WO2010134230A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2010134230A1
WO2010134230A1 PCT/JP2010/000430 JP2010000430W WO2010134230A1 WO 2010134230 A1 WO2010134230 A1 WO 2010134230A1 JP 2010000430 W JP2010000430 W JP 2010000430W WO 2010134230 A1 WO2010134230 A1 WO 2010134230A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrode
semiconductor device
sealing film
electronic component
Prior art date
Application number
PCT/JP2010/000430
Other languages
English (en)
French (fr)
Inventor
櫻井大輔
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010134230A1 publication Critical patent/WO2010134230A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/165Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/90Methods for connecting semiconductor or solid state bodies using means for bonding not being attached to, or not being formed on, the body surface to be connected, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0652Bump or bump-like direct electrical connections from substrate to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/90Methods for connecting semiconductor or solid state bodies using means for bonding not being attached to, or not being formed on, the body surface to be connected, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18161Exposing the passive side of the semiconductor or solid-state body of a flip chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the present disclosure relates to a semiconductor device and a manufacturing method thereof, and relates to a semiconductor device having a substrate on which an electronic component such as a semiconductor element is mounted and a manufacturing method thereof.
  • bump electrodes are formed by forming bump electrodes such as solder bumps on the electrode terminals of semiconductor elements such as integrated circuits, and pressing the formed bump electrodes against the connection terminals of the mounting substrate and heating them. Form a connection.
  • thermosetting the material see, for example, Patent Document 1.
  • a sealing adhesive containing flux is supplied on a substrate having a metal pattern.
  • the semiconductor element having solder bumps is positioned, pressed and heated so that the bumps and the metal pattern face each other.
  • the solder bump and the metal pattern provided on the substrate are connected, and at the same time, the adhesive is thermally cured.
  • This disclosure is intended to realize a semiconductor device with improved connection reliability between an electronic component such as a semiconductor element and a substrate.
  • This disclosure has a configuration in which the semiconductor device covers the entire surface of the substrate and the semiconductor element.
  • the exemplary semiconductor device includes a first substrate having a first substrate electrode, a first component electrode, and the first substrate electrode and the first component electrode facing each other.
  • a first electronic component mounted on the substrate, a first connection member for electrically connecting the first substrate electrode and the first component electrode, and covering the entire surface of the first substrate, A sealing film containing a flux component, and the first electronic component is entirely covered with the sealing film.
  • the example semiconductor device has a difference in expansion in the thickness direction between the sealing film and the substrate in a process where heat is applied such as reflow and a repetition of a cooling and heating cycle, as compared with a case where an electronic component such as a semiconductor element is exposed. Get smaller. Also, the difference in stress applied in the thickness direction is reduced. For this reason, the warpage of the entire semiconductor device can be further reduced, and the connection reliability between the electronic component such as a semiconductor element and the substrate can be improved.
  • the first electronic component may be a semiconductor element.
  • the first electronic component may be a plurality, and at least one may be a semiconductor element.
  • the exemplary semiconductor device further includes a second substrate mounted on the sealing film, the first substrate has a first substrate connection electrode, and the second substrate has a second substrate connection electrode.
  • the first substrate connection electrode and the second substrate connection electrode may be configured to face each other and be electrically connected via the second connection member.
  • the first substrate and the second substrate have a structure in which the first substrate and the second substrate are bonded via the sealing film without a gap, the amount of expansion and contraction in the thickness direction when heat is applied is greater than when there is a gap. Get smaller. For this reason, the warp of the semiconductor device is reduced and the connection reliability is improved. Moreover, the effect that the penetration
  • the present invention can be applied to a semiconductor device that generates a large amount of heat.
  • the heat radiating plate may be configured to be in contact with the surface of the first electronic component opposite to the first component electrode.
  • the first connecting member may be a solder or a protruding electrode formed on the solder and the first component electrode.
  • An exemplary method for manufacturing a semiconductor device includes a step (a) of attaching a sealing film containing a flux on a first substrate having a first substrate electrode, and a first formed on a first electronic component.
  • the step (b) of connecting the first connecting member on the component electrode of step (b), and embedding the first electronic component in the sealing film after the step (b), the first substrate electrode and the first electrode The step (c) of electrically connecting the connecting member 1 and the step (d) of heating and curing the sealing film after the step (c).
  • the first step The entire side surface of the electronic component is covered with the sealing film.
  • the sealing resin for sealing between the semiconductor element and the substrate and the sealing resin for covering the semiconductor element can be formed of the same material and in one step. For this reason, since there is no space and adhesion is improved as compared with the case of using a plurality of sealing films, it is possible to easily manufacture a semiconductor device that improves connection reliability.
  • An example method for manufacturing a semiconductor device includes a step (e) of connecting a second connection member on a second substrate connection electrode formed on a second substrate, a step after the step (c), and a step Prior to (d), the second connection member connected to the second substrate connection electrode is embedded in the sealing film, and the first substrate connection electrode formed on the first substrate and the second substrate connection electrode are formed.
  • the step (f) of electrically connecting the connecting member may be further included.
  • the first electronic component is plural, and at least one may be a semiconductor element.
  • the first substrate is divided into a plurality of blocks on which at least one first electronic component is mounted. It is good also as a structure.
  • the semiconductor device and the manufacturing method thereof of the present disclosure it is possible to realize a semiconductor device with improved connection reliability between an electronic component such as a semiconductor element and a substrate.
  • FIG. 6 is a cross-sectional view illustrating an exemplary semiconductor device manufacturing method in the order of steps. It is sectional drawing which shows the modification of an example semiconductor device.
  • (A)-(c) is sectional drawing which shows the modification of a semiconductor device. It is sectional drawing which shows the modification of a semiconductor device. It is sectional drawing which shows a manufacturing method in order of a process about the modification of a semiconductor device. It is sectional drawing which shows a manufacturing method in order of a process about the modification of a semiconductor device.
  • FIG. 1 shows a cross-sectional configuration of an exemplary semiconductor device.
  • a first electronic component 13 that is a semiconductor element is mounted on a first substrate 12 that is a circuit board.
  • a sealing film 14 is formed on the first substrate 12, and the first electronic component 13 is embedded in the sealing film 14.
  • the first substrate 12 may be a circuit substrate such as a glass epoxy multilayer substrate or an aramid multilayer substrate. Further, a silicon substrate or the like may be used instead of the circuit board.
  • a first substrate electrode 21 is formed on the component mounting surface of the first substrate 12.
  • An external connection electrode 22 is formed on the surface (back surface) opposite to the component mounting surface of the first substrate 12.
  • Solder balls 23 are formed on the external connection electrodes 22. The solder ball 23 may be omitted.
  • the first electronic component 13 is a semiconductor element, and a first component electrode 31 is formed on one surface.
  • the first component electrode 31 is electrically connected to the first substrate electrode 21 via the first connection member 32.
  • the first connection member 32 is a protruding electrode such as a solder bump.
  • the first electronic component 13 is embedded in the sealing film 14, and the entire side surface of the first electronic component 13 is covered with the sealing film 14. For this reason, in the process of applying heat such as reflow and the repetition of the cooling and heating cycle, the stress difference and the expansion difference in the thickness direction between the sealing resin and the substrate are reduced as compared with the case where the semiconductor element is exposed. Accordingly, warpage as a semiconductor device can be reduced, and connection reliability between an electronic component such as a semiconductor element and the substrate can be improved.
  • the sealing film 14 includes a base resin, a curing agent, an additive, an inorganic filler, and a flux component. Since it contains a flux component, it acts as a flux when the first connecting member 32 is melted and soldered to the first substrate electrode 21 and the first component electrode 31 in a heated and pressurized state. In addition, the first substrate 12 and the first electronic component 13 can be bonded and sealed by three-dimensional crosslinking by heating.
  • the base resin may be, for example, an epoxy resin, an acrylic resin, a phenol resin, a silicone resin, or a urethane resin.
  • the flux component may be, for example, a resin having a phenolic hydroxyl group, a cyclic olefin resin, malic acid, abietic acid, adipic acid, ascorbic acid, acrylic acid, citric acid, 2-furoic acid, or poly Acrylic acid or the like may be used.
  • the filler for example, an inorganic filler such as alumina or silica or an organic filler such as acrylic may be used, and the content may be 40 mass% to 70 mass%.
  • FIG. 1 As a specific example, when the linear expansion coefficient of the first substrate 12 is 10 ppm to 20 ppm and the elastic modulus is 10 GPa to 30 GPa, the linear expansion coefficient ⁇ 1 below the glass transition temperature of the sealing film 14 is 20 ppm to 40 ppm. It is desirable that the linear expansion coefficient ⁇ 2 above the glass transition temperature is 70 ppm to 120 ppm and the elastic modulus is 5 GPa to 10 GPa.
  • the size of the first substrate 12 is 15 mm ⁇ 15 mm, the thickness is 0.3 mm, and the size of the first electronic component 13 is 8 mm ⁇ 8 mm.
  • the thickness of the sealing film 14 may be set to 0.10 mm to 0.18 mm. With this configuration, the flatness of the first connecting member 32 made of solder balls can be suppressed to within 0.15 mm in the temperature range of ⁇ 50 ° C. to 150 ° C.
  • the sealing film 14 may be anything.
  • Various additives such as a curing catalyst, a colorant, an antifoaming agent, a flame retardant, and a coupling agent and a solvent may be added to the sealing film 14.
  • a thermoplastic resin may also be used.
  • FIG. 2 shows a method of manufacturing the semiconductor device according to this embodiment in the order of steps.
  • the first substrate 12 has a first substrate electrode 21 on the mounting surface and an external connection electrode 22 on the back surface.
  • the first substrate electrode 21 may be formed of an alloy of gold, nickel, and copper (AuNiCu), copper, or the like.
  • the solder balls 23 may be connected to the external connection electrodes 22, but they may not be connected.
  • the sealing film 14 may be attached using a roller or a pressure device. What is necessary is just to select suitably sticking conditions, such as normal temperature pressurization, vacuum pressurization, or heat pressurization.
  • the first electronic component 13 may be a semiconductor element formed on a semiconductor substrate, for example.
  • a first component electrode 31 is formed on the element formation surface of the semiconductor substrate.
  • a first connection member 32 made of a solder bump or the like is formed on the first component electrode 31.
  • the solder bumps may be formed by any method. For example, it may be formed by screen printing, or may be formed by plating, and is formed by a method in which solder balls are mounted in a state where flux is supplied onto the first component electrode 31 and placed in a reflow furnace. May be.
  • the material of the solder bump may be SnAg, SnAgCu, SnZn, SnZnBi, SnPb, SnBi, SnAgBiIn, or the like.
  • the first component electrode 31 may be Au, Cu, or the like, and may be formed using a sputtering method, a plating method, or the like.
  • the projection electrode (bump) which consists of gold
  • the first electronic component 13 is pressed in a heated state to perform heat pressure welding.
  • the heating temperature in this case is set to be equal to or lower than the temperature at which the first connecting member 32 melts.
  • the surface of the first electronic component 13 on which the first component electrode 31 is formed sinks more than the upper surface of the sealing film 14, and the first connection member formed on the first component electrode 31. It is preferable to pressurize until the top of 32 reaches the first substrate electrode 21 through the sealing film 14. If it does in this way, solder joining of the 1st connecting member 32 will become easy in a subsequent process.
  • the heating is performed to a temperature equal to or higher than the melting point of the solder to activate the flux component contained in the sealing film 14, and the first connection member 32 is melted and diffusion bonded to the first substrate electrode 21.
  • Solder may be precoated on the surface of the first substrate electrode 21 in advance. Pre-coating facilitates solder bonding even in the case of a large-sized substrate or a thin semiconductor element with large warpage.
  • the sealing film 14 is cured by continuing heating and heating. Then, it cools until it becomes below the freezing point of solder. Thereby, the first substrate electrode 21 and the first component electrode 31 can be electrically connected via the first connection member 32. Even after the connection is formed, it is desirable to further heat below the melting point of the solder. By this heat treatment, not only directly under the first electronic component 13 but also the curing reaction of the entire sealing film 14 is promoted, and higher reliability can be obtained.
  • a plurality of functional blocks are used by using a dicing device, a punching die device, a laser cutting device, or the like. Divide into According to this manufacturing method, a semiconductor device having the same planar dimensions of the sealing film 14 and the first substrate 12 and excellent end face accuracy can be obtained.
  • the solder may be melted and the sealing film may be cured.
  • the sealing film 14 is thermally contracted in the planar direction, the sealing film 14 is accommodated in the first substrate 12, and the external dimensions of the semiconductor device are the same as the external dimensions of the first substrate 12.
  • the semiconductor device of this embodiment uses a sheet-like sealing film 14. For this reason, it is easy to control the thickness of the sealing resin, and the occurrence of warpage due to the variation in the thickness of the sealing resin can be prevented. Therefore, high connection reliability can be realized even when miniaturization progresses.
  • the semiconductor device of this embodiment it is thinner if the surface (back surface) opposite to the surface on which the first component electrode is formed in the first electronic component 13 is exposed from the sealing film 14.
  • the number of manufacturing steps can be reduced and productivity can be improved.
  • the connection reliability is further improved when the entire first electronic component 13 is covered with the sealing film 14.
  • the second electronic device 13 is sealed on the sealing film 14 after the back surface of the first electronic component 13 is exposed from the sealing film 14.
  • a film may be attached and cured.
  • FIG. 1 shows an example in which one element is mounted on the first substrate 12. However, as shown in FIG. 3, a plurality of elements may be mounted on the first substrate 12.
