WO2010134538A1 - アンテナ装置 - Google Patents

アンテナ装置 Download PDF

Info

Publication number
WO2010134538A1
WO2010134538A1 PCT/JP2010/058423 JP2010058423W WO2010134538A1 WO 2010134538 A1 WO2010134538 A1 WO 2010134538A1 JP 2010058423 W JP2010058423 W JP 2010058423W WO 2010134538 A1 WO2010134538 A1 WO 2010134538A1
Authority
WO
WIPO (PCT)
Prior art keywords
power cord
antenna
antenna device
antenna element
frequency
Prior art date
Application number
PCT/JP2010/058423
Other languages
English (en)
French (fr)
Inventor
功高 吉野
幸市 向
千智 小森
覚 坪井
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009122568A external-priority patent/JP5526603B2/ja
Priority claimed from JP2009122569A external-priority patent/JP5521391B2/ja
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201080020974.6A priority Critical patent/CN102422489B/zh
Priority to BRPI1010905A priority patent/BRPI1010905A2/pt
Priority to US13/320,065 priority patent/US8780011B2/en
Priority to EP10777771.6A priority patent/EP2434579B1/en
Publication of WO2010134538A1 publication Critical patent/WO2010134538A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • H01Q1/46Electric supply lines or communication lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3291Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted in or on other locations inside the vehicle or vehicle body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to an antenna device that receives radio waves using a power cord for supplying power.
  • a mobile phone or the like that can receive digital television broadcasts or radios receives broadcast waves with a built-in antenna or an external antenna.
  • the built-in antenna has an advantage that the design of the mobile phone is not impaired.
  • the built-in antenna has disadvantages such as inferior sensitivity to an external antenna and being easily affected by internal noise.
  • an external antenna includes, for example, a rod antenna.
  • the rod antenna is characterized by excellent sensitivity and the like compared to the built-in antenna.
  • the rod antenna has a drawback in that the design of an electronic device such as a mobile phone is damaged, and the antenna protrudes.
  • Patent Documents 1 to 5 propose using a power cord as an antenna.
  • An antenna device using this power cord can receive FM signals transmitted from broadcasting stations and radio signals in the VHF band to UHF band used for receiving digital television broadcasts.
  • the proposed antenna device using the power cord may not be able to receive broadcast waves with a sufficient gain in a sufficiently wide frequency band.
  • the sensitivity changes when the wires are bundled. Therefore, when using the antenna device, in order to obtain good reception sensitivity, the antenna device is used in a wide range. Etc. may be complicated.
  • this antenna device when this antenna device is mounted on a car, for example, in a car, the user is forced to use a glass antenna on which a windshield is attached in order to obtain good reception sensitivity.
  • the glass antenna is difficult for a normal user to attach easily, and it is convenient.
  • the present invention can receive a broadcast wave with a sufficient gain in a sufficiently wide frequency band even if the wires are bundled and used by simply connecting them without requiring troublesome work, and obtaining a good reception sensitivity.
  • An object of the present invention is to provide an antenna device that can perform the above-described operation.
  • a power cord capable of transmitting power, a connection portion, a high-frequency signal cable for extracting a high-frequency signal from the connection portion, and a high-frequency cutoff portion disposed at two locations in the length direction of the power cord,
  • a part between two high-frequency cutoff portions is connected to the connecting portion to form an antenna, and the high-frequency signal cable is connected to the power cord via the connecting portion.
  • an antenna device applicable to an electronic device such as an in-vehicle PND will be described as an example.
  • FIG. 1 is a diagram illustrating an overall configuration of an antenna device according to an embodiment of the present invention.
  • the antenna device 10 is formed as a power cable antenna that can superimpose a high-frequency signal, input a power cable between the high-frequency cut-off portions as an antenna, and divide it into an electric wire and a high-frequency signal line and input it to an electronic device.
  • the antenna device 10 is made up of one high-frequency cutoff unit connected to another substrate that forms an antenna via a filter, and an antenna configured from the antenna on this substrate to the other high-frequency cutoff unit different from the above. It is formed as a power cable antenna for dual frequency use.
  • the antenna device 10 is formed as a power cable antenna capable of blocking a high-frequency current by attaching a high-frequency blocking unit, for example, a ferrite bead, an inductor or a ferrite core, to the electric wire and the high-frequency power circuit unit.
  • a high-frequency blocking unit for example, a ferrite bead, an inductor or a ferrite core
  • the antenna device 10 of this embodiment includes a power cord 20 as a power transmission cable formed by coaxial lines or parallel two lines, a high-frequency signal cable (high-frequency signal line) 30, a ferrite core 41 as a high-frequency cutoff unit 40, and a connection. It has the mold part 50 as a part.
  • a car plug 60 is connected to one end side of the power cord 20 for connection to a power supply unit (power supply unit) in the vehicle, and connected to the power supply unit of the electronic device on the other end side.
  • a power connector 70 is connected.
  • a high frequency compatible plug 80 that can be connected to an antenna connection portion of an electronic device is connected to one end of the high frequency signal cable 30.
  • FIG. 1 only one of the ferrites as the two high-frequency cutoff parts is shown.
  • the ferrite as the other high frequency cutoff part is arranged in the mold part 50.
  • the power cord 20 is branched into a first power cord 21 to which the car plug 60 is connected and a second power cord 22 to which a power connector 70 is connected.
  • the mold part 50 has a configuration capable of fixing the shape. As shown in FIG. 1, the first power cord 21 and the second power cord 22 are basically arranged in the mold portion 50 so as to be substantially orthogonal in an extended state. The second power cord 22 and the high-frequency signal cable 30 are arranged in the mold portion 50 so as to be parallel to each other.
  • the VHF low (LOW) band is received at a point of 1 m to 1.3 m from the end of the mold part 50. Therefore, a ferrite core 41 for separation is inserted at a high frequency.
  • FIG. 2 is a diagram illustrating a specific configuration example of the antenna device according to the first embodiment of the present invention.
  • the first embodiment a specific configuration in the mold part 50 is shown.
  • a coaxial line is applied as the power cord 20.
  • a structural example of the power cord 20 will be described.
  • FIG. 3 is a diagram illustrating a structural example of a coaxial cable with a shield portion.
  • the coaxial cable 200 includes a plurality of core wires 201 and an internal insulator 202 for insulating the core wires 201.
  • the coaxial cable 200 includes a shield part 203 disposed on the outer periphery of the inner insulator 202 and an outer insulator (outer skin, jacket) 204 such as an elastomer covering the entire outer periphery.
  • the core wire 201 is insulated by covering the outer periphery with a flame retardant insulator 205.
  • the shield part 203 is formed, for example with an annealed copper wire.
  • the shield part 203 is formed of a braided shield obtained by braiding a plurality of conductive wires, for example, bare annealed copper wire.
  • the braided shield is known as an electrostatic shield method that has less flexibility when bent and has adequate flexibility, bending strength, and mechanical strength when compared to a horizontal wound shield. is there.
  • the core wire 201 and the shield part 203 have high frequency im
  • the high-frequency signal cable 30 is formed of a coaxial cable (coaxial wire) and basically has the same configuration as the above-described coaxial cable with a shield portion. That is, the high-frequency signal cable 30 includes a core wire 301 and an internal insulator 302 for insulating the core wire 301.
  • the high-frequency signal cable 30 includes a shield portion 303 disposed on the outer periphery of the inner insulator 302 and an outer insulator (outer skin, jacket) 304 such as an elastomer covering the entire outer periphery.
  • the antenna element 110 is arranged in the mold part 50.
  • the antenna element 110 is formed as a substantially U-shaped pattern. That is, the antenna element 110 has a base pattern portion 111.
  • the antenna element 110 has a first connection pattern portion 112 formed at one end portion of the base pattern portion 111 so as to extend perpendicular to the base pattern portion 111.
  • a land pattern portion 1123 for connecting to the power cord 20 via the capacitor C 111 is formed on the distal end portion side of the extended pattern portion 1121.
  • the capacitance of the capacitor C111 is set to 1000 pF, for example.
  • the land pattern portion 1123 is connected to the shield portion 203 where the external insulator 204 of the power cord 20 is removed.
  • a second connection pattern portion 113 formed so as to extend perpendicularly to the base pattern portion 111 is formed at the other end portion of the base pattern portion 111.
  • the core wire 301 of the high-frequency signal cable 30 is connected to the second connection pattern portion 113.
  • the power cord 20 is branched into the first power cord 21 and the second power cord 22.
  • the external insulator 204 is removed from the branch portion 23 between the first power cord 21 and the second power cord.
  • FIG. 23 In the vicinity of the branch portion 23 from which the external insulator 204 of the second power cord 22 is removed, that is, on the end opposite to the connection end of the power connector 70 of the second power cord 22 is shown in FIG.
  • Another ferrite core 42 is disposed as a high-frequency cutoff unit 40 that is not provided.
  • the power cord 20 uses a coaxial line.
  • a ferrite core 41 is disposed (inserted) in the branched first power cord 21, and a ferrite core 42 is disposed (inserted) in the second power cord 22.
  • the arrangement position of the ferrite core 41 is adjusted to a length of about 1 m to 1.3 m in order to bring resonance into the FM band which is the LOW band of the VHF.
  • the power cord 20 is between the ferrite cores 41 and 42 as the two high-frequency cut-off portions 40, and the external insulator 204 is removed at the branch portion 23 just before the ferrite core 42 disposed in the second power cord 22. ing. And the shield part 203 of this branch part 23 is connected to the land pattern part 1123 by the side of the antenna element 110, and the antenna is formed.
  • the antenna device 10 of the present embodiment is configured to be capable of receiving at least FM in the FM-VICS band.
  • a capacitor C111 is connected between the power cord 20 and the high-frequency signal cable.
  • the antenna feeding portion thus formed is a portion where the core wire 301 portion of the high-frequency signal cable 30 that is a coaxial line is connected to the second connection pattern portion 113 of the antenna element 110.
  • the high frequency signal cable 30 is connected to a set (electronic device) via a high frequency compatible plug 80.
  • the antenna element 110 and each of the connection parts are housed in the mold part 50.
  • FIG. 4 is a diagram illustrating a peak gain characteristic with respect to the frequency of the receiving apparatus when the antenna apparatus according to the first embodiment is used.
  • FIG. 4 shows the characteristics in a dark room.
  • FIG. 4 shows the characteristics in the FM and VHF bands.
  • the curve indicated by H indicates the characteristics of horizontal polarization
  • the curve indicated by V indicates the characteristics of vertical polarization.
  • a chart showing the measurement results in detail is shown in accordance with the characteristic diagram.
  • FIG. 5 is a diagram illustrating a peak gain characteristic with respect to the frequency of the receiving device when the second power cord and the high-frequency signal cable are bundled and used in the antenna device according to the first embodiment.
  • FIG. 6 is a diagram showing a peak gain characteristic with respect to the frequency of the receiving device when the first power cord, the second power cord, and the high-frequency signal cable are bundled and used in the antenna device according to the first embodiment.
  • 5 and 6 show characteristics in a dark room.
  • 5 and 6 show characteristics in the FM and VHF bands.
  • the curve indicated by H indicates the characteristics of horizontal polarization (Horizontal Polarization)
