WO2013146396A1 - 2次電池型燃料電池システム - Google Patents

2次電池型燃料電池システム Download PDF

Info

Publication number
WO2013146396A1
WO2013146396A1 PCT/JP2013/057586 JP2013057586W WO2013146396A1 WO 2013146396 A1 WO2013146396 A1 WO 2013146396A1 JP 2013057586 W JP2013057586 W JP 2013057586W WO 2013146396 A1 WO2013146396 A1 WO 2013146396A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fuel
external
fuel cell
power generation
Prior art date
Application number
PCT/JP2013/057586
Other languages
English (en)
French (fr)
Inventor
雅之 上山
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to EP13767750.6A priority Critical patent/EP2833456A4/en
Priority to JP2014507723A priority patent/JP5776842B2/ja
Priority to US14/389,350 priority patent/US20150064584A1/en
Publication of WO2013146396A1 publication Critical patent/WO2013146396A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/402Combination of fuel cell with other electric generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a secondary battery type fuel cell system capable of performing not only a power generation operation but also a charging operation.
  • a fuel cell typically includes a solid polymer electrolyte membrane using a solid polymer ion exchange membrane, a solid oxide electrolyte membrane using yttria-stabilized zirconia (YSZ), a fuel electrode (anode) and an oxidizer electrode.
  • the one sandwiched from both sides by the (cathode) has a single cell configuration.
  • a fuel gas flow path for supplying a fuel gas (for example, hydrogen gas) to the fuel electrode and an oxidant gas flow path for supplying an oxidant gas (for example, oxygen or air) to the oxidant electrode are provided. Power generation is performed by supplying fuel gas and oxidant gas to the fuel electrode and oxidant electrode through the passage.
  • Fuel cells are not only energy-saving because of the high efficiency of power energy that can be extracted in principle, but they are also a power generation system that is excellent in the environment, and are expected as a trump card for solving energy and environmental problems on a global scale.
  • Patent Document 1 discloses a secondary battery type fuel cell including a fuel cell unit and a fuel generating member that generates a fuel that is a reducing substance by a chemical reaction and can be regenerated by a reverse reaction of the chemical reaction. Yes.
  • the space where the fuel electrode of the fuel cell unit and the fuel generating member are sealed is a closed space, and the fuel cell unit includes the fuel cell unit.
  • the closed space is formed by the enclosure of a plurality of members, the gas may escape from the joints between the members even though only a minute amount.
  • hydrogen used for the fuel gas
  • this state is referred to as a gas shortage state
  • the fuel gas and the charging gas run short and the power generation performance And charging performance will fall.
  • an object of the present invention is to provide a secondary battery type fuel cell system capable of preventing or eliminating a gas shortage state while performing a power generation operation.
  • a secondary battery type fuel cell system includes a fuel generating member that generates fuel by a chemical reaction and can be regenerated by a reverse reaction of the chemical reaction, a fuel cell, A gas circulation path for circulating gas between the fuel generating member and the fuel cell; an external fuel gas supply path for supplying fuel gas output from an external gas supply source to the gas circulation path; and the gas circulation A gas discharge path for discharging gas from the path; a first opening / closing part for opening / closing the external fuel gas supply path; a second opening / closing part for opening / closing the gas discharge path; the first opening / closing part; And a control unit that controls the opening and closing unit, wherein the control unit uses the fuel gas output from the fuel generating member from the power generation operation using the fuel gas output from the external gas supply source.
  • the second opening / closing part closes the gas discharge path, and then the first opening / closing part closes the external fuel gas supply path.
  • the gas circulation path only needs to be able to circulate gas between the fuel generation member and the fuel cell when the external fuel gas supply path and the gas discharge path are closed. .
  • the fuel gas output from the external gas supply source is supplied to the gas circulation path during the power generation operation using the fuel gas output from the external gas supply source.
  • the power generation operation using the fuel gas output from the fuel generation member from the power generation operation using the fuel gas output from the external gas supply source or the charging operation for regenerating the fuel generation member When the gas circulation path is switched from an open space to a closed space, the gas discharge path is closed and then the external fuel gas supply path is closed, so that the gas circulation path is caused by the switching. Will not run out of gas.
  • 1 is a schematic diagram showing an overall configuration of a secondary battery type fuel cell system according to an embodiment of the present invention.
  • 1 is a simplified diagram of a secondary battery type fuel cell system according to an embodiment of the present invention showing a gas flow during power generation operation using an external fuel gas.
  • 1 is a simplified diagram of a secondary battery type fuel cell system according to an embodiment of the present invention showing a gas flow during a power generation operation or a charging operation using a circulating gas. It is a flowchart which shows the operation
  • FIG. 5 is a simplified diagram of a secondary battery type fuel cell system according to another embodiment of the present invention showing a gas flow during power generation operation using an external fuel gas. It is a simplified diagram of a rechargeable battery type fuel cell system concerning other embodiments of the present invention which shows the flow of gas at the time of power generation operation or charge operation using circulating gas.
  • FIG. 1 shows an overall configuration of a secondary battery type fuel cell system according to an embodiment of the present invention.
  • the secondary battery type fuel cell system according to an embodiment of the present invention shown in FIG. 1 shows an example in which the present invention is applied to a household fuel cell cogeneration system.
  • the fuel cell system is not limited to a cogeneration system.
  • a fuel cell container 2 that houses a tubular fuel cell 1, a fuel generation container 3 that contains a fuel generating member, and a tube A combustor 4 for combusting exhaust gas on the fuel electrode side of the fuel cell 1 and a part of a gas circulation path for circulating gas between the fuel cell 1 and the fuel generating member are provided in a heat insulating container 5.
  • a tubular fuel cell 1 is accommodated in the fuel cell container 2, but a plurality of tubular fuel cells 1 may be accommodated.
  • the secondary battery type fuel cell system according to one embodiment of the present invention shown in FIG. 1 includes a blower 6, a circulator 7, a check valve 8, a supply valve 9, an exhaust valve 10, a heat exchanger 11, and a controller 12. I have.
  • the controller 12 controls all operations of the secondary battery type fuel cell system according to the embodiment of the present invention shown in FIG.
  • the blower 6 introduces outside air (air) into the air electrode of the tubular fuel cell 1.
  • the exhaust gas containing oxygen on the air electrode side of the tubular fuel cell 1 is introduced into the combustor 4.
  • the circulator 7 and the check valve 8 are provided outside the heat insulating container 5 in the gas circulation path.
  • the circulator 7 forcibly circulates the gas in the gas circulation path, and the check valve 8 circulates from the fuel generation container 3. The gas is prevented from flowing into the tubular fuel cell 1 via the vessel 7.
  • the supply valve 9 is provided in the external fuel gas supply path, and the exhaust valve 10 is provided in the gas discharge path.
  • the external fuel gas supply path supplies the fuel gas output from the external gas supply source 13 and pressure-adjusted by the pressure regulator 14 to the gas circulation path.
  • the exhaust valve 10 is opened under the control of the controller 12, the gas discharge path discharges gas from the gas circulation path and supplies it to the combustor 4.
  • the external gas supply source 13 for example, a hydrogen cylinder, a hydrogen supply facility, city gas, or the like can be used.
  • a known gas reformer may be provided depending on the type of gas output from the external gas supply source 13.
  • the pressure regulator 14 adjusts the pressure of the fuel gas output from the external gas supply source 13 to a pressure suitable for the secondary battery type fuel cell system according to the embodiment of the present invention shown in FIG.
  • the gas after combustion in the combustor 4 is discharged to the outside via the heat exchanger 11.
  • the heat exchanger 11 heats water using heat obtained by heat exchange
  • the external water heater 15 heats water using fuel gas from the gas supply source 13.
  • the water heated by the heat exchange and the water heated by the water heater 15 are stored in the hot water tank 16 as hot water for hot water supply.
  • the power generated by the solar power generation system 17 is used, for example, as power necessary for the electrolysis operation of the tubular fuel cell 1.
  • tubular fuel cell 1 layers of a fuel electrode, an electrolyte, and an air electrode are formed in order from the inside of the tube, and the fuel gas passes through the tube.
  • electrolyte material for example, a solid oxide electrolyte using yttria-stabilized zirconia (YSZ) can be used.
  • YSZ yttria-stabilized zirconia
  • Nafion trademark of DuPont
  • cationic conductive polymer cationic conductive polymer
  • anionic conductive polymer etc.
  • Solid polymer electrolytes can be used, but the characteristics as fuel cell electrolytes are not limited to these, such as those that pass hydrogen ions, those that pass oxygen ions, and those that pass hydroxide ions. It only has to satisfy.
  • an electrolyte that passes oxygen ions or hydroxide ions for example, a solid oxide electrolyte using yttria-stabilized zirconia (YSZ) is used as the electrolyte, and water is generated on the fuel electrode side during power generation. I am doing so.
  • YSZ yttria-stabilized zirconia
  • the electrolyte can be formed using an electrochemical deposition method (CVD-EVD method; Chemical Vapor Deposition-Electrochemical Vapor Deposition) or the like, and in the case of a solid polymer electrolyte. It can be formed using a coating method or the like.
  • CVD-EVD method Chemical Vapor Deposition-Electrochemical Vapor Deposition
  • the fuel electrode and the air electrode can each be composed of, for example, a catalyst layer in contact with the electrolyte and a diffusion electrode laminated on the catalyst layer.
  • the catalyst layer for example, platinum black or a platinum alloy supported on carbon black can be used.
  • a material for the diffusion electrode of the fuel electrode for example, carbon paper, Ni—Fe cermet, Ni—YSZ cermet and the like can be used.
  • a material for the diffusion electrode of the air electrode for example, carbon paper, La—Mn—O compound, La—Co—Ce compound or the like can be used.
  • the fuel electrode and the air electrode can be formed by using, for example, a vapor deposition method.
  • Electrons generated by the reaction of the above formula (1) reach the air electrode through an external load (not shown) connected to the tubular fuel cell 1 under the control of the controller 12, and at the air electrode, the following The reaction of formula (2) occurs. (1/2) O 2 + 2e ⁇ ⁇ O 2 ⁇ (2)
