JP2009259418A - 燃料電池の制御方法及び燃料電池システム - Google Patents

燃料電池の制御方法及び燃料電池システム Download PDF

Info

Publication number
JP2009259418A
JP2009259418A JP2008103875A JP2008103875A JP2009259418A JP 2009259418 A JP2009259418 A JP 2009259418A JP 2008103875 A JP2008103875 A JP 2008103875A JP 2008103875 A JP2008103875 A JP 2008103875A JP 2009259418 A JP2009259418 A JP 2009259418A
Authority
JP
Japan
Prior art keywords
anode
cell
cathode
pressure loss
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008103875A
Other languages
English (en)
Inventor
Koichiro Yamashita
浩一郎 山下
Kei Yamamoto
佳位 山本
Hirobumi Onishi
博文 大西
Shinkaku Kin
振鶴 金
Junichi Shirahama
淳一 白濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008103875A priority Critical patent/JP2009259418A/ja
Publication of JP2009259418A publication Critical patent/JP2009259418A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】複数の単セルが積層されたセル積層体を有する燃料電池において、比較的簡単な構成及び制御で、迅速に電圧低下に対応する。
【解決手段】燃料ガスと酸化ガスとの電気化学反応により発電が行われる単セルが複数積層されたセル積層体を有する燃料電池の制御方法において、セル積層体の陰極側の端部の単セルのカソードとアノードの温度を検出する工程と、その検出されたカソードとアノードの温度に基づいて、セル積層体の陰極側の端部の単セルにおけるカソード側からアノード側への水移動量を算出し、さらに当該水移動量に基づいて、前記アノード側に溜まる水滞留量を算出し、当該水滞留量に基づいて、前記アノードの圧力損失を算出する工程と、前記圧力損失に基づいて、セル積層体の単セルのアノード側の排水を制御する工程と、を有する。
【選択図】図7

