WO2010131351A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2010131351A1
WO2010131351A1 PCT/JP2009/058990 JP2009058990W WO2010131351A1 WO 2010131351 A1 WO2010131351 A1 WO 2010131351A1 JP 2009058990 W JP2009058990 W JP 2009058990W WO 2010131351 A1 WO2010131351 A1 WO 2010131351A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
water content
moisture content
resistance component
output current
Prior art date
Application number
PCT/JP2009/058990
Other languages
English (en)
French (fr)
Inventor
智隆 石川
啓吾 末松
修夫 渡辺
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN200980159260.0A priority Critical patent/CN102422473B/zh
Priority to JP2011513187A priority patent/JP5273244B2/ja
Priority to US13/320,194 priority patent/US8728672B2/en
Priority to DE112009004773.4T priority patent/DE112009004773B4/de
Priority to PCT/JP2009/058990 priority patent/WO2010131351A1/ja
Publication of WO2010131351A1 publication Critical patent/WO2010131351A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • Patent Document 1 discloses a technique for diagnosing the water content in the fuel cell of the fuel cell system.
  • the change rate of the cell voltage when the output current of the fuel cell is changed at a constant change rate is obtained, and the difference between the change rate of the cell voltage and a predetermined reference voltage change rate is calculated. Accordingly, the water content in the fuel cell is diagnosed.
  • the present invention has been made to solve the above-described problems caused by the prior art, and can determine the water content state of the fuel cell without changing the supply state of the reaction gas supplied to the fuel cell.
  • An object is to provide a fuel cell system.
  • a fuel cell system has a cell stack formed by stacking a plurality of single cells, and supplies power by an electrochemical reaction of a reaction gas supplied to the cell stack.
  • the generated fuel cell output current control means for temporarily increasing the output current of the fuel cell while maintaining the supply amount of the reaction gas to the fuel cell, and the output current is controlled by the output current control means.
  • a moisture content determining means for determining the moisture content in the fuel cell by using the output voltage of the fuel cell when it is temporarily increased.
  • the present invention it becomes possible to determine the water content in the fuel cell while maintaining the supply amount of the reaction gas to the fuel cell.
  • a water content increasing process for increasing the water content in the fuel cell is performed.
  • a water amount increasing means may be further provided.
  • the moisture content determination means calculates a resistance component from an output current value and an output voltage value of the fuel cell when the output current is temporarily increased by the output current control means.
  • Water content determining means for determining whether or not it is below a dry state threshold value when determining that it is in a dry state, and the water content increasing means is configured such that the water content is determined by the water content determining means. When it is determined that the water content is equal to or less than the dry state threshold, the water content increase process may be executed.
  • the water content in the fuel cell can be calculated based on the resistance component in the fuel cell, and when the calculated water content is equal to or less than the dry state threshold, the water content in the fuel cell is increased. Is possible.
  • the moisture content determination means approximates the moisture content in the fuel cell using a value obtained by subtracting the moisture content taken out of the fuel cell from the moisture content generated by the power generation of the fuel cell.
  • a water content approximating means wherein the water content determining means determines the calculated water content when the water content calculating means calculates the water content when determining the dry state in the fuel cell. It is determined whether or not the water content is less than or equal to the dry state threshold, and when the water content is not calculated by the water content calculating means, the water content estimated by the water content estimating means is the dry state threshold. It is good also as determining whether it is below.
  • the output current control means temporarily increases the output current of the fuel cell while maintaining the supply amount of the reaction gas. It is good.
  • the resistance component can be accurately calculated.
  • the fuel cell system further includes catalyst activation means for outputting a current from the fuel cell so that the voltage of the fuel cell is within a reduction region of the catalyst included in the fuel cell during the intermittent operation.
  • the resistance component calculating unit may correct the resistance component according to a deterioration state of the catalyst activated by the catalyst activating unit.
  • a power consumption device that consumes power from the fuel cell, and a required power generation amount from the power consumption device while the output current is temporarily increased by the output current control means
  • Gas supply amount control means for increasing the supply amount of the reaction gas in accordance with the required power generation amount
  • the resistance component calculation means includes the reaction gas by the gas supply amount control means. The resistance component may be corrected when the supply amount is increased.
  • a water content reduction process is performed to reduce the water content in the fuel cell.
  • a water amount reducing means may be further provided.
  • the moisture content determination means is detected by a cell voltage detection unit that detects the voltage of the single cell while the output current is temporarily increased by the output current control means.
  • Cell voltage determination means for determining whether any of the voltages has reached a wet state threshold or less when determining that it is in a wet state, the moisture content reduction means is provided by the cell voltage determination means
  • the water content reduction process may be executed when it is determined that the voltage has reached the wet state threshold value or less.
  • the moisture content of the fuel cell can be determined without changing the supply state of the reaction gas supplied to the fuel cell.
  • each embodiment demonstrates the case where the fuel cell system concerning the present invention is used as an in-vehicle power generation system of a fuel cell vehicle (FCHV; Fuel ; Cell Hybrid Vehicle).
  • FCHV fuel cell vehicle
  • the fuel cell system according to the present invention can also be applied to various mobile bodies (robots, ships, aircrafts, etc.) other than fuel cell vehicles, and further used as power generation equipment for buildings (housing, buildings, etc.). It can be applied to a stationary power generation system.
  • FIG. 1 is a configuration diagram schematically showing the fuel cell system according to the first embodiment.
  • a fuel cell system 1 includes a fuel cell 2 that generates electric power by an electrochemical reaction upon receiving supply of an oxidizing gas and a fuel gas as reaction gases, and air as an oxidizing gas to the fuel cell 2.
  • the fuel cell 2 is, for example, a polymer electrolyte fuel cell, and has a stack structure in which a large number of single cells are stacked.
  • the single cell has a cathode electrode (air electrode) on one surface of an electrolyte made of an ion exchange membrane and an anode electrode (fuel electrode) on the other surface.
  • a cathode electrode air electrode
  • an anode electrode fuel electrode
  • platinum Pt based on a porous carbon material is used as a catalyst (electrode catalyst).
  • the single cell has a pair of separators so as to sandwich the cathode electrode and the anode electrode from both sides. In this case, hydrogen gas is supplied to the hydrogen gas flow path of one separator, oxidizing gas is supplied to the oxidizing gas flow path of the other separator, and electric power is generated by the chemical reaction of these reaction gases.
  • the fuel cell 2 is provided with a voltage sensor V for detecting the output voltage of the fuel cell and a current sensor A for detecting the output current of the fuel cell.
  • Each single cell of the fuel cell 2 is provided with a cell monitor (cell voltage detector, not shown) that detects the voltage of the single cell.
  • the oxidant gas piping system 3 compresses air taken in through a filter, sends out the compressed air as oxidant gas, an oxidant gas supply channel 32 for supplying oxidant gas to the fuel cell 2, and a fuel cell. And an oxidizing off-gas discharge flow path 33 for discharging the oxidizing off-gas discharged from 2.
  • a flow rate sensor F that measures the flow rate of the oxidizing gas discharged from the compressor 31 is provided on the outlet side of the compressor 31.
  • a back pressure valve 34 that adjusts the pressure of the oxidizing gas in the fuel cell 2 is provided in the oxidizing off gas discharge flow path 33.
  • a pressure sensor P for detecting the pressure of the oxidizing gas in the fuel cell 2 is provided on the outlet side of the fuel cell 2 in the oxidizing off gas discharge channel 33.
  • the fuel gas piping system 4 includes a fuel tank 40 as a fuel supply source that stores high-pressure fuel gas, a fuel gas supply channel 41 for supplying the fuel gas in the fuel tank 40 to the fuel cell 2, and the fuel cell 2. And a fuel circulation passage 42 for returning the fuel off-gas discharged from the fuel gas supply passage 41 to the fuel gas supply passage 41.
  • the fuel gas supply channel 41 is provided with a pressure regulating valve 43 that regulates the pressure of the fuel gas to a preset secondary pressure.
  • the fuel circulation passage 42 is provided with a fuel pump 44 that pressurizes the fuel off-gas in the fuel circulation passage 42 and sends it to the fuel gas supply passage 41 side.
  • the cooling system 5 includes a radiator 51 that cools the cooling water, a cooling water circulation passage 52 that circulates and supplies the cooling water to the fuel cell 2 and the radiator 51, and a cooling water circulation pump 53 that circulates the cooling water to the cooling water circulation passage 52.
  • the radiator 51 is provided with a radiator fan 54.
  • a temperature sensor T that detects the temperature of the cooling water is provided on the outlet side of the fuel cell 2 in the cooling water circulation passage 52. The position where the temperature sensor T is provided may be on the inlet side of the fuel cell 2.
  • the power system 6 includes a DC / DC converter 61, a battery 62 as a secondary battery, a traction inverter 63, a traction motor 64 as a power consuming device, and various auxiliary inverters not shown.
  • the DC / DC converter 61 is a direct-current voltage converter that adjusts the direct-current voltage input from the battery 62 and outputs it to the traction inverter 63 side, and the direct-current voltage input from the fuel cell 2 or the traction motor 64. And adjusting the output to the battery 62.
  • the DC / DC converter 61 is a direct-current voltage converter that adjusts the direct-current voltage input from the battery 62 and outputs it to the traction inverter 63 side, and the direct-current voltage input from the fuel cell 2 or the traction motor 64. And adjusting the output to the battery 62.
  • the battery 62 is configured such that battery cells are stacked and a constant high voltage is used as a terminal voltage, and surplus power can be charged or power can be supplementarily supplied under the control of a battery computer (not shown).
  • the traction inverter 63 converts a direct current into a three-phase alternating current and supplies it to the traction motor 64.
  • the traction motor 64 is, for example, a three-phase AC motor, and constitutes a main power source of a fuel cell vehicle on which the fuel cell system 1 is mounted.
  • the auxiliary inverter is an electric motor control unit that controls driving of each motor, converts a direct current into a three-phase alternating current, and supplies the three-phase alternating current to each motor.
  • the control unit 7 measures an operation amount of an acceleration operation member (for example, an accelerator) provided in the fuel cell vehicle, and controls an acceleration request value (for example, a required power generation amount from a power consuming device such as the traction motor 64). Receives information and controls the operation of various devices in the system.
  • the power consuming device includes, for example, auxiliary equipment required for operating the fuel cell 2 (for example, the motor of the compressor 31, the fuel pump 44, the cooling water circulation pump 53), the vehicle This includes actuators used in various devices (transmissions, wheel control devices, steering devices, suspension devices, etc.) involved in traveling, air conditioning devices (air conditioners) for passenger spaces, lighting, audio, and the like.
  • the control unit 7 physically includes, for example, a CPU, a memory, and an input / output interface.
  • the memory includes, for example, a ROM that stores control programs and control data processed by the CPU, and a RAM that is mainly used as various work areas for control processing. These elements are connected to each other via a bus.
  • Various sensors such as a voltage sensor V, a current sensor A, a pressure sensor P, a temperature sensor T, and a flow rate sensor F are connected to the input / output interface, and the compressor 31, the fuel pump 44, the cooling water circulation pump 53, and the like are driven.
  • Various drivers are connected.
  • the CPU receives various measurement results from various sensors via the input / output interface according to a control program stored in the ROM, and executes various control processes by processing using various data in the RAM. Further, the CPU controls the entire fuel cell system 1 by outputting control signals to various drivers via the input / output interface.
  • the moisture content determination process performed by the control part 7 of 1st Embodiment is demonstrated.
  • the moisture content determination process in 1st Embodiment is performed at the time of normal driving
  • the operation state of the fuel cell includes normal operation and intermittent operation.
  • the intermittent operation is an operation mode in which the fuel cell vehicle is driven only by the electric power supplied from the battery 62, and the normal operation is an operation mode other than the intermittent operation.
  • control unit 7 functionally includes an output current control unit 71 (output current control unit), a water content determination unit 72 (water content determination unit), and a water content increase processing unit 73 ( Water content increasing means) and a water content decreasing processing unit 74 (water content decreasing means).
  • the memory 79 of the control unit 7 stores various maps that are referred to by the respective units.
  • the output current control unit 71 temporarily increases the output current of the fuel cell 2 while maintaining the supply amount of the oxidizing gas to the fuel cell 2.
  • the output current is increased by lowering the voltage of the fuel cell 2 below the required voltage and forcibly extracting a current larger than the required current from the fuel cell 2 (hereinafter referred to as “current subtraction”).
  • current subtraction a current larger than the required current from the fuel cell 2
  • what is maintained at the time of current drawing is not limited to the supply amount of oxidizing gas.
  • the supply amount of the fuel gas may be maintained, or the supply amounts of both the oxidizing gas and the fuel gas may be maintained.
  • the output current control unit 71 temporarily performs current insertion without changing the supply amount or pressure of the oxidizing gas.
  • the oxidizing gas becomes insufficient, the stoichiometric ratio decreases to less than 1, and power generation cannot be continued.
  • current insertion is temporarily performed to avoid a reduction in stoichiometric ratio that occurs during current insertion.
  • the current insertion time can be set according to the amount of residual oxygen and residual hydrogen.
  • the upper limit time for performing current insertion / extraction for example, the time required to consume the amount of power that can be supplied by residual oxygen or residual hydrogen can be set.
  • the amount of power that can be supplied by residual oxygen or residual hydrogen can be determined by, for example, the design of the fuel cell stack, various conditions such as the supply amount and pressure of oxidizing gas and fuel gas, the water content in the fuel cell, and the like. . If the amount of electric power that can be supplied by residual oxygen or residual hydrogen is determined, the current required for current insertion and the upper limit time of current insertion can be determined.
  • the lower limit time for performing current subtraction for example, it is possible to set the time required to acquire the number of data that can contain the determination error when determining the moisture content in the fuel cell within the allowable range.
  • the data acquired at the time of current insertion is the output current value and output voltage value of the fuel cell.
  • the determination of the moisture content is made based on a resistance component obtained by dividing the acquired output voltage value by the output current value.
  • the output current increases as the speed at which the voltage of the fuel cell is lowered (hereinafter referred to as “insertion speed”) increases, it is preferable to determine the insertion speed according to the required current. . Furthermore, if the voltage of the fuel cell is too low or too high, the reduction reaction of the catalyst is lowered, and thus the residual oxygen is reduced. When the residual oxygen decreases, the current that can be extracted from the fuel cell also decreases. Therefore, it is preferable to vary the voltage within a range where the reduction reaction of the catalyst does not decrease.
  • the water content in the fuel cell can be roughly classified into, for example, an appropriate state, a dry (dry-up) state, and a wet (flooding) state.
  • the proper state means that the water content is within the proper range
  • the dry state means that the water content is on the small side of the proper range
  • the wet state means that the water content is on the large side of the proper range.
  • An appropriate range of the water content is provided in a range in which the characteristics of the fuel cell 2 can be satisfied.
  • the water content determination unit 72 determines the water content state in the fuel cell 2 using the output voltage of the fuel cell 2 when the current is temporarily drawn by the output current control unit 71.
  • the water content determination unit 72 includes a water content estimation unit 72a (water content estimation unit), a resistance component calculation unit 72b (resistance component calculation unit), a water content calculation unit 72c (water content calculation unit), and a water content determination unit.
  • 72d water content determination means
  • a cell voltage determination unit 72e cell voltage determination means).
  • the water content estimation unit 72a uses a value obtained by subtracting the amount of water taken out of the fuel cell 2 from the amount of water generated by the power generation of the fuel cell 2 (hereinafter referred to as “water balance”). Estimate the water content. Specifically, the water content estimation unit 72a approximates the water content in the fuel cell 2 by adding the water balance calculated this time to the previously estimated water content.
  • the amount of water taken out of the fuel cell can be calculated from the humidity and amount of gas at the cathode outlet of the fuel cell 2.
  • the humidity of the gas can be calculated based on the temperature of the cooling water and the power generation amount. Therefore, a map for calculating the humidity of the gas from the temperature of the cooling water and the amount of power generation may be obtained in advance by experiments and stored in the memory 79.
  • Parameters for calculating the water balance include, for example, a detection value of the current sensor A (current value of the fuel cell), a detection value of the temperature sensor T (cooling water temperature), and a detection value of the pressure sensor P (of the fuel cell).
  • the water content estimated by the water content estimation unit 72a is stored in the water content estimated last time, but when the water content is calculated by the water content calculation unit 72c described later, the calculated water content is changed to the previous time. Store in approximate water content.
  • the approximate moisture content which is likely to cause an error, can be corrected with the highly accurate moisture content calculated by the moisture content calculator 72c, so that the approximate accuracy of the moisture content can be improved.
  • the resistance component calculation unit 72b calculates the resistance component in the fuel cell 2 using the output current value and output voltage value of the fuel cell 2 when current is temporarily drawn by the output current control unit 71.
  • the resistance component can be obtained by dividing the output voltage value by the output current value.
  • This resistance component is a graph of a graph drawn on the coordinate plane when the change of the output voltage value relative to the output current value is represented on the coordinate plane indicated by the output current on the horizontal axis and the output voltage on the vertical axis. Expressed as slope.
  • the water content calculation unit 72c calculates the water content in the fuel cell 2 using the resistance component calculated by the resistance component calculation unit 72b.
  • the water content can be calculated as follows, for example. First, since there is a correlation between the resistance component and the water content that the water content increases as the resistance component decreases and the water content decreases as the resistance component increases, a map storing such correlation is stored. Are stored in the memory 79 in advance.
  • the moisture content calculation unit 72c calculates the moisture content in the fuel cell by referring to the map based on the resistance component calculated by the resistance component calculation unit 72b and extracting the moisture content corresponding to the resistance component from the map. .
  • the water content determination unit 72d determines whether or not the water content estimated by the water content estimation unit 72a or the water content calculated by the water content calculation unit 72c is equal to or less than a predetermined dry state threshold.
  • the water content to be compared with the dry state threshold value is normally the water content estimated by the water content estimation unit 72a, but when the water content is calculated by the water content calculation unit 72c, this water content is calculated.
  • a determination item called a moisture content determination moisture content is provided, and the moisture content status is determined as follows using this moisture content determination moisture content. It is good as well.
  • the estimated water content is stored in the water content determination water content. Then, when the water content is calculated by the water content calculation unit 72c, the content of the water content determination water content is updated using the calculated water content. As a result, the approximate moisture content that is likely to cause an error can be corrected with the highly accurate moisture content calculated by the moisture content calculator 72c, so that the moisture content of the fuel cell can be accurately determined.
  • an upper limit water content that can be determined that the inside of the fuel cell is in a dry state can be set. Thereby, when the water content is not more than the dry state threshold, it can be determined that the water state in the fuel cell is the dry state.
  • the cell voltage determination unit 72e determines whether or not the lowest cell voltage among the cell voltages detected by the cell monitor while the current is temporarily drawn by the output current control unit 71 has reached a predetermined wet state threshold value or less. Determine whether.
  • As the wet state threshold value an upper limit voltage value at which it can be determined that the inside of the fuel cell is in a wet state can be set. Thereby, when the cell voltage is equal to or lower than the wet state threshold, it is possible to determine that the water content in the fuel cell is the wet state.
  • the comparison with the wet state threshold is not limited to the lowest cell voltage. It suffices if it is possible to determine whether any one of the cell voltages detected by the cell monitor has reached a wet state threshold value or less.
  • the water content increase processing unit 73 executes water content increase processing for increasing the water content in the fuel cell when the water content determination unit 72d determines that the water content is equal to or less than the dry state threshold.
  • the water content increasing process for example, the following processes are applicable.
  • a cathode stoichiometric reduction process for reducing the cathode stoichiometry by reducing the flow rate of the compressor 31.
  • An oxidizing gas pressure increasing process for adjusting the back pressure valve 34 to increase the pressure of the oxidizing gas in the fuel cell.
  • a cooling water temperature lowering process for lowering the temperature of the cooling water by driving the radiator fan 54 or the like.
  • the water content reduction processing unit 74 executes a water content reduction process for reducing the water content in the fuel cell when the cell voltage determination unit 72e determines that the minimum cell voltage has reached the wet state threshold value or less.
  • Examples of the water content reduction process include the following processes.
  • An oxidizing gas blowing process that increases the flow rate of the oxidizing gas by increasing the flow rate of the compressor 31.
  • Oxidizing gas pressure pulsation processing for controlling the opening of the back pressure valve 34 to change the pressure of the oxidizing gas in the fuel cell.
  • Fuel pump rotation speed increase processing for increasing the motor rotation speed of the fuel pump 44. Thereby, flooding can be determined and water content can be recovered without affecting dribbling.
  • FIG. 3 is a flowchart for determining a dry state
  • FIG. 4 is a flowchart for determining a moist state.
  • These water content state determination processes are processes that can be executed in parallel. For example, the water content state determination process is started when an ignition key is turned on, and is repeatedly executed until the operation ends.
  • the water content estimation unit 72a of the control unit 7 estimates the water content in the fuel cell 2 based on the water balance (step S101), and sets the estimated water content as the water content determination water content ( Step S102).
  • control unit 7 determines whether or not the current time is the current insertion timing (step S103). If the current time is not the current insertion timing (step S103; NO), the process proceeds to step S108 described later. Migrate processing.
  • step S104 when the current time is the current insertion timing (step S103; YES), the output current control unit 71 of the control unit 7 temporarily supplies the current while maintaining the supply amount of the oxidizing gas to the fuel cell 2. Insertion is performed (step S104).
  • the resistance component calculation unit 72b of the control unit 7 uses the output current value and the output voltage value of the fuel cell 2 when the current is temporarily drawn by the output current control unit 71.
  • a resistance component is calculated (step S105).
  • the water content calculation unit 72c of the control unit 7 calculates the water content in the fuel cell 2 using the resistance component calculated by the resistance component calculation unit 72b (step S106), and the water content is calculated using the calculated water content.
  • the water content for state determination is updated (step S107).
  • the water content determination unit 72d of the control unit 7 determines whether or not the water content determination water content is equal to or less than the dry state threshold (step S108). When this determination is NO (step S108; NO), the control unit 7 ends the water content determination process.
  • step S108 when it is determined in step S108 that the water content determination water content is equal to or less than the dry state threshold (step S108; YES), the water content increase processing unit 73 of the control unit 7 increases the water content. Processing is executed (step S109).
  • the control unit 7 determines whether or not the current time is the current insertion timing (step S151). If the current time is not the current insertion timing (step S151; NO), the moisture content determination process is performed. finish.
  • step S151 when the current time is the current insertion timing (step S151; YES), the output current control unit 71 of the control unit 7 temporarily maintains the amount of oxidizing gas supplied to the fuel cell 2 while maintaining the supply amount of the oxidizing gas. Insertion is performed (step S152).
  • the cell voltage determination unit 72e of the control unit 7 acquires each cell voltage detected by the cell monitor while the current is temporarily drawn by the output current control unit 71 (step S153), and each cell voltage It is determined whether or not the lowest cell voltage has reached a wet state threshold value or less (step S154). When this determination is NO (step S154; NO), the control unit 7 ends the water content state determination process.
  • step S154 when it is determined in step S154 that the minimum cell voltage is equal to or lower than the wet state threshold (step S154; YES), the water content reduction processing unit 74 of the control unit 7 performs the water content reduction processing. (Step S155).
  • the fuel cell system 1 in the first embodiment it is possible to determine the moisture content in the fuel cell while maintaining the supply amount of the oxidizing gas to the fuel cell 2.
  • it is possible to detect whether or not the inside of the fuel cell is in a dry state by determining whether or not the water content calculated based on the resistance component in the fuel cell is equal to or less than the dry state threshold. In this case, the water content in the fuel cell can be increased.
  • whether or not the inside of the fuel cell is in a wet state can be detected by determining whether or not the cell voltage is equal to or lower than the wet state threshold value. It becomes possible to reduce the amount of water.
  • a second embodiment of the present invention will be described.
  • the fuel cell system according to the second embodiment maintains the supply amount of the oxidizing gas in that the supply amount of the oxidizing gas is increased according to the increased required power generation amount when the required power generation amount increases at the time of current insertion.
  • This is different from the fuel cell system according to the first embodiment in which current insertion / extraction is performed.