  • the tubular fuel cell 1 performs a power generation operation. Further, as can be seen from the above equation (1), during the power generation operation, H 2 is consumed and H 2 O is generated on the fuel electrode side.
  • the power output from the external power source for example, the generated power of the solar power generation system 17 or the midnight power of the commercial power source
  • the above formula (1) and The reverse reaction of formula (2) occurs, and the tubular fuel cell 1 performs an electrolysis operation. Further, as can be seen from the above equation (1), during the electrolysis operation, H 2 O is consumed and H 2 is generated on the fuel electrode side.
  • the fuel generating member is a member that generates a reducing substance (fuel gas) by a chemical reaction and can be regenerated by a reverse reaction of the chemical reaction.
  • a fuel generating member for example, a member that generates hydrogen by oxidation (for example, Fe or Mg alloy) can be used. In this embodiment, Fe that generates hydrogen by oxidation is used.
  • the main component of the fuel generating agent may be made into fine particles and the fine particles may be molded.
  • the fine particles include a method of crushing particles by crushing using a ball mill or the like.
  • the surface area of the fine particles may be further increased by generating cracks in the fine particles by a mechanical method or the like, and the surface area of the fine particles is further increased by roughening the surface of the fine particles by acid treatment, alkali treatment, blasting, etc. It may be increased.
  • the supply valve 9 and the exhaust valve 10 are opened. Therefore, as shown in FIG. 2, the fuel gas (external fuel gas) output from the external gas supply source 13 is the external fuel gas. After being supplied from the supply path 18 into the gas circulation path 19 and used for the power generation operation of the tubular fuel cell 1, it is introduced from the gas discharge path 20 into the combustor 4. Since the check valve 8 is provided, the external fuel gas does not flow out to the combustor 4 via the fuel generation container 3. If the pressure on the fuel generation container 3 side has been reduced due to outgassing or the like, the gas is supplied to the fuel generation container 3 side until the pressure set by the pressure regulator 14 is reached.
  • the combustor 4 mixes and combusts exhaust gas (exhaust gas containing fuel gas) from the fuel electrode side of the tubular fuel cell 1 and exhaust gas (exhaust gas containing oxygen) from the air electrode side of the tubular fuel cell 1. .
  • the heat generated by the tubular fuel cell 1, the oxidation reaction heat of the fuel generating member and the combustion heat of the combustor 4 are discharged to the outside from the heat insulating container 5 via the heat exchanger 11.
  • the heat exchanger 11 heats water using heat obtained by heat exchange, and the water heated by heat exchange is stored in the hot water tank 16 as hot water for hot water supply. That is, in the power generation operation using the external fuel gas, not only power generation but also hot water supply is performed.
  • exhaust gas containing oxygen is generated from the air electrode side during the power generation operation using the circulating gas, but since the combustion by the fuel device 4 is not performed during the power generation operation, the exhaust gas is directly discharged to the outside.
  • This exhaust gas is a gas in a state where a part of oxygen is consumed from the air taken in from the outside and is reduced.
  • oxygen is generated by electrolysis of water (water vapor), which also passes through the electrolyte and is discharged from the air electrode side to the outside.
  • the controller 12 first activates the circulator 7 (step S10), then closes the exhaust valve 10 (step S20), and finally closes the supply valve 9 (step S30).
  • the gas discharge path 20 is Since the external fuel gas supply path 18 is closed after being closed, it is possible to prevent the gas circulation path 19 from being in a gas shortage state due to the above switching.
  • the circulator 7 may be started after the exhaust valve 10 is closed or the supply valve 9 is closed. However, in order to prevent the gas flow from being interrupted, as shown in the flowchart of FIG. It is desirable to do this before closing the valve 10 and the supply valve 9.
  • the controller 12 first cuts off the electrical connection between the tubular fuel cell 1 and the external load, thereby cutting off the current of the tubular fuel cell 1 and stopping the power generation operation of the tubular fuel cell 1 (step S110). ).
  • the controller 12 closes the exhaust valve 10 (step S120), and finally closes the supply valve 9 (step S130).
  • the gas discharge path 20 is closed. Since the external fuel gas supply path 18 is closed, it is possible to prevent the gas circulation path 19 from being in a gas shortage state due to the switching described above.
  • the controller 12 first closes the exhaust valve 10 (step S210), although the exhaust valve 10 should be closed during the operation stop period.
  • the controller 12 uses the output of a pressure sensor (not shown) for detecting the pressure in the gas circulation path 19, for example, so that the pressure in the gas circulation path 19 has fallen below the appropriate range and the external fuel gas It is determined whether or not replenishment is necessary (step S220). If the external fuel gas needs to be replenished (YES in step S220), the controller 12 opens the supply valve 9 until the external fuel gas need not be replenished (step S230).
  • step S220 If the external fuel gas need not be replenished (NO in step S220), the controller 12 closes the supply valve 9 (step S240), then starts the circulator 7 (step S250), and finally the tubular fuel cell. 1 and an external load or an external power source are electrically connected, and a power generation operation or an electrolysis operation of the tubular fuel cell 1 is started so that a current flows through the tubular fuel cell 1 (step S260).
  • the external fuel gas supply path 18 is temporarily opened and closed as necessary. Even if gas gradually escapes from the gas circulation path 19 and the gas circulation path 19 is in a gas shortage state, the power generation operation or the charge operation using the circulating gas may be started after the gas shortage state is resolved. it can.
  • the secondary battery type fuel cell system is configured to include the supply valve 9 and the exhaust valve 10.
  • the two-way switching valves 21 and 22 can also be used.
  • the configuration shown in FIG. 7 is a configuration in which both the supply valve 9 and the exhaust valve 10 are changed to a two-way switching valve, but there is a configuration in which only one of the supply valve 9 and the exhaust valve 10 is changed to a two-way switching valve. Is possible.
  • the two-way switching valve is configured to be able to switch which of the first direction port 24 and the second direction port 25 is opened by the movement of the internal cylinder 23 as shown in FIGS. 8 and 9, for example.
  • FIG. 8 is a simplified diagram showing a gas flow when the secondary battery type fuel cell system shown in FIG. 7 is performing a power generation operation using an external fuel gas.
  • FIG. 9 is a simplified diagram showing a gas flow when the secondary battery type fuel cell system shown in FIG. 7 is performing a power generation operation or a charging operation using a circulating gas.
  • a solid oxide electrolyte is used as the electrolyte, and water is generated on the fuel electrode side during power generation.
  • the apparatus since water is generated on the electrode side connected to the fuel generating member by the gas circulation path for supplying the fuel gas from the fuel generating member to the tubular fuel cell 1, the apparatus is simplified and miniaturized. Is advantageous.
  • a fuel cell disclosed in Japanese Patent Application Laid-Open No. 2009-99491 it is also possible to use a solid polymer electrolyte that passes hydrogen ions as an electrolyte.
  • a flow path for propagating this water to the fuel generating member is provided. That's fine.
  • only one fuel generating container is provided.
  • a plurality of fuel generating containers are provided, the number of fuel generating containers that generate fuel and the generation of fuel to be regenerated. You may enable it to switch the number of containers.
  • the secondary battery type fuel cell system described above generates a fuel by a chemical reaction and can be regenerated by a reverse reaction of the chemical reaction, a fuel cell, and between the fuel generation member and the fuel cell.
  • a gas circulation path that circulates the gas an external fuel gas supply path that supplies fuel gas output from an external gas supply source to the gas circulation path, a gas discharge path that discharges gas from the gas circulation path,
  • control unit performs a power generation operation using the fuel gas output from the fuel generation member from a power generation operation using the fuel gas output from the external gas supply source or a charge operation for regenerating the fuel generation member.
  • the fuel gas output from the external gas supply source is supplied to the gas circulation path during the power generation operation using the fuel gas output from the external gas supply source.
  • the gas shortage state of the gas circulation path can be prevented or eliminated while operating.
  • the power generation operation using the fuel gas output from the fuel generation member from the power generation operation using the fuel gas output from the external gas supply source or the regeneration of the fuel generation member is closed after the gas discharge path is closed when the gas circulation path is switched from the open space to the closed space. It is possible to prevent the gas circulation path from becoming a gas shortage state.
  • the control unit performs the second opening and closing at the time of switching from the power generation operation using the fuel gas output from the external gas supply source to the shutdown. It is desirable that the configuration is such that the external fuel gas supply path is closed by the first opening / closing section after the gas discharge path is closed by the section (second configuration).
  • the operation is stopped when the power generation operation using the fuel gas output from the external gas supply source is switched to the operation stop, that is, the gas circulation path is in an open space.
  • the external fuel gas supply path is closed after the gas discharge path is closed, it is possible to prevent the gas circulation path from being in a gas shortage state due to the switching.
  • the control unit performs a power generation operation using a fuel gas output from the fuel generating member after operation stop or charging for regenerating the fuel generating member.
  • a configuration in which the external fuel gas supply path is temporarily opened by the first opening / closing section and then the external fuel gas supply path is closed by the first opening / closing section at the time of switching to operation (third configuration) ) Is desirable.
  • the external fuel gas supply path is temporarily used when switching from the operation stop to the power generation operation using the fuel gas output from the fuel generation member or the charge operation for regenerating the fuel generation member.
  • the power generation operation using the fuel gas output from the fuel generating member after the gas shortage state is resolved even if the gas circulation path is in a gas shortage state before the operation, or the fuel The charging operation for regenerating the generating member can be started.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

 2次電池型燃料電池システムは、化学反応により燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生部材と、燃料電池と、前記燃料発生部材と前記燃料電池との間でガスを循環させるガス循環経路と、外部のガス供給源から出力される燃料ガスを前記ガス循環経路へ供給する外部燃料ガス供給経路と、前記ガス循環経路からガスを排出するガス排出経路と、第1の開閉部及び第2の開閉部と、制御部とを備える。前記制御部は、外部燃料ガスを用いた発電運転から循環ガスを用いた発電運転又は前記燃料発生部材を再生する充電運転への切り替え時に、前記第2の開閉部に前記ガス排出経路を閉じさせた後、前記第1の開閉部に前記外部燃料ガス供給経路を閉じさせる。

Description

2次電池型燃料電池システム
 本発明は、発電動作だけでなく充電動作も行える2次電池型燃料電池システムに関する。
 燃料電池は、典型的には、固体ポリマーイオン交換膜を用いた固体高分子電解質膜、イットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質膜等を、燃料極(アノード)と酸化剤極(カソード)とで両側から挟み込んだものを1つのセル構成としている。そして、燃料極に燃料ガス(例えば水素ガス)を供給する燃料ガス流路と、酸化剤極に酸化剤ガス(例えば酸素や空気)を供給する酸化剤ガス流路とが設けられ、これらの流路を介して燃料ガス、酸化剤ガスがそれぞれ燃料極、酸化剤極に供給されることにより発電が行われる。
 燃料電池は、原理的に取り出せる電力エネルギーの効率が高いため、省エネルギーになるだけでなく、環境に優れた発電方式であり、地球規模でのエネルギーや環境問題解決の切り札として期待されている。
国際公開第2011/030625号
 特許文献1には、燃料電池部と、化学反応により還元性物質である燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生部材とを備える2次電池型燃料電池が開示されている。特許文献1で開示されている2次電池型燃料電池では、燃料電池部の燃料極と燃料発生部材とを封じた空間が閉空間になっており、その閉空間内には、燃料電池部の発電に必要となる燃料ガスと、燃料電池部の発電反応によって生成した生成ガス(このガスは充電時に燃料発生部材の再生に必要となるため充電用ガスと称す)とが存在する。
 しかしながら、上記閉空間は複数の部材による囲みによって形成されるため、部材間の継ぎ目等からごく微量ずつではあるがガスが抜けてゆくことがある。特に燃料ガスに水素を用いる場合、分子量が小さいため抜けやすい。長期間の経過によって上記閉空間からガスが抜けて減少し、上記閉空間の圧力が所定値を下回る(この状態をガス不足状態と称す)と、燃料ガス及び充電用ガスが不足して発電性能及び充電性能が低下してしまう。一方で、ガス不足状態の防止あるいは解消を図るために、メンテナンス作業を行ったり、メンテナンス用ガス補給装置を設けたりすることは、利便性の低下やコストアップを招くことになるので好ましくない。
 本発明は、上記の状況に鑑み、発電運転をしながらガス不足状態の防止あるいは解消が可能な2次電池型燃料電池システムを提供することを目的とする。
 上記目的を達成するために本発明の一側面に係る2次電池型燃料電池システムは、化学反応により燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生部材と、燃料電池と、前記燃料発生部材と前記燃料電池との間でガスを循環させるガス循環経路と、外部のガス供給源から出力される燃料ガスを前記ガス循環経路へ供給する外部燃料ガス供給経路と、前記ガス循環経路からガスを排出するガス排出経路と、前記外部燃料ガス供給経路を開閉する第1の開閉部と、前記ガス排出経路を開閉する第2の開閉部と、前記第1の開閉部及び前記第2の開閉部を制御する制御部とを備え、前記制御部が、前記外部のガス供給源から出力される燃料ガスを用いた発電運転から前記燃料発生部材から出力される燃料ガスを用いた発電運転又は前記燃料発生部材を再生する充電運転への切り替え時に、前記第2の開閉部に前記ガス排出経路を閉じさせた後、前記第1の開閉部に前記外部燃料ガス供給経路を閉じさせる構成とする。なお、前記ガス循環経路は、前記外部燃料ガス供給経路及び前記ガス排出経路が閉じているときに、前記燃料発生部材と前記燃料電池との間でガスを循環させることができるものであればよい。
 上記構成によると、前記外部のガス供給源から出力される燃料ガスを用いた発電運転時に前記ガス循環経路に前記外部のガス供給源から出力される燃料ガスが供給される。
 また、上記構成によると、前記外部のガス供給源から出力される燃料ガスを用いた発電運転から前記燃料発生部材から出力される燃料ガスを用いた発電運転又は前記燃料発生部材を再生する充電運転への切り替え時に、すなわち、前記ガス循環経路が開空間から閉空間に切り替わる時に、前記ガス排出経路が閉じてから前記外部燃料ガス供給経路が閉じるので、上記の切り替えに起因して前記ガス循環経路がガス不足状態になることがない。
本発明の一実施形態に係る2次電池型燃料電池システムの全体構成を示す模式図である。 外部燃料ガスを用いた発電運転時のガスの流れを示す本発明の一実施形態に係る2次電池型燃料電池システムの簡略図である。 循環ガスを用いた発電運転又は充電運転時のガスの流れを示す本発明の一実施形態に係る2次電池型燃料電池システムの簡略図である。 外部燃料ガスを用いた発電運転からの運転切り替え時の動作を示すフローチャートである。 外部燃料ガスを用いた発電運転からの運転停止時の動作を示すフローチャートである。 循環ガスを用いた発電運転又は充電運転での運転開始時の動作を示すフローチャートである。 本発明の他の実施形態に係る2次電池型燃料電池システムの全体構成を示す模式図である。 外部燃料ガスを用いた発電運転時のガスの流れを示す本発明の他の実施形態に係る2次電池型燃料電池システムの簡略図である。 循環ガスを用いた発電運転又は充電運転時のガスの流れを示す本発明の他の実施形態に係る2次電池型燃料電池システムの簡略図である。
 本発明の実施形態について図面を参照して以下に説明する。なお、本発明は、後述する実施形態に限られない。
<全体構成>
 本発明の一実施形態に係る2次電池型燃料電池システムの全体構成を図1に示す。図1に示す本発明の一実施形態に係る2次電池型燃料電池システムは、家庭用燃料電池コジェネレーションシステムに本発明を適用した例を示すものであるが、本発明に係る2次電池型燃料電池システムはコジェネレーションシステムに限定されるものではない。
 図1に示す本発明の一実施形態に係る2次電池型燃料電池システムでは、チューブ状燃料電池1を収容する燃料電池容器2と、燃料発生部材を収容している燃料発生容器3と、チューブ状燃料電池1の燃料極側の排ガスを燃焼させる燃焼器4と、燃料電池1と前記燃料発生部材との間でガスを循環させるガス循環経路の一部分とが断熱容器5の中に設けられている。本実施形態では、燃料電池容器2の中に1つのチューブ状燃料電池1が収容されているが、チューブ状燃料電池1が複数収容されていてもよい。
 図1に示す本発明の一実施形態に係る2次電池型燃料電池システムは、ブロア6、循環器7、逆止弁8、供給バルブ9、排気バルブ10、熱交換器11、及びコントローラ12も備えている。コントローラ12は図1に示す本発明の一実施形態に係る2次電池型燃料電池システムの動作一切を制御する。
 ブロア6は外気(空気)をチューブ状燃料電池1の空気極に導入する。チューブ状燃料電池1の空気極側の酸素を含んでいる排ガスは燃焼器4に導入される。循環器7及び逆止弁8は上記ガス循環経路の断熱容器5外側部分に設けられ、循環器7は上記ガス循環経路内のガスを強制循環させ、逆止弁8は燃料発生容器3から循環器7を経由してチューブ状燃料電池1にガスが流れることを防止する。
 供給バルブ9は外部燃料ガス供給経路に設けられ、排気バルブ10はガス排出経路に設けられる。コントローラ12の制御により供給バルブ9が開くと、上記外部燃料ガス供給経路が、外部のガス供給源13から出力され圧力調整器14によって圧力調整された燃料ガスを、上記ガス循環経路に供給する。コントローラ12の制御により排気バルブ10が開くと、上記ガス排出経路が、上記ガス循環経路からガスを排出して燃焼器4に供給する。外部のガス供給源13は、例えば、水素ボンベ、水素供給施設、都市ガス等を利用することができる。外部のガス供給源13が出力するガスの種類によっては公知のガス改質器を設ける場合がある。圧力調整器14は、外部のガス供給源13から出力された燃料ガスの圧力を、図1に示す本発明の一実施形態に係る2次電池型燃料電池システムに適した圧力に調整する。
 燃焼器4において燃焼した後のガスは熱交換器11を経由して外部に排出される。熱交換器11は熱交換によって得た熱を用いて水を加熱し、外部の給湯器15はガス供給源13からの燃料ガスを用いて水を加熱する。熱交換によって加熱された水及び給湯器15によって加熱された水は、給湯用の湯として給湯タンク16に蓄えられる。太陽光発電システム17の発電電力は、例えば、チューブ状燃料電池1の電気分解動作に必要な電力に利用される。
 次に、チューブ状燃料電池1の詳細について説明する。チューブ状燃料電池1では、チューブの内側から順に燃料極、電解質、空気極の層が形成されており、チューブ内を燃料ガスが通過する。
 電解質の材料としては、例えば、イットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質を用いることができ、また例えば、ナフィオン(デュポン社の商標)、カチオン導電性ポリマー、アニオン導電性ポリマー等の固体高分子電解質を用いることができるが、これらに限定されることなく、水素イオンを通すものや酸素イオンを通すもの、また、水酸化物イオンを通すもの等、燃料電池の電解質としての特性を満たすものであればよい。なお、本実施形態においては、電解質として、酸素イオン又は水酸化物イオンを通す電解質、例えばイットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質を用い、発電時に燃料極側に水を発生させるようにしている。
 電解質は、固体酸化物電解質の場合であれば、電気化学蒸着法(CVD-EVD法;Chemical Vapor Deposition - Electrochemical Vapor Deposition)等を用いて形成することができ、固体高分子電解質の場合であれば、塗布法等を用いて形成することができる。
 燃料極、空気極はそれぞれ、例えば、電解質に接する触媒層と、その触媒層に積層された拡散電極とからなる構成にすることができる。触媒層としては、例えば白金黒或いは白金合金をカーボンブラックに担持させたもの等を用いることができる。また、燃料極の拡散電極の材料としては、例えばカーボンペーパ、Ni-Fe系サーメットやNi-YSZ系サーメット等を用いることができる。また、空気極の拡散電極の材料としては、例えばカーボンペーパ、La-Mn-O系化合物やLa-Co-Ce系化合物等を用いることができる。
 燃料極、空気極はそれぞれ、例えば蒸着法等を用いて形成することができる。
 チューブ状燃料電池1では、発電動作時に、燃料極において下記の(1)式の反応が起こる。
 H+O2-→HO+2e …(1)
 上記の(1)式の反応によって生成された電子は、コントローラ12の制御によってチューブ状燃料電池1に接続される外部負荷(不図示)を通って、空気極に到達し、空気極において下記の(2)式の反応が起こる。
 (1/2)O+2e→O2- …(2)
 そして、上記の(2)式の反応によって生成された酸素イオンは、電解質を通って、燃料極に到達する。上記の一連の反応を繰り返すことにより、チューブ状燃料電池1が発電動作を行うことになる。また、上記の(1)式から分かるように、発電動作時には、燃料極側においてHが消費されHOが生成されることになる。
 コントローラ12の制御によって外部電源から出力される電力(例えば、太陽光発電システム17の発電電力や商用電源の深夜電力など)がチューブ状燃料電池1に供給されると、上記の(1)式及び(2)式の逆反応が起こり、チューブ状燃料電池1が電気分解動作を行うことになる。また、上記の(1)式から分かるように、電気分解動作時には、燃料極側においてHOが消費されHが生成されることになる。
 次に、燃料発生容器3に収容されている燃料発生部材の詳細について説明する。燃料発生部材は、化学反応により還元性物質(燃料ガス)を発生し、前記化学反応の逆反応により再生可能な部材である。このような燃料発生部材としては、例えば、酸化によって水素を発生するもの(例えばFeやMg合金等)を用いることができるが、本実施形態においては、酸化により水素を発生するFeを用いる。
 燃料発生部材においては、その反応性を上げるために単位体積当りの表面積を大きくすることが望ましい。燃料発生部材の単位体積当りの表面積を増加させる方策としては、例えば、燃料発生剤の主体を微粒子化し、その微粒子化したものを成型すればよい。微粒子化の方法は例えばボールミル等を用いた粉砕によって粒子を砕く方法が挙げられる。さらに、機械的な手法などにより微粒子にクラックを発生させることで微粒子の表面積をより一層増加させてもよく、酸処理、アルカリ処理、ブラスト加工などによって微粒子の表面を荒らして微粒子の表面積をより一層増加させてもよい。
 燃料発生部材とチューブ状燃料電池1との間をガス循環経路によってガスが循環している場合、燃料発生部材は、チューブ状燃料電池1の発電動作時に下記の(3)式に示す酸化反応によりチューブ状燃料電池1の燃料極側で生成されたHOを消費してHを生成することができ、チューブ状燃料電池1の電気分解動作時に下記の(3)式に示す酸化反応の逆反応である還元反応によりチューブ状燃料電池1の燃料極側で生成されたHを消費してHOを生成しながら再生する。
 3Fe+4HO→Fe+4H …(3)
<外部燃料ガスを用いた発電運転>
 外部燃料ガスを用いた発電運転では、供給バルブ9及び排気バルブ10が開くので、図2に示すように、外部のガス供給源13から出力された燃料ガス(外部燃料ガス)が、外部燃料ガス供給経路18からガス循環経路19内に供給され、チューブ状燃料電池1の発電動作に用いられた後、ガス排出経路20から燃焼器4へ導入される。なお、逆止弁8があるため、外部燃料ガスが燃料発生容器3経由で燃焼器4に流出することはない。ガス抜け等によって燃料発生容器3側の圧力が低下していた場合には、圧力調整器14で設定されている圧力になるまで燃料発生容器3側にガスが補給される。燃焼器4は、チューブ状燃料電池1の燃料極側からの排ガス(燃料ガスを含む排ガス)とチューブ状燃料電池1の空気極側からの排ガス(酸素を含む排ガス)とを混合して燃焼させる。チューブ状燃料電池1の発電反応熱、燃料発生部材の酸化反応熱、及び燃焼器4の燃焼熱によって高温になったガスは断熱容器5から熱交換器11を経由して外部に排出される。上述した通り、熱交換器11は熱交換によって得た熱を用いて水を加熱し、熱交換によって加熱された水は給湯用の湯として給湯タンク16に蓄えられる。すなわち、外部燃料ガスを用いた発電運転では、発電のみならず給湯も行われる。
 外部燃料ガスを用いた発電運転では、外部燃料ガスを用いた発電運転時にガス循環経路19に外部のガス供給源13から出力される燃料ガスが供給されるので、外部燃料ガスを用いた発電運転をしながらガス循環経路19のガス不足状態を防止あるいは解消することができる。
<循環ガスを用いた発電運転又は充電運転>
 循環ガスを用いた発電運転又は充電運転では、供給バルブ9及び排気バルブ10が閉じるので、図3に示すように、ガス循環経路19にのみガスが流れ、外部燃料ガス供給経路18及びガス排出経路20にはガスが流れない。したがって、燃焼器4での燃焼はない。なお、発電運転時にはチューブ状燃料電池1の発電反応熱及び燃料発生部材の酸化反応熱があるため、外部燃料ガスを用いた発電運転時ほどの熱量はないが給湯も可能である。また、循環ガスを用いた発電運転時にも空気極側から酸素を含む排ガスが発生するが、この発電運転時には燃料器4による燃焼は行われていないため、そのまま外部に排出される。この排ガスは外部から取り入れられた空気から酸素の一部が消費されて減少した状態のガスである。さらに、充電運転の際には水(水蒸気)の電気分解による酸素が発生するが、これも電解質を通過し、空気極側から外部に排出される。
<外部燃料ガスを用いた発電運転からの運転切り替え>
 外部燃料ガスを用いた発電運転から循環ガスを用いた発電運転又は充電運転へ切り替える際の動作について図4に示すフローチャートを参照して説明する。
 コントローラ12は、まず始めに循環器7を起動させ(ステップS10)、次に排気バルブ10を閉じ(ステップS20)、最後に供給バルブ9を閉じる(ステップS30)。このような動作により、外部燃料ガスを用いた発電運転から循環ガスを用いた発電運転又は充電運転へ切り替え時に、すなわち、ガス循環経路19が開空間から閉空間に切り替わる時に、ガス排出経路20が閉じてから外部燃料ガス供給経路18が閉じるので、上記の切り替えに起因してガス循環経路19がガス不足状態になることを防止することができる。
 なお、循環器7の起動は、排気バルブ10を閉じた後や供給バルブ9を閉じた後に行ってもよいが、ガスの流れを途絶えさせないようにするために図4に示すフローチャートのように排気バルブ10及び供給バルブ9を閉じる前に行うことが望ましい。
<外部燃料ガスを用いた発電運転からの運転停止>
 外部燃料ガスを用いた発電運転から運転停止へ切り替える際の動作について図5に示すフローチャートを参照して説明する。
 コントローラ12は、まず始めにチューブ状燃料電池1と外部負荷との電気的接続を遮断することでチューブ状燃料電池1の電流を遮断し、チューブ状燃料電池1の発電動作を停止させる(ステップS110)。コントローラ12は、次に排気バルブ10を閉じ(ステップS120)、最後に供給バルブ9を閉じる(ステップS130)。このような動作により、外部燃料ガスを用いた発電運転から運転停止への切り替え時に、すなわち、ガス循環経路19が開空間である状態から運転を停止する際に、ガス排出経路20が閉じてから外部燃料ガス供給経路18が閉じるので、上記の切り替えに起因してガス循環経路19がガス不足状態になることを防止することができる。
<循環ガスを用いた発電運転又は充電運転での運転開始>
 循環ガスを用いた発電運転又は充電運転で運転を開始する際の動作について図6に示すフローチャートを参照して説明する。
 コントローラ12は、排気バルブ10は運転停止の期間中閉じているはずであるが、念のためまず始めに排気バルブ10を閉じる(ステップS210)。次に、コントローラ12は、例えばガス循環経路19内の圧力を検出する圧力センサ(不図示)の出力を用いて、ガス循環経路19内の圧力が適正範囲よりも低下しており外部燃料ガスの補給が必要であるか否かを判定する(ステップS220)。外部燃料ガスの補給が必要であれば(ステップS220のYES)、コントローラ12は、外部燃料ガスの補給が不要になるまで供給バルブ9を開ける(ステップS230)。外部燃料ガスの補給が不要になれば(ステップS220のNO)、コントローラ12は、供給バルブ9を閉じ(ステップS240)、次に循環器7を起動させ(ステップS250)、最後にチューブ状燃料電池1と外部負荷または外部電源とを電気的に接続し、チューブ状燃料電池1に電流が流れるようにしてチューブ状燃料電池1の発電動作又は電気分解動作を開始させる(ステップS260)。このような動作により、運転停止から循環ガスを用いた発電運転又は充電運転への切り替え時に、必要に応じて外部燃料ガス供給経路18が一時的に開いた後閉じるので、例えば長期間の運転停止中にガス循環経路19からガスが徐々に抜けてガス循環経路19がガス不足状態になっていても、ガス不足状態を解消してから循環ガスを用いた発電運転又は充電運転を開始することができる。
 なお、図6に示すフローチャートでは、外部燃料ガスの補給が必要であるか否かを判定したが、ガス循環経路19内の圧力が低下していないときにガス循環経路19に外部燃料ガスを補充しても無駄な動作であるだけであって、特に大きな弊害はないので、ステップS220及びステップS230の処理に代えて、一定時間供給バルブ9を開ける処理を行うようにしてもよい。
<循環ガスを用いた運転からの運転切り替え>
<外部燃料ガスを用いた発電運転での運転開始>
 循環ガスを用いた発電運転又は充電運転から外部燃料ガスを用いた発電運転へ切り替える際や外部燃料ガスを用いた発電運転で運転開始する際には、運転切り替え後や運転開始後にガス循環経路19が開空間になり、ガス循環経路19に外部燃料ガスが供給されるので、運転切り替え前や運転開始前にガス循環経路19がガス不足状態であっても大きな問題はない。したがって、供給バルブ9と排気バルブ10を開ける順序はさほど問題にならないが、ガス循環経路19内の一時的な圧力低下を回避する観点から供給バルブ9を開けた後に排気バルブ10を開ける方が好ましい。
<その他>
 なお、上述した実施形態では、2次電池型燃料電池システムが供給バルブ9及び排気バルブ10を備える構成であったが、図7に示すように供給バルブ9及び排気バルブ10の代わりに例えば図7に示すように2方向切替バルブ21及び22を用いることもできる。図7に示す構成は供給バルブ9及び排気バルブ10の両方を2方向切替バルブに変更した構成であるが、供給バルブ9及び排気バルブ10のいずれか一方のみを2方向切替バルブに変更する構成も可能である。
 2方向切替バルブは、例えば図8及び図9に示すように内部シリンダー23の移動により第1方向のポート24、第2方向のポート25のどちらが開くかを切り替えることができる構成になっている。
 図8は、図7に示す2次電池型燃料電池システムが外部燃料ガスを用いた発電運転を行っているときのガスの流れを示す簡略図である。また、図9は、図7に示す2次電池型燃料電池システムが循環ガスを用いた発電運転又は充電運転を行っているときのガスの流れを示す簡略図である。
 また、上述した実施形態や図7に示す変形例においては、電解質として固体酸化物電解質を用いて、発電の際に燃料極側で水を発生させるようにしている。この構成によれば、燃料ガスを燃料発生部材からチューブ状燃料電池1に供給するためのガス循環経路によって燃料発生部材とつながっている電極側で水が発生するため、装置の簡素化や小型化に有利である。一方、特開2009-99491号公報に開示された燃料電池のように、電解質として水素イオンを通す固体高分子電解質を用いることも可能である。但し、この場合には、燃料発生部材から放出される燃料ガスを用いた発電の際空気極側で水が発生されることになるため、この水を燃料発生部材に伝搬する流路を設ければよい。
 また、上述した実施形態や図7に示す変形例においては、燃料発生容器を1つだけ設けているが、燃料発生容器を複数設け、燃料を発生する燃料発生容器の個数や再生される燃料発生容器の個数を切り替えることができるようにしてもよい。
 以上説明した2次電池型燃料電池システムは、化学反応により燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生部材と、燃料電池と、前記燃料発生部材と前記燃料電池との間でガスを循環させるガス循環経路と、外部のガス供給源から出力される燃料ガスを前記ガス循環経路へ供給する外部燃料ガス供給経路と、前記ガス循環経路からガスを排出するガス排出経路と、前記外部燃料ガス供給経路を開閉する第1の開閉部と、前記ガス排出経路を開閉する第2の開閉部と、前記第1の開閉部及び前記第2の開閉部を制御する制御部とを備え、前記制御部が、前記外部のガス供給源から出力される燃料ガスを用いた発電運転から前記燃料発生部材から出力される燃料ガスを用いた発電運転又は前記燃料発生部材を再生する充電運転への切り替え時に、前記第2の開閉部に前記ガス排出経路を閉じさせた後、前記第1の開閉部に前記外部燃料ガス供給経路を閉じさせる構成(第1の構成)とする。なお、前記ガス循環経路は、前記外部燃料ガス供給経路及び前記ガス排出経路が閉じているときに、前記燃料発生部材と前記燃料電池との間でガスを循環させることができるものであればよい。
 上記第1の構成によると、前記外部のガス供給源から出力される燃料ガスを用いた発電運転時に前記ガス循環経路に前記外部のガス供給源から出力される燃料ガスが供給されるので、発電運転をしながら前記ガス循環経路のガス不足状態を防止あるいは解消することができる。
 また、上記第1の構成によると、前記外部のガス供給源から出力される燃料ガスを用いた発電運転から前記燃料発生部材から出力される燃料ガスを用いた発電運転又は前記燃料発生部材を再生する充電運転への切り替え時に、すなわち、前記ガス循環経路が開空間から閉空間に切り替わる時に、前記ガス排出経路が閉じてから前記外部燃料ガス供給経路が閉じるので、上記の切り替えに起因して前記ガス循環経路がガス不足状態になることを防止することができる。
 上記第1の構成の2次電池型燃料電池システムにおいて、前記制御部が、前記外部のガス供給源から出力される燃料ガスを用いた発電運転から運転停止への切り替え時に、前記第2の開閉部に前記ガス排出経路を閉じさせた後、前記第1の開閉部に前記外部燃料ガス供給経路を閉じさせる構成(第2の構成)であることが望ましい。
 上記第2の構成によると、前記外部のガス供給源から出力される燃料ガスを用いた発電運転から運転停止への切り替え時に、すなわち、前記ガス循環経路が開空間である状態から運転を停止する際に、前記ガス排出経路が閉じてから前記外部燃料ガス供給経路が閉じるので、上記の切り替えに起因して前記ガス循環経路がガス不足状態になることを防止することができる。
 上記第1または第2の構成の2次電池型燃料電池システムにおいて、前記制御部が、運転停止から前記燃料発生部材から出力される燃料ガスを用いた発電運転又は前記燃料発生部材を再生する充電運転への切り替え時に、前記第1の開閉部に前記外部燃料ガス供給経路を一時的に開けさせた後、前記第1の開閉部に前記外部燃料ガス供給経路を閉じさせる構成(第3の構成)であることが望ましい。
 上記第3の構成によると、運転停止から前記燃料発生部材から出力される燃料ガスを用いた発電運転又は前記燃料発生部材を再生する充電運転への切り替え時に、前記外部燃料ガス供給経路が一時的に開いた後閉じるので、運転前に前記ガス循環経路がガス不足状態になっていても、ガス不足状態を解消してから前記燃料発生部材から出力される燃料ガスを用いた発電運転又は前記燃料発生部材を再生する充電運転を開始することができる。
 以上述べた2次電池型燃料電池システムによると、発電運転をしながらガス不足状態の防止あるいは解消を図ることができる。
   1 チューブ状燃料電池
   2 燃料電池容器
   3 燃料発生容器
   4 燃焼器
   5 断熱容器
   6 ブロア
   7 循環器
   8 逆止弁
   9 供給バルブ
   10 排気バルブ
   11 熱交換器
   12 コントローラ
   13 ガス供給源
   14 圧力調整器
   15 給湯器
   16 給湯タンク
   17 太陽光発電システム
   18 外部燃料ガス供給経路
   19 ガス循環経路
   20 ガス排出経路
   21、22 2方向切替バルブ
   23 内部シリンダー
   24 第1方向のポート
   25 第2方向のポート

Claims (3)

  1.  化学反応により燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生部材と、
     燃料電池と、
     前記燃料発生部材と前記燃料電池との間でガスを循環させるガス循環経路と、
     外部のガス供給源から出力される燃料ガスを前記ガス循環経路へ供給する外部燃料ガス供給経路と、
     前記ガス循環経路からガスを排出するガス排出経路と、
     前記外部燃料ガス供給経路を開閉する第1の開閉部と、
     前記ガス排出経路を開閉する第2の開閉部と、
     前記第1の開閉部及び前記第2の開閉部を制御する制御部とを備え、
     前記制御部が、前記外部のガス供給源から出力される燃料ガスを用いた発電運転から前記燃料発生部材から出力される燃料ガスを用いた発電運転又は前記燃料発生部材を再生する充電運転への切り替え時に、前記第2の開閉部に前記ガス排出経路を閉じさせた後、前記第1の開閉部に前記外部燃料ガス供給経路を閉じさせることを特徴とする2次電池型燃料電池システム。
  2.  前記制御部が、前記外部のガス供給源から出力される燃料ガスを用いた発電運転から運転停止への切り替え時に、前記第2の開閉部に前記ガス排出経路を閉じさせた後、前記第1の開閉部に前記外部燃料ガス供給経路を閉じさせることを特徴とする請求項1に記載の2次電池型燃料電池システム。
  3.  前記制御部が、運転停止から前記燃料発生部材から出力される燃料ガスを用いた発電運転又は前記燃料発生部材を再生する充電運転への切り替え時に、前記第1の開閉部に前記外部燃料ガス供給経路を一時的に開けさせた後、前記第1の開閉部に前記外部燃料ガス供給経路を閉じさせることを特徴とする請求項1または請求項2に記載の2次電池型燃料電池システム。
PCT/JP2013/057586 2012-03-28 2013-03-18 2次電池型燃料電池システム WO2013146396A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13767750.6A EP2833456A4 (en) 2012-03-28 2013-03-18 SECONDARY BATTERY FUEL CELL SYSTEM
JP2014507723A JP5776842B2 (ja) 2012-03-28 2013-03-18 2次電池型燃料電池システム
US14/389,350 US20150064584A1 (en) 2012-03-28 2013-03-18 Secondary Battery Fuel Cell System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-072947 2012-03-28
JP2012072947 2012-03-28

Publications (1)

Publication Number Publication Date
WO2013146396A1 true WO2013146396A1 (ja) 2013-10-03

Family

ID=49259657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057586 WO2013146396A1 (ja) 2012-03-28 2013-03-18 2次電池型燃料電池システム

Country Status (4)

Country Link
US (1) US20150064584A1 (ja)
EP (1) EP2833456A4 (ja)
JP (1) JP5776842B2 (ja)
WO (1) WO2013146396A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06504158A (ja) * 1990-12-14 1994-05-12 インターナショナル フューエル セルズ コーポレイション 燃料電池により消耗された水素を補充する方法及び装置
JPH09115537A (ja) * 1995-10-18 1997-05-02 Nippon Telegr & Teleph Corp <Ntt> 燃料電池発電システム
JP2005502163A (ja) * 2001-08-28 2005-01-20 ハネウェル・インターナショナル・インコーポレーテッド 水蒸気搬送発電機
JP2006503414A (ja) * 2002-10-17 2006-01-26 ダイエー,クリストファ・ケイ 電気エネルギーを生成するための燃料電池システムと方法
JP2009099491A (ja) 2007-10-19 2009-05-07 Sharp Corp 燃料電池システムおよび電子機器
JP2010033979A (ja) * 2008-07-31 2010-02-12 Hitachi Maxell Ltd 燃料電池発電システム
WO2011030625A1 (ja) 2009-09-09 2011-03-17 コニカミノルタホールディングス株式会社 燃料電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4374782B2 (ja) * 2001-01-18 2009-12-02 トヨタ自動車株式会社 車載用燃料電池システム及びその制御方法
JP4704789B2 (ja) * 2005-03-31 2011-06-22 株式会社豊田中央研究所 水素燃料供給システム及び燃料電池システム
WO2012070487A1 (ja) * 2010-11-24 2012-05-31 コニカミノルタホールディングス株式会社 2次電池型燃料電池システム
JP5640884B2 (ja) * 2011-05-06 2014-12-17 コニカミノルタ株式会社 2次電池型燃料電池システム
WO2013084623A1 (ja) * 2011-12-05 2013-06-13 コニカミノルタ株式会社 燃料電池システム
US20150037696A1 (en) * 2012-03-12 2015-02-05 Konica Minolta, Inc. Secondary Cell-Type Fuel Cell System

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06504158A (ja) * 1990-12-14 1994-05-12 インターナショナル フューエル セルズ コーポレイション 燃料電池により消耗された水素を補充する方法及び装置
JPH09115537A (ja) * 1995-10-18 1997-05-02 Nippon Telegr & Teleph Corp <Ntt> 燃料電池発電システム
JP2005502163A (ja) * 2001-08-28 2005-01-20 ハネウェル・インターナショナル・インコーポレーテッド 水蒸気搬送発電機
JP2006503414A (ja) * 2002-10-17 2006-01-26 ダイエー,クリストファ・ケイ 電気エネルギーを生成するための燃料電池システムと方法
JP2009099491A (ja) 2007-10-19 2009-05-07 Sharp Corp 燃料電池システムおよび電子機器
JP2010033979A (ja) * 2008-07-31 2010-02-12 Hitachi Maxell Ltd 燃料電池発電システム
WO2011030625A1 (ja) 2009-09-09 2011-03-17 コニカミノルタホールディングス株式会社 燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2833456A4

Also Published As

Publication number Publication date
JPWO2013146396A1 (ja) 2015-12-10
EP2833456A4 (en) 2015-11-04
US20150064584A1 (en) 2015-03-05
EP2833456A1 (en) 2015-02-04
JP5776842B2 (ja) 2015-09-09

Similar Documents

Publication Publication Date Title
JP4907861B2 (ja) 燃料電池発電システムとその停止保管方法、停止保管プログラム
JP5640884B2 (ja) 2次電池型燃料電池システム
JP2007287633A (ja) 燃料電池発電装置及び制御プログラム並びに制御方法
JP5505583B1 (ja) 2次電池型燃料電池システム
JP5168431B2 (ja) 2次電池型固体酸化物燃料電池システム
JP3583914B2 (ja) 燃料電池の補機用電源
JP4979952B2 (ja) 燃料電池発電装置及び制御プログラム並びに制御方法
JP5776842B2 (ja) 2次電池型燃料電池システム
JP5896015B2 (ja) 2次電池型燃料電池システム
JP2014216062A (ja) 2次電池型燃料電池システム及びそれを備えた給電システム
JP5679097B1 (ja) 2次電池型燃料電池システム
JP2007250216A (ja) 燃料電池システム及びその運転方法
JP5673907B1 (ja) 2次電池型燃料電池システム
JP5435178B2 (ja) 2次電池型燃料電池システム
JP5790530B2 (ja) 2次電池型燃料電池システム
JP5772681B2 (ja) 燃料電池システム
JP2014207115A (ja) 2次電池型燃料電池システム
KR101084078B1 (ko) 연료 전지 시스템 및 그 구동 방법
JP2007018967A (ja) 燃料電池の運転方法
JP2008135204A (ja) 燃料電池発電装置及びその制御方法並びに制御プログラム
WO2014087739A1 (ja) 燃料発生装置及びそれを備えた燃料電池システム
JP2009245692A (ja) 燃料電池発電装置及び酸化剤ガスの流路異常検出方法並びに流路異常検出プログラム
JP2007220575A (ja) 燃料電池発電装置及び制御プログラム並びに制御方法
JP2006147225A (ja) 燃料電池システム
JP2014110076A (ja) 燃料電池システムへのガス導入方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507723

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013767750

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013767750

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14389350

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE