WO2010131335A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2010131335A1
WO2010131335A1 PCT/JP2009/058880 JP2009058880W WO2010131335A1 WO 2010131335 A1 WO2010131335 A1 WO 2010131335A1 JP 2009058880 W JP2009058880 W JP 2009058880W WO 2010131335 A1 WO2010131335 A1 WO 2010131335A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycle
medium
heat exchanger
pressure
flow rate
Prior art date
Application number
PCT/JP2009/058880
Other languages
English (en)
French (fr)
Inventor
裕輔 島津
啓輔 高山
浩司 山下
裕之 森本
慎一 若本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43084725&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010131335(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN200980159214.0A priority Critical patent/CN102422100B/zh
Priority to US13/265,413 priority patent/US20120043054A1/en
Priority to JP2011513153A priority patent/JP5265001B2/ja
Priority to PCT/JP2009/058880 priority patent/WO2010131335A1/ja
Priority to EP09844609.9A priority patent/EP2431684B1/en
Publication of WO2010131335A1 publication Critical patent/WO2010131335A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner that efficiently cools and heats a load such as a plurality of indoor units.
  • the minimum resistance control that minimizes the electric consumption of the pump that circulates the medium to the indoor unit is known.
  • the pump air-conditioning flow rate is controlled so that the opening degree of the control valve provided in the medium supply passage to the indoor unit is maximized, that is, the pressure loss consumed in the control valve is minimized.
  • the opening degree control means calculates a large number of sensing requests for each indoor unit for every branch. In the case of building air conditioning where there are few branches even in a large scale such as zoning air conditioning and the operation pattern is relatively stable, arithmetic processing can be performed even with strict feed-forward control. (For example, refer to Patent Document 3).
  • Japanese Examined Patent Publication No. 59-2832 (2nd to 4th pages, FIGS. 2 and 3) JP 2007-183045 (pages 4 to 6, FIG. 1)
  • Japanese Unexamined Patent Publication No. 2004-317000 (pages 8 to 14, FIG. 1)
  • control parameters that are adjustment parameters, and on-site adjustment is required according to the piping length and fan coil capacity for each of a plurality of air conditioners. If the local coordinator does not know the specifications of the secondary cycle, it will take more time to adjust. In addition, when there are a plurality of indoor units, it takes time for strict computation and communication between devices, an expensive processing device is required, and if it is an inexpensive processing device, there is a possibility that it cannot be processed.
  • the present invention has been made in order to solve the above-described problems, and can produce cold, hot, or cold and hot at the same time with a simple configuration, and different types of loads with cold or hot alone. It is an object of the present invention to obtain an air conditioner composed of a primary cycle generated according to the above and an efficient secondary cycle that is stable in a short time even when there is a load fluctuation.
  • An air conditioner includes a first cycle in which a first medium circulates, a second cycle in which a second medium circulates, and a third cycle in which the second medium circulates.
  • the first cycle includes a compressor, a first heat exchanger, a first pressure reducing valve, a first medium that circulates through the first cycle, and a second cycle that circulates through the second cycle.
  • a second heat exchanger that exchanges heat between the two mediums, a second pressure reducing valve, a first medium that circulates through the first cycle, and a second medium that circulates through the third cycle.
  • a third heat exchanger to be exchanged and a flow path switching device for switching the flow direction of the first medium in the forward and reverse directions are sequentially connected in an annular shape by piping, and the second cycle includes the first cycle.
  • At least one second branch path connected to the other end of each of the first branch path, each of the first branch path and each of the second branch paths is a flow path switching valve, an indoor unit, a flow rate adjustment valve, With The flow path switching valve is arranged such that the first branch path and the second branch path are arranged at one end side of the first path and the second path, and the second cycle
  • a second flow path switching valve for switching connection to at least one of the cycles, and the pressure of the first medium is relatively low in the second heat exchanger and the third heat exchanger.
  • the flow path switching valve is switched so that the indoor unit for cooling operation is connected to the cycle for heat exchange with the first cycle in the other heat exchanger, Of the second heat exchanger and the third heat exchanger, a heating operation is performed in a cycle in which heat exchange with the first cycle is performed by a heat exchanger having a relatively high pressure of the first medium.
  • a switching control means for switching the flow path switching valve so as to connect the indoor unit is provided.
  • FIG. Embodiment 1 of the present invention will be described below.
  • FIG. 6 is a schematic diagram of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • Reference numeral 90 denotes a building subject to air conditioning, which includes residential spaces 91a to 91c and non-residential spaces 92a to 92c.
  • the air conditioner 1 includes a heat source unit 2, a relay unit 3, and load units 4a to 4f.
  • the heat source unit 2 and the relay unit 3 are connected by two pipes of the first extension pipe 13 and the second extension pipe 18 to form the first cycle 5.
  • the relay unit 3 and the load units 4a to 4f are connected to each other by two pipes by the third extension pipes 33a to 33f and the fourth extension pipes 36a to 36f, and the second cycle 6 or the third cycle 7 is connected.
  • the heat source unit 2 is installed in a machine room such as a rooftop, outdoors, or in the basement of the building, the load units 4a to f are in the room or in the vicinity of the room, and the relay unit 3 is installed in the vicinity of the room as shown in FIG. Alternatively, it may be provided adjacent to the heat source unit 2. For this reason, since there are not many piping like a chiller and it is not complicated, control of air conditioning can be performed easily and installation work and adjustment become easy.
  • the second medium sealed in the second cycle and the third cycle contacting the living room space is water or brine
  • the first medium sealed in the first cycle not contacting the living room space is the dioxide.
  • the flow path switching mechanism takes the form of a so-called four-way valve, it may be composed of a plurality of parts.
  • you can. 1 is a circuit diagram of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the air conditioner 1 includes a first cycle 5 in which the first medium circulates, a second cycle 6 in which the second medium circulates, and a third cycle 7 in which the second medium circulates.
  • the first medium is carbon dioxide
  • the second medium is water or water to which an additive such as a preservative is added, or brine.
  • the first cycle 5 includes a compressor 9, a flow path switch 10, a first heat exchanger 11, a fan 12 associated therewith, a first extension pipe 13, a first pressure reducing valve 14, and a second heat exchange. 15, a second pressure reducing valve 16, a third heat exchanger 17, a second extension pipe 18, a flow switching device 10, an accumulator 19, and a compressor 9 are connected in this order.
  • the second cycle 6 includes a second heat exchanger 15, a first pump 21, a first branch path 40, a plurality of branch paths 8 a to 8 c, a first aggregation path 41, and a second heat exchanger 15. Are connected in order.
  • the third cycle 7 includes a third heat exchanger 17, a second pump 22, a second branch path 42, a plurality of branch paths 8 a to 8 c, a second aggregation path 43, and a third heat exchanger 17.
  • the plurality of branch paths 8a to 8c include first flow path switching valves 31a to 31c, flow rate adjusting valves 32a to 32c, third extension pipes 33a to 33c, indoor units 34a to 34c, and associated indoor unit fans 35a to 35a.
  • the control device 100 includes compressor rotation speed control means for controlling the rotation speed of the compressor 9, fans associated with the first heat exchanger 11, and indoor unit fans 35a to 35c associated with the indoor units 34a to 34c.
  • Fan rotation speed control means for controlling the rotation speed
  • flow path switch 10 switching control means for controlling switching of the first flow path switching valves 31a to 31c and the second flow path switching valves 37a to 37c, the first The pressure reducing valve 14, the flow rate adjusting means for adjusting the flow rate of the second pressure reducing valves 32a to 32c, and the rotational speed control means for controlling the rotational speeds of the first pump 21 and the second pump 22 are configured.
  • FIG. 2 is a circuit diagram showing the operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the circuit indicated by the thick line in the drawing represents the circuit through which the second refrigerant flows, and is indicated by a thin line.
  • the circuit represents a line in which the second refrigerant is not flowing (not connected).
  • the operation in the first embodiment will be described for the following six cases. (1) In case of only cooling operation, (2) Only in case of cooling operation, required temperature is different, (3) In case of cooling main operation, (4) In case of heating operation only, (5) Only in heating operation When the required temperature is different, (6) In case of heating main operation
  • the flow path switch 10 is connected to the solid line side, and the first medium compressed to high pressure and high temperature by the compressor 9 passes through the flow path switch 10, and the first medium
  • the state of the first medium becomes high pressure and low temperature. It passes through the first extension pipe 13 and is depressurized by the first pressure reducing valve 14, and the state of the first medium is low pressure and low dryness.
  • the first medium further sequentially passes through the second heat exchanger 15, the second pressure reducing valve 16, and the third heat exchanger 17.
  • the second pressure reducing valve 16 is fully open and the pressure loss is small.
  • the first medium supplies cold heat to the second medium by exchanging heat between the first cycle 5 and the second cycle 6, and the third heat exchanger 17. Then, the first medium supplies cold heat to the second medium by exchanging heat between the first cycle 5 and the third cycle 7. As a result, the first medium evaporates and becomes low-pressure high-dryness or low-pressure superheated gas. Next, the first medium sequentially passes through the second extension pipe 18, the flow path switching unit 10, and the accumulator 19 and is circulated to the compressor 9 again.
  • control device 100 operates as follows.
  • the control device 100 controls the rotation speed of the compressor 9 so that the pressure at the suction side pressure sensor 51 is constant. Further, the control device 100 controls the rotational speed of the outdoor unit fan 12 so that the pressure of the discharge side pressure sensor 52 becomes constant. Thereby, the processing capacity of the first heat exchanger 11 is appropriately controlled.
  • the control device 100 fully opens the opening of the second pressure reducing valve 16.
  • the control device 100 controls the opening degree of the flow rate adjusting valves 32a to 32c so that the following formula (2) becomes constant.
  • (Inlet / outlet temperature difference) of indoor unit 34 (detection value of temperature sensor 67) ⁇ (detection value of temperature sensor 68) ........................ (2 )
  • the control apparatus 100 controls the rotation speed of the 1st pump 21 so that following formula (3) may become fixed.
  • (First pressure difference) (detected value of pressure sensor 55) ⁇ (detected value of pressure sensor 54)
  • the control device 100 controls the rotation speed of the second pump 22 so that the following formula (4) becomes constant.
  • (Second pressure difference) (detection value of pressure sensor 57) ⁇ (detection value of pressure sensor 56) (4)
  • the second medium can be appropriately circulated through the indoor units 34a to 34c.
  • the second medium becomes a low temperature, and the second medium is circulated by the first pump 21.
  • the flow path switching valves 31a and 31b reach the branch paths 8a and 8b.
  • the flow rate of the second medium passing through the branch path is determined by the degree of resistance of the flow rate adjusting valves 32a and 32b.
  • the second medium passes through the third extension pipes 33a and 33b and reaches the indoor units 34a and 34b.
  • the second medium exchanges heat with the air in the room by the indoor unit fans 35a and 35b, whereby cold heat is supplied to the load side, and the state of the second medium becomes high.
  • the second medium passes through the fourth extension pipes 36a and 36b, passes through the second flow path switching valves 37a and 37b, and is then collected in the first collecting path 41, and again in the second heat exchange.
  • the second medium becomes a low temperature, and the second medium is circulated by the second pump 22.
  • the flow path switching valve 31c leads to the branch path 8c.
  • the flow rate of the second medium passing through the branch path 8c is determined by the degree of resistance of the flow rate adjusting valve 32c.
  • the second medium passes through the third extension pipe 33c and reaches the indoor unit 34c.
  • the second medium exchanges heat with the air in the room by the indoor unit fan 35c, thereby supplying cold heat to the load side, and the state of the second medium becomes high.
  • the second medium passes through the fourth extension pipe 36c, passes through the second flow path switching valve 37c, and then reaches the third heat exchanger 17 again. If there is a stopped indoor unit 34, the control device 100 fully closes the flow rate adjustment valve 32 of the branch path 8 to which the stopped indoor unit 34 belongs, or sets the flow path switching valves 31 and 37 in the second cycle. 6 and the third cycle 7 are switched so as not to be connected.
  • FIG. 7 is a flowchart showing an operation flow of the control device 100 according to the first embodiment.
  • step S101 When the control device 100 is first activated in step S101, all the flow rate adjustment valves 32 are fully opened in step S102.
  • the control apparatus 100 sets the rotation speed of the pump to the maximum in step S103, and starts the pump in step S104.
  • step S106 the control device 100 starts a branch resistance measurement operation in step S106 after a predetermined time has elapsed in step S105.
  • the control device 100 performs a branch resistance measurement operation for the first indoor unit 34. That is, the control device 100 opens the flow path switching valves 31 and 37 of the first indoor unit 34 in step S107, closes the flow path switching valves 31 and 37 other than the first indoor unit 34, and closes the first indoor unit 34.
  • the second medium flows only in the machine 34.
  • step S108 the control device 100 acquires the detection values of the pressure sensors 54 to 57 in step S109, and calculates the flow path resistance of the first branch path in step S110.
  • the current flow rate is obtained from the pump head-flow rate correlation equation and the head, which are known in advance in design, and as a result, the flow path resistance of the first branch path is calculated.
  • the control apparatus 100 performs the same operation
  • control device 100 repeats the same operation, performs the same operation in the last (n-th) indoor unit 34 in step S120, calculates the channel resistance of the n-th branch path, and as a result, all the indoor units Since the required capacity in the unit 34 is calculated, the flow rate of the pump is determined by the required capacity of all the indoor units 34.
  • the flow resistance of all the branch paths is calculated only by the first pump 21. However, even if the branch paths are shared by the first pump 21 and the second pump 22, the calculation is performed. In this case, the grasping time can be shortened.
  • the control device 100 starts the scheduled control in step S121 and also operates the first cycle 5.
  • the control device 100 determines whether or not a certain time has passed in step S122, and if not, the control device 100 controls the pump rotation speed so as to achieve the target head according to the equation (3) in step S123. .
  • the control device 100 searches for a branch path with the largest opening degree of the flow rate adjustment valve 32 (this branch path is designated as I) in the second cycle 6 in step S124. If the opening degree of the branch path I is equal to or greater than the target maximum opening degree in step S125, the pump head is insufficient, and the control device 100 increases the target head in step S126.
  • the increase amount may be a fixed value.
  • step S125 If the opening degree of the branch path I is equal to or less than the target maximum opening degree in step S125, the pump head is excessive, and the control device 100 decreases the target head in step S127.
  • the controllability can be further stabilized.
  • the first pump 21 in the second cycle 6 has been described, but the same applies to the first pump 22 in the third cycle 7.
  • two pressure sensors are provided on the front and rear sides of one pump, the pressure on the pump inlet side does not substantially change, and therefore the head may be substituted by a pressure sensor on the pump outlet side.
  • a flow sensor is provided instead of the pressure sensor, the lift and flow resistance can be obtained from the pump head-flow characteristics and the detected value of the flow sensor, and the same effect can be obtained.