Description

本発明は、燃料電池の制御方法と、燃料電池システムに関する。
例えば自動車等の車両に搭載される燃料電池システムは、燃料ガスと酸化ガスを電気化学反応させて発電する燃料電池を有している。この燃料電池は、燃料ガスと酸化ガスの反応が行われる単セルが一方向に積層されて構成されたセル積層体(スタック)を有し、このセル積層体全体で所望の電圧の発電が行われている。
ところで、燃料電池のセル積層体は、外側の端部側の温度が中央側の温度より低くなる。セル積層体の端部付近の温度が低くなると、例えばその端部付近の単セル内の飽和水蒸気分圧が低下して水分量が増加し、単セル内のガス流路の抵抗が増大して、例えばアノードに燃料ガスが十分に供給されなくなることがある。この場合、セル積層体の端部付近の単セルにおいて、発電が十分に行われず、セル積層体全体の発電電圧の低下を招くことがある(フラッティング現象)。
燃料電池内の水分量を制御する方法としては、例えば燃料電池の温度やカソードの入口圧力から、カソード側の水収支量を算出し、そのカソード側の水収支量によりカソードの圧力を調整して水収支量を制御することが提案されている(特許文献1参照)。
特開2007−220462号公報
しかしながら、上述の方法は、一つのセルの燃料電池において水収支量を制御するものであり、多数の単セルを有するセル積層体に適用すると、例えば温度センサや圧力センサが多数必要になって、構造が複雑になり、またその制御も複雑になる。また、各単セルにおいて水分量が増大するタイミングや程度が異なるので、水分量の制御が遅れて電圧低下に対して十分に迅速な対応が採れないことが考えられる。
本発明は、かかる点に鑑みてなされたものであり、複数の単セルが積層されたセル積層体を有する燃料電池において、比較的簡単な構成及び制御で、迅速に電圧低下に対応することをその目的とする。
上記目的を達成するための本発明は、燃料ガスと酸化ガスとの電気化学反応により発電が行われる単セルが複数積層されたセル積層体を有する燃料電池の制御方法であって、前記セル積層体の陰極側の端部の単セルのカソードとアノードの温度を検出する工程と、検出された前記カソードと前記アノードの温度に基づいて、前記セル積層体の陰極側の端部の単セルにおける前記カソード側からアノード側への水移動量を算出し、さらに当該水移動量に基づいて、前記アノード側に溜まる水滞留量を算出し、当該水滞留量に基づいて、前記アノードの圧力損失を算出する工程と、前記圧力損失に基づいて、セル積層体の単セルのアノード側の排水を制御する工程と、を有することを特徴とする。
セル積層体の電圧低下の原因となる温度低下は、セル積層体の陰極側の端部の単セルで最も顕著に、また早く現れる。また、各単セルにおける電圧低下の原因となるカソードとアノードとの温度差も、セル積層体の陰極側の端部の単セルで最も顕著に現れる。本発明によれば、セル積層体の陰極側の端部の単セルにおけるカソードとアノードの温度に基づいて、そのアノードの圧力損失を算出し、当該圧力損失に基づいてセル積層体の単セルのアノード側の排水を制御するので、例えばセル積層体の端部付近の単セルにおいて電圧低下が起こる前に、アノードの排水を行って電圧低下を事前に防止できる。また、セル積層体の陰極側の端部の単セルのカソードとアノードの温度のみを検出すればよいので、比較的簡単な構成及び制御で、電圧低下に対応できる。
前記排水は、前記セル積層体の陰極側の端部の単セルにおける前記アノードの圧力損失とセル積層体の中央部の単セルにおけるアノードの圧力損失との比が、予め設定されている閾値を超えた場合に行われるようにしてもよい。セル積層体の端部の単セルにおける圧力損失がセル積層体の中央部の単セルにおける圧力損失に対してある値以上大きくなった場合に、セル積層体の端部の単セルに対する燃料ガスの供給量が不足して、電圧低下が生じるので、本発明のようにセル積層体の陰極側の端部の単セルにおける圧力損失とセル積層体の中央部の単セルの圧力損失との比に基づいて、アノードの排水を行うことにより、電圧低下を確実に防止できる。
前記閾値は、単セルに供給される燃料ガスと酸化ガスの混合比であるストイキに基づいて設定されていてもよい。かかる場合、セル積層体の端部の単セルへの燃料ガスの供給量が不足することを適正に防止できるので、電圧低下を適正に防止できる。
前記排水の制御は、前記セル積層体の陰極側の端部に設けられた加熱部の温度を上下することにより行われるようにしてもよい。
また、前記排水の制御は、前記セル積層体の単セルのアノード側の給排気ガスの流量を増減することにより行われるようにしてもよい。
前記給排気ガスの流量の増減は、燃料ガスに空気を混入することにより行われるようにしてもよい。かかる場合、アノード側の給排気ガスの流量を増やす際に、燃料ガスの供給量を増やす必要がないので、燃費の悪化を防止できる。
発電時には、前記セル積層体の陰極側の端部の単セルのカソードとアノードの温度をモニタリングし、当該温度から算出される前記圧力損失をモニタリングして、当該圧力損失に基づいて前記排水をON、OFFするようにしてもよい。
発電停止時には、発電停止後の前記セル積層体の陰極側の端部の単セルのカソードとアノードの温度を、その温度が安定するまでモニタリングし、当該温度に基づいて、次の発電開始時の前記セル積層体の陰極側の端部の単セルの圧力損失を算出し、当該圧力損失に基づいて、次の発電開始時の前記排水を制御するようにしてもよい。かかる場合、発電停止後にカソードとアノードの温度が低下する際の水移動やアノードの圧力損失の増大等を考慮して、次の発電開始時の排水を制御できるので、次の発電開始時の電圧低下を防止できる。
前記燃料電池の制御方法は、前記算出された圧力損失に基づいて、次の発電開始時の発電電流の上限値を設定する工程と、次の発電開始時に、前記上限値より低い発電電流で発電を行いながら、前記排水を行う工程と、その後、セル積層体の陰極側の端部の単セルの圧力損失に関する値が予め設定されている閾値よりも低下したときに、前記発電電流の上限値の設定を解除する工程と、を有するようにしてもよい。仮に圧力損失が大きいにも関わらず、次の発電時に高い電流値の発電を行うと、例えば燃料ガスの供給が不足して発電が適正に行われなくなる。本発明では、算出された圧力損失に基づいて、次の発電開始時の発電電流の上限値を設定し、発電開始時には、発電電流を低く抑えながら、排水を行うことができる。そして、圧力損失が十分に低下してから高電流の発電を行うことができるので、次の発電を適正に行うことができる。
別の観点による本発明は、燃料電池システムであって、燃料ガスと酸化ガスとの電気化学反応により発電が行われる単セルが複数積層されたセル積層体を有する燃料電池と、前記セル積層体の陰極側の端部の単セルのカソードとアノードの温度を検出する温度センサと、検出された前記カソードと前記アノードの温度に基づいて、前記セル積層体の陰極側の端部の単セルにおける前記カソード側からアノード側への水移動量を算出し、さらに当該水移動量に基づいて、前記アノード側に溜まる水滞留量を算出し、当該水滞留量に基づいて、前記アノードの圧力損失を算出する演算部と、前記圧力損失に基づいて、セル積層体の単セルのアノード側の排水を制御する制御部と、を有することを特徴とする。
前記燃料電池システムにおいて、前記排水は、前記セル積層体の陰極側の端部の単セルにおける圧力損失と、前記セル積層体の中央部の単セルにおける圧力損失との比が、予め設定されている閾値を超えた場合に行われるようにしてもよい。
前記閾値は、単セルに供給される燃料ガスと酸化ガスの混合比であるストイキに基づいて設定されていてもよい。
前記排水の制御は、前記セル積層体の陰極側の端部に設けられた加熱部の温度を上下することにより行われるようにしてもよい。
また、前記排水の制御は、前記セル積層体の単セルのアノード側の給排気ガスの流量を増減することにより行われるようにしてもよい。
前記給排気ガスの流量の増減は、燃料ガスに空気を混入することにより行われるようにしてもよい。
以上の燃料電池システムにおいて、発電時には、前記セル積層体の陰極側の端部の単セルのカソードとアノードの温度をモニタリングし、当該温度から算出される前記圧力損失をモニタリングして、当該圧力損失に基づいて前記排水をON、OFFするようにしてもよい。
発電停止時には、発電停止後の前記セル積層体の陰極側の端部の単セルのカソードとアノードの温度を、その温度が安定するまでモニタリングし、当該温度に基づいて、次の発電開始時の前記セル積層体の陰極側の端部の単セルの圧力損失を算出し、当該圧力損失に基づいて、次の発電開始時の前記排水を制御するようにしてもよい。
前記制御部は、前記算出された圧力損失に基づいて、次の発電開始時の発電電流の上限値を設定し、次の発電開始時に、前記上限値より低い発電電流で発電を行いながら、前記排水を行い、その後、セル積層体の陰極側の端部の単セルの圧力損失に関する値が予め設定されている閾値よりも低下したときに、前記発電電流の上限値の設定を解除するようにしてもよい。
本発明によれば、複数の単セルが積層されたセル積層体を有する燃料電池において、比較的簡単な構成及び制御で、迅速に電圧低下に対応できる。
以下、図面を参照して、本発明の好ましい実施の形態について説明する。図1は、本実施の形態に係る燃料電池システム1の構成の概略を示す説明図である。本実施の形態では、燃料電池システム1を燃料電池車両(移動体)の車載発電システムに適用した例について説明する。
燃料電池システム1は、図1に示すように、反応ガス(酸化ガス及び燃料ガス)の供給を受けて電力を発生する燃料電池10と、燃料電池10に酸化ガス(例えば空気)を供給する酸化ガス配管系11と、燃料電池10に燃料ガスとしての水素ガスを供給する水素ガス配管系12と、システム全体を統合制御する制御装置(演算部、制御部)13等を備えている。
燃料電池10は、反応ガスの供給を受けて発電する単電池(単セル)を所要数積層して構成したスタック構造を有している。この燃料電池10の構成の詳細は後述する。燃料電池10には、発電中の電流を検出する電流センサ10aが取り付けられている。燃料電池10は、発電された電力が供給されるトランクションモータなどの負荷部14に接続されている。
酸化ガス配管系11は、加湿器20と、加湿器20により加湿された酸化ガスを燃料電池10に供給する供給流路21と、燃料電池10から排出された酸化オフガスを加湿器20に送る排出流路22と、加湿器20の酸化オフガスを外部に排出する排気流路23を備えている。供給流路21には、大気中の酸化ガスを取り込んで加湿器20に圧送するコンプレッサ24が設けられている。
水素ガス配管系12は、高圧(例えば70MPa)の水素ガスを貯留した燃料供給源としての水素タンク30と、水素タンク30の水素ガスを燃料電池10に供給するための供給流路31と、燃料電池10から排出された水素オフガスを供給流路31に戻すための循環流路32を備えている。
なお、水素タンク30に代えて、炭化水素系の燃料から水素リッチな改質ガスを生成する改質器と、この改質器で生成した改質ガスを高圧状態にして蓄圧する高圧ガスタンクと、を燃料供給源として採用することもできる。また、水素吸蔵合金を有するタンクを燃料供給源として採用してもよい。
供給流路31には、水素タンク30の元弁として機能し、水素タンク30から燃料電池10側への水素ガスの供給を遮断又は許容する遮断弁33と、水素ガスの圧力を予め設定した二次圧に減圧するレギュレータ34と、燃料電池10側に供給する水素ガスの流量やガス圧を高精度に調整するインジェクタなどの調圧装置35が設けられている。
循環流路32には、水素オフガスから水や不純物を除去するイオン交換器36と、循環流路32内の水素オフガスを加圧して供給流路31側へ圧送する水素ポンプ37が設けられている。イオン交換器36には、イオン交換器36により分離された水や一部の水素オフガスを外部に排出する排出流路38が接続されている。当該排出流路38には、イオン交換器36からの水や一部の水素オフガスの排出を制御する排出制御弁39が設けられている。
制御装置13は、内部にCPU,ROM,RAMを備えたマイクロコンピュータとして構成される。CPUは、制御プログラムに従って所望の演算を実行して、調圧装置35の開閉制御など、種々の処理や制御を行う。ROMは、CPUで処理する制御プログラムや制御データを記憶する。RAMは、主として制御処理のための各種作業領域として使用される。
制御装置13は、車両に設けられた加速操作装置等の操作量を検出し、例えばトランクションモータなどの負荷部14からの要求発電量等の制御情報を受けて、システム1内の各種機器の動作を制御する。なお、負荷部14は、トラクションモータのほかに、燃料電池10を作動させるために必要なコンプレッサ24、水素ポンプ37、及び図示しない冷媒循環用のポンプ等の補機装置のモータ、並びに、車両の走行に関与する各種装置(車輪制御部、操舵装置、懸架装置等)で使用されるアクチュエータ、空調装置、照明及びオーディオ等を含む。負荷部14は、後述する燃料電池10の加熱部120の電源にもなっている。
制御装置13には、燃料電池10の発電量を検出する電流センサ10aの検出情報が入力される。また、各配管系を流れる流体の圧力、温度、流量等を検出するセンサの検出情報や、外気温を検出するセンサの検出情報等が入力される。制御装置13は、要求発電量及び各センサの検出情報に基づき、コンプレッサ24、遮断弁33、及び調圧装置35等を駆動制御して、燃料電池10に要求発電量に応じた流量及び圧力の反応ガスを供給する。
ここで、上記燃料電池10の構成について説明する。図2は、燃料電池10の構成の概略を示す説明図である。
燃料電池10は、例えば図2に示すように全体が直方体状のセル積層体50を有する。セル積層体50は、一方向に複数積層された方形板状の単セル51と、それらの単セル51の両端に取り付けられた集電板52、53を有する。例えば集電板52は、セル積層体50の陽極の出力端子になっており、集電板53は、陰極の出力端子になっている。
セル積層体50の各単セル51は、例えば図3に示すように陰極側から陽極側に向けて、陰極セパレータ60、アノード61 電解質膜62、カソード63及び陽極セパレータ64がこの順で積層されている。
陰極セパレータ60には、アノード61に露出する水素ガス流路70が形成されている。水素ガス流路70は、例えば図4に示すように陰極セパレータ60の面内に一筆書き状に形成され、一端から水素ガスが供給され、他端から水素オフガスが排出される。この水素ガス流路70により、図3に示すように水素ガスがアノード61に供給され、またアノード61の水素オフガスが排出される。なお、水素オフガスには、アノード61に供給された余剰の水素ガスやアノード61に溜まった水分が含まれる。また、陰極セパレータ60には、例えば単セル51の温度調整のための冷媒流路71が形成されている。
陽極セパレータ64には、図3に示すようにカソード63に露出する酸化ガス流路80が形成されている。酸化ガス流路80は、例えば図5に示すように陽極セパレータ64の面内に一筆書き状に形成され、一端から酸化ガスが供給され、他端から酸化オフガスが排出される。この酸化ガス流路80により、図3に示すように酸化ガスがカソード63に供給され、またカソード63から酸化オフガスが排出される。なお、酸化オフガスには、カソード63で生成された水やカソード63に供給された余剰の酸化ガスが含まれる。
例えば図4及び図5に示したように陰極セパレータ60と陽極セパレータ64の一端側には、水素ガス供給孔90、冷媒供給孔91及び酸化ガス供給孔92が並べて形成され、他端側には、水素オフガス排出孔93、冷媒排出孔94及び酸化オフガス排出孔95が並べて形成されている。陰極セパレータ60では、図4に示すように水素ガス供給孔90と水素オフガス排出孔93が水素ガス流路70に連通している。また、冷媒供給孔91と冷媒排出孔94は、冷媒流路71に連通している。また、陽極セパレータ64では、図5に示すように酸化ガス供給孔92と酸化オフガス排出孔95が酸化ガス流路80に連通している。
各単セル51の陰極セパレータ60と陽極セパレータ64の水素ガス供給孔90、冷媒供給孔91、酸化ガス供給孔92、水素オフガス排出孔93、冷媒排出孔94及び酸化オフガス排出孔95は、互いに連結されており、さらに図2に示すようにそれらの各単セル51が積層されることにより、セル積層体50内の積層方向に、水素ガス供給孔90からなる水素ガス供給流路100、冷媒供給孔91からなる冷媒供給流路101、酸化ガス供給孔92からなる酸化ガス供給流路102、水素オフガス排出孔93からなる水素オフガス排出流路103、冷媒排出孔94からなる冷媒排出流路104、及び酸化オフガス排出孔95からなる酸化オフガス排出流路105が形成されている。水素ガス供給流路100は、図1に示す燃料電池10の外部の供給流路31に接続されている。水素オフガス排出流路103は、循環流路32に接続されている。酸化ガス供給流路102は、供給流路21に接続されている。酸化オフガス排出流路105は、排出流路22に接続されている。
かかる構成により、セル積層体50の各単セル51には、アノード61側に水素ガスが供給され、カソード63側に酸化ガスが供給されて、それらの電気化学反応により発電が行われる。
図2に示すセル積層体50の陰極側の端部の単セル(以下、「陰極端部セル」とする)51aには、例えば図6に示すようにカソード63の温度を検出するカソード温度センサ110と、アノード61の温度を検出するアノード温度センサ111が設けられている。これらの温度センサ110、111の検出結果は、制御装置13に出力される。制御装置13は、このカソード63とアノード61の温度に基づいて、陰極端部セル51aのアノード61の圧力損失を算出する機能を有する。つまり、制御装置13は、陰極端部セル51aのカソード63とアノード61の温度に基づいて、陰極端部セル51aのカソード63側からアノード61側への水移動量を算出し、さらに当該水移動量に基づいて、アノード61側に溜まる水滞留量を算出し、当該水滞留量に基づいて、アノード61の圧力損失を算出できる。また、制御装置13は、当該陰極端部セル51aのアノード61の圧力損失に基づいて、セル積層体50の単セル51のアノード61側の排水を制御する機能を有する。なお、この制御装置13による排水制御の詳細については後述する。
図2に示すように燃料電池10は、セル積層体50の両端部に加熱部120を有する。加熱部120は、例えば負荷部14の電源Aからの給電により発熱する。燃料電池10は、各加熱部120の外側にエンドプレート121を有し、セル積層体50と加熱部120が両側のエンドプレート121により挟み込まれている。両側のエンドプレート121同士は、締結棒122によって締結されている。