  • the curve indicated by V indicates the characteristics of vertical polarization (Vertical Polarization).
  • charts showing the measurement results in detail are shown in accordance with the characteristic diagrams.
  • the FM can be received without any problem in the darkroom characteristics, which is the FM-VICS band.
  • FIG. 7 is a diagram illustrating a specific configuration example of the antenna device according to the second embodiment of the present invention.
  • the antenna device 10A according to the second embodiment is different from the antenna device 10 according to the first embodiment in that the high-frequency cutoff unit is replaced with a chip component for high-frequency separation instead of the ferrite core. It is in.
  • the first power cord 21 is divided into two divided power cords 211 and 212, and one end of the divided power cord 211 and one end of the divided power cord 212 are connected via a core wire and a shield part. They are connected by a chip substrate 43.
  • This chip substrate 43 has the same function as the ferrite core 41 of the first embodiment.
  • the core wire and the shield portion at the other end of the divided power cord 211 are connected to the first connection pattern portion 112A of the antenna element 110A.
  • the core wire and the shield portion at the end of the second power cord 22 are connected to the second land pattern portion 1123A of the antenna element 110A.
  • the second land pattern portion 1123A of the antenna element 110A is formed as a chip substrate.
  • the second land pattern portion 1123A has the same function as the function of the ferrite core 42 of the first embodiment.
  • connection land pattern portions 431, 432, 433, and 434 are formed on the chip substrate 43.
  • Land pattern portions 431 and 432 are connected via a filter F441.
  • Land pattern portions 433 and 434 are connected via a filter F442.
  • the land pattern portion 431 is connected to the core wire 201 at one end of the divided power cord 211, and the land pattern portion 432 is connected to the core wire 201 at the end of the divided power cord 212.
  • the shield portion 203 at one end of the divided power cord 211 is connected to the land pattern portion 433, and the shield portion 203 at the end portion of the divided power cord 212 is connected to the land pattern portion 434.
  • the extended pattern portion 1121 ⁇ / b> A, the first land pattern portion 1122 ⁇ / b> A, and the second land pattern portion 1123 ⁇ / b> A of the first connection pattern portion 112 ⁇ / b> A are extended to the substrate edge facing the base pattern portion 111.
  • Four land pattern portions 1124, 1125, 1126, and 1127 are formed as the second land pattern portion 1123A.
  • the end portion of the extended pattern portion 1121A and the first land pattern portion 1122A are connected via the filter F112.
  • the land pattern portion 1124 and the land pattern portion 1125 are connected via a filter F113.
  • the land pattern portion 1126 and the land pattern portion 1127 are connected via a filter F114. Further, the first land pattern portion 1122A and the land pattern portion 1126 are connected via the capacitor C111.
  • the core wire 201 at the other end of the divided power cord 211 is connected to the land pattern portion 1124, and the core wire 201 at the end of the second power cord 22 is connected to the land pattern portion 1125.
  • the shield portion 203 at the other end of the divided power cord 211 is connected to the land pattern portion 1126, and the shield portion 203 at the end of the second power cord 22 is connected to the land pattern portion 1127.
  • FIG. 8 is a diagram illustrating a specific configuration example of the antenna device according to the third embodiment of the present invention.
  • the antenna device 10B according to the third embodiment is different from the antenna device 10 according to the first embodiment in that a power cord 20B having two parallel wires instead of being coaxial is used.
  • the power cord 20 ⁇ / b> B has two parallel lines 213 and 214.
  • two land pattern portions 1123 on the foremost side of the first connection pattern portion 112B are formed.
  • land pattern portions 11231 and 11232 are formed.
  • the parallel line 213 of the first power cord 21B is connected to one end of the land pattern portion 11231, and the parallel line 214 of the first power cord 21B is connected to one end of the land pattern portion 11232.
  • the parallel line 213 of the second power cord 22B is connected to the other end portion of the land pattern portion 11231, and the parallel line 214 of the second power cord 22B is connected to the other end portion of the land pattern portion 11232.
  • FIG. 9 is a diagram showing an overall configuration of the antenna device according to the fourth to seventh embodiments of the present invention.
  • the antenna device 10C In the antenna device 10C according to the present embodiment, two high-frequency cutoff portions are arranged on a part of the electric power transmission wire or a parallel electric wire.
  • the antenna device 10 ⁇ / b> C is formed as a power cable antenna that can superimpose a high-frequency signal, input a power cable between the high-frequency cutoff sections as an antenna, and divide it into an electric wire and a high-frequency signal line and input it to an electronic device.
  • the antenna device 10C is made of one high frequency cutoff unit connected to another substrate forming the antenna via a filter, and the antenna of this substrate and the other configured high frequency cutoff unit to the other high frequency cutoff unit. It is formed as a power cable antenna for dual frequency use.
  • the antenna device 10C is formed as a power cable antenna that can be connected to an electric wire and a high-frequency power circuit unit by blocking a high-frequency current by attaching a high-frequency blocking unit, for example, a ferrite bead, an inductor, or a ferrite core.
  • a high-frequency blocking unit for example, a ferrite bead, an inductor, or a ferrite core.
  • the antenna device 10C of the present embodiment includes a power cord 20 as a power transmission cable formed by coaxial lines or parallel two lines, a high-frequency signal cable (high-frequency signal line) 30, a ferrite core 41 as a high-frequency cutoff unit 40, and a relay. It has mold part 50 'containing a connection part. Further, in the antenna device 10C, one end of the power cord 20 is connected to, for example, a car plug 60 for connection to a power supply unit (power supply unit) in the vehicle, and the other end is connected to a power supply unit of an electronic device. A power connector 70 is connected. In addition, a high frequency compatible plug 80 that can be connected to an antenna connection portion of an electronic device is connected to one end of the high frequency signal cable 30.
  • FIG. 9 only one of the ferrites as the two high-frequency cutoff parts is shown.
  • the ferrite as the other high frequency cutoff part is arranged in the mold part 50 '.
  • the power cord 20 is branched into a first power cord 21 to which the car plug 60 is connected and a second power cord 22 to which the power connector 70 is connected at the molded portion 50 ′.
  • Mold part 50 ' has a structure which can fix a shape.
  • the first power cord 21 and the second power cord 22 are basically arranged in the mold part 50 ′ so as to be substantially orthogonal in an extended state.
  • the second power cord 22 and the high-frequency signal cable 30 are arranged in the mold part 50 ′ so as to be parallel to each other.
  • the mold part 50 ′ has a width of 35 mm and a length of 200 mm.
  • the VHF low (LOW) at a point of 1 m to 1.3 m from the end of the mold part 50 ′.
  • a ferrite core 41 for separation is inserted in a high frequency manner.
  • FIG. 10 is a diagram illustrating a specific configuration example of the antenna device according to the fourth embodiment of the present invention.
  • a specific configuration in the mold part 50 ′ is shown.
  • a coaxial line is applied as the power cord 20.
  • An example of the structure of the power cord 20 is the same as that shown in FIG.
  • An antenna substrate unit 100 is disposed in the mold unit 50 ′. On the antenna substrate 100, an antenna element (first antenna element) 110C and an antenna ground (second antenna element) 120 are formed in parallel.
  • the antenna element 110C is formed as a substantially U-shaped pattern. That is, the antenna element 110 ⁇ / b> C has a base pattern portion 111.
  • the length of the base pattern portion 111 is set to 40 mm, for example.
  • the antenna element 110 ⁇ / b> C has a first connection pattern portion 112 formed at one end portion of the base pattern portion 111 so as to extend perpendicular to the base pattern portion 111.
  • the 1st connection pattern part 112 is formed in the front-end
  • a second land pattern portion 1123 for connecting to the power cord 20 through the filter F111 is formed on the first land pattern portion 1122.
  • the capacitance of the capacitor C111 is set to 1000 pF, for example.
  • the second land pattern portion 1123 is connected to the shield portion 203 where the external insulator 204 of the power cord 20 is removed.
  • the length of the extended pattern part 1121 is set to 20 mm, for example.
  • a second connection pattern portion 113 formed so as to extend orthogonally to the base pattern portion 111 is formed at the other end portion of the base pattern portion 111.
  • the land pattern part 1132 is formed in the front-end
  • the inductance of the inductor L111 is set to 40 nH, for example.
  • a core wire 301 of the high frequency signal cable 30 is connected to the land pattern portion 1132.
  • the antenna ground 120 is formed in a flat plate shape so as to be parallel to the antenna element 110C (left side in FIG. 10).
  • the antenna ground 120 is formed in a size of, for example, a width of 30 mm and a length of 150 mm.
  • the power cord 20 is branched into the first power cord 21 and the second power cord 22.
  • the external insulator 204 is removed from the branch portion 23 between the first power cord 21 and the second power cord. 9 is illustrated in the vicinity of the branch portion 23 from which the external insulator 204 of the second power cord 22 is removed, that is, at the end opposite to the connection end of the power connector 70 of the second power cord 22.
  • Another ferrite core 42 is disposed as a high-frequency cutoff unit 40 that is not provided.
  • a coaxial line is used for the power cord 20.
  • a ferrite core 41 is disposed (inserted) in the branched first power cord 21, and a ferrite core 42 is disposed (inserted) in the second power cord 22.
  • the ferrite core 41 is disposed at about 1 m in order to resonate in the FM band, which is the LOW band of the VHF, so as to resonate at a lower frequency than the antenna constituted by the antenna substrate unit 100.
  • the length is adjusted to ⁇ 1.3m.
  • the power cord 20 is between the ferrite cores 41 and 42 as the two high-frequency cut-off portions 40, and the external insulator 204 is removed at the branch portion 23 just before the ferrite core 42 disposed in the second power cord 22. ing. And the shield part 203 of this branch part 23 is connected to the 2nd land pattern part 1123 by the side of the antenna element 110C, and the 1st antenna is formed.
  • the second antenna 12 configured by the antenna substrate unit 100 is formed by the antenna element 110 ⁇ / b> C and the antenna ground 120.
  • the antenna device 10C of the present embodiment is configured to be able to receive a digital television broadcast wave broadcast in the UHF band.
  • a dipole antenna requires 30 cm, 15 cm on each side, but this increases the size of the mold part 50 ′. Therefore, in the fourth embodiment, a configuration is adopted in which the antenna ground 120 is secured, the antenna element 110C is shortened, and the input impedance is adjusted by the inductor L111 which is a matching element.
  • the inductor L111 has an inductance of 47 nH, but by increasing the antenna radiation at the antenna ground 120, high antenna performance is maintained without lowering the antenna gain.
  • the second antenna 12 and the first antenna 11 have a low impedance in the VHF band, and in the UHF band, the first antenna 11 and the second antenna 12 are separated through a filter F111 that becomes a high impedance in order to separate the first antenna 11 and the second antenna 12. It is connected. As a countermeasure against static electricity, the first antenna 11 and the second antenna 12 are connected via a capacitor C111 having a low impedance in the VHF and UHF bands.
  • the feeding part of the second antenna 12 is a part where the antenna ground 120 is connected to the shield part 303 of the high-frequency signal cable 30 having a coaxial line, and the core part 301 of the coaxial line is connected to the land pattern part 1132 of the antenna element 110C. It is.
  • the high frequency signal cable 30 is connected to a set (electronic device) via a high frequency compatible plug 80.
  • the antenna substrate part 100 and each connection part are housed in a mold part 50 '.
  • FIG. 11 are diagrams showing peak gain characteristics with respect to the frequency of the receiving apparatus when the antenna apparatus according to the fourth embodiment is used.
  • 11A and 11B show the characteristics in the dark room.
  • 11A shows the characteristics in the FM and VHF bands
  • FIG. 11B shows the characteristics in the UHF band.
  • the curve indicated by H indicates the characteristic of horizontal polarization (Horizontal Polarization)
  • the curve indicated by V indicates the characteristic of vertical polarization (Vertical Polarization).
  • FIGS. 11A and 11B charts showing the measurement results in detail are shown in accordance with the characteristic diagrams.
  • 12A and 12B are diagrams showing peak gain characteristics with respect to the frequency of the receiving apparatus when the second power cord and the high-frequency signal cable are bundled and used in the antenna apparatus according to the fourth embodiment. It is. 13A and 13B show the frequency of the receiving apparatus when the first power cord, the second power cord, and the high-frequency signal cable are bundled and used in the antenna device according to the fourth embodiment. It is a figure which shows the peak gain characteristic with respect to. 12A and 13B show the characteristics in the darkroom. 12A and 13A show the characteristics in the FM and VHF bands, and FIGS. 12B and 13B show the characteristics in the UHF band. In FIG. 12 and FIG. 13A and FIG.
  • FIG. 14 is a diagram illustrating a specific configuration example of the antenna device according to the fifth embodiment of the present invention.
  • the antenna device 10D according to the fifth embodiment is different from the antenna device 10C according to the fourth embodiment in that the high-frequency cutoff unit is replaced with a chip component for high-frequency separation instead of the ferrite core. is there.
  • the antenna device 10D divides the first power cord 21 into two divided power cords 211 and 212, and one end of the divided power cord 211 and one end of the divided power cord 212 are connected via a core wire and a shield part. They are connected by a chip substrate 43.
  • This chip substrate 43 has the same function as the ferrite core 41 of the fourth embodiment.
  • the core wire and the shield portion at the other end of the divided power cord 211 are connected to the first connection pattern portion 112D of the antenna element 110D of the antenna substrate portion 100D.
  • the core wire and the shield portion at the end of the second power cord 22 are connected to the second land pattern portion 1123D of the antenna element 110D.
  • the second land pattern portion 1123D of the antenna element 110D is formed as a chip substrate.
  • the second land pattern portion 1123D has a function similar to the function of the ferrite core 42 of the fourth embodiment.
  • connection land pattern portions 431, 432, 433, and 434 are formed on the chip substrate 43.
  • Land pattern portions 431 and 432 are connected via a filter F431.
  • Land pattern portions 433 and 434 are connected via a filter F432.
  • the land pattern portion 431 is connected to the core wire 201 at one end of the divided power cord 211, and the land pattern portion 432 is connected to the core wire 201 at the end of the divided power cord 212.
  • the shield portion 203 at one end of the divided power cord 211 is connected to the land pattern portion 433, and the shield portion 203 at the end portion of the divided power cord 212 is connected to the land pattern portion 434.
  • the extended pattern portion 1121 ⁇ / b> D, the first land pattern portion 1122 ⁇ / b> D, and the second land pattern portion 1123 ⁇ / b> D of the first connection pattern portion 112 ⁇ / b> D are extended to the substrate edge facing the base pattern portion 111.
  • Four land pattern portions 1124, 1125, 1126, and 1127 are formed as the second land pattern portion 1123D.
  • An end portion of the extended pattern portion 1121D and the first land pattern portion 1122D are connected via a filter F112.
  • the land pattern portion 1124 and the land pattern portion 1125 are connected via a filter F113.
  • the land pattern portion 1126 and the land pattern portion 1127 are connected via a filter F114.
  • the first land pattern portion 1122D and the land pattern portion 1126 are connected via the capacitor C111.
  • the core wire 201 at the other end of the divided power cord 211 is connected to the land pattern portion 1124, and the core wire 201 at the end of the second power cord 22 is connected to the land pattern portion 1125.
  • the shield portion 203 at the other end of the divided power cord 211 is connected to the land pattern portion 1126, and the shield portion 203 at the end of the second power cord 22 is connected to the land pattern portion 1127.
  • FIG. 15 is a diagram illustrating a specific configuration example of the antenna device according to the sixth embodiment of the present invention.
  • the antenna device 10E according to the sixth embodiment is different from the antenna device 10C according to the fourth embodiment in that a power cord 20E having two parallel wires instead of being coaxial is used.
  • the power cord 20E has two parallel lines 213 and 214.
  • two land pattern portions 1123 on the foremost side of the first connection pattern portion 112E are formed in order to connect the two parallel lines 213 and 214 in the antenna element 110E.
  • land pattern portions 11231 and 11232 are formed.
  • the parallel line 213 of the first power cord 21E is connected to one end portion of the land pattern portion 11231, and the parallel line 214 of the first power cord 21E is connected to one end portion of the land pattern portion 11232.
  • the parallel line 213 of the second power cord 22E is connected to the other end portion of the land pattern portion 11231, and the parallel line 214 of the second power cord 22E is connected to the other end portion of the land pattern portion 11232.
  • FIG. 16 is a diagram illustrating a specific configuration example of the antenna device according to the seventh embodiment of the present invention.
  • the antenna device 10F according to the seventh embodiment is different from the antenna device 10C according to the fourth embodiment in that the antenna substrate unit 100F is formed as a dipole antenna.
  • the first antenna element 130 and the second antenna element 140 are formed on the antenna substrate portion 100F.
  • the lengths of the first antenna element 130 and the second antenna element 140 are preferably 30 cm, each 15 cm.
  • the first antenna element 130 has a first connection pattern portion 132 formed at one end of the base pattern portion 131 so as to extend perpendicular to the base pattern portion 131.
  • the 1st connection pattern part 132 the 1st land pattern part 1322 is formed in the front-end
  • two second land pattern portions 1323 and 1324 for connecting to the power cord 20 via the capacitor C131 are formed on the first land pattern portion 1322.
  • the capacitance of the capacitor C131 is set to 1000 pF, for example.
  • the second land pattern portion 1323 is connected to the shield portion 203 where the external insulator 204 of the power cord 20 is removed.
  • the first antenna element 130 has a second connection pattern portion 133 formed at the other end portion of the base pattern portion 131 so as to extend orthogonally to the base pattern portion 131.
  • the second connection pattern portion 133 is formed with a bent pattern portion 1332 that is bent and extended toward the second antenna element 140 on the distal end side of the extended pattern portion 1331.
  • the second connection pattern portion 133 has a land pattern portion 1333 formed so as to face the bent pattern portion 1332.
  • the second antenna element 140 has a third connection pattern portion 142 formed at one end of the base pattern portion 141 so as to extend perpendicular to the base pattern portion 141.
  • the second antenna element 140 has a fourth connection pattern portion 143 formed at the other end portion of the base pattern portion 141 so as to extend perpendicular to the base pattern portion 141.
  • the fourth connection pattern portion 143 is formed with a bent pattern portion 1432 that is bent and extended toward the first antenna element 130 on the distal end side of the extended pattern portion 1431.
  • the fourth connection pattern portion 143 has a land pattern portion 1433 that faces the bent pattern portion 1432.
  • the shield portion 203 of the first power cord 21 is connected to one end portion of the second land pattern portion 1323 of the first antenna element 130, and the core wire 201 of the first power cord 21 is connected to one end portion of the second land pattern portion 1324.
  • the shield portion 203 of the second power cord 22 is connected to the other end portion of the second land pattern portion 1323 of the first antenna element 130, and the core wire 201 of the second power cord 22 is connected to the other end portion of the second land pattern portion 1324. It is connected.
  • the core wire 301 of the high-frequency signal cable 30 is connected to the land pattern portion 1333. Further, the shield part 303 of the high-frequency signal cable 30 is connected to the land pattern part 1433.
  • the bent pattern portion 1332, the land pattern portion 1333 of the second connection pattern portion 133, the bent pattern portion 1432 of the fourth connection pattern portion 143, and the land pattern portion 1433 are connected to a balance-unbalance converter (balun) 150. .
  • 17A and 17B are diagrams illustrating peak gain characteristics with respect to the frequency of the receiving apparatus when the antenna apparatus according to the seventh embodiment is used.
  • 17A shows characteristics in the FM and VHF bands
  • FIG. 17B shows characteristics in the UHF band.
  • the curve indicated by H indicates the characteristic of horizontal polarization
  • the curve indicated by V indicates the characteristic of vertical polarization.
  • charts showing the measurement results in detail are shown in accordance with the characteristic diagrams.
  • the antenna device according to the eighth embodiment of the present invention is directly connected to the shield part 203 of the power cord 20 and the core wire 301 of the high-frequency signal cable 30 in the antenna substrate part 100 of the connection part.
  • the car is described as an example of the use environment.
  • the car plug is replaced with, for example, a normal household outlet, the household appliance can be used without any problem.
  • the present embodiment it is possible to generate a broadcast wave with a sufficient gain in a sufficiently wide frequency band even if the wires are bundled and used by simply connecting them without requiring a troublesome labor. It is possible to receive and good reception sensitivity can be obtained.
  • the receiving sensitivity of the set is improved by about 5 to 10 dB from the conventional device, and the receiving sensitivity is greatly improved. (Conventional 5-10dB improvement)
  • the structure is simple, it can be manufactured at low cost, and it is easy to install. Moreover, it is hard to be influenced by a set.
  • the antenna of the antenna device according to the present invention is greatly different from a film antenna mainly used when a conventional antenna device is mounted on a car. That is, in the case of a film antenna, the antenna element on the film side is affixed to the windshield of the car, and in order to use the body of the car as a GND necessary for functioning as an antenna, Is connected to the car body. As described above, the film antenna functions as an antenna by the film antenna element and the GND of the vehicle body, and radio waves received by the antenna are taken into the receiving device.
  • the antenna device instead of the film antenna element, a part of the power cord (for example, a cord using a shielded wire, a high-frequency current flowing on the surface of the power cord has a high high-frequency impedance).
  • a part of the power cord for example, a cord using a shielded wire, a high-frequency current flowing on the surface of the power cord has a high high-frequency impedance.
  • the GND of the receiving device and the GND (shield portion 203) of the coaxial line are used instead of using the car body as the GND.
  • the point is also different from the film antenna described above.
  • the antenna of the antenna device according to the present invention is different from the conventional film antenna, and does not require the user to put the film antenna on the windshield, and is highly convenient.
  • the antenna element such as the power cord outer cover is used for reception in the VHF band, and the antenna board part (antenna board part 100) has low impedance in the VHF band.
  • the antenna substrate unit receives the UHF band, and the antenna substrate unit and the power cord unit receive the VHF band.
  • a dual frequency antenna is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Details Of Aerials (AREA)

