造体は、絶縁破壊が発生し難い。又、本発明に係る製造方法によれば、絶縁破壊が発生し難い積層構造体を製造することが出来る。
図1は、本発明の第1実施形態に係る回路基板を示す断面図である。 図2(a)及び図2(b)は、該回路基板の製造方法について、その誘電体膜形成工程の説明に用いられる断面図である。 図3は、該回路基板の製造方法について、その接着工程の説明に用いられる断面図である。 図4は、エアロゾルデポジション法に用いられる成膜装置を示す図である。 図5は、パウダージェットデポジション法に用いられる噴射装置を示す断面図である。 図6は、上記回路基板の製造方法について、その変形例の説明に用いられる断面図である。 図7は、プレス圧力と不良発生数との関係を示した図である。 図8は、アニール温度と不良発生数との関係を示した図である。 図9は、アニール温度(トップ温度)と静電容量密度比との関係を示した図である。 図10は、本発明の第2実施形態に係る回路基板を示す断面図である。 図11(a)及び図11(b)は、該回路基板の製造方法について、その誘電体膜形成工程の説明に用いられる断面図である。 図12は(a)及び図12(b)は、該回路基板の製造方法について、その接合工程の説明に用いられる断面図である。 図13は、プレス圧力と不良発生数との関係を示した図である。 図14は、アニール温度と不良発生数との関係を示した図である。
 以下、本発明をコンデンサ回路が形成されている回路基板に実施した形態につき、図面に沿って具体的に説明する。
 1.第1実施形態
 本発明の一実施形態に係る回路基板は、図1に示す如く、第1導電層(1)と第2導電層(2)との間に誘電体層(3)を介在させて構成されたコンデンサ回路(40)が基板(4)上に形成されている積層構造体である。
 第1導電層(1)は、基板(4)上に配備された金属箔であり、銅(Cu)、ニッケル(Ni)、コバルト(Co)、金(Au)、白金(Pt)、アルミニウム(Al)等の金属からなる群から選択される少なくとも1種の金属から構成され、或いは該群から選択される少なくとも2種の金属から形成された合金から構成されている。尚、第1導電層(1)は、スパッタリング蒸着法、メッキ法、スクリーン印刷法等を用いて形成されてもよい。
 第2導電層(2)は、誘電体層(3)上の位置にて第1導電層(1)と対向して配置された金属箔であり、第1導電層(1)と同様、銅(Cu)、ニッケル(Ni)、コバルト(Co)、金(Au)、白金(Pt)、アルミニウム(Al)等の金属からなる群から選択される少なくとも1種の金属から構成され、或いは該群から選択される少なくとも2種の金属から形成された合金から構成されている。
 誘電体層(3)は、第1導電層(1)と第2導電層(2)との対向面(1a)(2a)に形成された一対の誘電体膜(31)(32)と、該一対の誘電体膜(31)(32)どうしを接着する接着層(33)とから構成されている。
 一対の誘電体膜(31)(32)は何れも、チタン酸バリウム(BaTiO3)を主成分として含む誘電体材料から構成されている。又、各誘電体膜(31)(32)の厚さは、誘電体層(3)の厚さの1/2倍程度であり、誘電体層(3)の厚さが0.5μm程度である場合、各誘電体膜(31)(32)の厚さは0.25μm程度である。尚、誘電体層(3)の厚さは、0.5μmに限らず、これより厚くても或いは薄くてもよい。
 接着層(33)は、一対の誘電体膜(31)(32)の間に、チタン酸バリウム(BaTiO3)を主成分として含む誘電体微粒子を含んだ分散溶液を介在させて形成されたものである。ここで、該分散溶液に含まれている誘電体微粒子は、50nm以下の平均粒子径を有するナノ粒子であり、接着層(33)は、一対の誘電体膜(31)(32)の間に介在した分散溶液が乾燥して誘電体微粒子が凝集することにより形成された薄層である。
 本実施形態においては、両誘電体膜(31)(32)と、接着層(33)を構成する誘電体微粒子とに、同じ材料であるチタン酸バリウム(BaTiO3)を主成分として用いているが、本発明はこれに限らず、ニオブ酸リチウム(LiNbO3)、ホウ酸リチウム(Li2B4O7)、チタン酸ジルコン酸鉛(PbZrTiO3)、チタン酸ストロンチウム(SrTiO3)、チタン酸ジルコン酸ランタン鉛(PbLaZrTiO3)、タンタル酸リチウム(LiTaO3)、酸化亜鉛(ZnO)、酸化タンタル(Ta2O5)等を主成分とする種々の誘電体材料を用いることが出来る。又、両誘電体膜(31)(32)と、接着層(33)を構成する誘電体微粒子とには、主成分が異なる誘電体材料を用いてもよい。
 尚、両誘電体膜(31)(32)と、接着層(33)を構成する誘電体微粒子とには、誘電特性を向上させるべく添加物が含まれていてもよい。
 次に、上記回路基板の製造方法について説明する。該製造方法では、まず第1導電層(1)となる金属箔(11)が表面に配備されている基板(4)と、第2導電層(2)となる金属箔(12)とが用意される。そして、図2(a)及び図2(b)に示す如く両金属箔(11)(12)の表面にそれぞれ誘電体膜(31)(32)を形成する誘電体膜形成工程と、図3に示す如く該誘電体膜(31)(32)どうしを接着する接着工程とが、この順に実行される。
 誘電体膜形成工程では、ゾル‐ゲル法、MOCVD法、スパッタリング蒸着法、及び粉末噴射コーティング法の何れかの方法を用いて、図2(a)に示す様に、金属箔(11)の表面の内、接着工程にて金属箔(12)と対向することとなる領域(11a)(対向面(1a)となる領域)に、誘電体膜(31)を形成する。
 尚、粉末噴射コーティング法には、エアロゾルデポジション法、パウダージェットデポジション法等、誘電体粉末を噴射して誘電体膜を形成する種々の成膜法を含むものとする。
 ゾル‐ゲル法は、室温~150℃程度の低温にて誘電体膜を形成する周知の成膜法であり、MOCVD法及びスパッタリング蒸着法は、真空中にて誘電体膜を形成する周知の成膜法である。
 エアロゾルデポジション法は、図4に示す如く成膜装置を用いて、誘電体粉末をエアロゾル化し、誘電体膜を形成すべき表面に向けて前記粉末を噴射することにより誘電体膜を形成する成膜法である。
 図4に示す様に成膜装置は、誘電体粉末を高圧ガスと攪拌・混合してエアロゾル化するエアロゾル発生器(71)と、真空ポンプ(73)にて内部を真空状態に維持することが可能な成膜チャンバ(72)とを、細い搬送チューブ(74)により接続して構成されている。成膜時においては、成膜チャンバ(72)の内部が真空状態に維持されるので、高圧ガスが流れ込むエアロゾル発生器(71)内の空間(高圧空間)と、成膜チャンバ(72)内の空間(低圧空間)との間には、圧力差が生じることとなる。したがって、エアロゾル発生器(71)にてエアロゾル化された誘電体粉末は、搬送チューブ(74)内を成膜チャンバ(72)へ向けて流れることになる。
 成膜チャンバ(72)の内部には、誘電体膜を形成すべき表面を有する対象物を設置するためのステージ(75)が配備されており、該ステージ(75)は、対象物が設置される設置面(751)に平行なXY平面内での並進と、該XY平面に垂直なZ軸方向への並進と、該Z軸周りの回転とが可能な構成を有している。
 搬送チューブ(74)の一端は成膜チャンバ(72)内に位置し、該一端には、スリット状のノズル(76)が、その先端をステージ(75)の設置面(751)へ向けて取り付けられている。又、該ノズル(76)は、搬送チューブ(74)の一端から吐出される誘電体粉末を100m/sec程度まで加速することが可能な形状を有している。
 従って、ノズル(76)の先端から高速で吐出された誘電体粉末は、ステージ(75)上の対象物の表面に噴きつけられることになる。
 パウダージェットデポジション法は、図5に示す如く噴射装置を用いて、誘電体膜を形成すべき表面に向けて誘電体粉末を噴射することにより誘電体膜を形成する成膜法である。
 図5に示す様に噴射装置は、内径の異なる2つの領域(811)(812)を有する段付きのノズル(81)を具え、該ノズル(81)には、内径の大きな第1領域(811)の内、内径の小さな第2領域(812)に近い位置に、誘電体粉末を供給するための貫通孔(82)が形成されている。
 従って、ノズル(81)内に、第2領域(812)から第1領域(811)へ向けて圧縮ガスを流すことにより、内径が変化する第2領域(812)の出口付近の位置にて負圧が発生し、該負圧によって誘電体粉末がノズル(81)内へ吸入される。これにより、吸入された誘電体粉末が圧縮ガスと共に高速でノズル(81)の先端から吐出されることになる。
 吐出された誘電体粉末は、エアロゾルデポジション法の場合と同様、ステージ上の対象物の表面に噴きつけられる。
 本実施形態においてエアロゾルデポジション法或いはパウダージェットデポジション法を用いて金属箔(11)の表面領域(11a)に誘電体膜(31)を形成する場合、金属箔(11)の表面には、1μm程度の粒子径を有するチタン酸バリウム(BaTiO3)の誘電体粉末が噴きつけられる。
 金属箔(11)の表面に噴きつけられた誘電体粉末は、金属箔(11)の表面或いは他の誘電体粉末と衝突して破砕し、そして金属箔(11)の表面領域(11a)に堆積し、これによって該表面領域(11a)に誘電体膜(31)が形成されることになる。従って、エアロゾルデポジション法或いはパウダージェットデポジション法を用いて形成された誘電体膜(31)は、緻密な膜となる。
 誘電体膜形成工程では更に、金属箔(11)の表面に誘電体膜(31)を形成する場合と同様、ゾル‐ゲル法、MOCVD法、スパッタリング蒸着法、及び粉末噴射コーティング法の何れかの方法を用いて、図2(b)に示す様に、金属箔(12)の表面の内、接着工程にて金属箔(11)と対向することとなる領域(12a)(対向面(2a)となる領域)に、誘電体膜(32)を形成する。
 尚、粉末噴射コーティング法には、上述したエアロゾルデポジション法、パウダージェットデポジション法等、誘電体粉末を噴射して誘電体膜を形成する種々の成膜法を含むものとする。
 接着工程では、図3に示す様に、誘電体膜形成工程にて金属箔(11)に形成された誘電体膜(31)上に、チタン酸バリウム(BaTiO3)を主成分として含む誘電体微粒子を含んだ分散溶液(6)を塗布し、その後、金属箔(12)に形成されている誘電体膜(32)を誘電体膜(31)上に重ねて、分散溶液(6)を両誘電体膜(31)(32)によって挟み込む。
 ここで、接着工程にて用いる分散溶液(6)は、50nm以下の平均粒子径を有するナノ粒子を誘電体微粒子として含んでいる。尚、分散溶液は、該ナノ粒子が一次粒子の状態で溶液中に単分散しているものが好ましい。
 両誘電体膜(31)(32)によって挟み込まれた分散溶液(6)が乾燥することにより、両誘電体膜(31)(32)の間には、分散溶液(6)中の誘電体微粒子が凝集した誘電体微粒子膜が形成されることになる。従って、該誘電体微粒子膜と誘電体膜(31)との界面においては、誘電体微粒子膜中の誘電体微粒子と誘電体膜(31)中の結晶粒子とが互いに強固に結合し、その結果、誘電体微粒子膜と誘電体膜(31)とが互いに接合されることとなる。同様にして、誘電体微粒子膜と誘電体膜(32)とが互いに接合されることとなる。
 よって、上記誘電体微粒子膜は、両誘電体膜(31)(32)の間に介在して誘電体膜(31)(32)どうしを接着する接着層(33)として機能することになる。
 斯くして、誘電体膜形成工程にて形成された一対の誘電体膜(31)(32)と、接着工程にて形成された接着層(33)とによって、第1及び第2導電層(1)(2)の間に介在した誘電体層(3)が構成されることとなり、その結果、図1に示す様に、基板(4)上にコンデンサ回路(40)が形成された回路基板が完成することになる。
 上述の如く製造された回路基板においては、誘電体膜(31)に、図2(a)に示す如くピンホール(5)やクラックが発生し易いため、第1導電層(1)に形成されている誘電体膜(31)上にスパッタリング蒸着法、メッキ法、スクリーン印刷法等を用いて第2導電層(2)を形成した場合、第2導電層(2)を構成する金属の一部がピンホール(5)やクラック内に浸入し、これによってピンホール(5)やクラックを介して第1導電層(1)と第2導電層(2)との間の絶縁が破壊される虞がある。
 又、第1導電層(1)の表面には微小な凹凸が存在するため、誘電体膜(31)を薄膜化した場合、誘電体膜(31)の表面に第1導電層(1)の一部が露出する虞がある。このため、誘電体膜(31)上に直接、第2導電層(2)を形成した場合、第1導電層(1)の露出部分と第2導電層(2)とが接触して第1導電層(1)と第2導電層(2)との間の絶縁が破壊される虞がある。
 しかしながら、本実施形態に係る回路基板においては、第1導電層(1)と第2導電層(2)との対向面(1a)(2a)に一対の誘電体膜(31)(32)が形成され、該一対の誘電体膜(31)(32)どうしが接着層(33)によって接着されている。よって、両誘電体膜(31)(32)に存在しているピンホール(5)やクラックどうしの位置が互いにずれ易い。従って、導電層(1)(2)を構成する金属の一部がピンホール(5)やクラック内に浸入していたとしても、ピンホール(5)やクラック内の金属どうしは互いに接触し難く、これによって第1導電層(1)と第2導電層(2)との間の絶縁が維持されることになる。
 又、各誘電体膜(31)(32)の表面に第1又は第2導電層(1)(2)の一部が露出していたとしても、両導電層(1)(2)の露出部分どうしの位置が互いにずれ易い。従って、該露出部分どうしは互いに接触し難く、これによって第1導電層(1)と第2導電層(2)との間の絶縁が維持されることになる。
 又、上述の如く誘電体膜(31)(32)にピンホール(5)やクラックが発生した場合、回路基板のコンデンサ回路の誘電率がピンホール(5)やクラックによって生じた空隙の影響により低下する虞がある。これに対し、本実施形態に係る回路基板においては、ピンホール(5)やクラック内に分散溶液(6)が入り込み、その結果、該ピンホール(5)やクラックが誘電体微粒子によって充填されることとなる。従って、誘電率の低下が抑制されることになる。
 更に、本実施形態に係る回路基板においては、接着層(33)が、誘電体膜(31)(32)を構成する誘電体材料と主成分が同じ材料から構成されているので、誘電体膜(31)(32)と接着層(33)との熱膨張率の差が小さくなり、その結果、熱膨張による内部欠陥の発生が抑制されることとなる。従って、回路基板の品質が高く維持されることとなる。
 図6は、上記回路基板の製造方法について、その変形例の説明に用いられる断面図である。図6に示す様に、接着工程では、誘電体膜(31)(32)の間に分散溶液(6)を介在させて接着層(33)を形成する過程で、該誘電体膜(31)(32)に対して、分散溶液(6)を挟圧するプレス圧力を印加してもよい。
 これにより、作製される回路基板において、誘電体膜(31)(32)どうしの密着性が向上することになる。ここで、誘電体膜(31)(32)どうしの密着性をより向上させるべく、プレス圧力は、6kPa以上であることが好ましい。
 本願発明者は、誘電体膜(31)(32)に対するプレス圧力の印加により誘電体膜(31)(32)どうしの密着性が向上することを、実験により確かめている。