次に、以上のように構成された燃料電池システム1の燃料電池10の制御方法について説明する。
例えば燃料電池システム1が作動し、燃料電池10において発電が行われる際には、燃料電池10に水素ガスと酸化ガス(空気)が供給される。これにより、セル積層体50の各単セル51のアノード61に水素ガスが供給され、カソード63に酸化ガスが供給される。各単セル51では、アノード61に供給された水素ガスがイオン化し、電解質膜62を通ってカソード63側に移動する。そして、水素イオンがカソード63側において酸化ガスと反応して、発電が行われる。この水素ガスと酸化ガスの反応により生成された水は、カソード63側から排出される。この際、セル積層体50の端部側の温度が中央部側に比べて低くなると、単セル51内のアノード61側の温度がカソード63側に対して低くなり、カソード63の水分がアノード61側に移動する。この水がアノード61側に多量に滞留すると、アノード61内の流路が閉鎖され、アノード61への水素ガスの供給やカソード63側への水素イオンの移動が妨げられる。
図7は、発電時の燃料電池10の制御方法の主な工程を示すフローチャートである。発電時の燃料電池10の制御では、先ず、セル積層体50の陰極端部セル51aのカソード63の温度Tcaとアノード61の温度Tanが、温度センサ110、111により継続的に検出される(モニタリング)(図7の工程S1)。陰極端部セル51aのカソード63とアノード61の温度結果は、随時制御装置13に出力される。制御装置13では、陰極端部セル51aのカソード63とアノード61の温度Tca、Tanに基づいて、陰極端部セル51aにおいてカソード63側からアノード61側へ移動する水移動量Hが算出される(図7の工程S2)。このときの水移動量Hは、例えば次式(1)により単位時間の水移動量Htが求められ、その水移動量Htが時間積分されて求められる。
(数1)
Figure 2009259418
ここで、式(1)のΔPは、陰極端部セル51aのカソード63とアノード61の水蒸気の圧力差であり、例えば温度Tca、Tanをそのときの飽和水蒸気分圧に変換し、その差を求めることにより算出される。
その後、制御装置13では、水移動量Hに基づいて、陰極端部セル51aのアノード61側に溜まる水滞留量Qが算出される(図7の工程S2)。この水滞留量Qは、アノード61における水収支を計算することにより求められる。すなわち、水素ガス流路70を通じてアノード61に供給される水素ガスに含まれる水分量と、カソード63側からアノード61側への水移動量Hが導入分であり、水素ガス流路70を通じてアノード61側から排気される水素オフガスに含まれる水分量が排出分となり、導入分から排出分を引くことにより、水滞留量Qが求められる。
次に、制御装置13では、水滞留量Qに基づいて、陰極端部セル51aにおけるアノード61の圧力損失ΔPtが算出される(図7の工程S3)。この圧力損失ΔPtは、予め実験などにより求められている図8に示すような圧力損失ΔPtと水滞留量Qとの相関により求められる。
次に、制御装置13では、陰極端部セル51aの圧力損失ΔPtに基づいて、セル積層体50の単セル51のアノード61の排水が制御される。例えば陰極端部セル51aのアノード61の圧力損失ΔPtと、予め求められているセル積層体50の中央部の単セル51におけるアノード61の圧力損失ΔPcとの圧損比(ΔPt/ΔPc)が、閾値を超えた場合に、排水が行われる。閾値として、例えば単セル51に供給される水素ガスと酸化ガスの混合比であるストイキStの80%が設定される(図7の工程S4)。
圧損比(ΔPt/ΔPc)がストイキStの80%を超えていない場合には、再度カソード63とアノード61の温度検出工程S1に戻り、上記工程S1〜S4が繰り返される。
アノード61の排水制御は、例えばセル積層体50の陰極側の加熱部120の温度を上下することにより行われる。例えば制御装置13の信号により、電源Aが加熱部120に給電し、加熱部120を発熱させることにより、セル積層体50の陰極側の端部付近の単セル51の温度が上昇し、アノード61の滞留水が揮発して、水素ガス流路70から排気される(図7の工程S5)。これにより、アノード61の水が排水される。
その後、制御装置13では、再度、圧損比(ΔPt/ΔPc)がストイキStの80%を超えているか否か確認され(図7の工程S6)、圧損比(ΔPt/ΔPc)がストイキStの80%を超えなくなった場合には、排水が停止される(図7の工程S7)。圧損比(ΔPt/ΔPc)がストイキStの80%を超えている場合には、排水が継続される。
図9は、発電停止時の燃料電池10の制御方法の主な工程を示すフローチャートである。発電停止時には、燃料電池10に給熱されないため、セル積層体50の温度が低下する。発電停止時の燃料電池10の制御では、先ず、発電停止後のセル積層体50の陰極端部セル51aのカソード63の温度Tcaとアノード61の温度Tanが、温度センサ110、111により継続的に検出される(モニタリング)(図9の工程K1)。陰極端部セル51aのカソード63とアノード61の温度結果は、随時制御装置13に出力される。制御装置13では、陰極端部セル51aのカソード63とアノード61の温度Tca、Tanが安定したか否か確認される(図9の工程K2)。カソード63とアノード61の温度検出は、温度が安定するまで行われる。
カソード63とアノード61の温度Tca、Tanが安定した後、検出したカソード63とアノード61の温度Tca、Tanに基づいて、陰極端部セル51aのカソード63側からアノード61側へ移動する水移動量Hが算出され、その水移動量Hから、陰極端部セル51aのアノード61側の水滞留量Qが算出される(図9の工程K3)。その後、水滞留量Qから、陰極端部セル51aにおけるアノード61の圧力損失ΔPtが算出される(図9の工程K4)。これらの水移動量H、水滞留量Q及び圧力損失ΔPの算出は、例えば上記発電時と同様に行われる。
次に、制御装置13では、陰極端部セル51aのアノード61の圧力損失ΔPtに基づいて、次の発電開始時の燃料電池10の発電電流の上限値Atが設定される(図9の工程K5)。これは、圧力損失ΔPtが高い場合に、次の発電時に高い電流値で発電されると、例えば水素ガスが供給不足になり発電が適正に行われなくなるためである。このため、発電電流の上限値Atは、圧力損失ΔPtが高い場合でも発電が適正に行われる範囲の電流値が設定される。この上限値Atは、例えば発電電流値と相関のあるストイキStと、圧損比(ΔPt/ΔPc)(陰極端部セル51aにおけるアノード61の圧力損失ΔPtとセル積層体50の中央部の単セル51におけるアノード61の圧力損失ΔPcとの比)との関係から設定される。
そして、次の発電開始時には、上限値Atを超えない電流値での発電が行われる。この発電開始時には、図10に示すように先ずアノード61側の排水が行われる(図10の工程K6)。その後、圧力損失ΔPtに関する圧損比(ΔPt/ΔPc)がストイキStの所定の閾値よりも低下したか否かが確認され(図10の工程K7)、低下した場合には、排水が停止され(図10の工程K8)、発電電流の上限値Atが解除される(図10の工程K9)。
以上の実施の形態によれば、セル積層体50の陰極端部セル51におけるカソード63とアノード61の温度Tca、Tanに基づいて、セル積層体50の単セル51のアノード61側の排水を制御するので、例えばセル積層体50の端部付近の単セル51で電圧低下が起こる前に、アノード61の排水を行って電圧低下を事前に防止できる。また、セル積層体50の陰極端部セル51aのカソード63とアノード61の温度のみを検出すればよいので、比較的簡単な構成及び制御で、電圧低下に対応できる。また、陰極端部セル51aのアノード61の圧力損失ΔPtに基づいて、アノード61側の排水を制御できるので、的確に電圧低下を防止できる。
また、以上の実施の形態では、単セル51のアノード61側の排水は、セル積層体50の陰極端部セル51aにおけるアノード61の圧力損失ΔPtとセル積層体50の中央部の単セル51におけるアノード61の圧力損失ΔPcとの圧損比(ΔPt/ΔPc)が、予め設定されている閾値(ストイキAtの80%)を超えた場合に行われるようにした。このため、セル積層体50の端部の単セル51への水素ガスの供給量が不足することを適正に防止できるので、電圧低下を適正に防止できる。
排水の制御は、セル積層体50の陰極側の端部に設けられた加熱部120の温度を上下することにより行われるので、排水の制御を比較的簡単な構成で行うことができる。
発電時には、カソード63とアノード61の温度Tca、Tanをモニタリングし、当該温度から算出される圧力損失ΔPtをモニタリングして、当該圧力損失ΔPtに基づいて排水をON、OFFするようにしたので、発電時の電圧低下を適正に防止できる。
発電停止時には、発電停止後の陰極端部セル51aのカソード63とアノード61の温度Tca、Tanを、その温度が安定するまでモニタリングし、その温度Tca、Tanに基づいて、次の発電開始時の圧力損失ΔPtを算出し、当該圧力損失ΔPtに基づいて、次の発電開始時の排水を制御するようした。これにより、発電停止後にセル積層体50の温度が低下する際に生じるアノード61の圧力損失の増大等を考慮して、次の発電開始時の排水を制御できるので、次の発電開始時においても適正に電圧低下を防止できる。
また、次の発電開始時の圧力損失ΔPtに基づいて、次の発電開始時の発電電流の上限値Atを設定し、次の発電開始時に、上限値Atより低い発電電流で発電を行いながら、排水を行い、その後、陰極端部セル51aのアノード61の圧力損失ΔPtに関する値が予め設定されている閾値よりも低下したときに、発電電流の上限値Atの設定を解除するようにした。かかる場合、次の発電開始時に発電電流を低く抑えながら、青ノード61の排水を行うことができるので、圧力損失ΔPtが十分に低下してから高電流の発電を行うことができ、次の発電も適正に行うことができる。
以上の実施の形態では、排水の制御を加熱部120の温度の上下により行っていたが、セル積層体50の単セル51のアノード61側の給排気ガスの流量を増減することにより行うようにしてもよい。かかる場合、例えば制御装置13により、水素ガス配管系12の供給流路31と循環流路32に対し信号を出力し、水素ガス流路70における水素ガスの供給量や水素オフガスの排気量を増減することにより、単セル51のアノード61の排水を制御する。
また、かかる例において、給排気ガスの流量の増減は、水素ガスに空気を混入することにより行うようにしてもよい。かかる場合、例えば図11に示すように酸化ガスの供給流路21が水素ガスの供給流路31に、開閉バルブ130を有するバイパス流路131により接続され、カソード63に供給する空気の一部をアノード61側に供給する。この場合、アノード61側の給排気ガスの流量を増やす際に、水素ガスの供給量を増やす必要がないので、燃費の悪化を防止できる。
以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に相到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
例えば以上の実施の形態では、水素ガスと空気により発電する燃料電池10であったが、水を生成する他のガスにより発電する燃料電池にも本発明は適用できる。また、以上の実施の形態では、燃料電池車両に搭載する燃料電池システム1について説明したが、燃料電池システムは、燃料電池車両以外の各種移動体(ロボット、船舶、航空機等)に搭載するものであってもよい。また、燃料電池システムは、建物(住宅、ビル等)用の発電設備として用いられる定置用発電システムに適用したものであってもよい。
燃料電池システムの構成の概略を示す説明図である。 燃料電池の構成の概略を示す説明図である。 単セルの構成の概略を示す縦断面図である。 単セルの陰極セパレータの平面図である。 単セルの陽極セパレータの平面図である。 温度センサを有する単セルの構成の概略を示す縦断面図である。 発電時の燃料電池の制御の主な工程を示すフローチャートである。 圧力損失と水滞留量の相関を示すグラフである。 発電停止時の燃料電池の制御の主な工程を示すフローチャートである。 次の発電開始時の燃料電池の制御の主な工程を示すフローチャートである。 水素ガスの供給流路に酸化ガスの供給流路を接続した場合の燃料電池システムの構成を示す説明図である。
符号の説明
1 燃料電池システム
10 燃料電池
13 制御装置
50 セル積層体
51 単セル
51a 陰極端部セル

Claims (18)

  1. 燃料ガスと酸化ガスとの電気化学反応により発電が行われる単セルが複数積層されたセル積層体を有する燃料電池の制御方法であって、
    前記セル積層体の陰極側の端部の単セルのカソードとアノードの温度を検出する工程と、
    検出された前記カソードと前記アノードの温度に基づいて、前記セル積層体の陰極側の端部の単セルにおける前記カソード側からアノード側への水移動量を算出し、さらに当該水移動量に基づいて、前記アノード側に溜まる水滞留量を算出し、当該水滞留量に基づいて、前記アノードの圧力損失を算出する工程と、
    前記圧力損失に基づいて、セル積層体の単セルのアノード側の排水を制御する工程と、を有することを特徴とする、燃料電池の制御方法。
  2. 前記排水は、前記セル積層体の陰極側の端部の単セルにおける前記アノードの圧力損失と、前記セル積層体の中央部の単セルにおけるアノードの圧力損失との比が、予め設定されている閾値を超えた場合に行われることを特徴とする、請求項1に記載の燃料電池の制御方法。
  3. 前記閾値は、単セルに供給される燃料ガスと酸化ガスの混合比であるストイキに基づいて設定されていることを特徴とする、請求項2に記載の燃料電池の制御方法。
  4. 前記排水の制御は、前記セル積層体の陰極側の端部に設けられた加熱部の温度を上下することにより行われることを特徴とする、請求項1〜3のいずれかに記載の燃料電池の制御方法。
  5. 前記排水の制御は、前記セル積層体の単セルのアノード側の給排気ガスの流量を増減することにより行われることを特徴とする、請求項1〜3のいずれかに記載の燃料電池の制御方法。
  6. 前記給排気ガスの流量の増減は、燃料ガスに空気を混入することにより行われることを特徴とする、請求項5に記載の燃料電池の制御方法。
  7. 発電時には、前記セル積層体の陰極側の端部の単セルのカソードとアノードの温度をモニタリングし、当該温度から算出される前記圧力損失をモニタリングして、当該圧力損失に基づいて前記排水をON、OFFすることを特徴とする、請求項1〜6のいずれかに記載の燃料電池の制御方法。
  8. 発電停止時には、発電停止後の前記セル積層体の陰極側の端部の単セルのカソードとアノードの温度を、その温度が安定するまでモニタリングし、当該温度に基づいて、次の発電開始時の前記セル積層体の陰極側の端部の単セルにおけるアノードの圧力損失を算出し、当該圧力損失に基づいて、次の発電開始時の前記排水を制御することを特徴とする、請求項1〜7のいずれかに記載の燃料電池の制御方法。
  9. 前記算出された圧力損失に基づいて、次の発電開始時の発電電流の上限値を設定する工程と、
    次の発電開始時に、前記上限値より低い発電電流で発電を行いながら、前記排水を行う工程と、
    その後、セル積層体の陰極側の端部の単セルにおけるアノードの圧力損失に関する値が予め設定されている閾値よりも低下したときに、前記発電電流の上限値の設定を解除する工程と、を有することを特徴とする、請求項8に記載の燃料電池の制御方法。
  10. 燃料電池システムであって、
    燃料ガスと酸化ガスとの電気化学反応により発電が行われる単セルが複数積層されたセル積層体を有する燃料電池と、
    前記セル積層体の陰極側の端部の単セルのカソードとアノードの温度を検出する温度センサと、
    検出された前記カソードと前記アノードの温度に基づいて、前記セル積層体の陰極側の端部の単セルにおける前記カソード側からアノード側への水移動量を算出し、さらに当該水移動量に基づいて、前記アノード側に溜まる水滞留量を算出し、当該水滞留量に基づいて、前記アノードの圧力損失を算出する演算部と、
    前記圧力損失に基づいて、セル積層体の単セルのアノード側の排水を制御する制御部と、を有することを特徴とする、燃料電池システム。
  11. 前記排水は、前記セル積層体の陰極側の端部の単セルにおける前記アノードの圧力損失と、前記セル積層体の中央部の単セルにおけるアノードの圧力損失との比が、予め設定されている閾値を超えた場合に行われることを特徴とする、請求項10に記載の燃料電池システム。
  12. 前記閾値は、単セルに供給される燃料ガスと酸化ガスの混合比であるストイキに基づいて設定されていることを特徴とする、請求項11に記載の燃料電池システム。
  13. 前記排水の制御は、前記セル積層体の陰極側の端部に設けられた加熱部の温度を上下することにより行われることを特徴とする、請求項10〜12のいずれかに記載の燃料電池システム。
  14. 前記排水の制御は、前記セル積層体の単セルのアノード側の給排気ガスの流量を増減することにより行われることを特徴とする、請求項10〜12のいずれかに記載の燃料電池システム。
  15. 前記給排気ガスの流量の増減は、燃料ガスに空気を混入することにより行われることを特徴とする、請求項14に記載の燃料電池システム。
  16. 発電時には、前記セル積層体の陰極側の端部の単セルのカソードとアノードの温度をモニタリングし、当該温度から算出される前記圧力損失をモニタリングして、当該圧力損失に基づいて前記排水をON、OFFすることを特徴とする、請求項10〜15のいずれかに記載の燃料電池システム。
  17. 発電停止時には、発電停止後の前記セル積層体の陰極側の端部の単セルのカソードとアノードの温度を、その温度が安定するまでモニタリングし、当該温度に基づいて、次の発電開始時の前記セル積層体の陰極側の端部の単セルにおけるアノードの圧力損失を算出し、当該圧力損失に基づいて、次の発電開始時の前記排水を制御することを特徴とする、請求項10〜16のいずれかに記載の燃料電池システム。
  18. 前記制御部は、前記算出された圧力損失に基づいて、次の発電開始時の発電電流の上限値を設定し、次の発電開始時に、前記上限値より低い発電電流で発電を行いながら、前記排水を行い、その後、セル積層体の陰極側の端部の単セルにおけるアノードの圧力損失に関する値が予め設定されている閾値よりも低下したときに、前記発電電流の上限値の設定を解除することを特徴とする、請求項17に記載の燃料電池システム。
JP2008103875A 2008-04-11 2008-04-11 燃料電池の制御方法及び燃料電池システム Pending JP2009259418A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008103875A JP2009259418A (ja) 2008-04-11 2008-04-11 燃料電池の制御方法及び燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008103875A JP2009259418A (ja) 2008-04-11 2008-04-11 燃料電池の制御方法及び燃料電池システム