Abstract

 本発明は、煩雑な手間を要さずに、接続するだけで、線材を束ねて使用しても、十分に広い周波数帯域で、十分な利得により放送波を受信でき、良好な受信感度を得ることが可能なアンテナ装置を提供することができるアンテナ装置に関する。 電力伝送可能な電源コード20と、接続部50と、接続部50から高周波信号を取り出すための高周波信号ケーブル30と、電源コード20の長さ方向の2箇所に配置された高周波遮断部40と、を有し、電源コード20は、2つの高周波遮断部間の一部が接続部50に接続されてアンテナを形成し、高周波信号ケーブル30は、接続部50において電源コード20の一部に接続されている。

Description

アンテナ装置
 本発明は、電力供給用の電源コードを使用して電波を受信するアンテナ装置に関するものである。
 近年、ノート型パーソナルコンピュータ(PC)や小型テレビジョンにおいても、高精細(HD)テレビジョン映像が見られるチューナーが搭載され、受信したいという室内においても場所を選ばずテレビジョン映像を見たいというニーズが高まっている。
 また、テレビジョン機能を有する電子機器としては、携帯電話機やノート型PCの他に、PND(Personal Navigation Device)等の小型の電子機器がある。
 デジタルテレビジョン放送やラジオ等を受信可能な携帯電話機等は、内蔵アンテナあるいは外部アンテナで放送波を受信している。ここで内蔵アンテナは、携帯電話機のデザインを損なわないという長所がある。
 しかしながら内蔵アンテナは、外部アンテナに比して感度が劣り、内部ノイズの影響を受け易い等の欠点がある。
 これに対して外部アンテナには、たとえばロッドアンテナがある。ロッドアンテナは、内蔵アンテナに比して感度等が優れる特徴がある。
 しかしながら、ロッドアンテナは、携帯電話機等の電子機器のデザインを損ない、さらにはアンテナが突出する等の欠点がある。
 この外部アンテナに関して、特許文献1~5報等に、電源コードをアンテナとして使用することが提案されている。
 この電源コードを使用したアンテナ装置では、放送局から送信されたFM帯や、デジタルテレビジョン放送を受信するために使われるVHF帯~UHF帯の電波信号を受信することが可能である。
特開2005-341067号公報 特開2002-151932号公報 特開2001-274704号公報 特開2001-168982号公報 特開2005-136907号公報
 しかしながら、提案されている電源コードを用いたアンテナ装置では、十分に広い周波数帯域で、十分な利得により放送波を受信できない場合がある。
 また、提案されている電源コードを用いたアンテナ装置においては、線材を束ねた場合、感度が変化してしまうことから、使用する場合には、良好な受信感度を得るために、広げて使用する等の煩雑さが伴う場合がある。
 したがって、このアンテナ装置をたとえばPNDを車に搭載する場合、ユーザは良好な受信感度を得るためにフロントガラスを貼るガラスアンテナを使用せざるを得ないのが現状である。
 しかし、ガラスアンテナは、通常のユーザが簡単に貼ることが困難で利便性にかけるものとなっている。
 本発明は、煩雑な手間を要さずに、接続するだけで、線材を束ねて使用しても、十分に広い周波数帯域で、十分な利得により放送波を受信でき、良好な受信感度を得ることが可能なアンテナ装置を提供することにある。
 電力伝送可能な電源コードと、接続部と、上記接続部から高周波信号を取り出すための高周波信号ケーブルと、上記電源コードの長さ方向の2箇所に配置された高周波遮断部と、を有し、上記電源コードは、2つの高周波遮断部間の一部が上記接続部に接続されてアンテナを形成し、上記高周波信号ケーブルは、上記接続部を介して上記電源コードに接続されている。
 本発明によれば、煩雑な手間を要さずに、接続するだけで、線材を束ねて使用しても、十分に広い周波数帯域で、十分な利得により放送波を受信でき、良好な受信感度を得ることができる。
本発明の第1乃至第3の実施形態に係るアンテナ装置の全体構成を示す図である。 本発明の第1の実施形態に係るアンテナ装置の具体的な構成例を示す図である。 シールド部付同軸ケーブルの構造例を示す図である。 本第1の実施形態に係るアンテナ装置を用いた場合の受信装置の周波数に対するピークゲイン特性を示す図である。 本第1の実施形態に係るアンテナ装置において第2の電源コードと高周波信号ケーブルを束ねて用いた場合の受信装置の周波数に対するピークゲイン特性を示す図である。 本第1の実施形態に係るアンテナ装置において第1の電源コード、第2の電源コード、および高周波信号ケーブルを束ねて用いた場合の受信装置の周波数に対するピークゲイン特性を示す図である。 本発明の第2の実施形態に係るアンテナ装置の具体的な構成例を示す図である。 本発明の第3の実施形態に係るアンテナ装置の具体的な構成例を示す図である。 本発明の第4乃至7の実施形態に係るアンテナ装置の全体構成を示す図である。 本発明の第4の実施形態に係るアンテナ装置の具体的な構成例を示す図である。 本第4の実施形態に係るアンテナ装置を用いた場合の受信装置の周波数に対するピークゲイン特性を示す図である。 本第4の実施形態に係るアンテナ装置において第2の電源コードと高周波信号ケーブルを束ねて用いた場合の受信装置の周波数に対するピークゲイン特性を示す図である。 本第4の実施形態に係るアンテナ装置において第1の電源コード、第2の電源コード、および高周波信号ケーブルを束ねて用いた場合の受信装置の周波数に対するピークゲイン特性を示す図である。 本発明の第5の実施形態に係るアンテナ装置の具体的な構成例を示す図である。 本発明の第6の実施形態に係るアンテナ装置の具体的な構成例を示す図である。 本発明の第7の実施形態に係るアンテナ装置の具体的な構成例を示す図である。 本第7の実施形態に係るアンテナ装置を用いた場合の受信装置の周波数に対するピークゲイン特性を示す図である。
 以下、本発明の実施形態を図面に関連付けて説明する。
 なお、説明は以下の順序で行う。
1.第1の実施形態(アンテナ装置の第1の構成例)
2.第2の実施形態(アンテナ装置の第2の構成例)
3.第3の実施形態(アンテナ装置の第3の構成例)
4.第4の実施形態(アンテナ装置の第4の構成例)
5.第5の実施形態(アンテナ装置の第5の構成例)
6.第6の実施形態(アンテナ装置の第6の構成例)
7.第7の実施形態(アンテナ装置の第7の構成例)
8.第8の実施形態(アンテナ装置の第8の構成例)
 以下の説明では、車載のPND等の電子機器に適用可能なアンテナ装置を一例として説明する。
[アンテナ装置の全体構成]
 図1は、本発明の実施形態に係るアンテナ装置の全体構成を示す図である。
 本実施形態のアンテナ装置10は、電力伝送用電線もしくはそれに平行して有する電線の一部に2つの高周波遮断部が配置される。
 アンテナ装置10は、高周波信号を重畳して、その高周波遮断部間の電源ケーブルをアンテナとして、電線と高周波信号線とに分けて電子機器に入力することが可能な電源ケーブルアンテナとして形成される。
 アンテナ装置10は、一方の高周波遮断部にフィルタを介して、アンテナを形成する別基板が接続され、この基板のアンテナと上記と異なる他方の高周波遮断部まで、構成されたアンテナとで、作られた2周波共用の電源ケーブルアンテナとして形成される。
 アンテナ装置10は、電線と高周波電源回路部への接続は、高周波遮断部、たとえばフェライトビーズ、インダクタやフェライトコアを取り付けて高周波電流を遮断することが可能な電源ケーブルアンテナとして形成される。
 本実施形態のアンテナ装置10は、同軸線または平行2線により形成される電力伝送ケーブルとしての電源コード20、高周波信号ケーブル(高周波信号線)30、高周波遮断部40としてのフェライトコア41、および接続部としてのモールド部50を有する。
 また、アンテナ装置10において、電源コード20の一端側にはたとえば車内の電源部(電力供給部)に接続するためのカープラグ60が接続され、他端側には電子機器の電源部に接続するための電源コネクタ70が接続されている。
 また、高周波信号ケーブル30の一端部には電子機器のアンテナ接続部に接続可能な高周波対応プラグ80が接続されている。
 なお、図1においては、2つの高周波遮断部としてのフェライトの一方のみが図示されている。他方の高周波遮断部としてのフェライトはモールド部50内に配置されている。
 電源コード20は、モールド部50でカープラグ60が接続された第1電源コード21と、電源コネクタ70が接続された第2電源コード22に分岐されている。
 モールド部50は、形状を固定できるような構成を有する。
 第1電源コード21と第2電源コード22は、図1に示すように、基本的に、伸ばした状態で略直交するようにモールド部50内に配置されている。
 また、第2電源コード22と高周波信号ケーブル30は、並行するようにモールド部50内に配置されている。
 モールド部50の端部(図中右端)からカープラグ60に至る第1電源コード21の途中には、モールド部50の端部より1m~1.3mのポイントにVHFのロー(LOW)バンド受信のために、高周波的に分離用のフェライトコア41が挿入されている。
<1.第1の実施形態>
 図2は、本発明の第1の実施形態に係るアンテナ装置の具体的な構成例を示す図である。
 本第1の実施形態においては、モールド部50内の具体的な構成を示している。
 また、本第1の実施形態においては、電源コード20として同軸線が適用されている。この電源コード20の構造例を説明する。
[電源コードの構造例]
 図3は、シールド部付同軸ケーブルの構造例を示す図である。
 同軸ケーブル200は、複数の芯線201、および芯線201を絶縁するための内部絶縁体202を有する。
 同軸ケーブル200は、内部絶縁体202の外周に配置されたシールド部203、および外周全体を被覆するエラストマー等の外部絶縁体(外皮、ジャケット)204を有する。
 芯線201は、外周を難燃性絶縁体205により被覆され絶縁されている。
 また、シールド部203は、たとえば軟銅線により形成される。
 また、シールド部203は、導電性を有する複数の素線、たとえば裸軟銅線を編組した編組シールドにより形成されている。
 なお、編組シールドは、横巻シールドと比べて、屈曲時においてもシールドの隙間発生が少なく、適度な柔軟性、折り曲げ強さ、機械的強度を備えた静電シールド方法として知られているものである。
 芯線201とシールド部203は、高周波的にインピーダンスを有する。
 なお、高周波信号ケーブル30は、同軸ケーブル(同軸線)により形成され、基本的に上記シールド部付同軸ケーブルと同様の構成を有する。
 すなわち、高周波信号ケーブル30は、芯線301、および芯線301を絶縁するための内部絶縁体302を有する。
 高周波信号ケーブル30は、内部絶縁体302の外周に配置されたシールド部303、および外周全体を被覆するエラストマー等の外部絶縁体(外皮、ジャケット)304を有する。
 モールド部50内には、アンテナ素子110が配置されている。
 アンテナ素子110は、略コ字形状をなすパターンとして形成されている。
 すなわち、アンテナ素子110は、基底パターン部111を有する。
 アンテナ素子110は、基底パターン部111の一端部に、基底パターン部111に直交して延設するように形成された第1接続パターン部112が形成されている。
 第1接続パターン部112は、延設パターン部1121のその先端部側において、キャパシタC111を介して電源コード20と接続するためのランドパターン部1123が形成されている。
 キャパシタC111の容量は、たとえば1000pFに設定される。
 ランドパターン部1123は、電源コード20の外部絶縁体204が除去された部分のシールド部203に接続される。
 アンテナ素子110は、基底パターン部111の他端部に、基底パターン部111に直交して延設するように形成された第2接続パターン部113が形成されている。
 第2接続パターン部113には、高周波信号ケーブル30の芯線301が接続される。
 電源コード20は、前述したように、第1電源コード21と第2電源コード22に分岐されている。
 そして、第1電源コード21と第2電源コードとの分岐部23においては、外部絶縁体204が除去されている。
 そして、第2電源コード22の外部絶縁体204が除去された分岐部23の近傍、すなわち、第2電源コード22の電源コネクタ70の接続端と反対側の端部には、図1には図示されていない高周波遮断部40としてのもう一つのフェライトコア42が配置されている。
 このように、本第1の実施形態のアンテナ装置10において、電源コード20には、同軸線が使用されている。
 電源コード20は、分岐された第1電源コード21にフェライトコア41が配置(挿入)され、第2電源コード22にフェライトコア42が配置(挿入)されている。
 フェライトコア41の配置位置は、前述したように、VHFのLOWバンドであるFM帯に共振をもっていくために、約1m~1.3mの長さで調整している。
 電源コード20は、2つの高周波遮断部40としてフェライトコア41と42との間であって、第2電源コード22に配置されたフェライトコア42の直前の分岐部23で外部絶縁体204が除去されている。
 そして、この分岐部23のシールド部203がアンテナ素子110側のランドパターン部1123に接続されアンテナが形成されている。
 本実施形態のアンテナ装置10は、少なくともFM-VICS帯であるFMの受信が可能に構成される。
 静電対策として、電源コード20と高周波信号ケーブル間にキャパシタC111が接続されている。
 このように形成されるアンテナの給電部は、同軸線である高周波信号ケーブル30の芯線301部が、アンテナ素子110の第2接続パターン部113に接続されている箇所である。
 そして、高周波信号ケーブル30は、高周波対応プラグ80を介して、セット(電子機器)に接続される。
 アンテナ素子110、および上記各接続部は、モールド部50に収納されている。
 図4は、本第1の実施形態に係るアンテナ装置を用いた場合の受信装置の周波数に対するピークゲイン特性を示す図である。図4は暗室における特性を示している。
 図4はFMおよびVHF帯域における特性を示している。
 図4において、Hで示す曲線が水平偏波(Horizontal Polarization)の特性を示し、Vで示す曲線が垂直偏波(Vertical Polarization)の特性を示している。
 また、図4においては、特性図にあわせて測定結果を詳細に示す図表を図示している。
 図からもわかるように、暗室の特性は、FM-VICS帯であるFMの受信が問題なく可能である。
