WO2010134193A1 - ピリジン化合物の製造方法およびピリジン化合物 - Google Patents

ピリジン化合物の製造方法およびピリジン化合物 Download PDF

Info

Publication number
WO2010134193A1
WO2010134193A1 PCT/JP2009/059406 JP2009059406W WO2010134193A1 WO 2010134193 A1 WO2010134193 A1 WO 2010134193A1 JP 2009059406 W JP2009059406 W JP 2009059406W WO 2010134193 A1 WO2010134193 A1 WO 2010134193A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
pyridine
aluminum hydride
pyridine compound
pyrazine
Prior art date
Application number
PCT/JP2009/059406
Other languages
English (en)
French (fr)
Inventor
孝一 福井
行方 毅
育夫 伊藤
Original Assignee
エア・ウォーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エア・ウォーター株式会社 filed Critical エア・ウォーター株式会社
Priority to EP09844925.9A priority Critical patent/EP2433930B1/en
Priority to KR1020117029780A priority patent/KR101610991B1/ko
Priority to JP2011514264A priority patent/JP5142345B2/ja
Priority to CN200980159412.7A priority patent/CN102448935B/zh
Priority to PCT/JP2009/059406 priority patent/WO2010134193A1/ja
Priority to US13/265,005 priority patent/US8742128B2/en
Publication of WO2010134193A1 publication Critical patent/WO2010134193A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring

Definitions

  • the present invention relates to a method for producing at least one compound selected from the group consisting of pyridine and derivatives thereof (hereinafter referred to as “pyridine compound”) and a pyridine compound obtained by the method.
  • Pyridine compounds having a pyridine ring such as pyridine, picoline, and lutidine are widely used as raw materials for various organic synthetic substances, pharmaceuticals, and agricultural chemicals, or as solvents.
  • Various methods for producing a pyridine compound are known, and representative examples include a method for recovering from tar and a synthesis method represented by the titivabine method.
  • Examples of such methods include the following: A method of performing distillation after irradiating the pyridine compound with ultraviolet rays (Patent Document 1), A method of treating a pyridine compound with a halogen such as chlorine, bromine, iodine (Patent Document 2), A method of forming a salt with an acid and then treating with activated carbon (Patent Document 3), A method of treating with a halogen-containing sulfur or phosphorus compound (Patent Document 4), A method of treating with isocyanates (Patent Document 5), A method of adding methanol and water for distillation (Patent Document 6), A method of contact treatment with a porous resin (Patent Document 7), A method of treating with an alkaline earth metal oxide or hydroxide (Patent Document 8), A method of treating a solid alkali in the gas phase (Patent Document 9), A method of treating and distilling with permanganate or dichromate (Patent Document 10) and a method of distillation after heating with metal copper
  • the colored substance removed by the above method or the causative substance of coloration over time is not accurately identified. It is considered that amines, alcohols and / or aldehydes are contained in the causative substances.
  • the produced pyridine compound may contain impurities other than these.
  • impurities include two compounds of the benzene ring substituted with nitrogen, such as a compound having a pyrazine ring (pyrazine compound), a compound having a pyrimidine ring (pyrimidine compound), and a compound having a pyridazine ring (pyridazine compound). And a compound having a diazine ring (diazine compound). No effective removal method has been reported for these.
  • Impurities composed of such diazine compounds using pyridine as an example. Impurities that are particularly likely to be problematic are pyrazine, pyrimidine, and pyridazine. Table 1 summarizes the normal boiling points and melting points of pyridine, pyrazine, pyrimidine, and pyridazine.
  • pyrazine and pyrimidine cannot be easily separated by distillation because they have a standard boiling point close to that of pyridine.
  • pyrazine has a standard boiling point very similar to that of pyridine, and it is difficult to completely separate by rectification.
  • methylpyrazine, methylpyrimidine, etc. may be contained in pyridine as an impurity, or pyrazine, pyrimidine, etc. may be contained in methylpyridine as an impurity. In this case, separation by distillation is difficult because the standard boiling point is close.
  • pyridine and diazine compounds have been well investigated.
  • a description of pyridine and pyrazine is as follows. Both NaNH 2 and the like undergo a nucleophilic substitution reaction on carbon to give aminopyridine and aminopyrazine, respectively.
  • Alkyl halides undergo an electrophilic reaction on nitrogen to give N-alkylpyridinium and N-alkylpyrazinium, respectively. Oxidized with hydrogen peroxide or the like to become the corresponding N-oxide. With respect to reduction, when completely reduced, it becomes piperidine and piperazine, respectively.
  • Non-Patent Documents 2 and 3 There is a report that pyridine reacts with lithium aluminum hydride to give a dihydropyridylaluminum complex.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for efficiently and simply producing a pyridine compound from a crude pyridine compound containing a diazine compound as an impurity, and a pyridine compound produced by the method.
  • the inventors applied the purification method for pyridine compounds reported so far to pyridine containing diazine compounds such as pyrazine and pyrimidine as impurities. However, none of them had a purification effect or was very limited.
  • the method for producing a pyridine compound according to one embodiment of the present invention includes a reaction step in which a crude pyridine compound is reacted with an aluminum hydride compound, and a distillation step in which a reaction product obtained by the reaction step is distilled. To do.
  • the “pyridine compound” refers to a compound having a pyridine ring, that is, at least one compound selected from the group consisting of pyridine derivatives and pyridine.
  • This pyridine compound can be obtained by subjecting the crude product (this crude product is also referred to as “crude pyridine compound” in the present invention) to a purification step.
  • the pyridine compound according to one embodiment of the present invention contains 99.9% by mass or more of pyridine, the content of the pyrazine compound contained as an impurity is less than 3 mass ppm, and the content of the pyrimidine compound is less than 2 mass ppm. is there.
  • the content of pyrazine and pyrimidine can be quantified, for example, by gas chromatography.
  • the pyridine according to another embodiment of the present invention includes 99.9% by mass or more of pyridine and has an absorbance per unit length at 320 nm of 0.04 cm ⁇ 1 or less.
  • the production method of the present invention can produce a highly pure pyridine compound efficiently and simply. According to this production method, it is possible to obtain a pyridine compound in which the content of the diazine compound as an impurity is very small and the purity of pyridine is particularly high. As shown in Tables 1 and 2, in particular, pyridine compounds, pyrazine compounds, and pyrimidine compounds have close standard boiling points and are often difficult to separate by distillation. Furthermore, pyrazine compounds have a relatively strong UV absorption peak around 320 nm, and if these are included as impurities, the properties of UV absorption are greatly affected. According to the present invention, it is possible to obtain a pyridine compound having extremely low UV absorption derived from such impurities and particularly high purity of pyridine.
  • this pyridine compound does not substantially have impurity-derived UV absorption, it can be used without problems for optical applications. In addition, it can be optimally used as a reaction raw material and a solvent, and it is expected that generation of colored substances and substances that cause coloring over time can be suppressed.
  • a method for producing a pyridine compound according to an embodiment of the present invention includes a reaction step of reacting a crude pyridine compound with an aluminum hydride compound, and a distillation step of distilling a reaction product obtained by the reaction step.
  • the pyridine compound in the present invention means “a compound having a pyridine ring, that is, at least one compound selected from the group consisting of a pyridine derivative and pyridine”.
  • pyridine compounds other than pyridine are also referred to as “substituted pyridines”.
  • the substituent of the substituted pyridine is not particularly limited. There is no restriction
  • the substitution position is not particularly limited as long as it is other than the 1 (N) position. From the viewpoint of increasing the yield and reducing the content of impurities more efficiently, a substituent that does not react with the aluminum hydride compound is preferable.
  • an especially preferred example of the substituent is an alkyl group. More preferably, the substituent is an alkyl group having 6 or less carbon atoms.
  • alkylpyridines include, for example, 2, 3, and 4-methylpyridine ( ⁇ , ⁇ , and ⁇ -picoline), 2, 3, and 4-ethylpyridine, 2, 3, and 4-n-propylpyridine.
  • the “diazine compound” in the present invention is a general term for a pyrazine compound (a compound having a pyrazine ring), a pyrimidine compound (a compound having a pyrimidine ring), and a pyridazine compound (a compound having a pyridazine ring), and has a diazine ring.
  • a pyrazine compound a compound having a pyrazine ring
  • a pyrimidine compound a compound having a pyrimidine ring
  • a pyridazine compound a compound having a pyridazine ring
  • the method for preparing the crude pyridine compound, which is the reactant in the above reaction step is not particularly limited, and may be a synthetic product obtained by a method such as the ticibabin method, or a crude product recovered from tar or the like.
  • the aluminum hydride compound reacted with the crude pyridine compound in the reaction step is a compound having one or more aluminum-hydride hydrogen bonds (Al—H bonds) in the molecule.
  • Al—H bonds aluminum-hydride hydrogen bonds
  • it is represented by any one of the following general formulas (1) to (3).
  • A is an alkali metal, p is any one of 0, 1, 2, or 3, and R 1 is an alkyl group or an alkoxyalkyl group having one ether group therein) .
  • AlHR 2 R 3 (2) (Wherein R 2 and R 3 are each independently hydrogen or an alkyl group).
  • AlHR 2 R 3 (NR 4 R 5 R 6 ) n (3) (Wherein R 2 and R 3 are each independently hydrogen or an alkyl group, n is either 1 or 2, and R 4 , R 5 and R 6 are each independently hydrogen, an alkyl group or Any one of the alkenyl groups, and two or all of R 4 , R 5 and R 6 may be linked).
  • the aluminum hydride compound represented by the general formula (1) include lithium aluminum hydride LiAlH 4 , sodium aluminum hydride NaAlH 4 , and sodium bis (2-methoxyethoxy) aluminum NaAlH 2 (OCH 2 CH 2 OCH 3 ).
  • the aluminum hydride compound represented by the general formula (2) include alane AlH 3 , methylalane CH 3 AlH 2 , dimethylalane (CH 3 ) 2 AlH, and diisobutylaluminum hydride [(CH 3 ) 2. CHCH 2 ] 2 AlH.
  • Particularly preferable examples of the aluminum hydride compound represented by the general formula (3) include trimethylamine allane AlH 3 (N (CH 3 ) 3 ), triethylamine allane AlH 3 (N (CH 2 CH 3 ) 3 ), and diethylmethyl.
  • N-Methylpyrrolidine Alane N-Methyl Morpho Mention may be made of phosphorus alane and 1-methyl-3-pyrroline alane.
  • the aluminum hydride compound may be a pure substance, or a solvent (for example, an aliphatic ether such as diethyl ether, a cyclic ether such as tetrahydrofuran, an aliphatic hydrocarbon such as hexane or heptane, benzene, toluene, etc. May be used in a state dissolved in an aromatic hydrocarbon).
  • a solvent for example, an aliphatic ether such as diethyl ether, a cyclic ether such as tetrahydrofuran, an aliphatic hydrocarbon such as hexane or heptane, benzene, toluene, etc. May be used in a state dissolved in an aromatic hydrocarbon).
  • reaction conditions for the crude pyridine compound and the aluminum hydride compound are not particularly limited, and can be appropriately selected from various conditions.
  • the reaction temperature can also be selected as appropriate.
  • About reaction time Preferably it is 1 minute or more.
  • the upper limit of the reaction time is not particularly limited as long as it is an environment in which impurities such as moisture are not mixed from the outside.
  • the mixing ratio of the crude pyridine compound and the aluminum hydride compound should be determined from the content of impurities including moisture in the crude pyridine compound. Special attention should be paid to the water content, and the added aluminum hydride compound should remain sufficient to remove the remaining impurities after reacting with all the water. In some cases, a pyridine compound dehydrated in advance and an aluminum hydride compound may be reacted.
  • a distillation step of distilling the reactant obtained in the reaction step is performed.
  • the specific operation is not particularly limited as long as the pyridine compound can be isolated from the reaction product by distillation.
  • the reaction solution may be distilled after removing insolubles by filtration. Or you may distill directly from a reaction liquid, without filtering. More preferably, the distillation is not performed once but it is preferable to perform simple distillation first and then perform rectification.
  • the distillation may be atmospheric distillation or vacuum distillation.
  • GC Gas Chromatography
  • ⁇ Detection method FID
  • ⁇ Vaporization chamber temperature detector temperature: 150 °C -Sample: Using an autoinjector AOC-20i, inject 2.0 ⁇ L
  • -Detection limit The density
  • the lithium aluminum hydride used for purification was a reagent manufactured by Kanto Chemical Co., Inc. (Comparative Example 1) To 49.1 g of synthetic pyridine lot 1, 2.0 g of calcium hydride (manufactured by Kanto Chemical Co., Inc.) was added to obtain a slurry. The slurry was stirred for 30 minutes at room temperature and then subjected to simple distillation at normal pressure. Heating was performed in an oil bath and set to 150 ° C. The top temperature was 112 to 116 ° C. A simple distillation yielded 17.2 g (35.0%) fraction. The obtained fraction was subjected to UV measurement. As a result, no improvement was observed in the absorbance at 320 nm.
  • Impurity content Pyrazine 17 ppm by mass, and Pyrimidine 12 ppm by mass.
  • a slurry was obtained by adding 1.44 g of lithium aluminum hydride to 991.4 g of synthetic pyridine lot 1. After the slurry was refluxed for 30 minutes, simple distillation was performed under the same conditions as in Comparative Example 1. As a result, 77.5 g of the first fraction (distillation rate: 0 to 7.8%), 812.9 g of the main fraction (distillation rate: ⁇ 89.8%), and 66.0 g of the subsequent fraction ( Distillation rate: ⁇ 96.5%). The obtained main fraction (purified pyridine) was subjected to UV measurement. As a result, the 320 nm absorbance of the purified pyridine was greatly reduced to 0.0259. In the GC analysis of this fraction (purified pyridine), no peaks of pyrazine, pyrimidine, and other impurities were observed (Table 4).
  • a slurry was obtained by adding 0.15 g of lithium aluminum hydride to 100 g of reagent pyridine. The slurry was refluxed for 30 minutes, and then subjected to simple distillation under the same conditions as in Comparative Example 1, 13.0 g of the initial fraction (distillation rate: 0 to 13.0%), and 68.8 g of the main fraction (distillation). (Distillation rate: ⁇ 81.8%), and 7.8 g of the latter fraction (distillation rate: ⁇ 89.6%).
  • the obtained main fraction (purified pyridine) was subjected to UV measurement. As a result, the 320 nm absorbance decreased to 0.0293.
  • the GC analysis result of this fraction (purified pyridine) was as shown below.
  • Impurity content Pyrazine ND (not measured), Pyrimidine ND, and 2-methylpyridine 43 mass ppm.
  • Impurity content Triethylamine 0.07% by mass
  • 2-methylpyrazine (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to a reagent 2-methylpyridine (manufactured by Kanto Chemical Co., Inc.) having a purity of 99.7% by mass, and 2-methylpyrazine containing 27 mass ppm of 2-methylpyrazine was added.
  • a pyridine solution was prepared.
  • 2-methylpyrazine (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to reagent 3-methylpyridine (manufactured by Wako Pure Chemical Industries, Ltd.) having a purity of 99.8% by mass, and 3 mass ppm of 2-methylpyrazine was contained.
  • reagent 3-methylpyridine manufactured by Wako Pure Chemical Industries, Ltd.
  • the present invention provides a method for producing a high-purity pyridine compound from a crude pyridine compound with very little diazine compound.
  • the pyridine compound produced by the method of the present invention can be used as an organic synthetic material, a chemical, a raw material for agricultural chemicals, a solvent for reaction, and a cleaning solvent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pyridine Compounds (AREA)

Abstract

 ジアジン化合物を不純物として含む粗製ピリジン化合物から高純度ピリジン化合物を製造する方法として、粗製ピリジン化合物を水素化アルミニウム化合物と反応させる反応ステップと、この反応ステップにより得られた反応物を蒸留する蒸留ステップとを有する方法を提供する。水素化アルミニウム化合物が、水素化リチウムアルミニウムおよび水素化ナトリウムアルミニウムの一種または二種であることが好ましい。

Description

ピリジン化合物の製造方法およびピリジン化合物
 本発明は、ピリジンおよびその誘導体からなる群から選ばれる少なくとも一種の化合物(以下、「ピリジン化合物」という。)の製造方法およびその製造方法により得られたピリジン化合物に関する。
 ピリジン、ピコリン、ルチジン等のピリジン環を有するピリジン化合物は、各種有機合成物質、医薬品、および農薬の原料として、または溶剤として、幅広く用いられている。ピリジン化合物の製造方法は各種知られており、代表例としてタールから回収する方法およびチチバビン法に代表される合成方法がある。
 ピリジン化合物の精製方法としては蒸留による精製が効果的である。しかし、蒸留のみでは除去できない不純物もあるため、精製方法の改良が継続的に試みられている。特に着色物質または経時着色の原因物質の除去方法については、様々な方法が公開されている。
 そのような方法として、次のような例を挙げることができる:
 ピリジン化合物に紫外線を照射した後蒸留を行う方法(特許文献1)、
 ピリジン化合物を塩素、臭素、ヨウ素等のハロゲンで処理する方法(特許文献2)、
 酸と塩を形成させた後活性炭で処理する方法(特許文献3)、
 ハロゲン含有硫黄またはリン化合物で処理する方法(特許文献4)、
 イソシアネート類で処理する方法(特許文献5)、
 メタノール、水を加え蒸留する方法(特許文献6)、
 多孔質樹脂と接触処理する方法(特許文献7)、
 アルカリ土類金属酸化物もしくは水酸化物で処理する方法(特許文献8)、
 気相で固体アルカリ処理する方法(特許文献9)、
 過マンガン酸塩もしくは重クロム酸塩で処理し蒸留する方法(特許文献10)、および
 金属銅または酸化銅と加熱した後蒸留する方法(特許文献11)。
 以上の方法で除去される着色物質または経時着色の原因物質は、正確に同定されている訳ではない。アミン、アルコールおよび/またはアルデヒドが原因物質に含まれていると考えられている。
 以上のように、着色物質または経時着色の原因物質の除去方法については多くの方法が公開されている。しかしながら、製造されたピリジン化合物には、これら以外の不純物が含まれる可能性がある。このような不純物の例としては、ピラジン環を有する化合物(ピラジン化合物)、ピリミジン環を有する化合物(ピリミジン化合物)、ピリダジン環を有する化合物(ピリダジン化合物)といった、ベンゼン環の2つの炭素が窒素で置換されたジアジン環を有する化合物(ジアジン化合物)が挙げられる。これらについては有効な除去方法は報告されていない。
 ピリジンを例としてこのようなジアジン化合物からなる不純物についてさらに検討する。特に問題となる可能性の高い不純物はピラジン、ピリミジン、およびピリダジンである。表1にピリジン、ピラジン、ピリミジン、およびピリダジンの標準沸点および融点をまとめた。
Figure JPOXMLDOC01-appb-T000001
 表のように、特にピラジンおよびピリミジンはピリジンと標準沸点が近いため蒸留では簡単には分離できない。とりわけピラジンはピリジンと標準沸点が非常に似通っており精留でも完全に分離することは難しい。
 ピラジンは320nm付近に比較的強いUV吸収ピークを持っている(シクロヘキサン中logε(328nm)=3.02、非特許文献1)のに対して、ピリジンはそのようなピークを持たない。このため、ピラジンが不純物としてピリジンに含まれると、ピラジンはピリジンのUV吸収に大きな影響を与える。その他、反応原料および溶媒としてピリジンを用いた場合も、不純物として含まれるピラジンが影響を与える可能性がある。
 したがって、ジアジン、とりわけピラジンおよびピリミジンをピリジンから効率よく除去できる簡便かつ安価な方法が望まれている。
 以上の事情は、他のピリジン化合物でも同様である。もう一つの例としてメチルピリジン(ピコリン)、メチルピラジン、およびメチルピリミジンの標準沸点を表2に比較した。
Figure JPOXMLDOC01-appb-T000002
 ピリジンとピラジンとの標準沸点ほど近くないが、やはり標準沸点の近い組がある。また、ピリジン中に、メチルピラジン、メチルピリミジン等が、またはメチルピリジン中にピラジン、ピリミジン等が不純物として含まれる可能性があり、この場合も標準沸点が近いため蒸留による分離が難しくなる。
 上記のように、ピラジン化合物およびピリミジン化合物の標準沸点は、ピリジン化合物のそれと近い場合が多いため、蒸留のみで分離することは難しい。蒸留以外の精製方法として化学的性質の違いを利用する方法が考えられる。
 ピリジン化合物およびジアジン化合物の化学的性質についてはそれぞれよく調べられている。ピリジンとピラジンについて記載すれば以下のようである。
 共にNaNH等とは炭素上で求核置換反応を起こし、それぞれアミノピリジンおよびアミノピラジンを与える。
 アルキルハライドとは、窒素上で求電子反応を起こし、それぞれN-アルキルピリジニウムおよびN-アルキルピラジニウムを与える。
 過酸化水素等により酸化を受け、対応するN-オキシドとなる。還元に関しては、完全に還元されると、それぞれピペリジンおよびピペラジンとなる。
 ピリジンは水素化リチウムアルミニウムと反応し、ジヒドロピリジルアルミニウム錯体を与えるという報告がある。(非特許文献2および3)。
特公昭43-15977号公報 特公昭43-20187号公報 特公昭43-21545号公報 特公昭46-11502号公報 特公昭52-951号公報 特公昭54-34736号公報 特公昭60-19294号公報 特開昭60-215670号公報 特公平6-746号公報 特公平6-45597号公報 特開2001-199960号公報
Comprehensive Heterocyclic Chemistry、Vol.3、Part 2B、Pergamon Press、1984 Dennis D. Tanner and Chi-Ming Yang、J.Org.Chem.1993、58,1840-1846 Karl Hensen et al.、Inorg.Chem.1999、38,4700-4704
 上記のように、ジアジン化合物、とりわけピラジン化合物およびピリミジン化合物をピリジン化合物から効率よく除去できる簡便かつ安価な方法が望まれている。
 ピリジン化合物およびジアジン化合物の化学的性質についてはこれまで様々調べられてきている。しかしながら、これを利用したピリジン化合物からそこに含まれるジアジン化合物の不純物を除く簡便な精製方法はこれまで知られていない。
 本発明は、上記事情を鑑みなされたものであり、ジアジン化合物を不純物として含む粗製ピリジン化合物からピリジン化合物を効率的かつ簡便に製造する方法およびその方法により製造されたピリジン化合物を提供することを目的とする。
 発明者らは、これまで報告されたピリジン化合物の精製方法を、ピラジン、ピリミジン等のジアジン化合物を不純物として含むピリジンに適用してみた。しかしながら、どれも精製効果は無いか、あっても非常に限定されたものであった。
 発明者らは、鋭意検討した結果、ピラジン、ピリミジン等のジアジン化合物を不純物として含むピリジンを水素化リチウムアルミニウムで処理すると、同不純物が効率的に除去されることを見いだした。そして、以上の知見を発展させ本発明を完成させるに至った。
 本発明の一態様に係るピリジン化合物の製造方法は、粗製ピリジン化合物を水素化アルミニウム化合物と反応させる反応ステップと、この反応ステップにより得られた反応物を蒸留する蒸留ステップとを有することを特徴とする。
 ここで、「ピリジン化合物」とは、ピリジン環を有する化合物、すなわちピリジン誘導体およびピリジンからなる群から選ばれる少なくとも一種の化合物をいう。このピリジン化合物は、その粗製体(本発明においてこの粗製体を「粗製ピリジン化合物」ともいう。)に対して精製工程を施すことにより得ることが可能である。
 本発明の一態様に係るピリジン化合物は、99.9質量%以上のピリジンを含み、不純物として含有されるピラジン化合物の含有量が3質量ppm未満、かつピリミジン化合物の含有量が2質量ppm未満である。ピラジンおよびピリミジンの含有量は、例えばガスクロマトグラフィーにより定量することができる。
また、本発明の他の一態様に係るピリジンは、99.9質量%以上のピリジンを含み、320nmにおける単位長あたりの吸光度が0.04cm-1以下である。
