WO2021166423A1 - 燃料電池装置の制御方法 - Google Patents
燃料電池装置の制御方法 Download PDFInfo
- Publication number
- WO2021166423A1 WO2021166423A1 PCT/JP2020/047927 JP2020047927W WO2021166423A1 WO 2021166423 A1 WO2021166423 A1 WO 2021166423A1 JP 2020047927 W JP2020047927 W JP 2020047927W WO 2021166423 A1 WO2021166423 A1 WO 2021166423A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- hydrogen
- gas
- threshold value
- oxygen
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0432—Temperature; Ambient temperature
- H01M8/04365—Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04701—Temperature
- H01M8/04731—Temperature of other components of a fuel cell or fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04753—Pressure; Flow of fuel cell reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04858—Electric variables
- H01M8/04865—Voltage
- H01M8/04873—Voltage of the individual fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
- H01M8/04552—Voltage of the individual fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
- H01M8/04559—Voltage of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04634—Other electric variables, e.g. resistance or impedance
- H01M8/04641—Other electric variables, e.g. resistance or impedance of the individual fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04634—Other electric variables, e.g. resistance or impedance
- H01M8/04649—Other electric variables, e.g. resistance or impedance of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04858—Electric variables
- H01M8/04865—Voltage
- H01M8/0488—Voltage of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04858—Electric variables
- H01M8/04949—Electric variables other electric variables, e.g. resistance or impedance
- H01M8/04951—Electric variables other electric variables, e.g. resistance or impedance of the individual fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04858—Electric variables
- H01M8/04949—Electric variables other electric variables, e.g. resistance or impedance
- H01M8/04952—Electric variables other electric variables, e.g. resistance or impedance of fuel cell stacks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a control method for a fuel cell device, and particularly to a control method during steady operation.
- the present application claims priority based on Japanese Patent Application No. 2020-024702 filed in Japan on February 17, 2020, the contents of which are incorporated herein by reference.
- a fuel cell is a device that directly converts the chemical energy of a fuel into electrical energy by electrochemically reacting a fuel such as hydrogen with an oxidizing agent such as air (oxygen).
- a fuel such as hydrogen
- an oxidizing agent such as air (oxygen).
- the polymer electrolyte fuel cell using a polymer electrolyte ion exchange membrane as the electrolyte has excellent features such as high output density, simple structure, and relatively low operating temperature. Therefore, various technological developments are underway for fuel cells that can be mounted on moving objects such as aircraft and vehicles.
- a humidifier that humidifies the reaction gas supplied to the fuel cell with the moisture contained in the reaction gas discharged from the fuel cell, and a determination for determining the humidified state in the humidifier.
- a fuel cell system having a unit has been proposed. This determination unit measures the impedance of the electrolyte membrane by applying an AC voltage to the pair of catalyst electrodes, and determines the humidified state based on the impedance (Patent Document 1).
- the reaction may occur due to dryout that hinders the conduction of hydrogen ions, or the electrolyte membrane becomes too wet and the adjacent catalyst layer and the separator outside it get wet.
- Control to suppress so-called flooding which hinders the diffusion of gas into the electrolyte membrane, becomes very difficult.
- oxygen is diluted with nitrogen, so dryout is likely to occur.
- flooding is more likely to occur depending on the oxygen supply method and the procedure as compared with the case where air is used.
- An object of the present invention is to provide a control method for a fuel cell device that can improve safety and reliability, and can realize simplification, weight reduction, and space saving of a system.
- a fuel cell in which an electrolyte membrane is sandwiched between a fuel electrode and an oxidant electrode, hydrogen is supplied to the hydrogen supply section of the fuel electrode, and a gas containing oxygen is supplied to the gas supply section of the oxidant electrode to generate power. It is a control method of the device, A step of determining whether or not the impedance between the fuel electrode and the oxidant electrode is larger than a predetermined threshold value during steady operation of the fuel cell device. A step of reducing the flow rate of gas circulating through a circulation path connecting a gas introduction path and a gas discharge path of the gas supply unit when the impedance is larger than a predetermined threshold value.
- FIG. 1 is a diagram schematically showing an example of a configuration of a fuel cell system to which the control method of the fuel cell device according to the first embodiment of the present invention is applied. It is a side view which shows an example of the hydrogen supply part and the oxygen supply part of the separator of FIG. It is a modification of the flow path pattern in FIG. 2A.
- FIG. 3 is a diagram illustrating a water movement model in the fuel cell stack of FIG.
- FIG. 4 is a flowchart showing an example of activation control of the fuel cell device executed by the fuel cell system of FIG.
- FIG. 5 is a timing chart showing a state change of each part when the start control of the fuel cell device of FIG. 4 is executed.
- FIG. 1 is a diagram schematically showing an example of a configuration of a fuel cell system to which the control method of the fuel cell device according to the first embodiment of the present invention is applied. It is a side view which shows an example of the hydrogen supply part and the oxygen supply part of the separator of FIG. It is a
- FIG. 6 is a flowchart showing an example of steady operation control of the fuel cell device executed by the fuel cell system of FIG.
- FIG. 7 is a timing chart showing a state change of each part when the steady operation control of the fuel cell device of FIG. 6 is executed.
- FIG. 8 is a flowchart showing an example of emergency stop control of the fuel cell device during steady operation.
- FIG. 9 is a flowchart showing an example of termination control of the fuel cell device executed by the fuel cell system of FIG.
- FIG. 10 is a timing chart showing a state change of each part when the start control of the fuel cell device of FIG. 9 is executed.
- FIG. 11 is a diagram schematically showing a configuration of a fuel cell system having a hydrogen-coated portion according to a second embodiment of the present invention.
- FIG. 11 is a diagram schematically showing a configuration of a fuel cell system having a hydrogen-coated portion according to a second embodiment of the present invention.
- FIG. 12 is a diagram showing a modified example of the configuration of the fuel cell device in FIG.
- FIG. 13 is a partially enlarged view showing the layout of the fuel cell stack in FIG.
- FIG. 14 is a diagram showing an example of the hydrogen supply side portion of the separator in FIG.
- FIG. 1 is a diagram schematically showing an example of a configuration of a fuel cell system to which the fuel cell control method according to the first embodiment of the present invention is applied
- FIG. 2A is a diagram showing a hydrogen supply unit of the separator of FIG. , And an example of an oxygen supply unit (gas supply unit).
- the featured portions may be enlarged for convenience, and the shapes, dimensional ratios, etc. of each component are not limited to those shown in the drawings. It shall be.
- the fuel cell system 1 includes a fuel cell device 2 and a control unit 3 that collectively controls the fuel cell device 2 by transmitting and receiving signals between various devices described later. ..
- the fuel cell device 2 is provided with a fuel cell stack 21.
- the fuel cell stack 21 is formed by stacking a plurality of fuel cell cells 21A composed of an electrolyte membrane 22, a fuel electrode 23, an oxidant electrode 24, a hydrogen supply unit 25, and an oxygen supply unit 26 with a separator 27 (see FIG. 2A). It is configured. In the present embodiment, for convenience of explanation, the case where the fuel cell stack 21 is composed of one fuel cell 21A is shown.
- a hydrogen supply port 28 and an oxygen discharge port 29 are provided above the fuel pole 23 and the oxidant pole 24, respectively, and a hydrogen discharge port 30 and an oxygen supply port are provided below the fuel pole 23 and the oxidant pole 24, respectively. 31 are provided respectively.
- the separator 27 has a flat plate shape and is composed of a fuel pole side portion 32 on the front side and an oxidant pole side portion 33 on the back side.
- the fuel electrode side portion 32 is provided with a hydrogen inlet 34 corresponding to the hydrogen supply port 28 and a hydrogen outlet 35 corresponding to the hydrogen discharge port 30.
- the oxidant pole side portion 33 is provided with an oxygen inlet 36 corresponding to the oxygen supply port 31 and an oxygen outlet 37 corresponding to the oxygen discharge port 29.
- the flow path patterns 38A and 39A of the fuel pole side portion 32 and the oxidant pole side portion 33, respectively, have a serpentine shape, for example, and have hydrogen flowing through the fuel pole side portion 32 and oxygen flowing through the oxidant pole side portion 33.
- the overall flow direction (thick black arrow in FIG. 2A) is formed to face each other.
- the flow path patterns 38B and 39B may have a comb shape (straight shape). Even in this shape, the directions of the flows of hydrogen flowing through the fuel pole side portion 32 and oxygen flowing through the oxidant pole side portion 33 (thick black arrows in FIG. 2B) are formed to face each other.
- the fuel cell system 1 is provided with a hydrogen supply source 41, a hydrogen introduction path 42 for supplying hydrogen from the hydrogen supply source 41 to the fuel cell device 2, and a hydrogen discharge path 43 for discharging hydrogen from the fuel cell device 2 ().
- the hydrogen introduction path 42 is connected to the hydrogen supply port 28, and the hydrogen discharge path 43 is connected to the hydrogen discharge port 30.
- An oxygen discharge path 53 (gas discharge path) for discharging gas is provided.
- the oxygen introduction path 52 is connected to the oxygen supply port 31, and the oxygen discharge path 53 is connected to the oxygen discharge port 29.
- a three-way valve 44 is provided in the hydrogen introduction path 42, and the hydrogen introduction path 42 is connected to the oxygen introduction path 52 via the connecting flow path 45.
- the hydrogen introduction path 42 is configured to supply hydrogen to the hydrogen supply unit 25 and to supply hydrogen to the oxygen supply unit 26 via the connecting flow path 45 as needed.
- the hydrogen introduction path 42 is provided with a hydrogen pressure measuring unit 46 for measuring the pressure (for example, gauge pressure) of hydrogen supplied to the hydrogen supply unit 25.
- the hydrogen discharge passage 43 is provided with a valve 47 for opening / shutting off the flow path, and is configured to be able to discharge (purge) hydrogen to the outside or stop the discharge.
- the oxygen introduction path 52 is provided with a valve 54 for opening / shutting off the flow path, and is configured to be able to supply / stop oxygen. Further, the oxygen introduction path 52 is provided with a gas pressure measuring unit 55 for measuring the pressure (for example, gauge pressure) of the gas supplied to the oxygen supply unit 26.
- the oxygen discharge path 53 is provided with a three-way valve 56, and the oxygen discharge path 53 is connected to the oxygen introduction path 52 via the circulation path 57.
- the oxygen discharge path 53 is configured to be able to discharge (purge) the gas to the outside and return the gas to the oxygen supply unit 26 via the circulation path 57 as needed. That is, in the present embodiment, the oxygen introduction path 52, the oxygen supply section 26, the oxygen discharge path 53, and the circulation path 57 form a circulation line.
- the circulation pump 58, the pressure adjusting unit 59, and the flow rate measuring unit 60 are provided in the circulation path 57, and send out a gas (for example, oxygen), reduce the pressure / increase the pressure, and measure the flow rate, respectively.
- the amount of gas consumed by the fuel cell system 1 can be measured by, for example, the flow rate measuring unit 60, and the oxygen circulation amount can be adjusted by using the circulation pump 58 based on the measured value.
- the circulation pump 58 is provided in the circulation path 57, but the present invention is not limited to this, and the circulation pump 58 may be provided at any position on the circulation line such as the oxygen discharge path 53.
- the oxygen discharge path 53 is provided with a condenser 61 and a dehumidifier 62.
- the condenser 61 condenses the water content of the gas flowing through the oxygen discharge path 53.
- the dehumidifier 62 removes water from the gas that has passed through the condenser 61, and the water recovery tank 63 recovers the water. Details of the configuration of the dehumidifier 62 will be described later.
- hydrogen preferably pure hydrogen
- a gas containing oxygen for example, oxygen (preferably pure oxygen) or air is used.
- oxygen preferably pure oxygen
- the gas containing oxygen is also simply referred to as "gas”.
- Hydrogen is supplied to the fuel electrode 23 side via the hydrogen supply port 28, and gas is supplied to the oxidant electrode 24 side via the oxygen supply port 31.
- the hydrogen and gas supplied into the fuel cell stack 21 flow along the electrolyte membrane 22 in opposite directions. As shown in FIG. 3, the generated water generated on the oxygen side during the reaction between hydrogen and gas moves through the electrolyte membrane 22 and diffuses to supply water to the hydrogen side. As a result, the hydrogen in the vicinity of the hydrogen supply port 28 is humidified.
- the humidified hydrogen flows in a direction opposite to the flow of the gas, and the amount of water vapor increases with the consumption of hydrogen.
- water moves from the hydrogen side to the oxygen side, and the vicinity of the oxygen supply port 31. Is humidified.
- water is mutually transferred between the gas side and the hydrogen side via the electrolyte membrane 22.
- the electrolyte membrane 22 is sandwiched between the fuel electrode 23 and the oxidant electrode 24, hydrogen is supplied to the hydrogen supply unit 25 of the fuel electrode 23, and gas is supplied to the oxygen supply unit 26 of the oxidant electrode 24.
- the fuel cell device 2 is electrically connected to a load 4 of a moving body such as a vehicle, and supplies electric power to the load 4.
- the fuel cell system 1 flows through the fuel cell device 2, that is, the impedance measuring unit 5 that measures the impedance Z of the fuel cell stack 21, the voltage measuring unit 6 that measures the voltage V of the fuel cell stack 21, and the load 4. It includes a current measuring unit 7 for measuring the current I. A signal according to the measurement result of the impedance measuring unit 5, a signal according to the measurement result of the voltage measuring unit 6, and a signal according to the measurement result of the current measuring unit 7 are transmitted to the control unit 3, respectively.
- FIG. 4 is a flowchart showing an example of activation control of the fuel cell device 2 executed by the fuel cell system 1 of FIG.
- FIG. 5 is a timing chart showing a state change of each part when the start control of the fuel cell device 2 of FIG. 4 is executed. Each step of this activation control can be executed by the control unit 3.
- the hydrogen supply unit 25 of the fuel electrode 23 and the oxygen supply unit 26 of the oxidant electrode 24 are depressurized (step S11, time t1 in FIG. 5).
- the hydrogen supply section 25 and the oxygen supply section 26 can be depressurized by purging the hydrogen discharge path 43 and the oxygen discharge path 53.
- the hydrogen supply section 25 and the oxygen supply section 26 can be depressurized by providing a pump or the like (not shown) in the hydrogen discharge path 43 and the oxygen discharge path 53.
- the residual hydrogen in the hydrogen supply unit 25 is discharged, and the residual oxygen in the oxygen supply unit 26 is discharged. Further, as will be described later, when the fuel cell device 2 is stored, if each of the hydrogen supply unit 25 and the oxygen supply unit 26 is filled with a gas such as an inert gas, those gases are discharged.
- step S12 hydrogen is supplied to the hydrogen supply unit 25 (step S12, time t2 in FIG. 5).
- Hydrogen from the hydrogen supply source 41 is supplied to the hydrogen supply unit 25 via the hydrogen introduction path 42.
- the hydrogen pressure PH2 is turned on at time t2, but the supply amount may be gradually increased.
- the voltage between the fuel electrode 23 and the oxidant electrode 24 is measured, and it is determined whether or not the voltage is equal to or higher than the reference voltage Vs1 (step S13).
- the value of the reference voltage Vs1 is not particularly limited, but is, for example, 100 mV.
- step S13 When the voltage between the fuel electrode 23 and the oxidant electrode 24 is equal to or higher than the reference voltage Vs1 (step S13: YES), it is determined that hydrogen is normally supplied to the hydrogen supply unit 25, and the oxygen supply unit 26 is determined.
- the gas is discharged from the oxygen supply unit 26 to the outside while supplying the gas to the outside (step S14, time t3 in FIG. 5).
- the circulation pump 58 may be operated to circulate the gas through the circulation path 57.
- the amount of oxygen supplied is not particularly limited, but is, for example, 0.5 to 10 times the amount of hydrogen supplied.
- step 13: NO the process returns to step S12 and the hydrogen supply to the hydrogen supply unit 25 is continued. If the voltage is less than the reference voltage Vs1 even if the hydrogen supply to the hydrogen supply unit 25 is continued for a predetermined time or longer, it is determined that the fuel cell system 1 has failed and the start control is interrupted. do.
- oxygen when oxygen is supplied as an oxidant, if hydrogen leaks for some reason, hydrogen and oxygen react rapidly when oxygen is supplied to the oxygen supply unit 26, and the reaction causes the fuel cell stack. 21 may be destroyed. Further, if gas is supplied to the oxygen supply unit 26 before supplying hydrogen to the hydrogen supply unit 25, the carbon of the catalyst layer of the electrode adjacent to the electrolyte membrane 22 is particularly oxidized, resulting in deterioration or failure of the fuel cell stack 21. Causes. By supplying gas to the oxygen supply unit 26 after supplying hydrogen to the hydrogen supply unit 25 as in this step, the occurrence of a sudden reaction between hydrogen and oxygen is prevented, and deterioration or failure of the fuel cell stack 21 is prevented. Can be prevented.
- the current density (or current I) of the fuel cell device 2 is increased to a predetermined value Is while energizing using an external resistor (step S15, time t4 to time t5 in FIG. 5).
- the predetermined value Is of the current density is not particularly limited, but is, for example, 0 to 0.1 A / cm 2 .
- a load 4 such as a heater or a motor used in a closed environment is connected to the fuel cell device 2, and by reducing the load 4 (resistance), the current density of the fuel cell device 2 is reduced. Can be increased.
- the impedance Z between the fuel electrode 23 and the oxidant electrode 24 is equal to or less than a predetermined threshold value Zs (step S16, time t5 in FIG. 5).
- the predetermined threshold value of the impedance Z is not particularly limited, but is, for example, 5 m ⁇ to 20 m ⁇ at 1 kHz.
- the impedance Z becomes high. Therefore, if the impedance Z is equal to or less than a predetermined threshold value, it can be determined that the water content of the electrolyte membrane 22 is an appropriate amount, and the occurrence of dryout is suppressed. can do. In particular, when air is used as the oxidizing agent, dryout is likely to occur, so it is possible to accurately confirm whether or not dryout has occurred by this step.
- step S16 When the impedance Z between the fuel electrode 23 and the oxidant electrode 24 is equal to or less than a predetermined threshold value Zs (step S16: YES), the valve 47 is closed to block the flow path to the hydrogen discharge path 43, and then The oxygen introduction path 52 and the oxygen discharge path 53 of the oxygen supply unit 26 are connected to each other via the circulation path 57 to form a circulation line, and the gas in the oxygen discharge path 53 is returned to the oxygen introduction path 52 (step S17, FIG. Time t6 of 5). By doing so, the differential pressure between the fuel electrode 23 and the oxidant electrode 24 is properly maintained.
- step S16 When the impedance Z between the fuel electrode 23 and the oxidant electrode 24 exceeds a predetermined threshold value Zs (step S16: NO), it is determined that dryout has occurred, and the oxygen cycle amount is reduced. Further, even when the impedance Z is equal to or less than the threshold value Zs, if the voltage is lower than the predetermined value lower than the reference voltage Vs1, it is determined that flooding has occurred and the oxygen cycle amount can be increased.
- the gas may be circulated while being dehumidified by using the dehumidifier 62 provided on the circulation line in step S17.
- unnecessary water can be removed from the gas flowing through the circulation line, and the occurrence of flooding can be further suppressed.
- flooding is likely to occur, so that the occurrence of flooding can be reliably suppressed by this step.
- the circulation pump 58 when the circulation pump 58 is provided on the circulation line and in the circulation path 57 (see FIG. 1), when the impedance Z is equal to or less than a predetermined threshold Zs in the step S17, the oxygen supply source of the gas.
- the circulation pump 58 can be started from 51 in a state where gas is circulated to the outside through the oxygen introduction path 52, the oxygen supply unit 26, and the oxygen discharge path 53.
- the gas in the oxygen discharge path 53 is returned to the oxygen introduction path 52 by closing the exhaust system that discharges the gas from the oxygen discharge path 53 to the outside.
- the exhaust system can be closed by using, for example, a three-way valve 56. As a result, all the gas flowing through the oxygen discharge path 53 is sent to the oxygen introduction path 52 via the circulation path 57, and is not discharged to the outside.
- the pressure difference ⁇ P between the hydrogen in the hydrogen supply unit 25 and the gas in the oxygen supply unit 26 is measured, and it is determined whether or not the pressure difference ⁇ P is equal to or less than a predetermined threshold value (step S18).
- the predetermined threshold value is not particularly limited, but is, for example, greater than 0 and 50 kPa (0 ⁇ P ⁇ 50 kPa).
- the gas circulation amount is reduced (step S19).
- the pressure difference ⁇ P is equal to or less than the predetermined threshold value (step S18: NO)
- the main start control is terminated, and the process proceeds to the stationary operation control described later.
- step S12 when hydrogen is supplied to the hydrogen supply unit 25 (step S12) and the voltage V between the fuel electrode 23 and the oxidant electrode 24 is equal to or higher than the reference voltage Vs1 (step S12). YES in step S13), the gas is discharged to the outside from the oxygen supply unit 26 while supplying the gas to the oxygen supply unit 26 (step S14), so that the hydrogen supply unit 25 is normally supplied with hydrogen. Since the reference voltage can be used for accurate determination and the gas is supplied to the oxygen supply unit 26 based on the determination result, deterioration or failure of the fuel cell stack 21 can be prevented. Therefore, it is possible to prevent the occurrence of a malfunction of the fuel cell device 2 at the time of starting and improve the safety and reliability.
- FIG. 6 is a flowchart showing an example of steady operation control of the fuel cell device 2 executed by the fuel cell system 1 of FIG.
- FIG. 7 is a timing chart showing a state change of each part when the steady operation control of the fuel cell device 2 of FIG. 6 is executed.
- Each step of this stationary operation control can be executed by the control unit 3 as in the above-mentioned start control.
- the predetermined threshold value of the impedance Z may be measured as 1 kHz (fixed value) as described above, or may be set based on the impedance of about three appropriate points between 10 MHz and 1 kHz.
- impedance data Neyquist diagram
- 3 frequency points showing a typical impedance are obtained. And the impedance at that time can be used to determine the predetermined threshold value.
- step S21 YES, time t31 in FIG. 7
- the electrolyte membrane 22 determines that the dryout occurs, and the circulation path 57 connecting the oxygen introduction path 52 and the oxygen discharge path 53 is formed.
- the flow rate of the gas circulating through the gas is reduced (step S22, times t31 to t32 in FIG. 7).
- step S22 the occurrence of dryout is determined based on the impedance Z, but the present invention is not limited to this, and the occurrence of dryout may be determined based on any one or more of current cutoff, load fluctuation, and DC resistance. .. Further, the occurrence of dryout may be determined based on the impedance Z and any or a plurality of current cutoffs, load fluctuations, and DC resistances. This makes it possible to more accurately determine the occurrence of dryout.
- the flow rate of the gas circulating through the circulation path 57 is reduced, but the flow rate of the gas circulating through the circulation path 57 is not limited to this.
- the flow velocity of the gas may be reduced.
- the electrolyte membrane 22 can be brought into an appropriate humidified state in a shorter time.
- the voltage V between the fuel electrode 23 and the oxidant electrode 24 is measured, and whether the voltage V is equal to or less than the predetermined first threshold value. It is determined whether or not (step S23).
- the predetermined first threshold value of the voltage V is not particularly limited, but is, for example, a value in the range of 500 mV to 600 mV.
- step S23 When the voltage V is equal to or less than a predetermined first threshold value (step S23: YES, times t33 to t34 in FIG. 7), it is determined that the voltage is flooding, and the flow rate of the gas circulating through the circulation path 57 is increased (step S24). , Times t33 to t34 in FIG. 7).
- the discharge amount of the circulation pump 58 is increased to increase the circulation amount of gas.
- the water content of the electrolyte membrane 22 can be promoted to be discharged by the gas flow of the oxygen supply unit 26, and the electrolyte membrane 22 can be brought into an appropriate humidified state.
- the voltage V exceeds a predetermined first threshold value by the control of step S24, the flow rate of the gas circulating through the circulation path 57 is returned to the steady state (time t35 in FIG. 7).
- step S24 the flow rate of the gas circulating through the circulation path 57 is increased when the voltage V is equal to or less than a predetermined first threshold value, but the flow rate of the gas circulating through the circulation path 57 is not limited to this.
- the flow velocity of the gas may be increased.
- the electrolyte membrane 22 can be brought into an appropriate humidified state in a shorter time.
- step S25 it is determined again whether or not the voltage V between the fuel electrode 23 and the oxidant electrode 24 is equal to or less than a predetermined first threshold value (step S25).
- step S25: YES the hydrogen supply unit 25 is purged (step S26, time t34 in FIG. 7), and then the operation is stopped (step S27). Normally, the electrolyte membrane 22 can be brought into an appropriate humidified state by adjusting the flow rate of the gas, but the voltage V may not recover to the normal value for some reason.
- step S23 If the voltage V is larger than the predetermined first threshold value in step S23 (step S23: NO), or if the voltage V is larger than the first predetermined threshold value in the re-determination of step S25 (step S25: NO). ), Returning to the process of step S21. Further, if necessary, the process shifts to the end control described later.
- the method of purging the hydrogen supply unit 25 is not particularly limited.
- a capillary (not shown) is provided in the hydrogen discharge path 43, and hydrogen is released into outer space via the capillary. Since the fuel cell device 2 is usually arranged in a pressurized portion where a person is active, the hydrogen in the hydrogen discharge path 43 is gradually depressurized due to the pressure loss of the capillary, and the rapid discharge of hydrogen is prevented. As a result, the hydrogen supply unit 25 can be safely purged with a simple configuration.
- step S27 the hydrogen supply unit 25 is purged when the voltage V is equal to or lower than the predetermined first threshold value, but the present invention is not limited to this, and the hydrogen supply unit 25 is purged when the voltage V is equal to or lower than the predetermined first threshold value.
- the hydrogen supply unit 25 may be purged periodically at a separately predetermined timing.
- the predetermined timing of purging is not particularly limited, but is, for example, every 15 minutes.
- a heat insulating member (not shown) may be provided in the hydrogen introduction path 42 and the hydrogen discharge path 43. This makes it possible to prevent dew condensation and freezing that may occur due to the purging of the hydrogen supply unit 25, and to perform purging more safely and reliably.
- step S21: YES when the impedance Z between the fuel electrode 23 and the oxidant electrode 24 is larger than a predetermined threshold value (step S21: YES), circulation is performed through the circulation path 57. The flow rate of the gas to be generated is reduced (step S22). Further, when the impedance Z is equal to or less than a predetermined threshold value (step S21: NO), it is determined whether or not the voltage V between the fuel electrode 23 and the oxidant electrode 24 is equal to or less than the predetermined first threshold value (step S21: NO). S23), when the voltage V is equal to or less than a predetermined first threshold value, the flow rate of the gas circulating through the circulation path 57 is increased.
- FIG. 8 is a flowchart showing an example of emergency stop control of the fuel cell device 2 during steady operation.
- This emergency stop control is executed in parallel with or independently of the stationary operation control.
- Each step of this emergency stop method can be executed by the control unit 3 as in the above-mentioned stationary operation control.
- this emergency stop control when the temperature Tf of the fuel cell stack 21 of the fuel cell device 2 is larger than a predetermined threshold value as an abnormal occurrence of the fuel cell device 2 (step S31; YES), oxygen is detected by the hydrogen supply unit 25. (Step S32; YES), or when the voltage V between the fuel electrode 23 and the oxidant electrode 24 is smaller than a predetermined second threshold value (step S33; YES).
- the predetermined threshold value of the temperature Tf is not particularly limited, but is, for example, 90 to 100 ° C. As a result, the temperature abnormality of the fuel cell device 2 can be detected and the fuel cell device 2 can be safely stopped. Oxygen detection in the hydrogen supply unit 25 can be performed, for example, by providing an oxygen sensor (not shown) in the hydrogen supply unit 25. As a result, it is possible to detect the leakage of oxygen in the fuel cell device 2 and safely stop the fuel cell device 2.
- the predetermined second threshold value of the voltage V is not particularly limited, but is a value lower than the above-mentioned predetermined first threshold value of the voltage V, for example, 400 mV to 500 mV per cell when generating electricity with hydrogen / oxygen. .. As a result, in the unlikely event that a large amount of water is generated by the fuel cell device 2, the fuel cell device 2 can be safely stopped.
- each may be performed in parallel at an appropriate timing.
- the fuel cell stack 21 is first connected.
- the applied load 4 is reduced (step S34). For example, the load 4 (resistance) is reduced based on the abnormal signal transmitted from the control unit 3.
- step S35 the supply of gas to the oxygen supply unit 26 is stopped, and the circulation of gas through the circulation path 57 connecting the oxygen introduction path 52 and the oxygen discharge path 53 is stopped.
- the valve 54 provided upstream of the oxygen introduction path 52 is closed to stop the supply of gas to the oxygen supply unit 26.
- the three-way valve 56 provided in the oxygen discharge path 53 stops the supply of gas from the oxygen discharge path 53 to the circulation path 57, and discharges the gas from the oxygen discharge path 53 to the outside.
- the circulation pump 58 of the circulation path 57 may be stopped.
- the hydrogen supply unit 25 and the oxygen supply unit 26 are depressurized (step S36).
- the depressurizing method of the hydrogen supply unit 25 is not particularly limited, but in outer space, for example, the hydrogen discharge path 43 is opened to outer space and hydrogen is discharged into outer space in the same manner as the above-mentioned purging method. Can be done.
- the decompression method of the oxygen supply unit 26 can also be performed by opening the oxygen discharge path 53 to outer space and discharging the gas into outer space.
- the hydrogen supply unit 25 can be in a state in which no hydrogen remains, and the oxygen supply unit 26 can also be in a state in which no gas remains.
- the fuel cell device 2 can be safely stopped in the event of an urgent situation during steady operation of the fuel cell device 2.
- the load 4 connected to the fuel cell stack 21 is reduced, the gas supply to the oxygen supply unit 26 is stopped, and the gas supply is stopped.
- the circulation of the gas through the circulation path 57 may be stopped, and the hydrogen supply unit 25 and the oxygen supply unit 26 may be further depressurized. As a result, the conditions for emergency stop can be made stricter, and emergency stop due to false detection can be prevented.
- FIG. 9 is a flowchart showing an example of termination control of the fuel cell device 2 executed by the fuel cell system 1 of FIG.
- FIG. 10 is a timing chart showing a state change of each part when the end control of the fuel cell device 2 of FIG. 8 is executed. Each step of the end control can be executed by the control unit 3 in the same manner as the start operation.
- the load 4 is first lowered (step S41, times t21 to t22 in FIG. 10), and then the hydrogen discharge path 43.
- the hydrogen supply section 25 of the fuel electrode 23 is purged, and the oxygen discharge path 53 is opened to purge the oxygen supply section 26 of the oxidant electrode 24 (step S42, time t22 in FIG. 10).
- the method of purging the hydrogen supply unit 25 and the method of purging the oxygen supply unit 26 can be performed in the same manner as the above-mentioned purging method, for example. As a result, the hydrogen in the hydrogen supply unit 25 is discharged to the outside, and the gas in the oxygen supply unit 26 is discharged to the outside.
- the voltage V between the fuel electrode 23 and the oxidant electrode 24 is measured, and it is determined whether or not the voltage V is larger than the predetermined threshold value Vs2.
- the predetermined threshold value Vs2 of the voltage V is not particularly limited as long as the voltage is such that the catalyst of the electrode is not oxidized, but is, for example, 300 mV per cell.
- step S43: YES power generation in the fuel cell device 2 is continued until the voltage V becomes equal to or less than the predetermined threshold value Vs2 (step S44, time t23 in FIG. 10). ⁇ T24). Since both the hydrogen supply unit 25 of the fuel electrode 23 and the oxygen supply unit 26 of the oxidant electrode 24 are purged, the voltage V between the fuel electrode 23 and the oxidant electrode 24 is reduced by the power generation in this step. be able to.
- step S43 When the voltage V is equal to or less than the predetermined threshold value Vs2 (step S43: NO), the hydrogen supply unit 25 and the oxygen supply unit 26 are depressurized (step S45, time t24 in FIG. 10).
- the decompression method of the hydrogen supply unit 25 and the decompression method of the oxygen supply unit 26 can be performed in the same manner as the above decompression method. As a result, it is possible to make a state in which almost no hydrogen remains in the hydrogen supply unit 25, and it is possible to make a state in which almost no gas remains in the oxygen supply unit 26.
- the fuel electrode 23 and the oxidant electrode 24 are short-circuited (step S46, time t25 in FIG. 10) to end this process.
- the potential difference between the fuel electrode 23 and the oxidant electrode 24 can be surely set to zero.
- the short circuit between the fuel electrode 23 and the oxidant electrode 24 can be performed, for example, by electrically connecting a switch (not shown) in parallel to the fuel cell device 2 and turning on the switch.
- the hydrogen supply unit 25 and the oxygen supply unit 26 may be filled with hydrogen or an inert gas.
- hydrogen can be delivered from the hydrogen introduction path 42 to the oxygen introduction path 52 via the connecting flow path 45, for example.
- the electrodes of the fuel cell device 2 particularly the catalyst of the oxidant electrode 24, are less oxidized.
- the hydrogen or the like filled in the hydrogen supply unit 25 and the oxygen supply unit 26 can be discharged to the outside by the depressurization performed in the start control step S11 (FIG. 4) at the next start-up.
- the hydrogen supply unit 25 and the oxygen supply unit 26 may be filled with hydrogen or the like before the hydrogen supply unit 25 and the oxygen supply unit 26 are depressurized when the voltage V is equal to or less than the predetermined threshold value Vs2. This may be performed after the voltage V is equal to or less than the predetermined threshold value Vs2 and the hydrogen supply unit 25 and the oxygen supply unit 26 are depressurized.
- the short circuit between the fuel electrode 23 and the oxidant electrode 24 may be performed after the hydrogen supply unit 25 and the oxygen supply unit 26 are filled with hydrogen or an inert gas. As a result, deterioration of the catalyst due to combustion can be reliably avoided.
- the hydrogen supply unit 25 of the fuel electrode 23 is purged, the oxygen supply unit 26 of the oxidant electrode 24 is purged (step S42), and the fuel electrode 23 and the oxidant electrode 24 are purged.
- the fuel cell device 2 continues to generate power (step S44), and when the voltage V is equal to or less than the predetermined threshold Vs2, the hydrogen supply unit 25 and Since the oxygen supply unit 26 is depressurized (step S45), the operation of the fuel cell device 2 is terminated with almost no hydrogen remaining in the hydrogen supply unit 25 and almost no gas remaining in the oxygen supply unit 26.
- the fuel cell device 2 can be stored in a safe state until the next start-up, and the fuel cell device 2 can be started up safely at the next start-up.
- FIG. 11 is a diagram schematically showing a configuration of a fuel cell system having a hydrogen-coated portion according to a second embodiment of the present invention.
- the configuration of the fuel cell system of FIG. 11 is basically the same as the configuration of the fuel cell system 1 of FIG. 1, and different parts will be described below.
- the fuel cell device 2 of the present embodiment includes a fuel cell stack 21, a hydrogen coating portion 71 arranged so as to cover the fuel cell stack 21 and being configured to be filled with hydrogen, and hydrogen.
- a hydrogen introduction unit 72 for introducing hydrogen into the coating unit 71 is provided.
- the hydrogen coating portion 71 is a container that accommodates the fuel cell device 2 in the internal space and can seal the internal space.
- the hydrogen coating portion 71 can take various shapes such as a rectangular parallelepiped shape and a cylindrical shape, but from the viewpoint of strength, a bale shape or a barrel shape is preferable.
- the hydrogen coating portion 71 is preferably made of a material capable of shielding neutrons, and is made of a metal such as aluminum, for example.
- the inside of the hydrogen coating portion 71 is preferably held in a state of being pressurized by hydrogen. As a result, the hydrogen-filled state can be maintained even when minute cracks or the like occur in the hydrogen-coated portion 71.
- the hydrogen introduction unit 72 is connected to, for example, another system, and supplies hydrogen from a hydrogen supply source provided in the other system to the hydrogen coating unit 71.
- the hydrogen introduction unit 72 may be connected to a hydrogen tank 41A as a hydrogen supply source, in which case hydrogen from the hydrogen tank 41A can be supplied to either or both of the hydrogen supply unit 25 and the hydrogen coating unit 71. Will be done.
- the oxygen tank 51B as a gas supply source is provided, and the oxygen of the oxygen tank 51B is supplied to the oxygen introduction path 52.
- the fuel cell device 2 is provided in the capillary port (port) 73 and the hydrogen coating portion 71, which communicate with the fuel cell stack 21 and discharge the water generated in the fuel cell stack 21 to the outside of the hydrogen coating portion 71.
- a purge port 74 capable of opening the internal space of the hydrogen coating portion 71 is provided.
- the capillary port 73 is open to outer space, for example, and when flushing occurs or a tendency thereof appears, the valve provided in the capillary port 73 is opened to remove unnecessary moisture in the hydrogen coating portion 71. Gas is discharged into outer space.
- the capillary port 73 preferably has a capillary shape at least on the downstream side tip portion 73a.
- the purge port 74 is open to outer space, for example, and when safety must be ensured or in an emergency, the gas in the hydrogen coating portion 71 can be released by opening or breaking the valve provided in the purge port 74. It can be purged as quickly as possible.
- FIG. 12 is a diagram showing a modified example of the configuration of the fuel cell device 2 in FIG.
- the fuel cell device 2 of this modified example includes a hydrogen coating unit 71, a hydrogen introduction unit 72, and a hydrogen discharge unit 75 that discharges hydrogen from the hydrogen coating unit 71.
- the internal space A of the hydrogen coating unit 71 communicates with the hydrogen supply unit 25 (FIG. 11), and hydrogen is supplied to the hydrogen supply unit 25 by introducing hydrogen from the hydrogen introduction unit 72 into the hydrogen coating unit 71.
- NS that is, in the fuel cell device 2 of FIG. 12, one hydrogen gas system is provided by the hydrogen introduction unit 72, the internal space A of the hydrogen coating unit 71, and the hydrogen discharge unit 75, and the hydrogen coating unit 71 is provided by this hydrogen gas system. Hydrogen is supplied to the hydrogen supply unit 25, and hydrogen is supplied to the hydrogen supply unit 25.
- the fuel electrode 23, the electrolyte membrane 22, and the oxidant electrode 24 are laminated in this order along the vertical direction (for example, the D3 direction in the drawing).
- the fuel electrode 23 is preferably arranged below the electrolyte membrane 22.
- the hydrogen supply side portion 76 of the separator 27 (see FIGS. 2A and 2B) is formed over the entire length direction (D1 direction of FIG. 12) of the fuel cell stack 21, for example, as shown in FIG. It has a plurality of grooves 76a.
- the upper portion of the plurality of grooves 76a is closed by stacking fuel cell cells, whereby a plurality of flow path patterns communicating with the internal space A of the hydrogen coating portion 71 are formed.
- the fuel cell device 2 of this modified example has a configuration in which neutrons are shielded by hydrogen filled in the hydrogen coating portion 71. Further, by adopting a structure in which the hydrogen coating portion 71 is filled with hydrogen, as shown in FIG. 13, even if the hydrogen supply side portion 76 of the separator 27 has a simple flow path pattern such as a groove shape. While using the separator 27 having such a configuration, hydrogen, which is the basis of the reference voltage, can be continuously supplied to the separator 27. Further, using one hydrogen gas system, hydrogen can be supplied to the hydrogen supply unit 25 while filling the hydrogen coating unit 71 with hydrogen, which makes it possible to simplify the fuel cell device.
- the fuel cell device 2 may include a neutron shielding member 77 provided between the hydrogen coating portion 71 and the fuel cell stack 21 (FIG. 12).
- the arrangement position of the neutron shielding member 77 is not particularly limited, but is attached to, for example, the inner surface of the hydrogen coating portion 71, and is preferably arranged so as to cover the fuel cell stack 21.
- the shape of the neutron shielding member 77 is not particularly limited, and various shapes such as a sheet shape can be taken.
- the neutron shielding member 77 is made of, for example, an alloy containing beryllium or beryllium, a material containing a heavy metal, or the like. Examples of heavy metals include lead and alloys containing lead.
- the fuel cell device 2 may include a moisture absorbing member 78 attached to the fuel cell stack 21.
- the upstream end 73b of the capillary port 73 is in contact with or near the moisture absorbing member 78.
- the moisture absorbing member 78 is made of, for example, a mesh-like member or a porous member, and examples of the mesh-like member include a wick.
- the moisture absorbing member 78 may be arranged on the lower surface of the fuel cell stack 21. In a gravitational environment, the moisture absorbing member 78 can be spread under the fuel cell stack 21 to function as a buffer when urgent water is discharged. Further, the portion including the arrangement position of the moisture absorbing member 78 may be cooled so that the temperature becomes relatively lower than the other portions of the hydrogen coating portion 71. As a result, water is easily generated by the moisture absorbing member 78, and the amount of hydrogen discharged when the water is discharged from the capillary port 73 can be further reduced.
- the dehumidifier 62 is connected to the oxygen discharge path 53 of the oxygen supply unit 26, and is configured to be switchable from one water recovery tank 63 to another water recovery tank 63. (Fig. 11). Then, the control unit 3 switches the water recovery tank 63 based on the product (t) ⁇ (I) of the energization time (t) and the current value (I) on the load 4 connected to the fuel cell stack 21.
- a dehumidifier 62 having a plurality of water recovery tanks 63 that can be switched is used, the energization time (t) to the load 4 is measured by the control unit 3, and the current value is measured by the current measurement unit 7. (I) is measured, and the product (t) ⁇ (I) of these is calculated.
- the water recovery tank in use When the calculated value of the product (t) ⁇ (I) is equal to or greater than a predetermined threshold value set based on the correlation between the product (t) ⁇ (I) and the theoretical amount of water produced, the water recovery tank in use. It is determined that the water in the 63 is full, and one water recovery tank 63 in use is switched to another unused water recovery tank 63. As a result, it is possible to reliably prevent the leakage of water in the fuel cell system 1 and further prevent the occurrence of problems such as flooding.
- the fuel cell system 1 may include a temperature measuring unit 81 for measuring the temperature of the fuel cell stack 21 (or the fuel cell 21A) and a temperature controlling unit 82 for adjusting the temperature of the fuel cell stack 21.
- the control unit 3 transmits a control signal to the temperature control unit 82 based on the measured value of the temperature of the fuel cell stack 21, and the temperature control unit 82 fuels based on the control signal transmitted from the control unit 3.
- the battery stack 21 is cooled or heated. As a result, the fuel cell stack 21 can be maintained at an appropriate temperature during power generation.
- the temperature measuring unit 81 may have, for example, a hydrogen side temperature sensor attached to the hydrogen line of the fuel cell stack 21 and a gas side temperature sensor attached to the gas (oxygen) line.
- the temperature control of the fuel cell stack 21 is not particularly limited, but is, for example, a water-cooled type. In the water-cooled temperature control, water generated by the power generation of the fuel cell device 2 can be used.
- the control unit 3 or the temperature control unit 82 may adjust the temperature of the fuel cell stack 21 based on the measured value of the voltage V of the fuel cell stack 21 transmitted from the voltage measurement unit 6. Further, the control unit 3 or the temperature control unit 82 may record the measured value of the voltage V of the fuel cell stack 21 on a recording medium such as a data logger so as to be readable.
- the fuel cell system 1 may include a battery 8 electrically connected in parallel to the fuel cell stack 21 (FIG. 11).
- the battery 8 is connected to a power system in the moving body, and supplies power to another power system when it is difficult for the fuel cell device 2 to generate sufficient power, for example, when detecting an abnormality or when starting up. can do.
- the capacity of the battery 8 can be minimized, and the battery 8 can be miniaturized to save space.
- the battery 8 By connecting the battery 8 to the fuel cell stack 21 in this way, if any trouble occurs in the fuel cell device 2, the battery 8 can be used as an emergency power source and the moving body can be returned in an emergency. Further, the battery 8 may be connected to a solar power generation device or a temperature difference power generation device mounted on the rover. In this case, the electric power generated by the photovoltaic power generation device or the temperature difference power generation device in the lunar surface exploration can be supplementarily charged to the battery 8.
- the hydrogen coating portion 71 is arranged so as to cover the fuel cell stack 21 and can be filled with hydrogen inside, and the hydrogen introduction portion 72 introduces hydrogen into the hydrogen coating portion 71. Therefore, by coating the fuel cell stack 21 with hydrogen, the energy of neutrons is lost due to the collision with hydrogen, and the deterioration and wear of the electrolyte membrane 22 can be significantly suppressed, whereby the fuel cell stack 21 can be covered with hydrogen. It is possible to prevent deterioration and failure.
- hydrogen used as a reducing agent of the fuel cell stack 21 is also used as a filling material for the internal space of the hydrogen coating portion 71, it is not necessary to separately provide a neutron shielding member, which simplifies and reduces the weight of the system. , Space saving can be realized.
- the control method of the fuel cell system and the fuel cell device can be applied to a vehicle such as a rover used for lunar exploration for space use.
- a vehicle such as a rover used for lunar exploration for space use.
- it can be applied to moving objects such as fuel cell vehicles and other vehicles used in a gravitational environment.
- the hydrogen oxidation reaction performed in this fuel cell device and the water decomposition reaction, it becomes possible to reversibly repeat power generation, and a very useful regenerative fuel cell system is constructed. be able to.
- the above system can be applied to the storage of renewable energy and the production of hydrogen for transportation.
- Fuel cell system 2 Fuel cell device 3 Control unit 4 Load 5 Impedance measurement unit 6 Voltage measurement unit 7 Current measurement unit 8 Battery 21 Fuel cell stack 21A Fuel cell cell 22 Electrolyte film 23 Fuel electrode 24 Oxidizer electrode 25 Hydrogen supply unit 26 Oxygen supply part 27 Separator 28 Hydrogen supply port 29 Oxygen discharge port 30 Hydrogen discharge port 31 Oxygen supply port 32 Fuel pole side part 33 Oxidizer pole side part 34 Hydrogen inlet 35 Hydrogen outlet 36 Oxygen inlet 37 Oxygen outlet 38A Flow path pattern 38B Flow Road pattern 39A Flow pattern 38B Flow pattern 41 Hydrogen supply source 41A Hydrogen tank 42 Hydrogen introduction path 43 Hydrogen discharge path 44 Three-way valve 45 Connecting flow path 46 Hydrogen pressure measuring unit 47 Valve 51 Oxygen supply source 51B Oxygen tank 52 Oxygen introduction path 53 Oxygen discharge path 54 Valve 55 Gas pressure measurement section 56 Three-way valve 57 Circulation path 58 Circulation pump 59 Pressure adjustment section 60 Flow rate measurement section 61 Condenser 62 De
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
この燃料電池装置の制御方法は、前記燃料電池装置の定常運転時に、燃料極と酸化剤極との間のインピーダンスが所定の閾値よりも大きいか否かを判定する工程と、前記インピーダンスが所定の閾値よりも大きいときに、気体供給部の気体導入路と気体排出路とを接続する循環路を介して循環する気体の流量を減少させる工程と、前記インピーダンスが前記所定の閾値以下であるときに、前記燃料極と前記酸化剤極との間の電圧を測定し、前記電圧が所定の第1閾値以下であるか否かを判定する工程と、前記電圧が前記所定の第1閾値以下であるときに、前記循環路を介して循環する気体の流量を増大させる工程とを有する。
Description
本発明は、燃料電池装置の制御方法に関し、特に定常運転時の制御方法に関する。
本願は、2020年2月17日に、日本に出願された特願2020-024702号に基づき優先権を主張し、その内容をここに援用する。
本願は、2020年2月17日に、日本に出願された特願2020-024702号に基づき優先権を主張し、その内容をここに援用する。
燃料電池は、水素等の燃料と空気(酸素)等の酸化剤とを電気化学的に反応させることにより、燃料の有する化学エネルギーを直接電気エネルギーに変換する装置である。その中でも、電解質に高分子形水素イオン交換膜等を用いた固体高分子電解質形燃料電池は、出力密度が高いこと、構造が単純であること、動作温度が比較的低いこと等の優れた特徴を有しているため、航空機や車両などの移動体に搭載可能な燃料電池についての様々な技術開発が進められている。
従来の燃料電池の制御方法として、例えば、燃料電池に供給される反応ガスを、燃料電池から排出された反応ガスに含まれる水分により加湿する加湿器と、加湿器内の加湿状態を判定する判定部とを有する燃料電池システムが提案されている。この判定部は、一対の触媒電極に交流電圧を印加することにより電解質膜のインピーダンスを測定し、インピーダンスに基づき加湿状態を判定する(特許文献1)。
燃料電池を探査機(ローバー)等の閉鎖環境で使用する場合、水素イオンの伝導を阻害するドライアウトや、電解質膜が濡れすぎて近接する触媒層やその外部にあるセパレータまで濡れてしまい、反応ガスの電解質膜への拡散が阻害される、いわゆるフラッディングを抑制するための制御が非常に難しくなる。例えば、酸化剤として空気を使用する場合には窒素で酸素が薄められているため、ドライアウトが起こりやすい。一方、上記従来の燃料電池のように酸化剤として酸素を使用する場合、空気を使用する場合と比較して、酸素の供給方法やその手順に因ってはフラッディングがより起こり易くなる。加えて、宇宙空間などの微小重力下では水が気体と分離しないため、よりフラッディングの発生が懸念される。そこで電解質膜を乾燥させるために酸素の供給量を増やすことが考えられるが、循環を含めた酸素の供給方法、手順に因っては電解質膜を過剰に乾燥させてしまう。したがって、フラッディングとドライアウトの双方の防止するための良好な水バランスを実現する制御方法を構築する必要がある。
また、燃料電池システムでは、プロトン伝導膜の乾燥防止のために加湿器などの構成が必要となるが、その一方で、月面等で用いられる探査車をはじめとする移動体への搭載を考慮して、システムの簡略化、軽量化、省スペース化がより一層求められている。
本発明の目的は、安全性、信頼性を向上すると共に、システムの簡略化、軽量化、省スペース化を実現することができる燃料電池装置の制御方法を提供することにある。
上記目的を達成するために、本発明は以下の手段を提供する。
[1]電解質膜を燃料極及び酸化剤極で挟み込み、前記燃料極の水素供給部に水素を供給し、前記酸化剤極の気体供給部に酸素を含む気体を供給して発電を行う燃料電池装置の制御方法であって、
前記燃料電池装置の定常運転時に、前記燃料極と前記酸化剤極との間のインピーダンスが所定の閾値よりも大きいか否かを判定する工程と、
前記インピーダンスが所定の閾値よりも大きいときに、前記気体供給部の気体導入路と気体排出路とを接続する循環路を介して循環する気体の流量を減少させる工程と、
前記インピーダンスが前記所定の閾値以下であるときに、前記燃料極と前記酸化剤極との間の電圧を測定し、前記電圧が所定の第1閾値以下であるか否かを判定する工程と、
前記電圧が前記所定の第1閾値以下であるときに、前記循環路を介して循環する気体の流量を増大させる工程と、
を有する、燃料電池装置の制御方法。
[1]電解質膜を燃料極及び酸化剤極で挟み込み、前記燃料極の水素供給部に水素を供給し、前記酸化剤極の気体供給部に酸素を含む気体を供給して発電を行う燃料電池装置の制御方法であって、
前記燃料電池装置の定常運転時に、前記燃料極と前記酸化剤極との間のインピーダンスが所定の閾値よりも大きいか否かを判定する工程と、
前記インピーダンスが所定の閾値よりも大きいときに、前記気体供給部の気体導入路と気体排出路とを接続する循環路を介して循環する気体の流量を減少させる工程と、
前記インピーダンスが前記所定の閾値以下であるときに、前記燃料極と前記酸化剤極との間の電圧を測定し、前記電圧が所定の第1閾値以下であるか否かを判定する工程と、
前記電圧が前記所定の第1閾値以下であるときに、前記循環路を介して循環する気体の流量を増大させる工程と、
を有する、燃料電池装置の制御方法。
[2]前記循環路を介して循環する気体の流量を増大させる上記工程の後、前記電圧が前記所定の閾値以下であるか否かを再度判定する工程と、
前記電圧が前記所定の閾値以下であるときに、前記水素供給部をパージする工程と、
を有する、上記[1]に記載の燃料電池装置の制御方法。
前記電圧が前記所定の閾値以下であるときに、前記水素供給部をパージする工程と、
を有する、上記[1]に記載の燃料電池装置の制御方法。
[3]前記インピーダンスが所定の閾値よりも大きいときに、前記気体の流速を低下させる、上記[1]に記載の燃料電池装置の制御方法。
[4]前記インピーダンスが前記所定の閾値以下であり、かつ前記電圧が前記所定の閾値以下であるときに、前記気体の循環量を上昇させる、上記[1]に記載の燃料電池装置の制御方法。
[5]酸素の循環量を上昇させた後に前記燃料極と前記酸化剤極との間の電圧を測定し、前記電圧が所定の閾値以下であるか否かを判定する工程と、
前記電圧が前記所定の閾値以下であるときに、水素をパージする、上記[4]に記載の燃料電池装置の制御方法。
前記電圧が前記所定の閾値以下であるときに、水素をパージする、上記[4]に記載の燃料電池装置の制御方法。
[6]前記燃料電池装置の異常発生として、前記燃料電池装置の燃料電池セルの温度が所定の閾値よりも大きいか否か、前記水素供給部で酸素を検出したか否か、又は、前記燃料極と前記酸化剤極との間の電圧が所定の第2閾値よりも小さいか否かを判定する工程と、 前記燃料電池セルの温度が所定の閾値よりも大きいか、前記水素供給部で酸素を検出したか、又は前記電圧が所定の第2閾値よりも小さい場合に、前記燃料電池セルに接続された負荷を小さくする工程と、
前記気体供給部への気体の供給を停止すると共に、前記気体供給部の気体導入路と気体排出路とを接続する循環路を介した気体の循環を停止する工程と、
前記水素供給部及び前記気体供給部を減圧する工程と、
を有する、上記[1]に記載の燃料電池装置の制御方法。
前記気体供給部への気体の供給を停止すると共に、前記気体供給部の気体導入路と気体排出路とを接続する循環路を介した気体の循環を停止する工程と、
前記水素供給部及び前記気体供給部を減圧する工程と、
を有する、上記[1]に記載の燃料電池装置の制御方法。
本発明によれば、安全性、信頼性を向上すると共に、システムの簡略化、軽量化、省スペース化を実現することができる。
以下、本発明の実施形態について、図面を参照して詳細に説明する。
[燃料電池システムの構成]
図1は、本発明の第1実施形態に係る燃料電池の制御方法が適用される燃料電池システムの構成の一例を概略的に示す図であり、図2Aは、図1のセパレータの水素供給部、及び酸素供給部(気体供給部)の一例を示す側面図である。尚、以下の説明で用いる図面は、特徴を分かりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の形状、寸法比率等は図示するものに限らないものとする。
図1は、本発明の第1実施形態に係る燃料電池の制御方法が適用される燃料電池システムの構成の一例を概略的に示す図であり、図2Aは、図1のセパレータの水素供給部、及び酸素供給部(気体供給部)の一例を示す側面図である。尚、以下の説明で用いる図面は、特徴を分かりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の形状、寸法比率等は図示するものに限らないものとする。
図1に示すように、燃料電池システム1は、燃料電池装置2と、後述する各種機器との間で信号を送受して燃料電池装置2を統括的に制御する制御部3とを備えている。
燃料電池装置2には、燃料電池スタック21が設けられている。燃料電池スタック21は、電解質膜22、燃料極23、酸化剤極24、水素供給部25、酸素供給部26で構成された燃料電池セル21Aをセパレータ27(図2A参照)で複数積層させることで構成されている。本実施形態では、説明の便宜上、燃料電池スタック21が1つの燃料電池セル21Aで構成される場合を示している。
燃料電池装置2には、燃料電池スタック21が設けられている。燃料電池スタック21は、電解質膜22、燃料極23、酸化剤極24、水素供給部25、酸素供給部26で構成された燃料電池セル21Aをセパレータ27(図2A参照)で複数積層させることで構成されている。本実施形態では、説明の便宜上、燃料電池スタック21が1つの燃料電池セル21Aで構成される場合を示している。
燃料極23及び酸化剤極24の上部には、水素供給口28、酸素排出口29がそれぞれ設けられ、また、燃料極23及び酸化剤極24の下部には、水素排出口30、酸素供給口31がそれぞれ設けられている。
セパレータ27は、図2Aに示すように、平板状を成し、正面側の燃料極側部分32と、背面側の酸化剤極側部分33とで構成されている。燃料極側部分32には、水素供給口28に対応する水素入口34と、水素排出口30に対応する水素出口35とが設けられている。また、酸化剤極側部分33には、酸素供給口31に対応する酸素入口36と、酸素排出口29に対応する酸素出口37とが設けられている。燃料極側部分32及び酸化剤極側部分33それぞれの流路パターン38A,39Aは、例えばサーペンタイン形状をなしており、燃料極側部分32を流れる水素と酸化剤極側部分33を流れる酸素との全体的な流れの向き(図2A中の黒色太矢印)が対向するように形成されている。図2Bに示すように、流路パターン38B,39Bが、櫛状(ストレート形状)をなしていてもよい。この形状でも、燃料極側部分32を流れる水素と酸化剤極側部分33を流れる酸素との流れの向き(図2B中の黒色太矢印)が対向するように形成される。
燃料電池システム1には、水素供給源41、水素供給源41から燃料電池装置2に水素を供給する水素導入路42、燃料電池装置2から水素を排出する水素排出路43が設けられている(図1)。水素導入路42は水素供給口28に、水素排出路43は水素排出口30にそれぞれ接続されている。また、燃料電池システム1には、酸素供給源51、酸素供給源51から燃料電池装置2に気体(例えば、酸素)を供給する酸素導入路52(気体導入路)、及び、燃料電池装置2から気体を排出する酸素排出路53(気体排出路)が設けられている。酸素導入路52は酸素供給口31に、酸素排出路53は酸素排出口29にそれぞれ接続されている。
水素導入路42には、三方弁44が設けられており、水素導入路42が連結流路45を介して酸素導入路52に接続されている。水素導入路42は、水素供給部25に水素を供給すると共に、必要に応じて連結流路45を介して酸素供給部26にも水素を供給可能に構成されている。また、水素導入路42には、水素供給部25に供給される水素の圧力(例えばゲージ圧)を測定する水素圧測定部46が設けられている。
水素排出路43には、流路の開放/遮断を行う弁47が設けられており、水素の外部への排出(パージ)、あるいは排出の停止を行うことが可能に構成されている。
酸素導入路52には、流路の開放/遮断を行う弁54が設けられており、酸素の供給/停止を行うことが可能に構成されている。また、酸素導入路52には、酸素供給部26に供給される気体の圧力(例えばゲージ圧)を測定する気体圧測定部55が設けられている。
酸素排出路53には、三方弁56が設けられており、酸素排出路53が循環路57を介して酸素導入路52に接続されている。酸素排出路53は、気体を外部に排出(パージ)すると共に、必要に応じて循環路57を介して酸素供給部26に気体を戻すことが可能に構成されている。すなわち本実施形態では、酸素導入路52、酸素供給部26、酸素排出路53及び循環路57が、循環ラインを形成している。循環路57には循環ポンプ58、圧力調整部59及び流量測定部60が設けられており、それぞれ気体(例えば、酸素)の送出、減圧/増圧、及び流量測定を行う。燃料電池システム1で消費される気体の量は、例えば流量測定部60にて測定することができ、その測定値に基づいて循環ポンプ58を用いて酸素循環量を調整することができる。本実施形態では、循環ポンプ58は循環路57に設けられているが、これに限られず、酸素排出路53など、上記循環ライン上のいずれかの位置に設けられてもよい。
また、酸素排出路53には、凝縮器61及び除湿器62が設けられている。凝縮器61は、酸素排出路53を流れる気体の水分を凝縮する。除湿器62は、凝縮器61を通った気体から水分を除去し、水回収タンク63で水分を回収する。除湿器62の構成の詳細については、後述する。
燃料電池装置2では、還元剤(燃料)として水素(好ましくは純水素)が用いられる。酸化剤としては、酸素を含む気体、例えば酸素(好ましくは純酸素)や空気が使用される。以下、酸素を含む気体を、単に「気体」ともいう。水素は、水素供給口28を介して燃料極23側に供給され、気体は、酸素供給口31を介して酸化剤極24側に供給される。燃料電池スタック21内に供給された水素及び気体は、電解質膜22に沿って互いに対向する向きに流れる。水素と気体の反応時に酸素側で発生する生成水は、図3に示すように、電解質膜22を通じて移動し、拡散し、水素側へ水を供給する。これにより、水素供給口28付近の水素が加湿される。加湿された水素は、上記気体の流れに対向する向きに流れ、水素の消費と共に水蒸気量が多くなり、水素排出口30付近では、水素側から酸素側に水分移動が生じ、酸素供給口31付近が加湿される。この結果、燃料電池スタック21内では、電解質膜22を介して気体側と水素側間で水分の相互移動が行われる。
燃料電池セル21Aでは、電解質膜22を燃料極23及び酸化剤極24で挟み込み、燃料極23の水素供給部25に水素を供給し、酸化剤極24の酸素供給部26に気体を供給して発電を行う。燃料電池装置2は、車両などの移動体の負荷4に電気的に接続されており、負荷4に電力を供給する。
また、燃料電池システム1は、燃料電池装置2、すなわち燃料電池スタック21のインピーダンスZを測定するインピーダンス測定部5と、燃料電池スタック21の電圧Vを測定する電圧測定部6と、負荷4に流れる電流Iを測定する電流測定部7とを備えている。インピーダンス測定部5の測定結果に応じた信号、電圧測定部6の測定結果に応じた信号、及び電流測定部7の測定結果に応じて信号が、それぞれ制御部3に送信される。
次に、燃料電池システム1に適用される燃料電池装置2の制御として、燃料電池の起動制御、定常運転制御、及び終了制御を順に説明する。
[起動制御]
図4は、図1の燃料電池システム1で実行される燃料電池装置2の起動制御の一例を示すフローチャートである。図5は、図4の燃料電池装置2の起動制御を実行した際の各部の状態変化を示すタイミングチャートである。本起動制御の各工程は、制御部3によって実行することができる。
図4は、図1の燃料電池システム1で実行される燃料電池装置2の起動制御の一例を示すフローチャートである。図5は、図4の燃料電池装置2の起動制御を実行した際の各部の状態変化を示すタイミングチャートである。本起動制御の各工程は、制御部3によって実行することができる。
本実施の形態においては、保存状態(時刻t0)では減圧封止の状態にあり、水素および酸素の供給も行われていない。したがって、電圧Vは0Vとなっているのが望ましい状態である。
先ず、燃料電池装置2の発電開始時に、燃料極23の水素供給部25及び酸化剤極24の酸素供給部26を減圧する(ステップS11、図5の時刻t1)。例えば、宇宙空間では、水素排出路43及び酸素排出路53をパージすることで、水素供給部25及び酸素供給部26を減圧することができる。また、大気圧下では、水素排出路43及び酸素排出路53に不図示のポンプ等を設けることにより、水素供給部25及び酸素供給部26を減圧することができる。これにより、水素供給部25内の残留水素が排出され、また、酸素供給部26内の残留酸素が排出される。また、後述するように、燃料電池装置2を保管する際に、水素供給部25及び酸素供給部26のそれぞれに不活性ガスなどの気体が充てんされていた場合、それらの気体が排出される。
先ず、燃料電池装置2の発電開始時に、燃料極23の水素供給部25及び酸化剤極24の酸素供給部26を減圧する(ステップS11、図5の時刻t1)。例えば、宇宙空間では、水素排出路43及び酸素排出路53をパージすることで、水素供給部25及び酸素供給部26を減圧することができる。また、大気圧下では、水素排出路43及び酸素排出路53に不図示のポンプ等を設けることにより、水素供給部25及び酸素供給部26を減圧することができる。これにより、水素供給部25内の残留水素が排出され、また、酸素供給部26内の残留酸素が排出される。また、後述するように、燃料電池装置2を保管する際に、水素供給部25及び酸素供給部26のそれぞれに不活性ガスなどの気体が充てんされていた場合、それらの気体が排出される。
次に、水素供給部25に水素を供給する(ステップS12、図5の時刻t2)。水素供給源41からの水素は、水素導入路42を介して水素供給部25に供給される。なお、図5においては説明の簡単のために、水素の圧力PH2は時刻t2でON状態となっているが、徐々に供給量を増やすようにしてもよい。
その後、燃料極23と酸化剤極24との間の電圧を測定し、該電圧が基準電圧Vs1以上であるか否かを判定する(ステップS13)。基準電圧Vs1(起電力)の値は、特に限定されないが、例えば100mVである。本ステップでは、水素濃度に対応して発生する両電極の電位の差、すなわち濃淡電池としての起電力を活用し、水素供給部25に水素が正常に供給されていることを確認することができる。
燃料極23と酸化剤極24との間の電圧が基準電圧Vs1以上であるときは(ステップS13:YES)、水素供給部25に水素が正常に供給されていると判断し、酸素供給部26に気体を供給しつつ、酸素供給部26から気体を外部に排出する(ステップS14、図5の時刻t3)。このとき、循環ポンプ58を作動させて、循環路57を介して気体を循環させてもよい。気体が酸素である場合、酸素の供給量は、特に制限されないが、例えば水素の供給量に対して0.5~10倍である。酸化剤として酸素を供給する場合、フラッディングが起こりやすいため、酸化剤として空気と用いる場合と比較して酸素の供給量を増大させる。本ステップにより、酸素供給部26における酸素の流れによって電解質膜22からの水分の脱離が促進され、不要な水分が酸素と共に外部に排出され、フラッディングの発生を防止することができる。
燃料極23と酸化剤極24との間の電圧が基準電圧Vs1未満である場合(ステップ13:NO)、ステップS12に戻り、水素供給部25への水素供給を継続する。なお、水素供給部25への水素供給を予め定めた所定時間以上継続しても、電圧が基準電圧Vs1未満である場合は、燃料電池システム1に障害が発生したと判断し、起動制御を中断する。
燃料極23と酸化剤極24との間の電圧が基準電圧Vs1未満である場合(ステップ13:NO)、ステップS12に戻り、水素供給部25への水素供給を継続する。なお、水素供給部25への水素供給を予め定めた所定時間以上継続しても、電圧が基準電圧Vs1未満である場合は、燃料電池システム1に障害が発生したと判断し、起動制御を中断する。
また、酸化剤として酸素を供給する場合、何らかの理由で水素のリークが生じていると、酸素供給部26に酸素が供給された際に水素と酸素が急激に反応し、その反応によって燃料電池スタック21が破壊される虞がある。更に、水素供給部25に水素を供給する前に酸素供給部26に気体を供給すると、特に電解質膜22に隣接する電極の触媒層の炭素が酸化し、燃料電池スタック21の劣化や故障の発生の原因となる。本ステップのように、水素供給部25に水素を供給した後に酸素供給部26に気体を供給することで、水素と酸素の急激な反応の発生が防止され、燃料電池スタック21の劣化や故障を防止することができる。
次に、外部抵抗を使用して通電を行いつつ、燃料電池装置2の電流密度(或いは電流I)を所定値Isまで増大させる(ステップS15、図5の時刻t4~時刻t5)。電流密度の所定値Isは、特に制限されないが、例えば0~0.1A/cm2である。燃料電池装置2には、上述のように、例えば閉鎖環境で使用されるヒータ、モータ等の負荷4が接続されており、負荷4(抵抗)を小さくすることで、燃料電池装置2の電流密度を増大させることができる。
その後、燃料極23と酸化剤極24との間のインピーダンスZが所定の閾値Zs以下であるか否かを判定する(ステップS16、図5の時刻t5)。インピーダンスZの所定の閾値は、特に制限されないが、例えば1kHzにおいて、5mΩ~20mΩである。電解質膜22の水分が不足している場合、インピーダンスZは高くなることから、インピーダンスZが所定の閾値以下であれば、電解質膜22の水分が適量であると判断でき、ドライアウトの発生を抑制することができる。特に、酸化剤として空気を用いる場合にはドライアウトが起こりやすいため、本ステップによってドライアウトが発生しているか否かを精度良く確認することができる。
燃料極23と酸化剤極24との間のインピーダンスZが所定の閾値Zs以下であるときは(ステップS16:YES)、弁47を閉鎖して水素排出路43への流路を遮断し、その後に循環路57を介して酸素供給部26の酸素導入路52と酸素排出路53とを接続して循環ラインを形成し、酸素排出路53の気体を酸素導入路52に戻す(ステップS17、図5の時刻t6)。このようにすることで、燃料極23と酸化剤極24との間の差圧が適正に維持される。
燃料極23と酸化剤極24との間のインピーダンスZが所定の閾値Zsを越える場合(ステップS16:NO)、ドライアウトが発生していると判断して、酸素循環量を下げる。また、インピーダンスZが閾値Zs以下である場合であっても、電圧が上記基準電圧Vs1よりも低い所定値を下回る場合は、フラッディングが発生したと判断して、酸素循環量を上げることができる。
燃料極23と酸化剤極24との間のインピーダンスZが所定の閾値Zsを越える場合(ステップS16:NO)、ドライアウトが発生していると判断して、酸素循環量を下げる。また、インピーダンスZが閾値Zs以下である場合であっても、電圧が上記基準電圧Vs1よりも低い所定値を下回る場合は、フラッディングが発生したと判断して、酸素循環量を上げることができる。
循環ライン上に循環ポンプ58及び除湿器62を設けている場合には、上記ステップS17において、上記循環ラインに設けられた除湿器62を用いて気体を除湿しながら循環させてもよい。これにより、循環ラインを流れる気体から不要な水分を除去することができ、フラッディングの発生を更に抑制することができる。特に、酸化剤として酸素を用いる場合にはフラッディングが起こりやすいため、本ステップによってフラッディングの発生を確実に抑制することができる。
また、循環ライン上であって且つ循環路57に循環ポンプ58を設けている場合(図1参照)、上記ステップS17において、インピーダンスZが所定の閾値Zs以下であるときに、気体の酸素供給源51から、酸素導入路52、酸素供給部26及び酸素排出路53を介して外部まで気体を流通させている状態で、循環ポンプ58を起動させることができる。この場合、その後に酸素排出路53から気体を外部に排出する排気系を閉じることにより、酸素排出路53の気体を酸素導入路52に戻す。排気系の閉塞は、例えば三方弁56を用いて行うことができる。これにより、酸素排出路53を流れる全ての気体が、循環路57を介して酸素導入路52に送出され、外部には排出されない状態となる。
次いで、水素供給部25の水素と酸素供給部26の気体との圧力差ΔPを計測し、圧力差ΔPが所定の閾値以下であるか否かを判定する(ステップS18)。所定の閾値は、特に制限は無いが、例えば0より大きく且つ50kPaである(0<ΔP<50kPa)。そして、圧力差ΔPが上記所定の閾値よりも大きいときに(ステップS18:YES)、気体の循環量を減少させる(ステップS19)。上記圧力差を所定の閾値以下とすることで、電解質膜22がガス圧によって破れるのを防止することができる。また、気体の圧力PGASを水素の圧力PH2よりも高くすることが好ましい(ΔP=PGAS- PH2)。これにより、より安全な運転を実現することができる。圧力差ΔPが前記所定の閾値以下である場合には(ステップS18:NO)、本起動制御を終了し、後述する定常運転制御に移行する。
上述したように、本起動制御によれば、水素供給部25に水素を供給し(ステップS12)、燃料極23と酸化剤極24との間の電圧Vが基準電圧Vs1以上であるときに(ステップS13でYES)、酸素供給部26に気体を供給しつつ、酸素供給部26から気体を外部に排出するので(ステップS14)、水素供給部25に水素が正常に供給されていることを、基準電圧を用いて正確に判断することができ、また、その判断結果に基づいて酸素供給部26に気体が供給されるので、燃料電池スタック21の劣化や故障の発生を防止することができる。したがって、起動時における燃料電池装置2の不具合の発生を防止して安全性、信頼性を向上することが可能となる。
[定常運転制御]
図6は、図1の燃料電池システム1で実行される燃料電池装置2の定常運転制御の一例を示すフローチャートである。図7は、図6の燃料電池装置2の定常運転制御を実行した際の各部の状態変化を示すタイミングチャートである。本定常運転制御の各工程は、上記起動制御と同様、制御部3によって実行することができる。
先ず、燃料電池装置2の定常運転時に、燃料極23と酸化剤極24との間のインピーダンスZが所定の閾値よりも大きいか否かを判定する(ステップS21)。インピーダンスZの所定の閾値は、例えば、上記と同様に1kHz(固定値)として計測してもよいし、10mHz~1kHzの間での適切な3点程度のインピーダンスに基づいて設定してもよい。上記所定の閾値を3点程度のインピーダンスに基づいて設定する場合、例えば、燃料電池装置2の健全な状態にて、インピーダンスデータ(ナイキスト線図)を取得し、典型的なインピーダンスを示す周波数3点を決定し、その際のインピーダンスを用いて上記所定の閾値を決定することができる。
図6は、図1の燃料電池システム1で実行される燃料電池装置2の定常運転制御の一例を示すフローチャートである。図7は、図6の燃料電池装置2の定常運転制御を実行した際の各部の状態変化を示すタイミングチャートである。本定常運転制御の各工程は、上記起動制御と同様、制御部3によって実行することができる。
先ず、燃料電池装置2の定常運転時に、燃料極23と酸化剤極24との間のインピーダンスZが所定の閾値よりも大きいか否かを判定する(ステップS21)。インピーダンスZの所定の閾値は、例えば、上記と同様に1kHz(固定値)として計測してもよいし、10mHz~1kHzの間での適切な3点程度のインピーダンスに基づいて設定してもよい。上記所定の閾値を3点程度のインピーダンスに基づいて設定する場合、例えば、燃料電池装置2の健全な状態にて、インピーダンスデータ(ナイキスト線図)を取得し、典型的なインピーダンスを示す周波数3点を決定し、その際のインピーダンスを用いて上記所定の閾値を決定することができる。
インピーダンスZが所定の閾値よりも大きいときには(ステップS21:YES、図7の時刻t31)、電解質膜22でドライアウトと判断し、酸素導入路52と酸素排出路53とを接続する循環路57を介して循環する気体の流量を減少させる(ステップS22、図7の時刻t31~t32)。これにより、電解質膜22の水分が酸素供給部26の気体の流れによって排出されるのを抑制することができ、電解質膜22を適正な加湿状態にすることができる。
ステップS22では、ドライアウトの発生をインピーダンスZに基づいて判断するが、これに限らず、電流遮断、負荷変動及びDC抵抗のいずれか又は複数に基づいて、ドライアウトの発生を判断してもよい。また、インピーダンスZと、電流遮断、負荷変動及びDC抵抗のいずれか又は複数とに基づいてドライアウトの発生を判断してもよい。これにより、ドライアウトの発生をより正確に判断することが可能となる。
また本実施形態では、インピーダンスZが所定の閾値よりも大きいときに循環路57を介して循環する気体の流量を減少させるが、これに限らず、循環路57を介して循環する気体の流量を減少させると共に、当該気体の流速を減少させてもよい。これにより、より短時間で電解質膜22を適正な加湿状態にすることができる。
一方、インピーダンスZが所定の閾値以下であるときは(ステップS21:NO)、燃料極23と酸化剤極24との間の電圧Vを測定し、電圧Vが所定の第1閾値以下であるか否かを判定する(ステップS23)。電圧Vの所定の第1閾値は、特に制限されないが、例えば500mV~600mVの範囲の値である。
電圧Vが所定の第1閾値以下であるときは(ステップS23:YES、図7の時刻t33~t34)、フラッディングと判断し、循環路57を介して循環する気体の流量を増大させる(ステップS24、図7の時刻t33~t34)。例えば、インピーダンスZが所定の閾値以下であり、かつ電圧Vが所定の第1閾値以下であるときに、循環ポンプ58の吐出量を増大して、気体の循環量を上昇させる。これにより、電解質膜22の水分が酸素供給部26の気体の流れによって排出されるのを促進することができ、電解質膜22を適正な加湿状態にすることができる。ステップS24の制御により電圧Vが所定の第1閾値を越えたときは、循環路57を介して循環する気体の流量を定常状態に戻す(図7の時刻t35)。
ステップS24では、電圧Vが所定の第1閾値以下であるときに循環路57を介して循環する気体の流量を増大させるが、これに限らず、循環路57を介して循環する気体の流量を増大させると共に、当該気体の流速を増大させてもよい。これにより、より短時間で電解質膜22を適正な加湿状態にすることができる。
次に、燃料極23と酸化剤極24との間の電圧Vが所定の第1閾値以下であるか否かを再度判定する(ステップS25)。再度の判定において電圧Vが所定の第1閾値以下であるときは(ステップS25:YES)、水素供給部25をパージし(ステップS26、図7の時刻t34)、その後動作を停止する(ステップS27)。通常、上記の気体の流量調整を行うことで電解質膜22を適正な加湿状態とすることができるが、何らかの原因で上記電圧Vが正常値まで回復しない場合がある。その場合、本ステップS27にて水素供給部25をパージすることで、電解質膜22の水分がパージによって排出され、上記電圧Vを所定の第1閾値以上の正常値まで回復させることが可能となる。
ステップS23において電圧Vが所定の第1閾値よりも大きいか(ステップS23:NO)、又は、ステップS25の再度の判定において電圧Vが第1所定の閾値よりも大きい場合には(ステップS25:NO)、ステップS21の処理に戻る。また、必要に応じて後述する終了制御に移行する。
水素供給部25のパージ方法は、特に制限されないが、例えば宇宙空間では、水素排出路43に不図示のキャピラリを設け、キャピラリを介して水素を宇宙空間に開放する。燃料電池装置2は、通常、人が活動する与圧部に配置されるため、キャピラリの圧力損失により、水素排出路43の水素が徐々に減圧され、水素の急激な排出が防止される。これにより、簡便な構成で水素供給部25を安全にパージすることができる。
また、ステップS27では電圧Vが所定の第1閾値以下であるときに水素供給部25をパージするが、これに限らず、電圧Vが所定の第1閾値以下であるときに水素供給部25をパージすると共に、別途所定のタイミングで定期的に水素供給部25をパージしてもよい。パージの所定のタイミングは、特に制限されないが、例えば15分間隔である。
更に、水素導入路42や水素排出路43に不図示の保温部材を設けてもよい。これにより、水素供給部25のパージによって生じうる結露や凍結を防止して、より安全かつ確実にパージすることが可能となる。
上述したように、本定常運転制御によれば、燃料極23と酸化剤極24との間のインピーダンスZが所定の閾値よりも大きいときに(ステップS21:YES)、循環路57を介して循環する気体の流量を減少させる(ステップS22)。また、インピーダンスZが所定の閾値以下であるときには(ステップS21:NO)、燃料極23と酸化剤極24との間の電圧Vが所定の第1閾値以下であるか否かを判定し(ステップS23)、電圧Vが所定の第1閾値以下であるときに、循環路57を介して循環する気体の流量を増大させる。すなわち、インピーダンスZと電圧Vの双方を用いて、燃料電池装置2の発電時にドライアウト及びフラッディングのいずれが生じたかを正確に判断できるとともに、その判断結果に基づいて電解質膜22を適正な加湿状態にすることができる。したがって、フラッディングの発生とドライアウトの発生のいずれも防止して、良好な水バランスを保った発電を実現することが可能となる。
(緊急停止制御)
図8は、定常運転時における燃料電池装置2の緊急停止制御の一例を示すフローチャートである。本緊急停止制御は、上記定常運転制御と並行して、又は単独で実行される。本緊急停止方法の各工程は、上記定常運転制御と同様、制御部3によって実行することができる。
本緊急停止制御では、燃料電池装置2の異常発生として、燃料電池装置2の燃料電池スタック21の温度Tfが所定の閾値よりも大きい場合(ステップS31;YES)、水素供給部25で酸素を検出した場合(ステップS32;YES)、又は、燃料極23と酸化剤極24との間の電圧Vが所定の第2閾値よりも小さい場合(ステップS33;YES)に実行される。
図8は、定常運転時における燃料電池装置2の緊急停止制御の一例を示すフローチャートである。本緊急停止制御は、上記定常運転制御と並行して、又は単独で実行される。本緊急停止方法の各工程は、上記定常運転制御と同様、制御部3によって実行することができる。
本緊急停止制御では、燃料電池装置2の異常発生として、燃料電池装置2の燃料電池スタック21の温度Tfが所定の閾値よりも大きい場合(ステップS31;YES)、水素供給部25で酸素を検出した場合(ステップS32;YES)、又は、燃料極23と酸化剤極24との間の電圧Vが所定の第2閾値よりも小さい場合(ステップS33;YES)に実行される。
温度Tfの所定の閾値は、特に制限されないが、例えば90~100℃である。これにより燃料電池装置2の温度異常を検知して当該燃料電池装置2を安全に停止させることができる。水素供給部25の酸素の検出は、例えば水素供給部25に不図示の酸素センサを設けることで行うことができる。これにより燃料電池装置2での酸素の漏洩を検知して当該燃料電池装置2を安全に停止することができる。電圧Vの所定の第2閾値は、特に制限されないが、電圧Vの上記所定の第1閾値よりも低い値であり、例えば水素/酸素で発電している場合にはセル当たり400mV~500mVである。これにより、万一燃料電池装置2によって水が大量に生成された場合に、燃料電池装置2を安全に停止することができる。
上記の異常発生の判定は、図7では連続して行われているが、それぞれが適宜なタイミングで並列に行われてもよい。
燃料電池スタック21の温度Tfが所定の閾値よりも大きいか、水素供給部25で酸素を検出したか、又は電圧Vが所定の第2閾値よりも小さいときは、先ず、燃料電池スタック21に接続された負荷4を小さくする(ステップS34)。例えば、制御部3から送信された異常信号に基づいて、負荷4(抵抗)を小さくする。
次いで、酸素供給部26への気体の供給を停止すると共に、酸素導入路52と酸素排出路53とを接続する循環路57を介した気体の循環を停止する(ステップS35)。例えば、酸素導入路52の上流に設けられた弁54を閉じて、酸素供給部26への気体の供給を停止する。また、酸素排出路53に設けられた三方弁56にて、酸素排出路53から循環路57への気体の供給を停止し、酸素排出路53から外部に気体を排出する。併せて循環路57の循環ポンプ58を停止してもよい。
更に、水素供給部25及び酸素供給部26を減圧する(ステップS36)。水素供給部25の減圧方法は、特に制限されないが、宇宙空間では、例えば上記のパージ方法と同様にして、水素排出路43を宇宙空間に開放し、水素を宇宙空間に排出することで行うことができる。酸素供給部26の減圧方法も、水素供給部25の減圧方法と同様、酸素排出路53を宇宙空間に開放し、気体を宇宙空間に排出することで行うことができる。これにより、水素供給部25に水素が残留してない状態とすることができ、また、酸素供給部26にも気体が残留してない状態とすることができる。
本緊急停止方法によれば、燃料電池装置2の定常運転時に緊急を要する事態が生じた場合に、燃料電池装置2を安全に停止することができる。
尚、上記に掲げた3種類の異常発生のうちの少なくとも2つを満たすときに、燃料電池スタック21に接続された負荷4を小さくし、酸素供給部26への気体の供給を停止すると共に、循環路57を介した気体の循環を停止し、更に水素供給部25及び酸素供給部26を減圧してもよい。これにより、緊急停止の条件をより厳しくすることができ、誤検知による緊急停止を防止することができる。
[終了制御]
図9は、図1の燃料電池システム1で実行される燃料電池装置2の終了制御の一例を示すフローチャートである。図10は、図8の燃料電池装置2の終了制御を実行した際の各部の状態変化を示すタイミングチャートである。本終了制御の各工程は、上記起動運転と同様、制御部3によって実行することができる。
図9は、図1の燃料電池システム1で実行される燃料電池装置2の終了制御の一例を示すフローチャートである。図10は、図8の燃料電池装置2の終了制御を実行した際の各部の状態変化を示すタイミングチャートである。本終了制御の各工程は、上記起動運転と同様、制御部3によって実行することができる。
定常運転制御が実行されている(図7の時刻t30~t31)燃料電池装置2の運転終了時には、先ず負荷4を下げ(ステップS41、図10の時刻t21~t22)、その後、水素排出路43を開放して燃料極23の水素供給部25をパージすると共に、酸素排出路53を開放して酸化剤極24の酸素供給部26をパージする(ステップS42、図10の時刻t22)。水素供給部25のパージ方法及び酸素供給部26のパージ方法は、例えば上記のパージ方法と同様にして行うことができる。これにより水素供給部25内の水素が外部に排出されると共に、酸素供給部26内の気体が外部に排出される。
ステップS42のパージを解除した後(図10の時刻t23)、燃料極23と酸化剤極24との間の電圧Vを測定し、電圧Vが所定の閾値Vs2よりも大きいか否かを判定する(ステップS43)。電圧Vの所定の閾値Vs2は、電極の触媒が酸化されない電圧であれば特に制限されないが、例えばセル当たり300mVである。電圧Vが上記所定の閾値Vs2よりも大きいときには(ステップS43:YES)、電圧Vが所定の閾値Vs2以下になるまで、燃料電池装置2での発電を継続する(ステップS44、図10の時刻t23~t24)。燃料極23の水素供給部25及び酸化剤極24の酸素供給部26は共にパージされているため、本ステップでの発電により、燃料極23と酸化剤極24との間の電圧Vを低下させることができる。
電圧Vが上記所定の閾値Vs2以下であるときは(ステップS43:NO)、水素供給部25及び酸素供給部26を減圧する(ステップS45、図10の時刻t24)。水素供給部25の減圧方法及び酸素供給部26の減圧方法は、上記の減圧方法と同様にして行うことができる。これにより、水素供給部25に水素がほぼ残留してない状態とすることができ、また、酸素供給部26にも気体がほぼ残留してない状態とすることができる。
その後、必要に応じて、燃料極23と酸化剤極24とを短絡し(ステップS46、図10の時刻t25)、本処理を終了する。これにより、燃料極23と酸化剤極24の電位差を確実に0にすることができる。燃料極23と酸化剤極24の短絡は、例えば燃料電池装置2に対して不図示のスイッチを電気的に並列接続し、スイッチをオンにすることで行うことができる。
電圧Vが前記所定の閾値Vs2以下にあるときに(ステップS43:NO)、水素供給部25及び酸素供給部26に水素あるいは不活性ガスを充てんしてもよい。酸素供給部26に水素を充てんする際には、例えば水素導入路42から連結流路45を介して酸素導入路52に水素を送出することができる。これにより燃料電池装置2の電極、特に酸化剤極24の触媒がより酸化されない状態を維持することができる。また、電圧Vが十分に低い状態で水素供給部25及び酸素供給部26に水素を充てんするので、燃焼を含む酸化反応に因る触媒の劣化を回避することができる。
水素供給部25及び酸素供給部26に充てんされた水素等は、次回の起動時に、上記起動制御のステップS11(図4)で行われる減圧により、外部に排出することができる。
水素供給部25及び酸素供給部26に充てんされた水素等は、次回の起動時に、上記起動制御のステップS11(図4)で行われる減圧により、外部に排出することができる。
水素供給部25及び酸素供給部26への水素等の充てんは、電圧Vが上記所定の閾値Vs2以下であって、水素供給部25及び酸素供給部26を減圧する前に行ってもよいし、電圧Vが上記所定の閾値Vs2以下であって、水素供給部25及び酸素供給部26を減圧した後に行ってもよい。
また、燃料極23と酸化剤極24との短絡は、水素供給部25及び酸素供給部26に水素あるいは不活性ガスを充てんした後に行ってもよい。これにより、燃焼に因る触媒の劣化を確実に回避することができる。
上述したように、本終了制御によれば、燃料極23の水素供給部25をパージすると共に、酸化剤極24の酸素供給部26をパージし(ステップS42)、燃料極23と酸化剤極24との間の電圧Vが所定の閾値Vs2よりも大きいときに、燃料電池装置2での発電を継続し(ステップS44)、電圧Vが所定の閾値Vs2以下であるときに、水素供給部25及び酸素供給部26を減圧するので(ステップS45)、水素供給部25に水素がほぼ残留せず、また、酸素供給部26に気体がほぼ残留してない状態で燃料電池装置2の運転を終了することができ、次回の起動時まで燃料電池装置2を安全な状態で保管することができ、また、次回の起動時にも安全に燃料電池装置2を起動することができる。
[燃料電池システムの他の構成]
図11は、本発明の第2実施形態に係る、水素被覆部を有する燃料電池システムの構成を概略的に示す図である。図11の燃料電池システムの構成は、図1の燃料電池システム1の構成と基本的に同じであり、以下に異なる部分を説明する。
図11は、本発明の第2実施形態に係る、水素被覆部を有する燃料電池システムの構成を概略的に示す図である。図11の燃料電池システムの構成は、図1の燃料電池システム1の構成と基本的に同じであり、以下に異なる部分を説明する。
図11に示すように、本実施形態の燃料電池装置2は、燃料電池スタック21と、燃料電池スタック21を覆って配置され、内部に水素を充てん可能に構成された水素被覆部71と、水素被覆部71に水素を導入する水素導入部72とを備える。
水素被覆部71は、内部空間に燃料電池装置2を収容すると共に、当該内部空間を密閉可能に構成された容器である。水素被覆部71は、直方体形状や円筒形状など、様々な形状を取りうるが、強度の観点からは俵形状や樽形状が好ましい。水素被覆部71は、中性子を遮蔽することが可能な材料で構成されることが好ましく、例えばアルミニウムなどの金属で構成されている。水素被覆部71内は、水素によって加圧された状態で保持されるのが好ましい。これにより、水素被覆部71に微小な亀裂等が生じた場合にも、水素の充てん状態を維持することができる。
水素導入部72は、例えば他の系統と接続されており、当該他の系統に設けられた水素供給源からの水素を水素被覆部71に供給する。水素導入部72は、水素供給源としての水素タンク41Aに接続されてもよく、その場合、水素タンク41Aからの水素が水素供給部25及び水素被覆部71のいずれか又は双方に供給可能に構成される。また、本実施形態では、気体供給源としての酸素タンク51Bが設けられており、酸素タンク51Bの酸素が酸素導入路52に供給される。
また、燃料電池装置2は、燃料電池スタック21と連通し、燃料電池スタック21内で生成した水を水素被覆部71の外部に排出するキャピラリポート(ポート)73と、水素被覆部71に設けられ、水素被覆部71の内部空間を開放可能なパージポート74とを備える。キャピラリポート73は、例えば宇宙空間に開放されており、フラッシングが生じたり或いはその傾向が現れた場合に、キャピラリポート73に設けられた弁を開くことにより、水素被覆部71内の不要な水分や気体が宇宙空間に排出される。キャピラリポート73は、少なくとも下流側先端部73aがキャピラリ形状を有しているのが好ましい。これにより、急激なパージを抑制して、気体を徐々に宇宙空間に排出することができる。パージポート74は、例えば宇宙空間に開放されており、安全確保が必要な場合や緊急時に、パージポート74に設けられた弁を開く或いは破壊することで、水素被覆部71内の気体等を可及的速やかにパージすることができる。
図12は、図11における燃料電池装置2の構成の変形例を示す図である。
図12に示すように、本変形例の燃料電池装置2は、水素被覆部71と、水素導入部72と、水素被覆部71から水素を排出する水素排出部75とを備える。水素被覆部71の内部空間Aは、水素供給部25と連通しており(図11)、水素導入部72から水素被覆部71に水素を導入することにより、水素供給部25に水素が供給される。すなわち、図12の燃料電池装置2では、水素導入部72、水素被覆部71の内部空間A及び水素排出部75によって一の水素ガス系統が設けられており、この水素ガス系統によって水素被覆部71に水素が供給されると共に、水素供給部25に水素が供給される。
図12に示すように、本変形例の燃料電池装置2は、水素被覆部71と、水素導入部72と、水素被覆部71から水素を排出する水素排出部75とを備える。水素被覆部71の内部空間Aは、水素供給部25と連通しており(図11)、水素導入部72から水素被覆部71に水素を導入することにより、水素供給部25に水素が供給される。すなわち、図12の燃料電池装置2では、水素導入部72、水素被覆部71の内部空間A及び水素排出部75によって一の水素ガス系統が設けられており、この水素ガス系統によって水素被覆部71に水素が供給されると共に、水素供給部25に水素が供給される。
また、本変形例では、図13に示すように、燃料極23、電解質膜22及び酸化剤極24が、鉛直方向(例えば、図中のD3方向)に沿ってこの順に積層されている。この場合、燃料極23が、電解質膜22の下方に配置されるのが好ましい。このように燃料電池スタック21を水平置き(横置き)にすることで、重力環境下において、水素供給部25を流れる水素及び酸素供給部26を流れる気体の双方を、鉛直方向に対して垂直な方向に流すことができ、重力の影響が少ない、良好なガス流れを実現することができる。
セパレータ27(図2A、図2B参照)のうちの水素供給側部分76は、例えば図14に示すように、燃料電池スタック21の長さ方向(図12のD1方向)の全体に亘って形成された複数の溝76aを有している。複数の溝76aの上部は燃料電池セルの積層によって塞がれており、これにより水素被覆部71の内部空間Aと連通した複数の流路パターンが形成されている。
ここで、月面のように中性子線濃度が高い環境では、燃料電池スタック21を透過した放射線により電解質膜の劣化等が懸念される。本変形例の燃料電池装置2では、水素被覆部71に充てんされた水素で中性子を遮蔽する構成としている。また、水素被覆部71に水素を充てんした構成とすることで、図13に示すように、セパレータ27の水素供給側部分76が溝形状等の単純な流路パターンを有する構造体であっても、このような構成のセパレータ27を使用しつつ、上記基準電圧の基となる水素をセパレータ27に供給し続けることができる。また、一の水素ガス系統を用いて、水素被覆部71に水素を充てんしつつ、水素供給部25に水素を供給することができ、燃料電池装置を簡略化することが可能となる。
燃料電池装置2は、水素被覆部71と燃料電池スタック21との間に設けられた中性子遮蔽部材77を備えてもよい(図12)。中性子遮蔽部材77の配置位置は、特に制限されないが、例えば、水素被覆部71の内面に取り付けられ、好ましくは燃料電池スタック21を覆って配置される。中性子遮蔽部材77の形状も特に制限されず、シート状等の様々な形状を取りうる。中性子遮蔽部材77は、例えばベリリウムやベリリウムを含む合金や、重金属を含有する材料等で構成される。重金属としては、例えば鉛や鉛を含む合金が挙げられる。
また、燃料電池装置2は、燃料電池スタック21に取り付けられた吸湿部材78を備えてもよい。この場合、キャピラリポート73の上流側端部73bが、吸湿部材78に当接するか又はその近傍に配置される。吸湿部材78は、例えば網目状部材や多孔質部材で構成され、網目状部材としては、例えばウイックが挙げられる。これにより、水素被覆部71内で生成された水が吸湿部材78を介して宇宙空間に排出されるので、水がキャピラリポート73から排出される際の水素の排出量を少なくすることができる。
吸湿部材78は、燃料電池スタック21の下面に配置されてもよい。重力環境下であれば、燃料電池スタック21の下に吸湿部材78を敷き詰めることで、緊急を要する水の排出の際にバッファとして機能させることができる。
また、吸湿部材78の配置位置を含む部分を冷却して、水素被覆部71の他の部分よりも相対的に低温となるように構成されてもよい。これにより、吸湿部材78で水が生成され易くなり、水がキャピラリポート73から排出される際の水素の排出量を更に少なくすることができる。
また、吸湿部材78の配置位置を含む部分を冷却して、水素被覆部71の他の部分よりも相対的に低温となるように構成されてもよい。これにより、吸湿部材78で水が生成され易くなり、水がキャピラリポート73から排出される際の水素の排出量を更に少なくすることができる。
また、本実施形態の燃料電池システム1では、除湿器62は、酸素供給部26の酸素排出路53に接続され、一の水回収タンク63から他の水回収タンク63に切り替え可能に構成されている(図11)。そして、制御部3は、燃料電池スタック21に接続された負荷4への通電時間(t)と電流値(I)の積(t)×(I)に基づいて水回収タンク63を切り替える。
閉鎖環境及び酸素供給の環境下にあっては、水の効率的な回収が求められるにも関わらず、短時間のうちに大量の水が発生する。水回収タンク63に設けられた水量検知だけでは、水量検知用のセンサ故障等が生じた場合に、水が燃料電池システム1内に溢れ出して、発電停止、ひいてはフラッディング等の不具合が発生する可能性がある。本実施形態では、複数の水回収タンク63を切り替え可能に具備した除湿器62を用い、制御部3にて負荷4への通電時間(t)を計測し、且つ電流測定部7にて電流値(I)を測定し、これらの積(t)×(I)を算出する。積(t)×(I)の算出値が、積(t)×(I)と水の理論生成量との相関に基づいて設定された所定の閾値以上である場合、使用中の水回収タンク63内の水が容量一杯であると判断し、使用中の一の水回収タンク63が未使用の他の水回収タンク63に切り替えられる。これにより、燃料電池システム1内での水の漏洩を確実に防止し、フラッディング等の不具合の発生を更に防止することができる。
また、燃料電池システム1は、燃料電池スタック21(或いは燃料電池セル21A)の温度を測定する温度測定部81と、燃料電池スタック21の温調を行う温度調節部82とを備えてもよい。この場合、制御部3は、燃料電池スタック21の温度の測定値に基づいて温度調節部82に制御信号を送信し、温度調節部82は、制御部3から送信された制御信号に基づいて燃料電池スタック21を冷却或いは加熱する。これにより、発電時に燃料電池スタック21を適正な温度に維持することができる。
温度測定部81は、例えば燃料電池スタック21の水素ラインに取り付けられる水素側温度センサと、気体(酸素)ラインに取り付けられる気体側温度センサとを有していてもよい。
燃料電池スタック21の温調は、特に制限されないが、例えば水冷式である。水冷式の温調では、燃料電池装置2の発電によって生成された水を使用することができる。
制御部3或いは温度調節部82は、電圧測定部6から送信された燃料電池スタック21の電圧Vの測定値に基づいて、燃料電池スタック21の温調を行ってもよい。また、制御部3或いは温度調節部82は、燃料電池スタック21の電圧Vの測定値を、データロガー等の記録媒体に読出し可能に記録してもよい。
燃料電池スタック21の温調は、特に制限されないが、例えば水冷式である。水冷式の温調では、燃料電池装置2の発電によって生成された水を使用することができる。
制御部3或いは温度調節部82は、電圧測定部6から送信された燃料電池スタック21の電圧Vの測定値に基づいて、燃料電池スタック21の温調を行ってもよい。また、制御部3或いは温度調節部82は、燃料電池スタック21の電圧Vの測定値を、データロガー等の記録媒体に読出し可能に記録してもよい。
また、燃料電池システム1は、燃料電池スタック21に電気的に並列接続されたバッテリ8を備えてもよい(図11)。バッテリ8は、移動体内の電力系統に接続されており、例えば異常検知の際や、起動の際など、燃料電池装置2での十分な発電が困難な場合に、他の電力系統に電力を供給することができる。起動時のみにバッテリ8を用いる場合には、バッテリ8を必要最小限の容量とすることができ、バッテリ8を小型化して省スペース化を図ることができる。
このように燃料電池スタック21にバッテリ8を接続することにより、燃料電池装置2で何らかの不具合が生じた場合、バッテリ8を非常用電源として用い、移動体を緊急帰還させることが可能となる。また、バッテリ8は、ローバーに搭載された太陽光発電装置や温度差発電装置に接続されてもよい。この場合、月面探査において太陽光発電装置や温度差発電装置で発電された電力をバッテリ8に補充電することができる。
上述したように、本実施形態によれば、水素被覆部71が燃料電池スタック21を覆って配置され且つ内部に水素を充てん可能に構成され、水素導入部72が水素被覆部71に水素を導入するので、燃料電池スタック21を水素で被覆することにより、水素との衝突により中性子のエネルギーが消失し、電解質膜22の劣化、損耗を大幅に抑制することができ、これにより燃料電池スタック21の劣化や故障の発生を防止することができる。また、燃料電池スタック21の還元剤として使用される水素を、水素被覆部71の内部空間への充てん材としても使用するため、中性子遮蔽部材を別途設ける必要がなく、システムの簡略化、軽量化、省スペース化を実現することができる。
以上、本発明の実施形態について詳述したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
例えば、本燃料電池システム及び燃料電池装置の制御方法は、宇宙用としては、月探査に用いられるローバーなどの車両に適用することができる。また、地上用としては、燃料電池車をはじめとする、重力環境下で使用される車両などの移動体に適用することができる。
また、本燃料電池装置で行われる水素の酸化反応と、水の分解反応とを組み合わせることにより、可逆的に発電を繰り返して行うことが可能となり、非常に有用な再生型燃料電池システムを構築することができる。特に、地上用では、再生可能エネルギーの貯蔵、運搬用水素製造に上記システムを適用することができる。
また、本燃料電池装置で行われる水素の酸化反応と、水の分解反応とを組み合わせることにより、可逆的に発電を繰り返して行うことが可能となり、非常に有用な再生型燃料電池システムを構築することができる。特に、地上用では、再生可能エネルギーの貯蔵、運搬用水素製造に上記システムを適用することができる。
上記した燃料電池装置の制御方法によれば、安全性、信頼性を向上すると共に、システムの簡略化、軽量化、省スペース化を実現することができる。
1 燃料電池システム
2 燃料電池装置
3 制御部
4 負荷
5 インピーダンス測定部
6 電圧測定部
7 電流測定部
8 バッテリ
21 燃料電池スタック
21A 燃料電池セル
22 電解質膜
23 燃料極
24 酸化剤極
25 水素供給部
26 酸素供給部
27 セパレータ
28 水素供給口
29 酸素排出口
30 水素排出口
31 酸素供給口
32 燃料極側部分
33 酸化剤極側部分
34 水素入口
35 水素出口
36 酸素入口
37 酸素出口
38A 流路パターン
38B 流路パターン
39A 流路パターン
38B 流路パターン
41 水素供給源
41A 水素タンク
42 水素導入路
43 水素排出路
44 三方弁
45 連結流路
46 水素圧測定部
47 弁
51 酸素供給源
51B 酸素タンク
52 酸素導入路
53 酸素排出路
54 弁
55 気体圧測定部
56 三方弁
57 循環路
58 循環ポンプ
59 圧力調整部
60 流量測定部
61 凝縮器
62 除湿器
63 水回収タンク
71 水素被覆部
72 水素導入部
73 キャピラリポート
73a 下流側先端部
73b 上流側端部
74 パージポート
75 水素排出部
76 水素供給側部分
76a 溝
77 中性子遮蔽部材
78 吸湿部材
81 温度測定部
82 温度調節部
2 燃料電池装置
3 制御部
4 負荷
5 インピーダンス測定部
6 電圧測定部
7 電流測定部
8 バッテリ
21 燃料電池スタック
21A 燃料電池セル
22 電解質膜
23 燃料極
24 酸化剤極
25 水素供給部
26 酸素供給部
27 セパレータ
28 水素供給口
29 酸素排出口
30 水素排出口
31 酸素供給口
32 燃料極側部分
33 酸化剤極側部分
34 水素入口
35 水素出口
36 酸素入口
37 酸素出口
38A 流路パターン
38B 流路パターン
39A 流路パターン
38B 流路パターン
41 水素供給源
41A 水素タンク
42 水素導入路
43 水素排出路
44 三方弁
45 連結流路
46 水素圧測定部
47 弁
51 酸素供給源
51B 酸素タンク
52 酸素導入路
53 酸素排出路
54 弁
55 気体圧測定部
56 三方弁
57 循環路
58 循環ポンプ
59 圧力調整部
60 流量測定部
61 凝縮器
62 除湿器
63 水回収タンク
71 水素被覆部
72 水素導入部
73 キャピラリポート
73a 下流側先端部
73b 上流側端部
74 パージポート
75 水素排出部
76 水素供給側部分
76a 溝
77 中性子遮蔽部材
78 吸湿部材
81 温度測定部
82 温度調節部
Claims (6)
- 電解質膜を燃料極及び酸化剤極で挟み込み、前記燃料極の水素供給部に水素を供給し、前記酸化剤極の気体供給部に酸素を含む気体を供給して発電を行う燃料電池装置の制御方法であって、
前記燃料電池装置の定常運転時に、前記燃料極と前記酸化剤極との間のインピーダンスが所定の閾値よりも大きいか否かを判定する工程と、
前記インピーダンスが所定の閾値よりも大きいときに、前記気体供給部の気体導入路と気体排出路とを接続する循環路を介して循環する気体の流量を減少させる工程と、
前記インピーダンスが前記所定の閾値以下であるときに、前記燃料極と前記酸化剤極との間の電圧を測定し、前記電圧が所定の第1閾値以下であるか否かを判定する工程と、
前記電圧が前記所定の第1閾値以下であるときに、前記循環路を介して循環する気体の流量を増大させる工程と、
を有する、燃料電池装置の制御方法。 - 前記循環路を介して循環する気体の流量を増大させる上記工程の後、前記電圧が前記所定の閾値以下であるか否かを再度判定する工程と、
前記電圧が前記所定の閾値以下であるときに、前記水素供給部をパージする工程と、
を有する、請求項1に記載の燃料電池装置の制御方法。 - 前記インピーダンスが所定の閾値よりも大きいときに、前記気体の流速を低下させる、請求項1に記載の燃料電池装置の制御方法。
- 前記インピーダンスが前記所定の閾値以下であり、かつ前記電圧が前記所定の閾値以下であるときに、前記気体の循環量を上昇させる、請求項1に記載の燃料電池装置の制御方法。
- 酸素の循環量を上昇させた後に前記燃料極と前記酸化剤極との間の電圧を測定し、前記電圧が所定の閾値以下であるか否かを判定する工程と、
前記電圧が前記所定の閾値以下であるときに、水素をパージする、請求項4に記載の燃料電池装置の制御方法。 - 前記燃料電池装置の異常発生として、前記燃料電池装置の燃料電池セルの温度が所定の閾値よりも大きいか否か、前記水素供給部で酸素を検出したか否か、又は、前記燃料極と前記酸化剤極との間の電圧が所定の第2閾値よりも小さいか否かを判定する工程と、
前記燃料電池セルの温度が所定の閾値よりも大きいか、前記水素供給部で酸素を検出したか、又は前記電圧が所定の第2閾値よりも小さい場合に、前記燃料電池セルに接続された負荷を小さくする工程と、
前記気体供給部への気体の供給を停止すると共に、前記気体供給部の気体導入路と気体排出路とを接続する循環路を介した気体の循環を停止する工程と、
前記水素供給部及び前記気体供給部を減圧する工程と、
を有する、請求項1に記載の燃料電池装置の制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112020006737.8T DE112020006737T5 (de) | 2020-02-17 | 2020-12-22 | Verfahren zur steuerung einer brennstoffzellenvorrichtung |
US17/798,359 US11923579B2 (en) | 2020-02-17 | 2020-12-22 | Method for controlling fuel cell device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-024702 | 2020-02-17 | ||
JP2020024702A JP7565552B2 (ja) | 2020-02-17 | 2020-02-17 | 燃料電池装置の制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021166423A1 true WO2021166423A1 (ja) | 2021-08-26 |
Family
ID=77391536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/047927 WO2021166423A1 (ja) | 2020-02-17 | 2020-12-22 | 燃料電池装置の制御方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11923579B2 (ja) |
JP (1) | JP7565552B2 (ja) |
DE (1) | DE112020006737T5 (ja) |
WO (1) | WO2021166423A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115128316A (zh) * | 2022-06-16 | 2022-09-30 | 重庆长安新能源汽车科技有限公司 | 一种节电压巡检单元的电磁兼容测试系统及测试的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007048507A (ja) * | 2005-08-08 | 2007-02-22 | Nippon Soken Inc | 燃料電池システム |
JP2008112647A (ja) * | 2006-10-31 | 2008-05-15 | Toyota Motor Corp | 車両用燃料電池システム |
WO2010131351A1 (ja) * | 2009-05-14 | 2010-11-18 | トヨタ自動車株式会社 | 燃料電池システム |
JP2017183027A (ja) * | 2016-03-30 | 2017-10-05 | トヨタ自動車株式会社 | 燃料電池の制御方法 |
WO2018029860A1 (ja) * | 2016-08-12 | 2018-02-15 | 日産自動車株式会社 | 燃料電池システム、及び燃料電池システムの制御方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007157414A (ja) | 2005-12-02 | 2007-06-21 | Toyota Motor Corp | 燃料電池システムと燃料電池の含水量測定方法 |
JP5013311B2 (ja) * | 2006-11-22 | 2012-08-29 | トヨタ自動車株式会社 | 燃料電池システム |
US20110123884A1 (en) * | 2009-11-24 | 2011-05-26 | Adaptive Materials, Inc. | Method for controlling a fuel cell system during shutdown |
DE102012018873A1 (de) * | 2012-09-25 | 2014-03-27 | Daimler Ag | Verfahren zum Erfassen einer kritischen Wasserstoffkonzentration |
US9834846B2 (en) * | 2015-06-19 | 2017-12-05 | The Boeing Company | System and method for transitioning a reversible solid oxide fuel cell system between generation and electrolysis modes |
JP2019029067A (ja) | 2017-07-25 | 2019-02-21 | トヨタ自動車株式会社 | 燃料電池システム |
JP2020024702A (ja) | 2018-08-03 | 2020-02-13 | 三菱ケミカル株式会社 | 生産流通管理システム、管理方法、及びプログラム |
-
2020
- 2020-02-17 JP JP2020024702A patent/JP7565552B2/ja active Active
- 2020-12-22 WO PCT/JP2020/047927 patent/WO2021166423A1/ja active Application Filing
- 2020-12-22 DE DE112020006737.8T patent/DE112020006737T5/de active Pending
- 2020-12-22 US US17/798,359 patent/US11923579B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007048507A (ja) * | 2005-08-08 | 2007-02-22 | Nippon Soken Inc | 燃料電池システム |
JP2008112647A (ja) * | 2006-10-31 | 2008-05-15 | Toyota Motor Corp | 車両用燃料電池システム |
WO2010131351A1 (ja) * | 2009-05-14 | 2010-11-18 | トヨタ自動車株式会社 | 燃料電池システム |
JP2017183027A (ja) * | 2016-03-30 | 2017-10-05 | トヨタ自動車株式会社 | 燃料電池の制御方法 |
WO2018029860A1 (ja) * | 2016-08-12 | 2018-02-15 | 日産自動車株式会社 | 燃料電池システム、及び燃料電池システムの制御方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115128316A (zh) * | 2022-06-16 | 2022-09-30 | 重庆长安新能源汽车科技有限公司 | 一种节电压巡检单元的电磁兼容测试系统及测试的方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2021128922A (ja) | 2021-09-02 |
US11923579B2 (en) | 2024-03-05 |
JP7565552B2 (ja) | 2024-10-11 |
DE112020006737T5 (de) | 2022-12-22 |
US20230084323A1 (en) | 2023-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021166429A1 (ja) | 燃料電池装置の制御方法 | |
WO2011040182A1 (ja) | 燃料電池装置 | |
JP4742444B2 (ja) | 燃料電池装置 | |
JP4772470B2 (ja) | 燃料電池システム | |
WO2021166428A1 (ja) | 燃料電池システム | |
KR101102198B1 (ko) | 연료전지시스템의 발전정지방법 및 발전정지수단을 구비한 연료전지시스템 | |
JP4362266B2 (ja) | 燃料ガスの供給不足検出方法および燃料電池の制御方法 | |
WO2021166423A1 (ja) | 燃料電池装置の制御方法 | |
WO2021166424A1 (ja) | 燃料電池装置の制御方法 | |
JP5358988B2 (ja) | 燃料電池システム | |
JP4810872B2 (ja) | 燃料電池システム | |
JP2006120375A (ja) | 燃料電池システム及びその運転方法 | |
JP6445096B2 (ja) | 燃料電池システムおよびその運転方法 | |
JP2007250216A (ja) | 燃料電池システム及びその運転方法 | |
JP5581537B2 (ja) | 燃料電池用の吐出ヘッド | |
JPH0837014A (ja) | リン酸型燃料電池発電プラントおよびその保管方法 | |
JP2005100705A (ja) | 燃料電池の始動方法 | |
WO2011135932A1 (ja) | 燃料電池装置 | |
JP5516726B2 (ja) | 燃料電池装置 | |
JP5790530B2 (ja) | 2次電池型燃料電池システム | |
JPWO2013137033A1 (ja) | 2次電池型燃料電池システム | |
JP4507971B2 (ja) | 燃料電池装置 | |
WO2013146396A1 (ja) | 2次電池型燃料電池システム | |
JP5774403B2 (ja) | 燃料電池システムおよびその運転方法 | |
JP2007250189A (ja) | 燃料電池スタック |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20920715 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20920715 Country of ref document: EP Kind code of ref document: A1 |