  • the configuration of the fuel cell system in the second embodiment is different from the configuration of the fuel cell system in the first embodiment described above in that a new function is added to the control unit 7. Since other configurations are the same as the respective configurations of the fuel cell system in the first embodiment, the same reference numerals are given to the respective constituent elements and the description thereof will be omitted. Differences from the embodiment will be described.
  • control unit 7 in the second embodiment further includes an oxidizing gas supply amount control unit 75 (gas supply amount control means) in addition to each unit in the first embodiment.
  • the oxidizing gas supply amount control unit 75 When the required power generation amount from the traction motor 64 increases when the current is temporarily drawn by the output current control unit 71, the oxidizing gas supply amount control unit 75 generates an oxidizing gas according to the required power generation amount. Increase the amount of supply. As a result, even if the required power generation amount is increased during current insertion, current insertion can be performed while supplying the oxidizing gas corresponding to the required power generation amount, thereby causing a delay in supplying the oxidizing gas. Therefore, it becomes possible to respond smoothly to the required load.
  • the resistance component calculation unit 72b corrects the resistance component when the supply amount of the oxidizing gas is increased by the oxidizing gas supply amount control unit 75. This is because when the supply amount of the oxidizing gas increases during current insertion, the amount of residual oxygen, residual hydrogen, and the like change, and the resistance component fluctuates.
  • the correction of the resistance component can be performed as follows, for example.
  • the resistance component calculation unit 72b calculates the resistance component in the fuel cell 2 using the output current value and output voltage value of the fuel cell 2 when current is temporarily drawn by the output current control unit 71. To do. Subsequently, the resistance component calculation unit 72b determines the cathode pressure before and after the increase in the supply amount of the oxidizing gas from the pressure sensor P when the supply amount of the oxidation gas is increased by the oxidation gas supply amount control unit 75. get.
  • the resistance component calculation unit 72b refers to the map based on the acquired cathode pressure, and extracts the resistance component corresponding to each cathode pressure from the map. Subsequently, the resistance component calculation unit 72b calculates a variation rate of the resistance component using the extracted resistance component, and corrects the resistance component calculated at the time of the current insertion using the variation rate.
  • the method of correcting the resistance component is not limited to the above correction method. Other methods may be used as long as the resistance component corresponding to various conditions such as the gas amount, pressure, temperature, etc., which fluctuates by increasing the supply amount of the oxidizing gas during current insertion can be obtained.
  • FIG. 6 is a flowchart for determining the dry state. This water content state determination process is started, for example, when the ignition key is turned on, and is repeatedly executed until the operation is completed.
  • the water content estimation unit 72a of the control unit 7 estimates the water content in the fuel cell 2 based on the water balance (step S201), and sets the estimated water content as the water content determination water content ( Step S202).
  • control unit 7 determines whether or not the current time is the current insertion timing (step S203). If the current time is not the current insertion timing (step S203; NO), the control unit 7 proceeds to step S213 described later. Migrate processing.
  • step S203 when the current time is the current subtraction timing (step S203; YES), the output current control unit 71 of the control unit 7 performs the current subtraction while maintaining the supply amount of the oxidizing gas to the fuel cell 2. Start (step S204).
  • the oxidizing gas supply amount control unit 75 of the control unit 7 determines whether or not the required power generation amount is larger than the required power generation amount at the start of insertion (step S205).
  • this determination is NO (step S205; NO)
  • the resistance component calculation unit 72b of the control unit 7 outputs the output current value and output voltage of the fuel cell 2 when current is being drawn by the output current control unit 71.
  • the resistance component in the fuel cell 2 is calculated using the value (step S206).
  • the water content calculation unit 72c of the control unit 7 calculates the water content in the fuel cell 2 using the resistance component calculated by the resistance component calculation unit 72b (step S207), and the water content is calculated using the calculated water content.
  • the water content for state determination is updated (step S212). And a process transfers to step S213 mentioned later.
  • step S205 when it is determined in step S205 that the required power generation amount is larger than the required power generation amount at the start of insertion (step S205; YES), the oxidizing gas supply amount control unit 75 of the control unit 7 is Then, the supply amount of the oxidizing gas is increased according to the increased required power generation amount (step S208).
  • the resistance component calculation unit 72b of the control unit 7 uses the output current value and the output voltage value of the fuel cell 2 when the current is drawn by the output current control unit 71 to calculate the resistance component in the fuel cell 2. Calculation is performed (step S209), and the calculated resistance component is corrected by referring to the map described above (step S210).
  • the water content calculation unit 72c of the control unit 7 calculates the water content in the fuel cell 2 using the corrected resistance component (step S211), and uses the calculated water content to determine the water content determination water content. Update (step S212).
  • the water content determination unit 72d of the control unit 7 determines whether or not the water content determination water content is equal to or lower than the dry state threshold (step S213). When this determination is NO (step S213; NO), the control unit 7 ends the water content determination process.
  • step S213 when it is determined in step S213 that the water content determination water content is equal to or less than the dry state threshold (step S213; YES), the water content increase processing unit 73 of the control unit 7 increases the water content. Processing is executed (step S214).
  • the same effect as that of the fuel cell system 1 of the first embodiment described above can be obtained, and further, the required power generation amount can be increased during current drawing. Even in this case, the current can be drawn while supplying the oxidizing gas according to the required power generation amount, so that it can respond smoothly to the required load without causing a delay in supplying the oxidizing gas. It becomes possible.
  • a third embodiment of the present invention will be described.
  • the fuel cell system according to the third embodiment is different from the fuel cell system according to the first embodiment in that the water content state determination process is performed during normal operation in that the water state determination process is performed when the fuel cell is intermittently operated. Is different.
  • the difference of the configuration of the fuel cell system in the third embodiment from the configuration of the fuel cell system in the first embodiment described above is that a new function is added to the control unit 7 in the third embodiment. . Since other configurations are the same as the respective configurations of the fuel cell system in the first embodiment, the same reference numerals are given to the respective constituent elements and the description thereof will be omitted. Differences from the embodiment will be described.
  • the resistance component of the fuel cell 2 varies in accordance with the deterioration state of the catalyst included in the fuel cell 2. Therefore, in order to accurately grasp the water content in the fuel cell, it is preferable to calculate a resistance component according to the deterioration state of the catalyst.
  • the catalyst is oxidized by use. When the catalyst is oxidized, its surface is covered with an oxide film, and the effective area is reduced. Therefore, in order to accurately grasp the deterioration state of the catalyst, it is preferable to determine the deterioration state after activating (reducing) the catalyst and aligning the effective area of the catalyst.
  • the water content state determination process is performed during intermittent operation, the catalyst is activated to improve the determination accuracy of the deterioration state, and then the deterioration state of the catalyst is determined.
  • the resistance component was corrected according to the state.
  • control unit 7 in the third embodiment further includes a catalyst activation unit 76 (catalyst activation means) in addition to the respective units in the first embodiment.
  • catalyst activation unit 76 catalyst activation means
  • the catalyst activation unit 76 performs the catalyst activation process when the fuel cell 2 is operating intermittently.
  • the catalyst activation process is a process for reducing and activating the catalyst by reducing the output voltage of the fuel cell 2 to a voltage in a region (reduction region) where the reduction reaction occurs in the catalyst.
  • the output current control unit 71 When the fuel cell 2 is intermittently operated, the output current control unit 71 temporarily performs current insertion while maintaining the supply amount of the oxidizing gas. During the intermittent operation, there are a case where the supply of the oxidizing gas is stopped and a case where a constant amount of the oxidizing gas is supplied. In either case, the output current control unit 71 performs current insertion while maintaining the supply amount (0 or a constant amount) of the oxidizing gas at that time.
  • the resistance component calculation unit 72b determines the deterioration state of the catalyst reduced by the catalyst activation unit 76.
  • a known method can be used as a method for determining the deterioration state of the catalyst.
  • the resistance component calculation unit 72b corrects the resistance component according to the determined deterioration state of the catalyst. Specifically, the correlation between the deterioration state of the catalyst and the resistance component is obtained through experiments or the like and stored in advance in a map.
  • the resistance component calculation unit 72b extracts a resistance component corresponding to the determined deterioration state of the catalyst from the map.
  • the resistance component calculation unit 72b corrects the resistance component calculated by the resistance component calculation unit 72b using the extracted resistance component.
  • any method may be used as long as the resistance component can be obtained according to various conditions such as a current value and a voltage value that vary depending on the deterioration state of the catalyst.
  • FIG. 8 is a flowchart for determining the dry state. This water content state determination process is started, for example, when the ignition key is turned on, and is repeatedly executed until the operation is completed.
  • control unit 7 determines whether or not the operation state of the fuel cell 2 is intermittent operation (step S301), and when this determination is NO (step S301; NO), the control unit 7 includes water. The state determination process ends.
  • step S301 when it is determined that the operation state of the fuel cell 2 is intermittent operation (step S301; YES), the water content estimation unit 72a of the control unit 7 calculates the water content in the fuel cell 2 based on the water balance. Approximate (step S302), and set the approximate moisture content as the moisture content determination moisture content (step S303).
  • control unit 7 determines whether or not the current time is the current insertion timing (step S304). If the current time is not the current insertion timing (step S304; NO), the control unit 7 proceeds to step S311 described later. Migrate processing.
  • step S304 when the current time is the current insertion timing (step S304; YES), the catalyst activation unit 76 of the control unit 7 executes the catalyst activation process (step S305).
  • the output current control unit 71 of the control unit 7 temporarily performs current insertion while maintaining the supply amount of the oxidizing gas to the fuel cell 2 (step S306).
  • the resistance component calculation unit 72b of the control unit 7 uses the output current value and the output voltage value of the fuel cell 2 when the current is temporarily drawn by the output current control unit 71.
  • a resistance component is calculated (step S307), and the calculated resistance component is corrected according to the deterioration state of the catalyst (step S308).
  • the water content calculation unit 72c of the control unit 7 calculates the water content in the fuel cell 2 using the corrected resistance component (step S309), and uses the calculated water content to determine the water content determination water content. Update (step S310).
  • the water content determination unit 72d of the control unit 7 determines whether or not the water content determination water content is equal to or less than the dry state threshold (step S311). When this determination is NO (step S311; NO), the control unit 7 ends the water content determination process.
  • step S311 when it is determined in step S311 that the water content determination water content is equal to or lower than the dry state threshold (step S311; YES), the water content increase processing unit 73 of the control unit 7 increases the water content. Processing is executed (step S312).
  • the same effect as that of the fuel cell system 1 of the first embodiment described above can be obtained, and the supply amount, pressure, etc. of the oxidizing gas can be further varied. Since it is possible to perform current insertion / subtraction during intermittent operation, the resistance component can be accurately calculated. In addition, it is possible to determine the deterioration state of the catalyst after activating the catalyst, and it is possible to correct the resistance component according to the determined deterioration state, so that the water content state of the fuel cell can be accurately determined. Can do.
  • control unit in each embodiment described above can be appropriately combined.
  • the fuel cell system according to the present invention is suitable for determining the water content state of the fuel cell without changing the supply state of the reaction gas supplied to the fuel cell.
  • moisture content calculation unit 72d ... moisture content determination unit, 72e ... cell voltage determination unit, 73 ... moisture content increase processing unit, 74 ... included Water amount reduction processing unit, 75 ... oxidizing gas supply amount control unit, 76 ... catalyst activation unit, 79 ... memory, V ... voltage sensor, A ... current sensor, P ... pressure sensor, T ... temperature sensor, F ... flow rate sensor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明は、燃料電池に供給される反応ガスの供給状態を変動させることなく、燃料電池の含水状態を判定することができる燃料電池システムを提供することを課題とする。 本発明における燃料電池システムの制御部は、出力電流制御部71、含水状態判定部72、及び含水量増加/減少処理部73,74 を有する。ここで、出力電流制御部71 は、燃料電池への酸化ガスの供給量を維持したまま、一時的に電流挿引を行い、抵抗成分算出部72b は、一時的に電流挿引されている時の燃料電池の出力電流値及び出力電圧値を用いて燃料電池内の抵抗成分を算出する。含水量算出部72c は、前記抵抗成分を用いて燃料電池内の含水量を算出し、含水量判定部72d は、含水量が乾燥状態閾値以下であるか否かを判定し、含水量増加処理部73 は、含水量が乾燥状態閾値以下で在る場合、含水量増加処理を実行するようにし、上記課題の解決を図ったものである。

Description

燃料電池システム
 本発明は、燃料電池システムに関する。
 下記特許文献1には、燃料電池システムの燃料電池内の含水量を診断するための技術が開示されている。この燃料電池システムでは、燃料電池の出力電流を一定の変化率で変化させたときのセル電圧の変化率を求め、このセル電圧の変化率と予め定められている基準電圧変化率との差に応じて、燃料電池内の含水量を診断している。
特開2008-123783号公報
 ところで、上述した燃料電池システムでは、燃料電池の出力電流を一定の変化率で変化させる際に、燃料電池に供給される燃料ガスの供給量を変化させている。燃料ガスの供給量を変化させると、圧力や生成水量等の諸条件が変動するため、燃料電池内の含水量を正確に診断することが難しくなる。
 本発明は、上述した従来技術による問題点を解消するためになされたものであり、燃料電池に供給される反応ガスの供給状態を変動させることなく、燃料電池の含水状態を判定することができる燃料電池システムを提供することを目的とする。
 上述した課題を解決するため、本発明に係る燃料電池システムは、複数の単セルが積層してなるセル積層体を有し、当該セル積層体に供給される反応ガスの電気化学反応により電力を発生する燃料電池と、前記燃料電池への前記反応ガスの供給量を維持したまま、前記燃料電池の出力電流を一時的に増加させる出力電流制御手段と、前記出力電流制御手段によって前記出力電流が一時的に増加させられているときの前記燃料電池の出力電圧を用いて、前記燃料電池内の含水状態を判定する含水状態判定手段と、を備えることを特徴とする。
 この発明によれば、燃料電池への反応ガスの供給量を維持したまま、燃料電池内の含水状態を判定することが可能となる。
 上記燃料電池システムにおいて、上記含水状態判定手段によって、前記燃料電池内の含水状態が乾燥状態であると判定された場合に、前記燃料電池内の含水量を増加させる含水量増加処理を実行する含水量増加手段を、さらに備えることとしてもよい。
 これにより、燃料電池内が乾燥状態であるときには、燃料電池内の含水量を増加させることが可能となる。
 上記燃料電池システムにおいて、上記含水状態判定手段は、前記出力電流制御手段によって前記出力電流が一時的に増加させられているときの前記燃料電池の出力電流値および出力電圧値から抵抗成分を算出する抵抗成分算出手段と、前記抵抗成分算出手段により算出された前記抵抗成分に対応する前記燃料電池内の含水量を算出する含水量算出手段と、前記含水量算出手段により算出された前記含水量が、乾燥状態であることを判定する際の乾燥状態閾値以下であるか否かを判定する含水量判定手段と、を備え、上記含水量増加手段は、前記含水量判定手段によって、前記含水量が前記乾燥状態閾値以下であると判定された場合に、前記含水量増加処理を実行することとしてもよい。
 これにより、燃料電池内の抵抗成分に基づいて燃料電池内の含水量を算出することができ、この算出した含水量が乾燥状態閾値以下である場合に、燃料電池内の含水量を増加させることが可能となる。
 上記燃料電池システムにおいて、上記含水状態判定手段は、前記燃料電池の発電によって生成される水分量から前記燃料電池外に持ち出される水分量を減算した値を用いて前記燃料電池内の含水量を概算する含水量概算手段を、さらに備え、上記含水量判定手段は、前記燃料電池内の乾燥状態を判定する際に、前記含水量算出手段によって前記含水量が算出されたときには、当該算出された前記含水量が前記乾燥状態閾値以下であるか否かを判定し、前記含水量算出手段によって前記含水量が算出されていないときには、前記含水量概算手段により概算された前記含水量が前記乾燥状態閾値以下であるか否かを判定することとしてもよい。
 これにより、誤差が生じやすい概算含水量を、含水量算出手段によって算出された精度の高い含水量で補正することができるため、燃料電池の含水状態を精度良く判定することが可能となる。
 上記燃料電池システムにおいて、上記出力電流制御手段は、前記燃料電池が間欠運転をしている場合に、前記反応ガスの供給量を維持したまま、前記燃料電池の出力電流を一時的に増加させることとしてもよい。
 これにより、反応ガスの供給量や圧力等が変動しない状況下で、いわゆる電流挿引を行うことができるため、抵抗成分を精度良く算出することが可能となる。
 上記燃料電池システムにおいて、上記間欠運転時に、前記燃料電池の電圧が、当該燃料電池に含まれる触媒の還元領域に収まるように、前記燃料電池から電流を出力させる触媒活性化手段を、さらに備え、上記抵抗成分算出手段は、前記触媒活性化手段によって活性化された前記触媒の劣化状態に応じて、前記抵抗成分を補正することとしてもよい。
 これにより、間欠運転時に触媒を活性化してから触媒の劣化状態を判定することができるとともに、判明した劣化状態に応じて抵抗成分を補正することが可能となる。
 上記燃料電池システムにおいて、上記燃料電池からの電力を消費する電力消費装置と、前記出力電流制御手段によって前記出力電流が一時的に増加させられている間に、前記電力消費装置からの要求発電量が増大した場合に、当該要求発電量に応じて前記反応ガスの供給量を増加させるガス供給量制御手段と、をさらに備え、上記抵抗成分算出手段は、前記ガス供給量制御手段によって前記反応ガスの供給量が増加させられた場合に、前記抵抗成分を補正することとしてもよい。
 これにより、電流挿引時に要求発電量が増大した場合であっても、要求発電量に応じた反応ガスを供給しながら電流挿引を行うことができるため、反応ガスの供給遅れを生じさせることなく、要求負荷に対してスムーズに応答することが可能となる。
 上記燃料電池システムにおいて、上記含水状態判定手段によって、前記燃料電池内の含水状態が湿潤状態であると判定された場合に、前記燃料電池内の含水量を減少させる含水量減少処理を実行する含水量減少手段を、さらに備えることとしてもよい。
 これにより、燃料電池内が湿潤状態である場合に、燃料電池内の含水量を減少させることが可能となる。
 上記燃料電池システムにおいて、上記含水状態判定手段は、前記出力電流制御手段によって前記出力電流が一時的に増加させられている間に、前記単セルの電圧を検出するセル電圧検出部によって検出されたいずれかの電圧が、湿潤状態であることを判定する際の湿潤状態閾値以下に達したか否かを判定するセル電圧判定手段を、備え、上記含水量減少手段は、前記セル電圧判定手段によって、前記電圧が前記湿潤状態閾値以下に達したと判定された場合に、前記含水量減少処理を実行することとしてもよい。
 これにより、セル電圧が湿潤状態閾値以下であるか否かを判定することで燃料電池内が湿潤状態にあるか否かを検知することができ、湿潤状態にある場合には、燃料電池内の含水量を減少させることが可能となる。
 本発明によれば、燃料電池に供給される反応ガスの供給状態を変動させることなく、燃料電池の含水状態を判定することができる。
各実施形態における燃料電池システムを模式的に示す構成図である。 第1実施形態における制御部の機能構成を示すブロック図である。 第1実施形態における含水状態判定処理を説明するためのフローチャートである。 第1実施形態における含水状態判定処理を説明するためのフローチャートである。 第2実施形態における制御部の機能構成を示すブロック図である。 第2実施形態における含水状態判定処理を説明するためのフローチャートである。 第3実施形態における制御部の機能構成を示すブロック図である。 第3実施形態における含水状態判定処理を説明するためのフローチャートである。
 以下、添付図面を参照して、本発明に係る燃料電池システムの好適な実施形態について説明する。各実施形態では、本発明に係る燃料電池システムを燃料電池車両(FCHV;Fuel Cell Hybrid Vehicle)の車載発電システムとして用いた場合について説明する。なお、本発明に係る燃料電池システムは、燃料電池車両以外の各種移動体(ロボット、船舶、航空機等)にも適用することができ、さらに、建物(住宅、ビル等)用の発電設備として用いられる定置用発電システムにも適用することができる。
 [第1実施形態]
 まず、図1を参照して、第1実施形態における燃料電池システムの構成について説明する。図1は、第1実施形態における燃料電池システムを模式的に示した構成図である。
 同図に示すように、燃料電池システム1は、反応ガスである酸化ガスおよび燃料ガスの供給を受けて電気化学反応により電力を発生する燃料電池2と、酸化ガスとしての空気を燃料電池2に供給する酸化ガス配管系3と、燃料ガスとしての水素を燃料電池2に供給する燃料ガス配管系4と、燃料電池2に冷却水を循環供給する冷却系5と、システムの電力を充放電する電力系6と、システム全体を統括制御する制御部7とを有する。
 燃料電池2は、例えば、高分子電解質型燃料電池であり、多数の単セルを積層したスタック構造となっている。単セルは、イオン交換膜からなる電解質の一方の面にカソード極(空気極)を有し、他方の面にアノード極(燃料極)を有する。カソード極とアノード極を含む電極には、多孔質のカーボン素材をベースにした白金Ptが触媒(電極触媒)として用いられている。さらに単セルは、カソード極およびアノード極を両側から挟み込むように一対のセパレータを有する。この場合、一方のセパレータの水素ガス流路に水素ガスが供給され、他方のセパレータの酸化ガス流路に酸化ガスが供給され、これらの反応ガスが化学反応することで電力が発生する。
 燃料電池2には、燃料電池の出力電圧を検出する電圧センサVと、燃料電池の出力電流を検出する電流センサAとが設けられている。燃料電池2の各単セルには、単セルの電圧を検出するセルモニタ(セル電圧検出部、不図示)が設けられている。
 酸化ガス配管系3は、フィルタを介して取り込まれる空気を圧縮し、圧縮した空気を酸化ガスとして送出するコンプレッサ31と、酸化ガスを燃料電池2に供給する酸化ガス供給流路32と、燃料電池2から排出された酸化オフガスを排出する酸化オフガス排出流路33とを有する。
 コンプレッサ31の出口側には、コンプレッサ31から吐出される酸化ガスの流量を測定する流量センサFが設けられている。酸化オフガス排出流路33には、燃料電池2内の酸化ガスの圧力を調整する背圧弁34が設けられている。酸化オフガス排出流路33のうち、燃料電池2の出口側には、燃料電池2内の酸化ガスの圧力を検出する圧力センサPが設けられている。
 燃料ガス配管系4は、高圧の燃料ガスを貯留した燃料供給源としての燃料タンク40と、燃料タンク40の燃料ガスを燃料電池2に供給するための燃料ガス供給流路41と、燃料電池2から排出された燃料オフガスを燃料ガス供給流路41に戻すための燃料循環流路42とを有する。燃料ガス供給流路41には、燃料ガスの圧力を予め設定した二次圧に調圧する調圧弁43が設けられている。燃料循環流路42には、燃料循環流路42内の燃料オフガスを加圧して燃料ガス供給流路41側へ送り出す燃料ポンプ44が設けられている。
 冷却系5は、冷却水を冷却するラジエータ51と、冷却水を燃料電池2およびラジエータ51に循環供給する冷却水循環流路52と、冷却水を冷却水循環流路52に循環させる冷却水循環ポンプ53とを有する。ラジエータ51には、ラジエータファン54が設けられている。冷却水循環流路52のうち、燃料電池2の出口側には、冷却水の温度を検出する温度センサTが設けられている。なお、温度センサTを設ける位置は、燃料電池2の入口側であってもよい。
 電力系6は、DC/DCコンバータ61と、二次電池であるバッテリ62と、トラクションインバータ63と、電力消費装置としてのトラクションモータ64と、図示しない各種の補機インバータ等とを有する。DC/DCコンバータ61は、直流の電圧変換器であり、バッテリ62から入力された直流電圧を調整してトラクションインバータ63側に出力する機能と、燃料電池2またはトラクションモータ64から入力された直流電圧を調整してバッテリ62に出力する機能と、を有する。このようなDC/DCコンバータ61の機能により、バッテリ62の充放電が実現される。
 バッテリ62は、バッテリセルが積層されて一定の高電圧を端子電圧とし、図示しないバッテリコンピュータの制御によって余剰電力を充電したり補助的に電力を供給したりすることが可能になっている。トラクションインバータ63は、直流電流を三相交流に変換し、トラクションモータ64に供給する。トラクションモータ64は、例えば三相交流モータであり、燃料電池システム1が搭載される燃料電池車両の主動力源を構成する。補機インバータは、各モータの駆動を制御する電動機制御部であり、直流電流を三相交流に変換して各モータに供給する。
 制御部7は、燃料電池車両に設けられた加速操作部材(例えば、アクセル)の操作量を測定し、加速要求値(例えば、トラクションモータ64等の電力消費装置からの要求発電量)等の制御情報を受けて、システム内の各種機器の動作を制御する。なお、電力消費装置には、トラクションモータ64の他に、例えば、燃料電池2を作動させるために必要な補機装置(例えばコンプレッサ31や燃料ポンプ44、冷却水循環ポンプ53のモータ等)、車両の走行に関与する各種装置(変速機、車輪制御装置、操舵装置、懸架装置等)で使用されるアクチュエータ、乗員空間の空調装置(エアコン)、照明、オーディオ等が含まれる。
 制御部7は、物理的には、例えば、CPUと、メモリと、入出力インターフェースとを有する。メモリには、例えば、CPUで処理される制御プログラムや制御データを記憶するROMや、主として制御処理のための各種作業領域として使用されるRAMが含まれる。これらの要素は、互いにバスを介して接続されている。入出力インターフェースには、電圧センサV、電流センサA、圧力センサP、温度センサTおよび流量センサF等の各種センサが接続されているとともに、コンプレッサ31、燃料ポンプ44および冷却水循環ポンプ53等を駆動させるための各種ドライバが接続されている。
 CPUは、ROMに記憶された制御プログラムに従って、入出力インターフェースを介して各種センサでの測定結果を受信し、RAM内の各種データ等を用いて処理することで、各種制御処理を実行する。また、CPUは、入出力インターフェースを介して各種ドライバに制御信号を出力することにより、燃料電池システム1全体を制御する。以下に、第1実施形態の制御部7によって行われる含水状態判定処理について説明する。なお、第1実施形態における含水状態判定処理は通常運転時に実行される。燃料電池の運転状態には、通常運転と間欠運転とがある。間欠運転は、バッテリ62から供給される電力のみで燃料電池車両を走行させる運転モードであり、通常運転は、間欠運転以外の運転モードである。
 図2に示すように、制御部7は、機能的には、出力電流制御部71(出力電流制御手段)と、含水状態判定部72(含水状態判定手段)と、含水量増加処理部73(含水量増加手段)と、含水量減少処理部74(含水量減少手段)と、を有する。制御部7のメモリ79には、上記各部が参照する各種のマップが格納されている。
 出力電流制御部71は、燃料電池2への酸化ガスの供給量を維持したまま、燃料電池2の出力電流を一時的に増加させる。出力電流の増加は、燃料電池2の電圧を要求電圧よりも低下させ、燃料電池2から要求電流よりも大きな電流を強制的に取り出す(以下、「電流挿引」という。)ことで行う。なお、電流挿引時に維持するのは、酸化ガスの供給量に限定されない。燃料ガスの供給量を維持することとしてもよいし、酸化ガスと燃料ガスの双方の供給量を維持することとしてもよい。
 出力電流制御部71は、酸化ガスの供給量や圧力等を変化させずに電流挿引を一時的に行う。通常、酸化ガスの供給量等を変化させずに電流挿引を行うと、酸化ガスが不足してストイキ比が1未満に低下し、発電を継続することができなくなってしまう。ところが、本願発明では、電流挿引を一時的に行うことで、電流挿引時に生ずるストイキ比の低下を回避している。
 これは、燃料電池2のスタック内、特に触媒には、酸素や水素が残留しているため、酸化ガスの供給量を維持したまま電流挿引を行ったとしても、残留酸素や残留水素が消滅するまでの間であれば、ストイキ比を維持した状態で電流挿引を行い得るという知見によるものである。つまり、スタック内の残留酸素や残留水素を有効に利用することで、酸化ガスの供給量を維持したまま電流挿引を行っても一時的にストイキ比を維持させることを可能としたものである。なお、ストイキ比とは、燃料電池に供給するガス量と、燃料電池で消費されるガス量との比を意味し、ストイキ比=供給ガス量/消費ガス量で示される。
 電流挿引を行う時間は、残留酸素や残留水素の量に応じて設定することができる。電流挿引を行う上限時間としては、例えば、残留酸素や残留水素によって供給可能な電力量を消費するのに要する時間を設定することができる。残留酸素や残留水素によって供給可能な電力量は、例えば、燃料電池のスタックの設計、酸化ガスや燃料ガスの供給量や圧力等の諸条件、燃料電池内の含水量等によって決定することができる。残留酸素や残留水素によって供給可能な電力量が決定すれば、電流挿引に必要な電流と電流挿引の上限時間とを決定することができる。
 電流挿引を行う下限時間としては、例えば、燃料電池内の含水状態を判定する際の判定誤差が許容範囲内に収まり得るデータ数を取得するのに要する時間を設定することができる。電流挿引時に取得するデータは、燃料電池の出力電流値と出力電圧値となる。含水状態の判定は、取得した出力電圧値を出力電流値で除算することで求まる抵抗成分に基づいて判定される。
 また、燃料電池の電圧を低下させる速度(以下、「挿引速度」という。)が大きいほど出力電流が増加する関係にあることから、必要な電流に応じて挿引速度を決定することが好ましい。さらに、燃料電池の電圧が低すぎたり高すぎたりすると、触媒の還元反応が低下するため、残留酸素が減少してしまう。残留酸素が減少すると、燃料電池から取り出せる電流も減少してしまう。したがって、触媒の還元反応が低下しない範囲で電圧を変動させることが好ましい。
 燃料電池内の含水状態は、例えば、適正状態、乾燥(ドライアップ)状態、湿潤(フラッディング)状態に大別することができる。適正状態は、含水量が適正範囲内にある状態をいい、乾燥状態は、含水量が適正範囲よりも少量側にある状態をいい、湿潤状態は、含水量が適正範囲よりも多量側にある状態をいう。含水量の適正範囲は、燃料電池2の特性を満たすことができる範囲に設けられる。
 含水状態判定部72は、出力電流制御部71によって一時的に電流挿引されているときの燃料電池2の出力電圧を用いて、燃料電池2内の含水状態を判定する。含水状態判定部72は、含水量概算部72a(含水量概算手段)と、抵抗成分算出部72b(抵抗成分算出手段)と、含水量算出部72c(含水量算出手段)と、含水量判定部72d(含水量判定手段)と、セル電圧判定部72e(セル電圧判定手段)と、を有する。
 含水量概算部72aは、燃料電池2の発電によって生成される水分量から燃料電池2外に持ち出される水分量を減算した値(以下、「水収支」という。)を用いて燃料電池2内の含水量を概算する。具体的に、含水量概算部72aは、前回概算した含水量に今回算出した水収支を加算していくことで燃料電池2内の含水量を概算する。
 燃料電池外に持ち出される水分量は、燃料電池2のカソード出口のガスの湿度とガス量とから算出することができる。ガスの湿度は、冷却水の温度と発電量に基づいて算出することができる。したがって、冷却水の温度と発電量からガスの湿度を算出するためのマップを、予め実験などにより求め、メモリ79に格納しておくこととしてもよい。
 水収支を算出する際のパラメータとしては、例えば、電流センサAの検出値(燃料電池の電流値)、温度センサTの検出値(冷却水の温度)、圧力センサPの検出値(燃料電池のカソード圧力)、流量センサFの検出値(酸化ガスの流量)、燃料電池のカソード湿度(不明時には100%と仮定してもよい。)等を用いることができる。
 前回概算した含水量には、含水量概算部72aによって概算される含水量が格納されるが、後述する含水量算出部72cによって含水量が算出されたときには、この算出された含水量を、前回概算した含水量に格納する。これにより、誤差が生じやすい概算含水量を、含水量算出部72cによって算出される精度の高い含水量で補正することができるため、含水量の概算精度を向上させることができる。
 抵抗成分算出部72bは、出力電流制御部71によって一時的に電流挿引されているときの燃料電池2の出力電流値および出力電圧値を用いて燃料電池2内の抵抗成分を算出する。抵抗成分は、出力電圧値を出力電流値で除算することで求めることができる。なお、この抵抗成分は、出力電流値に対する出力電圧値の変化を、横軸に出力電流、縦軸に出力電圧で示される座標平面上に表した場合に、この座標平面上に描かれるグラフの傾きとして表わされる。
 含水量算出部72cは、抵抗成分算出部72bによって算出された抵抗成分を用いて燃料電池2内の含水量を算出する。含水量は、例えば、以下のようにして算出することができる。まず、抵抗成分と含水量との間には、抵抗成分が小さくなるほど含水量が増加し、抵抗成分が大きくなるほど含水量が減少するという相関関係があるため、このような相関関係を記憶したマップをメモリ79に予め格納しておく。含水量算出部72cは、抵抗成分算出部72bにより算出された抵抗成分に基づいて上記マップを参照し、抵抗成分に対応する含水量をマップから抽出することで燃料電池内の含水量を算出する。
 含水量判定部72dは、含水量概算部72aによって概算された含水量または含水量算出部72cによって算出された含水量が、所定の乾燥状態閾値以下であるか否かを判定する。乾燥状態閾値と比較する含水量は、通常は含水量概算部72aによって概算された含水量となるが、含水量算出部72cによって含水量が算出されたときには、この算出された含水量となる。このような含水量に基づいて判定を行うために、例えば、含水状態判定用含水量という判定用の項目を設け、この含水状態判定用含水量を使用して以下のように含水状態を判定することとしてもよい。
 具体的に説明すると、含水量概算部72aによって含水量が概算されるたびに、その概算された含水量を含水状態判定用含水量に格納する。そして、含水量算出部72cによって含水量が算出されたときには、その算出された含水量を用いて含水状態判定用含水量の内容を更新する。これにより、誤差が生じやすい概算含水量を、含水量算出部72cによって算出された精度の高い含水量で補正することができるため、燃料電池の含水状態を精度良く判定することが可能となる。
 上記乾燥状態閾値としては、燃料電池内が乾燥状態であると判定可能な上限含水量を設定することができる。これにより、含水量が乾燥状態閾値以下である場合には、燃料電池内の含水状態が乾燥状態であると判定することができる。
 セル電圧判定部72eは、出力電流制御部71によって一時的に電流挿引されている間にセルモニタによって検出されたセル電圧のうちの最低セル電圧が、所定の湿潤状態閾値以下に達したか否かを判定する。湿潤状態閾値としては、燃料電池内が湿潤状態であると判定可能な上限電圧値を設定することができる。これにより、セル電圧が湿潤状態閾値以下である場合には、燃料電池内の含水状態が湿潤状態であると判定することができる。なお、湿潤状態閾値と比較するのは最低セル電圧に限定されない。セルモニタによって検出されたセル電圧のうちのいずれかの電圧が、湿潤状態閾値以下に達したか否かを判定することができればよい。
 含水量増加処理部73は、含水量判定部72dによって上記含水量が乾燥状態閾値以下であると判定された場合に、燃料電池内の含水量を増加させる含水量増加処理を実行する。含水量増加処理としては、例えば以下に挙げる各処理が該当する。コンプレッサ31の流量を低下させてカソードストイキを低下させるカソードストイキ低下処理。背圧弁34を調整して燃料電池内の酸化ガスの圧力を上昇させる酸化ガス圧力上昇処理。ラジエータファン54を駆動させる等して冷却水の温度を低下させる冷却水温低下処理。
 含水量減少処理部74は、セル電圧判定部72eによって最低セル電圧が湿潤状態閾値以下に達したと判定された場合に、燃料電池内の含水量を減少させる含水量減少処理を実行する。含水量減少処理としては、例えば以下に挙げる各処理が該当する。コンプレッサ31の流量を増加させて酸化ガスの流量を増加させる酸化ガスブロー処理。背圧弁34の開度を制御して燃料電池内の酸化ガスの圧力を変動させる酸化ガス圧力脈動処理。燃料ポンプ44のモータの回転数を増大させる燃料ポンプ回転数増大処理。これにより、ドラビリに影響を与えることなく、フラッディングを判定して含水量の回復を図ることができる。
 次に、図3および図4に示すフローチャートを用いて、本実施形態の燃料電池システムにおいて実行される含水状態判定処理について説明する。図3は、乾燥状態を判定する際のフローチャートであり、図4は、潤湿状態を判定する際のフローチャートである。これらの含水状態判定処理は、並行して実行可能な処理であり、例えば、イグニッションキーがONされたときに開始され、運転が終了するまで繰り返し実行される。
 まず、図3に示す乾燥状態を判定する際の含水状態判定処理について説明する。最初に、制御部7の含水量概算部72aは、水収支に基づいて燃料電池2内の含水量を概算し(ステップS101)、この概算した含水量を含水状態判定用含水量に設定する(ステップS102)。
 続いて、制御部7は、現時点が電流挿引のタイミングであるか否かを判定し(ステップS103)、電流挿引のタイミングではない場合(ステップS103;NO)には、後述するステップS108に処理を移行する。
 一方、現時点が電流挿引のタイミングである場合(ステップS103;YES)に、制御部7の出力電流制御部71は、燃料電池2への酸化ガスの供給量を維持したまま、一時的に電流挿引を行う(ステップS104)。
 続いて、制御部7の抵抗成分算出部72bは、出力電流制御部71によって一時的に電流挿引されているときの燃料電池2の出力電流値および出力電圧値を用いて燃料電池2内の抵抗成分を算出する(ステップS105)。
 続いて、制御部7の含水量算出部72cは、抵抗成分算出部72bにより算出された抵抗成分を用いて燃料電池2内の含水量を算出し(ステップS106)、この算出した含水量で含水状態判定用含水量を更新する(ステップS107)。
 続いて、制御部7の含水量判定部72dは、含水状態判定用含水量が乾燥状態閾値以下であるか否かを判定する(ステップS108)。この判定がNOである場合(ステップS108;NO)に、制御部7は、含水状態判定処理を終了する。
 一方、上記ステップS108の判定で、含水状態判定用含水量が乾燥状態閾値以下であると判定された場合(ステップS108;YES)に、制御部7の含水量増加処理部73は、含水量増加処理を実行する(ステップS109)。
 次に、図4に示す湿潤状態を判定する際の含水状態判定処理について説明する。最初に、制御部7は、現時点が電流挿引のタイミングであるか否かを判定し(ステップS151)、電流挿引のタイミングではない場合(ステップS151;NO)には、含水状態判定処理を終了する。
 一方、現時点が電流挿引のタイミングである場合(ステップS151;YES)に、制御部7の出力電流制御部71は、燃料電池2への酸化ガスの供給量を維持したまま、一時的に電流挿引を行う(ステップS152)。
 続いて、制御部7のセル電圧判定部72eは、出力電流制御部71によって一時的に電流挿引されている間にセルモニタによって検出された各セル電圧を取得し(ステップS153)、各セル電圧のうちの最低セル電圧が湿潤状態閾値以下に達したか否かを判定する(ステップS154)。この判定がNOである場合(ステップS154;NO)に、制御部7は、含水状態判定処理を終了する。
 一方、上記ステップS154の判定で、最低セル電圧が湿潤状態閾値以下であると判定された場合(ステップS154;YES)に、制御部7の含水量減少処理部74は、含水量減少処理を実行する(ステップS155)。
 上述してきたように、第1実施形態における燃料電池システム1によれば、燃料電池2への酸化ガスの供給量を維持したまま、燃料電池内の含水状態を判定することが可能となる。また、燃料電池内の抵抗成分に基づいて算出した含水量が乾燥状態閾値以下であるか否かを判定することで燃料電池内が乾燥状態にあるか否かを検知することができ、乾燥状態にある場合には、燃料電池内の含水量を増加させることが可能となる。さらに、セル電圧が湿潤状態閾値以下であるか否かを判定することで燃料電池内が湿潤状態にあるか否かを検知することができ、湿潤状態にある場合には、燃料電池内の含水量を減少させることが可能となる。
[第2実施形態]
 本発明の第2実施形態について説明する。第2実施形態における燃料電池システムは、電流挿引時に要求発電量が増大した場合に、その増大した要求発電量に応じて酸化ガスの供給量を増加させる点で、酸化ガスの供給量を維持したまま電流挿引を行う第1実施形態における燃料電池システムと相違する。第2実施形態における燃料電池システムの構成が、上述した第1実施形態における燃料電池システムの構成と相違する点は、制御部7に新たな機能が追加されている点である。それ以外の構成については、第1実施形態における燃料電池システムの各構成と同様であるため、各構成要素には同一の符合を付しその説明は省略するとともに、以下においては、主に第1実施形態との相違点について説明する。
 図5に示すように、第2実施形態における制御部7は、第1実施形態における各部に加えて、酸化ガス供給量制御部75(ガス供給量制御手段)をさらに有する。
 酸化ガス供給量制御部75は、出力電流制御部71によって一時的に電流挿引されているときに、トラクションモータ64からの要求発電量が増大した場合に、この要求発電量に応じて酸化ガスの供給量を増加させる。これにより、電流挿引時に要求発電量が増大した場合であっても、要求発電量に応じた酸化ガスを供給しながら電流挿引を行うことができるため、酸化ガスの供給遅れを生じさせることなく、要求負荷に対してスムーズに応答することが可能となる。
 抵抗成分算出部72bは、酸化ガス供給量制御部75によって酸化ガスの供給量が増加させられた場合に、抵抗成分を補正する。これは、電流挿引中に酸化ガスの供給量が増加すると、残留酸素や残留水素の量等が変化し、抵抗成分が変動してしまうためである。抵抗成分の補正は、例えば、以下のように行うことができる。
 抵抗成分とカソード圧力との間には、カソード圧力が大きくなるほど抵抗成分が小さくなるという相関関係があるため、このような相関関係を記憶したマップをメモリ79に予め格納しておく。最初に、抵抗成分算出部72bは、出力電流制御部71によって一時的に電流挿引されているときの燃料電池2の出力電流値および出力電圧値を用いて燃料電池2内の抵抗成分を算出する。続いて、抵抗成分算出部72bは、酸化ガス供給量制御部75によって酸化ガスの供給量が増加させられた場合に、酸化ガスの供給量が増加される前後のカソード圧力を、圧力センサPから取得する。続いて、抵抗成分算出部72bは、取得したカソード圧力に基づいて上記マップを参照し、それぞれのカソード圧力に対応する抵抗成分をマップから抽出する。続いて、抵抗成分算出部72bは、抽出した抵抗成分を用いて抵抗成分の変動率を算出し、この変動率を用いて、上記電流挿引時に算出した抵抗成分を補正する。
 なお、抵抗成分とカソードストイキとの間には、カソードストイキが大きくなるほど抵抗成分が小さくなるという相関関係があり、抵抗成分と冷却水温との間には、冷却水温が高くなるほど抵抗成分が小さくなるという相関関係がある。したがって、上述した抵抗成分とカソード圧力との相関関係を記憶したマップに変えて、抵抗成分とカソードストイキとの相関関係を記憶したマップや、抵抗成分と冷却水温との相関関係を記憶したマップを用いて、上述した補正方法と同様の手順で抵抗成分を補正することとしてもよい。
 また、抵抗成分を補正する方法は、上記補正方法には限定されない。電流挿引中に酸化ガスの供給量を増加させたことによって変動するガス量や圧力、温度等の諸条件に応じた抵抗成分を求めることができれば、他の方法であってもよい。
 次に、図6に示すフローチャートを参照して、第2実施形態における燃料電池システムで実行される含水状態判定処理について説明する。図6は、乾燥状態を判定する際のフローチャートである。この含水状態判定処理は、例えば、イグニッションキーがONされたときに開始され、運転が終了するまで繰り返し実行される。
 最初に、制御部7の含水量概算部72aは、水収支に基づいて燃料電池2内の含水量を概算し(ステップS201)、この概算した含水量を含水状態判定用含水量に設定する(ステップS202)。
 続いて、制御部7は、現時点が電流挿引のタイミングであるか否かを判定し(ステップS203)、電流挿引のタイミングではない場合(ステップS203;NO)には、後述するステップS213に処理を移行する。
 一方、現時点が電流挿引のタイミングである場合(ステップS203;YES)に、制御部7の出力電流制御部71は、燃料電池2への酸化ガスの供給量を維持したまま、電流挿引を開始する(ステップS204)。
 続いて、制御部7の酸化ガス供給量制御部75は、要求発電量が挿引開始時の要求発電量よりも大きくなったか否かを判定する(ステップS205)。この判定がNOである場合(ステップS205;NO)に、制御部7の抵抗成分算出部72bは、出力電流制御部71によって電流挿引されているときの燃料電池2の出力電流値および出力電圧値を用いて燃料電池2内の抵抗成分を算出する(ステップS206)。続いて、制御部7の含水量算出部72cは、抵抗成分算出部72bにより算出された抵抗成分を用いて燃料電池2内の含水量を算出し(ステップS207)、この算出した含水量で含水状態判定用含水量を更新する(ステップS212)。そして、処理を後述するステップS213に移行する。
 一方、上記ステップS205の判定で、要求発電量が挿引開始時の要求発電量よりも大きくなったと判定された場合(ステップS205;YES)に、制御部7の酸化ガス供給量制御部75は、増大した要求発電量に応じて酸化ガスの供給量を増加させる(ステップS208)。
 続いて、制御部7の抵抗成分算出部72bは、出力電流制御部71によって電流挿引されているときの燃料電池2の出力電流値および出力電圧値を用いて燃料電池2内の抵抗成分を算出し(ステップS209)、この算出した抵抗成分を、上述したマップを参照する等して補正する(ステップS210)。
 続いて、制御部7の含水量算出部72cは、補正後の抵抗成分を用いて燃料電池2内の含水量を算出し(ステップS211)、この算出した含水量で含水状態判定用含水量を更新する(ステップS212)。
 続いて、制御部7の含水量判定部72dは、含水状態判定用含水量が乾燥状態閾値以下であるか否かを判定する(ステップS213)。この判定がNOである場合(ステップS213;NO)に、制御部7は、含水状態判定処理を終了する。
 一方、上記ステップS213の判定で、含水状態判定用含水量が乾燥状態閾値以下であると判定された場合(ステップS213;YES)に、制御部7の含水量増加処理部73は、含水量増加処理を実行する(ステップS214)。
 上述してきたように、第2実施形態の燃料電池システム1によれば、上述した第1実施形態の燃料電池システム1と同様の効果を奏するとともに、さらに、電流挿引時に要求発電量が増大した場合であっても、要求発電量に応じた酸化ガスを供給しながら電流挿引を行うことができるため、酸化ガスの供給遅れを生じさせることなく、要求負荷に対してスムーズに応答することが可能となる。
[第3実施形態]
 本発明の第3実施形態について説明する。第3実施形態における燃料電池システムは、燃料電池が間欠運転をしているときに含水状態判定処理を実行する点で、含水状態判定処理を通常運転時に実行する第1実施形態における燃料電池システムと相違する。第3実施形態における燃料電池システムの構成が、上述した第1実施形態における燃料電池システムの構成と相違する点は、第3実施形態における制御部7に新たな機能が追加されている点である。それ以外の構成については、第1実施形態における燃料電池システムの各構成と同様であるため、各構成要素には同一の符合を付しその説明は省略するとともに、以下においては、主に第1実施形態との相違点について説明する。
 ここで、燃料電池2の抵抗成分は、燃料電池2に含まれる触媒の劣化状態に応じて変動する。したがって、燃料電池内の含水状態を正確に把握するためには、触媒の劣化状態に応じた抵抗成分を算出することが好ましい。一方、触媒は使用により酸化する。触媒は、酸化するとその表面が酸化被膜で覆われ、有効面積が低減する。したがって、触媒の劣化状態を正確に把握するためには、触媒を活性化(還元)して触媒の有効面積を揃えてから劣化状態を判定することが好ましい。そこで、第3実施形態における燃料電池システムでは、間欠運転時に含水状態判定処理を実行するとともに、触媒を活性化して劣化状態の判定精度を向上させてから触媒の劣化状態を判定し、判明した劣化状態に応じて抵抗成分を補正することとした。
 図7に示すように、第3実施形態における制御部7は、第1実施形態における各部に加えて、触媒活性化部76(触媒活性化手段)をさらに有する。
 触媒活性化部76は、燃料電池2が間欠運転をしているときに触媒活性化処理を実行する。触媒活性化処理は、燃料電池2の出力電圧を、触媒に還元反応が生ずる領域(還元領域)にある電圧まで低下させることによって、触媒を還元して活性化させる処理である。
 出力電流制御部71は、燃料電池2が間欠運転をしている場合に、酸化ガスの供給量を維持したまま、一時的に電流挿引を行う。間欠運転中は、酸化ガスの供給を停止する場合と、酸化ガスを一定量だけ供給する場合とがある。いずれの場合も、出力電流制御部71は、その時点の酸化ガスの供給量(0または一定量)を維持したまま電流挿引を行う。
 抵抗成分算出部72bは、触媒活性化部76によって還元された触媒の劣化状態を判定する。触媒の劣化状態を判定する方法は、公知の方法を用いることができる。抵抗成分算出部72bは、判明した触媒の劣化状態に応じて、抵抗成分を補正する。具体的には、触媒の劣化状態と抵抗成分との相関関係を実験等により求め、予めマップに記憶させておく。抵抗成分算出部72bは、判明した触媒の劣化状態に対応する抵抗成分をマップから抽出する。抵抗成分算出部72bは、抽出した抵抗成分を用いて、抵抗成分算出部72bによって算出された抵抗成分を補正する。
 なお、抵抗成分を補正する方法は、触媒の劣化状態によって変動する電流値や電圧値等の諸条件に応じた抵抗成分を求めることができれば、どのような方法を用いてもよい。
 次に、図8に示すフローチャートを参照して、第3実施形態における燃料電池システムで実行される含水状態判定処理について説明する。図8は、乾燥状態を判定する際のフローチャートである。この含水状態判定処理は、例えば、イグニッションキーがONされたときに開始され、運転が終了するまで繰り返し実行される。
 最初に、制御部7は、燃料電池2の運転状態が間欠運転であるか否かを判定し(ステップS301)、この判定がNOである場合(ステップS301;NO)に、制御部7は含水状態判定処理を終了する。
 一方、燃料電池2の運転状態が間欠運転であると判定された場合(ステップS301;YES)に、制御部7の含水量概算部72aは、水収支に基づいて燃料電池2内の含水量を概算し(ステップS302)、この概算した含水量を含水状態判定用含水量に設定する(ステップS303)。
 続いて、制御部7は、現時点が電流挿引のタイミングであるか否かを判定し(ステップS304)、電流挿引のタイミングではない場合(ステップS304;NO)には、後述するステップS311に処理を移行する。
 一方、現時点が電流挿引のタイミングである場合(ステップS304;YES)に、制御部7の触媒活性化部76は、触媒活性化処理を実行する(ステップS305)。
 続いて、制御部7の出力電流制御部71は、燃料電池2への酸化ガスの供給量を維持したまま、一時的に電流挿引を行う(ステップS306)。
 続いて、制御部7の抵抗成分算出部72bは、出力電流制御部71によって一時的に電流挿引されているときの燃料電池2の出力電流値および出力電圧値を用いて燃料電池2内の抵抗成分を算出し(ステップS307)、この算出した抵抗成分を、触媒の劣化状態に応じて補正する(ステップS308)。
 続いて、制御部7の含水量算出部72cは、補正後の抵抗成分を用いて燃料電池2内の含水量を算出し(ステップS309)、この算出した含水量で含水状態判定用含水量を更新する(ステップS310)。
 続いて、制御部7の含水量判定部72dは、含水状態判定用含水量が乾燥状態閾値以下であるか否かを判定する(ステップS311)。この判定がNOである場合(ステップS311;NO)に、制御部7は含水状態判定処理を終了する。
 一方、上記ステップS311の判定で、含水状態判定用含水量が乾燥状態閾値以下であると判定された場合(ステップS311;YES)に、制御部7の含水量増加処理部73は、含水量増加処理を実行する(ステップS312)。
 上述してきたように、第3実施形態の燃料電池システム1によれば、上述した第1実施形態の燃料電池システム1と同様の効果を奏するとともに、さらに、酸化ガスの供給量や圧力等が変動しない間欠運転時に、電流挿引を行うことができるため、抵抗成分を精度良く算出することが可能となる。また、触媒を活性化してから触媒の劣化状態を判定することができるとともに、判明した劣化状態に応じて抵抗成分を補正することが可能となるため、燃料電池の含水状態を精度良く判定することができる。
 なお、上述した各実施形態における制御部の機能構成は適宜組み合わせることができる。
 本発明に係る燃料電池システムは、燃料電池に供給される反応ガスの供給状態を変動させることなく、燃料電池の含水状態を判定させることに適している。
 1…燃料電池システム、2…燃料電池、3…酸化ガス配管系、4…燃料ガス配管系、5…冷却系、6…電力系、7…制御部、31…コンプレッサ、34…背圧弁、40…燃料タンク、44…燃料ポンプ、51…ラジエータ、53…冷却水循環ポンプ、54…ラジエータファン、61…DC/DCコンバータ、62…バッテリ、64…トラクションモータ、71…出力電流制御部、72…含水状態判定部、72a…含水量概算部、72b…抵抗成分算出部、72c…含水量算出部、72d…含水量判定部、72e…セル電圧判定部、73…含水量増加処理部、74…含水量減少処理部、75…酸化ガス供給量制御部、76…触媒活性化部、79…メモリ、V…電圧センサ、A…電流センサ、P…圧力センサ、T…温度センサ、F…流量センサ。

Claims (9)

  1.  複数の単セルが積層してなるセル積層体を有し、当該セル積層体に供給される反応ガスの電気化学反応により電力を発生する燃料電池と、
     前記燃料電池への前記反応ガスの供給量を維持したまま、前記燃料電池の出力電流を一時的に増加させる出力電流制御手段と、
     前記出力電流制御手段によって前記出力電流が一時的に増加させられているときの前記燃料電池の出力電圧を用いて、前記燃料電池内の含水状態を判定する含水状態判定手段と、
     を備えることを特徴とする燃料電池システム。
  2.  前記含水状態判定手段によって、前記燃料電池内の含水状態が乾燥状態であると判定された場合に、前記燃料電池内の含水量を増加させる含水量増加処理を実行する含水量増加手段を、さらに備えることを特徴とする請求項1記載の燃料電池システム。
  3.  前記含水状態判定手段は、
     前記出力電流制御手段によって前記出力電流が一時的に増加させられているときの前記燃料電池の出力電流値および出力電圧値から抵抗成分を算出する抵抗成分算出手段と、
     前記抵抗成分算出手段により算出された前記抵抗成分に対応する前記燃料電池内の含水量を算出する含水量算出手段と、
     前記含水量算出手段により算出された前記含水量が、乾燥状態であることを判定する際の乾燥状態閾値以下であるか否かを判定する含水量判定手段と、を備え、
     前記含水量増加手段は、前記含水量判定手段によって、前記含水量が前記乾燥状態閾値以下であると判定された場合に、前記含水量増加処理を実行することを特徴とする請求項2記載の燃料電池システム。
  4.  前記含水状態判定手段は、前記燃料電池の発電によって生成される水分量から前記燃料電池外に持ち出される水分量を減算した値を用いて前記燃料電池内の含水量を概算する含水量概算手段を、さらに備え、
     前記含水量判定手段は、前記燃料電池内の乾燥状態を判定する際に、前記含水量算出手段によって前記含水量が算出されたときには、当該算出された前記含水量が前記乾燥状態閾値以下であるか否かを判定し、前記含水量算出手段によって前記含水量が算出されていないときには、前記含水量概算手段により概算された前記含水量が前記乾燥状態閾値以下であるか否かを判定することを特徴とする請求項3記載の燃料電池システム。
  5.  前記出力電流制御手段は、前記燃料電池が間欠運転をしている場合に、前記反応ガスの供給量を維持したまま、前記燃料電池の出力電流を一時的に増加させることを特徴とする請求項3または4記載の燃料電池システム。
  6.  前記間欠運転時に、前記燃料電池の電圧が、当該燃料電池に含まれる触媒の還元領域に収まるように、前記燃料電池から電流を出力させる触媒活性化手段を、さらに備え、
     前記抵抗成分算出手段は、前記触媒活性化手段によって活性化された前記触媒の劣化状態に応じて、前記抵抗成分を補正することを特徴とする請求項5記載の燃料電池システム。
  7.  前記燃料電池からの電力を消費する電力消費装置と、
     前記出力電流制御手段によって前記出力電流が一時的に増加させられている間に、前記電力消費装置からの要求発電量が増大した場合に、当該要求発電量に応じて前記反応ガスの供給量を増加させるガス供給量制御手段と、をさらに備え、
     前記抵抗成分算出手段は、前記ガス供給量制御手段によって前記反応ガスの供給量が増加させられた場合に、前記抵抗成分を補正することを特徴とする請求項3~6のいずれか1項に記載の燃料電池システム。
  8.  前記含水状態判定手段によって、前記燃料電池内の含水状態が湿潤状態であると判定された場合に、前記燃料電池内の含水量を減少させる含水量減少処理を実行する含水量減少手段を、さらに備えることを特徴とする請求項1~7のいずれか1項に記載の燃料電池システム。
  9.  前記含水状態判定手段は、前記出力電流制御手段によって前記出力電流が一時的に増加させられている間に、前記単セルの電圧を検出するセル電圧検出部によって検出されたいずれかの電圧が、湿潤状態であることを判定する際の湿潤状態閾値以下に達したか否かを判定するセル電圧判定手段を、備え、
     前記含水量減少手段は、前記セル電圧判定手段によって、前記電圧が前記湿潤状態閾値以下に達したと判定された場合に、前記含水量減少処理を実行することを特徴とする請求項8記載の燃料電池システム。
PCT/JP2009/058990 2009-05-14 2009-05-14 燃料電池システム WO2010131351A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980159260.0A CN102422473B (zh) 2009-05-14 2009-05-14 燃料电池系统
JP2011513187A JP5273244B2 (ja) 2009-05-14 2009-05-14 燃料電池システム
US13/320,194 US8728672B2 (en) 2009-05-14 2009-05-14 Fuel cell system
DE112009004773.4T DE112009004773B4 (de) 2009-05-14 2009-05-14 Brennstoffzellensystem
PCT/JP2009/058990 WO2010131351A1 (ja) 2009-05-14 2009-05-14 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058990 WO2010131351A1 (ja) 2009-05-14 2009-05-14 燃料電池システム

Publications (1)

Publication Number Publication Date
WO2010131351A1 true WO2010131351A1 (ja) 2010-11-18

Family

ID=43084741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058990 WO2010131351A1 (ja) 2009-05-14 2009-05-14 燃料電池システム

Country Status (5)

Country Link
US (1) US8728672B2 (ja)
JP (1) JP5273244B2 (ja)
CN (1) CN102422473B (ja)
DE (1) DE112009004773B4 (ja)
WO (1) WO2010131351A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205330A (ja) * 2011-03-24 2012-10-22 Toyota Motor Corp 燃料電池システム
JP2013110019A (ja) * 2011-11-22 2013-06-06 Toyota Motor Corp 燃料電池システム、および、燃料電池システムの制御方法
JP2017010806A (ja) * 2015-06-23 2017-01-12 トヨタ自動車株式会社 燃料電池システム
JP2019215994A (ja) * 2018-06-12 2019-12-19 株式会社Soken 燃料電池監視装置
WO2021166423A1 (ja) * 2020-02-17 2021-08-26 国立研究開発法人宇宙航空研究開発機構 燃料電池装置の制御方法
JP7439794B2 (ja) 2021-05-28 2024-02-28 トヨタ自動車株式会社 燃料電池システム

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014197693A1 (en) * 2013-06-07 2014-12-11 Nuvera Fuel Cells, Inc. Health monitoring of an electrochemical cell stack
KR101584864B1 (ko) * 2013-12-20 2016-01-21 현대오트론 주식회사 연료전지 스택용 주입 전류 생성 방법 및 이를 실행하는 장치
KR101593760B1 (ko) * 2013-12-20 2016-02-18 현대오트론 주식회사 연료전지 스택용 주입 전류 생성 방법 및 이를 실행하는 장치
JP6003878B2 (ja) * 2013-12-25 2016-10-05 トヨタ自動車株式会社 燃料電池システム
KR101838510B1 (ko) * 2016-03-11 2018-03-14 현대자동차주식회사 증발냉각식의 연료 전지 시스템과 그것을 위한 냉각 제어 방법
JP6504466B2 (ja) * 2016-04-07 2019-04-24 トヨタ自動車株式会社 水素欠乏判断方法及び水素欠乏判断装置
KR101795245B1 (ko) * 2016-04-19 2017-11-07 현대자동차주식회사 연료전지 스택의 제어 장치 및 그 방법
DE102017206729B4 (de) * 2016-04-29 2022-11-24 Ford Global Technologies, Llc Verfahren zum Betreiben eines Brennstoffzellensystems
DE102017215574A1 (de) * 2017-09-05 2019-03-07 Audi Ag Verfahren zum Betreiben einer Brennstoffzelle und Brennstoffzellensystem
CN109560309A (zh) * 2017-09-25 2019-04-02 郑州宇通客车股份有限公司 一种燃料电池及其自增湿水管理系统和方法
CN109935856A (zh) * 2017-12-19 2019-06-25 中国科学院大连化学物理研究所 一种液体燃料电池系统水平衡的控制方法
TWI674207B (zh) * 2018-08-14 2019-10-11 國立高雄科技大學 燃料電池之防護方法
JP7156920B2 (ja) * 2018-11-28 2022-10-19 株式会社Soken 燃料電池監視装置および燃料電池の状態を判定する方法
CN110752396B (zh) * 2019-09-30 2021-04-30 青岛大学 一种质子交换膜燃料电池水合状态在线评估与异常自愈控制方法
CN113793958B (zh) * 2021-08-24 2023-04-18 清华大学 一种基于电流密度分布的燃料电池水淹诊断方法
CN115842142B (zh) * 2022-12-29 2024-01-09 上海氢晨新能源科技有限公司 一种燃料电池电堆阳极排水控制方法及装置
CN116154235B (zh) * 2023-04-20 2023-07-11 上海重塑能源科技有限公司 大功率电堆散热控制方法、装置、电子设备及燃料电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243418A (ja) * 1999-02-23 2000-09-08 Toyota Motor Corp 燃料電池システム
JP2007188665A (ja) * 2006-01-11 2007-07-26 Toyota Motor Corp 燃料電池システム
JP2008047368A (ja) * 2006-08-11 2008-02-28 Nissan Motor Co Ltd 燃料電池システム
JP2009026483A (ja) * 2007-07-17 2009-02-05 Toyota Motor Corp 燃料電池システムおよび燃料電池の運転方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4379987B2 (ja) * 1999-11-30 2009-12-09 トヨタ自動車株式会社 燃料電池の制御装置
JP2005166479A (ja) 2003-12-03 2005-06-23 Nissan Motor Co Ltd 燃料電池システム
JP4821962B2 (ja) 2005-06-30 2011-11-24 トヨタ自動車株式会社 燃料電池システム
JP2007179749A (ja) * 2005-12-26 2007-07-12 Nissan Motor Co Ltd 燃料電池の制御方法及びその制御装置
JP4973138B2 (ja) 2006-11-10 2012-07-11 株式会社デンソー 燃料電池システム
JP4905182B2 (ja) * 2007-03-01 2012-03-28 トヨタ自動車株式会社 燃料電池システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243418A (ja) * 1999-02-23 2000-09-08 Toyota Motor Corp 燃料電池システム
JP2007188665A (ja) * 2006-01-11 2007-07-26 Toyota Motor Corp 燃料電池システム
JP2008047368A (ja) * 2006-08-11 2008-02-28 Nissan Motor Co Ltd 燃料電池システム
JP2009026483A (ja) * 2007-07-17 2009-02-05 Toyota Motor Corp 燃料電池システムおよび燃料電池の運転方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205330A (ja) * 2011-03-24 2012-10-22 Toyota Motor Corp 燃料電池システム
JP2013110019A (ja) * 2011-11-22 2013-06-06 Toyota Motor Corp 燃料電池システム、および、燃料電池システムの制御方法
JP2017010806A (ja) * 2015-06-23 2017-01-12 トヨタ自動車株式会社 燃料電池システム
KR101844142B1 (ko) * 2015-06-23 2018-03-30 도요타지도샤가부시키가이샤 연료 전지 시스템
US9941530B2 (en) 2015-06-23 2018-04-10 Toyota Jidosha Kabushiki Kaisha Fuel cell system including water content estimation
JP2019215994A (ja) * 2018-06-12 2019-12-19 株式会社Soken 燃料電池監視装置
JP7096076B2 (ja) 2018-06-12 2022-07-05 株式会社Soken 燃料電池監視装置
WO2021166423A1 (ja) * 2020-02-17 2021-08-26 国立研究開発法人宇宙航空研究開発機構 燃料電池装置の制御方法
US11923579B2 (en) 2020-02-17 2024-03-05 Japan Aerospace Exploration Agency Method for controlling fuel cell device
JP7439794B2 (ja) 2021-05-28 2024-02-28 トヨタ自動車株式会社 燃料電池システム

Also Published As

Publication number Publication date
US20120058404A1 (en) 2012-03-08
JP5273244B2 (ja) 2013-08-28
CN102422473A (zh) 2012-04-18
DE112009004773T5 (de) 2012-10-11
CN102422473B (zh) 2014-06-25
US8728672B2 (en) 2014-05-20
JPWO2010131351A1 (ja) 2012-11-01
DE112009004773B4 (de) 2018-03-15

Similar Documents

Publication Publication Date Title
JP5273244B2 (ja) 燃料電池システム
JP4381443B2 (ja) 燃料電池システム
US20160141674A1 (en) Fuel cell system and method of recoverying cell voltage thereof
CA2755898C (en) Fuel cell system with cooling water circulation control
JP4543337B2 (ja) 燃料電池システム
WO2008108451A1 (ja) 燃料電池システム、電極触媒の劣化判定方法、および移動体
US20100248055A1 (en) Fuel cell system and method for limiting current thereof
JP2008103250A (ja) 燃料電池システム及びその運転方法
JP2007042493A (ja) 電圧制御システム及び移動体
JP2010114039A (ja) 燃料電池システム
JP4696643B2 (ja) 燃料電池システム、その制御方法及びそれを搭載した車両
JP5196246B2 (ja) 燃料電池システム
US20120146421A1 (en) Fuel cell system
US20100233557A1 (en) Fuel cell system and fuel cell activation method
JP2004273162A (ja) 燃料電池制御システム
JP6504466B2 (ja) 水素欠乏判断方法及び水素欠乏判断装置
JP5316834B2 (ja) 燃料電池システム
JP5282881B2 (ja) 燃料電池システム
JP5109280B2 (ja) 燃料電池システム
JP2009259418A (ja) 燃料電池の制御方法及び燃料電池システム
JP2006048483A (ja) 電源装置およびその電力収支の補正方法並びに電源の電流電圧特性推定方法
JP2008262875A (ja) 燃料電池システム及び燃料電池の出力診断方法
JP2011009102A (ja) 燃料電池システム
JP5282863B2 (ja) 燃料電池システム
JP4304543B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159260.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011513187

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13320194

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112009004773

Country of ref document: DE

Ref document number: 1120090047734

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844624

Country of ref document: EP

Kind code of ref document: A1