 図7は、プレス圧力と不良発生数との関係を示した図である。ここで、不良発生数は、作製した64個の回路基板において発生した不良品の個数を表しており、該不良品は、回路基板の切断面をSEMによって観察したときに、その観察面に空隙が1箇所でも存在していたものである。従って、不良発生数は、その値が小さいほど誘電体膜(31)(32)どうしの密着性が高いことを示している。尚、本実験では、金属箔(11)(12)としてニッケル(Ni)箔を用い、誘電体膜(31)(32)及び誘電体微粒子をそれぞれ構成する誘電体材料としてチタン酸バリウム(BaTiO3)を用いた。又、本実験は、室温で実施された。
 実験の結果、図7に示す様に、プレス圧力を印加して接着層(33)を形成した場合の方が、プレス圧力を印加せずに接着層(33)を形成した場合(プレス圧力=0kPa)に比べて不良発生数が小さくなることが分かる。又、6kPa以上のプレス圧力では、不良品が殆ど発生しないことが分かる。
 上記回路基板の製造方法の他の変形例として、接着工程では、誘電体膜(31)(32)の間に介在させた分散溶液(6)に対してアニール処理を施してもよい。
 これにより、作製される回路基板において、誘電体膜(31)(32)どうしの密着性が向上することになる。ここで、アニール処理を400℃以上の温度で実行することにより、誘電体膜(31)(32)どうしの密着性の向上に加えて、誘電体層(3)の誘電特性が向上することになる。
 本願発明者は、分散溶液(6)に対するアニール処理により誘電体膜(31)(32)どうしの密着性が向上することを、実験により確かめている。
 図8は、アニール温度と不良発生数との関係を示した図である。ここで、不良発生数は、作製した64個の回路基板において発生した不良品の個数を表しており、該不良品は、回路基板の切断面をSEMによって観察したときに、その観察面に空隙が1箇所でも存在していたものである。従って、不良発生数は、その値が小さいほど誘電体膜(31)(32)どうしの密着性が高いことを示している。尚、本実験では、金属箔(11)(12)としてニッケル(Ni)箔を用い、誘電体膜(31)(32)及び誘電体微粒子をそれぞれ構成する誘電体材料としてチタン酸バリウム(BaTiO3)を用いた。又、本実験は、プレス圧力を印加せずに実施された。
 実験の結果、図8に示す様に、室温よりも高い温度でアニール処理を実行することにより、不良発生数が小さくなることが分かる。又、アニール処理を400℃以上の温度で実行することにより、不良品が殆ど発生しないことが分かる。
 更に、本願発明者は、400℃以上の温度でのアニール処理により誘電体層(3)の誘電特性が向上することを、実験により確かめている。
 図9は、アニール温度(トップ温度)と静電容量密度比との関係を示した図である。ここで、静電容量密度比は、アニール処理を実行して作製した回路基板の静電容量密度の、アニール処理を実行せずに(室温で)作製した回路基板の静電容量密度に対する割合を表している。尚、本実験では、金属箔(11)(12)としてニッケル(Ni)箔を用い、誘電体膜(31)(32)及び誘電体微粒子をそれぞれ構成する誘電体材料としてチタン酸バリウム(BaTiO3)を用いた。又、本実験では、アニール処理の条件として、アニール温度を室温からトップ温度まで10℃/minで上昇させた後、アニール温度をトップ温度で1時間維持し、その後、自然冷却によりアニール温度を低下させた。更に又、本実験は、プレス圧力を印加せずに実施された。
 実験の結果、図9に示す様に、アニール温度(トップ温度)が室温から400℃の間に設定された場合、静電容量比が1から殆ど変化しないのに対し、アニール温度(トップ温度)が400℃以上の温度に設定された場合、静電容量密度比が1より大きくなることが分かる。具体的には、アニール温度が400℃を超えてより高い温度に設定されるのに伴い、静電容量密度比も高くなることが分かる。
 尚、アニール温度は、第1導電層(1)及び第2導電層(2)となる金属箔(11)(12)が変形することのない温度に設定されるべきであり、該温度は、金属箔(11)(12)を構成する金属又は合金の種類に依存する。又、誘電体層(3)の誘電特性をより向上させるべく、アニール時間は10分以上に設定されることが好ましい。更に又、酸化し易い金属又は合金を用いて金属箔(11)(12)が構成されている場合、アニール処理を還元雰囲気中で実行することにより、金属箔(11)(12)の酸化を防止することが出来る。
 又、上述したアニール処理は、誘電体膜(31)(32)に対するプレス圧力の印加に並行して実行されてもよい。これにより、密着性が高く且つ誘電特性が良好な回路基板を得ることが出来る。
 尚、本発明の各部構成は上記第1実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば、コンデンサ回路(40)が形成されている回路基板に採用した上述の各種構成及び製造方法は、コンデンサ素子や、コンデンサ素子を切り出すことが可能な積層シートにも採用することが出来る。尚、該コンデンサ素子及び積層シートにおいては、上記回路基板を構成する基板(4)に相当する構成はなくてもよい。
 又、上記第1実施形態においては、接着層(33)は、一対の誘電体膜(31)(32)の間に誘電体微粒子を含んだ分散溶液(6)を介在させて形成されたものであったが、本発明はこれに限られるものではなく、例えば一対の誘電体膜(31)(32)の間に接着剤等の樹脂を介在させて形成されたものであってもよい。
 2.第2実施形態
 本発明の他の実施形態に係る回路基板は、図10に示す如く、第1導電層(1)と第2導電層(2)との間に誘電体層(34)を介在させて構成されたコンデンサ回路(41)が基板(4)上に形成されている積層構造体である。
 第1導電層(1)は、基板(4)上に配備された金属箔であり、銅(Cu)、ニッケル(Ni)、コバルト(Co)、金(Au)、白金(Pt)、アルミニウム(Al)等の金属からなる群から選択される少なくとも1種の金属から構成され、或いは該群から選択される少なくとも2種の金属から形成された合金から構成されている。尚、第1導電層(1)は、スパッタリング蒸着法、メッキ法、スクリーン印刷法等を用いて形成されてもよい。
 第2導電層(2)は、誘電体層(34)上の位置にて第1導電層(1)と対向して配置された金属箔であり、第1導電層(1)と同様、銅(Cu)、ニッケル(Ni)、コバルト(Co)、金(Au)、白金(Pt)、アルミニウム(Al)等の金属からなる群から選択される少なくとも1種の金属から構成され、或いは該群から選択される少なくとも2種の金属から形成された合金から構成されている。
 誘電体層(34)は、第1導電層(1)と第2導電層(2)との対向面(1a)(2a)に形成された一対の誘電体膜(35)(36)から構成されており、該一対の誘電体膜(35)(36)は、互いに重なり合った状態で接合されている。ここで、一対の誘電体膜(35)(36)は何れも、チタン酸バリウム(BaTiO3)を主成分として含む誘電体材料から構成されている。尚、両誘電体膜(35)(36)には、チタン酸バリウム(BaTiO3)の他、ニオブ酸リチウム(LiNbO3)、ホウ酸リチウム(Li2B4O7)、チタン酸ジルコン酸鉛(PbZrTiO3)、チタン酸ストロンチウム(SrTiO3)、チタン酸ジルコン酸ランタン鉛(PbLaZrTiO3)、タンタル酸リチウム(LiTaO3)、酸化亜鉛(ZnO)、酸化タンタル(Ta2O5)等を主成分とする種々の誘電体材料を用いることが出来る。又、両誘電体膜(35)(36)には、その誘電特性を向上させるべく添加物が含まれていてもよい。
 各誘電体膜(35)(36)の厚さは、誘電体層(34)の厚さの1/2倍程度であり、誘電体層(34)の厚さが0.5μm程度である場合、各誘電体膜(35)(36)の厚さは0.25μm程度である。尚、誘電体層(34)の厚さは、0.5μmに限らず、これより厚くても或いは薄くてもよい。
 次に、上記回路基板の製造方法について説明する。該製造方法では、まず第1導電層(1)となる金属箔(11)が表面に配備されている基板(4)と、第2導電層(2)となる金属箔(12)とが用意される。そして、図11(a)及び図11(b)に示す如く両金属箔(11)(12)の表面にそれぞれ誘電体膜(35)(36)を形成する誘電体膜形成工程と、図12(a)及び図12(b)に示す如く該誘電体膜(35)(36)どうしを互いに接合する接合工程とが、この順に実行される。
 誘電体膜形成工程では、第1実施形態と同様、ゾル‐ゲル法、MOCVD法、スパッタリング蒸着法、及び粉末噴射コーティング法の何れかの方法を用いて、図11(a)に示す様に、金属箔(11)の表面の内、接合工程にて金属箔(12)と対向することとなる領域(11a)(対向面(1a)となる領域)に、誘電体膜(35)を形成する。又、ゾル‐ゲル法、MOCVD法、スパッタリング蒸着法、及び粉末噴射コーティング法の何れかの方法を用いて、図11(b)に示す様に、金属箔(12)の表面の内、接合工程にて金属箔(11)と対向することとなる領域(12a)(対向面(2a)となる領域)に、誘電体膜(36)を形成する。
 尚、粉末噴射コーティング法には、第1実施形態で説明したエアロゾルデポジション法(図4参照)、パウダージェットデポジション法(図5参照)等、誘電体粉末を噴射して誘電体膜を形成する種々の成膜法を含むものとする。
 接合工程では、図12(a)及び図12(b)に示す様に、誘電体膜形成工程にて金属箔(11)の表面に形成された誘電体膜(35)に、金属箔(12)の表面に形成された誘電体膜(36)を重ね合わせて積層する。これにより、誘電体膜(35)(36)の露出面どうしが互いに接触することになる。
 その後、両誘電体膜(35)(36)に対して、これらの積層方向に沿うプレス圧力を印加すると共にアニール処理を施すことにより、両誘電体膜(35)(36)の界面近傍の領域を焼結させて誘電体膜(35)(36)どうしを互いに接合する。
 ここで、プレス圧力は、9kPa以上に設定される。又、アニール処理は800℃以上の温度(アニール温度)で実行される。尚、アニール温度は、第1導電層(1)及び第2導電層(2)となる金属箔(11)(12)が変形することのない温度に設定されるべきであり、該温度は、金属箔(11)(12)を構成する金属又は合金の種類に依存する。更に又、酸化し易い金属又は合金を用いて金属箔(11)(12)が構成されている場合、アニール処理を還元雰囲気中で実行することにより、金属箔(11)(12)の酸化を防止することが出来る。
 斯くして、誘電体膜形成工程にて形成された一対の誘電体膜(35)(36)によって、第1及び第2導電層(1)(2)の間に介在した誘電体層(34)が構成されることとなり、その結果、図10に示す様に、基板(4)上にコンデンサ回路(41)が形成された回路基板が完成することになる。
 上述の如く製造された回路基板においては、図10に示す様に、第1導電層(1)と第2導電層(2)との対向面(1a)(2a)にそれぞれ誘電体膜(35)(36)が形成され、両誘電体膜(35)(36)どうしが互いに接合されることになる。よって、両誘電体膜(35)(36)に存在しているピンホール(5)やクラックどうしの位置は互いにずれ易い。従って、導電層(1)(2)を構成する金属の一部がピンホール(5)やクラック内に浸入していたとしても、ピンホール(5)やクラック内の金属どうしは互いに接触し難く、これによって第1導電層(1)と第2導電層(1)との間の絶縁が維持されることになる。
 又、各誘電体膜(35)(36)の表面に第1又は第2導電層(1)(2)の一部が露出していたとしても、両導電層(1)(2)の露出部分どうしの位置が互いにずれ易い。従って、該露出部分どうしは互いに接触し難く、これによって第1導電層(1)と第2導電層(2)との間の絶縁が維持されることになる。
 更に又、上記回路基板の製造方法においては、接合工程でのプレス圧力が9kPa以上に設定され、又、接合工程でのアニール処理が800℃以上の温度で実行される。従って、作製される回路基板において、誘電体膜(35)(36)どうしの密着性が向上することになる。更には、誘電体層(34)の誘電特性が向上することになる。
 本願発明者は、接合工程でのプレス圧力を9kPa以上に設定することにより誘電体膜(35)(36)どうしの密着性が向上することを、実験により確かめている。
 図13は、プレス圧力と不良発生数との関係を示した図である。ここで、不良発生数は、作製した64個の回路基板において発生した不良品の個数を表しており、該不良品は、回路基板の切断面をSEMによって観察したときに、その観察面に空隙が1箇所でも存在していたものである。従って、不良発生数は、その値が小さいほど誘電体膜(35)(36)どうしの密着性が高いことを示している。尚、本実験では、金属箔(11)(12)としてニッケル(Ni)箔を用い、誘電体膜(35)(36)をそれぞれ構成する誘電体材料としてチタン酸バリウム(BaTiO3)を用いた。又、本実験では、接合工程でのアニール処理が1000℃で実行された。
 実験の結果、図13に示す様に、プレス圧力が0kPaから8kPaの間に設定された場合、不良発生数が10個以上となるのに対し、プレス圧力が9kPa以上に設定された場合、不良発生数が3個以下になることが分かる。
 更に、本願発明者は、接合工程でのアニール処理を800℃以上の温度で実行することにより誘電体膜(35)(36)どうしの密着性が向上することを、実験により確かめている。
 図14は、アニール温度と不良発生数との関係を示した図である。ここで、不良発生数は、作製した64個の回路基板において発生した不良品の個数を表しており、該不良品は、回路基板の切断面をSEMによって観察したときに、その観察面に空隙が1箇所でも存在していたものである。従って、不良発生数は、その値が小さいほど誘電体膜(35)(36)どうしの密着性が高いことを示している。尚、本実験では、金属箔(11)(12)としてニッケル(Ni)箔を用い、誘電体膜(35)(36)をそれぞれ構成する誘電体材料としてチタン酸バリウム(BaTiO3)を用いた。又、本実験では、接合工程でのプレス圧力が約11.8kPaに設定された。
 実験の結果、図14に示す様に、アニール温度が室温から600℃の間に設定された場合、作製した64個の回路基板の全てが不良品となるに対し、アニール温度が800℃以上の温度に設定された場合、不良発生数が12個以下になることが分かる。
 尚、本発明の各部構成は上記第2実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば、コンデンサ回路(41)が形成されている回路基板に採用した上述の各種構成及び製造方法は、コンデンサ素子や、コンデンサ素子を切り出すことが可能な積層シートにも採用することが出来る。尚、該コンデンサ素子及び積層シートにおいては、上記回路基板を構成する基板(4)に相当する構成はなくてもよい。
(1) 第1導電層
(2) 第2導電層
(1a)(2a) 対向面
(11)(12) 金属箔(金属部材)
(3) 誘電体層
(31)(32) 一対の誘電体膜
(33) 接着層
(34) 誘電体層
(35)(36) 一対の誘電体膜
(4) 基板
(40) コンデンサ回路
(41) コンデンサ回路
(5) ピンホール
(6) 分散溶液

Claims (18)

  1.  第1導電層と第2導電層との間に誘電体層を介在させた積層構造体において、前記誘電体層は、第1導電層と第2導電層との対向面に形成された一対の誘電体膜と、該一対の誘電体膜どうしを接着する接着層とから構成されていることを特徴とする積層構造体。
  2.  前記接着層は、前記一対の誘電体膜の間に誘電体微粒子を含んだ分散溶液を介在させて形成されたものである請求項1に記載の積層構造体。
  3.  前記誘電体微粒子は、前記誘電体膜を構成する誘電体材料と主成分が同じ材料から構成されている請求項2に記載の積層構造体。
  4.  前記誘電体微粒子は、チタン酸バリウム、ニオブ酸リチウム、ホウ酸リチウム、チタン酸ジルコン酸鉛、チタン酸ストロンチウム、チタン酸ジルコン酸ランタン鉛、タンタル酸リチウム、酸化亜鉛、酸化タンタルの内、少なくとも1つの材料を主成分として含んでいる請求項2に記載の積層構造体。
  5.  前記接着層は、前記一対の誘電体膜の間に誘電体微粒子を含んだ分散溶液を介在させた後、該分散溶液に対してアニール処理を施すことにより形成されたものである請求項2に記載の積層構造体。
  6.  前記誘電体膜は、ゾル‐ゲル法、MOCVD法、スパッタリング蒸着法、及び粉末噴射コーティング法の何れかの方法によって形成されている請求項1に記載の積層構造体。
  7.  第1導電層と第2導電層との間に誘電体層を介在させた積層構造体の製造方法であって、
     前記第1導電層及び第2導電層となる一対の金属部材の表面の内、互いに対向することとなる領域にそれぞれ誘電体膜を形成する誘電体膜形成工程と、
     前記一対の金属部材に形成された誘電体膜どうしを、これらの間に接着層を介在させて接着する接着工程
    とを有し、前記一対の金属部材に形成された誘電体膜と前記接着層とによって前記誘電体層が構成される積層構造体の製造方法。
  8.  前記接着工程にて用いる接着層は、前記誘電体膜形成工程にて前記一対の金属部材に形成された誘電体膜の間に、誘電体微粒子を含んだ分散溶液を介在させて形成されるものである請求項7に記載の積層構造体の製造方法。
  9.  前記分散溶液は、前記誘電体膜を構成する誘電体材料と主成分が同じ材料から構成された誘電体微粒子を含んだものである請求項8に記載の積層構造体の製造方法。
  10.  前記接着工程では、前記誘電体膜の間に分散溶液を介在させて前記接着層を形成する過程で、該誘電体膜に対して、前記分散溶液を挟圧するプレス圧力を印加する請求項8に記載の積層構造体の製造方法。
  11.  前記プレス圧力は、6kPa以上である請求項10に記載の積層構造体の製造方法。
  12.  前記接着工程では、前記誘電体膜の間に介在させた分散溶液に対してアニール処理を施す請求項8に記載の積層構造体の製造方法。
  13.  前記アニール処理が400℃以上の温度で実行される請求項12に記載の積層構造体の製造方法。
  14.  前記誘電体膜形成工程では、ゾル‐ゲル法、MOCVD法、スパッタリング蒸着法、及び粉末噴射コーティング法の何れかの方法を用いて、前記誘電体膜を形成する請求項7に記載の積層構造体の製造方法。
  15.  第1導電層と第2導電層との間に誘電体層を介在させた積層構造体の製造方法であって、
     前記第1導電層及び第2導電層となる一対の金属部材の表面の内、互いに対向することとなる領域にそれぞれ誘電体膜を形成する誘電体膜形成工程と、
     前記一対の金属部材に形成された誘電体膜を互いに重ね合わせて積層した後、両誘電体膜に対して、これらの積層方向に沿うプレス圧力を印加すると共にアニール処理を施すことにより、両誘電体膜の界面近傍の領域を焼結させて誘電体膜どうしを互いに接合する接合工程
    とを有し、前記一対の金属部材に形成された誘電体膜によって前記誘電体層が構成される積層構造体の製造方法。
  16.  前記プレス圧力は、9kPa以上である請求項15に記載の積層構造体の製造方法。
  17.  前記接合工程では、アニール処理が800℃以上の温度で実行される請求項15に記載の積層構造体の製造方法。
  18.  前記誘電体膜形成工程では、ゾル‐ゲル法、MOCVD法、スパッタリング蒸着法、及び粉末噴射コーティング法の何れかの方法を用いて、前記誘電体膜を形成する請求項15に記載の積層構造体の製造方法。
PCT/JP2010/058594 2009-05-29 2010-05-21 積層構造体及びその製造方法 WO2010137522A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011516000A JPWO2010137522A1 (ja) 2009-05-29 2010-05-21 積層構造体及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009130016 2009-05-29
JP2009-130016 2009-05-29
JP2010-113857 2010-05-18
JP2010113857 2010-05-18

Publications (1)

Publication Number Publication Date
WO2010137522A1 true WO2010137522A1 (ja) 2010-12-02

Family

ID=43222632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058594 WO2010137522A1 (ja) 2009-05-29 2010-05-21 積層構造体及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2010137522A1 (ja)
WO (1) WO2010137522A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147429A (ja) * 2016-02-18 2017-08-24 太陽誘電株式会社 積層セラミックコンデンサ及びその製造方法
JP7250391B1 (ja) * 2022-11-07 2023-04-03 株式会社アクアライン シートキャパシタ及びバッテリー

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164253A (ja) * 2000-08-24 2002-06-07 Oak Mitsui Inc 電子部品に埋設するキャパシタ層を形成するために用いる薄い誘電層を備えたキャパシタ材料及びその製造方法
JP2006165400A (ja) * 2004-12-09 2006-06-22 Mitsui Mining & Smelting Co Ltd キャパシタ層形成材の製造方法及びその製造方法で得られたキャパシタ層形成材

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164253A (ja) * 2000-08-24 2002-06-07 Oak Mitsui Inc 電子部品に埋設するキャパシタ層を形成するために用いる薄い誘電層を備えたキャパシタ材料及びその製造方法
JP2006165400A (ja) * 2004-12-09 2006-06-22 Mitsui Mining & Smelting Co Ltd キャパシタ層形成材の製造方法及びその製造方法で得られたキャパシタ層形成材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147429A (ja) * 2016-02-18 2017-08-24 太陽誘電株式会社 積層セラミックコンデンサ及びその製造方法
JP7250391B1 (ja) * 2022-11-07 2023-04-03 株式会社アクアライン シートキャパシタ及びバッテリー

Also Published As

Publication number Publication date
JPWO2010137522A1 (ja) 2012-11-15

Similar Documents

Publication Publication Date Title
WO2010137448A1 (ja) 積層構造体及びその製造方法
JPWO2005095040A1 (ja) 接合方法及び接合体
TW201323572A (zh) 用於外部電極之導電膠,使用該導電膠之積層陶瓷電子元件和製造該導電膠之方法
JP2006210590A (ja) 積層セラミックコンデンサおよびその製法
CN112712998A (zh) 陶瓷电子部件以及陶瓷电子部件的制造方法
WO2010137522A1 (ja) 積層構造体及びその製造方法
JP2006261656A (ja) 圧電アクチュエータおよびその製造方法
JP7427380B2 (ja) 積層型電子部品および積層型電子部品の製造方法
WO2017212934A1 (ja) 多層基板の製造方法
JP5617291B2 (ja) エアロゾルデポジション装置及びエアロゾルデポジション方法
WO2011118307A1 (ja) コンデンサ内蔵基板の製造方法、及び該製造方法に使用可能な素子シートの製造方法
WO2011118308A1 (ja) コンデンサ素子、コンデンサ内蔵基板、素子シート、及びこれらの製造方法
JP2004289085A (ja) 薄膜積層電子部品及びその製造方法
KR100942944B1 (ko) 다층 박막 기판의 제조 방법 및 그 다층 박막 기판
WO2010150595A1 (ja) 積層構造体及びその製造方法
JP5499397B2 (ja) 誘電体構造体の製造方法
JPH0757959A (ja) 積層コンデンサとその製造方法
US8241449B2 (en) Method for producing ceramic body
JP5182129B2 (ja) 多層キャパシタ及びその製造方法
JP2003017357A (ja) 積層セラミック電子部品の製造方法
WO2018168845A1 (ja) セラミック複合体シート及びコンデンサ
JP4483237B2 (ja) 積層セラミック電子部品の製造方法
WO2012014647A1 (ja) 基板内蔵用キャパシタ、これを備えたキャパシタ内蔵基板、及び基板内蔵用キャパシタの製造方法
WO2012014646A1 (ja) 基板内蔵用キャパシタの製造方法、及びこれを備えたキャパシタ内蔵基板
JP2004134421A (ja) コンデンサ内蔵配線基板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780477

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011516000

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780477

Country of ref document: EP

Kind code of ref document: A1