WO2010137448A1 - 積層構造体及びその製造方法 - Google Patents

積層構造体及びその製造方法 Download PDF

Info

Publication number
WO2010137448A1
WO2010137448A1 PCT/JP2010/057817 JP2010057817W WO2010137448A1 WO 2010137448 A1 WO2010137448 A1 WO 2010137448A1 JP 2010057817 W JP2010057817 W JP 2010057817W WO 2010137448 A1 WO2010137448 A1 WO 2010137448A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
conductive layer
film
layer
dielectric film
Prior art date
Application number
PCT/JP2010/057817
Other languages
English (en)
French (fr)
Inventor
仁志 野口
直樹 田中
達也 仲村
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US13/375,159 priority Critical patent/US20120069487A1/en
Priority to JP2011515962A priority patent/JPWO2010137448A1/ja
Publication of WO2010137448A1 publication Critical patent/WO2010137448A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors

Definitions

  • the present invention relates to a laminated structure such as a circuit board or a capacitor element on which a capacitor circuit is formed, and a method for manufacturing the same.
  • This type of laminated structure is configured by interposing a dielectric layer between the first conductive layer and the second conductive layer.
  • the dielectric layer is formed by a sol-gel method, MOCVD (Metal Organic Chemical Vapor Deposition). ) Method, sputtering deposition method or the like, and is formed on the surface of the first conductive layer by using various known film forming methods (see, for example, Patent Document 1).
  • an object of the present invention is to provide a laminated structure that is less likely to cause dielectric breakdown and has a high dielectric constant and quality, and a method for manufacturing the same.
  • the laminated structure according to the present invention is a laminated structure in which a dielectric layer is interposed between a first conductive layer and a second conductive layer, and the dielectric layer is formed on the first conductive layer. And a dielectric fine particle film formed by applying a dispersion solution containing dielectric fine particles on the dielectric film.
  • the laminated structure includes a circuit board, a capacitor element, and a capacitor element in which a capacitor circuit configured by interposing a dielectric layer between the first conductive layer and the second conductive layer is formed on the substrate.
  • Various laminated structures such as a laminated sheet that can be cut out are included.
  • the second conductive layer is formed directly on the dielectric film using a sputtering deposition method, a plating method, a screen printing method, or the like.
  • a part of the metal constituting the second conductive layer penetrates into the pinhole or crack, and thereby the insulation between the first conductive layer and the second conductive layer is broken through the pinhole or crack.
  • since there are minute irregularities on the surface of the first conductive layer when the dielectric film is thinned, a part of the first conductive layer may be exposed on the surface of the dielectric film. For this reason, when the second conductive layer is formed directly on the dielectric film, the exposed portion of the first conductive layer and the second conductive layer are in contact with each other and between the first conductive layer and the second conductive layer. Insulation may be destroyed.
  • the dielectric fine particle film is formed by applying a dispersion solution containing dielectric fine particles on the dielectric film, there are pinholes and cracks in the dielectric film. Even in this case, the dispersion solution enters the pinholes and cracks, and as a result, the pinholes and cracks are filled with a part of the dielectric fine particle film. Even when a part of the first conductive layer is exposed on the surface of the dielectric film, the exposed part is covered with the dielectric fine particle film. Therefore, the insulation between the first conductive layer and the second conductive layer is maintained by the dielectric fine particle film.
  • the dielectric constant of the laminated structure decreases due to the influence of voids caused by pinholes or cracks, but in the laminated structure according to the present invention, Since pinholes and cracks are filled with a part of the dielectric fine particle film, a decrease in dielectric constant is suppressed.
  • the dielectric fine particles are made of the same material as the main component of the dielectric material forming the dielectric film. According to this specific configuration, the difference in coefficient of thermal expansion between the dielectric film and the dielectric fine particle film is reduced, and as a result, the occurrence of internal defects due to thermal expansion is suppressed. Therefore, the quality of the laminated structure is maintained high.
  • the dielectric fine particles include barium titanate, lithium niobate, lithium borate, lead zirconate titanate, strontium titanate, lead lanthanum zirconate titanate, lithium tantalate.
  • at least one of zinc oxide and tantalum oxide is contained as a main component.
  • These dielectric fine particles may contain an additive for improving the dielectric characteristics.
  • the dielectric film is formed by any one of a sol-gel method, an MOCVD method, a sputtering deposition method, and a powder spray coating method.
  • the powder spray coating method includes various film forming methods such as an aerosol deposition method and a powder jet deposition method in which a dielectric powder is sprayed to form a dielectric film.
  • a manufacturing method of a laminated structure according to the present invention is a manufacturing method of a laminated structure in which a dielectric layer is interposed between a first conductive layer and a second conductive layer, and a dielectric is formed on the first conductive layer.
  • the dielectric layer forming step includes a dielectric film forming step of forming a dielectric film on the first conductive layer, and a dispersion solution containing dielectric fine particles is applied on the dielectric film. And a fine particle film forming step for forming a dielectric fine particle film.
  • the dispersion solution used in the fine particle film forming step includes dielectric fine particles composed of the same material as the main component of the dielectric material constituting the dielectric film. .
  • the dielectric film is formed using any one of a sol-gel method, an MOCVD method, a sputtering deposition method, and a powder spray coating method.
  • the powder spray coating method includes various film forming methods such as an aerosol deposition method and a powder jet deposition method in which a dielectric powder is sprayed to form a dielectric film.
  • the laminated structure according to the present invention hardly causes dielectric breakdown, and has a high dielectric constant and quality.
  • the manufacturing method of the present invention it is possible to manufacture a laminated structure having high dielectric constant and high quality that hardly causes dielectric breakdown.
  • a circuit board according to an embodiment of the present invention is configured by interposing a dielectric layer (3) between a first conductive layer (1) and a second conductive layer (2).
  • a capacitor structure (40) is a laminated structure in which a substrate (4) is formed.
  • the first conductive layer (1) is a metal foil disposed on the substrate (4) and is made of a metal such as copper (Cu), nickel (Ni), cobalt (Co), gold (Au), platinum (Pt), etc. It is composed of
  • the first conductive layer (1) may be formed using a sputtering vapor deposition method, a plating method, a screen printing method, or the like.
  • the dielectric layer (3) includes a dielectric film (31) formed on the first conductive layer (1) and a dielectric fine particle film (32) formed on the dielectric film (31).
  • the dielectric film (31) is made of a dielectric material containing barium titanate (BaTiO3) as a main component.
  • the thickness of the dielectric film (31) is about 0.5 ⁇ m.
  • the thickness of the dielectric film (31) is not limited to 0.5 ⁇ m, and may be thicker or thinner.
  • the dielectric fine particle film (32) is formed by applying a dispersion solution containing dielectric fine particles containing barium titanate (BaTiO3) as a main component on the dielectric film (31).
  • the dielectric fine particles contained in the dispersion solution are nanoparticles having an average particle diameter of 50 nm or less, and the dielectric fine particle film (32) is dispersed on the dielectric film (31). It is a thin film formed by drying the solution and agglomerating the dielectric fine particles.
  • the same material barium titanate (BaTiO3), is used as the main component for the dielectric film (31) and the dielectric particles constituting the dielectric particle film (32).
  • the invention is not limited to this.
  • Various dielectric materials mainly composed of (LiTaO3), zinc oxide (ZnO), tantalum oxide (Ta2O5), and the like can be used.
  • dielectric materials having different main components may be used for the dielectric film (31) and the dielectric fine particles constituting the dielectric fine particle film (32).
  • the dielectric film (31) and the dielectric fine particles constituting the dielectric fine particle film (32) may contain an additive to improve the dielectric characteristics.
  • the second conductive layer (2) is a metal film formed on the dielectric layer (3) by sputtering deposition, plating, screen printing or the like, or a metal attached on the dielectric layer (3).
  • the foil is made of a metal such as copper (Cu), nickel (Ni), cobalt (Co), gold (Au), platinum (Pt), etc., like the first conductive layer (1).
  • a formation process is performed in this order.
  • the dielectric layer forming step includes a dielectric film forming step of forming a dielectric film (31) on the first conductive layer (1) as shown in FIG. 2, and a dielectric film (3) as shown in FIG. And a fine particle film forming step for forming a dielectric fine particle film (32) thereon.
  • the dielectric film (31) is formed on the first conductive layer (1) by using any of the sol-gel method, MOCVD method, sputtering deposition method, and powder injection coating method.
  • the powder spray coating method includes various film forming methods such as an aerosol deposition method and a powder jet deposition method in which a dielectric powder is sprayed to form a dielectric film.
  • the sol-gel method is a well-known film forming method for forming a dielectric film at a low temperature of about room temperature to 150 ° C.
  • the MOCVD method and the sputtering deposition method are well-known film forming methods for forming a dielectric film in a vacuum. It is a membrane method.
  • a dielectric film is formed by aerosolizing dielectric powder using a film forming apparatus as shown in FIG. 4 and spraying the powder toward the surface on which the dielectric film is to be formed. It is a membrane method.
  • the film forming apparatus can maintain the inside in a vacuum state by an aerosol generator (71) that stirs and mixes dielectric powder with a high-pressure gas to form an aerosol, and a vacuum pump (73).
  • a possible film forming chamber (72) is connected by a thin transfer tube (74).
  • the space (high pressure space) in the aerosol generator (71) into which the high pressure gas flows and the film formation chamber (72) A pressure difference is generated between the space (low pressure space). Therefore, the dielectric powder aerosolized by the aerosol generator (71) flows in the transfer tube (74) toward the film forming chamber (72).
  • a stage (75) for installing an object having a surface on which a dielectric film is to be formed is disposed inside the film forming chamber (72), and the stage (75) is provided with the object. And a translation in the XY plane parallel to the installation surface (751), translation in the Z-axis direction perpendicular to the XY plane, and rotation around the Z-axis.
  • One end of the transfer tube (74) is located in the film forming chamber (72), and a slit-like nozzle (76) is attached to the one end of the transfer tube (74) with the tip thereof facing the installation surface (751) of the stage (75). It has been.
  • the nozzle (76) has a shape capable of accelerating the dielectric powder discharged from one end of the transfer tube (74) to about 100 m / sec.
  • the dielectric powder discharged at high speed from the tip of the nozzle (76) is sprayed onto the surface of the object on the stage (75).
  • the powder jet deposition method is a film forming method in which a dielectric film is formed by injecting a dielectric powder toward a surface on which a dielectric film is to be formed using an injection device as shown in FIG.
  • the injection device includes a stepped nozzle (81) having two regions (811) and (812) having different inner diameters.
  • the nozzle (81) includes a first region (811 having a larger inner diameter).
  • a through hole (82) for supplying dielectric powder is formed at a position close to the second region (812) having a small inner diameter.
  • the surface of the first conductive layer (1) is 1 ⁇ m.
  • Barium titanate (BaTiO3) dielectric powder having a particle size of about a level is sprayed.
  • the dielectric powder sprayed on the surface of the first conductive layer (1) collides with the surface of the first conductive layer (1) or other dielectric powder and is crushed, and on the first conductive layer (1).
  • a dielectric film (31) is formed on the first conductive layer (1). Therefore, the dielectric film (31) formed using the aerosol deposition method or the powder jet deposition method becomes a dense bulk film.
  • a dispersion solution containing dielectric fine particles containing barium titanate (BaTiO3) as a main component is applied on the dielectric film (31) formed in the dielectric film forming step, and the dispersion The solution is dried to form a dielectric fine particle film (32).
  • the dispersion solution used in the fine particle film forming step contains nanoparticles having an average particle diameter of 50 nm or less as dielectric fine particles.
  • the dispersion solution is preferably one in which the nanoparticles are monodispersed in the solution in the form of primary particles.
  • the dielectric film (31) formed in the dielectric film forming step and the dielectric fine particle film (32) formed in the fine particle film forming step constitute the dielectric layer (3). Will be.
  • a metal film is formed on the dielectric fine particle film (32) formed in the fine particle film forming step using a sputtering vapor deposition method, a plating method, a screen printing method, or the like, or a metal foil is attached.
  • the second conductive layer (2) is formed.
  • the circuit board in which the capacitor circuit (40) is formed on the board (4) is completed.
  • the metal foil is applied to the dielectric film (31) after the dispersion solution is applied in the fine particle film formation step and before the dispersion solution is dried. You may attach to the application surface of a dispersion solution.
  • the dielectric fine particle film (32) interposed between the dielectric film (31) and the metal foil functions as an adhesive layer for bonding the dielectric film (31) and the metal foil. It will be.
  • the pinhole (5) and cracks are likely to occur in the dielectric film (31) as shown in FIG. 2, sputtering deposition, plating, screen printing, etc. are used.
  • the second conductive layer (2) is formed directly on the dielectric film (31)
  • part of the metal constituting the second conductive layer (2) penetrates into the pinhole (5) or crack, As a result, the insulation between the first conductive layer (1) and the second conductive layer (2) may be broken through pinholes (5) and cracks.
  • the surface of the first conductive layer (1) has minute irregularities, when the dielectric film (31) is thinned, the first conductive layer (1) is not formed on the surface of the dielectric film (31). Some may be exposed.
  • the second conductive layer (2) is formed directly on the dielectric film (31), the exposed portion of the first conductive layer (1) and the second conductive layer (2) are in contact with each other. There is a possibility that the insulation between the conductive layer (1) and the second conductive layer (2) is broken.
  • the dielectric fine particle film (32) is formed on the dielectric film (31) by applying a dispersion solution containing dielectric fine particles, the dielectric film ( Even if pinholes (5) and cracks exist in 31), the dispersion solution enters the pinholes (5) and cracks, and as a result, the pinholes (5) and cracks become dielectric fine particle films (32 ) To be filled. Even when a part of the first conductive layer (1) is exposed on the surface of the dielectric film (31), the exposed part is covered with the dielectric fine particle film (32). Therefore, the insulation between the first conductive layer (1) and the second conductive layer (2) is maintained by the dielectric fine particle film (32).
  • the dielectric constant of the capacitor circuit on the circuit board decreases due to the influence of the voids generated by the pinholes (5) or cracks.
  • the pinhole (5) and the crack are filled with a part of the dielectric fine particle film (32), so that a decrease in dielectric constant is suppressed.
  • the dielectric fine particle film (32) is made of the same material as the main component of the dielectric material constituting the dielectric film (31). The difference in coefficient of thermal expansion between 31) and the dielectric fine particle film (32) is reduced, and as a result, the occurrence of internal defects due to thermal expansion is suppressed. Therefore, the quality of the circuit board is maintained high.
  • each part structure of this invention is not restricted to the said embodiment, A various deformation
  • the above-described various configurations adopted as a circuit board on which a capacitor circuit is formed can be adopted for a capacitor element and a laminated sheet from which the capacitor element can be cut out.
  • the capacitor element and the laminated sheet may not have a configuration corresponding to the substrate (4) constituting the circuit substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Ceramic Capacitors (AREA)

Abstract

【課題】絶縁破壊が発生し難くて誘電率及び品質の高い積層構造体及びその製造方法を提 供する。 【解決手段】本発明に係る積層構造体は、第1導電層1と第2導電層2との間に誘電体層3を介在させた積層構造体であって、前記誘電体層3は、第1導電層1上に形成された誘電体膜31と、該誘電体膜31上に誘電体微粒子を含んだ分散溶液を塗布して形成された誘電体微粒子膜32とから構成されている。本発明に係る積層構造体の製造方法は、前記第1導電層1上に誘電体層3を形成する誘電体層形成工程と、前記誘電体層3上に第2導電層2を形成する導電層形成工程とを有し、前記誘電体層形成工程は、前記第1導電層1上に誘電体膜31を形成する誘電体膜形成工程と、前記誘電体膜31上に、誘電体微粒子を含んだ分散溶液を塗布して誘電体微粒子膜32を形成する微粒子膜形成工程とから構成されている。

Description

積層構造体及びその製造方法
 本発明は、コンデンサ回路が形成されている回路基板やコンデンサ素子等の積層構造体及びその製造方法に関する。
 この種の積層構造体は、第1導電層と第2導電層との間に誘電体層を介在させて構成されており、誘電体層は、ゾル‐ゲル法、MOCVD(Metal Organic Chemical Vapor Deposition)法、スパッタリング蒸着法等、周知の種々の成膜法を用いて、第1導電層の表面に形成されている(例えば、特許文献1参照)。
 しかし、上記成膜法では、誘電体層にピンポールやクラックが発生し易いため、スパッタリング蒸着法やメッキ法を用いて誘電体層上に直接、第2導電層を形成した場合、第2導電層を構成する金属の一部がピンホールやクラック内に浸入し、これによってピンホールやクラックを介して第1導電層と第2導電層との間の絶縁が破壊される虞があった。
 又、第1導電層の表面には微小な凹凸が存在するため、誘電体膜を薄膜化した場合、誘電体膜の表面に第1導電層の一部が露出する虞があった。このため、誘電体層上に直接、第2導電層を形成した場合、第1導電層の露出部分と第2導電層とが接触して第1導電層と第2導電層との間の絶縁が破壊される虞があった。
 この問題を解決すべく、誘電体層と第2導電膜との間に樹脂膜を介在させることが提案されている(特許文献1参照)。
特許第3841814号公報
 しかしながら、上述の如く誘電体層と第2導電膜との間に樹脂膜を介在させた構成においては、積層構造体の誘電率や品質が低下する問題がある。又、誘電体層と樹脂膜との膨張率の違いにより、積層構造体の内部にクラック等の欠陥が発生して品質が低下する問題がある。
 そこで本発明の目的は、絶縁破壊が発生し難くて誘電率及び品質の高い積層構造体及びその製造方法を提供することである。
 本発明に係る積層構造体は、第1導電層と第2導電層との間に誘電体層を介在させた積層構造体であって、前記誘電体層は、第1導電層上に形成された誘電体膜と、該誘電体膜上に誘電体微粒子を含んだ分散溶液を塗布して形成された誘電体微粒子膜とから構成されている。
 尚、積層構造体には、第1導電層と第2導電層との間に誘電体層を介在させて構成されたコンデンサ回路が基板上に形成されている回路基板、コンデンサ素子、コンデンサ素子を切り出すことが可能な積層シート等、種々の積層構造体を含むものとする。
 上記積層構造体においては、誘電体膜にピンホールやクラックが発生し易いため、スパッタリング蒸着法、メッキ法、スクリーン印刷法等を用いて前記誘電体膜上に直接、第2導電層を形成した場合、第2導電層を構成する金属の一部がピンホールやクラック内に浸入し、これによってピンホールやクラックを介して第1導電層と第2導電層との間の絶縁が破壊される虞がある。
 又、第1導電層の表面には微小な凹凸が存在するため、誘電体膜を薄膜化した場合、誘電体膜の表面に第1導電層の一部が露出する虞がある。このため、前記誘電体膜上に直接、第2導電層を形成した場合、第1導電層の露出部分と第2導電層とが接触して第1導電層と第2導電層との間の絶縁が破壊される虞がある。
 しかしながら、本発明に係る積層構造体においては、誘電体膜上に誘電体微粒子を含んだ分散溶液を塗布して誘電体微粒子膜が形成されているので、誘電体膜にピンホールやクラックが存在している場合でも、ピンホールやクラック内に分散溶液が入り込み、その結果、該ピンホールやクラックが誘電体微粒子膜の一部によって充填されることとなる。又、誘電体膜の表面に第1導電層の一部が露出している場合でも、該露出部分が誘電体微粒子膜によって被覆されることとなる。
 従って、第1導電層と第2導電層との間の絶縁が、誘電体微粒子膜によって維持されることになる。
 又、上述の如く誘電体膜にピンホールやクラックが発生した場合、積層構造体の誘電率がピンホールやクラックによって生じた空隙の影響により低下するが、本発明に係る積層構造体においては、ピンホールやクラックが誘電体微粒子膜の一部によって充填されるので、誘電率の低下が抑制されることになる。
 上記積層構造体の具体的構成において、前記誘電体微粒子は、前記誘電体膜を構成する誘電体材料と主成分が同じ材料から構成されている。
 該具体的構成によれば、誘電体膜と誘電体微粒子膜との熱膨張率の差が小さくなり、その結果、熱膨張による内部欠陥の発生が抑制されることとなる。従って、積層構造体の品質が高く維持されることとなる。
 上記積層構造体の他の具体的構成において、前記誘電体微粒子は、チタン酸バリウム、ニオブ酸リチウム、ホウ酸リチウム、チタン酸ジルコン酸鉛、チタン酸ストロンチウム、チタン酸ジルコン酸ランタン鉛、タンタル酸リチウム、酸化亜鉛、酸化タンタルの内、少なくとも1つの材料を主成分として含んでいる。尚、これらの誘電体微粒子には、誘電特性を向上させるべく添加物が含まれていてもよい。
 上記積層構造体の更なる他の具体的構成において、前記誘電体膜は、ゾル‐ゲル法、MOCVD法、スパッタリング蒸着法、及び粉末噴射コーティング法の何れかの方法によって形成されている。
 尚、粉末噴射コーティング法には、エアロゾルデポジション法、パウダージェットデポジション法等、誘電体粉末を噴射して誘電体膜を形成する種々の成膜法を含むものとする。
 本発明に係る積層構造体の製造方法は、第1導電層と第2導電層との間に誘電体層を介在させた積層構造体の製造方法であって、前記第1導電層上に誘電体層を形成する誘電体層形成工程と、前記誘電体層上に第2導電層を形成する導電層形成工程とを有する。
 ここで、前記誘電体層形成工程は、前記第1導電層上に誘電体膜を形成する誘電体膜形成工程と、前記誘電体膜上に、誘電体微粒子を含んだ分散溶液を塗布して誘電体微粒子膜を形成する微粒子膜形成工程とから構成されている。
 上記製造方法の具体的構成において、前記微粒子膜形成工程にて用いる分散溶液は、前記誘電体膜を構成する誘電体材料と主成分が同じ材料から構成された誘電体微粒子を含んだものである。
 上記製造方法の他の具体的構成において、前記誘電体膜形成工程では、ゾル‐ゲル法、MOCVD法、スパッタリング蒸着法、及び粉末噴射コーティング法の何れかの方法を用いて、前記誘電体膜を形成する。
 尚、粉末噴射コーティング法には、エアロゾルデポジション法、パウダージェットデポジション法等、誘電体粉末を噴射して誘電体膜を形成する種々の成膜法を含むものとする。
 本発明に係る積層構造体は、絶縁破壊が発生し難く、且つ誘電率及び品質が高い。又、本発明に係る製造方法によれば、絶縁破壊が発生し難くて誘電率及び品質の高い積層構造体を製造することが出来る。
本発明の一実施形態に係る回路基板を示す断面図である。 該回路基板の製造工程の内、誘電体膜形成工程を説明するための断面図である。 該回路基板の製造工程の内、微粒子膜形成工程を説明するための断面図である。 エアロゾルデポジション法に用いられる成膜装置を示す図である。 パウダージェットデポジション法に用いられる噴射装置を示す断面図である。
 以下、本発明をコンデンサ回路が形成されている回路基板に実施した形態につき、図面に沿って具体的に説明する。
 本発明の一実施形態に係る回路基板は、図1に示す如く、第1導電層(1)と第2導電層(2)との間に誘電体層(3)を介在させて構成されたコンデンサ回路(40)が基板(4)上に形成されている積層構造体である。第1導電層(1)は、基板(4)上に配備された金属箔であり、銅(Cu)、ニッケル(Ni)、コバルト(Co)、金(Au)、白金(Pt)等の金属から構成されている。尚、第1導電層(1)は、スパッタリング蒸着法、メッキ法、スクリーン印刷法等を用いて形成されてもよい。
 誘電体層(3)は、第1導電層(1)上に形成された誘電体膜(31)と、該誘電体膜(31)上に形成された誘電体微粒子膜(32)とから構成されている。
 誘電体膜(31)は、チタン酸バリウム(BaTiO3)を主成分として含む誘電体材料から構成されている。又、誘電体膜(31)の厚さは、0.5μm程度である。尚、誘電体膜(31)の厚さは、0.5μmに限らず、これより厚くても或いは薄くてもよい。
 誘電体微粒子膜(32)は、誘電体膜(31)上にチタン酸バリウム(BaTiO3)を主成分として含む誘電体微粒子を含んだ分散溶液を塗布して形成されたものである。ここで、該分散溶液に含まれている誘電体微粒子は、50nm以下の平均粒子径を有するナノ粒子であり、誘電体微粒子膜(32)は、誘電体膜(31)上に塗布された分散溶液が乾燥して誘電体微粒子が凝集することにより形成された薄膜である。
 本実施形態においては、誘電体膜(31)と、誘電体微粒子膜(32)を構成する誘電体微粒子とに、同じ材料であるチタン酸バリウム(BaTiO3)を主成分として用いているが、本発明はこれに限らず、ニオブ酸リチウム(LiNbO3)、ホウ酸リチウム(Li2B4O7)、チタン酸ジルコン酸鉛(PbZrTiO3)、チタン酸ストロンチウム(SrTiO3)、チタン酸ジルコン酸ランタン鉛(PbLaZrTiO3)、タンタル酸リチウム(LiTaO3)、酸化亜鉛(ZnO)、酸化タンタル(Ta2O5)等を主成分とする種々の誘電体材料を用いることが出来る。又、誘電体膜(31)と、誘電体微粒子膜(32)を構成する誘電体微粒子とには、主成分が異なる誘電体材料を用いてもよい。
 尚、誘電体膜(31)と、誘電体微粒子膜(32)を構成する誘電体微粒子とには、誘電特性を向上させるべく添加物が含まれていてもよい。
 第2導電層(2)は、誘電体層(3)上にスパッタリング蒸着法、メッキ法、スクリーン印刷法等を用いて形成された金属膜、或いは誘電体層(3)上に取り付けられた金属箔であり、第1導電層(1)と同様、銅(Cu)、ニッケル(Ni)、コバルト(Co)、金(Au)、白金(Pt)等の金属から構成されている。
 次に、上記回路基板の製造方法について説明する。該製造方法では、第1導電層(1)上に誘電体層(3)を形成する誘電体層形成工程と、誘電体層(3)上に第2導電層(2)を形成する導電層形成工程とが、この順に実行される。
 又、誘電体層形成工程は、図2に示す如く第1導電層(1)上に誘電体膜(31)を形成する誘電体膜形成工程と、図3に示す如く誘電体膜(3)上に誘電体微粒子膜(32)を形成する微粒子膜形成工程とから構成されている。
 誘電体膜形成工程では、ゾル‐ゲル法、MOCVD法、スパッタリング蒸着法、及び粉末噴射コーティング法の何れかの方法を用いて、第1導電層(1)上に誘電体膜(31)を形成する。尚、粉末噴射コーティング法には、エアロゾルデポジション法、パウダージェットデポジション法等、誘電体粉末を噴射して誘電体膜を形成する種々の成膜法を含むものとする。
 ゾル‐ゲル法は、室温~150℃程度の低温にて誘電体膜を形成する周知の成膜法であり、MOCVD法及びスパッタリング蒸着法は、真空中にて誘電体膜を形成する周知の成膜法である。
 エアロゾルデポジション法は、図4に示す如く成膜装置を用いて、誘電体粉末をエアロゾル化し、誘電体膜を形成すべき表面に向けて前記粉末を噴射することにより誘電体膜を形成する成膜法である。
 図4に示す様に成膜装置は、誘電体粉末を高圧ガスと攪拌・混合してエアロゾル化するエアロゾル発生器(71)と、真空ポンプ(73)にて内部を真空状態に維持することが可能な成膜チャンバ(72)とを、細い搬送チューブ(74)により接続して構成されている。成膜時においては、成膜チャンバ(72)の内部が真空状態に維持されるので、高圧ガスが流れ込むエアロゾル発生器(71)内の空間(高圧空間)と、成膜チャンバ(72)内の空間(低圧空間)との間には、圧力差が生じることとなる。したがって、エアロゾル発生器(71)にてエアロゾル化された誘電体粉末は、搬送チューブ(74)内を成膜チャンバ(72)へ向けて流れることになる。
 成膜チャンバ(72)の内部には、誘電体膜を形成すべき表面を有する対象物を設置するためのステージ(75)が配備されており、該ステージ(75)は、対象物が設置される設置面(751)に平行なXY平面内での並進と、該XY平面に垂直なZ軸方向への並進と、該Z軸周りの回転とが可能な構成を有している。
 搬送チューブ(74)の一端は成膜チャンバ(72)内に位置し、該一端には、スリット状のノズル(76)が、その先端をステージ(75)の設置面(751)へ向けて取り付けられている。又、該ノズル(76)は、搬送チューブ(74)の一端から吐出される誘電体粉末を100m/sec程度まで加速することが可能な形状を有している。
 従って、ノズル(76)の先端から高速で吐出された誘電体粉末は、ステージ(75)上の対象物の表面に噴きつけられることになる。
 パウダージェットデポジション法は、図5に示す如く噴射装置を用いて、誘電体膜を形成すべき表面に向けて誘電体粉末を噴射することにより誘電体膜を形成する成膜法である。
 図5に示す様に噴射装置は、内径の異なる2つの領域(811)(812)を有する段付きのノズル(81)を具え、該ノズル(81)には、内径の大きな第1領域(811)の内、内径の小さな第2領域(812)に近い位置に、誘電体粉末を供給するための貫通孔(82)が形成されている。
 従って、ノズル(81)内に、第2領域(812)から第1領域(811)へ向けて圧縮ガスを流すことにより、内径が変化する第2領域(812)の出口付近の位置にて負圧が発生し、該負圧によって誘電体粉末がノズル(81)内へ吸入される。これにより、吸入された誘電体粉末が圧縮ガスと共に高速でノズル(81)の先端から吐出されることになる。
 吐出された誘電体粉末は、エアロゾルデポジション法の場合と同様、ステージ上の対象物の表面に噴きつけられる。
 本実施形態においてエアロゾルデポジション法或いはパウダージェットデポジション法を用いて第1導電層(1)上に誘電体膜(31)を形成する場合、第1導電層(1)の表面には、1μm程度の粒子径を有するチタン酸バリウム(BaTiO3)の誘電体粉末が噴きつけられる。
 第1導電層(1)の表面に噴きつけられた誘電体粉末は、第1導電層(1)の表面或いは他の誘電体粉末と衝突して破砕し、そして第1導電層(1)上に堆積し、これによって第1導電層(1)上に誘電体膜(31)が形成されることになる。従って、エアロゾルデポジション法或いはパウダージェットデポジション法を用いて形成された誘電体膜(31)は、緻密なバルク状の膜となる。
 微粒子膜形成工程では、誘電体膜形成工程にて形成された誘電体膜(31)上に、チタン酸バリウム(BaTiO3)を主成分として含む誘電体微粒子を含んだ分散溶液を塗布し、該分散溶液を乾燥させて誘電体微粒子膜(32)を形成する。ここで、微粒子膜形成工程にて用いる分散溶液は、50nm以下の平均粒子径を有するナノ粒子を誘電体微粒子として含んでいる。尚、分散溶液は、該ナノ粒子が一次粒子の状態で溶液中に単分散しているものが好ましい。
 斯くして、誘電体膜形成工程にて形成された誘電体膜(31)と、微粒子膜形成工程にて形成された誘電体微粒子膜(32)とにより、誘電体層(3)が構成されることになる。
 導電層形成工程では、微粒子膜形成工程にて形成された誘電体微粒子膜(32)上に、スパッタリング蒸着法、メッキ法、スクリーン印刷法等を用いて金属膜を形成し、或いは金属箔を取り付けることにより、第2導電層(2)を形成する。これにより、図1に示す様に、基板(4)上にコンデンサ回路(40)が形成された回路基板が完成することになる。
 尚、第2導電層(2)として金属箔を用いる場合、該金属箔は、微粒子膜形成工程にて分散溶液を塗布した後、該分散溶液が乾燥する前に、誘電体膜(31)の分散溶液の塗布面に取り付けられてもよい。これにより、誘電体膜(31)と金属箔との間に介在することとなる誘電体微粒子膜(32)は、誘電体膜(31)と金属箔とを接着するための接着層として機能することになる。
 上述の如く製造された回路基板においては、誘電体膜(31)に、図2に示す如くピンホール(5)やクラックが発生し易いため、スパッタリング蒸着法、メッキ法、スクリーン印刷法等を用いて誘電体膜(31)上に直接、第2導電層(2)を形成した場合、第2導電層(2)を構成する金属の一部がピンホール(5)やクラック内に浸入し、これによってピンホール(5)やクラックを介して第1導電層(1)と第2導電層(2)との間の絶縁が破壊される虞がある。
 又、第1導電層(1)の表面には微小な凹凸が存在するため、誘電体膜(31)を薄膜化した場合、誘電体膜(31)の表面に第1導電層(1)の一部が露出する虞がある。このため、誘電体膜(31)上に直接、第2導電層(2)を形成した場合、第1導電層(1)の露出部分と第2導電層(2)とが接触して第1導電層(1)と第2導電層(2)との間の絶縁が破壊される虞がある。
 しかしながら、本実施形態に係る回路基板においては、誘電体膜(31)上に誘電体微粒子を含んだ分散溶液を塗布して誘電体微粒子膜(32)が形成されているので、誘電体膜(31)にピンホール(5)やクラックが存在している場合でも、ピンホール(5)やクラック内に分散溶液が入り込み、その結果、該ピンホール(5)やクラックが誘電体微粒子膜(32)の一部によって充填されることとなる。又、誘電体膜(31)の表面に第1導電層(1)の一部が露出している場合でも、該露出部分が誘電体微粒子膜(32)によって被覆されることとなる。
 従って、第1導電層(1)と第2導電層(2)との間の絶縁が、誘電体微粒子膜(32)によって維持されることになる。
 又、上述の如く誘電体膜(31)にピンホール(5)やクラックが発生した場合、回路基板のコンデンサ回路の誘電率がピンホール(5)やクラックによって生じた空隙の影響により低下するが、本実施形態に係る回路基板においては、ピンホール(5)やクラックが誘電体微粒子膜(32)の一部によって充填されるので、誘電率の低下が抑制されることになる。
 更に、本実施形態に係る回路基板においては、誘電体微粒子膜(32)が、誘電体膜(31)を構成する誘電体材料と主成分が同じ材料から構成されているので、誘電体膜(31)と誘電体微粒子膜(32)との熱膨張率の差が小さくなり、その結果、熱膨張による内部欠陥の発生が抑制されることとなる。従って、回路基板の品質が高く維持されることとなる。
 尚、本発明の各部構成は上記実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば、コンデンサ回路が形成されている回路基板として採用した上述の各種構成は、コンデンサ素子や、コンデンサ素子を切り出すことが可能な積層シートにも採用することが出来る。尚、該コンデンサ素子及び積層シートにおいては、上記回路基板を構成する基板(4)に相当する構成はなくてもよい。
 (1) 第1導電層
 (2) 第2導電層
 (3) 誘電体層
 (31) 誘電体膜
 (32) 誘電体微粒子膜
 (4) 基板
 (5) ピンホール
 

Claims (7)

  1.  第1導電層と第2導電層との間に誘電体層を介在させた積層構造体において、前記誘電体層は、第1導電層上に形成された誘電体膜と、該誘電体膜上に誘電体微粒子を含んだ分散溶液を塗布して形成された誘電体微粒子膜とから構成されていることを特徴とする積層構造体。
  2.  前記誘電体微粒子は、前記誘電体膜を構成する誘電体材料と主成分が同じ材料から構成されている請求項1に記載の積層構造体。
  3.  前記誘電体微粒子は、チタン酸バリウム、ニオブ酸リチウム、ホウ酸リチウム、チタン酸ジルコン酸鉛、チタン酸ストロンチウム、チタン酸ジルコン酸ランタン鉛、タンタル酸リチウム、酸化亜鉛、酸化タンタルの内、少なくとも1つの材料を主成分として含んでいる請求項1に記載の積層構造体。
  4.  前記誘電体膜は、ゾル‐ゲル法、MOCVD法、スパッタリング蒸着法、及び粉末噴射コーティング法の何れかの方法によって形成されている請求項1に記載の積層構造体。
  5.  第1導電層と第2導電層との間に誘電体層を介在させた積層構造体の製造方法において、
     前記第1導電層上に誘電体層を形成する誘電体層形成工程と、
     前記誘電体層上に第2導電層を形成する導電層形成工程
    とを有し、
     前記誘電体層形成工程は、
     前記第1導電層上に誘電体膜を形成する誘電体膜形成工程と、
     前記誘電体膜上に、誘電体微粒子を含んだ分散溶液を塗布して誘電体微粒子膜を形成する微粒子膜形成工程
    とから構成されていることを特徴とする積層構造体の製造方法。
  6.  前記微粒子膜形成工程にて用いる分散溶液は、前記誘電体膜を構成する誘電体材料と主成分が同じ材料から構成された誘電体微粒子を含んだものである請求項5に記載の積層構造体の製造方法。
  7.  前記誘電体膜形成工程では、ゾル‐ゲル法、MOCVD法、スパッタリング蒸着法、及び粉末噴射コーティング法の何れかの方法を用いて、前記誘電体膜を形成する請求項5に記載の積層構造体の製造方法。
     
PCT/JP2010/057817 2009-05-29 2010-05-07 積層構造体及びその製造方法 WO2010137448A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/375,159 US20120069487A1 (en) 2009-05-29 2010-05-07 Stacked structure and method of manufacturing the same
JP2011515962A JPWO2010137448A1 (ja) 2009-05-29 2010-05-07 積層構造体及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-130015 2009-05-29
JP2009130015 2009-05-29

Publications (1)

Publication Number Publication Date
WO2010137448A1 true WO2010137448A1 (ja) 2010-12-02

Family

ID=43222563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057817 WO2010137448A1 (ja) 2009-05-29 2010-05-07 積層構造体及びその製造方法

Country Status (3)

Country Link
US (1) US20120069487A1 (ja)
JP (1) JPWO2010137448A1 (ja)
WO (1) WO2010137448A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188927A1 (ja) * 2013-05-21 2014-11-27 ピーエスフォー ルクスコ エスエイアールエル 半導体装置及びその製造方法
JP2015126156A (ja) * 2013-12-27 2015-07-06 Tdk株式会社 薄膜キャパシタ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8971016B1 (en) * 2014-10-22 2015-03-03 Murata Manufacturing Co., Ltd. Monolithic ceramic capacitor
US9842695B2 (en) * 2016-05-11 2017-12-12 Delphi Technologies, Inc. PLZT capacitor and method to increase the dielectric constant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047705A (ja) * 2002-07-11 2004-02-12 Toray Ind Inc 金属蒸着フィルムおよびセラミック積層体
WO2006118237A1 (ja) * 2005-04-28 2006-11-09 Mitsui Mining & Smelting Co., Ltd キャパシタ層形成材及びそのキャパシタ層形成材の製造方法
JP2006339420A (ja) * 2005-06-02 2006-12-14 Seiko Epson Corp 強誘電体層の製造方法および電子機器の製造方法
JP2007258643A (ja) * 2006-03-27 2007-10-04 Tdk Corp 積層型電子部品の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047705A (ja) * 2002-07-11 2004-02-12 Toray Ind Inc 金属蒸着フィルムおよびセラミック積層体
WO2006118237A1 (ja) * 2005-04-28 2006-11-09 Mitsui Mining & Smelting Co., Ltd キャパシタ層形成材及びそのキャパシタ層形成材の製造方法
JP2006339420A (ja) * 2005-06-02 2006-12-14 Seiko Epson Corp 強誘電体層の製造方法および電子機器の製造方法
JP2007258643A (ja) * 2006-03-27 2007-10-04 Tdk Corp 積層型電子部品の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188927A1 (ja) * 2013-05-21 2014-11-27 ピーエスフォー ルクスコ エスエイアールエル 半導体装置及びその製造方法
JP2015126156A (ja) * 2013-12-27 2015-07-06 Tdk株式会社 薄膜キャパシタ

Also Published As

Publication number Publication date
US20120069487A1 (en) 2012-03-22
JPWO2010137448A1 (ja) 2012-11-12

Similar Documents

Publication Publication Date Title
JP5099468B2 (ja) 成膜装置及び電子部品の製造方法
WO2010137448A1 (ja) 積層構造体及びその製造方法
JP4510116B2 (ja) キャパシタの製造方法、構造体、及びキャパシタ
US8448313B2 (en) Method for producing ceramic body
JP5263915B2 (ja) キャパシタ素子の製造方法
JP5617291B2 (ja) エアロゾルデポジション装置及びエアロゾルデポジション方法
WO2010137522A1 (ja) 積層構造体及びその製造方法
JP2006261656A (ja) 圧電アクチュエータおよびその製造方法
WO2000065616A1 (fr) Dispositif electronique et sa fabrication
US20130120902A1 (en) Substrate-incorporated capacitor, capacitor-incorporating substrate provided with the same, and method for manufacturing substrate-incorporated capacitor
WO2011118307A1 (ja) コンデンサ内蔵基板の製造方法、及び該製造方法に使用可能な素子シートの製造方法
WO2010150595A1 (ja) 積層構造体及びその製造方法
JP2006297915A (ja) 圧電アクチュエータ、インクジェットヘッドおよびそれらの製造方法
US20200234879A1 (en) Multi-layer ceramic capacitor and method of producing the same
US7644479B2 (en) Method of producing a piezoelectric actuator
WO2011118308A1 (ja) コンデンサ素子、コンデンサ内蔵基板、素子シート、及びこれらの製造方法
CN112242255B (zh) 层叠型电子部件及层叠型电子部件的制造方法
JP4239526B2 (ja) コンデンサ、複合回路基板及びコンデンサの製造方法
JP3985661B2 (ja) デバイスユニットおよびその製造方法
JP5182129B2 (ja) 多層キャパシタ及びその製造方法
JP2010251403A (ja) 誘電体構造体、誘電体構造体の製造方法、圧着転写方法、及び保持構造
JPH05182862A (ja) チップ型フィルムコンデンサとその外装方法
JP2008141121A (ja) 受動素子シート及び半導体パッケージ
JPH07297556A (ja) 多層セラミック電子部品の製造方法
JPH02106912A (ja) 積層フィルムコンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780405

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011515962

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13375159

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10780405

Country of ref document: EP

Kind code of ref document: A1