  • the indoor units 34 are all air-cooled, and as described above, the first medium passes through the second heat exchanger 15 to be in a low-pressure two-phase (low-pressure low-dryness) state, and then the third heat exchanger. Passing through 17, a low pressure superheated gas state (exit superheat) is obtained. Since the heat transfer characteristic is better in the two-phase state than in the superheated gas state, the second heat exchanger 15 has better heat exchange performance than the third heat exchanger 17. Therefore, if the indoor unit 34 having a relatively large capacity is connected to the second cycle 6 (second heat exchanger 15), the capacity can be exhibited without excess or deficiency.
  • the control device 100 switches the corresponding branch path so that the first flow path switching valve 31 is opened to be connected to the first branch path 40 and closed to be disconnected from the second branch path 42. Then, the second flow path switching valve 37 is opened so as to be connected to the first aggregation path 41 and is switched so as to be closed so as not to be connected to the second aggregation path 43.
  • the indoor unit 34 having a large opening of the flow rate adjustment valve 32 has a large flow rate of the second medium and requires a large capacity. Therefore, it is better to connect the indoor unit 34 with the large opening of the flow rate adjusting valve 32 to the second cycle 6 (second heat exchanger 15), and the corresponding first flow path switching valve 31 and second The flow path switching valve 37 is similarly controlled.
  • the flow path switch 10 is connected to the solid line side, and the first medium compressed to high pressure and high temperature by the compressor 9 passes through the flow path switch 10, and the first medium
  • the state of the first medium becomes high pressure and low temperature. It passes through the first extension pipe 13 and is depressurized by the first pressure reducing valve 14, and the state of the first medium is low pressure and low dryness.
  • the first medium further sequentially passes through the second heat exchanger 15, the second pressure reducing valve 16, and the third heat exchanger 17.
  • the pressure of the first medium is reduced, and the saturated temperature converted value of the pressure before and after passage corresponds to the required temperature.
  • the opening degree of the second pressure reducing valve 16 the degree of pressure drop of the first medium, and the degree of temperature drop of the first medium have a one-to-one correspondence. Is determined, the degree of pressure drop and the temperature drop of the first medium are automatically determined. Therefore, the temperature of the first medium can be adjusted by controlling the opening degree of the second pressure reducing valve 16 so that the control device 100 corresponds to the temperature required from the indoor unit 34.
  • the first medium supplies cold heat to the second medium by exchanging heat between the first cycle 5 and the second cycle 6, and the third heat exchanger 17.
  • the first medium supplies cold heat to the second medium by exchanging heat between the first cycle 5 and the third cycle 7.
  • the first medium evaporates and becomes low-pressure high-dryness or low-pressure superheated gas.
  • the first medium sequentially passes through the second extension pipe 18, the flow path switching unit 10, and the accumulator 19 and is circulated to the compressor 9 again.
  • control device 100 operates as follows.
  • the control device 100 controls the rotation speed of the compressor 9 so that the pressure at the suction side pressure sensor 51 is constant. Further, the control device 100 controls the rotational speed of the outdoor unit fan 12 so that the pressure of the discharge side pressure sensor 52 becomes constant. Thereby, the processing capacity of the first heat exchanger 11 is appropriately controlled.
  • the control apparatus 100 controls the opening degree of the 1st pressure-reduction valve 14 so that following formula (5) may become fixed.
  • the first medium pressure is relatively higher before passing through the pressure reducing valve 14.
  • the second heat exchanger 15 exchanges heat with the first cycle 5.
  • the evaporation temperature of the second medium is higher than that of the third cycle 7.
  • the blowing temperature is high.
  • the third cycle 7 in which the cold heat is supplied from the first cycle 5 by the third heat exchanger 17 the first lower pressure after the pressure of the first medium passes through the pressure reducing valve 14 is the second cycle 7. Heat exchange with the first cycle 5 by the heat exchanger 17 of the third cycle.
  • the evaporation temperature of the second medium is lower than that of the second cycle 6, and the indoor unit 34
  • the blowing temperature is low.
  • the reason is as follows.
  • the second heat exchanger 15 is connected upstream of the second pressure reducing valve 16, and thus the first heat exchanger 15 that passes through the second heat exchanger 15 is used.
  • the temperature of the medium is the temperature before the pressure is reduced by the second pressure reducing valve 16.
  • the third heat exchanger 17 is connected downstream of the second pressure reducing valve 16 in the first cycle 5, the temperature of the first medium passing through the third heat exchanger 17. Becomes the temperature after the pressure is reduced by the second pressure reducing valve 16 and the temperature is lowered.
  • the temperature of the first medium in the second heat exchanger 15 is higher than the temperature of the first medium in the third heat exchanger 17. Therefore, the temperature of the second medium in the second cycle 6 exchanged with the first medium in the second heat exchanger 15 is the same as that of the first medium having a lower temperature in the third heat exchanger 17. The temperature becomes higher than the temperature of the second medium in the third cycle 7 subjected to heat exchange. This is the reason. If there is a stopped indoor unit 34, the control device 100 fully closes the flow rate adjustment valve 32 of the branch path to which the stopped indoor unit 34 belongs, or sets the flow path switching valves 31 and 37 to the second state. Switching is performed so that neither the cycle 6 nor the third cycle 7 is connected.
  • control device 100 operates as follows.
  • the control device 100 controls the opening degree of the flow rate adjusting valves 32a to 32c so that the following formula (7) becomes constant.
  • (Inlet / outlet temperature difference) (Detected value of temperature sensor 67) ⁇ (Detected value of temperature sensor 68) (7)
  • the control apparatus 100 controls the rotation speed of the 1st pump 21 so that following formula (8) may become fixed.
  • (First pressure difference) (detected value of pressure sensor 55) ⁇ (detected value of pressure sensor 54)
  • the control device 100 controls the rotation speed of the second pump 22 so that the following formula (9) becomes constant.
  • FIG. 3 is a circuit diagram showing the operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the circuit indicated by a thick line in the figure represents a circuit through which the second refrigerant flows, and is indicated by a thin line.
  • the circuit represents a line in which the second refrigerant is not flowing (not connected).
  • the flow path switch 10 is connected to the solid line side, and the first medium compressed to high pressure and high temperature by the compressor 9 passes through the flow path switch 10, and the first medium
  • the state of the first medium becomes a high pressure / intermediate temperature when it is equal to or higher than the critical pressure.
  • the first medium further sequentially passes through the first extension pipe 13, the first pressure reducing valve 14, and the second heat exchanger 15.
  • the first pressure reducing valve 14 is fully open, and the pressure loss is small.
  • the first medium supplies heat to the second medium by exchanging heat between the first cycle 5 and the second cycle 6, and becomes high pressure and low temperature.
  • the first medium is depressurized by the second pressure reducing valve 16, and the state of the first medium becomes low pressure and low dryness.
  • the first medium passes through the third heat exchanger 17, the first medium supplies heat to the second medium by exchanging heat between the first cycle and the third cycle. As a result, the first medium evaporates and becomes low-pressure high-dryness or low-pressure superheated gas.
  • the first medium sequentially passes through the second extension pipe 18, the flow path switching unit 10, and the accumulator 19 and is circulated to the compressor 9 again.
  • control device 100 operates as follows.
  • the control device 100 controls the rotation speed of the compressor 9 so that the pressure at the suction side pressure sensor 51 becomes constant, and controls the rotation speed of the outdoor unit fan 12 so that the pressure of the discharge side pressure sensor 52 becomes constant.
  • the control device 100 fully opens the opening of the first pressure reducing valve 14.
  • the control device 100 controls the opening of the second pressure reducing valve 16 so that the following formula (10) becomes constant.
  • (Exit superheat) of the third heat exchanger 17 (detected value of the temperature sensor 64) ⁇ (saturated temperature converted value of the suction side pressure sensor 51) (10)
  • appropriate cooling capacity and heating capacity can be realized according to the number of indoor units 34 operated.
  • the state of the second medium becomes relatively high, and the second medium is fed by the first pump 21. It is circulated and reaches the branch passage 8a by the first flow path switching valve 31a.
  • the flow rate of the second medium passing through the branch path 8a is determined by the degree of resistance of the flow rate adjusting valve 32a.
  • the second medium passes through the third extension pipe 33a and reaches the indoor unit 34a.
  • the indoor unit 34a the second medium exchanges heat with the air in the room by the indoor unit fan 35a, thereby supplying warm heat to the load side, and the state of the second medium becomes low.
  • the second medium passes through the fourth extension pipe 36 a, passes through the second flow path switching valve 37 a, and then reaches the second heat exchanger 15 again through the first collecting path 41.
  • the state of the second medium is relatively low, and the second medium is supplied by the second pump 22.
  • the flow rate of the second medium passing through the branch paths 8b and 8c is determined by the degree of resistance of the flow rate adjusting valves 32b and 32c.
  • the second medium passes through the third extension pipes 33b and 33c and reaches the indoor units 34b and 34c.
  • the second medium exchanges heat with the air in the room by the indoor unit fans 35b and 35c, thereby supplying cold heat to the load side, and the state of the second medium becomes high.
  • the second medium passes through the fourth extension pipes 36b and 36c, passes through the second flow path switching valves 37b and 37c, and is then collected in the second collecting path 43 and again in the third heat exchanger 17.
  • the second heat exchanger 15 and the third heat exchanger 17 are connected in series to supply relatively weak heat from the second heat exchanger 15, and the third heat exchanger 17.
  • the indoor unit 34 having a relatively small number of operating units or a relatively low heating capacity is connected to the second heat exchanger 15, and a relatively large number of operating units or a relatively high amount can be supplied.
  • the indoor unit 34 having a cooling capability is connected to the third heat exchanger 17, an efficient cooling and heating operation can be performed.
  • the flow path switch 10 is connected to the broken line side, and the first medium compressed to high pressure and high temperature by the compressor 9 passes through the flow path switch 10, and the second medium It passes through the extension pipe 18 and passes through the third heat exchanger 17, the second pressure reducing valve 16, and the second heat exchanger 15.
  • the second pressure reducing valve 16 is fully open, and the loss is small.
  • the third heat exchanger 17 the first medium supplies heat to the second medium by exchanging heat between the first cycle 5 and the third cycle 7.
  • the second heat exchanger 15 By exchanging heat with the second cycle 6, the first medium supplies warm heat to the second medium, and the state of the first medium becomes high pressure and low temperature.
  • the state of the first medium passing through the first pressure reducing valve 14 is low pressure and low dryness.
  • the state of the first medium becomes low pressure and high dryness. Thereafter, it passes through the flow path switch 10 and the accumulator 19 and is circulated again to the compressor 9.
  • the building indoor unit 34 generates surplus refrigerant during heating rather than cooling because of the size of the heat exchanger and the arrangement of the extension pipe and the pressure reducing valve. Therefore, this is stored in the accumulator 19 and the compressor 9 The liquid refrigerant is prevented from being sucked in to ensure reliability.
  • control device 100 operates as follows.
  • the control device 100 controls the rotational speed of the compressor 9 so that the pressure at the discharge side pressure sensor 52 is constant, and controls the rotational speed of the outdoor unit fan 12 so that the pressure of the suction side pressure sensor 51 is constant. By doing so, the processing capacity of the first heat exchanger 11 is appropriately controlled.
  • the control device 100 fully opens the opening of the second pressure reducing valve 16.
  • the control apparatus 100 controls the opening degree of the 1st pressure-reduction valve 14 so that following formula (11) may become fixed.
  • the second medium becomes a high temperature
  • the second medium is circulated by the second pump 22, and the first The flow path switching valve 31c leads to the branch path 8c.
  • the flow rate of the second medium passing through the branch path is determined by the degree of resistance of the flow rate adjusting valve 32c.
  • the second medium passes through the third extension pipe 33c and reaches the indoor unit 34c.
  • the indoor unit 34c the second medium exchanges heat with the air in the room by the indoor unit fan 35c, thereby supplying warm heat to the load side, and the state of the second medium becomes low.
  • the second medium passes through the fourth extension pipe 36c, passes through the second flow path switching valve 37c, and then reaches the third heat exchanger 17 again.
  • the second cycle 6 in which the heat is supplied from the first cycle 5 by the second heat exchanger 15, the second medium becomes a high temperature, and the second medium is circulated by the first pump 21.
  • the flow path switching valves 31a and 31b reach the branch paths 8a and 8b.
  • the flow rate of the second medium passing through the branch paths 8a and 8b is determined by the degree of resistance of the flow rate adjusting valves 32a and 32b.
  • the second medium passes through the third extension pipes 33a and 33b and reaches the indoor units 34a and 34b.
  • the second medium exchanges heat with the air in the room by the indoor unit fans 35a and 35b, so that the heat is supplied to the load side, and the state of the second medium becomes low.
  • the second medium passes through the fourth extension pipes 36a and 36b, passes through the second flow path switching valves 37a and 37b, and is then collected in the first collecting path 41, and again in the second heat exchange.
  • the control device 100 fully closes the flow rate adjustment valve 32 of the branch path 8 to which the stopped indoor unit 34 belongs, or sets the flow path switching valves 31 and 37 in the second cycle. 6 and the third cycle 7 are switched so as not to be connected.
  • the control device 100 operates as follows.
  • the control device 100 controls the opening degree of the flow rate adjusting valves 32a to 32c so that the following formula (12) becomes constant.
  • Inlet / outlet temperature difference (detection value of temperature sensor 67) ⁇ (detection value of temperature sensor 68) (12)
  • the control apparatus 100 controls the rotation speed of the 1st pump 21 so that following formula
  • First pressure difference (detection value of pressure sensor 55) ⁇ (detection value of pressure sensor 54) (13)
  • the control device 100 controls the rotation speed of the second pump 22 so that the following formula (14) becomes constant.
  • Second pressure difference (detected value of pressure sensor 57) ⁇ (detected value of pressure sensor 56) (14)
  • the second medium can be appropriately circulated in each indoor unit 34.
  • the flow path switch 10 is connected to the broken line side, and the first medium compressed to high pressure and high temperature by the compressor 9 passes through the flow path switch 10, and the second medium It passes through the extension pipe 18 and passes through the third heat exchanger 17, the second pressure reducing valve 16, and the second heat exchanger 15 in order.
  • a pressure drop occurs in the second pressure reducing valve 16, and the saturated temperature conversion value of the pressure before and after passage corresponds to the required temperature.
  • the first medium supplies heat to the second medium by exchanging heat between the first cycle 5 and the third cycle 7.
  • the first medium By exchanging heat between the first cycle 5 and the second cycle 6, the first medium supplies warm heat to the second medium, and the state of the first medium becomes high pressure and low temperature.
  • the first medium further passes through the first pressure reducing valve 14, and the state of the first medium is low pressure and low dryness.
  • the first heat exchanger 11 absorbs heat from the outside air supplied by the fan 12, so that the state of the first medium is Low pressure and high dryness. Thereafter, the first medium passes through the flow path switch 10 and the accumulator 19 and is circulated to the compressor 9 again.
  • the building indoor unit 34 generates surplus refrigerant during heating rather than cooling, depending on the size of the heat exchanger and the arrangement of the extension pipes and pressure reducing valves. Therefore, this is stored in the accumulator 19 and is stored in the compressor. Prevents liquid refrigerant from being inhaled and ensures reliability.
  • control device 100 operates as follows.
  • the control device 100 controls the rotation speed of the compressor 9 so that the pressure at the discharge side pressure sensor 52 is constant.
  • control device 100 controls the rotation speed of the outdoor unit fan 12 so that the pressure of the suction side pressure sensor 51 becomes constant. Thereby, the processing capacity of the first heat exchanger 11 is controlled.
  • the control device 100 controls the opening of the second pressure reducing valve 16 so that the following equation (15) becomes a required temperature difference (the detected value of the pressure sensor 51 is equal to or higher than the critical pressure of the first medium).
  • the pressure of the first medium is relatively higher before passing through the pressure reducing valve 14.
  • the evaporation temperature of the second medium is higher than that of the second cycle 6, and the indoor unit 34
  • the blowout temperature of is high.
  • the second cycle 6 to which the heat is supplied from the first cycle 5 by the second heat exchanger 15 is a relatively lower first cycle after the pressure of the first medium passes through the pressure reducing valve 14.
  • the second heat exchanger 15 exchanges heat with the first cycle 5.
  • the evaporation temperature of the second medium is lower than that of the third cycle 7.
  • the blowing temperature is low. The reason is as follows.
  • the third heat exchanger 17 is connected upstream of the second pressure reducing valve 16, and thus the first heat exchanger 17 that passes through the third heat exchanger 17 is used.
  • the temperature of the medium is the temperature before the pressure is reduced by the second pressure reducing valve 16.
  • the second heat exchanger 15 is connected downstream of the second pressure reducing valve 16 in the first cycle 5, the temperature of the first medium passing through the second heat exchanger 15. Becomes the temperature after the pressure is reduced by the second pressure reducing valve 16 and the temperature is lowered. Therefore, the temperature of the first medium in the third heat exchanger 17 is higher than the temperature of the first medium in the second heat exchanger 15.
  • the temperature of the second medium in the third cycle 7 that exchanges heat with the first medium in the third heat exchanger 17 is the same as that of the first medium having a lower temperature in the second heat exchanger 15.
  • the temperature becomes higher than the temperature of the second medium in the second cycle 6 subjected to heat exchange. This is the reason. If there is a stopped indoor unit 34, the control device 100 fully closes the flow rate adjustment valve 32 of the branch path to which the stopped indoor unit 34 belongs, or sets the flow path switching valves 31 and 37 to the second state. Switching is performed so that neither the cycle 6 nor the third cycle 7 is connected.
  • control device 100 operates as follows.
  • the control device 100 controls the opening degree of the flow rate adjusting valves 32a to 32c so that the following equation (17) becomes constant.
  • Inlet / outlet temperature difference (detection value of temperature sensor 67) ⁇ (detection value of temperature sensor 68) (17)
  • the control apparatus 100 controls the rotation speed of the 1st pump 21 so that following formula
  • First pressure difference (detection value of pressure sensor 55) ⁇ (detection value of pressure sensor 54) (18)
  • the control device 100 controls the rotation speed of the second pump 22 so that the following formula (19) becomes constant.
  • heating main operation which is a case where the cooling and heating are performed simultaneously and the heating capacity is larger than the cooling capacity, will be described with reference to FIG.
  • the flow path switch 10 is connected to the broken line side, and the first medium compressed to high pressure and high temperature by the compressor 9 passes through the flow path switch 10, and the second medium It passes through the extension pipe 18 and the third heat exchanger 17.
  • the first medium supplies warm heat to the second medium.
  • the state of the first medium is high pressure and low temperature.
  • the first medium is depressurized by the second pressure reducing valve 16, and the state of the first medium becomes low pressure and low dryness.
  • the first medium exchanges heat between the first cycle 5 and the second cycle 6, so that the first medium transfers the cold heat to the second medium.
  • the first medium is in a low pressure two phase state.
  • the first medium passes through the first pressure reducing valve 14, but the first pressure reducing valve 14 is fully opened, and the pressure loss is small.
  • the first medium passes through the first extension pipe 13 and then enters the first heat exchanger 11.
  • the first medium absorbs heat from the outside air supplied by the fan 12. Thereby, the state of the first medium is low pressure and high dryness.
  • the first medium passes through the flow path switch 10 and the accumulator 19 and is circulated to the compressor 9 again.
  • the building indoor unit 34 generates surplus refrigerant during heating rather than cooling because of the size of the heat exchanger and the arrangement of the extension pipe and the pressure reducing valve. Therefore, this is stored in the accumulator 19 and the compressor 9 The liquid refrigerant is prevented from being sucked in to ensure reliability.
  • control device 100 operates as follows.
  • the control device 100 controls the rotation speed of the compressor 9 so that the pressure at the discharge side pressure sensor 52 is constant, and controls the rotation speed of the outdoor unit fan 12 so that the pressure of the suction side pressure sensor 51 is constant. By doing so, the processing capacity of the first heat exchanger 11 is controlled.
  • the control apparatus 100 controls the opening degree of the 2nd pressure-reduction valve 16 so that following formula (20) may become fixed.
  • the state of the second medium becomes relatively high, and the second medium is supplied by the second pump 22. Circulated and reaches the branch paths 8b and 8c by the first flow path switching valves 31b and 31c.
  • the flow rate of the second medium passing through the branch path is determined by the degree of resistance of the flow rate adjusting valves 32b and 32c.
  • the second medium passes through the third extension pipes 33b and 33c and reaches the indoor units 34b and 34c.
  • the second medium exchanges heat with the air in the room by the indoor unit fans 35b and 35c, thereby supplying warm heat to the load side, and the state of the second medium becomes low.
  • the second medium passes through the fourth extension pipes 36b and 36c, passes through the second flow path switching valves 37b and 37c, and is then concentrated in the second aggregation path 43, and again in the third heat exchange. Lead to vessel 17.
  • the state of the second medium becomes relatively low temperature, and the second medium is fed by the first pump 21. Circulated and reaches the branch path 8a by the first flow path switching valve 31a. In the branch path 8a, the flow rate of the second medium passing through the branch path 8a is determined by the degree of resistance of the flow rate adjustment valve 32a.
  • the second medium passes through the third extension pipe 33a and reaches the indoor unit 34a. In the indoor unit 34a, the second medium exchanges heat with the air in the room by the indoor unit fan 35a, so that cold is supplied to the load side, and the state of the second medium becomes high.
  • the second medium passes through the fourth extension pipe 36a, passes through the second flow path switching valve 37a, and then reaches the second heat exchanger 15 again through the first collecting path 41. .
  • control device 100 operates as follows.
  • the control device 100 controls the opening degree of the flow rate adjusting valves 32a to 32c so that the following equation (21) becomes constant.
  • (Inlet / outlet temperature difference) (detection value of temperature sensor 67) ⁇ (detection value of temperature sensor 68) (21)
  • the control apparatus 100 controls the rotation speed of the 1st pump 21 so that following formula
  • First pressure difference (detected value of pressure sensor 55) ⁇ (detected value of pressure sensor 54) (22)
  • the control device 100 controls the rotation speed of the second pump 22 so that the following formula (23) becomes constant.
  • (Second pressure difference) (detected value of pressure sensor 57) ⁇ (detected value of pressure sensor 56) (23)
  • the second medium can be appropriately circulated in each indoor unit 34.
  • the opening degree of the first pressure reducing valve 14 or the second pressure reducing valve 16 can be adjusted. However, when the pressure reducing valve is fully opened by providing an opening / closing valve in parallel, the opening / closing valve is opened and the pressure reducing valve is fully opened. Otherwise, the on-off valve may be closed to reduce the pressure loss drop when the pressure reducing valve is fully open.
  • the second heat exchanger 15 and the third heat exchanger 17 may be any of a plate heat exchanger, a double pipe heat exchanger, and a microchannel heat exchanger. However, when there is a restriction in the flow direction like a plate heat exchanger, a switching valve or the like may be provided. Further, a bridge circuit as shown in FIG. 4 may be provided in either the outdoor unit or the relay unit.
  • the first heat exchangers 11a to 11d are divided in parallel.
  • the processing capability may be changed depending on the degree of division. This is effective when the number of fans 12 is one or when the rotational speed cannot be reduced due to fan motor reliability.
  • reference numerals 70a to 70d and 71a to 71d are switching valves, and the heat exchanger 11 can be partially used by opening and closing with the combinations shown in Table 1, whereby the heat transfer area is increased.
  • the processing capacity of the heat exchanger can be changed.
  • the rotation speed of the fan motor cannot be reduced, there is a case where the fan motor doubles as cooling of the control device 100. In the case of low outside air, even if the fan motor is stopped, there is a temperature difference, so it is necessary to exchange heat. In that case, adjustment of the heat transfer area as shown in Table 1 is effective.
  • the path of the first cycle is simply formed in any operation.
  • the circuit is complicated because of the plurality of indoor units 34, and the start and stop are repeated. Is complicated.
  • the refrigeration oil important for the reliability of the compressor in the cycle cannot be completely captured even if a high-performance oil separator is provided, there is a possibility that the oil will be unevenly distributed and stay in the cycle.
  • the path of the first cycle is simple, there is a low possibility that the refrigerating machine oil is unevenly distributed or stagnant, and reliability can be ensured.
  • the effect is great when the refrigerating machine oil is incompatible with the medium.
  • the pumps used in the second cycle and the third cycle have high reliability because there is no possibility of discharging oil originally.
  • the flow rate adjusting valve 32 is in the relay unit, if the flow rate adjusting valve 32 breaks down, only the relay unit needs to be restored collectively (replacement etc.), and each indoor unit 34 is restored one by one. Since there is no need to do this, the complexity is small.
  • the second heat exchanger 15 has a higher heat exchange capability than the third heat exchanger 17 in the case of only the cooling operation or the cooling / heating operation mainly performed by the cooling operation.
  • the efficiency can be improved with a simple configuration.
  • a high air conditioner can be configured.
  • the indoor unit 34 in which the opening degree of the flow rate adjustment valve is almost fully opened is connected to the second cycle and the third cycle.
  • a highly efficient air conditioner can be configured with a simple configuration.
  • the control device 100 operates in only one cycle among the second cycle and the third cycle. In any case, in the case of driving in two cycles, it may be configured to operate with a smaller input. Moreover, you may comprise so that the control apparatus 100 may grasp
  • the first medium is carbon dioxide, but may be a flammable refrigerant, a low GWP (Global Warming Potential) refrigerant, or a chlorofluorocarbon-based one.
  • the control device 100 rotational speed control means
  • This target value is used to open the flow rate adjusting valve 32 having the maximum valve opening among the plurality of flow rate adjusting valves 32 provided in the second cycle 6 or the third cycle 7. Use a value that maximizes the degree.
  • the pressure on the outlet side of the first pump 21 or the second pump 22 may be set as the target value.
  • FIG. 8 is a circuit diagram showing the operation of the air-conditioning apparatus according to Embodiment 2 of the present invention. Note that the description of the same components as those in Embodiment 1 is omitted.
  • the temperature sensor 67a-c, 68a-c of the load side unit 4 is installed in the relay unit instead of the temperature sensor 67d-f, 68d-f, and the temperature of the medium 2 at the installation location is measured.
  • Second cycle 6 and 3 are the same as in FIGS. 1 to 3 except that no pressure sensor is present.
  • FIG. 9 is a flowchart showing an operation flow of the control device 100 according to the second embodiment.
  • the control device 100 When the control device 100 is first activated in step S201, all the flow rate adjustment valves 32 are fully opened in step S202.
  • the control device 100 sets the rotation speed of the pump to the maximum in step S203, and starts the pump in step S204.
  • the control device 100 starts a branch resistance measurement operation in step S206 after a predetermined time has passed in step S205.
  • the control device 100 performs a branch resistance measurement operation for the first indoor unit 34.
  • control device 100 opens the flow path switching valves 31 and 37 of the first indoor unit, closes the flow path switching valves 31 and 37 other than the first indoor unit 34, and closes the first indoor unit in step S207.
  • the second medium is allowed to flow only in 34.
  • the control device 100 acquires the detected value of the temperature sensor 68 in step S209 and sets it to T1o.
  • the control apparatus 100 reduces the opening degree of the flow control valve 32 of the 1st indoor unit 34 from a full opening to 50% opening degree in step S210.
  • the value of 50% is not a fixed number, but may be a value that greatly changes the resistance of the flow rate adjustment valve 32.
  • the control apparatus 100 starts timer measurement in step S211.
  • step S212 the control device 100 acquires the detection value of the temperature sensor 68 as T1, and in step S213, compares the absolute value of (T1-T1o) with the set value. If the absolute value of (T1-T1o) is smaller than the set value as a result of the comparison, the process returns to step S212.
  • step S214 If the absolute value is larger than the set value, the process proceeds to step S214, and the timer measurement is terminated in step S214.
  • the flow path resistance of the path is calculated.
  • the pump head-flow rate correlation equation known in advance and the time until the detected value of the temperature sensor 68 changes by reducing the opening degree of the flow rate adjusting valve 32 and the flow rate of the first branch path are calculated. From this estimated flow rate, the channel resistance can be calculated.
  • the control apparatus 100 performs the same operation
  • control device 100 repeats the same operation, performs the same operation in the last (n-th) indoor unit 34 in step S217, calculates the channel resistance of the n-th branch path, and as a result, all the indoor units 34 Since the required capacity in the unit 34 is calculated, the flow rate of the pump is determined by the required capacity of all the indoor units 34.
  • the flow resistance of all the branch paths is calculated only by the first pump 21. However, even if the branch paths are shared by the first pump 21 and the second pump 22, the calculation is performed. In this case, the grasping time can be shortened.
  • the control device 100 starts the scheduled control in step S218 and also operates the first cycle 5.
  • the control device 100 determines whether or not a certain time has passed in step S219, and if not, the control device 100 controls the pump rotation speed so as to achieve the target head according to the equation (3) in step S220. .
  • the control device 100 searches for a branch path (this branch path is designated as I) having the largest opening degree in the second cycle 6 in step S221. If the opening degree of the branch path I is equal to or greater than the target maximum opening degree in step S222, the pump head is insufficient, and the control device 100 increases the target head in step S223.
  • the increase amount may be a fixed value.
  • step S224 If the opening degree of the branch path I is equal to or smaller than the target maximum opening degree in step S223, the pump head is excessive, and the control device 100 decreases the target head in step S224.
  • the flow path resistance is calculated using a temperature sensor instead of a pressure sensor, the cost can be reduced. Further, since the temperature sensor is provided not in the indoor unit 34 but in the relay unit 3, even if the temperature sensor breaks down, only the relay unit 3 needs to be restored collectively (replacement etc.). Maintenance is improved because there is no need to perform recovery work one by one.

Abstract

 第1のサイクル5は、第1の媒体が外気と熱交換する第1の熱交換器11と、この第1のサイクル5と第2のサイクル6間及び第1のサイクル5と第3のサイクル7間で熱交換する第2の熱交換器15、第3の熱交換器17との間に第1の減圧弁14と第2の減圧弁16を介して直列に接続することで、冷房、暖房、冷暖同時運転、二温度の冷房、二温度の暖房と、柔軟に対応して回路を実現できる。冷温熱を搬送する第2のサイクル6と第3のサイクル7は、各分岐での室内機出入り口温度に応じて流量調整弁32で第2の媒体の流量が調整され、全体の流量は最小抵抗法によりポンプの回転数が制御されて全体の流量が定まる。事前応答性確認評価により、応答が速いため、負荷が複数あり変化が著しくても、安定した制御ができ、高効率の運転が可能となる。

Description

空気調和装置
 本発明は複数の室内機などの負荷に対して冷房および暖房を効率よく行う空気調和装置に関するものである。
 従来、冷房、暖房、あるいは冷房と暖房を同時に行う空気調和装置は、冷房を行うサイクルと暖房を行うサイクルが必要であり、これに伴い室内機への配管が多数必要となるため装置が過大で複雑である。これに対し、一次サイクルで温熱と冷熱を同時に生成し、その熱量差を空気熱交換器と圧縮機で補い、二次サイクルへ冷熱と温熱を搬送させるものがある(例えば特許文献1参照)。
 また、冷房、あるいは暖房であっても要求される温度が異なる負荷が共存する場合があり(例えば暖房空調と床暖房、ペリメーター空調とインテリア空調)、別系統のサイクルが必要であるため装置が過大で複雑であるという問題がある。これに対し、一次サイクルと二次サイクル間の熱交換を行う熱交換器の一次冷媒側の前後に調整弁を設け、熱交換時の圧力と流量を調節することで一次サイクルを単一で成立させるものがある(例えば特許文献2参照)。
 また、二次サイクルの省エネルギー制御の一つとして、室内機へ媒体を循環させるポンプの電気消費量を最小にする最小抵抗制御が知られている。この最小抵抗制御では、室内機への媒体の供給通路に設けられた制御弁の開度が最大となるように、すなわち制御弁において消耗される圧力損失が最小となるようにポンプ空調流量を制御する。開度制御手段は、各室内機の要求負荷を多数あるセンシングをすべての分岐ごとに演算する。ゾーンニング空調のように大規模であっても分岐が少なく、比較的運転パターンが安定するようなビル空調の場合であれば、厳密なフィード・フォワード制御であっても演算処理がこなせる。(例えば特許文献3参照)。
特公昭59-2832号公報(第2頁~第4頁、図2、図3) 特開2007-183045号公報(第4頁~第6頁、図1) 特開2004-317000号公報(第8頁~第14頁、図1)
 ところが、上記特許文献1で示される従来例は、一次側で温熱と冷熱を同時に生成させる場合、一次サイクルと二次サイクル間の熱交換器の一次側でバイパス経路を設け、一次側及びバイパス経路の流量調整により温熱と冷熱の生成量を調整しているため、一次サイクルが煩雑である。
 また、上記特許文献2で示される従来例は暖房時、一次サイクルと二次サイクル間の熱交換器で高圧の方を吐出圧力とするので、2つの熱交換器の圧力差の昇圧仕事のうち、低い方の熱交換器を循環する分は無駄な仕事である。また負荷が複数存在する場合に対し的確な対応を示していない。
 また、上記特許文献3で示される従来例では、制御定数の中に調整パラメータなるものがあり、複数の空調ごとの配管長やファンコイルの容量に応じた現地調整が必要である。現地調整の行為者が二次サイクルの仕様が判らない場合は調整にさらに時間を要する。また複数の室内機が有る場合は厳密な演算と機器間の通信に時間を要し、高価な処理装置が必要であり、安価な処理装置であれば処理しきれない虞がある。
 本発明は、上記のような課題を解決するために為されたものであり、簡単な構成で冷熱、温熱、あるいは冷熱と温熱を同時に生成可能であり、また冷熱あるいは温熱のみでも異なる様式の負荷に応じて生成する一次サイクルと、負荷の変動が伴う場合であっても短時間で安定する効率のよい二次サイクルからなる空気調和装置を得ることを目的としている。
 本発明に係る空気調和装置は、第1の媒体が循環する第1のサイクルと、第2の媒体が循環する第2のサイクルと、前記第2の媒体が循環する第3のサイクルと、を備え、前記第1のサイクルは、圧縮機と、第1の熱交換器と、第1の減圧弁と、前記第1のサイクルを循環する第1の媒体と前記第2のサイクルを循環する第2の媒体が熱交換する第2の熱交換器と、第2の減圧弁と、前記第1のサイクルを循環する第1の媒体と前記第3のサイクルを循環する前記第2の媒体が熱交換する第3の熱交換器と、前記第1の媒体の流れ方向を正逆に転換させる流路切替器と、を順次配管で環状に接続して成り、前記第2のサイクルは、前記第2の熱交換器と、前記第2の媒体を駆動させる第1のポンプと、これらを接続する第1の経路と、一端が前記第1の経路の一端に接続され、他端が前記第1の経路の他端に接続される少なくとも1つの第1の分岐経路と、を備え、前記第3のサイクルは、前記第3の熱交換器と、前記第2の媒体を駆動させる第2のポンプと、これらを接続する第2の経路と、一端が前記第2の経路の一端に接続され、他端が前記第2の経路の他端に接続される少なくとも1つの第2の分岐経路と、を備え、前記各第1の分岐経路および前記各第2の分岐経路は流路切替弁と、室内機と、流量調整弁と、を備え、
前記流路切替弁は、前記各第1の分岐経路および前記各第2の分岐経路を、前記第1の経路および前記第2の経路の一端側に配設され、前記第2のサイクル、前記第3のサイクルの少なくとも一方に切替接続する第1の流路切替弁と、前記第1の経路及び前記第2の経路の他端側に配設され、前記第2のサイクル、前記第3のサイクルの少なくとも一方に切替接続する第2の流路切替弁と、から成り、前記第2の熱交換器と前記第3の熱交換器の内、前記第1の媒体の圧力が相対的に低い方の熱交換器で前記第1のサイクルと熱交換するサイクルに冷房運転の室内機を接続するように前記流路切替弁を切替え、
 前記第2の熱交換器と前記第3の熱交換器の内、前記第1の媒体の圧力が相対的に高い方の熱交換器で前記第1のサイクルと熱交換するサイクルに暖房運転の室内機を接続するように前記流路切替弁を切替える切替制御手段を備えたものである。
 本発明によれば、温熱、異なる温度の温熱、冷熱、異なる温度の冷熱、あるいは温熱と冷熱を同時、といった多様な負荷に応じ、単純な構成で熱源を効率よく供給できる。
この発明の実施の形態1における空気調和装置の構成を示す回路図である。 この発明の実施の形態1における空気調和装置の動作を示す回路図である。 この発明の実施の形態1における空気調和装置の動作を示す回路図である。 この発明の実施の形態1の別形態における空気調和装置の構成を示す回路図である。 この発明の実施の形態1の別形態における空気調和装置の構成を示す回路図である。 この発明の実施の形態1における空気調和装置の構成を示す概略図である。 この発明の実施の形態1における制御装置100の動作を示すフローチャートである。 この発明の実施の形態2における空気調和装置の構成を示す回路図である。 この発明の実施の形態2における制御装置100の動作を示すフローチャートである。
実施の形態1.
 以下この発明の実施の形態1について説明する。図6はこの発明の実施の形態1に係わる空気調和装置の概略図である。90は空気調和の対象となる建物であり、居住空間91a~c、非居住空間92a~cがある。空気調和装置1は、熱源ユニット2、中継ユニット3、負荷ユニット4a~4fから構成される。熱源ユニット2と中継ユニット3は、第1の延長配管13、第2の延長配管18の2本の配管で接続され、第1のサイクル5を形成する。中継ユニット3と負荷ユニット4a~4fは、第3の延長配管33a~fと第4の延長配管36a~fで2本の配管ずつ接続され、第2のサイクル6、あるいは第3のサイクル7を形成する。熱源ユニット2は建物の屋上、屋外、地下等の機械室に設けられ、負荷ユニット4a~fは居室、または居室近傍にあり、中継ユニット3は、図6のように居室の近傍に設置してもよいし、熱源ユニット2に隣接して設けてもよい。
 このため、チラーのように配管が多数存在せず複雑でないため、空気調和の制御が簡単にでき、設置工事や調整が行い易くなる。
 また、居室空間に接する第2のサイクルと第3のサイクルに封入されている第2の媒体が水、またはブライン、居室空間に接しない第1のサイクルに封入されている第1の媒体は二酸化炭素、と区別することにより、万が一媒体が漏洩したことを想定しても、悪影響を与える可能性は小さい。第1の媒体は、低GWP(地球温暖化係数)冷媒を含む可燃性冷媒であっても同様の効果が得られる。また本実施の形態ではサイクルと媒体が複数存在するため、空気調和装置が一つのサイクルで形成され一つの媒体が充填されている直膨形式と比較して、第1の媒体の充填量が少ない。第1の媒体が、一般的にオゾン破壊係数が高いフロン系冷媒の場合、仮に第1の媒体が漏洩しても、充填量が小さく環境への悪影響の程度が小さい。
 また、流路切替機構は、いわゆる四方弁の形態をとるが、複数の部品で構成しても良い。例えば、開閉弁を4つ組合せて構成した流路切替機構、あるいは三方弁を2つ組合せて構成した流路切替機構など、流路の流れ方を切り替える機能を有するものであればどのようなものでもよい。
 図1はこの発明の実施の形態1に係わる空気調和装置の回路図である。
 また空気調和装置1は第1の媒体が循環する第1のサイクル5、第2の媒体が循環する第2のサイクル6、第2の媒体が循環する第3のサイクル7から構成される。第1の媒体は二酸化炭素であり、第2の媒体は水または水に防腐剤などの添加物を加えたもの、あるいはブラインである。
 第1のサイクル5は、圧縮機9、流路切替器10、第1の熱交換器11、それに付随するファン12、第1の延長配管13、第1の減圧弁14、第2の熱交換器15、第2の減圧弁16、第3の熱交換器17、第2の延長配管18、流路切替器10、アキュームレータ19、圧縮機9、と順に接続されて構成される。第2のサイクル6は、第2の熱交換器15、第1のポンプ21、第1の分岐路40、複数の分岐経路8a~8c、第1の集約路41、第2の熱交換器15、を順に接続して構成される。第3のサイクル7は、第3の熱交換器17、第2のポンプ22、第2の分岐路42、複数の分岐経路8a~8c、第2の集約路43、第3の熱交換器17、を順に接続して構成される。複数の分岐経路8a~8cは、第1の流路切替弁31a~31c、流量調整弁32a~32c、第3の延長配管33a~33c、室内機34a~34c、それに付随する室内機ファン35a~35c、第4の延長配管36a~36c、第2の流路切替弁37a~37cから構成される。51~57は圧力センサー、61~66、67a~67c、68a~68cは温度センサーである。
 なお、制御装置100は、圧縮機9の回転数を制御する圧縮機回転数制御手段、第1の熱交換器11に付随するファン及び室内機34a~34cに付随する室内機ファン35a~35cの回転数を制御するファン回転数制御手段、流路切替器10、第1の流路切替弁31a~31c及び第2の流路切替弁37a~37cの切替えを制御する切替制御手段、第1の減圧弁14、第2の減圧弁32a~32cの流量を調整する流量調整手段、第1のポンプ21及び第2のポンプ22の回転数を制御する回転数制御手段を構成する。
 次に、本実施の形態1における動作を説明する。
 図2は、この発明の実施の形態1における空気調和装置の動作を示す回路図であり、図中の太線で示された回路は第2の冷媒が流れている回路を表し、細線で示された回路は第2の冷媒が流れていない(接続されていない)線を表している。
 本実施の形態1における動作を、以下の6つに場合分けして説明する。
 (1)冷房運転のみの場合、(2)冷房運転のみで、要求される温度が異なる場合、(3)冷房主体運転の場合、(4)暖房運転のみの場合、(5)暖房運転のみで、要求される温度が異なる場合、(6)暖房主体運転の場合
(1)冷房運転のみの場合
 以下、冷房運転のみの場合について図2を用いて説明する。
 この空気調和装置1では、流路切替器10は実線側に接続されており、圧縮機9で高圧高温に圧縮された第1の媒体は、流路切替器10を通過して、第1の熱交換器11に入り、ファン12により供給される外気に放熱することにより、第1の媒体の状態は高圧低温となる。第1の延長配管13を通過し、第1の減圧弁14で減圧され、第1の媒体の状態は低圧低乾き度となる。第1の媒体はさらに第2の熱交換器15、第2の減圧弁16、第3の熱交換器17を順次通過する。第2の減圧弁16は全開であり、圧力損失は小さい。また、第2の熱交換器15では第1のサイクル5と第2のサイクル6間で熱交換することで第1の媒体は冷熱を第2の媒体に供給し、第3の熱交換器17では第1のサイクル5と第3のサイクル7間で熱交換することで第1の媒体は冷熱を第2の媒体に供給する。これにより第1の媒体は蒸発し、低圧高乾き度、あるいは低圧過熱ガスとなる。次に第1の媒体は第2の延長配管18、流路切替器10、アキュームレータ19を順次通過し、再び圧縮機9へ循環される。
 ここで制御装置100は以下の働きをする。制御装置100は吸入側圧力センサー51での圧力が一定となるように圧縮機9の回転数を制御する。
 また、制御装置100は吐出側圧力センサー52の圧力が一定となるように室外機ファン12の回転数を制御する。これにより第1の熱交換器11の処理能力が適切に制御される。
 また、制御装置100は下記の式(1)が一定となるように第1の減圧弁14の開度を制御する。
  第3の熱交換器17の(出口スーパーヒート)=(温度センサー64の検知値)-(吸入側圧力センサー51の飽和温度換算値)…………………(1)
 また、制御装置100は第2の減圧弁16の開度を全開にする。これにより室内機34の運転台数に応じて適切な冷房能力を実現することができる。
 また制御装置100は下記の式(2)が一定となるように流量調整弁32a~32cの開度を制御する。
  室内機34の(出入口温度差)=(温度センサー67の検知値)-(温度センサー68の検知値)………………………………………………………(2)
 また制御装置100は下記の式(3)が一定となるように第1のポンプ21の回転数を制御する。
  (第1の圧力差)=(圧力センサー55の検知値)-(圧力センサー54の検知値)……(3)
 更に制御装置100は下記の式(4)が一定となるように第2のポンプ22の回転数を制御する。
  (第2の圧力差)=(圧力センサー57の検知値)-(圧力センサー56の検知値)……(4)
 これにより各室内機34a~34cに第2の媒体を適切に循環させることができる。
 第2の熱交換器15で第1のサイクル5より冷熱を供給された第2のサイクル6では、第2の媒体が低温となり、第2の媒体が第1のポンプ21によって循環され、第1の流路切替弁31a、31bにより分岐経路8a、8bに至る。分岐経路8a、8bでは流量調整弁32a,32bの抵抗の程度により、この分岐経路を通過する第2の媒体の流量が定まる。次に第2の媒体は第3の延長配管33a、33bを通過し、室内機34a、34bに至る。室内機34a、34bでは室内機ファン35a、35bにより第2の媒体は居室の空気と熱交換することで、冷熱を負荷側へ供給し、第2の媒体の状態は高温となる。次に第2の媒体は第4の延長配管36a,36bを通過し、第2の流路切替弁37a,37bを通過した後、第1の集約路41に集約され、再び第2の熱交換器15に至る。
 第3の熱交換器17で第1のサイクル5より冷熱を供給された第3のサイクル7では、第2の媒体が低温となり、第2の媒体が第2のポンプ22によって循環され、第1の流路切替弁31cにより分岐経路8cに至る。分岐経路8cでは流量調整弁32cの抵抗の程度により、この分岐経路8cを通過する第2の媒体の流量が定まる。次に第2の媒体は第3の延長配管33cを通過し、室内機34cに至る。室内機34cでは室内機ファン35cにより第2の媒体は居室の空気と熱交換することで、冷熱を負荷側へ供給し、第2の媒体の状態は高温となる。次に第2の媒体は第4の延長配管36cを通過し、第2の流路切替弁37cを通過した後、再び第3の熱交換器17に至る。
 停止している室内機34があれば制御装置100は停止している室内機34の属する分岐経路8の流量調整弁32を全閉にするか、流路切替弁31、37を第2のサイクル6、第3のサイクル7のどちらにも接続しないように切替えさせる。
 次に、制御装置100によるポンプ制御の詳細について述べる。空気調和装置の必要能力が定まれば、第2の媒体流量の必要流量が定まり、ポンプの流量が定まる。しかしポンプ揚程が最小化されなければポンプ入力が必要以上に大きく、空気調和装置の冷暖房効率を損なう。特にビル空調では、必要能力が小さい場合の空気調和装置では顕著である。しかし揚程を最小化するためには、ビル空調のような複数ある複雑な分岐経路(延長配管33、36と室内機34を含む)の流路抵抗を把握することが制御の収束性を図る上で重要である。
 図7はこの実施の形態1における制御装置100の動作の流れを示すフローチャートである。制御装置100はまずステップS101で起動されると、ステップS102で全ての流量調整弁32を全開とする。次に制御装置100はステップS103でポンプの回転数を最大に設定し、ステップS104でポンプを起動させる。次に制御装置100はステップS105で短時間ではあるが一定時間経過した後、ステップS106で分岐抵抗計測運転を開始する。まず制御装置100は第1の室内機34について分岐抵抗計測運転を行う。すなわち、制御装置100はステップS107で第1の室内機34の流路切替弁31と37を開とし、第1の室内機34以外の流路切替弁31と37を閉とし、第1の室内機34のみに第2の媒体が流れるようにする。ステップS108で一定時間経過した後、制御装置100はステップS109で圧力センサー54~57の検知値を取得し、ステップS110で第1の分岐経路の流路抵抗を演算する。この演算には予め設計上既知であるポンプの揚程-流量の相関式と揚程より、現在での流量が判り、その結果第1の分岐経路の流路抵抗が算出される。
 次に制御装置100は、ステップS111で第2の室内機34に対しても同様の動作を行い、第2の分岐経路の流路抵抗を算出する。
 さらに制御装置100は、同様の動作を繰り返し、ステップS120で最後(第n)の室内機34において同様の動作を行ない、第nの分岐経路の流路抵抗を演算し、その結果、全ての室内機34における必要能力が算出されるので、この全ての室内機34の必要能力によりポンプの流量が定まる。
 なお図7では第1のポンプ21のみで全ての分岐経路の流路抵抗を演算する場合について説明したが、第1のポンプ21と第2のポンプ22で分岐経路を分担して演算しても良く、この場合には把握時間を短縮することができる。
 次に制御装置100は、ステップS121で定時制御を開始し、第1のサイクル5も運転する。次に制御装置100は、ステップS122で一定時間経過したか否か判定し、経過していなければ、制御装置100はステップS123で式(3)による目標揚程となるようにポンプ回転数を制御する。ステップS122で一定時間経過すると、制御装置100はステップS124で第2のサイクル6の中で、流量調整弁32の開度が最も大きい分岐経路(この分岐経路をIとする)を探す。ステップS125でこの分岐経路Iの開度が目標最大開度以上であれば、ポンプの揚程が不足しているので、制御装置100はステップS126で目標揚程を増加させる。増加量は固定値でよい。ステップS125でこの分岐経路Iの開度が目標最大開度以下であれば、ポンプの揚程が過剰であるので、制御装置100はステップS127で目標揚程を低下させる。低下の方法は、
  (新しい目標揚程)=(現在の目標揚程)/(該当する分岐経路の演算した流路抵抗)×((該当する分岐経路の演算した流路抵抗)-((現在の開度における流量調整弁の流路抵抗)-(目標最大開度における流量調整弁の流路抵抗)))である。
 このように構成することにより、現地調整の行為者が必要なく、制御装置100が流路抵抗を把握し、運転中の制御に反映させているので、ポンプ入力の最小化を実現しやすい。またこの情報を式(2)での流量調整弁32の開度制御に反映することで、制御性をさらに安定させることができる。
 なお、ここでは第2のサイクル6の第1のポンプ21について述べたが、第3のサイクル7の第1のポンプ22についても同様である。また、1つのポンプに前後2つの圧力センサーが設けられているが、ポンプ入口側の圧力はほぼ変化しないため、ポンプ出口側の圧力センサーで揚程を代用しても良い。さらに圧力センサーの代わりに流量センサーを設ければ、ポンプの揚程-流量特性と、流量センサーの検知値から、揚程と流路抵抗が求まるので、同様の効果が得られる。
 次に、制御装置100による流路切替弁31の制御について更に述べる。室内機34は全て冷房で、前述したように、第1の媒体は第2の熱交換器15を通過して、低圧二相(低圧低乾き度)状態となり、その後に第3の熱交換器17を通過し、(出口スーパーヒート)がある低圧過熱ガス状態となる。二相状態の方が過熱ガス状態よりも伝熱特性が良いので、第2の熱交換器15は第3の熱交換器17より熱交換性能が優れている。そのため、能力が相対的に大きい室内機34を第2のサイクル6(第2の熱交換器15)に接続させると過不足なく能力を発揮することができる。制御装置100は、該当する分岐経路において、第1の流路切替弁31を第1の分岐路40に接続させるべく開、第2の分岐路42に非接続させるべく閉となるように切替えさせ、第2の流路切替弁37を第1の集約路41に接続するように開、第2の集約路43に非接続させるべく閉となるように切替えさせる。
 また、流量調整弁32の開度が大きい室内機34は第2の媒体の流量が大きく、大きな能力が必要である。従って、流量調整弁32の開度が大きい室内機34は、第2のサイクル6(第2の熱交換器15)に接続させる方がよく、該当する第1の流路切替弁31と第2の流路切替弁37を同様に制御する。
(2)冷房運転のみで、要求される温度が異なる場合
 以下、冷房運転のみで、要求される温度が異なる場合について図2を用いて説明する。
 この空気調和装置1では、流路切替器10は実線側に接続されており、圧縮機9で高圧高温に圧縮された第1の媒体は、流路切替器10を通過して、第1の熱交換器11に入り、ファン12により供給される外気に放熱することにより、第1の媒体の状態は高圧低温となる。第1の延長配管13を通過し、第1の減圧弁14で減圧され、第1の媒体の状態は低圧低乾き度となる。第1の媒体はさらに第2の熱交換器15、第2の減圧弁16、第3の熱交換器17を順次通過する。第2の減圧弁16では第1の媒体の圧力低下が生じ、通過前後の圧力の飽和温度換算値が、要求される温度に対応する。これについては以下の理由による。即ち、第2の減圧弁16の開度と第1の媒体の圧力低下の度合い及び第1の媒体の温度低下の度合いとは1対1に対応しており、第2の減圧弁の開度が決まれば第1の媒体の圧力低下の度合い及び温度低下の度合いが自動的に決定される。従って、制御装置100が室内機34から要求される温度に対応するように第2の減圧弁16の開度を制御することで第1の媒体の温度を調整することができる。
 また、第2の熱交換器15では第1のサイクル5と第2のサイクル6間で熱交換することで第1の媒体は冷熱を第2の媒体に供給し、第3の熱交換器17では第1のサイクル5と第3のサイクル7間で熱交換することで第1の媒体は冷熱を第2の媒体に供給する。これにより第1の媒体は蒸発し、低圧高乾き度、あるいは低圧過熱ガスとなる。次に第1の媒体は第2の延長配管18、流路切替器10、アキュームレータ19を順次通過し、再び圧縮機9へ循環される。
 ここで制御装置100は以下の働きをする。制御装置100は吸入側圧力センサー51での圧力が一定となるように圧縮機9の回転数を制御する。
 また、制御装置100は吐出側圧力センサー52の圧力が一定となるように室外機ファン12の回転数を制御する。これにより第1の熱交換器11の処理能力が適切に制御される。
 また、制御装置100は下記の式(5)が一定となるように第1の減圧弁14の開度を制御する。
  第3の熱交換器17の(出口スーパーヒート)=(温度センサー64の検知値)-(吸入側圧力センサー51の飽和温度換算値)…………………(5)
 また制御装置100は、下記の式(6)が要求される温度差となるように第2の減圧弁16の開度を制御する。
  (温度差)=(圧力センサー53の飽和温度換算値)-(吸入側圧力センサー51の飽和温度換算値)………………………………………………………(6)
 これにより室内機34の運転台数に応じて適切な冷房能力が実現できる。
 一方、第2の熱交換器15で第1のサイクル5より冷熱を供給された第2のサイクル6は、第1の媒体の圧力が減圧弁14を通過する前の相対的に高い方の第2の熱交換器15で第1のサイクル5と熱交換するサイクルであり、この第2のサイクル6では、第2の媒体の蒸発温度が第3のサイクル7のそれより高く、室内機34の吹出し温度が高い。
 また、第3の熱交換器17で第1のサイクル5より冷熱を供給された第3のサイクル7は、第1の媒体の圧力が減圧弁14を通過した後の相対的に低い方の第3の熱交換器17で第1のサイクル5と熱交換するサイクルであり、この第3のサイクル7では、第2の媒体の蒸発温度が第2のサイクル6のそれより低く、室内機34の吹出し温度が低い。
 この理由は以下の通りである。冷房運転の際には、第1のサイクル5において、第2の熱交換器15は第2の減圧弁16の上流に接続されているため、第2の熱交換器15を通過する第1の媒体の温度は第2の減圧弁16によって減圧される前の温度である。これに対して第3の熱交換器17は第1のサイクル5において、第2の減圧弁16の下流に接続されているため、第3の熱交換器17を通過する第1の媒体の温度は第2の減圧弁16によって減圧され温度が低下した後の温度となる。従って、第2の熱交換器15における第1の媒体の温度は第3の熱交換器17における第1の媒体の温度よりも高い。従って、第2の熱交換器15で第1の媒体と熱交換した第2のサイクル6の第2の媒体の温度は、第3の熱交換器17で、より温度の低い第1の媒体と熱交換した第3のサイクル7の第2の媒体の温度よりも温度が高くなる。以上が理由である。
 なお、制御装置100は停止している室内機34があれば停止している室内機34の属する分岐経路の流量調整弁32を全閉にするか、流路切替弁31、37を第2のサイクル6、第3のサイクル7のどちらにも接続しないように切替えさせる。
 ここで制御装置100は以下の働きをする。制御装置100は下記の式(7)が一定となるように流量調整弁32a~32cの開度を制御する。
  (出入口温度差)=(温度センサー67の検知値)-(温度センサー68の検知値)……(7)
 また制御装置100は下記の式(8)が一定となるように第1のポンプ21の回転数を制御する。
  (第1の圧力差)=(圧力センサー55の検知値)-(圧力センサー54の検知値)……(8)
 また制御装置100は下記の式(9)が一定となるように第2のポンプ22の回転数を制御する。
  (第2の圧力差)=(圧力センサー57の検知値)-(圧力センサー56の検知値)……(9)
 これにより、各室内機34に第2の媒体を適切に循環させることができる。
 以上のように、第2の熱交換器15と第3の熱交換器17を直列に接続して、2種類の温度の冷熱を供給することができ、無駄な圧縮過程がなく、空気調和装置の効率が高くなる。また、1つの熱源機で2種類の温度の冷熱を供給するので、ビル空調などのインテリア空調とペリメーター空調を同時に実現できる。
 図3は、この発明の実施の形態1における空気調和装置の動作を示す回路図であり、図中の太線で示された回路は第2の冷媒が流れている回路を表し、細線で示された回路は第2の冷媒が流れていない(接続されていない)線を表している。
(3)冷房主体の冷暖房運転の場合
 以下、冷房と暖房を同時に行い、冷房能力が暖房能力より大きい場合である"冷房主体運転"について図3を用いて説明する。
 この空気調和装置1では、流路切替器10は実線側に接続されており、圧縮機9で高圧高温に圧縮された第1の媒体は、流路切替器10を通過して、第1の熱交換器11に入り、ファン12により供給される外気に放熱することにより、第1の媒体の状態は臨界圧力以上の場合は高圧中温となる。第1の媒体はさらに第1の延長配管13、第1の減圧弁14、第2の熱交換器15を順次通過する。第1の減圧弁14は全開であり、圧力損失は小さい。また、第2の熱交換器15では第1のサイクル5と第2のサイクル6間で熱交換することで第1の媒体は温熱を第2の媒体に供給し、高圧低温となる。次に第1の媒体は第2の減圧弁16で減圧され、第1の媒体の状態は低圧低乾き度となる。次に第1の媒体が第3の熱交換器17を通過する際に第1のサイクルと第3のサイクル間で熱交換することにより、第1の媒体は冷熱を第2の媒体に供給することで第1の媒体は蒸発し、低圧高乾き度、あるいは低圧過熱ガスとなる。次に第1の媒体は第2の延長配管18、流路切替器10、アキュームレータ19を順次通過し、再び圧縮機9へ循環される。
 ここで制御装置100は以下の働きをする。制御装置100は吸入側圧力センサー51での圧力が一定となるように圧縮機9の回転数を制御し、吐出側圧力センサー52の圧力が一定となるように室外機ファン12の回転数を制御することにより第1の熱交換器11の処理能力を制御する。
 また制御装置100は第1の減圧弁14の開度を全開にする。
 また、制御装置100は下記の式(10)が一定となるように第2の減圧弁16の開度を制御する。
  第3の熱交換器17の(出口スーパーヒート)=(温度センサー64の検知値)-(吸入側圧力センサー51の飽和温度換算値)………………………(10)
 これにより室内機34の運転台数に応じて適切な冷房能力と暖房能力が実現できる。
 第2の熱交換器15で第1のサイクル5より温熱を供給された第2のサイクル6では、第2の媒体の状態が相対的に高温となり、第2の媒体は第1のポンプ21によって循環され、第1の流路切替弁31aにより分岐経経路8aに至る。分岐経経路8aでは流量調整弁32aの抵抗の程度により、分岐経路8aを通過する第2の媒体の流量が定まる。次に第2の媒体は第3の延長配管33aを通過し、室内機34aに至る。室内機34aでは室内機ファン35aにより第2の媒体は居室の空気と熱交換することで、温熱を負荷側へ供給し、第2の媒体の状態は低温となる。次に第2の媒体は第4の延長配管36aを通過し、第2の流路切替弁37aを通過した後、第1の集約路41を介して再び第2の熱交換器15に至る。
 第3の熱交換器17で第1のサイクル5より冷熱を供給された第3のサイクル7では、第2の媒体の状態が相対的に低温となり、第2の媒体は第2のポンプ22によって循環され、第1の流路切替弁31b、31cにより分岐経路8b、8cに至る。分岐経路8b、8cでは流量調整弁32b、32cの抵抗の程度により、分岐経路8b、8cを通過する第2の媒体の流量が定まる。次に第2の媒体は第3の延長配管33b、33cを通過し、室内機34b、34cに至る。室内機34b、34cでは、室内機ファン35b、35cにより第2の媒体は居室の空気と熱交換することで、冷熱を負荷側へ供給し、第2の媒体の状態は高温となる、次に第2の媒体は第4の延長配管36b、36cを通過し、第2の流路切替弁37b、37cを通過した後、第2の集約路43に集約され、再び第3の熱交換器17に至る。
 以上のように、第2の熱交換器15と第3の熱交換器17を直列に接続して、第2の熱交換器15から比較的弱い温熱を供給し、第3の熱交換器17から比較的強い冷熱を供給することができるので、比較的少ない運転台数または比較的低い暖房能力を持つ室内機34を第2の熱交換器15に接続し、比較的多い運転台数または比較的高い冷房能力を持つ室内機34を第3の熱交換器17に接続することにより、効率の良い冷暖房運転が可能になる。
(4)暖房運転のみの場合
 以下、暖房運転のみの場合について図2を用いて説明する。
 この空気調和装置1では、流路切替器10は破線側に接続されており、圧縮機9で高圧高温に圧縮された第1の媒体は、流路切替器10を通過して、第2の延長配管18を通過し、第3の熱交換器17、第2の減圧弁16、第2の熱交換器15を通過する。第2の減圧弁16は全開であり、損失は小さい。また第3の熱交換器17では第1のサイクル5と第3のサイクル7間で熱交換することで第1の媒体は温熱を第2の媒体に供給し、第2の熱交換器15では第2のサイクル6と熱交換することにより、第1の媒体は温熱を第2の媒体に供給し、第1の媒体の状態は高圧低温となる。第1の減圧弁14を通過して第1の媒体の状態は低圧低乾き度となる。第1の延長配管13を通過し、次に第1の熱交換器11に入り、ファン12により供給される外気より吸熱することにより、第1の媒体の状態は低圧高乾き度となる。その後、流路切替器10、アキュームレータ19を通過して再び圧縮機9に循環される。一般的にビル用の室内機34は熱交換器の大きさ、延長配管と減圧弁の配置の仕方により、冷房よりも暖房時に余剰冷媒が生じるため、これをアキュームレータ19に収納し、圧縮機9に液冷媒が吸入されることを防ぎ、信頼性を確保する。
 ここで制御装置100は以下の働きをする。制御装置100は吐出側圧力センサー52での圧力が一定となるように圧縮機9の回転数を制御し、吸入側圧力センサー51の圧力が一定となるように室外機ファン12の回転数を制御することにより第1の熱交換器11の処理能力が適切に制御される。
 また制御装置100は第2の減圧弁16の開度を全開にする。
 また制御装置100は下記の式(11)が一定となるように第1の減圧弁14の開度を制御する。
 (圧力センサー51の検知値が第1の媒体の臨界圧力以上の場合)
  第3の熱交換器17の(出口温度)=(温度センサー61の検知値)
 (圧力センサー51の検知値が第1の媒体の臨界圧力未満の場合)
  第3の熱交換器17の(出口サブクール)=(吐出側圧力センサー52の飽和温度換算値)-(温度センサー61の検知値)
  ………………………………(11)
 これにより室内機34の運転台数に応じて適切な暖房能力が実現できる。
 第3の熱交換器17で第1のサイクル5より温熱を供給された第3のサイクル7では、第2の媒体が高温となり、第2の媒体が第2のポンプ22によって循環され、第1の流路切替弁31cにより分岐経路8cに至る。分岐経路8cでは流量調整弁32cの抵抗の程度により、この分岐経路を通過する第2の媒体の流量が定まる。次に第2の媒体は第3の延長配管33cを通過し、室内機34cに至る。室内機34cでは室内機ファン35cにより第2の媒体は居室の空気と熱交換することで、温熱を負荷側へ供給し、第2の媒体の状態は低温となる。次に第2の媒体は第4の延長配管36cを通過し、第2の流路切替弁37cを通過した後、再び第3の熱交換器17に至る。
 第2の熱交換器15で第1のサイクル5より温熱を供給された第2のサイクル6では、第2の媒体が高温となり、第2の媒体が第1のポンプ21によって循環され、第1の流路切替弁31a、31bにより分岐経路8a、8bに至る。分岐経路8a、8bでは流量調整弁32a,32bの抵抗の程度により、この分岐経路8a、8bを通過する第2の媒体の流量が定まる。次に第2の媒体は第3の延長配管33a、33bを通過し、室内機34a、34bに至る。室内機34a、34bでは室内機ファン35a、35bにより第2の媒体は居室の空気と熱交換することで、温熱を負荷側へ供給し、第2の媒体の状態は低温となる。次に第2の媒体は第4の延長配管36a,36bを通過し、第2の流路切替弁37a,37bを通過した後、第1の集約路41に集約され、再び第2の熱交換器15に至る。
 停止している室内機34があれば制御装置100は停止している室内機34の属する分岐経路8の流量調整弁32を全閉にするか、流路切替弁31、37を第2のサイクル6、第3のサイクル7のどちらにも接続しないように切替えさせる。
 ここで制御装置100は以下の働きをする。制御装置100は下記の式(12)が一定となるように流量調整弁32a~32cの開度を制御する。
  (出入口温度差)=(温度センサー67の検知値)-(温度センサー68の検知値)……(12)
 また制御装置100は下記の式(13)が一定となるように第1のポンプ21の回転数を制御する。
  (第1の圧力差)=(圧力センサー55の検知値)-(圧力センサー54の検知値)……(13)
 また制御装置100は下記の式(14)が一定となるように第2のポンプ22の回転数を制御する。
  (第2の圧力差)=(圧力センサー57の検知値)-(圧力センサー56の検知値)……(14)
 これにより各室内機34に第2の媒体を適切に循環させることができる。
(5)暖房運転のみで、要求される温度が異なる場合
 以下、暖房運転のみで、要求される温度が異なる場合について図3を用いて説明する。
 この空気調和装置1では、流路切替器10は破線側に接続されており、圧縮機9で高圧高温に圧縮された第1の媒体は、流路切替器10を通過して、第2の延長配管18を通過し、第3の熱交換器17、第2の減圧弁16、第2の熱交換器15を順位通過する。第2の減圧弁16では圧力低下が生じ、通過前後の圧力の飽和温度換算値が、要求される温度に対応する。また第3の熱交換器17では第1のサイクル5と第3のサイクル7間で熱交換することで第1の媒体は温熱を第2の媒体に供給し、第2の熱交換器15では第1のサイクル5と第2のサイクル6間でと熱交換することにより、第1の媒体は温熱を第2の媒体に供給し、第1の媒体の状態は高圧低温となる。第1の媒体は更に第1の減圧弁14を通過して第1の媒体の状態は低圧低乾き度となる。第1の延長配管13を通過し、次に第1の熱交換器11に入り、第1の熱交換器11ではファン12により供給される外気より吸熱することにより、第1の媒体の状態は低圧高乾き度となる。第1の媒体はその後、流路切替器10、アキュームレータ19を通過して再び圧縮機9に循環される。一般的にビル用の室内機34は熱交換器の大きさ、延長配管と減圧弁の配置の仕方により、冷房よりも暖房時に余剰冷媒が生じるため、これをアキュームレータ19に収納し、圧縮機に液冷媒が吸入されることを防ぎ、信頼性を確保する。
 ここで制御装置100は以下の働きをする。制御装置100は吐出側圧力センサー52での圧力が一定となるように圧縮機9の回転数を制御する。
 また、制御装置100は吸入側圧力センサー51の圧力が一定となるように室外機ファン12の回転数を制御する。これにより第1の熱交換器11の処理能力を制御する。
 また制御装置100は、下記の式(15)が要求される温度差となるように第2の減圧弁16の開度を制御する
 (圧力センサー51の検知値が第1の媒体の臨界圧力以上の場合)
  (圧力差)=(吐出側圧力センサー52の検知値)-(圧力センサー53の検知値)
 (圧力センサー51の検知値が第1の媒体の臨界圧力未満の場合)
  (温度差)=(吐出側圧力センサー52の飽和温度換算値)-(圧力センサー53の飽和温度換算値)
   ・・・・・・・・・・・・・・・・・・・・・(15)
 また制御装置100は、下記の式(16)が一定となるように第1の減圧弁14の開度を制御する。
 (圧力センサー51の検知値が第1の媒体の臨界圧力以上の場合)
  第3の熱交換器17の(出口温度)=(温度センサー61の検知値)
 (圧力センサー51の検知値が第1の媒体の臨界圧力未満の場合)
  第3の熱交換器17の(出口サブクール)=(吐出側圧力センサー52の飽和温度換算値)-(温度センサー61の検知値)
  ……………………(16)
 これにより室内機34の運転台数に応じて適切な暖房能力が実現できる。
 一方、第3の熱交換器17で第1のサイクル5より温熱を供給された第3のサイクル7は、第1の媒体の圧力が減圧弁14を通過する前の相対的に高い方の第3の熱交換器17で第1のサイクル5と熱交換するサイクルであり、この第3のサイクルで7は、第2の媒体の蒸発温度が第2のサイクル6のそれより高く、室内機34の吹出し温度が高い。
 また、第2の熱交換器15で第1のサイクル5より温熱を供給された第2のサイクル6は、第1の媒体の圧力が減圧弁14を通過した後の相対的に低い方の第2の熱交換器15で第1のサイクル5と熱交換するサイクルであり、この第2のサイクル6では、第2の媒体の蒸発温度が第3のサイクル7のそれより低く、室内機34の吹出し温度が低い。
 この理由は以下の通りである。暖房運転の際には、第1のサイクル5において、第3の熱交換器17は第2の減圧弁16の上流に接続されているため、第3の熱交換器17を通過する第1の媒体の温度は第2の減圧弁16によって減圧される前の温度である。これに対して第2の熱交換器15は第1のサイクル5において、第2の減圧弁16の下流に接続されているため、第2の熱交換器15を通過する第1の媒体の温度は第2の減圧弁16によって減圧され温度が低下した後の温度となる。従って、第3の熱交換器17における第1の媒体の温度は第2の熱交換器15における第1の媒体の温度よりも高い。従って、第3の熱交換器17で第1の媒体と熱交換した第3のサイクル7の第2の媒体の温度は、第2の熱交換器15で、より温度の低い第1の媒体と熱交換した第2のサイクル6の第2の媒体の温度よりも温度が高くなる。以上が理由である。
 なお、制御装置100は停止している室内機34があれば停止している室内機34の属する分岐経路の流量調整弁32を全閉にするか、流路切替弁31、37を第2のサイクル6、第3のサイクル7のどちらにも接続しないように切替えさせる。
 ここで制御装置100は以下の働きをする。制御装置100は下記の式(17)が一定となるように流量調整弁32a~32cの開度を制御する。
  (出入口温度差)=(温度センサー67の検知値)-(温度センサー68の検知値)……(17)
 また制御装置100は下記の式(18)が一定となるように第1のポンプ21の回転数を制御する。
  (第1の圧力差)=(圧力センサー55の検知値)-(圧力センサー54の検知値)……(18)
 また制御装置100は下記の式(19)が一定となるように第2のポンプ22の回転数を制御する。
  (第2の圧力差)=(圧力センサー57の検知値)-(圧力センサー56の検知値)……(19)
 これにより各室内機34に第2の媒体を適切に循環させることができる。
 以上のように、第2の熱交換器15と第3の熱交換器17を直列に接続して、2種類の温度の温熱を供給することができ、無駄な圧縮過程がなく、空気調和装置の効率が高くなる。また、1つの熱源機で2種類の温度の温熱を供給するので、ビル空調などのインテリア空調とペリメーター空調を同時に実現できる。
(6)暖房主体の冷暖房運転の場合
 以下、冷房と暖房を同時に行い、暖房能力が冷房能力より大きい場合である"暖房主体運転"について図3を用いて説明する。
 この空気調和装置1では、流路切替器10は破線側に接続されており、圧縮機9で高圧高温に圧縮された第1の媒体は、流路切替器10を通過して、第2の延長配管18、第3の熱交換器17を通過する。第1の媒体が第3の熱交換器17を通過する際に第1のサイクル5と第3のサイクル7間で熱交換することにより、第1の媒体は温熱を第2の媒体へ供給し、第1の媒体の状態は高圧低温となる。次に第1の媒体は第2の減圧弁16で減圧され、第1の媒体の状態は低圧低乾き度となる。次に第1の媒体が第2の熱交換器15を通過する際に第1のサイクル5と第2のサイクル6間で熱交換することにより、第1の媒体は冷熱を第2の媒体へ供給し、第1の媒体の状態は低圧2相となる。次に第1の媒体は第1の減圧弁14を通過するが、第1の減圧弁14は全開であり、圧力損失は小さい。次に第1の媒体は第1の延長配管13を通過した後、第1の熱交換器11に入る。ここで第1の媒体はファン12により供給される外気より吸熱する。これにより、第1の媒体の状態は低圧高乾き度となる。第1の媒体はその後、流路切替器10、アキュームレータ19を通過して再び圧縮機9に循環される。一般的にビル用の室内機34は熱交換器の大きさ、延長配管と減圧弁の配置の仕方により、冷房よりも暖房時に余剰冷媒が生じるため、これをアキュームレータ19に収納し、圧縮機9に液冷媒が吸入されることを防ぎ、信頼性を確保する。
 ここで制御装置100は以下の働きをする。制御装置100は吐出側圧力センサー52での圧力が一定となるように圧縮機9の回転数を制御し、吸入側圧力センサー51の圧力が一定となるように室外機ファン12の回転数を制御することにより第1の熱交換器11の処理能力を制御する。
 また制御装置100は下記の式(20)が一定となるように第2の減圧弁16の開度を制御する。
 (圧力センサー51の検知値が第1の媒体の臨界圧力以上の場合)
  第3の熱交換器17の(出口温度)=(温度センサー63の検知値)
 (圧力センサー51の検知値が第1の媒体の臨界圧力未満の場合)
  第3の熱交換器17の(出口サブクール)=(吐出側圧力センサー52の飽和温度換算値)-(温度センサー63の検知値)
・・・・・・・・・・・・・・・・・・・・・(20)
 また制御装置100は第1の減圧弁14の開度を全開にする。
 これにより室内機34の運転台数に応じて適切な冷房能力と暖房能力が実現できる。
 第3の熱交換器17で第1のサイクル5より温熱を供給された第3のサイクル7では、第2の媒体の状態が相対的に高温となり、第2の媒体は第2のポンプ22によって循環され、第1の流路切替弁31b、31cにより分岐経路8b、8cに至る。分岐経路8b、8cでは流量調整弁32b、32cの抵抗の程度により、分岐経路を通過する第2の媒体の流量が定まる。次に第2の媒体は第3の延長配管33b、33cを通過し、室内機34b、34cに至る。室内機34b、34cでは室内機ファン35b、35cにより第2の媒体は居室の空気と熱交換することで、温熱を負荷側へ供給し、第2の媒体の状態は低温となる。次に第2の媒体は第4の延長配管36b、36cを通過し、第2の流路切替弁37b、37cを通過した後、第2の集約路43に集約され、再び第3の熱交換器17に至る。
 第2の熱交換器15で第1のサイクル5より冷熱を供給された第2のサイクル6では、第2の媒体の状態が相対的に低温となり、第2の媒体は第1のポンプ21によって循環され、第1の流路切替弁31aにより分岐経路8aに至る。分岐経路8aでは、流量調整弁32aの抵抗の程度により、分岐経路8aを通過する第2の媒体の流量が定まる。次に第2の媒体は第3の延長配管33aを通過し、室内機34aに至る。室内機34aでは室内機ファン35aにより第2の媒体は居室の空気と熱交換することで、冷熱を負荷側へ供給し、第2の媒体の状態は高温となる。次に第2の媒体は第4の延長配管36aを通過し、第2の流路切替弁37aを通過した後、第1の集約路41を介して、再び第2の熱交換器15に至る。
 ここで制御装置100は以下の働きをする。制御装置100は下記の式(21)が一定となるように流量調整弁32a~32cの開度を制御する。
  (出入口温度差)=(温度センサー67の検知値)-(温度センサー68の検知値)……(21)
 また制御装置100は下記の式(22)が一定となるように第1のポンプ21の回転数を制御する。
  (第1の圧力差)=(圧力センサー55の検知値)-(圧力センサー54の検知値)……(22)
 また制御装置100は下記の式(23)が一定となるように第2のポンプ22の回転数を制御する。
  (第2の圧力差)=(圧力センサー57の検知値)-(圧力センサー56の検知値)……(23)
 これにより各室内機34に第2の媒体を適切に循環させることができる。
 これらの動作により、冷房のみ、暖房のみ、冷房と暖房混在運転を効率よく実現することができる。
 なお、第1の減圧弁14あるいは第2の減圧弁16は開度を調整することができるが、並列に開閉弁を設けて減圧弁が全開の場合は、開閉弁を開、減圧弁が全開でない場合は、開閉弁を閉として、減圧弁が全開の場合の圧損低下を低減させてもよい。また、第2の熱交換器15、第3の熱交換器17はプレート熱交換器、2重管熱交換器、マイクロチャンネル熱交換器、のいずれであってもよい。ただし、プレート熱交換器のように流れ方向に制約がある場合は、切り替え弁などを設けてもよい。
 また室外ユニットと中継ユニットのいずれかで、図4に示すようなブリッジ回路を設けてもよい。これにより運転中に流路切替器10を正逆切替えても、冷媒音等を抑制でき、第1の媒体の制御安定性が保たれる。即ち、図1の回路では、流路切替器10を切り替えると、第1のサイクルにおける第1の媒体の流れ方向が逆転するのに対し、図4では、第1の延長配管13、中継ユニット3内にある第1のサイクル、第2の延長配管18における第1の媒体の流れ方向が常に一定である。また、第2のサイクル、第3のサイクルでは、第2の媒体流れ方向は変化しない。第1の媒体流れ方向が逆転する時に冷媒音が発生するが、図6に示すように居室空間に近い箇所では流れ方向が変化せず、居室空間とその近傍では冷媒音が発生しない。(当然熱源ユニットでは冷媒音が発生する。)
 また第1の熱交換器11の処理能力を、ファン12の回転速度を変化させることで制御する以外に、図5に示すように、第1の熱交換器11a~11dを並列に分割し、分割の程度で処理能力を変化させても良い。ファン12が1個である場合や、ファンモータ信頼性上回転数を低下できない場合に有効である。
 ここで、70a~70d、71a~71dは切替弁であり、表1に示す組合せで開閉を行うことにより、熱交換器11を部分的に使用することが可能であり、これにより、伝熱面積を低下させることができ、熱交換器の処理能力を変化させることが可能となる。
 ファンモータの回転数を低下できない状況としては、ファンモータが制御装置100の冷却を兼ねている場合がある。また低外気の場合は、ファンモータを停止させたとしても、温度差があるため、熱交換する必要がありその場合には表1のような伝熱面積の調節が有効である。
Figure JPOXMLDOC01-appb-T000001
 以上のように構成されるので、どのような運転の場合でも、第1のサイクルの経路は単純に形成される。熱源ユニット2と負荷側ユニット4が一つのサイクルで形成される、いわゆる直膨形式の空気調和装置では、複数ある室内機34のため回路が複雑で、発停を繰り返すので、第1のサイクル制御が複雑である。またサイクル内の圧縮機の信頼性上重要な冷凍機油は、高性能の油分離器を設けたとしても、完全に油を捕捉することができないので、サイクル内に偏在・滞留するおそれがある。しかし本実施の形態では第1のサイクルの経路が単純であるため、冷凍機油の偏在や滞留する可能性が低く、信頼性を確保できる。冷凍機油が媒体に対し非相溶性である場合に効果が大きい。第2のサイクル、第3のサイクルに使われるポンプは、もともと油を吐出させる可能性がないので、信頼性は高い。
 また、流量調整弁32が中継ユニット内にあるため、流量調整弁32が故障した場合に中継ユニットのみを一括して復旧作業(交換など)すればよく、各室内機34を1つずつ復旧作業する必要がないため煩雑さが小さい。
上記の構成を用いることにより、冷房運転のみまたは冷房主体の冷暖房運転の場合には第2の熱交換器15の方が第3の熱交換器17よりも高い熱交換能力を有するので、相対的に冷房能力の高い室内機34を第2の熱交換器15に接続し、相対的に冷房能力の低い室内機34を第3の熱交換器17に接続することで、簡単な構成で効率の高い空気調和装置を構成することができる。
 また、第2の熱交換器15の方が第3の熱交換器17よりも高い熱交換能力を有するので、流量調整弁の開度が全開に近い室内機34を、第2サイクルと第3サイクルの内で、第1の媒体の圧力が相対的に高い熱交換器を有する方のサイクルに接続することで、簡単な構成で効率の高い空気調和装置を構成することができる。
 また、制御装置100は、全ての室内機34が冷房運転のみ、あるいは暖房運転のみで、定格負荷でない場合は、第2のサイクルと第3のサイクルの内で、1つのサイクルのみで運転する場合にせよ、2つのサイクルで運転する場合にせよ、入力が小さい方で運転するように構成してもよい。
 また、試運転時に各分岐ごとの流量特性を制御装置100に把握させて、通常運転時に反映させるように構成しても良い。これにより、より効率の高い切り替え制御が可能となる。
 また、第1の媒体は二酸化炭素であるが、可燃性冷媒でもよいし、低GWP(Global Warming Potential:地球温暖化係数)冷媒でもよいし、フロン系のものでもよい。
 なお、制御装置100(回転数制御手段)は、第2のサイクル6あるいは第3のサイクル7において第1のポンプ21あるいは第2のポンプ22の入口側の圧力と出口側の圧力間の差圧を目標値とするが、この目標値は、第2のサイクル6あるいは第3のサイクル7内に設けられた複数の流量調整弁32の内で最大の弁開度を持つ流量調整弁32の開度を最大にするような値とする。即ち、第1のポンプ21または第2ポンプ22からの流量を最小にし、最大の弁開度を持つ流量調整弁32の開度を最大にすることにより、効率的な運転が可能になる。
 なお、第2のサイクル6あるいは第3のサイクル7において第1のポンプ21あるいは第2のポンプ22の出口側の圧力を目標値としてもよい。
実施の形態2.
 次に、本実施の形態2における動作を説明する。
 図8は、この発明の実施の形態2における空気調和装置の動作を示す回路図である。なお実施の形態1と同じものは説明を省略する。負荷側ユニット4の温度センサー67a~c、68a~cに代えて温度センサー67d~f、68d~fを中継ユニット内に設置し、設置場所の媒体2の温度を計測する点、第2のサイクル6と第3のサイクル7には圧力センサーが存在しない点以外は図1~図3と同じである。
 次に、制御装置100によるポンプ制御の詳細について述べる。
 図9はこの実施の形態2における制御装置100の動作の流れを示すフローチャートである。制御装置100はまずステップS201で起動されると、ステップS202で全ての流量調整弁32を全開とする。次に制御装置100はステップS203でポンプの回転数を最大に設定し、ステップS204でポンプを起動させる。次に制御装置100はステップS205で短時間ではあるが一定時間経過した後、ステップS206で分岐抵抗計測運転を開始する。まず制御装置100は第1の室内機34について分岐抵抗計測運転を行う。すなわち、制御装置100はステップS207で第1の室内機の流路切替弁31と37を開とし、第1の室内機34以外の流路切替弁31と37を閉とし、第1の室内機34のみに第2の媒体が流れるようにする。ステップS208で一定時間経過した後、制御装置100はステップS209で温度センサー68の検知値を取得してT1oとする。
 次に制御装置100は、ステップS210で第1の室内機34の流量調整弁32の開度を全開から50%開度に低下させる。なお、この50%という値は固定された数字ではなく、流量調整弁32の抵抗が大きく変化する値であればよい。次に制御装置100は、ステップS211でタイマ計測を開始する。次に制御装置100は、ステップS212で温度センサー68の検知値を取得してT1とし、ステップS213で(T1-T1o)の絶対値と設定値を比較する。比較の結果、(T1-T1o)の絶対値が設定値より小さければステップS212へ戻り、設定値より大きければステップS214へ進み、ステップS214でタイマ計測を終了した後、ステップS215で第1の分岐経路の流路抵抗を演算する。この演算には予め設計上既知であるポンプの揚程-流量の相関式と、流量調整弁32の開度を低減し温度センサー68の検知値が変化するまでの時間から第1の分岐経路の流量を推定し、この推定した流量から、流路抵抗が演算できる。
 次に制御装置100は、ステップS216で第2の室内機34に対しても同様の動作を行い、第2の分岐経路の流路抵抗を算出する。
 さらに制御装置100は、同様の動作を繰り返し、ステップS217で最後(第n)の室内機34において同様の動作を行ない、第nの分岐経路の流路抵抗を演算し、その結果、全ての室内機34における必要能力が算出されるので、この全ての室内機34の必要能力によりポンプの流量が定まる。
 なお図9では第1のポンプ21のみで全ての分岐経路の流路抵抗を演算する場合について説明したが、第1のポンプ21と第2のポンプ22で分岐経路を分担して演算しても良く、この場合には把握時間を短縮することができる。
 次に制御装置100は、ステップS218で定時制御を開始し、第1のサイクル5も運転する。次に制御装置100は、ステップS219で一定時間経過したか否か判定し、経過していなければ、制御装置100はステップS220で式(3)による目標揚程となるようにポンプ回転数を制御する。ステップS219で一定時間経過すると、制御装置100はステップS221で第2のサイクル6の中で、流量調整弁32の開度が最も大きい分岐経路(この分岐経路をIとする)を探す。ステップS222でこの分岐経路Iの開度が目標最大開度以上であれば、ポンプの揚程が不足しているので、制御装置100はステップS223で目標揚程を増加させる。増加量は固定値でもよい。ステップS223でこの分岐経路Iの開度が目標最大開度以下であれば、ポンプの揚程が過剰であるので、制御装置100はステップS224で目標揚程を低下させる。低下の方法は、
  (新しい目標揚程)=(現在の目標揚程)/(該当する分岐経路の演算した流路抵抗)×((該当する分岐経路の演算した流路抵抗)-((現在の開度における流量調整弁の流路抵抗)-(目標最大開度における流量調整弁の流路抵抗)))である。
 このように構成することにより、現地調整の行為者が必要なく、制御装置100が流路抵抗を把握し、運転中の制御に反映させているので、ポンプ入力の最小化を実現しやすい。さらに流路抵抗を圧力センサーではなく温度センサーを用いて演算するため、コスト低減が可能である。さらに温度センサーを室内機34ではなく中継ユニット3に設けてあるので、温度センサーが故障しても、中継ユニット3だけを一括して復旧作業(交換など)すればよく、各室内機34を1つずつ復旧作業する必要がないためメンテナンス性が向上する。
 1 空気調和装置、2 熱源ユニット、3 中継ユニット、4、4a~4f 負荷ユニット、5 第1のサイクル、6 第2のサイクル、7 第3のサイクル、8a~8c 分岐経路、9 圧縮機、10 流路切替器、11、11a~11d 第1の熱交換器、12 ファン、13 第1の延長配管、14 第1の減圧弁、15 第2の熱交換器、16 第2の減圧弁、17 第3の熱交換器、18 第2の延長配管、19 アキュームレータ、21 第1のポンプ、22 第2のポンプ、31、31a~31c 第1の流路切替弁、32、32a~32c 流量調整弁、33a~33c 第3の延長配管、34、34a~34c 室内機、35a~35e 室内機ファン、36a~36c 第4の延長配管、37a~37c 第2の流路切替弁、40 第1の分岐路、41 第1の集約路、42 第2の分岐路、43 第2の集約路、51 吸入側圧力センサー、52 吐出側圧力センサー、53、54、55、56、57 圧力センサー、61、62、63、64、65、66、67、67a~67c、68、68a~68c 温度センサー、70a~70d、71a~71d 開閉弁、72a~72d 逆止弁、90 建物、91 居室空間、92 非居室空間、100 制御装置。

Claims (15)

  1.  第1の媒体が循環する第1のサイクルと、
     第2の媒体が循環する第2のサイクルと、
     前記第2の媒体が循環する第3のサイクルと、を備え、
     前記第1のサイクルは、圧縮機と、第1の熱交換器と、第1の減圧弁と、前記第1のサイクルを循環する第1の媒体と前記第2のサイクルを循環する第2の媒体が熱交換する第2の熱交換器と、第2の減圧弁と、前記第1のサイクルを循環する第1の媒体と前記第3のサイクルを循環する前記第2の媒体が熱交換する第3の熱交換器と、前記第1の媒体の流れ方向を正逆に転換させる流路切替器と、を順次配管で環状に接続して成り、
     前記第2のサイクルは、前記第2の熱交換器と、前記第2の媒体を駆動させる第1のポンプと、これらを接続する第1の経路と、一端が前記第1の経路の一端に接続され、他端が前記第1の経路の他端に接続される少なくとも1つの第1の分岐経路と、を備え、
     前記第3のサイクルは、前記第3の熱交換器と、前記第2の媒体を駆動させる第2のポンプと、これらを接続する第2の経路と、一端が前記第2の経路の一端に接続され、他端が前記第2の経路の他端に接続される少なくとも1つの第2の分岐経路と、を備え、
     前記各第1の分岐経路および前記各第2の分岐経路は流路切替弁と、室内機と、流量調整弁と、を備え、
     前記第1のポンプと前記第1のポンプの回転数を制御する回転数制御手段と、
     前記流量調整弁の開度を制御する流量調整手段と、を備え、
     前記流路切替弁は、前記各第1の分岐経路および前記各第2の分岐経路を、前記第1の経路および前記第2の経路の一端側に配設され、前記第2のサイクル、前記第3のサイクルの少なくとも一方に切替接続する第1の流路切替弁と、前記第1の経路及び前記第2の経路の他端側に配設され、前記第2のサイクル、前記第3のサイクルの少なくとも一方に切替接続する第2の流路切替弁と、から成り、
     前記第2の熱交換器と前記第3の熱交換器の内、前記第1の媒体の圧力が相対的に低い方の熱交換器で前記第1のサイクルと熱交換するサイクルに冷房運転の室内機を接続するように前記流路切替弁を切替え、
     前記第2の熱交換器と前記第3の熱交換器の内、前記第1の媒体の圧力が相対的に高い方の熱交換器で前記第1のサイクルと熱交換するサイクルに暖房運転の室内機を接続するように前記流路切替弁を切替える切替制御手段を備えたことを特徴とする空気調和装置。
  2.  前記室内機が全て冷房運転のみ、あるいは暖房運転のみで、前記各室内機の用途により要求される温度が異なる場合は、前記室内機を要求される温度により、高温側の室内機グループと低温側の室内機グループに2分し、
     前記切替制御手段は、冷房運転の場合は低温側の室内機グループを、前記第2の熱交換器と前記第3の熱交換器の内、前記第1の媒体の圧力が相対的に低い方の熱交換器を有するサイクルに接続し、暖房運転の場合は高温側の室内機グループを、前記第2の熱交換器と前記第3の熱交換器の内、前記第1の媒体の圧力が相対的に高い方の熱交換器を有するサイクルに接続することを特徴とする請求項1に記載の空気調和装置。
  3.  前記切替制御手段は、全ての室内機が冷房運転のみ、あるいは暖房運転のみの場合は、前記流量調整弁の開度が全開に近い室内機を、前記第1の媒体の圧力が相対的に高い方の熱交換器を有するサイクルに接続することを特徴とする請求項1または請求項2に記載の空気調和装置。
  4.  前記切替制御手段は、全ての室内機が冷房運転のみ、あるいは暖房運転のみの場合は、能力がより大きい室内機を、前記第1の媒体の圧力が高いサイクルに接続することを特徴とする請求項1~3のいずれかに記載の空気調和装置。
  5.  前記切替制御手段は、全ての室内機が冷房運転のみ、あるいは暖房運転のみで、定格負荷でない場合は、前記第2のサイクルと前記第3のサイクルのうち、入力が小さい方で運転することを特徴とする請求項1~4のいずれかに記載の空気調和装置。
  6.  前記流量調整手段は、試運転時に各分岐ごとの流量特性を把握して、通常運転時に反映させることを特徴とする請求項1~5のいずれかに記載の空気調和装置。
  7.  圧力センサーと流量センサーを備え、
     前記流量調整手段は、前記第2のサイクルと前記第3のサイクルの少なくとも一方における分岐された複数の経路の内の特定の経路の流量特性を前記圧力センサーの出力または前記流量センサーの出力に基づいて把握することを特徴とする請求項1~6のいずれかに記載の空気調和装置。
  8.  各分岐された経路は流量を検知する検知手段を備え、
     前記流量調整手段は、各分岐経路ごとに単一に流量を流し、前記流量調整弁の開度を変化させたときの前記検知手段の検知値と応答により各分岐経路ごとの流量特性を把握することを特徴とする請求項1~4のいずれかに記載の空気調和装置。
  9.  前記回転数制御手段は、前記第2のサイクルあるいは前記第3のサイクルにおいて前記第1のポンプあるいは前記第2のポンプの入口側の圧力と出口側の圧力間の差圧を目標値とすることを特徴とする請求項1~7のいずれかに記載の空気調和装置。
  10.  前記回転数制御手段は、前記第2のサイクルあるいは前記第3のサイクルにおいて前記第1のポンプあるいは前記第2のポンプの出口側の圧力を目標値とすることを特徴とする請求項1~7のいずれかに記載の空気調和装置。
  11.  前記目標値は、前記第2のサイクルあるいは前記第3のサイクル内に設けられた複数の流量調整弁の内で最大の弁開度を持つ流量調整弁の開度を最大にするような値であることを特徴とする請求項9または10に記載の空気調和装置。
  12.  前記回転数制御手段は、前記第2のサイクルあるいは前記第3のサイクル内に設けられた複数の流量調整弁の内で最大の開度を持つ流量調整弁の開度が全開となるように前記第1のポンプまたは前記第2のポンプの内、属するサイクル内で用いられる方を制御することを特徴とする請求項1~6のいずれかまたは請求項8に記載の空気調和装置。
  13.  第1の媒体が自然冷媒であることを特徴とする請求項1~12のいずれかに記載の空気調和装置。
  14.  第1の媒体が低GWP冷媒であることを特徴とする請求項1~12のいずれかに記載の空気調和装置。
  15.  第1の媒体がフロン系冷媒であることを特徴とする請求項1~12のいずれかに記載の空気調和装置。
PCT/JP2009/058880 2009-05-13 2009-05-13 空気調和装置 WO2010131335A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980159214.0A CN102422100B (zh) 2009-05-13 2009-05-13 空气调节装置
US13/265,413 US20120043054A1 (en) 2009-05-13 2009-05-13 Air-conditioning apparatus
JP2011513153A JP5265001B2 (ja) 2009-05-13 2009-05-13 空気調和装置
PCT/JP2009/058880 WO2010131335A1 (ja) 2009-05-13 2009-05-13 空気調和装置
EP09844609.9A EP2431684B1 (en) 2009-05-13 2009-05-13 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058880 WO2010131335A1 (ja) 2009-05-13 2009-05-13 空気調和装置

Publications (1)

Publication Number Publication Date
WO2010131335A1 true WO2010131335A1 (ja) 2010-11-18

Family

ID=43084725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058880 WO2010131335A1 (ja) 2009-05-13 2009-05-13 空気調和装置

Country Status (5)

Country Link
US (1) US20120043054A1 (ja)
EP (1) EP2431684B1 (ja)
JP (1) JP5265001B2 (ja)
CN (1) CN102422100B (ja)
WO (1) WO2010131335A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101677A1 (ja) * 2011-01-27 2012-08-02 三菱電機株式会社 空気調和装置
WO2012101676A1 (ja) * 2011-01-27 2012-08-02 三菱電機株式会社 空気調和装置
JP2013088031A (ja) * 2011-10-18 2013-05-13 Hitachi Plant Technologies Ltd 冷却システムとその制御方法
US20130192283A1 (en) * 2010-12-03 2013-08-01 Mitsubishi Electric Corporation Air-conditioning apparatus
US20130205818A1 (en) * 2011-01-20 2013-08-15 Mitsubishi Electric Corporation Air-conditioning apparatus
EP2716997A1 (en) * 2011-05-26 2014-04-09 Mitsubishi Electric Corporation Air conditioning device
JP2015040650A (ja) * 2013-08-21 2015-03-02 ウオサブジャパン株式会社 流量自動調節システム
WO2019155548A1 (ja) * 2018-02-07 2019-08-15 三菱電機株式会社 空調システム及び空調制御方法
WO2019193686A1 (ja) * 2018-04-04 2019-10-10 三菱電機株式会社 空気調和システムの制御装置、室外機、中継機、熱源機および空気調和システム
JP6678837B1 (ja) * 2019-05-22 2020-04-08 三菱電機株式会社 空気調和装置および熱媒体流量算出方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5752148B2 (ja) * 2010-12-09 2015-07-22 三菱電機株式会社 空気調和装置
CN103797317B (zh) * 2011-09-13 2016-08-17 三菱电机株式会社 热泵装置和热泵装置的控制方法
US9791194B2 (en) * 2011-11-18 2017-10-17 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2013217631A (ja) * 2012-03-14 2013-10-24 Denso Corp 冷凍サイクル装置
CN104823006B (zh) * 2012-11-30 2017-06-09 三菱电机株式会社 空气调节装置
CN104094063B (zh) * 2012-12-10 2017-08-04 松下知识产权经营株式会社 连接单元及空调装置
EP3040642B1 (en) * 2013-08-28 2021-06-02 Mitsubishi Electric Corporation Air conditioner
KR101652469B1 (ko) * 2015-02-27 2016-08-30 주식회사 유진테크 다중 가스 제공 방법 및 다중 가스 제공 장치
JPWO2016194145A1 (ja) * 2015-06-02 2018-01-25 三菱電機株式会社 空気調和装置
JPWO2018193518A1 (ja) 2017-04-18 2019-11-21 三菱電機株式会社 空気調和機
CN108629112B (zh) * 2018-05-02 2021-12-24 苏州爱博斯蒂低碳能源技术有限公司 一种通过阀门状态获取水泵扬程的方法
US11906191B2 (en) * 2019-02-27 2024-02-20 Mitsubishi Electric Corporation Air-conditioning apparatus
KR102600060B1 (ko) * 2019-02-27 2023-11-07 현대자동차 주식회사 전기자동차의 냉각 시스템용 밸브 모듈
DE102022101450A1 (de) 2022-01-21 2023-07-27 Dürr Systems Ag Wärmeversorgungsnetz für eine prozessanlage und verfahren zum betreiben eines solchen wärmeversorgungsnetzes

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592832B2 (ja) 1976-04-01 1984-01-20 ダイキン工業株式会社 熱回収式空気調和装置
JPH0317475A (ja) * 1989-06-13 1991-01-25 Matsushita Refrig Co Ltd 多室式空気調和機
JPH03282150A (ja) * 1990-03-30 1991-12-12 Toshiba Corp 空気調和機およびその制御方式
JPH04236066A (ja) * 1991-01-11 1992-08-25 Sanki Eng Co Ltd 冷房または冷暖房装置における冷房時の給液量制御方法
JPH10122673A (ja) * 1996-10-23 1998-05-15 Toshiba Corp 空気調和装置
JP2004053069A (ja) * 2002-07-17 2004-02-19 Fuji Electric Retail Systems Co Ltd 冷媒回路、およびそれを用いた自動販売機
JP2004317000A (ja) 2003-04-15 2004-11-11 Yamatake Corp 冷温水循環ポンプの回転数制御方法および装置
JP2007183045A (ja) 2006-01-06 2007-07-19 Hitachi Appliances Inc ヒートポンプ式冷暖房装置
JP2008209111A (ja) * 2003-11-21 2008-09-11 Mayekawa Mfg Co Ltd アンモニア/co2冷凍システムと、該システムに使用されるco2ブライン生成装置
JP2008304149A (ja) * 2007-06-08 2008-12-18 Toyo Eng Works Ltd 冷却システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280818A (ja) * 1992-04-01 1993-10-29 Matsushita Refrig Co Ltd 多室冷暖房装置
JPH0682110A (ja) * 1992-09-01 1994-03-22 Matsushita Refrig Co Ltd 多室冷暖房装置
JP2001289465A (ja) * 2000-04-11 2001-10-19 Daikin Ind Ltd 空気調和装置
JP2002106995A (ja) * 2000-09-29 2002-04-10 Hitachi Ltd 空気調和機
KR100396849B1 (ko) * 2001-03-26 2003-09-03 엘지전자 주식회사 멀티 컴프레서가 적용된 공기 조화기의 제어 방법
JP4123829B2 (ja) * 2002-05-28 2008-07-23 三菱電機株式会社 冷凍サイクル装置
JP3953377B2 (ja) * 2002-07-16 2007-08-08 トヨタ自動車株式会社 空調装置
JP2004226015A (ja) * 2003-01-24 2004-08-12 Sanyo Electric Co Ltd 冷温水供給システム
KR20050075976A (ko) * 2004-01-19 2005-07-26 삼성전자주식회사 공기 조화 시스템 및 그 제어방법
AU2005252958B2 (en) * 2004-06-11 2007-06-28 Daikin Industries, Ltd. Subcooling apparatus
JP2007100513A (ja) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd 冷媒圧縮機及びその冷媒圧縮機を備えた冷媒サイクル装置
WO2010050007A1 (ja) * 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置
US8616017B2 (en) * 2009-05-08 2013-12-31 Mitsubishi Electric Corporation Air conditioning apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592832B2 (ja) 1976-04-01 1984-01-20 ダイキン工業株式会社 熱回収式空気調和装置
JPH0317475A (ja) * 1989-06-13 1991-01-25 Matsushita Refrig Co Ltd 多室式空気調和機
JPH03282150A (ja) * 1990-03-30 1991-12-12 Toshiba Corp 空気調和機およびその制御方式
JPH04236066A (ja) * 1991-01-11 1992-08-25 Sanki Eng Co Ltd 冷房または冷暖房装置における冷房時の給液量制御方法
JPH10122673A (ja) * 1996-10-23 1998-05-15 Toshiba Corp 空気調和装置
JP2004053069A (ja) * 2002-07-17 2004-02-19 Fuji Electric Retail Systems Co Ltd 冷媒回路、およびそれを用いた自動販売機
JP2004317000A (ja) 2003-04-15 2004-11-11 Yamatake Corp 冷温水循環ポンプの回転数制御方法および装置
JP2008209111A (ja) * 2003-11-21 2008-09-11 Mayekawa Mfg Co Ltd アンモニア/co2冷凍システムと、該システムに使用されるco2ブライン生成装置
JP2007183045A (ja) 2006-01-06 2007-07-19 Hitachi Appliances Inc ヒートポンプ式冷暖房装置
JP2008304149A (ja) * 2007-06-08 2008-12-18 Toyo Eng Works Ltd 冷却システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2431684A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9459013B2 (en) * 2010-12-03 2016-10-04 Mitsubishi Electric Corporation Air-conditioning apparatus with safety measure for ventilation of inflammable refrigerant from heat exchanger
US20130192283A1 (en) * 2010-12-03 2013-08-01 Mitsubishi Electric Corporation Air-conditioning apparatus
US20130205818A1 (en) * 2011-01-20 2013-08-15 Mitsubishi Electric Corporation Air-conditioning apparatus
US9829205B2 (en) * 2011-01-20 2017-11-28 Mitsubishi Electric Corporation Air-conditioning apparatus
JP5528582B2 (ja) * 2011-01-27 2014-06-25 三菱電機株式会社 空気調和装置
JPWO2012101677A1 (ja) * 2011-01-27 2014-06-30 三菱電機株式会社 空気調和装置
JP5674822B2 (ja) * 2011-01-27 2015-02-25 三菱電機株式会社 空気調和装置
WO2012101677A1 (ja) * 2011-01-27 2012-08-02 三菱電機株式会社 空気調和装置
US9157649B2 (en) 2011-01-27 2015-10-13 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2012101676A1 (ja) * 2011-01-27 2012-08-02 三菱電機株式会社 空気調和装置
US9732992B2 (en) 2011-01-27 2017-08-15 Mitsubishi Electric Corporation Air-conditioning apparatus for preventing the freezing of non-azeotropic refrigerant
EP2716997A1 (en) * 2011-05-26 2014-04-09 Mitsubishi Electric Corporation Air conditioning device
EP2716997A4 (en) * 2011-05-26 2014-11-05 Mitsubishi Electric Corp AIR CONDITIONING
JP2013088031A (ja) * 2011-10-18 2013-05-13 Hitachi Plant Technologies Ltd 冷却システムとその制御方法
JP2015040650A (ja) * 2013-08-21 2015-03-02 ウオサブジャパン株式会社 流量自動調節システム
WO2019155548A1 (ja) * 2018-02-07 2019-08-15 三菱電機株式会社 空調システム及び空調制御方法
JPWO2019155548A1 (ja) * 2018-02-07 2020-11-19 三菱電機株式会社 空調システム及び空調制御方法
US11060779B2 (en) 2018-02-07 2021-07-13 Mitsubishi Electric Corporation Air-conditioning system and air-conditioning control method
WO2019193686A1 (ja) * 2018-04-04 2019-10-10 三菱電機株式会社 空気調和システムの制御装置、室外機、中継機、熱源機および空気調和システム
JPWO2019193686A1 (ja) * 2018-04-04 2021-02-12 三菱電機株式会社 空気調和システムの制御装置、室外機、中継機、熱源機および空気調和システム
US11421907B2 (en) 2018-04-04 2022-08-23 Mitsubishi Electric Corporation Controller of air conditioning system, outdoor unit, relay unit, heat source apparatus, and air conditioning system
JP6678837B1 (ja) * 2019-05-22 2020-04-08 三菱電機株式会社 空気調和装置および熱媒体流量算出方法
US11892218B2 (en) 2019-05-22 2024-02-06 Mitsubishi Electric Corporation Air-conditioning apparatus and heat-medium flow-rate calculation method

Also Published As

Publication number Publication date
EP2431684A4 (en) 2017-10-18
EP2431684B1 (en) 2020-04-15
CN102422100B (zh) 2014-04-02
CN102422100A (zh) 2012-04-18
JPWO2010131335A1 (ja) 2012-11-01
EP2431684A1 (en) 2012-03-21
US20120043054A1 (en) 2012-02-23
JP5265001B2 (ja) 2013-08-14

Similar Documents

Publication Publication Date Title
WO2010131335A1 (ja) 空気調和装置
KR0135902B1 (ko) 다실형 냉난방 장치 및 그 운전 방법
US20150176864A1 (en) Air-conditioning apparatus
JP4832960B2 (ja) 水熱源ヒートポンプユニットシステムの制御方法
JP6296364B2 (ja) 空気調和装置
US8959940B2 (en) Refrigeration cycle apparatus
US20040107709A1 (en) Method for operating compressors of air conditioner
US20050150243A1 (en) Heat source unit of air conditioner and air conditioner
US10436463B2 (en) Air-conditioning apparatus
CN113891635A (zh) 冷站单元、集成冷站系统及其控制方法和相关设备
US20180259219A1 (en) Air-conditioning apparatus
KR101045451B1 (ko) 멀티 공기 조화기 및 그 제어방법
JP2003166743A (ja) 空気調和装置
KR20210093560A (ko) 냉난방 및 급탕 동시형 공기조화시스템 및 그의 제어방법
US11965672B2 (en) Water source heat pump dual functioning condensing coil
WO2008114952A1 (en) Multi-unit air conditioning system and controlling method for the same
CN110657600A (zh) 恒温恒湿空调机组
KR20040094101A (ko) 멀티 에어컨 시스템의 유량 가변형 바이패스 장치
KR100329472B1 (ko) 냉난방겸용멀티에어컨
EP3974745A1 (en) Multi-air conditioner for heating, cooling and ventilation
US11378290B2 (en) Water source heat pump dual functioning condensing coil
KR100318680B1 (ko) 냉난방겸용멀티에어컨
KR20080097263A (ko) 멀티 공기조화기 및 그 제어방법
KR20050075062A (ko) 멀티 공기 조화기 및 그 제어방법
KR20090044498A (ko) 공기조화기의 사방밸브 제어방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159214.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011513153

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13265413

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009844609

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE