WO2010137321A1 - 水質浄化材料、水質浄化方法、リン酸肥料前駆体及びリン酸肥料前駆体の製造方法 - Google Patents

水質浄化材料、水質浄化方法、リン酸肥料前駆体及びリン酸肥料前駆体の製造方法 Download PDF

Info

Publication number
WO2010137321A1
WO2010137321A1 PCT/JP2010/003550 JP2010003550W WO2010137321A1 WO 2010137321 A1 WO2010137321 A1 WO 2010137321A1 JP 2010003550 W JP2010003550 W JP 2010003550W WO 2010137321 A1 WO2010137321 A1 WO 2010137321A1
Authority
WO
WIPO (PCT)
Prior art keywords
water purification
hydroxide
purification material
ions
phosphorus
Prior art date
Application number
PCT/JP2010/003550
Other languages
English (en)
French (fr)
Inventor
辻秀之
河野龍興
鈴木昭子
村井伸次
山本勝也
足利伸行
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201080007808.2A priority Critical patent/CN102317213B/zh
Priority to KR1020117018659A priority patent/KR101317796B1/ko
Publication of WO2010137321A1 publication Critical patent/WO2010137321A1/ja
Priority to US13/209,768 priority patent/US20120024027A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0036Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B7/00Fertilisers based essentially on alkali or ammonium orthophosphates
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C5/00Fertilisers containing other nitrates
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D3/00Calcareous fertilisers
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F7/00Fertilisers from waste water, sewage sludge, sea slime, ooze or similar masses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Definitions

  • the present invention relates to a water purification material and a water purification method capable of selectively adsorbing phosphorus compounds such as phosphate ions contained in water such as river lakes, sewage, and industrial wastewater, and further, after adsorbing phosphorus compounds
  • the present invention relates to a phosphate fertilizer precursor and a method for producing a phosphate fertilizer precursor, which are technologies for reusing water purification materials.
  • Hydrotalcite is a kind of mineral layered inorganic compound, and has a mechanism to remove phosphorus (phosphate ion) in water by anion exchange between phosphate anion and anion contained between layers, and high phosphorus removal ability Has been reported to have
  • the adsorbent after adsorbing phosphorus is treated as industrial waste, it results in an extra cost and is not superior to the above-mentioned technology. It is an essential requirement. For reuse, it is necessary to remove the adsorbing substance, in this case phosphorus, from the adsorbent.
  • the adsorbent after releasing phosphorus can be used again for the adsorption removal of phosphorus as described above.
  • the detached phosphorus itself can be reused as a chemical fertilizer, for example, by mixing it with other chemical components.
  • the object of the present invention is to efficiently recover phosphorus that is contained in a large amount in wastewater such as sewage and is pointed out as a depleting resource, and to reuse it as a resource at low cost.
  • One embodiment of the present invention includes a composite metal hydroxide containing at least one of iron ions and calcium ions, and nitrogen ions and sulfur ions, and having a layered structure, and at least one of calcium hydroxide and iron hydroxide.
  • the main peak intensity attributed to at least one of the calcium hydroxide and iron hydroxide measured by X-ray crystal structure analysis is 1 ⁇ 2 of the main peak intensity attributed to the layered structure of the composite metal hydroxide.
  • the present invention relates to a water purification material characterized by the following.
  • one embodiment of the present invention relates to a water quality purification method, wherein the water quality purification material is brought into contact with waste water and a phosphorus-containing substance in the waste water is adsorbed.
  • one aspect of the present invention relates to a phosphate fertilizer precursor comprising the water purification material and a phosphorus-containing compound adsorbed on the water purification material.
  • the water purification material is adsorbed to the water purification material and the water purification material by bringing the water purification material into contact with wastewater and adsorbing the phosphorus-containing substance in the wastewater to the water purification material.
  • the present invention relates to a method for producing a phosphate fertilizer precursor comprising producing a phosphate fertilizer precursor comprising a phosphorus-containing compound.
  • phosphorus that is contained in a large amount in drainage such as sewage and is depleted as a resource can be efficiently recovered and reused as a resource at low cost.
  • the water purification material in the present embodiment includes a composite metal hydroxide that includes at least one of iron ions and calcium ions, and nitrogen ions and sulfur ions, and has a layered structure.
  • the composite metal hydroxide has a layered structure, and specifically has a structure in which a plurality of layers in which octahedrons centering on calcium ions and iron ions are two-dimensionally connected are stacked. Note that the calcium ion and the iron ion are located at the same crystal site in the above-described structure and are in a substitution relationship with each other. In such a state, since the composite metal hydroxide becomes positively charged, the anions constituting the composite metal hydroxide are interposed between the layers, and the electrical neutrality is maintained as a whole. Yes.
  • the composition component of the composite metal hydroxide is not particularly limited as long as the object of the present invention can be achieved.
  • the general formula: [Ca 2+ 1-x Fe 3+ x (OH) m ] (sO 4 2- y NO 3 - 1-2y) composition as represented by x (0.16 ⁇ x ⁇ 0.28,0 ⁇ y ⁇ 0.5,1.6 ⁇ m ⁇ 2.3) Can be an ingredient.
  • the composite metal hydroxide is formed by laminating a plurality of layers in which octahedrons centered on calcium ions (Ca 2+ ) and iron ions (Fe 3+ ) are two-dimensionally connected. Maintains an electrical neutrality through the presence of sulfate ions (SO 4 2 ⁇ ) and nitrate ions (NO 3 3 ⁇ ).
  • the hydrotalcite is, for example, represented by the general formula [Mg 3 Al (OH) 8 ] 1 / 2CO 3 2 ⁇ 2H 2 O, and has an octahedral (brucite layer) centered on magnesium ions. Layers that are two-dimensionally connected and in which some magnesium ions are replaced with aluminum ions are stacked to form a layered structure. Carbonate ions and crystal water exist between the layers. It is known that hydrotalcite having such a structure has a property that anions between layers exchange with other anions.
  • the composite metal hydroxide in the present embodiment has a composition component represented by the above general formula and exhibits a hydrotalcite structure, whereby sulfate ions ( SO 4 2 ⁇ ) and nitrate ions (NO 3 3 ⁇ ) can be exchanged for phosphate ions (anions) contained in the waste water.
  • SO 4 2 ⁇ sulfate ions
  • NO 3 3 ⁇ nitrate ions
  • the composite metal hydroxide is not necessarily required to be represented by the above general formula, but in the case of a composition component exhibiting a hydrotalcite structure, when used as a water purification material, It is not desirable to release an anion that is inappropriate or has an adverse effect on the wastewater by exchange, so it has a composition component that has an anion that is environmentally friendly, such as carbonate ion or halogen ion. Is preferred.
  • the water purification material in the present embodiment has a layered hydroxide structure in the basic skeleton, and is a layer in which octahedral hydroxides centering on calcium ions and iron ions are two-dimensionally connected as described above.
  • the configuration is such that a plurality of layers are stacked. In this respect, it can be said that it is the same as the conventionally known layered hydroxide such as hydrotalcite.
  • the point that the water purification material in this embodiment is different from the conventional hydrotalcite-like compound is that the conventional layered hydroxide is the main adsorption principle of ion exchange between layers, and the octahedral hydroxide itself is The octahedral hydroxide is largely involved in the adsorption in the present embodiment, whereas it is hardly involved in the adsorption.
  • the layer in which the hydroxides of calcium ions and iron ions are two-dimensionally connected has a layered structure. And sedimentation is achieved.
  • a layered structure composed of hydroxides of calcium ions and iron ions is not necessarily good in crystallinity. There is no aspect.
  • At least one of calcium hydroxide and iron hydroxide may be partially present on the surface of the composite metal hydroxide having a layered structure.
  • Such calcium hydroxide and iron hydroxide are generally formed on the surface of the composite metal hydroxide described above. This is because calcium ions and iron ions present on the surface of the composite metal hydroxide react chemically with the hydroxyl groups present on the surface of the composite metal hydroxide, and calcium hydroxide and iron hydroxide. It is to become.
  • the calcium hydroxide and iron hydroxide present on the surface can improve the phosphorus adsorption performance and the sedimentation property if the amount is constant.
  • the amount of calcium hydroxide and iron hydroxide on the surface of the composite metal hydroxide becomes too large, iron phosphate or calcium phosphate is formed when phosphate ions are adsorbed, and these become floating substances. In some cases, the sedimentation property is significantly deteriorated. Therefore, the calcium hydroxide and iron hydroxide present on the surface of these composite metal hydroxides should be less than a certain amount.
  • the improvement of the phosphorus adsorption performance due to the presence of calcium hydroxide and iron hydroxide present on the surface of the water purification material in the present embodiment is that, in principle, these are phosphate exchange reactions with phosphate ions in water. It is thought that phosphorus adsorbs directly.
  • the amount of calcium hydroxide and iron hydroxide can be specified as calcium ions and iron ions by X-ray crystal structure analysis.
  • the main peak intensity attributed to calcium ions and iron ions present on the surface of the composite metal hydroxide is the main peak intensity attributed to the layered structure of the composite metal hydroxide. It is preferable that it is 1/2 or less.
  • the water purification material of the present embodiment can adsorb phosphate ions both on the surface and inside (layered layer), a relatively large amount of phosphorus (phosphate ions) in the waste water. Can be adsorbed and recovered with high efficiency.
  • the water purification material of the present embodiment has particularly high adsorptivity to phosphate ions, and can selectively adsorb phosphate ions.
  • Such high adsorptivity to phosphate ions and high selectivity are characteristic properties not found in known hydrotalcites.
  • the total of the main peak intensity attributed to calcium ions and iron ions is 1 / of the main peak intensity attributed to the layered structure. It is preferable that it is 2 or less. In either case, the main peak intensity of one ion may be 1 ⁇ 2 or less of the main peak intensity due to the layered structure.
  • the excellent phosphorus adsorption performance and the excellent sedimentation property provided in the water purification material in the present embodiment as described above originate from the layered structure composed of hydroxides of calcium ions and iron ions, although the calcium hydroxide and iron hydroxide values present on the surface of the composite metal hydroxide are not necessarily required, further performance improvement is achieved by including these in a certain range.
  • the main peak intensity due to calcium ions and iron ions present on the surface of the composite metal hydroxide contributes to performance improvement even if it is very weak. Therefore, the range is particularly limited as long as the main peak intensity attributed to calcium ions and iron ions present on the surface of the composite metal hydroxide is 1 ⁇ 2 or less of the main peak intensity attributed to the layered structure. It is not a thing.
  • third metals other metals (hereinafter referred to as third metals) may be included as long as the operational effects of the present invention are not impaired.
  • this third metal may be exemplified by magnesium or the like obtained by substituting a part of calcium from the viewpoint of controlling crystallinity closely related to sedimentation. it can.
  • the content of the third metal is preferably 10 mol% or less with respect to all the metal elements contained in the composite metal hydroxide.
  • the water purification material in the present embodiment contains the composite metal hydroxide as described above, and the composite metal hydroxide can be used as it is, for example, in the form of powder. Moreover, it can also be used after forming into various shapes as required. Alternatively, it is possible to granulate by mixing a binder, to form a film by supporting it on an organic or inorganic film, or to have a structure packed in a column. In addition, if necessary for granulation, a conventionally known method for producing a porous body, such as baking after adding a binder, may be applied.
  • the water purification material can be basically produced by hydrothermal reaction of a compound containing calcium and a compound containing iron.
  • the compound which can be used as a raw material is not specifically limited, For example, the chloride, carbonate, nitrate, sulfate, etc. of calcium or iron are mentioned.
  • the pH of the reaction solution is preferably alkaline. Such a reaction can be carried out under normal pressure or under high pressure using an autoclave or the like.
  • the reaction conditions are selected according to the structure and particle size of the target composite metal hydroxide, but the reaction is generally carried out at 25 to 200 ° C., preferably 60 to 95 ° C.
  • the pressure may be ordinary pressure, or may be increased or reduced using an autoclave or the like, for example, 0.01 to 2.0 MPa.
  • the water purification method in the present embodiment is very simple, and is performed by bringing the water purification material obtained as described above into contact with waste water.
  • the above-described principle that is, the anions between the layers of the water purification material exchange with phosphate ions, and further, calcium hydroxide and iron hydroxide formed on the surface of the composite metal hydroxide are added to the waste water.
  • the hydroxyl groups, calcium ions, and iron ions formed by the contact cause some chemical interaction with the phosphate ions in the waste water.
  • the surface of the composite metal hydroxide also has Due to hydroxyl groups, calcium ions, etc., phosphate ions in the waste water can be adsorbed and recovered.
  • the composite metal hydroxide has a composition component represented by the above general formula and exhibits a hydrotalcite structure, a sulfate ion (SO 4 2) which is an anion in the general formula. - ) And nitrate ions (NO 3 3 ⁇ ) are exchanged for phosphate ions (anions) contained in the wastewater, thereby performing adsorption recovery of phosphate ions, ie, phosphorus, in the wastewater.
  • the water purification material powder or a granulated powder using a binder is put into the wastewater, and stirred, if necessary, in the shade.
  • ions are adsorbed and then settled. This method is effective when treating a relatively large amount of waste water. According to this method, there is a concern that the water purification equipment becomes relatively large, but there is an advantage that a large amount of waste water can be treated at one time.
  • the water purification material specifically, the composite metal hydroxide product itself is supported on a membrane, and the membrane is immersed in waste water to recover phosphate ions, that is, phosphorus. Will be able to. Furthermore, it is also possible to collect phosphate ions, that is, phosphorus, by packing the product or granulated powder into a column and introducing the waste water into the column for contact. These methods are suitable for treating a small amount of wastewater because the amount of wastewater treatment is limited although the treatment apparatus is relatively small.
  • a preferable pH range for applying the water purification method according to the present invention is pH 2.0 to 14.0, and more preferably pH 3.0 to 13.0.
  • Example 1 A solution of 200 mL of calcium nitrate and iron (III) nitrate is mixed with pure water so that the Ca / Fe molar ratio is 5.25, and dissolved while adjusting the solution to be alkaline with NaOH solution. Got. Next, the solution was kept for several hours while being kept at 80 ° C. to 100 ° C. to form a precipitate. Finally, the produced precipitate was separated by filtration, washed, and dried at 90 ° C. to 100 ° C. for several hours to obtain Specimen 1.
  • Specimen 1 is a composite metal hydroxide of calcium and iron, and can be expressed by the general formula [Ca 0.84 Fe 0.16 (OH) m ] (NO 3 ⁇ ) 0.16. It was confirmed by spectroscopy and ion chromatography. The composite metal hydroxide was confirmed to have a layered structure by an X-ray diffraction method.
  • a mixed aqueous solution adjusted to have a phosphate ion concentration, a sulfate ion concentration, and a chlorine ion concentration of 100 mg / L was prepared as a drainage simulation solution.
  • 50 mg of the specimen 1 was put into 50 mL of the drainage simulation liquid, and the water quality purification treatment was performed by mixing and stirring for 2 hours. After the treatment, the specimen and the supernatant were separated by filtration, each ion concentration in the supernatant was quantitatively analyzed, and the residual ratio of each ion and the phosphorus adsorption amount were calculated. Further, the time required for the filtration was measured, and the sedimentation property and dewatering property were evaluated.
  • the solubility is a characteristic required for phosphate fertilizers, and refers to the proportion of phosphorus that elutes when immersed in a 2 wt% citric acid solution at a liquid temperature of 30 ° C. Since the phosphate fertilizer is required to have high solubility, it is preferable that the ratio of phosphorus eluted by citric acid is as high as possible.
  • the evaluation of solubility was performed by immersing a specimen adsorbing phosphorus in a water purification treatment test in a citric acid solution and calculating the ratio of eluted phosphorus. The results obtained for these were as shown in Table 1.
  • Example 2 Specimen 2 was obtained in the same manner as in Example 1 except that calcium nitrate and iron nitrate (III) were adjusted to have a Ca / Fe molar ratio of 4.9.
  • Specimen 2 is a composite metal hydroxide that can be represented by the general formula [Ca 0.83 Fe 0.17 (OH) m ] (NO 3 ⁇ ) 0.17 and has a layered structure. It was confirmed by the same method as in Example 1. Using this specimen 2, water purification treatment was performed in the same manner as in Example 1. The obtained results were as shown in Table 1.
  • Example 3 Specimen 3 was prepared in the same manner as in Example 1 except that calcium nitrate, calcium sulfate, iron nitrate (III), and calcium sulfate (III) were adjusted so that the Ca / Fe molar ratio was 4.6.
  • Specimen 3 is a composite metal hydroxide that can be represented by the general formula [Ca 0.82 Fe 0.18 (OH) m ] (SO 4 2 ⁇ 0.2 NO 3 ⁇ 0.6 ) 0.18. And having a layered structure was confirmed by the same method as in Example 1. Using this specimen 3, water purification treatment was performed in the same manner as in Example 1. The obtained results were as shown in Table 1.
  • Example 4 Specimen 4 was obtained in the same manner as in Example 1 except that calcium nitrate and iron nitrate (III) were adjusted to have a Ca / Fe molar ratio of 4.0 as a raw material.
  • Specimen 4 is a composite metal hydroxide that can be represented by the general formula [Ca 0.80 Fe 0.20 (OH) m ] (NO 3 ⁇ ) 0.20 , and has a layered structure. It was confirmed by the same method as in Example 1. Using this specimen 4, water purification treatment was performed in the same manner as in Example 1. The obtained results were as shown in Table 1.
  • Example 5 Specimen 5 was obtained in the same manner as in Example 1, except that calcium nitrate and iron nitrate (III) were adjusted to have a Ca / Fe molar ratio of 3.0 as a raw material.
  • the specimen 5 is a composite metal hydroxide that can be represented by the general formula [Ca 0.75 Fe 0.25 (OH) m ] (NO 3 ⁇ ) 0.25 , and has a layered structure. It was confirmed by the same method as in Example 1. Using this specimen 5, water purification treatment was performed in the same manner as in Example 1. The obtained results were as shown in Table 1.
  • Example 6 Specimen 6 was prepared in the same manner as in Example 1 except that calcium nitrate and calcium sulfate were mixed with iron nitrate (III) and calcium sulfate (III) so that the Ca / Fe molar ratio was 2.9.
  • Specimen 6 is a composite metal hydroxide that can be represented by the general formula [Ca 0.74 Fe 0.26 (OH) m ] (SO 4 2 ⁇ 0.25 NO 3 ⁇ 0.5 ) 0.26. And having a layered structure was confirmed by the same method as in Example 1. Using this specimen 6, water purification treatment was performed in the same manner as in Example 1. The obtained results were as shown in Table 1.
  • Example 7 Specimen 7 was obtained in the same manner as in Example 1, except that calcium nitrate and iron nitrate (III) were adjusted to have a Ca / Fe molar ratio of 2.6.
  • the specimen 7 is a composite metal hydroxide that can be represented by the general formula [Ca 0.72 Fe 0.28 (OH) m ] (NO 3 ⁇ ) 0.28 , and has a layered structure. It was confirmed by the same method as in Example 1. Using this specimen 7, water purification treatment was performed in the same manner as in Example 1. The obtained results were as shown in Table 1.
  • the specimen 9 is made of hydrotalcite containing magnesium and aluminum. Using this specimen 9, water purification treatment was performed in the same manner as in Example 1. The obtained results were as shown in Table 1.
  • Example 3 A specimen 10 was obtained in the same manner as in Example 1 except that calcium nitrate and iron nitrate (III) were adjusted to have a Ca / Fe molar ratio of 6.0 as a raw material.
  • Example 1 shows that the specimen 10 is a composite water metal oxide that can be represented by the general formula [Ca 0.86 Fe 0.14 (OH) 2 ] and has a slightly layered structure. It confirmed by the same method. However, in the analysis by X-ray diffraction, the peak derived from calcium hydroxide exceeded 1/2 of the peak derived from the layered structure. Using this specimen 10, water purification treatment was performed in the same manner as in Example 1. The obtained results were as shown in Table 1.
  • Example 4 A specimen 11 was obtained in the same manner as in Example 1 except that calcium nitrate and iron (III) nitrate were adjusted to have a Ca / Fe molar ratio of 2.3 as a raw material.
  • Example 1 shows that the specimen 11 is a composite water metal oxide that can be represented by the general formula [Ca 0.69 Fe 0.31 (OH) 2 ] and has a slightly layered structure. It confirmed by the same method. However, in the analysis by X-ray diffraction, each peak derived from calcium hydroxide and iron hydroxide exceeded 1/2 of the peak derived from the layered structure. Using this specimen 11, water purification treatment was performed in the same manner as in Example 1. The obtained results were as shown in Table 1.
  • the phosphorus adsorption amount was 80 [mg-P / g-specimen], and the adsorption amounts of sulfate ions and chloride ions were low. That is, they adsorb phosphorus very efficiently. Also, the time required for filtration was short, and it was found that there was no problem in practical handling. Further, most of the adsorbed phosphorus was in a soluble form, and it was found that sufficient fertilization effect can be expected as a fertilizer as it is after adsorption.
  • Comparative Examples 1 and 2 did not have sufficient adsorbent performance, such as insufficient phosphorus adsorption, high selectivity for sulfate ions, and poor solubility.
  • Comparative Examples 3 to 4 although the phosphate ion concentration is decreased, it takes a long time for filtration due to the formation of flocs caused by iron hydroxide and calcium hydroxide, which may cause practical difficulties. all right. In addition, the results were low in solubility.
  • the water purification material based on the present invention has high phosphorus adsorption performance and dehydration characteristics (filtration characteristics), and is clearly different from conventional materials in that it has both high and solubility characteristics. Therefore, it can be said that it is an extremely excellent adsorbent from the viewpoint of diverting fertilizer after phosphorus adsorption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Compounds Of Iron (AREA)
  • Fertilizers (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

 鉄イオンおよびカルシウムイオン、並びに窒素イオン及び硫黄イオンの少なくとも一方を含んでなり、層状構造を呈する複合金属水酸化物と、水酸化カルシウム及び水酸化鉄の少なくとも一方とを具え、X線結晶構造解析によって測定される前記水酸化カルシウム及び水酸化鉄の少なくとも一方に起因するメインピーク強度が、前記複合金属水酸化物の前記層状構造に起因するメインピーク強度の1/2以下であるようにして、水質浄化材料を得る。

Description

水質浄化材料、水質浄化方法、リン酸肥料前駆体及びリン酸肥料前駆体の製造方法
 本発明は、河川湖沼、下水および産業排水などの水中に含まれるリン酸イオンなどのリン化合物を選択的に吸着することができる水質浄化材料及び水質浄化方法に関し、さらに、リン化合物を吸着した後の水質浄化材料の再利用技術である、リン酸肥料前駆体及びリン酸肥料前駆体の製造方法の関する。
 近年、経済活動の急速なグローバル化によって、世界規模での環境汚染・水質汚染が深刻な問題となっている。また、世界規模での生産活動は同時に資源枯渇を招き、希少元素として認識される元素の種類も増加する傾向にある。最近では世界規模でのリン鉱石の減少が進んでおり、近年では、リンも希少元素として認識されてきている。
 一方、従来から湖沼や湾内など閉鎖性水域における富栄養化問題への対策として、リンに対する厳格な排出基準が設けられていた。水中からのリン(実際には、リン酸イオンの形態となっている)の除去手段としては、カルシウム化合物などを凝集剤として添加し、リン酸塩を形成した後、凝集沈殿させる方法などが広く知られている。しかしながら、一般にリン酸塩は難沈降性の浮遊物であるため、リン酸塩を迅速に沈降させるためには、フロックを形成させる必要があり、その結果、汚泥が大量に発生する。
 結果として、大量の汚泥を処理するために、必然的に処理設備の大型化が要求されるため、コスト的な負荷が増大してしまうという問題があった。さらに、凝集剤を使用することによりフロックに多種のイオン成分が取り込まれるため、汚泥からそれらを分離する処理にもコストがかかる。このような理由により、汚泥は再利用されることなく産業廃棄物として有償処理される場合が非常に多いという問題も抱えている。
 すなわち、従来の方法で例えば水中のリンを除去する場合においては、カルシウム塩の添加による凝集沈殿は多くの処理時間、設備の大型化、汚泥処理の必要など、数々の非効率な問題を抱えているといえる。
 このような問題に鑑みて、近年、水質浄化のための新しい材料が数多く提案されている。例えば、リン除去に関して、高性能なリン除去剤としてハイドロタルサイト構造を有する吸着剤が提案されている(例えば、非特許文献1参照)。ハイドロタルサイトは鉱物性の層状無機化合物の一種であり、層間に含まれる陰イオンがリン酸イオンとイオン交換することで水中のリン(リン酸イオン)を除去するメカニズムを持ち、高いリン除去能力を持つことが報告されている。
 一方で、リンを吸着した後の吸着剤は、産業廃棄物として処理してしまうと、結果的に余分なコストがかかってしまい、上述した技術に比較して優位性を持たないため、再利用させることが必須の要件となる。再利用には、前記吸着剤から吸着物質、この場合はリンを離脱させる必要がある。リンを離脱させた後の吸着剤は、再度上述のようなリンの吸着除去に使用することができる。また、離脱したリン自体も、例えば他の化学成分と混合させるなどして化成肥料として再利用することができる。
 しかしながら、化成肥料として使用する場合は、化学成分との混合等の種々の工程が必要となり、肥料としての製造コストを増大させてしまう結果となる。このため、吸着剤で回収したリンを肥料として再利用しようとすると、流通肥料価格を押し上げてしまう結果となり、回収したリンの肥料としての再利用を阻む結果となっている。
水環境学会誌第22巻第11号875-881(1999)
 本発明は、下水などの排水中に大量に含まれ、資源としての枯渇性が指摘されるリンを効率良く回収するとともに、資源として低コストで再利用することを目的とする。
 本発明の一態様は、鉄イオンおよびカルシウムイオン、並びに窒素イオン及び硫黄イオンの少なくとも一方を含んでなり、層状構造を呈する複合金属水酸化物と、水酸化カルシウム及び水酸化鉄の少なくとも一方とを具え、X線結晶構造解析によって測定される前記水酸化カルシウム及び水酸化鉄の少なくとも一方に起因するメインピーク強度が、前記複合金属水酸化物の前記層状構造に起因するメインピーク強度の1/2以下であることを特徴とする、水質浄化材料に関する。
 また、本発明の一態様は、前記水質浄化材料を排水に接触させ、前記排水中のリン含有物質を吸着することを特徴とする、水質浄化方法に関する。
 さらに、本発明の一態様は、前記水質浄化材料と、前記水質浄化材料に吸着したリン含有化合物と、を具えることを特徴とする、リン酸質肥料前駆体に関する。
 また、本発明の一態様は、前記水質浄化材料を排水に接触させ、前記排水中のリン含有物質を前記水質浄化材料に吸着させることによって、前記水質浄化材料と、前記水質浄化材料に吸着したリン含有化合物とを具えるリン酸質肥料前駆体を製造することを特徴とする、リン酸質肥料前駆体の製造方法に関する。
 本発明によれば、下水などの排水中に大量に含まれ、資源としての枯渇性が指摘されるリンを効率良く回収するとともに、資源として低コストで再利用することができる。
 以下、本発明の詳細、並びにその他の特徴及び利点について、実施形態に基づいて説明する。
 (水質浄化材料)
本実施形態における水質浄化材料は、鉄イオンおよびカルシウムイオン、並びに窒素イオン及び硫黄イオンの少なくとも一方を含んでなり、層状構造を呈する複合金属水酸化物を具える。
 複合金属水酸化物は層状構造を呈しており、具体的にはカルシウムイオン及び鉄イオンを中心とした八面体が二次元的に連なってなる層が複数積層されたような構成を採っている。なお、カルシウムイオン及び鉄イオンは、上述した構造において同一の結晶サイトに位置するものであって、互いに置換の関係にある。また、このような状態では、複合金属水酸化物は正電荷を帯びるようになるので、前記複合金属水酸化物を構成する陰イオンが層間に介在し、全体として電気的中性を維持している。
 複合金属水酸化物の組成成分は、本発明の目的を達成することができる限りにおいて特に限定されるものではないが、例えば、一般式:[Ca2+ 1-xFe3+ (OH)](SO 2- NO 1-2yx(0.16≦x≦0.28、0≦y<0.5、1.6<m<2.3)で表されるような組成成分とすることができる。この場合、上述したように、複合金属水酸化物は、カルシウムイオン(Ca2+)及び鉄イオン(Fe3+)を中心とした八面体が二次元的に連なってなる層が複数積層され、層間には硫酸イオン(SO 2-)及び硝酸イオン(NO 3-)が介在して電気的中性を維持する。
 なお、複合金属水酸化物が上述のような組成成分を有することによって、以下のような利点を奏することができる。すなわち、一般式[Ca2+ 1-xFe3+ (OH)](SO 2- NO 1-2yx(0.16≦x≦0.28、0≦y<0.5、1.6<m<2.3)で表される化合物は、いわゆるハイドロタルサイト構造を採る。
 ハイドロタルサイトは、例えば一般式[MgAl(OH)]1/2CO 2-・2HOで表されるものであって、マグネシウムイオンを中心とする八面体(ブルーサイト層)が二次元的に連なり、マグネシウムイオンの一部をアルミニウムイオンで置き換えた層が積層されて層状構造を形成しているものである。そして、その層間には炭酸イオンと結晶水とが存在している。このような構造を有するハイドロタルサイトは、層間の陰イオンがほかの陰イオンと交換する性質を有することが知られている。
 したがって、本実施形態における複合金属水酸化物が、上述した一般式で表されるような組成成分を有し、ハイドロタルサイト構造を呈することによって、前記一般式中の陰イオンである硫酸イオン(SO 2-)及び硝酸イオン(NO 3-)が、排水中に含まれるリン酸イオン(陰イオン)と交換することができるようになる。この結果、排水中のリン酸イオン、すなわちリンの吸着回収を効果的に行なうことができるようになる。
 本発明における上記一般式においては、0.16≦x≦0.28であることが望ましい。xが0.16より小さいとリン吸着後の沈降性が低下し、xの減少に伴い次第に回収が困難になる。一方、xが0.28より大きくなるとリン吸着量が極端に低下していく。高いリン吸着能力とリン吸着後の優れた沈降性とが両立するのは、上記一般式において0.16≦x≦0.28の範囲であることを実験により見出した。更に、このxの範囲において、mは1.6<m<2.3の範囲となることが組成分析の結果分かった。
 また、複合金属水酸化物は、必ずしも上記一般式で表されることを要求されるものではないが、ハイドロタルサイト構造を呈するような組成成分の場合、水質浄化材料として用いられる場合に、イオン交換によって排水中に不適当な、すなわち悪影響を与えるような陰イオンが放出することは好ましくないので、環境に対して優しい陰イオン、例えば炭酸イオンやハロゲンイオンなどを有するような組成成分を有することが好ましい。
 本実施形態における水質浄化材料は、層状水酸化物構造を基本骨格に備えており、前述のようにカルシウムイオン及び鉄イオンを中心とした八面体の水酸化物が二次元的に連なってなる層が複数積層されたような構成を採っている。この点では、従来から知られているハイドロタルサイトなどの層状水酸化物と同様であると言える。
 しかしながら、本実施形態における水質浄化材料が従来のハイドロタルサイト様化合物と異なる点は、従来の層状水酸化物は層間でのイオン交換が主な吸着原理であり、八面体の水酸化物自体は吸着に殆ど関与しないのに対して、本実施形態においてはこの八面体の水酸化物が吸着に大きく関与していることである。
 従って、本実施形態においては、カルシウムイオン及び鉄イオンによる水酸化物が二次元的に連なった層が層状構造を採っていることが重要であり、この層状構造の構築によって、優れたリン吸着量および沈降性が達成される。
 本実施形態においては、層状構造が形成されていることが優位性の支配的要因と言えるが、一方で、カルシウムイオン及び鉄イオンによる水酸化物で構成される層状構造体は結晶性が必ずしも良くないという面もある。
 そのため、層状構造を採る複合金属水酸化物の表面に水酸化カルシウム及び水酸化鉄の少なくとも一方が部分的に存在するような状態になることもある。このような水酸化カルシウム及び水酸化鉄は、一般に上述した複合金属水酸化物の表面に形成される。これは、複合金属水酸化物の表面に存在するカルシウムイオン及び鉄イオンが、同じく複合金属水酸化物の表面に存在する水酸基との間で化学的に反応し、水酸化カルシウム及び水酸化鉄となるためである。
 本実施形態における水質浄化材料においては、この表面に存在する水酸化カルシウム及び水酸化鉄は、一定量であればリン吸着性能および沈降性を高めることができる。但し、複合金属水酸化物の表面における水酸化カルシウム及び水酸化鉄の量が多くなりすぎると、リン酸イオンを吸着させた際にリン酸鉄またはリン酸カルシウムが形成され、それらが浮遊物となって、沈降性が著しく悪化することがある。従って、これらの複合金属水酸化物の表面に存在する水酸化カルシウム及び水酸化鉄は、ある一定量より少ないほうがよい。
 なお、本実施形態における水質浄化材料の表面に存在する水酸化カルシウムおよび水酸化鉄が存在することによるリン吸着性能の向上は、原理的にはこれらが水中のリン酸イオンと配位子交換反応によってリンを直接吸着しているものと考えられる。
 水酸化カルシウム及び水酸化鉄の量は、カルシウムイオン及び鉄イオンとして、X線結晶構造解析により特定することができる。具体的には、X線結晶構造解析において、複合金属水酸化物の表面に存在するカルシウムイオン及び鉄イオンに起因したメインピーク強度が、複合金属水酸化物の層状構造に起因したメインピーク強度の1/2以下であることが好ましい。
 結果として、本実施形態の水質浄化材料は、その表面及び内部(層状構造の層間)の双方においてリン酸イオンを吸着することができるため、排水中の、比較的多量のリン(リン酸イオン)を高効率で吸着し、回収することができる。
 また、本実施形態の水質浄化材料は、上述のように特にリン酸イオンに対する吸着性が高く、リン酸イオンを選択的に吸着することができる。このようなリン酸イオンに対する高い吸着性および高い選択性は、公知のハイドロタルサイトには見られない特徴的な性質である。
 複合金属水酸化物の表面に、水酸化カルシウム及び水酸化鉄の双方が存在する場合は、カルシウムイオン及び鉄イオンに起因したメインピーク強度の合計が、層状構造に起因したメインピーク強度の1/2以下であることが好ましい。いずれか一方の場合は、一方のイオンのメインピーク強度が、層状構造に起因したメインピーク強度の1/2以下であればよい。
 なお、前述のように本実施形態における水質浄化材料が備える優れたリン吸着性能および優れた沈降性は根源的にはカルシウムイオンと鉄イオンによる水酸化物で構成される層状構造に由来するため、複合金属水酸化物の表面に存在する水酸化カルシウム及び水酸化鉄値は必ずしも必要となるものではないが、これらが一定の範囲で含まれていることで一層の性能向上が達成される。
 また、前述した吸着原理からも推察できるように、複合金属水酸化物の表面に存在するカルシウムイオン及び鉄イオンに起因したメインピーク強度は、ごく微弱であっても性能向上に寄与すると言える。従って、複合金属水酸化物の表面に存在するカルシウムイオン及び鉄イオンに起因したメインピーク強度が層状構造に起因したメインピーク強度の1/2以下でありさえすれば、その範囲は特に限定されるものではない。
 本実施形態では、本発明の作用効果を損なわない範囲で、それ以外の金属(以下、第三金属という)を含んでもよい。この第三金属は、製造過程で必然的に含まれるものの他、沈降性と密接な関係がある結晶性を制御するという観点から、カルシウムの一部を置換してなるマグネシウム等を例示することができる。但し、第三金属の含有量は、複合金属水酸化物に含まれる全金属元素に対して、10モル%以下であることが好ましい。
 本実施形態における水質浄化材料は、上述のような複合金属水酸化物を含むものであるが、その複合金属水酸化物をそのまま、例えば粉末状で使用することができる。また、必要に応じて種々の形状に成形したうえで使用することもできる。あるいはバインダーを混合して造粒する、有機系若しくは無機系膜に担持させて膜状とする、カラムに充填した構造とする、などが可能である。また、造粒する場合に必要であれば、バインダーを含ませた後に焼成するなど、従来から知られている多孔体の製造方法を適用しても良い。
 (水質浄化材料の製造方法)
次に、上記水質浄化材料の製造方法について説明する。上記水質浄化材料は、基本的に、カルシウムを含む化合物と鉄を含む化合物とを水熱反応させることにより製造することができる。ここで原料として用いることができる化合物は特に限定されるものではないが、例えば、カルシウムまたは鉄の、塩化物、炭酸塩、硝酸塩、硫酸塩などが挙げられる。このとき、反応溶液のpHはアルカリ性であることが好ましい。このような反応は、常圧下で行うほか、オートクレーブなどを利用して高圧下で行うこともできる。
 反応条件は、目的とする複合金属水酸化物の構造や粒子径などに応じて選択されるが、一般的には、25~200℃、好ましくは60~95℃で反応させる。圧力は常圧であってもよく、またオートクレーブなどを利用して加圧または減圧、例えば0.01~2.0MPaとすることもできる。
 (水質浄化材料の使用方法)
本実施形態における水質浄化材料の使用方法、すなわち、前記水質浄化材料を利用した水質浄化方法について説明する。
 本実施形態における水質浄化方法は極めて簡易であって、上述のようにして得た水質浄化材料を排水に接触させることによって実施する。これによって、上述した原理、すなわち、水質浄化材料の層間の陰イオンがリン酸イオンと交換し、さらには、複合金属水酸化物の表面に形成された水酸化カルシウム及び水酸化鉄が前記排水に接触することによって形成されてなる、水酸基とカルシウムイオン及び鉄イオンが、前記排水中のリン酸イオンと何らかの化学的な相互作用を生ぜしめ、この結果として、複合金属水酸化物の表面にも、水酸基、カルシウムイオン等に起因して、前記排水中のリン酸イオンが吸着し、回収できるものである。
 なお、上記複合金属水酸化物が、上述した一般式で表されるような組成成分を有し、ハイドロタルサイト構造を呈する場合は、前記一般式中の陰イオンである硫酸イオン(SO 2-)及び硝酸イオン(NO 3-)が、排水中に含まれるリン酸イオン(陰イオン)と交換することによって、排水中のリン酸イオン、すなわちリンの吸着回収を行なうものである。
 上記水質浄化材料を排水と接触させる具体的な方法としては、例えば、前記水質浄化材料の粉末、またはバインダーを用いた造粒粉を排水中に投入し、必要に応じて撹拌などをして陰イオンを吸着させたあと、沈降させる方法が挙げられる。この方法は、比較的大量の排水を処理する場合に有効な方法である。この方法によると、水質浄化設備が比較的大型になることが懸念点であるが、大量の排水を一度に処理できるという利点がある。
 また、上記水質浄化材料、具体的には、上記複合金属水酸化物の生成物自体を膜に担持させ、この膜を排水中に浸漬させることによっても、リン酸イオン、すなわちリンの回収を行うことができるようになる。さらには、上記生成物あるいは造粒粉等をカラムに充填し、このカラム中に排水を導入することで接触させ、リン酸イオン、すなわちリンの回収を行うこともできる。これらの方法は、処理装置が比較的小規模となるが、排水処理量も限定されるので、少量の排水を処理するのに好適である。
 なお、本実施形態における水質浄化材料は、任意のpHの排水に対して適用することができる。しかしながら、強酸酸性下においては水質浄化材料の溶解が生じる可能性がある。したがって、本発明による水質浄化方法を適用するのに好ましいpH範囲はpH2.0~14.0であり、更に好ましくはpH3.0~13.0である。
 (実施例1)
硝酸カルシウムと硝酸鉄(III)とがCa/Feモル比=5.25の割合となるように純水に混合し、NaOH溶液で溶液がアルカリ性になるように調整しながら溶解させて200mLの溶液を得た。次に、溶液を80℃~100℃に保ちながら数時間保持して沈殿物を生成させた。最後に、生成した沈殿物を濾別して洗浄し、90℃~100℃で数時間乾燥して供試体1とした。供試体1は、カルシウムと鉄との複合金属水酸化物であり、一般式[Ca0.84Fe0.16(OH)](NO 0.16で表すことができることをICP発光分光法およびイオンクロマトグラフ法により確認した。また、この複合金属水酸化物が層状構造を有していることをX線回折法により確認した。
 一方、リン酸イオン濃度、硫酸イオン濃度、塩素イオン濃度が夫々100mg/Lとなるよう調整された混合水溶液を排水模擬液として準備した。この排水模擬液50mLに50mgの供試体1を投入し、2時間混合撹絆して水質浄化処理を行った。処理後、供試体と上澄み液を濾別し、上澄み液中の各イオン濃度を定量分析し、各イオンの残存率およびリン吸着量を算出した。また、濾別の際に要した時間を測定し、沈降性・脱水性の評価を行った。
 さらに、このリン吸着後の供試体のく溶性を評価した。く溶性とはリン酸質肥料に求められる特性であり、液温30℃の2wt%クエン酸溶液に浸漬させた際に溶出するリンの割合を指す。リン酸質肥料は、く溶性が高いことが求められるため、クエン酸によって溶出されるリンの割合が少しでも高いほうが好ましい。く溶性の評価は、水質浄化処理試験によってリンを吸着した供試体をクエン酸溶液に浸漬し、溶出したリンの割合を算出した。これらについて得られた結果は表1に示す通りであった。
 (実施例2)
原料として、硝酸カルシウムと硝酸鉄(III)とがCa/Feモル比=4.9となるように調整した他は実施例1と同様の方法により供試体2を得た。供試体2は、一般式[Ca0.83Fe0.17(OH)](NO 0.17で表すことができる複合金属水酸化物であること、および層状構造を有していることを実施例1と同様の方法により確認した。この供試体2を用いて実施例1と同様の方法で水質浄化処理を行った。得られた結果は表1に示す通りであった。
 (実施例3)
原料として、硝酸カルシウムおよび硫酸カルシウムと硝酸鉄(III)がおよび硫酸カルシウム(III)をCa/Feモル比=4.6となるように調整した他は実施例1と同様の方法により供試体3を得た。供試体3は、一般式[Ca0.82Fe0.18(OH)](SO42- 0.2NO 0.60.18で表すことができる複合金属水酸化物であること、および層状構造を有していることを実施例1と同様の方法により確認した。この供試体3を用いて実施例1と同様の方法で水質浄化処理を行った。得られた結果は表1に示す通りであった。
 (実施例4)
原料として、硝酸カルシウムと硝酸鉄(III)とがCa/Feモル比=4.0となるように調整した他は実施例1と同様の方法により供試体4を得た。供試体4は、一般式[Ca0.80Fe0.20(OH)](NO 0.20で表すことができる複合金属水酸化物であること、および層状構造を有していることを実施例1と同様の方法により確認した。この供試体4を用いて実施例1と同様の方法で水質浄化処理を行った。得られた結果は表1に示す通りであった。
 (実施例5)
原料として、硝酸カルシウムと硝酸鉄(III)とがCa/Feモル比=3.0となるように調整した他は実施例1と同様の方法により供試体5を得た。供試体5は、一般式[Ca0.75Fe0.25(OH)](NO 0.25で表すことができる複合金属水酸化物であること、および層状構造を有していることを実施例1と同様の方法により確認した。この供試体5を用いて実施例1と同様の方法で水質浄化処理を行った。得られた結果は表1に示す通りであった。
 (実施例6)
原料として、硝酸カルシウムおよび硫酸カルシウムと硝酸鉄(III)がおよび硫酸カルシウム(III)がCa/Feモル比=2.9となるように調整した他は実施例1と同様の方法により供試体6を得た。供試体6は、一般式[Ca0.74Fe0.26(OH)](SO42- 0.25NO 0.50.26で表すことができる複合金属水酸化物であること、および層状構造を有していることを実施例1と同様の方法により確認した。この供試体6を用いて実施例1と同様の方法で水質浄化処理を行った。得られた結果は表1に示す通りであった。
 (実施例7)
原料として、硝酸カルシウムと硝酸鉄(III)がCa/Feモル比=2.6となるように調整した他は実施例1と同様の方法により供試体7を得た。供試体7は、一般式[Ca0.72Fe0.28(OH)](NO 0.28で表すことができる複合金属水酸化物であること、および層状構造を有していることを実施例1と同様の方法により確認した。この供試体7を用いて実施例1と同様の方法で水質浄化処理を行った。得られた結果は表1に示す通りであった。
 (比較例1)
塩化マグネシウムと塩化アルミニウムをMg/Al=3.0となるように純水に混合し、NaOH溶液で溶液がアルカリ性になるように調整しながら溶解させて200mLの溶液を得た。次に、溶液を80℃~100℃に保ちながら数時間保持して沈殿物を生成させた。最後に、生成した沈殿物を濾別して洗浄し、90℃~100℃で数時間乾燥して供試体8とした。この供試体8はマグネシウムとアルミニウムとを含むハイドロタルサイトからなるものである。この供試体8を用いて実施例1と同様の方法で水質浄化処理を行った。得られた結果は表1に示す通りであった。
 (比較例2)
原料として、塩化マグネシウムと塩化アルミニウムとがMg/Al=2.0となるように調整した他は実施例1と同様の方法により供試体9を得た。供試体9は、マグネシウムとアルミニウムとを含むハイドロタルサイトからなるものである。この供試体9を用いて実施例1と同様の方法で水質浄化処理を行った。得られた結果は表1に示す通りであった。
 (比較例3)
原料として、硝酸カルシウムと硝酸鉄(III)とがCa/Feモル比=6.0となるように調整した他は実施例1と同様の方法により供試体10を得た。供試体10は、一般式[Ca0.86Fe0.14(OH)]で表すことができる複合水金属酸化物であること、およびわずかに層状構造を有していることを実施例1と同様の方法により確認した。しかし、X線回折による分析では、水酸化カルシウム由来のピークが層状構造に由来するピークの1/2を超えていた。この供試体10を用いて実施例1と同様の方法で水質浄化処理を行った。得られた結果は表1に示す通りであった。
 (比較例4)
原料として、硝酸カルシウムと硝酸鉄(III)とがCa/Feモル比=2.3となるように調整した他は実施例1と同様の方法により供試体11を得た。供試体11は、一般式[Ca0.69Fe0.31(OH)]で表すことができる複合水金属酸化物であること、およびわずかに層状構造を有していることを実施例1と同様の方法により確認した。しかし、X線回折による分析では、水酸化カルシウムおよび水酸化鉄由来それぞれのピークが層状構造に由来するピークの1/2を超えていた。この供試体11を用いて実施例1と同様の方法で水質浄化処理を行った。得られた結果は表1に示す通りであった。
Figure JPOXMLDOC01-appb-T000001
 表1には、X線回折パターンから算出した水酸化カルシウムおよび水酸化鉄由来それぞれのピーク強度と層状構造由来のピーク強度の比率R [R=(水酸化カルシウム由来のメインピーク強度+水酸化鉄由来のメインピーク強度)/(層状構造由来のメインピーク強度)×100(%)]、試験後の排水模擬液中のイオン種の濃度、および夫々の供試体におけるリン吸着量が示されている。更に、試験後の固液分離に要したろ過時間と、溶性評価試験の結果が合わせて示されている。
 本発明に従った実施例1~7では、何れにおいても、リン吸着量が80[mg-P/g-供試体]であり、且つ硫酸イオン、塩素イオンの吸着量は低い結果となった。すなわち、これらはリンを極めて効率よく吸着している。また、ろ過に要した時間も短く、実用上の取り扱いにおいてもなんら問題が無いことがわかった。さらに、吸着したリンはその殆どがく溶性形態であり、吸着後にそのまま肥料としても充分な肥効性が期待できることが分かった。
 一方、比較例1~2では、リン吸着量が充分でなく、硫酸イオンに対する選択性が高いなど、吸着剤としての性能が充分でなく、また、く溶性も充分ではなかった。比較例3~4においても、リン酸イオン濃度が低下しているものの、水酸化鉄及び水酸化カルシウムに起因したフロックの形成によってろ過に多大な時間を要し、実用上の困難を伴うことがわかった。また、く溶性も低い結果となった。
 これらの結果から、本発明に基づく水質浄化材料は高いリン吸着性能と脱水特性(ろ過特性)を有しており、さらに高いく溶性という特性を兼ね備えている点で従来材料とは明らかに異なっており、リン吸着後に肥料転用するという観点からは極めて優れた吸着剤であると言える。
 以上、本発明を上記具体例に基づいて詳細に説明したが、本発明は上記具体例に限定されるものではなく、本発明の範疇を逸脱しない限りにおいて、あらゆる変形や変更が可能である。

Claims (7)

  1.  鉄イオンおよびカルシウムイオン、並びに窒素イオン及び硫黄イオンの少なくとも一方を含んでなり、層状構造を呈する複合金属水酸化物と、
     水酸化カルシウム及び水酸化鉄の少なくとも一方とを具え、
     X線結晶構造解析によって測定される前記水酸化カルシウム及び水酸化鉄の少なくとも一方に起因するメインピーク強度が、前記複合金属水酸化物の前記層状構造に起因するメインピーク強度の1/2以下であることを特徴とする、水質浄化材料。
  2.  前記複合金属水酸化物は、一般式:[Ca2+ 1-xFe3+ (OH)](SO 2- NO 1-2yx(0.16≦x≦0.28、0≦y<0.5、1.6<m<2.3)で表されることを特徴とする、請求項1に記載の水質浄化材料。
  3.  前記複合金属水酸化物は、ハイドロタルサイト構造を呈することを特徴とする、請求項1又は2に記載の水質浄化材料。
  4.  前記水酸化カルシウム及び水酸化鉄の少なくとも一方は、少なくとも前記複合金属水酸化物の表面に形成されていることを特徴とする、請求項1~3のいずれか一に記載の水質浄化材料。
  5.  請求項1~4のいずれか一に記載の水質浄化材料を排水に接触させ、前記排水中のリン含有物質を吸着することを特徴とする、水質浄化方法。
  6.  請求項1~4のいずれか一に記載の水質浄化材料と、
     前記水質浄化材料に吸着したリン含有化合物と、
    を具えることを特徴とする、リン酸質肥料前駆体。
  7.  請求項1~4のいずれか一に記載の水質浄化材料を排水に接触させ、前記排水中のリン含有物質を前記水質浄化材料に吸着させることによって、前記水質浄化材料と、前記水質浄化材料に吸着したリン含有化合物とを具えるリン酸質肥料前駆体を製造することを特徴とする、リン酸質肥料前駆体の製造方法。
PCT/JP2010/003550 2009-05-29 2010-05-27 水質浄化材料、水質浄化方法、リン酸肥料前駆体及びリン酸肥料前駆体の製造方法 WO2010137321A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080007808.2A CN102317213B (zh) 2009-05-29 2010-05-27 水质净化材料、水质净化方法、磷酸肥料前体及磷酸肥料前体的制造方法
KR1020117018659A KR101317796B1 (ko) 2009-05-29 2010-05-27 수질 정화 재료, 수질 정화 방법, 인산 비료 원료 조성물 및 인산 비료 원료 조성물의 제조 방법
US13/209,768 US20120024027A1 (en) 2009-05-29 2011-08-15 Water purification material, water purification method, phosphate fertilizer precursor, and method for manufacturing a phosphate fertilizer precursor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-130044 2009-05-29
JP2009130044A JP5336932B2 (ja) 2009-05-29 2009-05-29 水質浄化材料、水質浄化方法、リン酸肥料前駆体及びリン酸肥料前駆体の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/209,768 Continuation US20120024027A1 (en) 2009-05-29 2011-08-15 Water purification material, water purification method, phosphate fertilizer precursor, and method for manufacturing a phosphate fertilizer precursor

Publications (1)

Publication Number Publication Date
WO2010137321A1 true WO2010137321A1 (ja) 2010-12-02

Family

ID=43222447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003550 WO2010137321A1 (ja) 2009-05-29 2010-05-27 水質浄化材料、水質浄化方法、リン酸肥料前駆体及びリン酸肥料前駆体の製造方法

Country Status (5)

Country Link
US (1) US20120024027A1 (ja)
JP (1) JP5336932B2 (ja)
KR (1) KR101317796B1 (ja)
CN (1) CN102317213B (ja)
WO (1) WO2010137321A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015080761A (ja) * 2013-10-23 2015-04-27 独立行政法人国立高等専門学校機構 リンの除去回収材およびその吸着除去方法。
DE102015007307A1 (de) * 2015-06-11 2016-12-15 Maria Rogmans Verfahren zur Herstellung eines Dünge- oder Mikronährstoffes, sowie Dünge- oder Mikronährstoff, sowie eine damit versetzte Kultur- oder Pflanzerde
CN106380044B (zh) * 2016-11-15 2019-11-08 江南大学 一种生态安全的污水处理厂脱氮除磷的方法
CN109354142A (zh) * 2018-11-01 2019-02-19 江苏天染坊纺织科技有限公司 一种用于高效污水处理的无机复合混凝剂及其制备方法
CN114560602A (zh) * 2022-03-30 2022-05-31 安徽中科艾瑞智能环境技术有限公司 基于人工湿地的污水处理方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011338A (ja) * 1999-06-25 2001-01-16 Toda Kogyo Corp Ca−Fe系層状化合物粒子粉末及びその製造法
JP2005079029A (ja) * 2003-09-02 2005-03-24 Toda Kogyo Corp 正極活物質及びその製造法、該正極活物質を用いた二次電池
JP2005305343A (ja) * 2004-04-22 2005-11-04 Tomita Pharmaceutical Co Ltd リンの回収方法
JP2007160269A (ja) * 2005-12-16 2007-06-28 Tomita Pharmaceutical Co Ltd 成形体およびこれを用いた浄化方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454244A (en) * 1983-03-28 1984-06-12 Ashland Oil, Inc. New compositions
US4773936A (en) * 1985-06-24 1988-09-27 The Dow Chemical Company Insoluble pigments and preparation thereof
US5776424A (en) * 1994-04-29 1998-07-07 Aluminum Company Of America Two powder synthesis of hydrotalcite and hydrotalcite-like compounds with monovalen inorganic anions
US5728364A (en) * 1994-04-29 1998-03-17 Aluminum Company Of America Two powder synthesis of hydrotalcite and hydrotalcite like compounds
US5730951A (en) * 1994-04-29 1998-03-24 Aluminum Company Of America Two powder synthesis of hydrotalcite and hydrotalcite-like compounds with polyvalent inorganic anions
US5728366A (en) * 1994-04-29 1998-03-17 Aluminum Company Of America Two powder synthesis of hydrotalcite and hydrotalcite-like compounds with monovalent organic anions
US5728365A (en) * 1994-04-29 1998-03-17 Aluminum Company Of America Two powder synthesis of hydrotalcite and hydrotalcite-like compounds with divalent inorganic anions
US5578286A (en) * 1994-04-29 1996-11-26 Aluminum Company Of America Two powder synthesis of hydrotalcite-like compounds with divalent or polyvalent organic anions
US5728363A (en) * 1994-04-29 1998-03-17 Aluminum Company Of America Two powder synthesis of hydrotalcite and hydrotalcite-like compounds
GB9720061D0 (en) * 1997-09-19 1997-11-19 Crosfield Joseph & Sons Metal compounds as phosphate binders
DE19743606A1 (de) * 1997-10-02 1999-04-15 Hydro Agri Deutschland Gmbh Verwendung von Mineralien, die Anionen, insbesondere NO3, reversibel binden, als Dünge- und Bodenverbesserungsmittel sowie zur Reinigung und Aufbereitung von Wässern
EP1129994A4 (en) * 1999-07-08 2005-02-09 Mizusawa Industrial Chem ZINC-MODIFIED, MIXED-SUBSTANTIAL MIXED SALT, PROCESS FOR THE PREPARATION AND USE THEREOF
WO2001004053A1 (fr) * 1999-07-08 2001-01-18 Mizusawa Industrial Chemicals, Ltd. Sel polybasique composite, procede de production de ce sel, et utilisation
CA2381277C (en) * 1999-08-11 2009-10-20 Akzo Nobel Nv Process for producing al-containing non-mg-anionic clay
BR0207022B1 (pt) * 2001-02-09 2012-06-26 processos para a preparação de argila aniÈnica dopada e de uma solução sólida de mg/al e/ou um espinel.
JP4348426B2 (ja) * 2002-08-29 2009-10-21 独立行政法人産業技術総合研究所 高選択性脱リン剤及びその製造方法
US7625492B2 (en) * 2003-01-28 2009-12-01 The University Of Wyoming Research Corporation Charge-based water filtration systems
CA2562014C (en) * 2003-07-07 2014-02-11 Instituto Mexicano Del Petroleo Method of obtaining multimetallic oxides derived from hydrotalcite-type compounds
JP4828113B2 (ja) * 2004-11-05 2011-11-30 株式会社海水化学研究所 硝酸態窒素低減剤
US7550099B2 (en) * 2005-03-29 2009-06-23 University Of North Texas Metal hydroxide derivatives containing chemically bound organophosphorus or polyphosphate species as flame retardants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011338A (ja) * 1999-06-25 2001-01-16 Toda Kogyo Corp Ca−Fe系層状化合物粒子粉末及びその製造法
JP2005079029A (ja) * 2003-09-02 2005-03-24 Toda Kogyo Corp 正極活物質及びその製造法、該正極活物質を用いた二次電池
JP2005305343A (ja) * 2004-04-22 2005-11-04 Tomita Pharmaceutical Co Ltd リンの回収方法
JP2007160269A (ja) * 2005-12-16 2007-06-28 Tomita Pharmaceutical Co Ltd 成形体およびこれを用いた浄化方法

Also Published As

Publication number Publication date
CN102317213B (zh) 2014-05-07
JP5336932B2 (ja) 2013-11-06
CN102317213A (zh) 2012-01-11
KR101317796B1 (ko) 2013-10-15
JP2010274206A (ja) 2010-12-09
US20120024027A1 (en) 2012-02-02
KR20110111302A (ko) 2011-10-10

Similar Documents

Publication Publication Date Title
Kong et al. Needle-like Mg-La bimetal oxide nanocomposites derived from periclase and lanthanum for cost-effective phosphate and fluoride removal: characterization, performance and mechanism
Cheng et al. Phosphate adsorption from sewage sludge filtrate using zinc–aluminum layered double hydroxides
Gupta et al. Microscopic, spectroscopic, and experimental approach towards understanding the phosphate adsorption onto Zn–Fe layered double hydroxide
Kong et al. Synchronous phosphate and fluoride removal from water by 3D rice-like lanthanum-doped La@ MgAl nanocomposites
Shahid et al. Magnetite synthesis using iron oxide waste and its application for phosphate adsorption with column and batch reactors
Kumar et al. Defluoridation from aqueous solutions by nano-alumina: characterization and sorption studies
Leiviskä et al. Removal of vanadium from industrial wastewater using iron sorbents in batch and continuous flow pilot systems
Yanming et al. Removal of lead from aqueous solution on glutamate intercalated layered double hydroxide
Hsu et al. The removal and recovery of Cr (VI) by Li/Al layered double hydroxide (LDH)
CA2743304A1 (en) Target material removal using rare earth metals
US10759680B2 (en) Preferential removal of hexavalent chromium from contaminated water
US11577215B2 (en) Method for producing absorbent
JP5336932B2 (ja) 水質浄化材料、水質浄化方法、リン酸肥料前駆体及びリン酸肥料前駆体の製造方法
Deng et al. Adsorption of hexavalent chromium onto kaolin clay based adsorbent
KR20100015911A (ko) 수처리제 및 수처리 방법
KR101185877B1 (ko) 층상 이중 수산화물을 이용한 비소 함유 원수의 수처리 방법
CN109692648B (zh) 高效吸附水中硫酸根离子的吸附剂及其制备方法
JP5603394B2 (ja) セシウムを含む廃液の処理方法
JP2014020916A (ja) 放射性Cs汚染水の処理方法
Hongo et al. Synthesis of Ca-Al layered double hydroxide from concrete sludge and evaluation of its chromate removal ability
JP4576560B2 (ja) リン吸着剤
Belaye et al. Preparation and adsorption behavior of Ce (III)-MOF for phosphate and fluoride ion removal from aqueous solutions
CN109692650B (zh) 高效脱除水中亚砷酸根离子的吸附剂及其制备方法
WO2012056825A1 (ja) 有害物質含有水の浄化処理材とその製造方法
JP5484702B2 (ja) 水質浄化材料およびそれを用いた水質浄化方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007808.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780281

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20117018659

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780281

Country of ref document: EP

Kind code of ref document: A1