 本発明の製造方法は、高純度のピリジン化合物を、効率的かつ簡便に製造することができる。
 かかる製造方法によれば、不純物であるジアジン化合物の含有量が非常に小さく、ピリジンの純度が特に高いピリジン化合物を得ることができる。表1および2に示すように、特にピリジン化合物とピラジン化合物およびピリミジン化合物は標準沸点が近く蒸留で分離することは難しい場合が多い。さらにピラジン化合物は320nm付近に比較的強いUV吸収ピークを持っており、これらが不純物として含まれるとUV吸収の性質に大きな影響を与える。本発明によれば、このような不純物に由来するUV吸収が極めて低く、ピリジンの純度が特に高いピリジン化合物を得ることができる。
 このピリジン化合物は、不純物由来UV吸収を実質的に持たないため、光学的用途に問題なく用いることができる。その他、反応原料および溶媒としても最適に用いることができ、着色物質および経時着色の原因物質の生成を抑えることができると期待される。
発明を実施するための態様
 以下に本発明の一実施形態に関わるピリジン化合物の製造方法およびピリジン化合物に関して具体的に説明する。
 本発明の一実施形態に係るピリジン化合物の製造方法は、粗製ピリジン化合物を水素化アルミニウム化合物と反応させる反応ステップと、この反応ステップにより得られた反応物を蒸留する蒸留ステップとを有することを特徴とする。
 本発明におけるピリジン化合物とは、「ピリジン環を有する化合物、すなわちピリジン誘導体およびピリジンからなる群から選ばれる少なくとも一種の化合物」をいう。以下、ピリジン以外のピリジン化合物を「置換ピリジン」ともいう。
 置換ピリジンの置換基は特に限定されない。置換基数にも制限はなく、複数の置換基を有する場合は互いに異なっていても良い。置換位置については、1(N)位以外であれば良くそれ以外は特に制限されない。収率を高めることおよび不純物の含有量をより効率的に低下させる観点から、水素化アルミニウム化合物と反応しない置換基であることが好ましい。
 置換基の特に好ましい例としては、アルキル基を挙げることができる。より好ましくは、置換基は炭素数6以下のアルキル基である。アルキルピリジンの具体例としては例えば、2、3、および4-メチルピリジン(α、β、およびγ-ピコリン)、2、3、および4-エチルピリジン、2、3、および4-n-プロピルピリジン、2、3、および4-イソプロピルピリジン、2、3、および4-n-ブチルピリジン、2、3、および4-イソブチルピリジン、2、3、および4-sec-ブチルピリジン、2、3、および4-tert-ブチルピリジン、2,3、2,4、2,5、2,6、3,4、および3,5-ジメチルピリジン(2,3、2,4、2,5、2,6、3,4、および3,5-ルチジン)、ならびに2,3,4、2,3,5、2,3,6、2,4,5、2,4,6、および3,4,5-トリメチルピリジン(2,3,4、2,3,5、2,3,6、2,4,5、2,4,6、および3,4,5-コリジン)を挙げることができる。
 本発明における「ジアジン化合物」とは、ピラジン化合物(ピラジン環を有する化合物)、ピリミジン化合物(ピリミジン環を有する化合物)、およびピリダジン化合物(ピリダジン環を有する化合物)の総称であって、ジアジン環を有する化合物を意味する。
 上記反応ステップの反応物質である粗製ピリジン化合物の調製方法については、特に制限はなく、チチバビン法等の方法による合成物でも良いし、タール等から回収した粗製物でも良い。
 反応ステップにおいて粗製ピリジン化合物と反応させる水素化アルミニウム化合物とは、分子中に一つ以上のアルミニウム-ヒドリド水素結合(Al-H結合)を持つ化合物である。好ましくは以下の一般式(1)~(3)の何れかで表される。
  A[AlH4-p(OR]       (1)
(一般式(1)中、Aはアルカリ金属、pは0、1、2、または3のいずれかであり、Rはアルキル基、または内部に一つのエーテル基を持つアルコキシアルキル基である)。
  AlHR        (2)
(式中、RおよびRは、それぞれ独立に水素またはアルキル基である)。
  AlHR(NR                (3)
(式中、RおよびRは、それぞれ独立に水素またはアルキル基であり、nは1または2のいずれかであり、R、RおよびRは、それぞれ独立に水素、アルキル基またはアルケニル基のいずれかである。さらに、R、RおよびRの内2つまたは全ては連結していても良い)。
 一般式(1)で表される水素化アルミニウム化合物の特に好ましい例としては、水素化リチウムアルミニウム LiAlH、水素化ナトリウムアルミニウム NaAlH、およびナトリウム水素化ビス(2-メトキシエトキシ)アルミニウム NaAlH(OCHCHOCH)を挙げることができる。
 一般式(2)で表される水素化アルミニウム化合物の特に好ましい例としては、アラン AlH、メチルアラン CHAlH、ジメチルアラン (CHAlH、およびジイソブチルアルミニウムハイドライド [(CHCHCHAlHを挙げることができる。
 一般式(3)で表される水素化アルミニウム化合物の特に好ましい例としては、トリメチルアミンアラン AlH(N(CH)、トリエチルアミンアラン AlH(N(CHCH)、ジエチルメチルアミンアラン AlH(N(CHCH(CH))、エチルジメチルアミンアラン AlH(N(CHCH)(CH)、N-メチルピロリジンアラン、N-メチルモルフォリンアラン、および1-メチル-3-ピロリンアランを挙げることができる。
 以上の水素化アルミニウム化合物は、一種類だけを用いても良いし、二種類以上の水素化アルミニウム化合物の混合物の形で用いても良い。また、水素化アルミニウム化合物は、純物質を用いても良いし、あらかじめ溶媒(例えばジエチルエーテル等の脂肪族エーテル、テトラヒドロフラン等の環式エーテル、ヘキサン、ヘプタン等の脂肪族炭化水素、ベンゼン、トルエン等の芳香族炭化水素)に溶かした状態で用いても良い。
 粗製ピリジン化合物と水素化アルミニウム化合物との反応条件には、特に限定はなく、種々の条件から適宜選択することができる。反応温度も、適宜選ぶことができる。反応圧力についても、特に制限はなく、大気圧の他、必要により加圧もしくは減圧で反応をおこなっても良い。反応時間については、好ましくは1分以上である。反応時間の上限については、外部から水分等の不純物が混入しない環境であれば、特に制限はない。
 粗製ピリジン化合物と水素化アルミニウム化合物との混合比は、粗製ピリジン化合物中の水分を含む不純物含量から決定されるべきものである。特に水分含量には注意すべきであり、添加した水素化アルミニウム化合物が、全ての水分と反応した後でも残りの不純物を除去するのに十分量残るようにすべきである。場合によっては、前もって脱水処理したピリジン化合物と水素化アルミニウム化合物を反応させても良い。
 粗製ピリジン化合物と水素化アルミニウム化合物とを反応させる反応ステップが終了した後、反応ステップにより得られた反応物を蒸留する蒸留ステップを行う。蒸留ステップでは、上記の反応物からピリジン化合物を蒸留により単離することができれば、具体的な操作は特に限定されない。例えば、反応液から濾過により不溶分を除いた後に蒸留しても良い。もしくは濾過をせずに反応液から直接蒸留を行っても良い。より好ましくは、蒸留は一回ではなく、最初に単蒸留を行い、次いで精留を行うことが好ましい。また蒸留は、常圧蒸留または減圧蒸留でも良い。
 本発明における粗製ピリジン化合物中の不純物としてのジアジン化合物の除去機構についてはまだ正確には解明されていないが、下記の実施例にも示されるように、その有用性は明らかである。
 以下に実施例を用いて、本発明をより具体的に説明するが、本発明はこれらの例によって何ら制限されるものではない。
 (分析方法)
 本発明における分析方法を以下に示した。
 (1)ガスクロマトグラフィー(以下、「GC」と略記する。)分析
 (株)島津製作所製GC-2014 GC装置を用いて測定を行った。
 測定条件は以下のとおりである:
・キャリアガス: ヘリウム(He)、全流量 36.7mL/min、
・スプリット比: 50:1
・カラム: DB-WAX(30m×0.25mmID、0.15μm film)、
・カラム温度: 温度(時間)=50℃(0~10分)、50→80℃(10→20分)、80℃(20~40分)、
・検出方法: FID、
・気化室温度、検出器温度: 150℃、
・試料: オートインジェクターAOC-20iを使用し、2.0μLを注入、
・検出限界:GCチャートのノイズレベルの2倍のピーク高さに対する濃度を検出限界とした。
 上記の測定条件でのピラジンおよびピリミジンの検出限界はそれぞれ2.3、1.1質量ppmであった。
 (2)H NMR分析
 日本電子(株)製JNM-ECS400 400MHz FT-NMR装置を用いて測定した。重クロロホルムを溶媒とし、同時に加えたTMSの信号を化学シフトの標準とした。
 (3)UV吸収測定
 試料を内寸1cm角の石英セルに入れ、(株)島津製作所製UV-1700ダブルビーム紫外可視分光光度計を用いて測定を行った。測定直前に、測定側および参照側ともに純水を置いてゼロ補正を行った。特にこの状態で320nmでの吸光度がゼロであることを確認した。その後、純水を参照側として測定を行った。
 (4)含有量の定量
 上記の条件でGC測定を行い、得られたピーク面積から絶対検量線法にて定量した。
(5)水分測定
 三菱化学(株)製KF-05カールフィッシャー型水分計を用い測定した。滴定剤および脱水溶媒として、アクアミクロン滴定剤SS1mgおよびアクアミクロン脱水溶媒CP(いずれも三菱化学(株)製)を使用した。
 精製のために使用した3種類の原料ピリジンの分析結果は次のとおりである。
 A)合成ピリジン・ロット1
 UV: 320nm吸光度=0.2640
 不純物含有量: 
     ピラジン 21質量ppm、および
     ピリミジン 16質量ppm。
 H-NMR(CDCl):δ=8.60(m、2H)、7.63(m、1H)、および7.24(m、2H)。
 B)合成ピリジン・ロット2
 UV: 320nm吸光度=0.3027
 不純物含有量: 
     ピラジン 22質量ppm、および
     ピリミジン 57質量ppm。
 H-NMR(CDCl):δ=8.60(m、2H)、7.63(m、1H)、および7.24(m、2H)。
 C)試薬ピリジン:和光純薬工業(株)製
  UV: 320nm吸光度=0.0524
 不純物含有量: 
     ピリミジン 6質量ppm、および
     2-メチルピリジン 49質量ppm。
 また、精製のために使用した水素化リチウムアルミニウムは関東化学(株)製の試薬であった。
(比較例1)
 49.1gの合成ピリジン・ロット1に2.0gの水素化カルシウム(関東化学(株)製)を添加してスラリーを得た。このスラリーを30分室温で攪拌した後、常圧で単蒸留を行った。加熱はオイルバスで行い、150℃に設定した。また、トップ温度は112~116℃であった。単蒸留により17.2g(35.0%)の留分を得た。得られた留分のUV測定を行った。その結果、320nmの吸光度に改善は見られなかった。
 処理後の分析結果は以下に示すとおりであった。
 UV: 320nm吸光度=0.2661
 不純物含有量: 
     ピラジン 17質量ppm、および
     ピリミジン 12質量ppm。
 結果をまとめて表4に示す。
 1520.2gの合成ピリジン・ロット1に1.53gの水素化リチウムアルミニウムを添加してスラリーを得た。このスラリーを30分室温で攪拌した後、比較例1と同じ条件で単蒸留を行い、1449.7gの留分を得た。この単蒸留で得られた留分をさらに精留した。精留は表3の条件で行い、留分1~17を得た。これらをGC分析した結果、同じ組成であることが確認された。そこで、留分1~17の全てを混合し一つの留分とし、精留留分として1299g(85.4%)の精製ピリジンを得た。得られた精製ピリジンのUV測定を行った。その結果、320nmの吸光度は0.0344へと大幅に減少していた。精製ピリジンのGC分析では、ピラジン、ピリミジン、およびその他不純物のピークは観測されなかった(表4)。
Figure JPOXMLDOC01-appb-T000003
 49.0gの合成ピリジン・ロット2に0.2gの水素化リチウムアルミニウムを添加してスラリーを得た。このスラリーを30分室温で攪拌した後、比較例1と同じ条件で単蒸留を行い、留分として44.2g(90.2%)の精製ピリジンを得た。得られた精製ピリジンのUV測定を行った。その結果、320nmの吸光度は0.0325へと大幅に減少していた。精製ピリジンのGC分析では、ピラジン、ピリミジン、およびその他不純物のピークは観測されなかった(表4)。
 991.4gの合成ピリジン・ロット1に1.44gの水素化リチウムアルミニウムを添加してスラリーを得た。このスラリーを30分還流した後、比較例1と同じ条件で単蒸留を行った。その結果、77.5gの初留分(留出率:0~7.8%)、812.9gの本留分(留出率:~89.8%)、66.0gの後留分(留出率:~96.5%)を得た。得られた本留分(精製ピリジン)のUV測定を行った。その結果、精製ピリジンの320nm吸光度は0.0259に大幅に減少していた。本留分(精製ピリジン)のGC分析では、ピラジン、ピリミジン、およびその他不純物のピークは観測されなかった(表4)。
 100gの試薬ピリジンに0.15gの水素化リチウムアルミニウムを添加してスラリーを得た。このスラリーを30分還流した後、比較例1と同じ条件で単蒸留を行い、13.0gの初留分(留出率:0~13.0%)、68.8gの本留分(留出率:~81.8%)、7.8gの後留分(留出率:~89.6%)を得た。得られた本留分(精製ピリジン)のUV測定を行った。その結果、320nm吸光度は0.0293に減少していた。本留分(精製ピリジン)のGC分析結果は以下に示すとおりであった。
 不純物含有量:
     ピラジン ND(測定されず)、
     ピリミジン ND、および
     2-メチルピリジン 43質量ppm。
 結果をまとめて表4に示す。
 (調製例)トリエチルアミンアランAlH(NEt)の調製
 窒素気流下、7.6g(200mmol)のLiAlHを250mLのヘキサンに懸濁させてスラリーを得た。このスラリーを15℃に冷却し、温度が上がらないよう注意しながら、27.5g(200mmol)のトリエチルアミン塩酸塩をスラリーに少しずつ加えた。全てのトリエチルアミン塩酸塩をスラリーに添加して得られた反応液を1時間攪拌した。その後、反応液の入ったフラスコをグローブボックス内に移し、グローブボックス内で反応液を濾過した。得られた濾液から溶媒を留去させることにより、無色透明液体のトリエチルアミンアランを得た(収量21.4g)。
 グローブボックス内で、20.0gの合成ピリジン・ロット1に調製例において得られたトリエチルアミンアランを0.2g添加して溶液を得た。トリエチルアミンアランの添加後の溶液は橙色であった。その溶液を30分静置した後、PTFEフィルター(0.5μm)で濾過して濁りを除いた。濁りが除かれた溶液を、比較例1と同じ条件で単蒸留して精製ピリジンを得た。得られた精製ピリジンをGC分析した。精製ピリジンのGC分析結果は、表4に示すとおりであった。
 不純物含有量:トリエチルアミン0.07質量%
 グローブボックス内で、20.0gの合成ピリジン・ロット1にナトリウム水素化ビス(2-メトキシエトキシ)アルミニウムの65%トルエン溶液(関東化学(株)製)を0.6g添加して溶液を得た。その溶液を30分静置した後、PTFEフィルター(0.5μm)で濾過して濁りを除いた。濁りが除かれた溶液を、比較例1と同じ条件で単蒸留して精製ピリジンを得た。得られた精製ピリジンをGC分析した。精製ピリジンのGC分析結果は以下に示すとおりであった。
 不純物含有量:トルエン0.08質量%
 結果をまとめて表4に示す。
 純度99.7質量%の試薬2-メチルピリジン(関東化学(株)製)に2-メチルピラジン(東京化成工業(株)製)を添加し、2-メチルピラジンを27質量ppm含む2-メチルピリジン溶液を調製した。
 30gのこの2-メチルピリジン溶液に45mgの水素化リチウムアルミニウムをグローブボックス内で添加した。添加された溶液を30分静置した後、PTFEフィルター(0.5μm)で濾過して濁りを除いた。濁りが除かれた溶液を単蒸留して、精製2-メチルピリジンを得た。得られた精製2-メチルピリジンのGC分析を行った。その結果、2-メチルピラジンのピークは消失していた。
 純度99.8質量%の試薬3-メチルピリジン(和光純薬工業(株)製)に2-メチルピラジン(東京化成工業(株)製)を添加し、2-メチルピラジンを16質量ppm含む3-メチルピリジン溶液を調製した。
 30gのこの3-メチルピリジン溶液に45mgの水素化リチウムアルミニウムをグローブボックス内で添加した。添加された溶液を30分静置した後、PTFEフィルター(0.5μm)で濾過して濁りを除いた。濁りが除かれた溶液を単蒸留して、精製3-メチルピリジンを得た。得られた精製3-メチルピリジンのGC分析を行った。その結果、2-メチルピラジンのピークは消失していた。
Figure JPOXMLDOC01-appb-T000004
 本発明により、粗製ピリジン化合物からジアジン化合物が極めて少ない高純度のピリジン化合物を製造する方法が提供される。
 本発明の方法により製造したピリジン化合物は、有機合成物質、薬品、農薬の原料、反応時の溶媒、ならびに洗浄用溶剤に用いることができる。

Claims (10)

  1. 粗製ピリジン化合物を水素化アルミニウム化合物と反応させる反応ステップと、この反応ステップにより得られた反応物を蒸留する蒸留ステップとを有することを特徴とするピリジン化合物の製造方法。
  2. 粗製ピリジン化合物の不純物がジアジン化合物を含む請求項1に記載のピリジン化合物の製造方法。
  3. ジアジン化合物がピラジン化合物およびピリミジン化合物からなる群から選ばれる一種または二種以上の化合物を含む請求項2記載のピリジン化合物の製造方法。
  4. ピリジン化合物がピリジン、モノアルキルピリジン、およびジアルキルピリジンからなる群から選ばれる一種または二種以上からなり、ジアジン化合物がピラジン、モノアルキルピラジン、ジアルキルピラジン、ピリミジン、モノアルキルピリミジン、およびジアルキルピリミジンからなる群から選ばれる一種または二種以上を含む請求項1から3のいずれかに記載のピリジン化合物の製造方法。
  5. 水素化アルミニウム化合物が、一般式(1)および(2)のいずれかで表される化合物を含む請求項1から4のいずれかに記載のピリジン化合物の製造方法:
      A[AlH4-p(OR]     (1)
    (一般式(1)中、Aはアルカリ金属、pは0、1、または2のいずれかであり、Rは炭素数1~6のアルキル基、または途中に一つのエーテル基を持つ総炭素数1~6のアルコキシアルキル基である。)
      AlH(NR      (2)
    (一般式(2)中、nは1または2であり、R、R、およびRは、水素または置換基であり、それぞれ異なっていても同じでも良く、またその内2つまたは全てが連結していても良い。)
  6. 水素化アルミニウム化合物が、水素化リチウムアルミニウムおよび水素化ナトリウムアルミニウムの一種または二種である請求項1から5のいずれかに記載のピリジン化合物の製造方法。
  7. 請求項1から6に記載のいずれかの方法で製造されたピリジン化合物。
  8. 99.9質量%以上のピリジンを含み、ピラジン化合物の含有量が3質量ppm未満、かつピリミジン化合物の含有量が2質量ppm未満であるピリジン化合物。
  9. 99.9質量%以上のピリジンを含み、320nmにおける単位長あたりの吸光度が0.04cm-1以下であるピリジン化合物。
  10. 請求項1から6に記載のいずれかの方法で製造された請求項8または9に記載のピリジン化合物。
PCT/JP2009/059406 2009-05-22 2009-05-22 ピリジン化合物の製造方法およびピリジン化合物 WO2010134193A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09844925.9A EP2433930B1 (en) 2009-05-22 2009-05-22 Method for producing pyridine compound and pyridine compound
KR1020117029780A KR101610991B1 (ko) 2009-05-22 2009-05-22 피리딘 화합물의 제조방법 및 피리딘 화합물
JP2011514264A JP5142345B2 (ja) 2009-05-22 2009-05-22 ピリジン化合物の製造方法
CN200980159412.7A CN102448935B (zh) 2009-05-22 2009-05-22 吡啶化合物的制备方法以及吡啶化合物
PCT/JP2009/059406 WO2010134193A1 (ja) 2009-05-22 2009-05-22 ピリジン化合物の製造方法およびピリジン化合物
US13/265,005 US8742128B2 (en) 2009-05-22 2009-05-22 Process for producing pyridine compound, and pyridine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059406 WO2010134193A1 (ja) 2009-05-22 2009-05-22 ピリジン化合物の製造方法およびピリジン化合物

Publications (1)

Publication Number Publication Date
WO2010134193A1 true WO2010134193A1 (ja) 2010-11-25

Family

ID=43125889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059406 WO2010134193A1 (ja) 2009-05-22 2009-05-22 ピリジン化合物の製造方法およびピリジン化合物

Country Status (6)

Country Link
US (1) US8742128B2 (ja)
EP (1) EP2433930B1 (ja)
JP (1) JP5142345B2 (ja)
KR (1) KR101610991B1 (ja)
CN (1) CN102448935B (ja)
WO (1) WO2010134193A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119292A1 (ja) * 2013-01-31 2014-08-07 広栄化学工業株式会社 ピリジン化合物の精製方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9255324B2 (en) * 2012-08-15 2016-02-09 Up Chemical Co., Ltd. Aluminum precursor composition
KR101652750B1 (ko) 2015-12-03 2016-08-31 김종선 피리딘 및 그 유도체의 정제방법
KR101686081B1 (ko) * 2016-03-15 2016-12-13 덕산실업(주) 전자재료용 고순도 피리딘의 생산방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52951B2 (ja) 1973-05-09 1977-01-11
JPS52108976A (en) * 1976-03-10 1977-09-12 Koei Chemical Co Method for purificating pyridine bases
JPS52118472A (en) * 1976-03-29 1977-10-04 Koei Chemical Co Preventive method of coloring of pyridine bases
JPS60215670A (ja) 1984-04-11 1985-10-29 Nippon Steel Chem Co Ltd ピリジン塩基類の精製方法
JPS61251662A (ja) * 1985-04-30 1986-11-08 Daicel Chem Ind Ltd ピリジンの精製方法
JPS62129269A (ja) * 1985-12-02 1987-06-11 Sumikin Coke Co Ltd ピリジン塩基類の精製法
JPH01261368A (ja) * 1988-04-13 1989-10-18 Daicel Chem Ind Ltd ピリジンの精製方法
JPH0272161A (ja) * 1988-04-27 1990-03-12 Nepera Inc Uv級合成ピリジンの製造
JP2001199960A (ja) 2000-01-13 2001-07-24 Daicel Chem Ind Ltd ピリジンの精製方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52951B2 (ja) 1973-05-09 1977-01-11
JPS52108976A (en) * 1976-03-10 1977-09-12 Koei Chemical Co Method for purificating pyridine bases
JPS5434736B2 (ja) 1976-03-10 1979-10-29
JPS52118472A (en) * 1976-03-29 1977-10-04 Koei Chemical Co Preventive method of coloring of pyridine bases
JPS6019294B2 (ja) 1976-03-29 1985-05-15 広栄化学工業株式会社 ピリジン塩基類の着色防止法
JPS60215670A (ja) 1984-04-11 1985-10-29 Nippon Steel Chem Co Ltd ピリジン塩基類の精製方法
JPS61251662A (ja) * 1985-04-30 1986-11-08 Daicel Chem Ind Ltd ピリジンの精製方法
JPH06746B2 (ja) 1985-04-30 1994-01-05 ダイセル化学工業株式会社 ピリジンの精製方法
JPS62129269A (ja) * 1985-12-02 1987-06-11 Sumikin Coke Co Ltd ピリジン塩基類の精製法
JPH0645597B2 (ja) 1985-12-02 1994-06-15 住金化工株式会社 ピリジン塩基類の精製法
JPH01261368A (ja) * 1988-04-13 1989-10-18 Daicel Chem Ind Ltd ピリジンの精製方法
JPH0272161A (ja) * 1988-04-27 1990-03-12 Nepera Inc Uv級合成ピリジンの製造
JP2001199960A (ja) 2000-01-13 2001-07-24 Daicel Chem Ind Ltd ピリジンの精製方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Comprehensive Heterocyclic Chemistry", vol. 3, 1984, PERGAMON PRESS
DENNIS D. TANNER; CHI-MING YANG, J. ORG. CHEM., vol. 58, 1993, pages 1840 - 1846
KARL HENSEN ET AL., INORG. CHEM., vol. 38, 1999, pages 4700 - 4704
See also references of EP2433930A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119292A1 (ja) * 2013-01-31 2014-08-07 広栄化学工業株式会社 ピリジン化合物の精製方法

Also Published As

Publication number Publication date
JPWO2010134193A1 (ja) 2012-11-08
US20120041209A1 (en) 2012-02-16
EP2433930B1 (en) 2015-08-05
KR101610991B1 (ko) 2016-04-08
CN102448935A (zh) 2012-05-09
US8742128B2 (en) 2014-06-03
EP2433930A4 (en) 2013-08-21
KR20120023784A (ko) 2012-03-13
CN102448935B (zh) 2014-07-09
JP5142345B2 (ja) 2013-02-13
EP2433930A1 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
Heckel et al. Chiral ionic liquids based on nicotine for the chiral recognition of carboxylic acids
JP5142345B2 (ja) ピリジン化合物の製造方法
CN110372580A (zh) 一种2-氯吡啶和3-氯吡啶的分离方法
KR102167454B1 (ko) 불소 함유 화합물의 제조 방법
Bolla et al. Characterization of a slippage stopper for the 1, 2-bis (pyridinium) ethane–[24] crown-8 ether [2] pseudorotaxane motif
CN104098432B (zh) 一种三氟甲基化芳烃的合成方法
Turgut et al. Synthesis of chiral monoaza-15-crown-5 ethers from l-valinol and the enantiomeric recognition of chiral amines and their perchlorates salts
JP2012229259A (ja) ピリジン化合物の製造方法およびピリジン化合物
Pop et al. CuAAC Synthesis of Tetragonal Building Blocks Decorated with Nucleobases
Chow et al. Conformationally-locked metallomacrocycles—prototypes for a novel type of axial chirality
Nagasaki et al. Contrasting Behaviour of Exciplex Ensembles in the Diastereodifferentiating Paternò–Büchi Reaction of Chiral Cyanobenzoate with Naphthyl-and Phenylethenes on Direct or Charge-Transfer Excitation
Miyamoto et al. Resolution of hydrocarbons by inclusion complexation with a chiral host compound
CN103951609A (zh) 吡啶化合物的制备方法
Togrul et al. Enantioselective recognition of ammonium perchlorate salts by optically active monoaza‐15‐crown‐5 ethers
WO2014119292A1 (ja) ピリジン化合物の精製方法
Srivastava et al. An unusal effect of charcoal on the purification of alkylimidazolium iodide room temperature ionic liquids
Barton et al. The behaviour of tricyclic fused host systems comprising seven-membered B-rings in mixed pyridines
Fu et al. Modification of host photobehavior by formation of crystalline host-guest assemblies
Karakaplan et al. The synthesis and formation of complexes between derivatives of chiral Aza-18-crown-6 ethers and chiral primary organic ammonium salts
Barton et al. Exploring the host compound dynamics of 1, 4-phenylene-bis (di-p-fluorophenylmethanol) in mixed pyridines
Fry et al. Rearrangements and demethylation of 2-o-anisyl-2-endo-fenchyl alcohol
Rabbani Cucurbit [8] uril: New Recognition Features and Applications in Chemosensing and Catalysis
Tanaka et al. Chemo-and Product-selective Electrooxidation of 3-(Arylthiomethyl)-Δ³-cephems
Lamprianidis Photoredox catalysis with 10-phenyl-10H-phenothiazine and synthesis of a photocatalytic chiral proline-based organocatalyst
CN107285988B (zh) 一种四伸苯类化合物的合成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159412.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844925

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011514264

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 7868/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13265005

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009844925

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117029780

Country of ref document: KR

Kind code of ref document: A