  • FIG. 3 shows an example in which the first electronic component 13 includes a semiconductor element 13A, a wafer level chip size package 13B, and a chip capacitor 13C.
  • any element such as a resistance element, a coil, and a light emitting diode can be mounted.
  • the first substrate 12 When mounting a plurality of elements in this way, the first substrate 12 may be enlarged.
  • the first substrate 12 When the first substrate 12 is enlarged, it is preferable to match the linear expansion coefficient of the sealing film 14 with the linear expansion coefficient of the first substrate 12.
  • the filler filling amount may be changed.
  • the filling amount of the filler is small, the linear expansion coefficient of the sealing film 14 increases and the warp of the semiconductor device increases.
  • the filling amount of the filler is too large, the sealing film 14 becomes brittle and cracks are generated due to the tensile stress after thermosetting. For this reason, it is necessary to set the filling amount of the filler in an appropriate range.
  • the warp amount of the semiconductor device is about 0.09 mm. Due to the small amount of warpage, no defects such as open defects were found after mounting on the motherboard.
  • a heat radiating plate 15 may be provided as shown in FIG.
  • the radiator plate 15 may be formed of a material having high thermal conductivity such as stainless steel, copper, aluminum, or gold.
  • the heat radiating plate 15 may be a flat plate as shown in FIG. 4A, but may be a heat radiating plate 15B having columnar radiating fins as shown in FIG. 4B, or as shown in FIG. 4C.
  • the heat radiation plate 15C having needle-like heat radiation fins is preferable because the heat dissipation can be further enhanced.
  • the heat radiating fins may be formed integrally with the heat radiating plate main body or may be attached to the heat radiating plate main body.
  • the filler filled in the sealing film 14 is an inorganic filler such as alumina, silicon nitride, or silicon carbide having high thermal conductivity.
  • the resin containing the flux is adhered to the entire surface of the first substrate 12 with a uniform film thickness, and the first electronic component 13 can be covered. Furthermore, since the sealing film 14 and the first electronic component 13 are sandwiched between the heat dissipation plate 15 having a low linear expansion coefficient and the first substrate 12, warpage of the entire semiconductor device can be further reduced, and high connection reliability is ensured. At the same time, heat dissipation can be improved.
  • FIG. 5 shows a cross-sectional configuration of a modified example of the semiconductor device.
  • the second substrate 16 is mounted on the sealing film 14.
  • a second electronic component 17 is mounted on the mounting surface of the second substrate 16.
  • the second electronic component 17 is, for example, a semiconductor element, has a second component electrode 71, and is die-bonded on the second substrate 16 with the surface on which the second component electrode 71 is formed facing up. ing.
  • a second substrate electrode 61 is formed on the mounting surface of the second substrate 16, and the second substrate electrode 61 and the second component electrode 71 are electrically connected by a wire 72.
  • a sealing resin 18 is formed on the mounting surface of the second substrate 16 so as to cover the second electronic component 17 and the wires 72.
  • a second substrate connection electrode 65 is formed on the surface (back surface) opposite to the mounting surface of the second substrate 16.
  • a first substrate connection electrode 25 is formed on the mounting surface of the first substrate 12, and the first substrate connection electrode 25 and the second substrate connection electrode 65 face each other, and the second connection member 66. It is electrically connected via.
  • the second connection member 66 is formed of, for example, a copper ball and solder.
  • the sealing film 14 is filled between the first substrate 12 and the second substrate 16 without a gap. For this reason, the expansion and contraction amount and the thermal stress when heat is applied to the semiconductor device are reduced, and the warpage of the semiconductor device can be reduced. Therefore, high connection reliability can be ensured. Moreover, since intrusion of moisture such as water vapor can be prevented, the occurrence of defects such as corrosion and migration of the electrode portion can be suppressed. Therefore, the effect that high connection reliability can be ensured even under high temperature and high humidity can be obtained.
  • FIG. 6 shows a method of manufacturing a semiconductor device according to this modification in the order of steps.
  • the first electronic component 13 is placed on the first substrate 12, and the first substrate electrode 21 and the first component are placed.
  • the electrode 31 is connected to the first connection member 32.
  • the second electronic component 17 is mounted on the mounting surface of the second substrate 16.
  • the second electronic component 17 may be any type, but may be a memory, for example.
  • the mounting of the second electronic component 17 on the second substrate 16 may be performed by ordinary die bonding.
  • the sealing resin 18 is formed on the mounting surface of the second substrate 16 so as to cover the second electronic component 17 and the wire 72.
  • a second connection member 66 made of bumps is formed on the back surface of the second substrate 16.
  • the second connecting member 66 is, for example, supplied with solder to the second substrate connecting electrode 65 formed on the second substrate 16 by screen printing, then mounted with a copper ball, and heated using a reflow furnace or the like. May be formed.
  • the second connection member 66 is not limited to a bump made of a copper ball, but may be a stud bump made of gold or aluminum, or a plated bump made of solder, gold, gold-nickel, copper, indium, or the like. Thereafter, the second substrate 16 is mounted on the sealing film 14 so that the second substrate connection electrode 65 and the first substrate connection electrode 25 formed on the first substrate 12 face each other. .
  • the sealing film 14 is softened by heating, and the second connection member 66 pushes the sealing film 14 while contacting the first substrate connection electrode 25.
  • the second substrate 16 is pressed and pushed.
  • the first substrate connection electrode 25 is preferably precoated with solder in advance.
  • heating is performed to activate the flux component contained in the sealing film 14, and the oxide film on the electrode surface is removed.
  • solder is further heated to a melting point or higher, copper and solder are diffusion-bonded and a curing reaction of the sealing film 14 starts. Furthermore, it heats and completes the curing reaction of the sealing film 14.
  • each block is divided by a dicing blade or the like.
  • the sealing film 14 is affixed on the whole surface on the 1st board
  • substrate was demonstrated, you may affix locally only on a required part.
  • the first substrate 12 and the second substrate 16 can be easily bonded without a gap, so that the warpage of the entire semiconductor device can be reduced and high connection reliability is ensured. it can.
  • the division is performed after mounting the second substrate 16 on the first substrate 12, but the division may be performed first as shown in FIG. As shown in FIG. 7A, after mounting the first electronic component on the first substrate 12, the first substrate 12 is divided into a plurality of parts by punching using a mold. To do.
  • the second substrate 16 is aligned with respect to each portion.
  • the second substrate 16 is heated and pressed to push the second connecting member 66 into the sealing film 14, and then solder is bonded and sealed.
  • the film 14 is cured. As a result, the sealing film cures and shrinks and falls within the outer dimensions of the substrate 12.
  • a plurality of elements may be mounted as the first electronic component 13 on the first substrate 12.
  • the second electronic component 17 may be an electronic component other than a semiconductor element, and may further include a plurality of elements.
  • the example in which the second electronic component 17 is mounted on the second substrate 16 by wire bonding is shown, it may be mounted by flip chip mounting or the like.
  • a semiconductor device and a manufacturing method thereof according to the present disclosure can realize a semiconductor device having improved connection reliability between an electronic component such as a semiconductor element and a substrate, and in particular, a semiconductor device mounted with a semiconductor element or the like having a narrow pitch, and It is useful as a manufacturing method thereof.

Abstract

 半導体装置は、第1の基板電極21を有する第1の基板12と、第1の部品電極31を有し、第1の基板電極21と第1の部品電極31とを対向させて第1の基板12の上に搭載された第1の電子部品13と、第1の基板電極21と第1の部品電極31とを電気的に接続する第1の接続部材32と、第1の基板12上の全面を覆い、フラックス成分を含有する封止フィルム14とを備えている。第1の電子部品13は側面全体が封止フィルム14に覆われている。

Description

半導体装置及びその製造方法
 本開示は半導体装置及びその製造方法に関し、半導体素子等の電子部品が実装された基板を有する半導体装置及びその製造方法に関する。
 近年、半導体素子に設けられた回路が高密度化されるに従い、電極端子の数を多くすると共に電極端子のピッチを狭くすることが進められている。電極端子の狭ピッチ化に伴い、半導体素子を実装基板にフリップチップ実装する際に半導体素子と実装基板との間に注入する封止樹脂に対する要求が厳しくなってきている。
 通常、フリップチップ実装においては、集積回路等の半導体素子の電極端子上にはんだバンプ等の突起電極を形成し、形成した突起電極を実装基板の接続端子に対して圧接して加熱することによりバンプ接続を形成する。
 はんだバンプを用いたフリップチップ接合では、はんだ接合後にフラックスを洗浄し、封止樹脂の注入を行い、注入した封止樹脂を熱硬化する方法が知られている。この方法では、実装基板の電極上にフラックスを供給した後、はんだバンプが形成された半導体素子を位置合わせし、実装基板上に搭載する。その後リフロー炉等の加熱手段によりはんだを溶融接合した後、洗浄液に浸漬しフラックス成分を溶解洗浄する。その後、はんだ接合部の耐落下及び曲げ信頼性を強化する目的で、半導体素子と実装基板との間の空隙に、ディスペンサー等を用いて封止樹脂を注入した後、注入した封止樹脂を熱硬化させる。
 しかし、電極端子の狭ピッチ化が進展し、半導体素子と実装基板の電極と間の隙間も小さくなってきている。このため、洗浄液の循環が悪くなりフラックスが実装基板上に残り、使用環境下においてオープン不良や剥離が発生するおそれが増大している。また、空隙が狭いために毛細管現象の効果を発揮できず、封止樹脂の注入に時間を要し、生産性が低下するというお問題が生じている。
 このような不具合への対策として、フラックスを含有した封止接着材を基板上に供給した後、はんだバンプを形成した半導体素子をマウントし、加熱及び加圧手段によって、はんだ接合と同時に封止接着材を熱硬化する方法がある(例えば、特許文献1を参照。)。例えば、金属パターンを有する基板の上にフラックスを含有した封止接着材を供給する。この後、はんだバンプを有する半導体素子をバンプと金属パターンとが対向するように位置合わせをして加圧及び加熱する。これにより、はんだバンプと基板上に設けられた金属パターンとを接続すると同時に接着材を熱硬化させる。
 しかし、近年特にモバイル機器に代表される電子機器において、半導体装置の薄型化及び高機能化への要求が高まり、それに追従するため半導体素子及び回路基板の薄型化や回路基板の大型化が進められている。先に述べた方法を薄い半導体素子に適用した場合、加圧によりはみ出した封止接着材が半導体素子の裏面に回り込むおそれがある。半導体基板の熱膨張係数と封止接着剤の線膨張係数との間には差がある。このため、半導体素子の裏面に回り込んだ封止接着材が熱硬化により硬化した後、リフロー炉等により熱が加えられると半導体素子が割れるおそれがある。
 そこで、フラックスを含有した封止フィルムを基板上に載置することにより、封止接着材の量を制御しやすくし、半導体素子裏面への封止接着材の回り込みを防止する方法が提案されている(例えば、特許文献2を参照。)。
特許第2589239号明細書 特許第4047754号明細書
 しかしながら、半導体素子等の電子部品が剥き出しの状態では、リフロー炉等の熱のかかる工程後に、半導体素子の線膨張係数と回路基板の線膨張係数との差による影響を大きく受ける。このため、半導体装置の反りが大きくなり、半導体装置をマザーボードへ実装する際に、電極端子のオープン不良が発生するおそれがある。さらに、高温の使用環境と低温の使用環境とを繰り返すと、半導体素子と回路基板の線膨張係数及び弾性率の差から、接続部に大きな熱応力負荷がかかり、接続部が破断し、オープン不良が発生するおそれがある。このように、従来の半導体装置には、半導体素子と基板との接続信頼性が低いという問題があった。
 本開示は、半導体素子等の電子部品と基板との接続信頼性を向上させた半導体装置を実現できるようにすることを目的とする。
 本開示は半導体装置を、封止フィルムが基板上の全面を覆い且つ半導体素子を覆う構成とする。
 具体的に、例示の半導体装置は、第1の基板電極を有する第1の基板と、第1の部品電極を有し、第1の基板電極と第1の部品電極とを対向させて第1の基板の上に搭載された第1の電子部品と、第1の基板電極と第1の部品電極とを電気的に接続する第1の接続部材と、第1の基板上の全面を覆い、フラックス成分を含有する封止フィルムとを備え、第1の電子部品は側面全体が封止フィルムに覆われている。
 例示の半導体装置は、リフロー等の熱がかかる工程及び冷熱サイクルの繰り返し等において、半導体素子等の電子部品が剥き出しの場合と比べて、封止フィルムと基板との厚さ方向の膨張の差が小さくなる。また、厚さ方向に加わる応力の差も小さくなる。このため、半導体装置全体としての反りがさらに低減でき、半導体素子等の電子部品と基板との接続信頼性を向上させることができる。
 例示の半導体装置において、第1の電子部品は、半導体素子であればよい。また、第1の電子部品は複数であり、少なくとも1つは半導体素子である構成としてもよい。
 例示の半導体装置は、封止フィルムの上に搭載された第2の基板をさらに備え、第1の基板は第1の基板接続電極を有し、第2の基板は第2の基板接続電極を有し、第1の基板接続電極と第2の基板接続電極とは、互いに対向し且つ第2の接続部材を介して電気的に接続されている構成としてもよい。この場合、第1の基板と第2の基板とが封止フィルムを介して隙間なく接着された構造となるため、熱が加えられた際の厚さ方向の伸縮量が隙間がある場合よりも小さくなる。このため、半導体装置の反りが小さくなり、接続信頼性が向上する。また、水分の侵入を低減できるという効果も得られる。
 例示の半導体装置において、封止フィルムの上に搭載された放熱板をさらに備えていることが好ましい。このような構成とすることにより、発熱量が大きい半導体装置の場合にも適用することができる。この場合において、放熱板は第1の電子部品における第1の部品電極と反対側の面と接している構成とすればよい。
 例示の半導体装置において、第1の接続部材は、はんだであっても、はんだ及び第1の部品電極の上に形成された突起電極としてもよい。
 例示の半導体装置の製造方法は、第1の基板電極を有する第1の基板の上にフラックスを含有する封止フィルムを貼り付ける工程(a)と、第1の電子部品に形成された第1の部品電極の上に第1の接続部材を接続する工程(b)と、工程(b)よりも後に、第1の電子部品を封止フィルム中に埋設すると共に、第1の基板電極と第1の接続部材とを電気的に接続する工程(c)と、工程(c)よりも後に、封止フィルムを加熱して硬化する工程(d)とを備え、工程(b)では第1の電子部品の側面全体が封止フィルムに覆われるようにする。
 例示の半導体装置の製造方法によれば、半導体素子と基板の間を封止する封止樹脂と、半導体素子を覆う封止樹脂とを同一材料で且つ一工程で形成できる。このため、複数の封止フィルムを用いる場合に比べ空隙がなく密着性が向上するので、接続信頼性を向上する半導体装置を容易に製造することが可能となる。
 例示の半導体装置の製造方法は、第2の基板に形成された第2の基板接続電極の上に第2の接続部材を接続する工程(e)と、工程(c)よりも後で且つ工程(d)よりも前に、第2の基板接続電極と接続された第2の接続部材を封止フィルム中に埋設すると共に、第1の基板に形成された第1の基板接続電極と第2の接続部材とを電気的に接続する工程(f)とをさらに備えていてもよい。
 例示の半導体装置の製造方法において、第1の電子部品は複数であり、少なくとも1つは半導体素子としてもよい。
 例示の半導体装置の製造方法において、第1の電子部品は複数であり、工程(d)よりも後に、第1の基板を少なくとも1つの第1の電子部品が搭載された複数のブロックに分割する構成としてもよい。
 本開示の半導体装置及びその製造方法によれば、半導体素子等の電子部品と基板との接続信頼性を向上させた半導体装置を実現できる。
例示の半導体装置を示す断面図である。 例示の半導体装置の製造方法を工程順に示す断面図である。 例示の半導体装置の変形例を示す断面図である。 (a)~(c)は半導体装置の変形例を示す断面図である。 半導体装置の変形例を示す断面図である。 半導体装置の変形例について製造方法を工程順に示す断面図である。 半導体装置の変形例について製造方法を工程順に示す断面図である。