 図5は、本第1の実施形態に係るアンテナ装置において第2の電源コードと高周波信号ケーブルを束ねて用いた場合の受信装置の周波数に対するピークゲイン特性を示す図である。
 図6は、本第1の実施形態に係るアンテナ装置において第1の電源コード、第2の電源コード、および高周波信号ケーブルを束ねて用いた場合の受信装置の周波数に対するピークゲイン特性を示す図である。
 図5および図6は暗室における特性を示している。
 図5および図6はFMおよびVHF帯域における特性を示している。
 図5および図6において、Hで示す曲線が水平偏波(Horizontal Polarization)の特性を示し、Vで示す曲線が垂直偏波(Vertical Polarization)の特性を示している。
 また、図5および図6においては、特性図にあわせて測定結果を詳細に示す図表を図示している。
 結束状態においても、図5および図6に示すように、多少劣化はするものの、非常に良好な結果となっている。
 すなわち、図からもわかるように、結束状態においても、暗室の特性は、FM-VICS帯であるFMの受信が問題なく可能である。
<2.第2の実施形態>
 図7は、本発明の第2の実施形態に係るアンテナ装置の具体的な構成例を示す図である。
 本第2の実施形態に係るアンテナ装置10Aが第1の実施形態に係るアンテナ装置10と異なる点は、高周波遮断部をフェライトコアの代わりに、高周波的に分離するためのチップ部品に置き換えたことにある。
 具体的には、アンテナ装置10Aでは、第1電源コード21が2つの分割電源コード211,212に分割され、分割電源コード211の一端と分割電源コード212の一端とが芯線およびシールド部を介してチップ基板43で接続されている。
 このチップ基板43が、第1の実施形態のフェライトコア41と同様の機能を有する。
 また、分割電源コード211の他端の芯線とシールド部がアンテナ素子110Aの第1接続パターン部112Aに接続されている。
 そして、第2電源コード22の端部の芯線とシールド部がアンテナ素子110Aの第2ランドパターン部1123Aに接続されている。このアンテナ素子110Aの第2ランドパターン部1123Aがチップ基板化されている。
 この第2ランドパターン部1123Aが第1の実施形態のフェライトコア42の機能と同様の機能を有する。
 チップ基板43には、接続用のランドパターン部431,432,433,434が形成されている。
 ランドパターン部431と432とがフィルタF441を介して接続されている。
 ランドパターン部433と434とがフィルタF442を介して接続されている。
 そして、ランドパターン部431に分割電源コード211の一端部の芯線201が接続され、ランドパターン部432に分割電源コード212の端部の芯線201が接続されている。
 ランドパターン部433に分割電源コード211の一端部のシールド部203が接続され、ランドパターン部434に分割電源コード212の端部のシールド部203が接続されている。
 アンテナ素子110Aにおいて、第1接続パターン部112Aの延設パターン部1121A、第1ランドパターン部1122A、および第2ランドパターン部1123Aが基底パターン部111に対向する基板縁部に延設されている。
 そして、第2ランドパターン部1123Aとして4つのランドパターン部1124,1125,1126,1127が形成されている。
 延設パターン部1121Aの端部と第1ランドパターン部1122AがフィルタF112を介して接続されている。
 ランドパターン部1124とランドパターン部1125とがフィルタF113を介して接続されている。
 ランドパターン部1126とランドパターン部1127とがフィルタF114を介して接続されている。
 また、第1ランドパターン部1122Aとランドパターン部1126がキャパシタC111を介して接続されている。
 そして、ランドパターン部1124に分割電源コード211の他端部の芯線201が接続され、ランドパターン部1125に第2電源コード22の端部の芯線201が接続されている。
 ランドパターン部1126に分割電源コード211の他端部のシールド部203が接続され、ランドパターン部1127に第2電源コード22の端部のシールド部203が接続されている。
 本第2の実施形態では、その他の構成は第1の実施形態と同様である。
 本第2の実施形態によれば、上述した第1の実施形態と同様の効果を得ることができる。
<3.第3の実施形態>
 図8は、本発明の第3の実施形態に係るアンテナ装置の具体的な構成例を示す図である。
 本第3の実施形態に係るアンテナ装置10Bが第1の実施形態に係るアンテナ装置10と異なる点は、電源コード20Bを同軸の代わりに平行2線のものを用いたことにある。
 電源コード20Bは、2つの平行線213,214を有する。
 そして、第3の実施形態に係るアンテナ装置10Bでは、アンテナ素子110Bにおいて2つの平行線213,214を接続するために、第1接続パターン部112Bの最先端側のランドパターン部1123が2つ形成されている。
 すなわち、ランドパターン部11231,11232が形成されている。
 そして、ランドパターン部11231の一端部に第1電源コード21Bの平行線213が接続され、ランドパターン部11232の一端部に第1電源コード21Bの平行線214が接続されている。
 ランドパターン部11231の他端部に第2電源コード22Bの平行線213が接続され、ランドパターン部11232の他端部に第2電源コード22Bの平行線214が接続されている。
 本第3の実施形態では、その他の構成は第1の実施形態と同様である。
 本第3の実施形態によれば、上述した第1の実施形態と同様の効果を得ることができる。
[アンテナ装置の全体構成]
 次に、本発明の第4乃至第7の実施形態について説明する。
 図9は、本発明の第4乃至第7の実施形態に係るアンテナ装置の全体構成を示す図である。
 本実施形態のアンテナ装置10Cは、電力伝送用電線もしくはそれに平行して有する電線の一部に2つの高周波遮断部が配置される。
 アンテナ装置10Cは、高周波信号を重畳して、その高周波遮断部間の電源ケーブルをアンテナとして、電線と高周波信号線とに分けて電子機器に入力することが可能な電源ケーブルアンテナとして形成される。
 アンテナ装置10Cは、一方の高周波遮断部にフィルタを介して、アンテナを形成する別基板が接続され、この基板のアンテナと上記と異なる他方の高周波遮断部まで、構成されたアンテナとで、作られた2周波共用の電源ケーブルアンテナとして形成される。
 アンテナ装置10Cは、電線と高周波電源回路部への接続は、高周波遮断部、たとえばフェライトビーズ、インダクタやフェライトコアを取り付けて高周波電流を遮断することが可能な電源ケーブルアンテナとして形成される。
 本実施形態のアンテナ装置10Cは、同軸線または平行2線により形成される電力伝送ケーブルとしての電源コード20、高周波信号ケーブル(高周波信号線)30、高周波遮断部40としてのフェライトコア41、および中継接続部を含むモールド部50’を有する。
 また、アンテナ装置10Cにおいて、電源コード20の一端側にはたとえば車内の電源部(電力供給部)に接続するためのカープラグ60が接続され、他端側には電子機器の電源部に接続するための電源コネクタ70が接続されている。
 また、高周波信号ケーブル30の一端部には電子機器のアンテナ接続部に接続可能な高周波対応プラグ80が接続されている。
 なお、図9においては、2つの高周波遮断部としてのフェライトの一方のみが図示されている。他方の高周波遮断部としてのフェライトはモールド部50’内に配置されている。
 電源コード20は、モールド部50’でカープラグ60が接続された第1電源コード21と、電源コネクタ70が接続された第2電源コード22に分岐されている。
 モールド部50’は、形状を固定できるような構成を有する。
 第1電源コード21と第2電源コード22は、図9に示すように、基本的に、伸ばした状態で略直交するようにモールド部50’内に配置されている。
 また、第2電源コード22と高周波信号ケーブル30は、並行するようにモールド部50’内に配置されている。
 モールド部50’は、たとえば図9に示すように、幅35mm,長さ200mmの大きさを有する。
 モールド部50’の端部(図中右端)からカープラグ60に至る第1電源コード21の途中には、モールド部50’の端部より1m~1.3mのポイントにVHFのロー(LOW)バンド受信のために、高周波的に分離用のフェライトコア41が挿入されている。
<4.第4の実施形態>
 図10は、本発明の第4の実施形態に係るアンテナ装置の具体的な構成例を示す図である。
 本第4の実施形態においては、モールド部50’内の具体的な構成を示している。
 また、本第4の実施形態においては、電源コード20として同軸線が適用されている。この電源コード20の構造例は、上述した図3と同様である。
 モールド部50’内には、アンテナ基板部100が配置されている。
 アンテナ基板部100には、アンテナ素子(第1アンテナ素子)110Cと、アンテナグランド(第2アンテナ素子)120が並列するように形成されている。
 アンテナ素子110Cは、略コ字形状をなすパターンとして形成されている。
 すなわち、アンテナ素子110Cは、基底パターン部111を有する。
 基底パターン部111の長さは、たとえば40mmに設定されている。
 アンテナ素子110Cは、基底パターン部111の一端部に、基底パターン部111に直交して延設するように形成された第1接続パターン部112が形成されている。
 第1接続パターン部112は、延設パターン部1121のその先端部側において、キャパシタC111を介して第1ランドパターン部1122が形成されている。そして、第1ランドパターン部1122に対して、前記フィルタF111を介し電源コード20と接続するための第2ランドパターン部1123が形成されている。キャパシタC111の容量は、たとえば1000pFに設定される。
 第2ランドパターン部1123は、電源コード20の外部絶縁体204が除去された部分のシールド部203に接続される。
 なお、延設パターン部1121の長さは、たとえば20mmに設定される。
 アンテナ素子110Cは、基底パターン部111の他端部に、基底パターン部111に直交して延設するように形成された第2接続パターン部113が形成されている。
 第2接続パターン部113は、延設パターン部1131の先端部側において、マッチング素子、たとえばインダクタL111を介してランドパターン部1132が形成されている。インダクタL111のインダクタンスはたとえば40nHに設定される。
 ランドパターン部1132には、高周波信号ケーブル30の芯線301が接続される。
 アンテナグランド120は、アンテナ素子110Cに並列するように(図10では左側)に平板状に形成されている。
 アンテナグランド120は、たとえば幅30mm、長さ150mmの大きさに形成される。
 電源コード20は、前述したように、第1電源コード21と第2電源コード22に分岐されている。
 そして、第1電源コード21と第2電源コードとの分岐部23においては、外部絶縁体204が除去されている。
 そして、第2電源コード22の外部絶縁体204が除去された分岐部23の近傍、すなわち、第2電源コード22の電源コネクタ70の接続端と反対側の端部には、図9には図示されていない高周波遮断部40としてのもう一つのフェライトコア42が配置されている。
 このように、本第4の実施形態のアンテナ装置10Cにおいて、電源コード20には、同軸線が使用されている。
 電源コード20は、分岐された第1電源コード21にフェライトコア41が配置(挿入)され、第2電源コード22にフェライトコア42が配置(挿入)されている。
 フェライトコア41の配置位置は、前述したように、アンテナ基板部100で構成されるアンテナよりも低い周波数で、共振するように、VHFのLOWバンドであるFM帯に共振をもっていくために、約1m~1.3mの長さで調整している。
 電源コード20は、2つの高周波遮断部40としてフェライトコア41と42との間であって、第2電源コード22に配置されたフェライトコア42の直前の分岐部23で外部絶縁体204が除去されている。
 そして、この分岐部23のシールド部203がアンテナ素子110C側の第2ランドパターン部1123に接続されて、第1のアンテナが形成されている。
 また、アンテナ基板部100で構成される第2のアンテナ12は、アンテナ素子110Cとアンテナグランド120により形成されている。
 本実施形態のアンテナ装置10Cは、UHF帯で放送されているデジタルテレビジョン放送波を受信することが可能に構成されている。
 本来、ダイポールアンテナでは、片側15cmずつの30cm必要であるが、これではモールド部50’のサイズが大きくなる。
 そこで、本第4の実施形態においては、アンテナグランド120を確保して、アンテナ素子110Cを短縮し、マッチング素子であるインダクタL111で、入力インピーダンスを調整する構成が採用されている。
 この場合は、インダクタL111は、インダクタンスが47nHであるが、アンテナグランド120でのアンテナ放射を大きくすることで、アンテナゲインを落とすことなく、高いアンテナ性能を維持している。
 この第2のアンテナ12と第1のアンテナ11は、VHF帯ではロウインピーダンス、UHF帯では、第1のアンテナ11と第2のアンテナ12を分離するために、ハイインピーダンスになるフィルタF111を介して接続されている。
 かつ静電対策として、第1のアンテナ11と第2のアンテナ12は、VHF,UHF帯では、ロウインピーダンスであるキャパシタC111を介して接続されている。
 第2のアンテナ12の給電部は、アンテナグランド120が同軸線である高周波信号ケーブル30のシールド部303に、同軸線の芯線301部が、アンテナ素子110Cのランドパターン部1132に接続されている箇所である。
 そして、高周波信号ケーブル30は、高周波対応プラグ80を介して、セット(電子機器)に接続される。
 アンテナ基板部100、および上記各接続部は、モールド部50’に収納されている。
 図11の(A),(B)は、本第4の実施形態に係るアンテナ装置を用いた場合の受信装置の周波数に対するピークゲイン特性を示す図である。図11の(A)および(B)は暗室における特性を示している。
 図11の(A)はFMおよびVHF帯域における特性を示し、図11の(B)はUHF帯域における特性を示している。
 図11の(A)および(B)において、Hで示す曲線が水平偏波(Horizontal Polarization)の特性を示し、Vで示す曲線が垂直偏波(Vertical Polarization)の特性を示している。
 また、図11の(A)および(B)においては、特性図にあわせて測定結果を詳細に示す図表を図示している。
 図からもわかるように、暗室の特性は、FM-VICS帯であるFMの受信とデジタルテレビを受信するためのUHF帯の受信が問題なく可能である。
 図12の(A),(B)は、本第4の実施形態に係るアンテナ装置において第2の電源コードと高周波信号ケーブルを束ねて用いた場合の受信装置の周波数に対するピークゲイン特性を示す図である。
 図13の(A),(B)は、本第4の実施形態に係るアンテナ装置において第1の電源コード、第2の電源コード、および高周波信号ケーブルを束ねて用いた場合の受信装置の周波数に対するピークゲイン特性を示す図である。
 図12および図13の(A)および(B)は暗室における特性を示している。
 図12および図13の(A)はFMおよびVHF帯域における特性を示し、図12および図13の(B)はUHF帯域における特性を示している。
 図12および図13の(A)および(B)において、Hで示す曲線が水平偏波(Horizontal Polarization)の特性を示し、Vで示す曲線が垂直偏波(Vertical Polarization)の特性を示している。
 また、図12および図13の(A)および(B)においては、特性図にあわせて測定結果を詳細に示す図表を図示している。
 結束状態においても、図12および図13に示すように、多少劣化はするものの、非常に良好な結果となっている。
 すなわち、図からもわかるように、結束状態においても、暗室の特性は、FM-VICS帯であるFMの受信とデジタルテレビを受信するためのUHF帯の受信が問題なく可能である。
<5.第5の実施形態>
 図14は、本発明の第5の実施形態に係るアンテナ装置の具体的な構成例を示す図である。
 本第5の実施形態に係るアンテナ装置10Dが第4の実施形態に係るアンテナ装置10Cと異なる点は、高周波遮断部をフェライトコアの代わりに、高周波的に分離するめのチップ部品に置き換えたことにある。
 具体的には、アンテナ装置10Dは、第1電源コード21を2つの分割電源コード211,212に分割し、分割電源コード211の一端と分割電源コード212の一端とが芯線およびシールド部を介してチップ基板43で接続されている。
 このチップ基板43が、第4の実施形態のフェライトコア41と同様の機能を有する。
 また、分割電源コード211の他端の芯線とシールド部がアンテナ基板部100Dのアンテナ素子110Dの第1接続パターン部112Dに接続されている。
 そして、第2電源コード22の端部の芯線とシールド部がアンテナ素子110Dの第2ランドパターン部1123Dに接続されている。
 このアンテナ素子110Dの第2ランドパターン部1123Dがチップ基板化されている。
 この第2ランドパターン部1123Dが第4の実施形態のフェライトコア42の機能と同様の機能を有する。
 チップ基板43には、接続用のランドパターン部431,432,433,434が形成されている。
 ランドパターン部431と432とがフィルタF431を介して接続されている。
 ランドパターン部433と434とがフィルタF432を介して接続されている。
 そして、ランドパターン部431に分割電源コード211の一端部の芯線201が接続され、ランドパターン部432に分割電源コード212の端部の芯線201が接続されている。
 ランドパターン部433に分割電源コード211の一端部のシールド部203が接続され、ランドパターン部434に分割電源コード212の端部のシールド部203が接続されている。
 アンテナ素子110Dにおいて、第1接続パターン部112Dの延設パターン部1121D、第1ランドパターン部1122D、および第2ランドパターン部1123Dが基底パターン部111に対向する基板縁部に延設されている。
 そして、第2ランドパターン部1123Dとして4つのランドパターン部1124,1125,1126,1127が形成されている。
 延設パターン部1121Dの端部と第1ランドパターン部1122DがフィルタF112を介して接続されている。
 ランドパターン部1124とランドパターン部1125とがフィルタF113を介して接続されている。
 ランドパターン部1126とランドパターン部1127とがフィルタF114を介して接続されている。
 また、第1ランドパターン部1122Dとランドパターン部1126がキャパシタC111を介して接続されている。
 そして、ランドパターン部1124に分割電源コード211の他端部の芯線201が接続され、ランドパターン部1125に第2電源コード22の端部の芯線201が接続されている。
 ランドパターン部1126に分割電源コード211の他端部のシールド部203が接続され、ランドパターン部1127に第2電源コード22の端部のシールド部203が接続されている。
 本第5の実施形態では、その他の構成は第4の実施形態と同様である。
 本第5の実施形態によれば、上述した第4の実施形態と同様の効果を得ることができる。
<6.第6の実施形態>
 図15は、本発明の第6の実施形態に係るアンテナ装置の具体的な構成例を示す図である。
 本第6の実施形態に係るアンテナ装置10Eが第4の実施形態に係るアンテナ装置10Cと異なる点は、電源コード20Eを同軸の代わりに平行2線のものを用いたことにある。
 電源コード20Eは、2つの平行線213,214を有する。
 そして、第6の実施形態に係るアンテナ装置10Eでは、アンテナ素子110Eにおいて2つの平行線213,214を接続するために、第1接続パターン部112Eの最先端側のランドパターン部1123が2つ形成されている。
 すなわち、ランドパターン部11231,11232が形成されている。
 そして、ランドパターン部11231の一端部に第1電源コード21Eの平行線213が接続され、ランドパターン部11232の一端部に第1電源コード21Eの平行線214が接続されている。
 ランドパターン部11231の他端部に第2電源コード22Eの平行線213が接続され、ランドパターン部11232の他端部に第2電源コード22Eの平行線214が接続されている。
 本第6の実施形態では、その他の構成は第4の実施形態と同様である。
 本第6の実施形態によれば、上述した第4の実施形態と同様の効果を得ることができる。
<7.第7の実施形態>
 図16は、本発明の第7の実施形態に係るアンテナ装置の具体的な構成例を示す図である。
 本第7の実施形態に係るアンテナ装置10Fが第4の実施形態に係るアンテナ装置10Cと異なる点は、アンテナ基板部100Fにおいて、ダイポールアンテナとして形成したことにある。
 アンテナ装置10Fは、アンテナ基板部100Fに第1アンテナ素子130および第2アンテナ素子140が形成されている。
 なお、第1アンテナ素子130と第2アンテナ素子140の長さは、15cmずつの30cmが望ましい。
 第1アンテナ素子130は、基底パターン部131の一端部に、基底パターン部131に直交して延設するように形成された第1接続パターン部132が形成されている。
 第1接続パターン部132は、延設パターン部1321のその先端部側において、フィルタF131を介して第1ランドパターン部1322が形成されている。
 そして、第1ランドパターン部1322に対して、キャパシタC131を介し電源コード20と接続するための2つの第2ランドパターン部1323,1324が形成されている。キャパシタC131の容量は、たとえば1000pFに設定される。
 第2ランドパターン部1323は、電源コード20の外部絶縁体204が除去された部分のシールド部203が接続される。
 第1アンテナ素子130は、基底パターン部131の他端部に、基底パターン部131に直交して延設するように形成された第2接続パターン部133が形成されている。
 第2接続パターン部133は、延設パターン部1331の先端部側において、第2アンテナ素子140側に屈曲させて延設された屈曲パターン部1332が形成されている。
 また、第2接続パターン部133は、屈曲パターン部1332に対向してランドパターン部1333が形成されている。
 第2アンテナ素子140は、基底パターン部141の一端部に、基底パターン部141に直交して延設するように形成された第3接続パターン部142が形成されている。
 第2アンテナ素子140は、基底パターン部141の他端部に、基底パターン部141に直交して延設するように形成された第4接続パターン部143が形成されている。
 第4接続パターン部143は、延設パターン部1431の先端部側において、第1アンテナ素子130側に屈曲させて延設された屈曲パターン部1432が形成されている。
 また、第4接続パターン部143は、屈曲パターン部1432に対向してランドパターン部1433が形成されている。
 第1アンテナ素子130の第2ランドパターン部1323の一端部に第1電源コード21のシールド部203が接続され、第2ランドパターン部1324の一端部に第1電源コード21の芯線201が接続されている。
 第1アンテナ素子130の第2ランドパターン部1323の他端部に第2電源コード22のシールド部203が接続され、第2ランドパターン部1324の他端部に第2電源コード22の芯線201が接続されている。
 ランドパターン部1333に高周波信号ケーブル30の芯線301が接続されている。
 また、ランドパターン部1433に高周波信号ケーブル30のシールド部303が接続されている。
 そして、第2接続パターン部133の屈曲パターン部1332、ランドパターン部1333、第4接続パターン部143の屈曲パターン部1432、ランドパターン部1433は平衡不平衡変換器(バラン)150に接続されている。
 図17の(A)および(B)は、本第7の実施形態に係るアンテナ装置を用いた場合の受信装置の周波数に対するピークゲイン特性を示す図である。
 図17の(A)はFMおよびVHF帯域における特性を示し、図17の(B)はUHF帯域における特性を示している。
 図17の(A)および(B)において、Hで示す曲線が水平偏波(Horizontal Polarization)の特性を示し、Vで示す曲線が垂直偏波(Vertical Polarization)の特性を示している。
 また、図17の(A)および(B)においては、特性図にあわせて測定結果を詳細に示す図表を図示している。
 図からもわかるように、暗室の特性は、FM-VICS帯であるFMの受信とデジタルテレビの受信するためのUHF帯の受信が問題なく可能である。
<8.第8の実施形態>
 本発明の第8の実施形態に係るアンテナ装置は、図示しないが接続部のアンテナ基板部100において、電源コード20のシールド部203と高周波信号ケーブル30の芯線301と直接的に接続する。
 なおこの場合、電源コード20のシールド部203と高周波信号ケーブル30の芯線301とをキャパシタを介して接続することが望ましい。
 この場合も、FM-VICS帯であるFMの受信とデジタルテレビの受信するためのUHF帯の受信が問題なく可能である。
 なお、本実施形態においては、使用環境として車を例として説明したが、カープラグを、たとえば通常の家庭用のコンセントに置き換えれば、家庭用の機器でも問題なく使用できる。
 以上説明したように、本実施形態によれば、煩雑な手間を要さずに、接続するだけで、線材を束ねて使用しても、十分に広い周波数帯域で、十分な利得により放送波を受信でき、良好な受信感度を得ることができる。
 たとえば、セットの受信感度が従来装置より5~10dB程度改善し、受信感度が非常に向上する。(従来5~10dB改善)
 また、構造が簡単であり、安価に製造可能で、また、取り付けが容易である。
 また、セットの影響を受けにくい。
 さらに、例えば、本発明に係るアンテナ装置のアンテナは、従来のアンテナ装置を車に搭載する場合に主に使用されるフィルムアンテナとは大きく異なるものである。即ち、フィルムアンテナの場合には、フィルム側のアンテナエレメントが車のフロントガラスに貼られるとともに、アンテナとして機能するために必要なGNDとして一般的に車のボディを使用するために、同軸線のGNDが車のボディに接続される。このように、フィルムアンテナは、フィルムのアンテナエレメントと車のボディのGNDとによりアンテナとして機能し、そのアンテナで受信された電波が受信機器に取り込まれる。
 これに対し、本発明に係るアンテナ装置では、フィルムのアンテナエレメントの代わりに、電源コードの一部を(例えば、シールド線を用いたコードであれば、その表面に流れる高周波電流を高周波インピーダンスの高いフェライトで分離することにより、その一部を)アンテナエレメントとして使用し、電源コードとアンテナエレメントを共用化した点が、上述のフィルムアンテナと異なる大きな特徴である。また、車のボディをGNDとして使用する代わりに、基板のアンテナGND(アンテナグランド120)を用いて、アンテナとして機能させた点も、上述のフィルムアンテナと異なっている。また、アンテナ基板部を備えない第1乃至第3の実施形態では、車のボディをGNDとして使用する代わりに、受信機器のGNDと同軸線の外皮のGND(シールド部203)とを用いている点も、上述のフィルムアンテナと異なっている。このように本発明に係るアンテナ装置のアンテナは、従来のフィルムアンテナと異なっており、ユーザがフィルムアンテナをフロントガラスに貼る手間が不要であり、利便性が高いものである。
 さらに、UHF帯と共用する第4乃至第7の実施形態では、電源コード外皮などのアンテナエレメントをVHF帯の受信用とし、アンテナ基板部(アンテナ基板部100)において、VHF帯ではローインピーダンスであり、かつ、UHF帯ではハイインピーダンスとなるフィルタ素子(フィルタF111)を介して接続することで、アンテナ基板部でUHF帯を受信し、アンテナ基板部と電源コード部のアンテナエレメントでVHF帯を受信する2周波共用アンテナが実現される。
 10,10A,10B,10C,10D,10E,10F・・・アンテナ装置、11・・・第1のアンテナ、12・・・第2のアンテナ、20・・・電源コード、21・・・第1電源コード、22・・・第2電源コード、30・・・高周波信号ケーブル、40・・・高周波遮断部、41,42・・・フェライトコア、43・・・チップ基板、50,50’・・・モールド部、60・・・カープラグ、70・・・電源コネクタ、80・・・高周波対応プラグ、100・・・アンテナ基板部、110,110A~110F・・・アンテナ素子、120・・・アンテナグランド、130・・・第1アンテナ素子、140・・・第2アンテナ素子、150・・・バラン(平衡不平衡変換器)

Claims (19)

  1.  電力伝送可能な電源コードと、
     接続部と、
     上記接続部から高周波信号を取り出すための高周波信号ケーブルと、
     上記電源コードの長さ方向の2箇所に配置された高周波遮断部と、を有し、
     上記電源コードは、
      2つの高周波遮断部間の一部が上記接続部に接続されてアンテナを形成し、
     上記高周波信号ケーブルは、
      上記接続部を介して上記電源コードに接続されている
     アンテナ装置。
  2.  上記高周波遮断部は、
      低周波では低インピーダンスであり、高周波ではハイインピーダンスとなるフェライトにより形成される
     請求項1記載のアンテナ装置。
  3.  上記高周波遮断部は、
      低周波では低インピーダンスであり、高周波ではハイインピーダンスとなる高周波的に分離するためのチップ部品により形成される
     請求項1記載のアンテナ装置。
  4.  上記接続部は、
      アンテナ素子が形成されたアンテナ基板部を有し、
      上記アンテナ素子は、
       上記電源コードが接続される第1接続部と、
       上記高周波信号ケーブルが接続される第2接続部と、を含む
     請求項1から3のいずれか一に記載のアンテナ装置。
  5.  上記電源コードは、
      第1電源コードと第2電源コードとに分岐され、上記2つの高周波遮断部は、上記第1電源コード側および上記第2電源コード側に配置され、
      上記2つの高周波遮断部間の分岐部の線が上記アンテナ素子の上記第1接続部に接続され、
     上記高周波信号ケーブルは、
      芯線とシールド部が同心状に形成された同軸ケーブルにより形成され、
      上記芯線が上記アンテナ素子の第2接続部に接続されている
     請求項4記載のアンテナ装置。
  6.  上記電源コードは、
      同軸ケーブルにより形成され、
      上記2つの高周波遮断部間の分岐部において外皮が除去されて上記シールド部が上記第アンテナ素子の上記第1接続部に接続されている
     請求項5記載のアンテナ装置。
  7.  上記電源コードは、
      芯線とシールド部が同心状に形成された同軸ケーブルにより形成され、
      上記第1電源コードは、2つの分割電源コードに分割され、
      一方の分割電源コードの一端部と他方の分割電源コードの一端部が上記チップ部品を介して上記芯線同士およびシールド部同士が接続され、
      上記一方の分割電源コードの他端部と上記第2電源コードの端部が、上記第1アンテ
    ナ素子上記第1接続部において、上記チップ部品を介して上記芯線同士およびシールド部同士が接続されている
     請求項5記載のアンテナ装置。
  8.  上記第1接続部は、
      フィルタを介して上記第1電源コードと接続されている
     請求項4から6のいずれか一に記載のアンテナ装置。
  9.  上記第1接続部および上記チップ部品は、
      フィルタを介して芯線およびシールド部が接続されている
     請求項4から8のいずれか一に記載のアンテナ装置。
  10.  上記接続部内には、第1アンテナ素子と第2アンテナ素子が形成されたアンテナ基板部が設けられており、
     上記高周波信号ケーブルは、上記アンテナ基板部から高周波信号を取り出し、
     上記電源コードは、
      2つの高周波遮断部間の一部が上記第1アンテナ素子に接続されて第1のアンテナを形成し、
     上記高周波信号ケーブルは、
      上記第1アンテナ素子および第2アンテナ素子に接続され、
     上記アンテナ基板部は、
      第1アンテナ素子と上記第2アンテナ素子により第2のアンテナが形成されている
     請求項1記載のアンテナ装置。
  11.  上記高周波遮断部は、
      低周波では低インピーダンスであり、高周波ではハイインピーダンスとなるフェライトにより形成される
     請求項10記載のアンテナ装置。
  12.  上記高周波遮断部は、
      低周波では低インピーダンスであり、高周波ではハイインピーダンスとなる高周波的に分離するためのチップ部品により形成される
     請求項10記載のアンテナ装置。
  13.  上記第1アンテナ素子は、
      上記電源コードが接続される第1接続部と、
      上記高周波信号ケーブルが接続される第2接続部と、を有し、
     上記電源コードは、
      第1電源コードと第2電源コードとに分岐され、上記2つの高周波遮断部は、上記第1電源コード側および上記第2電源コード側に配置され、
      上記2つの高周波遮断部間の分岐部の線が上記第1アンテナ素子の上記第1接続部に接続され、
     上記高周波信号ケーブルは、
      芯線とシールド部が同心状に形成された同軸ケーブルにより形成され、
      上記芯線が上記第1アンテナ素子の第2接続部に接続され、
      上記シールド部が上記第2のアンテナ素子に接続されている
     請求項10から12のいずれか一に記載のアンテナ装置。
  14.  上記電源コードは、
      同軸ケーブルにより形成され、
      上記2つの高周波遮断部間の分岐部において外皮が除去されて上記シールド部が上記第1アンテナ素子の上記第1接続部に接続されている
     請求項13記載のアンテナ装置。
  15.  上記電源コードは、
      芯線とシールド部が同心状に形成された同軸ケーブルにより形成され、
      上記第1電源コードは、2つの分割電源コードに分割され、
      一方の分割電源コードの一端部と他方の分割電源コードの一端部が上記チップ部品を介して上記芯線同士およびシールド部同士が接続され、
      上記一方の分割電源コードの他端部と上記第2電源コードの端部が、上記第1アンテナ素子上記第1接続部において、上記チップ部品を介して上記芯線同士およびシールド部同士が接続されている
     請求項13記載のアンテナ装置。
  16.  上記第1接続部は、
      フィルタを介して上記第1電源コードと接続されている
     請求項13から15のいずれか一に記載のアンテナ装置。
  17.  上記第1接続部および上記チップ部品は、
      フィルタを介して芯線およびシールド部が接続されている
     請求項15記載のアンテナ装置。
  18.  上記第2アンテナ素子は、
      アンテナグランドとして形成され、
     上記第1アンテナ素子は、
      上記第2アンテナ素子よりサイズが小さく形成され、
      上記第2接続部において、入力インピーダンスを調整するためのマッチング素子を介して上記高周波信号ケーブルと接続されている
     請求項10から17のいずれか一に記載のアンテナ装置。
  19.  上記高周波信号ケーブルは、
      上記芯線が上記第2接続部に直接または平衡不平衡変換器を介して接続される
     請求項10から18のいずれか一に記載のアンテナ装置。
PCT/JP2010/058423 2009-05-20 2010-05-19 アンテナ装置 WO2010134538A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080020974.6A CN102422489B (zh) 2009-05-20 2010-05-19 天线装置
BRPI1010905A BRPI1010905A2 (pt) 2009-05-20 2010-05-19 dispositivo de antena.
US13/320,065 US8780011B2 (en) 2009-05-20 2010-05-19 Antenna device
EP10777771.6A EP2434579B1 (en) 2009-05-20 2010-05-19 Antenna device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009122568A JP5526603B2 (ja) 2009-05-20 2009-05-20 アンテナ装置
JP2009122569A JP5521391B2 (ja) 2009-05-20 2009-05-20 アンテナ装置
JP2009-122569 2009-05-20
JP2009-122568 2009-05-20

Publications (1)

Publication Number Publication Date
WO2010134538A1 true WO2010134538A1 (ja) 2010-11-25

Family

ID=43126215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058423 WO2010134538A1 (ja) 2009-05-20 2010-05-19 アンテナ装置

Country Status (7)

Country Link
US (1) US8780011B2 (ja)
EP (1) EP2434579B1 (ja)
KR (1) KR20120020117A (ja)
CN (1) CN102422489B (ja)
BR (1) BRPI1010905A2 (ja)
TW (1) TWI448000B (ja)
WO (1) WO2010134538A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5444786B2 (ja) 2009-03-30 2014-03-19 ソニー株式会社 受信装置
JP5861455B2 (ja) 2011-12-28 2016-02-16 ソニー株式会社 アンテナ装置
JP2013219746A (ja) * 2012-03-15 2013-10-24 Seiko Epson Corp スリーブアンテナ及び無線通信装置
CN104428947B (zh) 2012-07-13 2018-08-14 索尼公司 天线
JP6067495B2 (ja) * 2013-07-02 2017-01-25 ソニーセミコンダクタソリューションズ株式会社 アンテナ装置および車載用電子機器
US10177432B2 (en) * 2013-12-06 2019-01-08 Halliburton Energy Services, Inc. Flexible antenna assembly for well logging tools
WO2016031116A1 (ja) * 2014-08-26 2016-03-03 ソニー株式会社 アンテナ
CN105680156B (zh) * 2014-11-21 2019-04-26 联想(北京)有限公司 一种近距离通信天线、电子设备及电路切换方法
KR102311241B1 (ko) 2016-03-29 2021-10-12 소니그룹주식회사 수신기 및 rf 신호 공급 장치
WO2019107476A1 (ja) * 2017-11-29 2019-06-06 大日本印刷株式会社 配線基板および配線基板の製造方法
KR102488640B1 (ko) * 2018-01-30 2023-01-16 삼성전자주식회사 Usb 커넥터를 이용하여 안테나 기능을 수행하기 위한 장치 및 방법
CN115603047A (zh) * 2022-09-29 2023-01-13 惠州沃睿科技有限公司(Cn) 一种fm天线结构及其使用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151932A (ja) * 2000-11-07 2002-05-24 Funai Electric Co Ltd アンテナ機能を備えたac電源コード
JP2005159727A (ja) * 2003-11-26 2005-06-16 Mitsubishi Electric Corp アンテナ装置
JP2009055535A (ja) * 2007-08-29 2009-03-12 Yazaki Corp アンテナ接続構造及びアンテナ接続方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168982A (ja) 1999-12-10 2001-06-22 Nec Corp アンテナ付き充電器およびこれを用いる携帯電話機
JP2001274704A (ja) 2000-03-28 2001-10-05 Sony Corp 受信装置及びアンテナ装置
DE10341964A1 (de) 2003-09-11 2005-05-12 Hirschmann Electronics Gmbh Antenne für den DVB-T-Empfang
JP4105078B2 (ja) 2003-10-31 2008-06-18 株式会社東芝 アンテナ装置、受信装置及び受信システム
JP2005341067A (ja) 2004-05-25 2005-12-08 Sharp Corp 受信装置及び電源コード
JP4023500B2 (ja) * 2004-08-03 2007-12-19 ソニー株式会社 イヤホンアンテナ
JP4904895B2 (ja) 2006-04-12 2012-03-28 ソニー株式会社 アンテナ装置
WO2007138669A1 (ja) * 2006-05-29 2007-12-06 Panasonic Corporation Acアダプタ及び携帯端末装置
JP2008219809A (ja) 2007-03-07 2008-09-18 Sony Corp 中継装置
JP5402471B2 (ja) * 2008-12-05 2014-01-29 ソニー株式会社 電源装置、電源ケーブル、および受信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151932A (ja) * 2000-11-07 2002-05-24 Funai Electric Co Ltd アンテナ機能を備えたac電源コード
JP2005159727A (ja) * 2003-11-26 2005-06-16 Mitsubishi Electric Corp アンテナ装置
JP2009055535A (ja) * 2007-08-29 2009-03-12 Yazaki Corp アンテナ接続構造及びアンテナ接続方法

Also Published As

Publication number Publication date
CN102422489A (zh) 2012-04-18
EP2434579A4 (en) 2013-01-02
BRPI1010905A2 (pt) 2016-03-15
EP2434579A1 (en) 2012-03-28
TWI448000B (zh) 2014-08-01
EP2434579B1 (en) 2014-02-12
US8780011B2 (en) 2014-07-15
US20120050133A1 (en) 2012-03-01
TW201119128A (en) 2011-06-01
KR20120020117A (ko) 2012-03-07
CN102422489B (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2010134538A1 (ja) アンテナ装置
US7907095B2 (en) Antenna device
US8391816B2 (en) Power supply device, power cable, and reception device
JP5444786B2 (ja) 受信装置
JP5690842B2 (ja) アンテナ一体型ハーネス
KR101646787B1 (ko) 수신 장치
US8379900B2 (en) Connecting device, antenna device, and receiving device
CN107123857B (zh) 天线装置和接收装置
JP5526603B2 (ja) アンテナ装置
JP5521391B2 (ja) アンテナ装置
JP6256929B2 (ja) アンテナ装置および受信装置
JP5949963B2 (ja) 受信装置
JP2011172122A (ja) 高周波受信伝送ケーブルおよび受信装置
JP2011049732A (ja) 小型ヘリカルチップアンテナ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080020974.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117026984

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13320065

Country of ref document: US

Ref document number: 8752/DELNP/2011

Country of ref document: IN

Ref document number: 2010777771

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1010905

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1010905

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111111