Publications (1)

Publication Number Publication Date
JP2009259418A true JP2009259418A (ja) 2009-11-05

Family

ID=41386617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008103875A Pending JP2009259418A (ja) 2008-04-11 2008-04-11 燃料電池の制御方法及び燃料電池システム

Country Status (1)

Country Link
JP (1) JP2009259418A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2924791A1 (en) 2014-03-25 2015-09-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system and water content control method of fuel cell
JP2016136466A (ja) * 2015-01-23 2016-07-28 トヨタ自動車株式会社 燃料電池システムおよび燃料電池の運転制御方法
JP2019139910A (ja) * 2018-02-08 2019-08-22 トヨタ自動車株式会社 燃料電池システム
CN110176612A (zh) * 2018-02-21 2019-08-27 丰田自动车株式会社 燃料电池系统及其控制方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2924791A1 (en) 2014-03-25 2015-09-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system and water content control method of fuel cell
JP2015185406A (ja) * 2014-03-25 2015-10-22 トヨタ自動車株式会社 燃料電池システム及び燃料電池の水分量制御方法
JP2016136466A (ja) * 2015-01-23 2016-07-28 トヨタ自動車株式会社 燃料電池システムおよび燃料電池の運転制御方法
JP2019139910A (ja) * 2018-02-08 2019-08-22 トヨタ自動車株式会社 燃料電池システム
CN110176612A (zh) * 2018-02-21 2019-08-27 丰田自动车株式会社 燃料电池系统及其控制方法
JP2019145358A (ja) * 2018-02-21 2019-08-29 トヨタ自動車株式会社 燃料電池システム及びその制御方法
CN110176612B (zh) * 2018-02-21 2022-01-04 丰田自动车株式会社 燃料电池系统及其控制方法
JP6996336B2 (ja) 2018-02-21 2022-02-04 トヨタ自動車株式会社 燃料電池システム及びその制御方法

Similar Documents

Publication Publication Date Title
JP5481991B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
JP4424419B2 (ja) 燃料電池システム
WO2010131351A1 (ja) 燃料電池システム
JP2005267961A (ja) 制御装置
JP5354461B2 (ja) 燃料電池システムおよびその制御方法
JP5419255B2 (ja) 可逆セルの運転切り替え方法
WO2009011456A1 (ja) 燃料電池システム及びその制御方法
JP2010114039A (ja) 燃料電池システム
JP2007329028A (ja) 燃料電池システムおよび燃料電池の制御方法
JP2007165103A (ja) 燃料電池システム及びその運転方法並びに移動体
JP4973138B2 (ja) 燃料電池システム
JP4893919B2 (ja) 燃料電池システム及び移動体
JP2009259418A (ja) 燃料電池の制御方法及び燃料電池システム
JP2007324071A (ja) 燃料電池システム
JP2013258038A (ja) 燃料電池システム及びその制御方法
JP2008021448A (ja) 燃料電池システムおよび燃料電池の制御方法
JP5316834B2 (ja) 燃料電池システム
JP5282881B2 (ja) 燃料電池システム
JP2008059933A (ja) 燃料電池システム及び水量推定方法
JP2008218242A (ja) 燃料電池システム
JP5158407B2 (ja) 燃料電池システム及びその制御方法
JP4796358B2 (ja) 燃料電池システム
JP5446025B2 (ja) 燃料電池システムおよび燃料電池の出力制御方法
JP5279005B2 (ja) 燃料電池システム
JP2008159407A (ja) 燃料電池システム