 図1は、例示の半導体装置の断面構成を示している。図1に示すように例示の半導体装置は、回路基板である第1の基板12の上に、半導体素子である第1の電子部品13が搭載されている。第1の基板12の上には封止フィルム14が形成され、第1の電子部品13は封止フィルム14に埋め込まれている。
 第1の基板12は、例えば、ガラスエポキシ多層基板又はアラミド多層基板等の回路基板とすればよい。また、回路基板に代えてシリコン基板等であってもよい。第1の基板12の部品搭載面には、第1の基板電極21が形成されている。第1の基板12の部品搭載面と反対側の面(裏面)には、外部接続電極22が形成されている。外部接続電極22には、はんだボール23が形成されている。はんだボール23はなくてもかまわない。
 第1の電子部品13は半導体素子であり、一の面に第1の部品電極31が形成されている。第1の部品電極31は、第1の接続部材32を介して第1の基板電極21と電気的に接続されている。第1の接続部材32は、はんだバンプ等の突起電極である。第1の電子部品13は、封止フィルム14中に埋設されており、第1の電子部品13の側面全体が封止フィルム14により覆われている。このため、リフロー等の熱がかかる工程及び冷熱サイクルの繰り返しにおいて、半導体素子が剥き出しの場合と比較し、封止樹脂と基板で厚み方向にかかる応力差、膨張差が少なくなる。従って、半導体装置としての反りが低減でき、半導体素子などの電子部品と基板との接続信頼性を向上させることができる。
 封止フィルム14は、ベース樹脂、硬化剤、添加剤、無機フィラー及びフラックス成分を含む。フラックス成分を含むため、加熱加圧した状態で第1の接続部材32を溶融して第1の基板電極21と第1の部品電極31とをはんだ接合する際に、フラックスとして作用する。また、加熱することにより三次元架橋し、第1の基板12と第1の電子部品13とを接着封止することができる。
 ベース樹脂は、例えば、エポキシ樹脂、アクリル樹脂、フェノール樹脂、シリコーン樹脂又はウレタン樹脂等とすればよい。また、フラックス成分は、例えば、フェノール性水酸基を有する樹脂、環状オレフィン系樹脂、リンゴ酸、アビエチン酸、アジピン酸、アスコルビン酸、アクリル酸、クエン酸、2-フロイック酸(2-furoic acid)又はポリアクリル酸等とすればよい。フィラーには、例えばアルミナ若しくはシリカ等の無機フィラー又はアクリル等の有機フィラーを用いればよく、含有率は40質量%~70質量%とすればよい。
 封止フィルム14は、第1の基板12及び第1の電子部品13の材質及び大きさ等に応じて最適な特性となるように選択すればよい。具体的な一例を挙げると、第1の基板12の線膨張係数が10ppm~20ppmで、弾性率が10GPa~30GPaの場合、封止フィルム14のガラス転位温度以下の線膨張係数α1を20ppm~40ppmとし、ガラス転位温度以上の線膨張係数α2を70ppm~120ppmとし、弾性率を5GPa~10GPaとすることが望ましい。封止フィルムの厚さの具体的な一例を挙げると、第1の基板12のサイズが15mm×15mmで、厚さが0.3mmであり、第1の電子部品13のサイズが8mm×8mmで、厚さが0.10mmmであり、第1の接続部材32の高さが0.05mmの場合、封止フィルム14の厚さを0.10mm~0.18mmとすればよい。この構成により、-50℃~150℃までの温度範囲において、はんだボールからなる第1の接続部材32の平坦度を0.15mm以内に抑えることができた。
 未硬化状態のシート性、溶融粘度、酸化皮膜除去性及び硬化性のバランスがとれれば、封止フィルム14はどのようなものであってもよい。封止フィルム14に、硬化触媒、着色料、消泡剤、難燃剤、カップリング剤等の各種添加剤及び溶剤を添加してもかまわない。また、熱可塑性樹脂であってもよい。
 図2は、本実施形態に係る半導体装置の製造方法を工程順に示している。まず、図2(a)に示すように、第1の基板12の搭載面の上に封止フィルム14を貼り付けた後、封止フィルム14の上に第1の電子部品13を載置する。
 第1の基板12は、搭載面に第1の基板電極21を有し、裏面に外部接続電極22を有する。第1の基板電極21は、金とニッケルと銅との合金(AuNiCu)又は銅等により形成すればよい。外部接続電極22には、はんだボール23を接続すればよいが、なくてもよい。封止フィルム14の貼り付けは、ローラー又は加圧装置等を用いて行えばよい。常温加圧、真空加圧又は加熱加圧等貼り付け条件は適宜選択すればよい。
 第1の電子部品13は、例えば半導体基板に形成された半導体素子とすればよい。半導体基板の素子形成面の上に第1の部品電極31が形成されている。第1の部品電極31の上には、はんだバンプ等からなる第1の接続部材32が形成されている。はんだバンプはどのような方法で形成してもよい。例えば、スクリーン印刷により形成してもよく、めっき法により形成してもよく、フラックスを第1の部品電極31の上に供給した状態ではんだボールを搭載し、リフロー炉に投入する方法により形成してもよい。なお、はんだバンプの材質は、SnAg、SnAgCu、SnZn、SnZnBi、SnPb、SnBi又はSnAgBiIn等とすればよい。また、第1の部品電極31は、Au又はCu等とすればよく、スパッタリング法又はめっき法等を用いて形成すればよい。なお、第1の部品電極31の上に、金、銅又はインジウム等からなる突起電極(バンプ)をあらかじめ形成した後、その上にはんだバンプを形成してもよい。
 次に、図2(b)に示すように、第1の電子部品13を加熱した状態で押圧し、熱圧接を行う。この場合の加熱温度は、第1の接続部材32が溶融する温度以下とする。また、第1の電子部品13における第1の部品電極31が形成された面が、封止フィルム14の上面よりも沈み込み、第1の部品電極31の上に形成された第1の接続部材32の頭頂部が封止フィルム14を突き破って第1の基板電極21に届くまで加圧することが好ましい。このようにすれば、後の工程において第1の接続部材32のはんだ接合が容易となる。次に、はんだの融点以上まで昇温加熱を行い、封止フィルム14中に含まれるフラックス成分を活性化させると共に、第1の接続部材32を溶融させて第1の基板電極21と拡散接合する。第1の基板電極21の表面にあらかじめはんだをプリコートしてもよい。プリコートにより、大型基板又は反りが大きい薄型半導体素子の場合にもはんだ接合が容易となる。続いて、昇温加熱を継続することにより、封止フィルム14の硬化を行う。その後、はんだの凝固点以下になるまで冷却を行う。これにより、第1の基板電極21と第1の部品電極31とを第1の接続部材32を介して電気的に接続できる。なお、接続が形成された後もさらにはんだの融点以下の加熱を行うことが望ましい。この加熱処理により、第1の電子部品13の直下だけでなく封止フィルム14全体の硬化反応が促進され、より高い信頼性が得られるようになる。
 次に、第1の基板12に複数個の機能ブロックを形成した場合には、図2(c)に示すように、ダイシング装置、打ち抜き金型装置又はレーザ切断装置等を用いて複数の機能ブロックに分割する。この製造方法によれば、封止フィルム14と第1の基板12の平面寸法が同一で端面精度に優れた半導体装置を得られる。
 なお、第1の基板12を分割した後に、はんだの溶融及び封止フィルムの硬化を行ってもよい。この場合には、封止フィルム14が平面方向に熱収縮するため、第1の基板12の内部に納まり、半導体装置の外形寸法は第1の基板12の外形寸法と同一となる。
 本実施形態の半導体装置は、シート状の封止フィルム14を用いている。このため、封止樹脂の厚さが制御しやすく、封止樹脂の厚さのばらつきによる反りの発生を防ぐことができる。従って、微細化が進んだ場合でも高い接続信頼性を実現することができる。
 以上の製造方法により製造した半導体装置を、断面研磨により断面解析した結果、はんだ接合部と封止フィルム14との密着性、第1の電子部品13における第1の部品電極31の形成面と封止フィルム14との密着性及び第1の基板12における第1の基板電極21の形成面と封止フィルム14との密着性はいずれも良好であった。また、温度85℃、湿度85%の条件下でストレス試験を行ったところ、1000サイクルにおいても安定した接続抵抗を確保することができた。このように、本実施形態の半導体装置は、フラックスを含む封止フィルムを用いることにより、均一な厚さの封止樹脂層を第1の基板12上の全面に形成することが容易にでき、半導体装置全体の反りを低減でき、高い接続信頼性を確保できる。
 なお、本実施形態の半導体装置において、第1の電子部品13における第1の部品電極が形成された面と反対側の面(裏面)を封止フィルム14から露出するようにした方が、薄型化でき製造工程も少なくなり生産性を向上させることができる。但し、第1の電子部品13の全体が封止フィルム14に覆われるようにした方が、より接続信頼性が向上するという利点がある。第1の電子部品13の全体を樹脂封止する場合には、第1の電子部品13の裏面が封止フィルム14から露出する状態とした後、封止フィルム14の上に第2の封止フィルムを貼り付けて硬化させればよい。
 図1においては、第1の基板12の上に、1つの素子が搭載されている例を示している。しかし、図3に示すように、第1の基板12の上に複数の素子が搭載されていてもよい。図3は、第1の電子部品13が半導体素子13Aと、ウェハレベルチップサイズパッケージ13Bと、チップコンデンサー13Cとを含む例を示している。この他、抵抗素子、コイル及び発光ダイオード等のどのような素子を搭載することも可能である。
 このように複数の素子を搭載する場合には、第1の基板12が大型化する場合がある。第1の基板12が大型化した場合には、封止フィルム14の線膨張係数と第1の基板12の線膨張係数を合わせるようにすることが好ましい。封止フィルム14の線膨張係数を調整するためには、フィラーの充填量を変化させればよい。フィラーの充填量が少ないと封止フィルム14の線膨張係数が大きくなり半導体装置の反りが大きくなる。一方、フィラーの充填量が多すぎると封止フィルム14がもろくなり、熱硬化後の引っ張り応力により割れが発生する。このため、フィラーの充填量は適切な範囲に設定する必要がある。例えば、第1の基板12のサイズが20mm×20mmの場合に、封止フィルム14のフィラー充填量を50質量%~60質量%とすると、半導体装置の反り量は約0.09mmとなった。反り量が小さいため、マザーボードへ実装した後に、オープン不良等の不具合は認められなかった。
 また、第1の電子部品13が高速演算処理チップのような発熱量が大きい素子の場合には、図4に示すように放熱板15を設けてもよい。放熱板15は、ステンレス、銅、アルミニウム又は金等の熱伝導率の高い材料により形成すればよい。また、放熱板15は図4(a)に示すように平板としてもよいが、図4(b)に示すような柱状の放熱フィン有する放熱板15Bとしたり、図4(c)に示すように、針状の放熱フィンを有する放熱板15Cとしたりすれば、さらに放熱性を高くすることができ好ましい。放熱フィンは放熱板本体と一体に形成しても、放熱板本体に貼り付けてもよい。
 放熱性を要求される場合には、封止フィルム14に充填するフィラーを、熱伝導性が高いアルミナ、窒化珪素又は炭化珪素等の無機フィラーとすることが好ましい。
 このような構成とすれば、フラックスを含む樹脂が均一な膜厚で第1の基板12上の全面に接着され、第1の電子部品13を覆うことができる。さらに、線膨張係数が低い放熱板15と第1の基板12とにより封止フィルム14及び第1の電子部品13を挟み込むので、半導体装置全体の反りをさらに低減でき、高い接続信頼性を確保すると共に放熱性も向上させることができる。
 図5は半導体装置の変形例についての断面構成を示している。図5において図1と同一の構成要素には同一の符号を附すことにより説明を省略する。本変形例は、封止フィルム14の上に第2の基板16が搭載されている。第2の基板16の搭載面には第2の電子部品17が搭載されている。第2の電子部品17は、例えば半導体素子であり、第2の部品電極71を有し、第2の部品電極71が形成された面を上にして第2の基板16の上にダイボンディングされている。第2の基板16の搭載面には、第2の基板電極61が形成され、第2の基板電極61と第2の部品電極71とは、ワイヤ72により電気的に接続されている。第2の基板16の搭載面の上には、第2の電子部品17及びワイヤ72を覆うように封止樹脂18が形成されている。
 第2の基板16の搭載面と反対側の面(裏面)には、第2の基板接続電極65が形成されている。第1の基板12の搭載面には、第1の基板接続電極25が形成されており、第1の基板接続電極25と第2の基板接続電極65とは対向し、第2の接続部材66を介して電気的に接続されている。第2の接続部材66は、例えば、銅ボールとはんだとにより形成されている。
 本変形例は、第1の基板12と第2の基板16との間に隙間なく封止フィルム14が充填されている。このため、半導体装置に熱が加わった際の膨張及び収縮量並びに熱応力が小さくなり、半導体装置の反りを低減できる。従って、高い接続信頼性を確保することが可能となる。また、水蒸気等の水分の侵入を防ぐことができるので、電極部の腐食及びマイグレーション等の不具合の発生を抑えることができる。従って、高温高湿下においても、高い接続信頼性を確保できるという効果も得られる。
 次に、本変形例の半導体装置の製造方法について説明する。図6は、本変形例に係る半導体装置の製造方法を工程順に示している。まず、先に図2(a)及び(b)に示したようにして、第1の基板12の上に第1の電子部品13を載置し、第1の基板電極21と第1の部品電極31とを第1の接続部材32を介して接続する。
 次に、図6(a)に示すように、まず、第2の基板16の搭載面の上に第2の電子部品17を搭載する。第2の電子部品17はどのようなものでもよいが、例えばメモリ等とすればよい。第2の電子部品17の第2の基板16への搭載は通常のダイボンディングにより行えばよい。続いて、第2の電子部品17及びワイヤ72を覆うように、第2の基板16の搭載面の上に封止樹脂18を形成する。次に、第2の基板16の裏面にバンプからなる第2の接続部材66を形成する。第2の接続部材66は、例えば、第2の基板16に形成された第2の基板接続電極65にスクリーン印刷によりはんだを供給した後、銅ボールを搭載し、リフロー炉等を用いて加熱して形成すればよい。なお、第2の接続部材66は銅ボールからなるバンプに限らず、金又はアルミニウム等からなるスタッドバンプ、はんだ、金、金―ニッケル、銅又はインジウム等からなるめっきバンプとしてもよい。この後、第2の基板接続電極65と、第1の基板12に形成された第1の基板接続電極25とが対向するように、第2の基板16を封止フィルム14の上に搭載する。
 次に、図6(b)に示すように、加熱により封止フィルム14を軟化させ、第2の接続部材66が封止フィルム14を押しのけながら、第1の基板接続電極25と接触するまで第2の基板16を加圧して押し込む。なお、第1の基板接続電極25にはあらかじめはんだをプリコートしておくことが好ましい。続いて、加熱を行い、封止フィルム14に含まれるフラックス成分を活性化し、電極表面の酸化皮膜を除去する。さらにはんだの融点以上まで加熱すると、銅とはんだが拡散接合されると共に、封止フィルム14の硬化反応が始まる。さらに、加熱し封止フィルム14の硬化反応を完了させる。
 次に、図6(c)に示すように、ブロック毎にダイシングブレード等により分割する。
 なお、封止フィルム14を第1の基板上の全面に貼り付ける場合について説明したが、必要な部分のみに局所的に貼り付けてもかまわない。このように、本変形例の製造方法によれば、第1の基板12と第2の基板16とが容易に隙間なく接着できるので、半導体装置全体の反りが低減でき、高い接続信頼性を確保できる。
 また、第1の基板12の上に第2の基板16を搭載した後、分割を行ったが、図7に示すように、先に分割を行ってもよい。図7(a)に示すように、第1の基板12の上に第1の電子部品を搭載した後、金型を用いて打ち抜きを行うことにより、第1の基板12を複数の部分に分割する。
 次に、図7(b)に示すように、各部分に対して、第2の基板16を位置合わせする。次に、図7(c)に示すように、第2の基板16を加熱加圧することにより、第2の接続部材66を封止フィルム14中に押し込んだ後、はんだを接合すると共に、封止フィルム14の硬化を行う。これにより、封止フィルムは硬化収縮し、基板12の外形寸法内に収まる。
 本変形例の場合においても、第1の基板12の上に第1の電子部品13として複数の素子が搭載されていてもよい。また、第2の電子部品17は、半導体素子以外の電子部品であってもよく、さらに複数の素子を含む構成としてもよい。第2の電子部品17をワイヤボンディングにより第2の基板16に搭載する例を示したが、フリップチップ実装等により搭載してもよい。
 本開示に係る半導体装置及びその製造方法は、半導体素子等の電子部品と基板との接続信頼性を向上させた半導体装置を実現でき、特に狭ピッチ化された半導体素子等を搭載した半導体装置及びその製造方法等として有用である。
12   第1の基板
13   第1の電子部品
13A  半導体素子
13B  ウェハレベルチップサイズパッケージ
13C  チップコンデンサー
14   封止フィルム
15   放熱板
16   第2の基板
17   第2の電子部品
18   封止樹脂
21   第1の基板電極
22   外部接続電極
23   ボール
25   第1の基板接続電極
31   第1の部品電極
32   第1の接続部材
61   第2の基板電極
65   第2の基板接続電極
66   第2の接続部材
71   第2の部品電極
72   ワイヤ

Claims (12)

  1.  半導体装置は、
     第1の基板電極を有する第1の基板と、
     第1の部品電極を有し、前記第1の基板電極と前記第1の部品電極とを対向させて前記第1の基板の上に搭載された第1の電子部品と、
     前記第1の基板電極と前記第1の部品電極とを電気的に接続する第1の接続部材と、
     前記第1の基板上の全面を覆い、フラックス成分を含有する封止フィルムとを備え、
     前記第1の電子部品は、側面全体が前記封止フィルムに覆われている。
  2.  請求項1に記載の半導体装置において、
     前記第1の電子部品は、半導体素子である。
  3.  請求項1に記載の半導体装置において、
     前記第1の電子部品は複数であり、少なくとも1つは半導体素子である。
  4.  請求項1に記載の半導体装置は、
     前記封止フィルムの上に搭載された第2の基板をさらに備え、
     前記第1の基板は第1の基板接続電極を有し、
     前記第2の基板は第2の基板接続電極を有し、
     前記第1の基板接続電極と前記第2の基板接続電極とは、互いに対向し且つ第2の接続部材を介して電気的に接続されている。
  5.  請求項1に記載の半導体装置は、
     前記封止フィルムの上に搭載された放熱板をさらに備えている。
  6.  請求項5に記載の半導体装置において、
     前記放熱板は、前記第1の電子部品における前記第1の部品電極と反対側の面と接している。
  7.  請求項1に記載の半導体装置において、
     前記第1の接続部材は、はんだである。
  8.  請求項1に記載の半導体装置において、
     前記第1の接続部材は、はんだ及び前記第1の部品電極の上に形成された突起電極からなる。
  9.  半導体装置の製造方法は、
     第1の基板電極を有する第1の基板の上にフラックスを含有する封止フィルムを貼り付ける工程(a)と、
     第1の電子部品に形成された第1の部品電極の上に第1の接続部材を接続する工程(b)と、
     前記工程(b)よりも後に、前記第1の電子部品を前記封止フィルム中に埋設すると共に、前記第1の基板電極と前記第1の接続部材とを電気的に接続する工程(c)と、
     前記工程(c)よりも後に、前記封止フィルムを加熱して硬化する工程(d)とを備え、
     前記工程(c)では、前記第1の電子部品の側面全体が前記封止フィルムに覆われるようにする。
  10.  請求項9に記載の半導体装置の製造方法は、
     第2の基板に形成された第2の基板接続電極の上に第2の接続部材を接続する工程(e)と、
     前記工程(c)よりも後で且つ前記工程(d)よりも前に、前記第2の基板接続電極と接続された前記第2の接続部材を前記封止フィルム中に埋設すると共に、前記第1の基板に形成された第1の基板接続電極と前記第2の接続部材とを電気的に接続する工程(f)とをさらに備えている。
  11.  請求項9に記載の半導体装置の製造方法において、
     前記第1の電子部品は複数であり、少なくとも1つは半導体素子である。
  12.  請求項9に記載の半導体装置の製造方法において、
     前記第1の電子部品は複数であり、
     前記工程(d)よりも後に、前記第1の基板を少なくとも1つの第1の電子部品が搭載された複数のブロックに分割する。
PCT/JP2010/000430 2009-05-20 2010-01-26 半導体装置及びその製造方法 WO2010134230A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009121577A JP2010272609A (ja) 2009-05-20 2009-05-20 半導体装置及びその製造方法
JP2009-121577 2009-05-20

Publications (1)

Publication Number Publication Date
WO2010134230A1 true WO2010134230A1 (ja) 2010-11-25

Family

ID=43125924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000430 WO2010134230A1 (ja) 2009-05-20 2010-01-26 半導体装置及びその製造方法

Country Status (2)

Country Link
JP (1) JP2010272609A (ja)
WO (1) WO2010134230A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128060A (ja) * 2011-12-19 2013-06-27 Nitto Denko Corp 半導体装置の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204631A (ja) * 2011-03-25 2012-10-22 Fujitsu Semiconductor Ltd 半導体装置、半導体装置の製造方法及び電子装置
US8963311B2 (en) 2012-09-26 2015-02-24 Apple Inc. PoP structure with electrically insulating material between packages
KR102423619B1 (ko) * 2020-09-16 2022-07-22 (주)파트론 패키지 모듈

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223227A (ja) * 2000-02-08 2001-08-17 Nitto Denko Corp 半導体封止用樹脂組成物および半導体装置
JP2002134558A (ja) * 2000-10-25 2002-05-10 Toshiba Corp 半導体装置及びその製造方法
JP2003197680A (ja) * 2001-12-25 2003-07-11 Matsushita Electric Works Ltd 半導体装置の製造方法
JP2003347722A (ja) * 2002-05-23 2003-12-05 Ibiden Co Ltd 多層電子部品搭載用基板及びその製造方法
JP2004327556A (ja) * 2003-04-22 2004-11-18 Matsushita Electric Works Ltd 半導体装置及びその製造方法
JP2008211187A (ja) * 2007-02-26 2008-09-11 Nepes Corp 半導体パッケージ及びその製造方法
WO2008120564A1 (ja) * 2007-03-28 2008-10-09 Nec Corporation 電子部品の実装構造、及び電子部品の実装方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223227A (ja) * 2000-02-08 2001-08-17 Nitto Denko Corp 半導体封止用樹脂組成物および半導体装置
JP2002134558A (ja) * 2000-10-25 2002-05-10 Toshiba Corp 半導体装置及びその製造方法
JP2003197680A (ja) * 2001-12-25 2003-07-11 Matsushita Electric Works Ltd 半導体装置の製造方法
JP2003347722A (ja) * 2002-05-23 2003-12-05 Ibiden Co Ltd 多層電子部品搭載用基板及びその製造方法
JP2004327556A (ja) * 2003-04-22 2004-11-18 Matsushita Electric Works Ltd 半導体装置及びその製造方法
JP2008211187A (ja) * 2007-02-26 2008-09-11 Nepes Corp 半導体パッケージ及びその製造方法
WO2008120564A1 (ja) * 2007-03-28 2008-10-09 Nec Corporation 電子部品の実装構造、及び電子部品の実装方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128060A (ja) * 2011-12-19 2013-06-27 Nitto Denko Corp 半導体装置の製造方法

Also Published As

Publication number Publication date
JP2010272609A (ja) 2010-12-02

Similar Documents

Publication Publication Date Title
JP5918664B2 (ja) 積層型半導体装置の製造方法
JP4729963B2 (ja) 電子部品接続用突起電極とそれを用いた電子部品実装体およびそれらの製造方法
US20110266666A1 (en) Circuit board with built-in semiconductor chip and method of manufacturing the same
US8222748B2 (en) Packaged electronic devices having die attach regions with selective thin dielectric layer
KR20090052300A (ko) 전자 부품 실장용 접착제 및 전자 부품 실장 구조체
WO2009096216A1 (ja) 電子部品の実装構造、電子部品の実装方法、並びに電子部品実装用基板
JP2011222555A (ja) 半導体チップ内蔵配線基板の製造方法
JP2004356529A (ja) 半導体装置および半導体装置の製造方法
JPH11219984A (ja) 半導体装置パッケージおよびその製造方法ならびにそのための回路基板
JP6004441B2 (ja) 基板接合方法、バンプ形成方法及び半導体装置
JP2002033411A (ja) ヒートスプレッダ付き半導体装置及びその製造方法
US20110147905A1 (en) Semiconductor device and method of manufacturing the same
WO2010134230A1 (ja) 半導体装置及びその製造方法
US8179686B2 (en) Mounted structural body and method of manufacturing the same
JP2003258034A (ja) 多層配線基体の製造方法および多層配線基体
JP2012009655A (ja) 半導体パッケージおよび半導体パッケージの製造方法
JP5228479B2 (ja) 電子装置の製造方法
JP2006222470A (ja) 半導体装置および半導体装置の製造方法
JP4479582B2 (ja) 電子部品実装体の製造方法
JP2010135501A (ja) 半導体装置の製造方法
JP5343932B2 (ja) 半導体装置の製造方法
JP2000156386A (ja) 半導体装置の接続構造および接続方法ならびにそれを用いた半導体装置パッケージ
JP2013251350A (ja) 電子部品の実装構造体およびその製造方法
JP5286948B2 (ja) 基板および電子装置の製造方法
TWI393197B (zh) 晶片封裝

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777470

Country of ref document: EP

Kind code of ref document: A1