WO2010130787A1 - Absorptionsmittel zum selektiven entfernen von schwefelwasserstoff aus fluidströmen - Google Patents

Absorptionsmittel zum selektiven entfernen von schwefelwasserstoff aus fluidströmen Download PDF

Info

Publication number
WO2010130787A1
WO2010130787A1 PCT/EP2010/056556 EP2010056556W WO2010130787A1 WO 2010130787 A1 WO2010130787 A1 WO 2010130787A1 EP 2010056556 W EP2010056556 W EP 2010056556W WO 2010130787 A1 WO2010130787 A1 WO 2010130787A1
Authority
WO
WIPO (PCT)
Prior art keywords
amine
absorbent
acid
absorbent according
gas
Prior art date
Application number
PCT/EP2010/056556
Other languages
English (en)
French (fr)
Inventor
Gerald Vorberg
Torsten Katz
Georg Sieder
Christian Riemann
Erika Dengler
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42272085&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010130787(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP2012510293A priority Critical patent/JP5665855B2/ja
Priority to AU2010247405A priority patent/AU2010247405B2/en
Priority to EA201171402A priority patent/EA020754B1/ru
Priority to CA2760732A priority patent/CA2760732C/en
Priority to PL10721454T priority patent/PL2429686T3/pl
Application filed by Basf Se filed Critical Basf Se
Priority to UAA201114649A priority patent/UA106753C2/uk
Priority to BRPI1011367A priority patent/BRPI1011367A2/pt
Priority to EP10721454.6A priority patent/EP2429686B1/de
Priority to ES10721454T priority patent/ES2425429T3/es
Priority to CN201080020874.3A priority patent/CN102421507B/zh
Publication of WO2010130787A1 publication Critical patent/WO2010130787A1/de
Priority to ZA2011/09017A priority patent/ZA201109017B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/292Liquid sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/70Organic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to an absorbent for removing acidic gases from fluid streams, in particular for selectively removing hydrogen sulfide from fluid streams, and to a process for removing acidic gases from a fluid stream.
  • washes are used with aqueous solutions of inorganic or organic bases.
  • ions form with the bases.
  • the absorbent may be regenerated by depressurization to a lower pressure and / or stripping whereby the ionic species react back to sour gases and / or are stripped by steam. After the regeneration process, the absorbent can be reused.
  • a process in which all acidic gases, in particular CO 2 and H 2 S, are removed as far as possible is also referred to as "total absorption".
  • An unfavorable CO 2 / H 2 S ratio can affect the performance and efficiency of the Claus plant by formation of COS / CS 2 and coking of the Claus catalyst or by a too low calorific value.
  • Tertiary amines such as methyldiethanolamine (MDEA), or sterically hindered amines show kinetic selectivity for H 2 S over CO 2 . These amines do not react directly with CO2; Rather, CO 2 is reacted in a slow reaction with the amine and with water to bicarbonate. Tertiary amines are therefore particularly suitable for the selective removal of H2S from gas mixtures containing C02 and H2S.
  • MDEA methyldiethanolamine
  • the absorption rate of CO2 in aqueous solutions of tertiary alkanolamines can be increased by the addition of further compounds, referred to as activators or promoters.
  • activators or promoters One of the most effective absorption liquids for removing CU2 and H2S from a gas stream is an aqueous solution of methyldiethanolamine (MDEA) and piperazine as a promoter.
  • MDEA methyldiethanolamine
  • piperazine such an absorbent is known from US 4,336,233.
  • Primary amines such as monoethanolamine (MEA), and secondary amines, such as diethanolamine (DEA) or diisopropanolamine (DIPA), can react directly with CO2 in a faster reaction. These amines show a significantly lower hbS selectivity. Because of their high affinity for acid gases, they can also be used to scrub gas streams with low sour gas partial pressure. However, the high affinity for acid gases correlates with a high specific regeneration energy.
  • MEA monoethanolamine
  • DEA diethanolamine
  • DIPA diisopropanolamine
  • EP-A-134 948 describes an absorbent comprising an alkaline material and an acid having a pK a of 6 or less.
  • Preferred acids are phosphoric acid, formic acid or hydrochloric acid.
  • the addition of acid is said to make the stripping of H2S-containing acidic gases more efficient, in particular.
  • WO 2007/021531 discloses absorbents for selective removal under normal conditions of gaseous acidic components from mixtures containing the gaseous acidic components and gaseous non-acidic components and CO2.
  • the absorbents comprise a metal sulfonate, metal sulfate, metal sulfamate, metal phosphonate, metal phosphate, metal phosphoramidite or metal carboxylate bonded via an alkylene group of at least 2 chain atoms to the amine nitrogen of a hindered secondary or tertiary amine.
  • the invention has for its object to provide a method and an absorbent for the removal of acidic gases from fluid streams, which shows a reduced regeneration energy demand compared to absorbents based on amines or amine / promoter combinations, without the absorption capacity of the solution for acidic gases significantly reduce.
  • the object is achieved by an absorbent for removing acidic gases from a fluid stream containing an aqueous solution a) at least one amine and
  • the aqueous solution further comprises
  • molar ratio of c) to a) in the range of 0.0005 to 0.1, preferably 0.01 to 0.1, in particular 0.02 to 0.09.
  • the absorbent according to the invention contains at least one organic phosphonic acid.
  • Suitable examples are phosphonic acids of the formula I.
  • R is Ci-Cis-alkyl, which is optionally substituted by up to four substituents which are independently selected from carboxy, carboxamido, hydroxy and amino.
  • alkylphosphonic acids such as methylphosphonic acid, propylphosphonic acid, 2-methylpropylphosphonic acid, t-butylphosphonic acid, n-butylphosphonic acid, 2,3-dimethylbutylphosphonic acid, octylphosphonic acid; Hydroxyalkylphosphonic acids, such as hydroxymethylphosphonic acid, 1-hydroxyethylphosphonic acid, 2-hydroxyethylphosphonic acid; Arylphosphonic acids such as phenylphosphonic acid, toluylphosphonic acid, xylylphosphonic acid, aminoalkylphosphonic acids such as aminomethylphosphonic acid, 1-aminoethylphosphonic acid, 1-dimethylaminoethylphosphonic acid, 2-aminoethylphosphonic acid, 2- (N-methylamino) ethylphosphonic acid, 3-aminopropylphosphonic acid, 2-aminopropylphosphonic acid, 1-aminopropylphosphonic acid , 1-amino
  • R ' is H or Ci -6- alkyl
  • Q is H, OH or NY 2
  • Y is H or CH2PO3H2, such as 1-hydroxyethane-1, 1-diphosphonic acid
  • Z is C2-6-alkylene, cycloalkanediyl, phenylene, or C2-6-alkylene interrupted by cycloalkanediyl or phenylene
  • Y is CH2PO3H2
  • m is O to 4, such as ethylenediaminetetra (methylenephosphonic acid ), Diethylene triamine penta (methylene phosphonic acid) and bis (hexamethylene) triamine penta (methylene phosphonic acid);
  • R " is Ci -6 -alkyl, C 2 -6-hydroxyalkyl or Y, and Y is CH 2 PO 3 H 2, such as nitrilo-tris (methylene phosphonic acid) and 2-Hydroxyethyliminobis (methylenephosphonic acid).
  • phosphonic acids are 2-hydroxyphosphonoacetic acid, 2-phosphonobutane-1, 2,4-tricarboxylic acid, 1-hydroxyethane-1, 1-diphosphonic acid, ethylenediaminetetra (methylenephosphonic acid), diethylenetriamine-penta (methylenephosphonic acid), bis (hexamethylene) triamine penta (methylenephosphonic acid) and nitrilo-tris (methylene) phosphonic acid), of which 1-hydroxyethane-1, 1-diphosphonic acid is particularly preferred.
  • the phosphonic acid is preferably added to the solution of the amine in the form of the free acid.
  • the phosphonic acid can be used in the form of a non-quaternary ammonium salt, ie as the ammonium salt (NH 4 + -SaIz) or salt of a primary, secondary or tertiary ammonium ion.
  • a non-quaternary ammonium salt ie as the ammonium salt (NH 4 + -SaIz) or salt of a primary, secondary or tertiary ammonium ion.
  • the free acid can be liberated from the non-quaternary ammonium salt.
  • Suitable ammonium salts are the protonated species of the amines used as component a) of the absorbent.
  • the absorbent of the invention also contains at least one carboxylic acid.
  • suitable carboxylic acids have 1 to 12 carbon atoms.
  • carboxylic acids include
  • aliphatic monocarboxylic acids such as methanoic acid (formic acid), ethanoic acid (acetic acid), propionic acid (propionic acid), butyric acid;
  • aromatic monocarboxylic acids such as benzoic acid, phenylethanoic acid, salicylic acid;
  • aliphatic di- and oligocarboxylic acids such as ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), butanedioic acid, pentanedioic acid;
  • aromatic di- and oligocarboxylic acids such as 1, 2, 1, 3, 1, 4-benzenedicarboxylic acid
  • Aminocarboxylic acids such as glycine, N, N-dimethylglycine, alanine, N-methylalanine;
  • Hydroxycarboxylic acids such as glycolic acid, lactic acid, malic acid, tartaric acid, citric acid.
  • the absorbent of the invention is preferably substantially free of metal salts.
  • the absorbent according to the invention contains at least one amine.
  • the amine does not have acidic groups, such as in particular phosphonic acid, sulfonic acid and / or carboxylic acid groups.
  • suitable amines include:
  • 2-aminoethanol (monoethanolamine, MEA), N, N-bis (2-hydroxyethyl) amine (diethanolamine, DEA), N, N-bis (2-hydroxypropyl) amine (diisopropanolamine, DIPA), tris (2-hydroxy ethyl) amine (triethanolamine, TEA), tributanolamine, bis (2-hydroxyethyl) methylamine (methyldiethanolamine, MDEA), 2-diethylaminoethanol (diethylethanolamine, DEEA), 2-dimethylaminoethanol (dimethylethanolamine, DMEA), 3-dimethylamino-1 propanol (N, N-dimethylpropanolamine), 3-diethylamino-1-propanol, 2-diisopropylaminoethanol (DIEA), N, N-bis (2-hydroxypropyl) methylamine (methyldiisopropanolamine, MDIPA), 2-amino-2-methyl-1 -prop
  • piperazine such as piperazine, 2-methylpiperazine, N-methylpiperazine, N-ethylpiperazine, N-aminoethylpiperazine, N-hydroxyethylpiperazine, homopiperazine, piperidine and morpholine;
  • R 2 is C 2 -C 6 -alkylene
  • R 1 is Ci-C 6 alkyl or d-Ce-hydroxyalkyl
  • R 2 is C 2 -C 6 alkylene
  • R 1 is Ci-C 6 alkyl or Ci-C is 6 hydroxyalkyl and R 2 is C 2 -C 6 alkylene
  • DMAPA 3- (dimethylamino) propylamine
  • DMAPA 3- (diethylamino) propylamine
  • R 1 is Ci-C 6 alkyl or Ci-C is 6 hydroxyalkyl and R 2 is C 2 -C 6 alkylene
  • Alkanolamines ie amines having at least one hydroxyalkyl group attached to the nitrogen atom, are generally preferred.
  • the absorbent comprises exclusively amines with exclusively tertiary and / or sterically hindered amino groups.
  • the absorbent of this embodiment is particularly suitable for the selective removal of H2S.
  • Preferred amines with exclusively tertiary amino groups are tris (2-hydroxyethyl) amine (triethanolamine, TEA), tris (2-hydroxypropyl) amine (triisopropanol), tributanolamine, bis (2-hydroxyethyl) methylamine (methyldiethanolamine, MDEA) , 2-diethylaminoethanol (diethylethanolamine, DEEA), 2-dimethylaminoethanol (dimethylethanolamine, DMEA), 3-dimethylamino-1-propanol, 3-diethylamino-1-propanol, 2-diisopropylaminoethanol (DIEA), N, N-bis (2-hydroxypropyl) methylamine (methyldiisopropanolamine, MDIPA).
  • Preferred amines with exclusively sterically hindered amino groups are 2-amino-2-methyl-1-propanol (AMP) and 1-amino-2-methylpropan-2-ol.
  • the absorbent comprises at least one amine having exclusively tertiary and / or sterically hindered amino groups and at least one activator.
  • the activator is usually a primary or secondary amine and accelerates carbon dioxide uptake by intermediate formation of a carbamate structure.
  • the absorbent of this embodiment is particularly suitable for the energy-saving, unselective removal of acid gases.
  • at least one of the two components H2S or CO2 is specified, with the other being settled according to its equilibrium at the absorber head. It may also happen that a maximum exit specification is set for one of the two sour gas components. Examples of preferred amines having exclusively tertiary and / or sterically hindered amino groups are those mentioned above.
  • Examples of preferred activators are piperazine, 2-methylpiperazine, N-methylpiperazine, N-hydroxyethylpiperazine, homopiperazine, piperidine, morpholine, 3-methylaminopropylamine and 2- (2-aminoethoxy) ethanol.
  • the absorbent comprises at least one (non-sterically hindered) primary and / or secondary amine.
  • the absorbent of this embodiment is particularly suitable for the energy-saving, unselective removal of acid gases at low Sauerergaspartial mount.
  • Examples of preferred primary and / or secondary amines are 2-aminoethanol (monoethanolamine, MEA), N, N-bis (2-hydroxyethyl) amine (diethanolamine, DEA), N, N-bis (2-hydroxypropyl) amine (diisopropanolamine , DIPA).
  • the aqueous solution contains from 2 to 5 kmol / m 3 , in particular from 3.5 to 4.5 kmol / m 3 of amine.
  • the absorbent may also contain additives such as corrosion inhibitors, enzymes, etc.
  • additives such as corrosion inhibitors, enzymes, etc.
  • the amount of such additives will range from about 0.01-3% by weight of the absorbent.
  • the invention also relates to a process for removing acidic gases from a fluid stream, wherein the fluid stream is contacted with the above-defined absorbent.
  • the laden absorbent is regenerated
  • the inventive method or absorbent is suitable for the treatment of fluids, in particular gas streams of all kinds.
  • the acidic gases are in particular CO2, H2S, but also COS and mercaptans. Besides, too SO 3 , SO 2 , CS 2 and HCN are removed.
  • Fluids containing the acidic gases include on the one hand gases such as natural gas, synthesis gas, coke oven gas, cracked gas, coal gasification gas, cycle gas, landfill gas and combustion gases, and on the other hand with the absorbent substantially immiscible liquids such as LPG (Liquefied Petroleum Gas) or NGL ( Natural gas liquids).
  • the inventive method or absorbent is particularly suitable for the treatment of hydrocarbon-containing fluid streams.
  • the hydrocarbons contained are z.
  • aliphatic hydrocarbons such as Ci-C4 hydrocarbons such as methane, unsaturated hydrocarbons such as ethylene or propylene, or aromatic hydrocarbons such as benzene, toluene or xylene.
  • the inventive method or absorbent is particularly suitable for the removal of CO 2 and H 2 S.
  • the fluid stream is one
  • synthesis gas, z. B. can be produced by coal gasification or steam reforming and optionally subjected to a water gas shift reaction; the synthesis gases are z.
  • hydrocarbon-containing fluid stream In addition to natural gas, these include exhaust gases from various refinery processes, such as the tail gas unit (TGU), a visbreaker (VDU), a catalytic cracker (LRCUU / FCC), a hydrocracker (HCU), a hydrotreater (HDS / HTU), a coker (DCU) , an atmospheric distillation (CDU) or a liquid treater (eg LPG).
  • TGU tail gas unit
  • VDU visbreaker
  • LRCUU / FCC catalytic cracker
  • HCU hydrocracker
  • HDS / HTU hydrotreater
  • coker DCU
  • CDU atmospheric distillation
  • LPG liquid treater
  • inventive method is suitable for the selective removal of sulfur-hydrogen over CO 2 .
  • selective removal of hydrogen sulfide is meant that the following inequality is satisfied
  • C (CO 2 ) feed - C (CO 2 ) treat C (CO 2 ) feed where c (H2S) f ee d is the concentration of H2S in the starting fluid, c (H2S) is the concentration in the fluid being treated, c (CO2) is the concentration of CO2 in the starting fluid, and c (CO2) is the concentration of CO2 in the fluid being treated mean.
  • the selective removal of H2S s is z.
  • An oxygen gas stream with a higher hbS / CC ⁇ ratio has a higher calorific value and suppresses the formation of COS (from CO2), which impairs the runtime of the Claus catalyst.
  • the starting fluid rich in acidic gas constituents (crude gas) is brought into contact with the absorption medium in an absorption step in an absorber, as a result of which the acidic gas constituents are at least partially washed out.
  • the absorber is preferably a washing device used in conventional gas scrubbing processes. Suitable washing devices are, for example, random packings, packing and tray columns, membrane contactors, radial flow scrubbers, jet scrubbers, venturi scrubbers and rotary scrubbers, preferably packed, packed and tray columns, more preferably bottom and packed columns.
  • the treatment of the fluid stream with the absorbent is preferably carried out in a column in countercurrent. The fluid is generally fed into the lower region and the absorbent in the upper region of the column. In tray columns sieve, bell or valve trays are installed, over which the liquid flows. Packed columns can be filled with different moldings. Heat and mass transfer are improved by the enlargement of the surface due to the usually about 25 to 80 mm large moldings.
  • Raschig ring a hollow cylinder
  • Pall ring a hollow cylinder
  • Hiflow ring Hiflow ring
  • Intalox saddle the like.
  • the packing can be ordered, but also random (as a bed) are introduced into the column.
  • Possible materials are glass, ceramics, metal and plastics.
  • Structured packings are a further development of the ordered filling bodies. They have a regularly shaped structure. This makes it possible for packings to reduce pressure losses in the gas flow.
  • the material used can be metal, plastic, glass and ceramics.
  • the temperature of the absorbent in the absorption step is generally about 30 to 100 0 C, using a column, for example, 30 to 70 0 C at the top of the column and 50 to 100 0 C at the bottom of the column.
  • the total pressure in the absorption step is generally about 1 to 120 bar, preferably about 10 to 100 bar.
  • the process according to the invention may comprise one or more, in particular two, successive absorption steps.
  • the absorption can be carried out in several successive sub-steps, wherein the raw gas containing the acidic gas constituents in each of the substeps is brought into contact with a partial stream of the absorbent.
  • the absorbent, with which the raw gas is brought into contact may already be partially loaded with acidic gases, d. H. it may, for example, be an absorbent, which has been recycled from a subsequent absorption step to the first absorption step, or partially regenerated absorbent.
  • the performance of the two-stage absorption reference is made to the publications EP-A 0 159 495, EP-A 0 190 434, EP-A 0 359 991 and WO 00100271.
  • the inventive method is carried out so that the fluid containing the acidic gases is first treated in a first absorption step with the absorbent at a temperature of 40 to 100 0 C, preferably 50 to 90 0 C and especially 60 to 90 0 C. , The depleted in acidic gases fluid is then treated in a second absorption step with the absorbent at a temperature of 30 to 90 0 C, preferably 40 to 80 0 C and in particular 50 to 80 0 C, treated. The temperature is 5 to 20 0 C lower than in the first absorption stage.
  • the acidic gas components in the usual way are released in a regeneration step, with a regenerated absorbent is obtained.
  • the regeneration step the loading of the absorbent is reduced and the regenerated absorbent obtained is preferably subsequently returned to the absorption step.
  • the regeneration step involves at least depressurizing the loaded absorbent from a high pressure prevailing in the absorption step to a lower pressure.
  • the pressure Voltage can be done for example by means of a throttle valve and / or an expansion turbine.
  • the regeneration with a relaxation stage is described, for example, in the publications US Pat. Nos. 4,537,753 and 4,553,984.
  • the release of the acidic gas constituents in the regeneration step for example, in a flash column, z. B. a vertically or horizontally installed flash tank or a countercurrent column with internals, done.
  • the regeneration column may likewise be a packed, packed or tray column.
  • the regeneration column has a heater at the bottom, z. B. a forced circulation evaporator with circulation pump. At the top, the regeneration column has an outlet for the liberated acid gases. Entrained absorbent vapors are condensed in a condenser and returned to the column.
  • a process variant with two low-pressure expansion stages (1 to 2 bar absolute), in which the partially regenerated in the first low-pressure expansion stage absorption liquid is heated, and optionally provided before the first Niederchristentpressivesze a medium-pressure relaxation stage is relaxed in at least 3 bar, is in DE 100 28 637 described.
  • the loaded absorption liquid is initially expanded in a first low-pressure expansion stage to a pressure of 1 to 2 bar (absolute).
  • the partially regenerated absorption liquid is heated in a heat exchanger and then expanded again in a second low-pressure expansion stage to a pressure of 1 to 2 bar (absolute).
  • the last stage of expansion may also be carried out under vacuum, for example by means of a steam jet, optionally in combination with a mechanical vacuum generator, as described in US Pat EP-A 0 159 495, EP-A 0 202 600, EP-A 0 190 434 and EP-A 0 121 109 (US Pat. No. 4,551,158).
  • the absorbent according to the invention has a high loadability with acidic gases, which can also be readily desorbed again. As a result, the energy consumption and the solvent circulation can be significantly reduced in the process according to the invention.
  • Fig. 1 is a schematic representation of an apparatus suitable for carrying out the method according to the invention.
  • a suitably pretreated gas containing acid gas in an absorber 2 is brought into contact with the regenerated absorption medium, which is supplied via the absorption medium line 3, via a feed line 1 in countercurrent.
  • the absorbent removes acid gases by absorption from the gas; In this case, an acid gas poor clean gas is obtained via an exhaust pipe 4.
  • a pump 12 Via an absorption medium line 5, a pump 12, a solvent-solvent heat exchanger 11, in which the absorbent laden with sour gas is heated with the heat of the regenerated absorbent emerging from the bottom of the desorption column 7, and becomes a throttle valve 6 the adsorber loaded with sour gas fed to a desorption column 7.
  • the loaded absorbent In the lower part of the desorption column 7, the loaded absorbent is heated and regenerated by means of a (not shown) Aufgenesisers. The acid gas released thereby leaves the desorption column 7 via the exhaust gas line 8.
  • the regenerated absorption medium is subsequently heated by means of a pump 9 via the solvent-solvent heat exchanger 11, in which the regenerated absorption medium heats up the absorption medium loaded with sour gas and, in the process, cools down, and a heat exchanger 10 of the absorption column 2 fed again.
  • a 39 wt% (32.8 mol%) solution of methyldiethanolamine was prepared. 200 ml aliquots were admixed with 1% by weight ortho-phosphoric acid (H3PO4) or 1.2% by weight 1-hydroxyethane-1,1-diphosphonic acid (HEDP). The two solutions were loaded at 50 0 C at atmospheric pressure to equilibrium with H2S. The hbS equilibrium loading was determined by potentiometric titration against silver nitrate.
  • H3PO4 ortho-phosphoric acid
  • HEDP 1-hydroxyethane-1,1-diphosphonic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Ein Absorptionsmittel zum Entfernen saurer Gase aus einem Fluidstrom umfasst eine wässrige Lösung a) wenigstens eines Amins und b) wenigstens einer Phosphonsäure, wobei das molare Verhältnis von b) zu a) im Bereich von 0,0005 bis 1,0 liegt. Die Phosphonsäure ist z.B. 1-Hydroxyethan-1,1-diphosphonsäure. Das Absorptionsmittel zeigt gegenüber Absorptionsmitteln auf der Basis von Aminen bzw. Amin/Promotor-Kombinationen einen verringerten Regenerationsenergiebedarf, ohne die Absorptionskapazität der Lösung für saure Gase wesentlich zu verringern.

Description

Absorptionsmittel zum selektiven Entfernen von Schwefelwasserstoff aus Fluidströmen
Beschreibung
Die vorliegende Erfindung betrifft ein Absorptionsmittel zum Entfernen von sauren Gasen aus Fluidströmen, insbesondere zum selektiven Entfernen von Schwefelwasserstoff aus Fluidströmen, und ein Verfahren zum Entfernen saurer Gase aus einem FIu- idstrom.
Die Entfernung von Sauergasen, wie z.B. CO2, H2S, SO2, CS2, HCN, COS oder Mer- captanen, aus Fluidströmen, wie Erdgas, Raffineriegas, Synthesegas, ist aus unterschiedlichen Gründen von Bedeutung. Der Gehalt an Schwefelverbindungen von Erdgas muss durch geeignete Aufbereitungsmaßnahmen unmittelbar an der Erdgasquelle reduziert werden, denn die Schwefelverbindungen bilden in dem vom Erdgas häufig mitgeführten Wasser Säuren, die korrosiv wirken. Für den Transport des Erdgases in einer Pipeline oder die Weiterverarbeitung in einer Erdgasverflüssigungsanlage (LNG = Liquified natural Gas) müssen daher vorgegebene Grenzwerte der schwefelhaltigen Verunreinigungen eingehalten werden. Die Verringerung des Gehalts an Kohlendioxid ist vielfach zur Einstellung eines vorgegebenen Brennwerts erforderlich.
Zur Entfernung von Sauergasen werden Wäschen mit wässrigen Lösungen anorganischer oder organischer Basen eingesetzt. Beim Lösen von Sauergasen in dem Absorptionsmittel bilden sich mit den Basen Ionen. Das Absorptionsmittel kann durch Entspannen auf einen niedrigeren Druck und/oder Strippen regeneriert werden, wobei die ionischen Spezies zu Sauergasen zurück reagieren und/oder mittels Dampf abgestrippt werden. Nach dem Regenerationsprozess kann das Absorptionsmittel wiederverwendet werden.
Ein Verfahren, bei dem alle sauren Gase, insbesondere CO2 und H2S, weitestgehend entfernt werden, wird auch als "Total-Absorption" bezeichnet. In bestimmten Fällen kann es dagegen wünschenswert sein, bevorzugt H2S vor CO2 zu absorbieren, um ein Brennwert-optimiertes CO2/H2S-Verhältnis für eine nachgeschaltete Claus-Anlage zu erhalten. In diesem Fall spricht man von einer "selektiven Wäsche". Ein ungünstiges CO2/H2S-Verhältnis kann die Leistung und Effizienz der Claus-Anlage durch Bildung von COS/CS2 und Verkokung des Claus-Katalysators oder durch einen zu geringen Heizwert beeinträchtigen.
Tertiäre Amine, wie Methyldiethanolamin (MDEA), oder sterisch gehinderte Amine zeigen kinetische Selektivität für H2S gegenüber CO2. Diese Amine reagieren nicht direkt mit CO2; vielmehr wird Cθ2 in einer langsamen Reaktion mit dem Amin und mit Wasser zu Bicarbonat umgesetzt. Tertiäre Amine eignen sich daher insbesondere für eine selektive Entfernung von H2S aus Gasgemischen, die CÜ2 und H2S enthalten.
Die Absorptionsrate von CO2 in wässrigen Lösungen von tertiären Alkanolaminen kann durch Zugabe weiterer Verbindungen, die als Aktivatoren oder Promotoren bezeichnet werden, erhöht werden. Eine der wirksamsten Absorptionsflüssigkeiten zur Entfernung von CÜ2 und H2S aus einem Gasstrom ist eine wässrige Lösung von Methyldiethano- lamin (MDEA) und Piperazin als Promotor. Ein derartiges Absorptionsmittel ist bekannt aus der US 4,336,233.
Primäre Amine, wie Monoethanolamin (MEA), und sekundäre Amine, wie Diethanol- amin (DEA) oder Diisopropanolamin (DIPA), können in einer schnelleren Reaktion direkt mit CO2 reagieren. Diese Amine zeigen eine deutlich geringere hbS-Selektivität. Aufgrund ihrer hohen Affinität für saure Gase können sie auch zur Wäsche von Gasströmen mit niedrigem Sauergas-Partialdruck verwendet werden. Mit der hohen Affinität für saure Gase korreliert allerdings eine hohe spezifische Regenerationsenergie.
Die EP-A 134 948 beschreibt ein Absorptionsmittel, das ein alkalisches Material und eine Säure mit einem pKa von 6 oder weniger umfasst. Bevorzugte Säuren sind Phosphorsäure, Ameisensäure oder Salzsäure. Der Säurezusatz soll insbesondere das Strippen H2S enthaltender saurer Gase effizienter machen.
Die WO 2007/021531 offenbart Absorptionsmittel zur selektiven Entfernung unter Nor- malbedingungen gasförmiger saurer Komponenten aus Gemischen, die die gasförmigen sauren Komponenten und gasförmige nicht-saure Komponenten und CO2 enthalten. Die Absorptionsmittel umfassen ein über eine Alkylengruppe von wenigstens 2 Kettenatomen an den Aminstickstoff eines gehinderten sekundären oder tertiären Amins gebundenes Metallsulfonat, Metallsulfat, Metallsulfamat, Metallphosphonat, Me- tallphosphat, Metallphosphoramidit oder Metallcarboxylat.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und ein Absorptionsmittel zur Entfernung saurer Gase aus Fluidströmen anzugeben, das gegenüber Absorptionsmitteln auf der Basis von Aminen bzw. Amin/Promotor-Kombinationen einen verringerten Regenerationsenergiebedarf zeigt, ohne die Absorptionskapazität der Lösung für saure Gase wesentlich zu verringern.
Die Aufgabe wird gelöst durch ein Absorptionsmittel zum Entfernen saurer Gase aus einem Fluidstrom, das eine wässrige Lösung a) wenigstens eines Amins und
b) wenigstens einer Phosphonsäure,
umfasst, wobei das molare Verhältnis von b) zu a) im Bereich von 0,0005 bis 1 ,0, vorzugsweise 0,0005 bis 0,1 , stärker bevorzugt 0,01 bis 0,1 , insbesondere 0,02 bis 0,09 liegt.
In bestimmten Ausführungsformen umfasst die wässrige Lösung außerdem
c) wenigstens eine Carbonsäure,
wobei das molare Verhältnis von c) zu a) im Bereich von 0,0005 bis 0,1 , vorzugsweise 0,01 bis 0,1 , insbesondere 0,02 bis 0,09 liegt.
Das erfindungsgemäße Absorptionsmittel enthält wenigstens eine organische Phosphonsäure.
Geeignet sind beispielsweise Phosphonsäuren der Formel I
R-PO3H (I)
worin R für Ci-Cis-Alkyl steht, das gegebenenfalls durch bis zu vier Substituenten sub- stituiert ist, die unabhängig ausgewählt sind unter Carboxy, Carboxamido, Hydroxy und Amino.
Hierzu zählen Alkylphosphonsäuren, wie Methylphosphonsäure, Propylphosphonsäu- re, 2-Methyl-propylphosphonsäure, t-Butylphosphonsäure, n-Butylphosphonsäure, 2,3- Dimethylbutylphosphonsäure, Oktylphosphonsäure; Hydroxyalkylphosphonsäuren, wie Hydroxymethylphosphonsäure, 1 -Hydroxyethylphosphonsäure, 2-Hydroxyethyl- phosphonsäure; Arylphosphonsäuren wie Phenylphosphonsäure, Toluylphosphonsäu- re, Xylylphosphonsäure, Aminoalkylphosphonsäuren wie Aminomethylphosphonsäure, 1 -Aminoethylphosphonsäure, 1 -Dimethylaminoethylphosphonsäure, 2-Aminoethyl- phosphonsäure, 2-(N-Methylamino)ethylphosphonsäure, 3-Aminopropylphosphon- säure, 2-Aminopropylphosphonsäure, 1-Aminopropylphosphonsäure, 1-Aminopropyl-2- chlorpropylphosphonsäure, 2-Aminobutylphosphonsäure, 3-Aminobutylphosphonsäure, 1 -Aminobutylphosphonsäure, 4-Aminobutylphosphonsäure, 2-Aminopentylphosphon- säure, 5-Aminopentylphosphonsäure, 2-Aminohexylphosphonsäure, 5-Aminohexyl- phosphonsäure, 2-Aminooctylphosphonsäure, 1-Aminooctylphosphonsäure, 1-Amino- butylphosphonsäure; Amidoalkylphosphonsäuren wie 3-Hydroxymethylamino-3- oxopropylphosphonsäure; und Phosphonocarbonsäuren wie 2-Hydroxyphosphono- essigsäure und 2-Phosphonobutan-1 ,2,4-tricarbonsäure.
Phosphonsäuren der Formel Il
Figure imgf000006_0001
worin R' für H oder Ci-6-Al kyl steht, Q für H, OH oder NY2 steht und Y für H oder CH2PO3H2 steht, wie 1-Hydroxyethan-1 ,1-diphosphonsäure;
Phosphonsäuren der Formel III
Figure imgf000006_0002
worin Z für C2-6-Alkylen, Cycloalkandiyl, Phenylen, oder C2-6-Alkylen, das durch Cyclo- alkandiyl oder Phenylen unterbrochen ist, steht, Y für CH2PO3H2 steht und m für O bis 4 steht, wie Ethylendiamin-tetra(methylenphosphonsäure), Diethylentriamin- penta(methylenphosphonsäure) und Bis(hexamethylen)triamin-penta(methylen- phosphonsäure);
Phosphonsäuren der Formel IV
FT-NY2 (IV)
worin R" für Ci-6-Al kyl, C2-6-Hydroxyalkyl oder Y steht und Y für CH2PO3H2 steht, wie Nitrilo-tris(methylenphosphonsäure) und 2-Hydroxyethyliminobis(methylenphosphon- säure).
Unter den Phosphonsäuren sind 2-Hydroxyphosphonoessigsäure, 2-Phosphonobutan- 1 ,2,4-tricarbonsäure, 1-Hydroxyethan-1 ,1-diphosphonsäure, Ethylendiamin-tetra- (methylenphosphonsäure), Diethylentriamin-penta(methylenphosphonsäure), Bis(hexamethylen)triamin-penta(methylenphosphonsäure) und Nitrilo-tris(methylen- phosphonsäure), wovon 1-Hydroxyethan-1 ,1-diphosphonsäure besonders bevorzugt ist.
Selbstverständlich können auch Gemische zweier oder mehrerer der vorstehend ge- nannten Phosphonsäuren verwendet werden.
Die Phosphonsäure wird vorzugsweise in Form der freien Säure zu der Lösung des Amins gegeben.
Alternativ kann die Phosphonsäure in Form eines nicht-quaternären Ammoniumsalzes eingesetzt werden, d. h. als Ammoniumsalz (NH4 +-SaIz) oder Salz eines primären, sekundären oder tertiären Ammoniumions. Unter den Bedingungen der Regeneration des Absorptionsmittels kann aus dem nicht-quaternären Ammoniumsalz die freie Säure freigesetzt werden. Geeignete Ammoniumsalze sind die protonierten Spezies der Ami- ne, die als Komponente a) des Absorptionsmittels verwendet werden.
In bestimmten Ausführungsformen enthält das erfindungsgemäße Absorptionsmittel außerdem wenigstens eine Carbonsäure. Im Allgemeinen weisen geeignete Carbonsäuren 1 bis 12 Kohlenstoffatome auf.
Zu den geeigneten Carbonsäuren zählen
aliphatische Monocarbonsäuren, wie Methansäure (Ameisensäure), Ethansäure (Essigsäure), Propansäure (Propionsäure), Buttersäure;
aromatische Monocarbonsäuren, wie Benzoesäure, Phenylethansäure, Salicylsäure;
aliphatische Di- und Oligocarbonsäuren, wie Ethandisäure (Oxalsäure), Propandisäure (Malonsäure), Butandisäure, Pentandisäure;
aromatische Di- und Oligocarbonsäuren, wie 1 ,2-, 1 ,3-, 1 ,4-Benzoldicarbonsäure;
Aminocarbonsäuren, wie Glycin, N,N-Dimethylglycin, Alanin, N-Methylalanin;
Hydroxycarbonsäuren, wie Glykolsäure, Milchsäure, Äpfelsäure, Weinsäure, Citronen- säure.
Das erfindungsgemäße Absorptionsmittel ist vorzugsweise im Wesentlichen frei von Metallsalzen. Das erfindungsgemäße Absorptionsmittel enthält wenigstens ein Amin. Das Amin verfügt nicht über saure Gruppen, wie insbesondere Phosphonsäure-, Sulfonsäure- und/oder Carbonsäuregruppen. Zu den geeigneten Aminen zählen insbesondere:
1. Alkanolamine (Aminoalkohole) wie
2-Aminoethanol (Monoethanolamin, MEA), N,N-Bis(2-hydroxyethyl)amin (Diethanol- amin, DEA), N,N-Bis(2-hydroxypropyl)amin (Diisopropanolamin, DIPA), Tris(2-hydroxy- ethyl)amin (Triethanolamin, TEA), Tributanolamin, Bis(2-hydroxyethyl)-methylamin (Methyldiethanolamin, MDEA), 2-Diethylaminoethanol (Diethylethanolamin, DEEA), 2-Dimethylaminoethanol (Dimethylethanolamin, DMEA), 3-Dimethylamino-1-propanol (N,N-Dimethylpropanolamin), 3-Diethylamino-1-propanol, 2-Diisopropylaminoethanol (DIEA), N,N-Bis(2-hydroxypropyl)methylamin (Methyldiisopropanolamin, MDIPA), 2-Amino-2-methyl-1-propanol (AMP), 1-Amino-2-methyl-propan-2-ol, 2-Amino-1- butanol (2-AB);
2. Aminoether wie
2-(2-Aminoethoxy)ethanol (AEE), 2-(2-tert-Butylaminoethoxy)ethanol (EETB), 3-Methoxypropyldimethylamin;
3. 5-, 6- oder 7-gliedrigen gesättigten Heterocyclen mit wenigstens einer NH- Gruppe im Ring, die ein oder zwei weitere, unter Stickstoff und Sauerstoff ausgewählte Heteroatome im Ring enthalten können,
wie Piperazin, 2-Methylpiperazin, N-Methylpiperazin, N-Ethylpiperazin, N-Amino- ethylpiperazin, N-Hydroxyethylpiperazin, Homopiperazin, Piperidin und Morpholin;
4. Polyamine, z. B.
4.1 Alkylendiamine der Formel
H2N-R2-NH2,
worin R2 für C2-C6-Alkylen steht,
wie Hexamethylendiamin, 1 ,4-Diaminobutan, 1 ,3-Diaminopropan, 2,2-Dimethyl-1 ,3- diaminopropan, 4.2 Alkylendiamine der Formel
R1-NH-R2-NH2
worin R1 für Ci-C6-Alkyl oder d-Ce-Hydroxyalkyl steht und R2 für C2-C6-Alkylen steht,
wie 3-Methylaminopropylamin, N-(2-Hydroxyethyl)ethylendiamin,
4.3 Alkylendiamine der Formel
(R1)2N-R2-NH2
worin R1 für Ci-C6-Alkyl oder Ci-C6-Hydroxyalkyl steht und R2 für C2-C6-Alkylen steht,
wie 3-(Dimethylamino)propylamin (DMAPA) und 3-(Diethylamino)propylamin,
4.4 Alkylendiamine der Formel
R1-NH-R2-NH-R1
worin R1 für Ci-C6-Alkyl oder Ci-C6-Hydroxyalkyl steht und R2 für C2-C6-Alkylen steht,
wie N,N'-Bis(2-hydroxyethyl)ethylendiamin,
4.5 Bistertiäre Diamine wie
N,N,N',N'-Tetramethylethylendiamin, N,N-Diethyl-N',N'-dimethylethylendiamin, N,N,N',N'-Tetraethylethylendiamin, N,N,N',N'-Tetramethyl-1 ,3-propandiamin (TMPDA), N, N, N', N'-Tetraethyl-1 ,3-propandiamin (TEPDA), N,N-Dimethyl-N',N'-diethylethylen- diamin (DMDEEDA), 1-Dimethylamino-2-dimethylaminoethoxyethan (Bis[2-(dimethyl- amino)ethyl]ether);
4.6 Polyalkylenpolyamine
wie Diethylentriamin, Triethylentetramin und Tetraethylenpentamin, Tris(3-amino- propyl)amin, Tris(2-aminoethyl)amin;
und Gemische davon. Alkanolamine, d. h. Amine mit wenigstens einer an das Stickstoffatom gebundenen Hydroxyalkylgruppe, sind im Allgemeinen bevorzugt.
In einer Ausführungsform umfasst das Absorptionsmittel ausschließlich Amine mit ausschließlich tertiären und/oder sterisch gehinderten Aminogruppen. Das Absorptionsmittel dieser Ausführungsform eignet sich besonders zur selektiven Entfernung von H2S.
Unter "sterisch gehinderten Aminogruppen" werden vorliegend verstanden
(i) eine primäre Aminogruppe, die an ein tertiäres Kohlenstoffatom gebunden ist,
(ii) eine Aminogruppe, die an ein sekundäres oder tertiäres Kohlenstoffatom gebunden ist, und
(iii) eine Aminogruppe, wobei ein tertiäres oder quartäres Kohlenstoffatom in ß-Position zur Aminogruppe angeordnet ist.
Bevorzugte Amine mit ausschließlich tertiären Aminogruppen sind Tris(2-hydroxy- ethyl)amin (Triethanolamin, TEA), Tris(2-hydroxypropyl)amin (Triisopropanol), Tributa- nolamin, Bis(2-hydroxyethyl)-methylamin (Methyldiethanolamin, MDEA), 2-Diethyl- aminoethanol (Diethylethanolamin, DEEA), 2-Dimethylaminoethanol (Dimethylethanol- amin, DMEA), 3-Dimethylamino-1-propanol, 3-Diethylamino-1-propanol, 2-Diisopropyl- aminoethanol (DIEA), N,N-Bis(2-hydroxypropyl)methylamin (Methyldiisopropanolamin, MDIPA).
Bevorzugte Amine mit ausschließlich sterisch gehinderten Aminogruppen sind 2-Amino-2-methyl-1-propanol (AMP) und 1-Amino-2-methylpropan-2-ol.
In einer anderen Ausführungsform umfasst das Absorptionsmittel wenigstens ein Amin mit ausschließlich tertiären und/oder sterisch gehinderten Aminogruppen und wenigstens einen Aktivator. Der Aktivator ist üblicherweise ein primäres oder sekundäres Amin und beschleunigt die Kohlendioxid-Aufnahme durch intermediäre Bildung einer Carbamatstruktur. Das Absorptionsmittel dieser Ausführungsform eignet sich beson- ders zur energiesparenden, unselektiven Entfernung von Sauergasen. Im Fall der totalen Absorption wird mindestens eine der beiden Komponenten H2S oder CO2 spezifiziert, wobei die andere entsprechend ihres Gleichgewichts am Absorberkopf abgerei- chert wird. Es kann auch vorkommen, dass für ein der beiden Sauergaskomponenten eine maximale Austrittsspezifikation festgesetzt wird. Beispiele bevorzugter Amine mit ausschließlich tertiären und/oder sterisch gehinderten Aminogruppen sind die vorstehend genannten.
Beispiele bevorzugter Aktivatoren sind Piperazin, 2-Methylpiperazin, N-Methyl- piperazin, N-Hydroxyethylpiperazin, Homopiperazin, Piperidin, Morpholin, 3-Methyl- aminopropylamin und 2-(2-Aminoethoxy)ethanol.
In einer anderen Ausführungsform umfasst das Absorptionsmittel wenigstens ein (nicht sterisch gehindertes) primäres und/oder sekundäres Amin. Das Absorptionsmittel dieser Ausführungsform eignet sich besonders zur energiesparenden, unselektiven Entfernung von Sauergasen bei niedrigen Sauergaspartialdrücken.
Beispiele bevorzugter primärer und/oder sekundärer Amine sind 2-Aminoethanol (Mo- noethanolamin, MEA), N,N-Bis(2-hydroxyethyl)amin (Diethanolamin, DEA), N,N-Bis(2- hydroxypropyl)amin (Diisopropanolamin, DIPA).
Im Allgemeinen enthält die wässrige Lösung 2 bis 5 kmol / m3, insbesondere 3,5 bis 4,5 kmol / m3 Amin.
Das Absorptionsmittel kann auch Additive, wie Korrosionsinhibitoren, Enzyme etc. enthalten. Im Allgemeinen liegt die Menge an derartigen Additiven im Bereich von etwa 0,01-3 Gew.-% des Absorptionsmittels.
Die Erfindung betrifft außerdem ein Verfahren zum Entfernen saurer Gase aus einem Fluidstrom, bei dem man den Fluidstrom mit dem oben definierten Absorptionsmittel in Kontakt bringt.
In der Regel regeneriert man das beladene Absorptionsmittel durch
a) Erwärmung, b) Entspannung, c) Strippen mit einem inerten Fluid
oder eine Kombination zweier oder aller dieser Maßnahmen.
Das erfindungsgemäße Verfahren bzw. Absorptionsmittel ist geeignet zur Behandlung von Fluiden, insbesondere Gasströmen aller Art. Bei den sauren Gasen handelt es sich insbesondere um CO2, H2S, aber auch COS und Mercaptane. Außerdem können auch SO3, SO2, CS2 und HCN entfernt werden. Fluide, welche die sauren Gase enthalten, sind einerseits Gase, wie Erdgas, Synthesegas, Koksofengas, Spaltgas, Kohlevergasungsgas, Kreisgas, Deponiegase und Verbrennungsgase, und andererseits mit dem Absorptionsmittel im Wesentlichen nicht mischbare Flüssigkeiten, wie LPG (Liquefied Petroleum Gas) oder NGL (Natural Gas Liquids). Das erfindungsgemäße Verfahren bzw. Absorptionsmittel ist besonders zur Behandlung von kohlenwasserstoffhaltigen Fluidströmen geeignet. Die enthaltenen Kohlenwasserstoffe sind z. B. aliphatische Kohlenwasserstoffe, wie Ci-C4-Kohlenwasserstoffe, wie Methan, ungesättigte Kohlenwasserstoffe, wie Ethylen oder Propylen, oder aromatische Kohlenwasserstoffe wie Benzol, Toluol oder XyIoI. Das erfindungsgemäße Verfahren bzw. Absorptionsmittel ist besonders zur Entfernung von CO2 und H2S geeignet.
In bevorzugten Ausführungsformen ist der der Fluidstrom ein
(i) Wasserstoff enthaltender Fluidstrom oder ein Wasserstoff und Kohlendioxid enthaltender Fluidstrom; hierzu zählen Synthesegase, die z. B. durch Kohlevergasung oder Steamreforming herstellbar sind und gegebenenfalls einer Wassergas- Shift-Reaktion unterzogen sind; die Synthesegase werden z. B. zur Herstellung von Ammoniak, Methanol, Formaldehyd, Essigsäure, Harnstoff, zur Fischer- Tropsch-Synthese oder zur Energiegewinnung in einem Integrated Gasification
Combined Cycle (IGCC) Prozess verwendet
(ii) Kohlenwasserstoffe enthaltender Fluidstrom; hiezu zählen neben Erdgas Abgase verschiedener Raffinerieprozesse, wie der Tailgas Unit (TGU), eines Visbreakers (VDU), eines katalytischen Crackers (LRCUU/FCC), eines Hydrocrackers (HCU), eines Hydrotreaters (HDS/HTU), eines Cokers (DCU), einer Atmosphärischen Destillation (CDU) oder eines Liquid Treaters (z. B. LPG).
Das erfindungsgemäße Verfahren eignet sich zur selektiven Entfernung von Schwefel- Wasserstoff gegenüber CO2. Unter "selektiver Entfernung von Schwefelwasserstoff" wird verstanden, dass die folgende Ungleichung erfüllt ist
C(H2S)feed - C(H2S)treat
Figure imgf000012_0001
> 1
C(CO2)feed - C(CO2)treat C(CO2)feed worin c(H2S)feed die Konzentration von H2S im Ausgangsfluid, c(H2S)treat die Konzentration im behandelten Fluid, c(CO2)feed die Konzentration von CO2 im Ausgangsfluid und c(CO2)treat die Konzentration von CO2 im behandelten Fluid bedeuten.
Die selektive Entfernung von H2S s ist z. B. von Vorteil a) zur Einhaltung einer vorgegeben H2S Spezifikationen, wenn die maximale Sauergas-Gesamtbeladbarkeit des Absorptionsmittels bereits erreicht ist und b) zur Einstellung eines höheren H2S/CO2- Verhältnisses im Sauergasstrom, der bei der Regeneration des Absorptionsmittels freigesetzt wird und der typischerweise in eine Claus-Anlage gefahren wird. Ein Sauer- gasstrom mit höherem hbS/CC^-Verhältnis weist einen höheren Brennwert auf und unterdrückt die Bildung von COS (aus CO2), welches die Laufzeit des Claus- Katalysators beeinträchtigt.
Im erfindungsgemäßen Verfahren wird das an sauren Gasbestandteilen reiche Aus- gangsfluid (Rohgas) in einem Absorptionsschritt in einem Absorber in Kontakt mit dem Absorptionsmittel gebracht, wodurch die sauren Gasbestandteile zumindest teilweise ausgewaschen werden.
Als Absorber fungiert vorzugsweise eine in üblichen Gaswäscheverfahren eingesetzte Waschvorrichtung. Geeignete Waschvorrichtungen sind beispielsweise Füllkörper, Pa- ckungs- und Bodenkolonnen, Membrankontaktoren, Radialstromwäscher, Strahlwäscher, Venturi-Wäscher und Rotations-Sprühwäscher, bevorzugt Packungs-, Füllkörper- und Bodenkolonnen, besonders bevorzugt Boden- und Füllkörperkolonnen. Die Behandlung des Fluidstroms mit dem Absorptionsmittel erfolgt dabei bevorzugt in einer Kolonne im Gegenstrom. Das Fluid wird dabei im Allgemeinen in den unteren Bereich und das Absorptionsmittel in den oberen Bereich der Kolonne eingespeist. In Bodenkolonnen sind Sieb-, Glocken- oder Ventilböden eingebaut, über welche die Flüssigkeit strömt. Füllkörperkolonnen können mit unterschiedlichen Formkörpern gefüllt werden. Wärme- und Stoffaustausch werden durch die Vergrößerung der Oberfläche aufgrund der meist etwa 25 bis 80 mm großen Formkörper verbessert. Bekannte Beispiele sind der Raschig-Ring (ein Hohlzylinder), Pall-Ring, Hiflow-Ring, Intalox-Sattel und dergleichen. Die Füllkörper können geordnet, aber auch regellos (als Schüttung) in die Kolonne eingebracht werden. Als Materialien kommen in Frage Glas, Keramik, Metall und Kunststoffe. Strukturierte Packungen sind eine Weiterentwicklung der geordneten Füll- körper. Sie weisen eine regelmäßig geformte Struktur auf. Dadurch ist es bei Packungen möglich, Druckverluste bei der Gasströmung zu reduzieren. Es gibt verschiedene Ausführungen von Packungen z. B. Gewebe- oder Blechpackungen. Als Material können Metall, Kunststoff, Glas und Keramik eingesetzt werden. Die Temperatur des Absorptionsmittels beträgt im Absorptionsschritt im Allgemeinen etwa 30 bis 100 0C, bei Verwendung einer Kolonne beispielsweise 30 bis 70 0C am Kopf der Kolonne und 50 bis 100 0C am Boden der Kolonne. Der Gesamtdruck beträgt im Absorptionsschritt im Allgemeinen etwa 1 bis 120 bar, bevorzugt etwa 10 bis 100 bar.
Es wird ein an sauren Gasbestandteilen armes, d. h. ein an diesen Bestandteilen abge- reichertes Produktgas (Reingas) und ein mit sauren Gasbestandteilen beladenes Absorptionsmittel erhalten. Das erfindungsgemäße Verfahren kann einen oder mehrere, insbesondere zwei, aufeinander folgende Absorptionsschritte umfassen. Die Absorption kann in mehreren aufeinander folgenden Teilschritten durchgeführt werden, wobei das die sauren Gasbestandteile enthaltende Rohgas in jedem der Teilschritte mit jeweils einem Teilstrom des Absorptionsmittels in Kontakt gebracht wird. Das Absorptionsmittel, mit dem das Rohgas in Kontakt gebracht wird, kann bereits teilweise mit sauren Gasen beladen sein, d. h. es kann sich beispielsweise um ein Absorptionsmittel, das aus einem nachfolgenden Absorptionsschritt in den ersten Absorptionsschritt zurückgeführt wurde, oder um teilregeneriertes Absorptionsmittel handeln. Bezüglich der Durchführung der zweistufigen Absorption wird Bezug genommen auf die Druckschriften EP-A 0 159 495, EP-A 0 190 434, EP-A 0 359 991 und WO 00100271.
Gemäß einer bevorzugten Ausführungsform wird das erfindungsgemäße Verfahren so durchgeführt, dass das die sauren Gase enthaltende Fluid zunächst in einem ersten Absorptionsschritt mit dem Absorptionsmittel bei einer Temperatur von 40 bis100 0C, bevorzugt 50 bis 90 0C und insbesondere 60 bis 90 0C behandelt wird. Das an sauren Gasen abgereicherte Fluid wird dann in einem zweiten Absorptionsschritt mit dem Absorptionsmittel bei einer Temperatur von 30 bis 90 0C, bevorzugt 40 bis 80 0C und insbesondere 50 bis 80 0C, behandelt. Dabei ist die Temperatur um 5 bis 20 0C niedriger als in der ersten Absorptionsstufe.
Aus dem mit den sauren Gasbestandteilen beladenen Absorptionsmittel können die sauren Gasbestandteile in üblicher weise (analog zu den nachfolgend zitierten Publikationen) in einem Regenerationsschritt freigesetzt werden, wobei ein regeneriertes Absorptionsmittel erhalten wird. Im Regenerationsschritt wird die Beladung des Absorptionsmittels verringert und das erhaltene regenerierte Absorptionsmittel wird vor- zugsweise anschließend in den Absorptionsschritt zurückgeführt.
Im Allgemeinen beinhaltet der Regenerationsschritt mindestens eine Druckentspannung des beladenen Absorptionsmittels von einem hohen Druck, wie er bei der Durchführung des Absorptionsschritts herrscht, auf einen niedrigeren Druck. Die Druckent- Spannung kann beispielsweise mittels eines Drosselventils und/oder einer Entspannungsturbine geschehen. Die Regeneration mit einer Entspannungsstufe ist beispielsweise beschrieben in den Druckschriften US 4,537, 753 und US 4,553, 984.
Die Freisetzung der sauren Gasbestandteile im Regenerationsschritt kann beispielsweise in einer Entspannungskolonne, z. B. einem senkrecht oder waagerecht eingebauten Flash-Behälter oder einer Gegenstromkolonne mit Einbauten, erfolgen.
Bei der Regenerationskolonne kann es sich ebenfalls um eine Füllkörper-, Packungs- oder Bodenkolonne handeln. Die Regenerationskolonne weist am Sumpf einen Aufheizer auf, z. B. einen Zwangsumlaufverdampfer mit Umwälzpumpe. Am Kopf weist die Regenerationskolonne einen Auslass für die freigesetzten Sauergase auf. Mitgeführte Absorptionsmitteldämpfe werden in einem Kondensator kondensiert und in die Kolonne zurückgeführt.
Es können mehrere Entspannungskolonnen hintereinander geschaltet werden, in denen bei unterschiedlichen Drücken regeneriert wird. Beispielsweise kann in einer Vorentspannungskolonne bei hohem Druck, der typischerweise etwa 1 ,5 bar oberhalb des Partialdrucks der sauren Gasbestandteile im Absorptionsschritt liegt, und in einer Hauptentspannungskolonne bei niedrigem Druck, beispielsweise 1 bis 2 bar absolut, regeneriert werden. Die Regeneration mit zwei oder mehr Entspannungsstufen ist beschrieben in den Druckschriften US 4,537, 753, US 4,553, 984, EP-A 0 159 495, EP-A 0 202 600, EP-A O 190 434 und EP-A O 121 109.
Eine Verfahrensvariante mit zwei Niederdruckentspannungsstufen (1 bis 2 bar absolut), bei der die in der ersten Niederdruckentspannungsstufe teilregenerierte Absorptionsflüssigkeit erwärmt wird, und bei der gegebenenfalls vor der ersten Niederdruckentspannungsstufe eine Mitteldruckentspannungsstufe vorgesehen wird, bei der auf mindestens 3 bar entspannt wird, ist in DE 100 28 637 beschrieben. Dabei wird die bela- dene Absorptionsflüssigkeit zunächst in einer ersten Niederdruckentspannungsstufe auf einen Druck von 1 bis 2 bar (absolut) entspannt. Anschließend wird die teilregenerierte Absorptionsflüssigkeit in einem Wärmetauscher erwärmt und dann in einer zweiten Niederdruckentspannungsstufe erneut auf einen Druck von 1 bis 2 bar (absolut) entspannt.
Die letzte Entspannungsstufe kann auch unter Vakuum durchgeführt werden, das beispielsweise mittels eines Wasserdampfstrahlers, gegebenenfalls in Kombination mit einem mechanischen Vakuumerzeugungsapparat, erzeugt wird, wie beschrieben in EP-A 0 159 495, EP-A 0 202 600, EP-A 0 190 434 und EP-A 0 121 109 (US 4,551 ,158).
Wegen der optimalen Abstimmung des Gehalts an den Aminkomponenten weist das erfindungsgemäße Absorptionsmittel eine hohe Beladbarkeit mit sauren Gasen auf, die auch leicht wieder desorbiert werden können. Dadurch können bei dem erfindungsgemäßen Verfahren der Energieverbrauch und der Lösungsmittelumlauf signifikant reduziert werden.
Die Erfindung wird anhand der beigefügten Zeichnung und des nachfolgenden Beispiels näher veranschaulicht.
Fig. 1 ist eine schematische Darstellung einer zur Durchführung des erfindungsgemäßen Verfahrens geeigneten Anlage.
Gemäß Fig. 1 wird über eine Zuleitung 1 ein geeignet vorbehandeltes, sauergase enthaltendes Gas in einem Absorber 2 mit dem regenerierten Absorptionsmittel, das über die Absorptionsmittelleitung 3 zugeführt wird, im Gegenstrom in Kontakt gebracht. Das Absorptionsmittel entfernt Sauergase durch Absorption aus dem Gas; dabei wird über eine Abgasleitung 4 ein an Sauergasen armes Reingas gewonnen.
Über eine Absorptionsmittelleitung 5, eine Pumpe 12, einen Solvent-Solvent-Wärme- tauscher 11 , in dem das mit Sauergas beladene Absorptionsmittel mit der Wärme des aus dem Sumpf der Desorptionskolonne 7 austretenden, regenerierten Absorptionsmit- tels aufgeheizt wird, und ein Drosselventil 6 wird das mit Sauergas beladene Absorptionsmittel einer Desorptionskolonne 7 zugeleitet. Im unteren Teil der Desorptionskolonne 7 wird das beladene Absorptionsmittel mittels eines (nicht dargestellten) Aufheizers erwärmt und regeneriert. Das dabei freigesetzte Sauergas verlässt die Desorptionskolonne 7 über die Abgasleitung 8. Das regenerierte Absorptionsmittel wird anschlie- ßend mittels einer Pumpe 9 über den Solvent-Solvent-Wärmetauscher 1 1 , in dem das regenerierte Absorptionsmittel das mit Sauergas beladenen Absorptionsmittel aufheizt und selbst dabei abkühlt, und einen Wärmetauscher 10 der Absorptionskolonne 2 wieder zugeführt.
Vergleichsbeispiel 1 und Beispiel 2
Man stellte eine 39 Gew.-%ige (32,8 mol-%) Lösung von Methyldiethanolamin her. Aliquote von 200 ml wurden mit 1 Gew.-% Ortho-Phosphorsäure (H3PO4) bzw. 1 ,2 Gew.-% 1-Hydroxyethan-1 ,1-diphosphonsäure (HEDP) versetzt. Die beiden Lösungen wurden bei 50 0C bei Normaldruck bis zum Gleichgewicht mit H2S beladen. Die hbS-Gleichgewichtsbeladung wurde durch potentiometrische Titration gegen Silbernitrat bestimmt.
Anschließend wurden die Lösungen zur Simulation des Regenerationsvorgangs in einem Erlenmeyerkolben mit aufgesetztem Rückflusskühler in einem Ölbad bei konstant 100 0C aufgekocht. Dabei wurde jeweils 10 Nl/h Stickstoffgas durch die Flüssigkeit geperlt, um den Austausch zwischen Gas- und Flüssigphase zu verbessern und das freigesetzte H2S über den Kühler zu entfernen.
Nach bestimmten Zeitintervallen wurden jeweils Proben von 20 ml entnommen und der HbS-Gehalt erneut durch potentiometrische Titration gegen Silbernitrat bestimmt. Die Ergebnisse sind in der nachstehenden Tabelle zusammengefasst.
Figure imgf000017_0001
Aus den Versuchsergebnissen ist ersichtlich, dass eine Regeneration auf eine vorgegebene Restbeladung (z. B. weniger als 2 %) im Beispiel 2 (mit HEDP) schneller erzielt wird als im Vergleichsbeispiel 1. Da in der gewählten Versuchsanordnung der Energieeintrag dem Produkt des konstanten Wärmestroms und der Zeit proportional ist, ist die erforderliche Regenerationsenergie im Beispiel 2 deutlich geringer.
Vergleichsbeispiele 3 und 5 und Beispiele 4 und 6 Man stellte eine wässrige Lösung von 37 Gew.-% MDEA + 3Gew.-% Piperazin (Ge- samtaminkonzentration 40 Gew.-%; 33,3 mol-%) her (so genanntes aktiviertes MDEA). Ein Aliquot von 200 ml wurde mit 1 ,2 Gew.-% (0,6 mol-%) 1-Hydroxyethan-1 ,1-diphos- phonsäure (HEDP) versetzt. Ein weiteres Aliquot diente als Kontrolle.
Es wurden zwei Versuchsreihen durchgeführt. Bei der ersten Reihe wurden die Lösungen bei 50 0C bei Normaldruck bis zum Gleichgewicht mit CO2 beladen, bei der zweiten Versuchsreihe bei 70 0C. Die CO^-Gleichgewichtsbeladung wurde durch Titration mit KOH bestimmt.
Anschließend wurden die Lösungen zur Simulation des Regenerationsvorgangs in einem Erlenmeyerkolben mit aufgesetztem Rückflusskühler in einem Ölbad bei konstant 100 0C aufgekocht. Dabei wurde jeweils 10 Nl/h Stickstoffgas durch die Flüssigkeit geperlt, um den Austausch zwischen Gas- und Flüssigphase zu verbessern und das freigesetzte CO2 über den Kühler zu entfernen.
Nach bestimmten Zeitintervallen wurden jeweils Proben von 20 ml entnommen und der Cθ2-Gehalt erneut durch Titration mit KOH bestimmt. Die Ergebnisse sind in der nachstehenden Tabelle zusammengefasst.
Figure imgf000018_0001
Aus den Versuchsergebnissen ist ersichtlich, dass eine Regeneration auf eine vorgegebene Restbeladung (z. B. weniger als 2 %) in den Beispielen 4 und 6 (mit HEDP) schneller erzielt wird als in den Vergleichsbeispielen 3 und 5. Da in der gewählten Versuchsanordnung der Energieeintrag dem Produkt des konstanten Wärmestroms und der Zeit proportional ist, ist die erforderliche Regenerationsenergie in den Beispielen 4 und 6 deutlich geringer.

Claims

Patentansprüche
1. Absorptionsmittel zum Entfernen saurer Gase aus einem Fluidstrom, umfassend eine wässrige Lösung
a) wenigstens eines Amins und
b) wenigstens einer Phosphonsäure,
wobei das molare Verhältnis von b) zu a) im Bereich von 0,0005 bis 1 ,0 liegt.
2. Absorptionsmittel nach Anspruch 1 , wobei das molare Verhältnis von b) zu a) im Bereich von 0,0005 bis 0,1 liegt.
3. Absorptionsmittel nach Anspruch 1 oder 2, wobei die Phosphonsäure ausgewählt ist unter
Phosphonsäuren der Formel I
R-PO3H (I)
worin R für Ci-Cis-Alkyl steht, das gegebenenfalls durch bis zu vier Substituenten substituiert ist, die unabhängig ausgewählt sind unter Carboxy, Carboxamido, Hydroxy und Amino,
Phosphonsäuren der Formel Il
Figure imgf000020_0001
worin R' für H oder Ci-6-Al kyl steht, Q für H, OH oder NY2 steht und Y für H oder
CH2PO3H2 steht,
Phosphonsäuren der Formel III
Figure imgf000020_0002
worin Z für C2-6-Alkylen, Cycloalkandiyl, Phenylen, oder C2-6-Alkylen, das durch Cycloalkandiyl oder Phenylen unterbrochen ist, steht, Y für CH2PO3H2 steht und m für 0 bis 4 steht,
Phosphonsäuren der Formel IV
FT-NY2 (IV)
worin R" für Ci-6-Al kyl, C2-6-Hydroxyalkyl oder Y steht und Y für CH2PO3H2 steht; oder Gemischen zweier oder mehrerer davon.
4. Absorptionsmittel nach Anspruch 4, wobei die Phosphonsäure 1-Hydroxyethan- 1 ,1-diphosphonsäure umfasst.
5. Absorptionsmittel nach einem der vorhergehenden Ansprüche, wobei die wässri- ge Lösung außerdem umfasst
c) wenigstens eine Carbonsäure,
wobei das molare Verhältnis von c) zu a) im Bereich von 0,0005 bis 0,1 liegt.
6. Absorptionsmittel nach einem der vorhergehenden Ansprüche, wobei das Amin wenigstens ein Alkanolamin umfasst.
7. Absorptionsmittel nach einem der vorhergehenden Ansprüche, wobei das Amin ausschließlich Amine mit ausschließlich tertiären und/oder sterisch gehinderten Aminogruppen umfasst.
8. Absorptionsmittel nach einem der Ansprüche 1 bis 6, wobei das Amin wenigstens ein Amin mit ausschließlich tertiären und/oder sterisch gehinderten Aminogruppen und wenigstens einen Aktivator umfasst.
9. Absorptionsmittel nach Anspruch 7 oder 8, wobei das Amin mit ausschließlich tertiären Aminogruppen ausgewählt ist unter Tris(2-hydroxyethyl)amin, Tris(2- hydroxypropyl)amin, Tributanolamin, Bis(2-hydroxyethyl)-methylamin, 2-Diethyl- aminoethanol, 2-Dimethylaminoethanol, 3-Dimethylamino-1-propanol, 3-Diethyl- amino-1-propanol, 2-Diisopropylaminoethanol und N,N-Bis(2-hydroxypropyl)- methylamin; und das Amin mit ausschließlich sterisch gehinderten Aminogruppen ausgewählt ist unter 2-Amino-2-methyl-1-propanol und 1-Amino-2-methylpropan- 2-ol.
10. Absorptionsmittel nach Anspruch 8, wobei der Aktivator ausgewählt ist unter Pi- perazin, 2-Methylpiperazin, N-Methylpiperazin, Homopiperazin, Piperidin,
Morpholin, 3-Methylaminopropylamin und 2-(2-Aminoethoxy)ethanol.
1 1. Absorptionsmittel nach einem der Ansprüche 1 bis 6, wobei das Amin wenigstens ein primäres und/oder sekundäres Amin umfasst.
12. Absorptionsmittel nach Anspruch 1 1 , wobei das primäre und/oder sekundäre Amin ausgewählt ist unter 2-Aminoethanol, N,N-Bis(2-hydroxyethyl)amin und N,N-Bis(2-hydroxypropyl)amin.
13. Absorptionsmittel nach einem der vorhergehenden Ansprüche, wobei die wässri- ge Lösung 2 bis 5 kmol / m3 Amin enthält.
14. Verfahren zum Entfernen saurer Gase aus einem Fluidstrom, bei dem man den Fluidstrom mit Absorptionsmittel nach einem der vorhergehenden Ansprüche in Kontakt bringt.
15. Verfahren nach Anspruch 14, zur selektiven Entfernung von Schwefelwasserstoff.
16. Verfahren nach Anspruch 14 oder 15, wobei der Fluidstrom Kohlenwasserstoffe enthält.
17. Verfahren nach einem der Ansprüche 14 bis 16, wobei man das beladene Absorptionsmittel durch
a) Erwärmung, b) Entspannung, c) Strippen mit einem inerten Fluid
oder eine Kombination zweier oder aller dieser Maßnahmen regeneriert.
PCT/EP2010/056556 2009-05-12 2010-05-12 Absorptionsmittel zum selektiven entfernen von schwefelwasserstoff aus fluidströmen WO2010130787A1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CN201080020874.3A CN102421507B (zh) 2009-05-12 2010-05-12 从流体流中选择性除去硫化氢的吸收剂
AU2010247405A AU2010247405B2 (en) 2009-05-12 2010-05-12 Absorbent for the selective removal of hydrogen sulfide from fluid flows
EA201171402A EA020754B1 (ru) 2009-05-12 2010-05-12 Абсорбент и способ для удаления кислого газа из потока текучей среды
CA2760732A CA2760732C (en) 2009-05-12 2010-05-12 Absorbent for the selective removal of hydrogen sulfide from fluid flows
PL10721454T PL2429686T3 (pl) 2009-05-12 2010-05-12 Absorbent do selektywnego usuwania siarkowodoru ze strumieni płynów
JP2012510293A JP5665855B2 (ja) 2009-05-12 2010-05-12 流体の流れから硫化水素を選択的に除去するための吸収剤
UAA201114649A UA106753C2 (uk) 2009-05-12 2010-05-12 Абсорбент для селективного видалення сірководню з флюїдних потоків
BRPI1011367A BRPI1011367A2 (pt) 2009-05-12 2010-05-12 meio de absorção, e, processo para a remoção de gases ácidos de uma corrente de fluido
EP10721454.6A EP2429686B1 (de) 2009-05-12 2010-05-12 Absorptionsmittel zum selektiven entfernen von schwefelwasserstoff aus fluidströmen
ES10721454T ES2425429T3 (es) 2009-05-12 2010-05-12 Medio de absorción para eliminar selectivamente sulfuro de hidrógeno de corrientes fluidas
ZA2011/09017A ZA201109017B (en) 2009-05-12 2011-12-08 Absorbent for the selective removal of hydrogen sulfide from fluid flows

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09160039 2009-05-12
EP09160039.5 2009-05-12

Publications (1)

Publication Number Publication Date
WO2010130787A1 true WO2010130787A1 (de) 2010-11-18

Family

ID=42272085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/056556 WO2010130787A1 (de) 2009-05-12 2010-05-12 Absorptionsmittel zum selektiven entfernen von schwefelwasserstoff aus fluidströmen

Country Status (15)

Country Link
US (1) US8221712B2 (de)
EP (1) EP2429686B1 (de)
JP (1) JP5665855B2 (de)
KR (1) KR20120020167A (de)
CN (1) CN102421507B (de)
AU (1) AU2010247405B2 (de)
BR (1) BRPI1011367A2 (de)
CA (1) CA2760732C (de)
EA (1) EA020754B1 (de)
ES (1) ES2425429T3 (de)
PE (1) PE20121040A1 (de)
PL (1) PL2429686T3 (de)
UA (1) UA106753C2 (de)
WO (1) WO2010130787A1 (de)
ZA (1) ZA201109017B (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118744A1 (en) * 2011-03-01 2012-09-07 Exxonmobil Research And Engineering Company Selective sulfur removal process
US8808426B2 (en) 2012-09-04 2014-08-19 Exxonmobil Research And Engineering Company Increasing scales, capacities, and/or efficiencies in swing adsorption processes with hydrocarbon gas feeds
US8906138B2 (en) 2007-11-12 2014-12-09 Exxonmobil Upstream Research Company Methods of generating and utilizing utility gas
US8921637B2 (en) 2010-11-15 2014-12-30 Exxonmobil Upstream Research Company Kinetic fractionators, and cycling processes for fractionation of gas mixtures
US9017457B2 (en) 2011-03-01 2015-04-28 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
US9034079B2 (en) 2011-03-01 2015-05-19 Exxonmobil Upstream Research Company Methods of removing contaminants from hydrocarbon stream by swing adsorption and related apparatus and systems
US9034078B2 (en) 2012-09-05 2015-05-19 Exxonmobil Upstream Research Company Apparatus and systems having an adsorbent contactor and swing adsorption processes related thereto
US9067168B2 (en) 2010-05-28 2015-06-30 Exxonmobil Upstream Research Company Integrated adsorber head and valve design and swing adsorption methods related thereto
US9120049B2 (en) 2011-03-01 2015-09-01 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US9126138B2 (en) 2008-04-30 2015-09-08 Exxonmobil Upstream Research Company Method and apparatus for removal of oil from utility gas stream
US9162175B2 (en) 2011-03-01 2015-10-20 Exxonmobil Upstream Research Company Apparatus and systems having compact configuration multiple swing adsorption beds and methods related thereto
US9168485B2 (en) 2011-03-01 2015-10-27 Exxonmobil Upstream Research Company Methods of removing contaminants from a hydrocarbon stream by swing adsorption and related apparatus and systems
US9352269B2 (en) 2011-03-01 2016-05-31 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US9358493B2 (en) 2011-03-01 2016-06-07 Exxonmobil Upstream Research Company Apparatus and systems having an encased adsorbent contactor and swing adsorption processes related thereto
WO2017097851A1 (de) * 2015-12-09 2017-06-15 Basf Se Verfahren und anlage zur sauergasanreicherung
US10449479B2 (en) 2016-08-04 2019-10-22 Exxonmobil Research And Engineering Company Increasing scales, capacities, and/or efficiencies in swing adsorption processes with hydrocarbon gas feeds

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010136425A1 (en) 2009-05-26 2010-12-02 Basf Se Process for recovery of carbon dioxide from a fluid stream, in particular from syngas
US8529857B2 (en) 2011-03-31 2013-09-10 Basf Se Retention of amines in the removal of acid gases by means of amine absorption media
US20130243677A1 (en) * 2012-03-14 2013-09-19 Exxonmobil Research And Engineering Company Amine treating process for selective acid gas separation
FR2990880B1 (fr) 2012-05-25 2017-04-28 Total Sa Procede d'elimination selective du sulfure d'hydrogene de melanges gazeux et utilisation d'un thioalcanol pour l'elimination selective du sulfure d'hydrogene.
FR2990950B1 (fr) 2012-05-25 2014-06-13 Total Sa Procede de purification d'une charge liquide d'hydrocarbures contenant des composes acides.
FR2990879B1 (fr) 2012-05-25 2014-09-26 Total Sa Procede de decarbonatation de fumees.
FR2990878B1 (fr) 2012-05-25 2014-05-16 Total Sa Procede de purification de melanges gazeux contenant des gaz acides.
JP5868795B2 (ja) * 2012-06-25 2016-02-24 株式会社東芝 酸性ガス吸収剤、酸性ガス除去方法および酸性ガス除去装置
AU2013281028B2 (en) * 2012-06-29 2018-03-08 Dow Global Technologies Llc Aqueous alkanolamine solution and process for the removal of H2S from gaseous mixtures
CN103043744B (zh) * 2012-12-07 2014-06-11 常州大学 一种煤渣灰处理工业废水的方法
FR2999449B1 (fr) * 2012-12-13 2015-04-03 IFP Energies Nouvelles Procede d'elimination de composes acides d'un effluent gazeux par une solution absorbante a base de 1,2-bis(2-dimethylaminoethoxy)-ethane et d'un activateur
WO2015017240A1 (en) * 2013-07-29 2015-02-05 Exxonmobil Research And Engineering Company Separation of hydrogen sulfide from natural gas
CN105658306A (zh) 2013-10-30 2016-06-08 陶氏环球技术有限责任公司 用于总有机硫去除和总酸性气体去除的混合溶剂调配物
WO2015065839A1 (en) 2013-10-30 2015-05-07 Dow Globlal Technologies Llc Hybrid solvent formulations for selective h2s removal
FR3020965B1 (fr) * 2014-05-16 2016-05-27 Ifp Energies Now Solution absorbante a base de diamines tertiaires beta hydroxylees et procede d'elimination de composes acides d'un effluent gazeux
US9533253B2 (en) 2014-06-05 2017-01-03 Phillips 66 Company Amine solvent blends
CN105344205A (zh) * 2014-08-20 2016-02-24 中国石油化工股份有限公司 一种能从含co2的混合气中选择性脱除h2s的吸收剂
WO2016030276A2 (de) * 2014-08-25 2016-03-03 Basf Se Entfernung von kohlendioxid aus einem fluidstrom
EP2990090A1 (de) * 2014-08-25 2016-03-02 Basf Se Absorptionsmittel zur selektiven Entfernung von Schwefelwasserstoff aus einem Fluidstrom
WO2016030272A2 (de) 2014-08-25 2016-03-03 Basf Se Entfernung von schwefelwasserstoff und kohlendioxid aus einem fluidstrom
KR20160058296A (ko) * 2014-11-14 2016-05-25 (주)티피티퍼시픽 2-아미노 2-메틸 1-프로판올(amp)를 포함하는 산성가스 제거용 흡수제 조성물 및 이를 이용한 산성가스 제거방법
CN108136367A (zh) 2015-08-28 2018-06-08 塞里奥尼克斯股份有限公司 用于碱性污染物的气体过滤器
WO2017040291A1 (en) 2015-08-28 2017-03-09 Serionix, Inc. Gas filters for acidic contaminants
US20180257022A1 (en) * 2015-09-29 2018-09-13 Basf Se Absorption agent and a method for selectively removing hydrogen sulphide
SG11201801360PA (en) 2015-09-29 2018-04-27 Basf Se Absorbent for the selective removal of hydrogen sulfide
WO2017055040A1 (de) * 2015-09-29 2017-04-06 Basf Se Zyklische amine zur selektiven entfernung von schwefelwasserstoff
CN105413396A (zh) * 2015-10-21 2016-03-23 中石化节能环保工程科技有限公司 捕集尾气中co2的分层吸收剂
EP3445474B1 (de) * 2016-04-18 2020-03-18 Basf Se Vormischung zur herstellung eines absorptionsmittels zur entfernung von sauergasen aus einem fluidstrom
EA038670B1 (ru) * 2017-05-15 2021-10-01 Басф Се Абсорбент и способ селективного удаления сульфида водорода
US10940407B2 (en) 2017-07-12 2021-03-09 Baker Hughes Holdings Llc Application of formaldehyde sulfoxylates for scavenging H2S
CN109276987B (zh) * 2018-10-25 2022-01-25 中国石油化工股份有限公司 一种用于工业尾气脱硫脱硝处理的吸收剂
WO2020174559A1 (ja) * 2019-02-26 2020-09-03 三菱重工エンジニアリング株式会社 オフガス処理装置及びこのオフガス処理装置を備える肥料製造プラント
US11229875B1 (en) 2020-09-25 2022-01-25 Ineos Americas, Llc Scrubbing fluid and methods for using same
WO2022129975A1 (en) 2020-12-17 2022-06-23 Totalenergies Onetech Method for the selective removal of hydrogen sulfide from a gas stream
WO2022129977A1 (en) 2020-12-17 2022-06-23 Totalenergies Onetech Method for recovering high purity carbon dioxide from a gas mixture
CN113318586B (zh) * 2021-06-09 2022-07-19 华东理工大学 一种胺类化合物在提高有机硫溶解和吸收脱除中的应用
WO2023073389A1 (en) 2021-10-26 2023-05-04 Totalenergies Onetech Method for the purification of a gas mixture comprising carbon dioxide and optionally hydrogen sulfide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892674A (en) * 1987-10-13 1990-01-09 Exxon Research And Engineering Company Addition of severely-hindered amine salts and/or aminoacids to non-hindered amine solutions for the absorption of H2 S
WO2007021531A1 (en) * 2005-08-09 2007-02-22 Exxonmobil Research And Engineering Company Absorbent composition containing molecules with a hindered amine and a metal sulfonate, phosphonate or carboxylate structure for acid gas scrubbing process
US20080056971A1 (en) * 2006-08-30 2008-03-06 Terry Hughes System and process for treating gasification emission streams

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2551717C3 (de) * 1975-11-18 1980-11-13 Basf Ag, 6700 Ludwigshafen und ggf. COS aus Gasen
DE3236600A1 (de) * 1982-10-02 1984-04-05 Basf Ag, 6700 Ludwigshafen Verfahren zum entfernen von co(pfeil abwaerts)2(pfeil abwaerts) und gegebenenfalls h(pfeil abwaerts)2(pfeil abwaerts)s aus erdgasen
DE3308088A1 (de) * 1983-03-08 1984-09-27 Basf Ag, 6700 Ludwigshafen Verfahren zum entfernen von co(pfeil abwaerts)2(pfeil abwaerts) und/oder h(pfeil abwaerts)2(pfeil abwaerts)s aus gasen
EP0134948A3 (de) 1983-06-30 1987-10-14 Union Carbide Corporation Absorbentformulierung zur verstärkten Entfernung saurer Gase aus Gasmischungen und Verfahren zu ihrer Verwendung
US4553984A (en) * 1984-03-06 1985-11-19 Basf Aktiengesellschaft Removal of CO2 and/or H2 S from gases
DE3408851A1 (de) 1984-03-10 1985-09-12 Basf Ag, 6700 Ludwigshafen Verfahren zum entfernen von co(pfeil abwaerts)2(pfeil abwaerts) und/oder h(pfeil abwaerts)2(pfeil abwaerts)s aus gasen
DE3445063A1 (de) 1984-12-11 1986-06-12 Basf Ag, 6700 Ludwigshafen Verfahren zum entfernen von co(pfeil abwaerts)2(pfeil abwaerts) und/oder h(pfeil abwaerts)2(pfeil abwaerts)s aus gasen
DE3518368A1 (de) 1985-05-22 1986-11-27 Basf Ag, 6700 Ludwigshafen Verfahren zum entfernen von co(pfeil abwaerts)2(pfeil abwaerts) und/oder h(pfeil abwaerts)2(pfeil abwaerts)s aus gasen
DE3828227A1 (de) 1988-08-19 1990-02-22 Basf Ag Verfahren zum entfernen von co(pfeil abwaerts)2(pfeil abwaerts) und gegebenenfalls h(pfeil abwaerts)2(pfeil abwaerts) aus gasen
JPH0615014B2 (ja) * 1990-05-31 1994-03-02 京葉プラントエンジニアリング株式会社 炭酸ガス吸収プロセスにおける鋼材の腐食抑制方法
CA2093901A1 (en) * 1991-08-13 1993-02-14 Dane Chang Composition and method for simultaneous absorption of sulfur dioxide and nitric oxide
US5851265A (en) * 1996-09-03 1998-12-22 Monsanto Company Selective removal and recovery of sulfur dioxide from effluent gases using organic phosphorous solvents
US6503420B1 (en) * 1997-10-06 2003-01-07 Fmc Corporation Anti-corrosion solutions for air dehumidification systems
DE19828977A1 (de) 1998-06-29 1999-12-30 Basf Ag Verfahren zur Entfernung saurer Gasbestandteile aus Gasen
DE10028637A1 (de) 2000-06-09 2001-12-13 Basf Ag Verfahren zum Entsäuern eines Kohlenwasserstoff-Fluidstroms
DE102004011427A1 (de) * 2004-03-09 2005-09-29 Basf Ag Absorptionsmittel mit verbesserter Oxidationsbeständigkeit und Verfahren zum Entsäuern von Fluidströmen
WO2006026784A1 (en) * 2004-09-01 2006-03-09 Applied Chemical Technologies, Inc. Methods and compositions for paint removal
CN1299802C (zh) * 2004-12-24 2007-02-14 茂名学院 脱除乙烯裂解气中酸性气体的工艺方法
FR2898284B1 (fr) * 2006-03-10 2009-06-05 Inst Francais Du Petrole Procede de desacidification d'un gaz par solution absorbante avec regeneration fractionnee par chauffage.
DK2026896T3 (en) * 2006-05-18 2016-11-28 Basf Se KULDIOXIDABSORPTIONSMIDDEL WITH REDUCED Regeneration ENERGY NEEDS
CN101264411A (zh) * 2008-04-23 2008-09-17 顾泽元 一种脱硫溶剂
EP2300127B1 (de) 2008-06-23 2015-04-01 Basf Se Absorptionsmittel und verfahren zur entfernung von sauergasen aus fluidströmen, insbesondere aus rauchgasen
JP5794913B2 (ja) 2008-06-23 2015-10-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 吸収剤及び流体流、特に排ガスからの酸性ガスの除去のための方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892674A (en) * 1987-10-13 1990-01-09 Exxon Research And Engineering Company Addition of severely-hindered amine salts and/or aminoacids to non-hindered amine solutions for the absorption of H2 S
WO2007021531A1 (en) * 2005-08-09 2007-02-22 Exxonmobil Research And Engineering Company Absorbent composition containing molecules with a hindered amine and a metal sulfonate, phosphonate or carboxylate structure for acid gas scrubbing process
US20080056971A1 (en) * 2006-08-30 2008-03-06 Terry Hughes System and process for treating gasification emission streams

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906138B2 (en) 2007-11-12 2014-12-09 Exxonmobil Upstream Research Company Methods of generating and utilizing utility gas
US10035096B2 (en) 2008-04-30 2018-07-31 Exxonmobil Upstream Research Company Method and apparatus for removal of oil from utility gas stream
US9126138B2 (en) 2008-04-30 2015-09-08 Exxonmobil Upstream Research Company Method and apparatus for removal of oil from utility gas stream
US9067168B2 (en) 2010-05-28 2015-06-30 Exxonmobil Upstream Research Company Integrated adsorber head and valve design and swing adsorption methods related thereto
US8921637B2 (en) 2010-11-15 2014-12-30 Exxonmobil Upstream Research Company Kinetic fractionators, and cycling processes for fractionation of gas mixtures
US8858683B2 (en) 2011-03-01 2014-10-14 Exxonmobil Research And Engineering Company Swing adsorption processes utilizing controlled adsorption fronts
US8784535B2 (en) 2011-03-01 2014-07-22 Exxonmobil Research And Engineering Company Pressure-temperature swing adsorption process for the separation of heavy hydrocarbons from natural gas streams
WO2012118744A1 (en) * 2011-03-01 2012-09-07 Exxonmobil Research And Engineering Company Selective sulfur removal process
US8673059B2 (en) 2011-03-01 2014-03-18 Exxonmobil Research And Engineering Company Rapid temperature swing adsorption contactors for gas separation
US8784533B2 (en) 2011-03-01 2014-07-22 Exxonmobil Research And Engineering Company Temperature swing adsorption process for the separation of target species from a gas mixture
US9005561B2 (en) 2011-03-01 2015-04-14 Exxonmobil Research And Engineering Company Selective sulfur removal process
US9017457B2 (en) 2011-03-01 2015-04-28 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
US9034079B2 (en) 2011-03-01 2015-05-19 Exxonmobil Upstream Research Company Methods of removing contaminants from hydrocarbon stream by swing adsorption and related apparatus and systems
US10016715B2 (en) 2011-03-01 2018-07-10 Exxonmobil Upstream Research Company Apparatus and systems having an encased adsorbent contactor and swing adsorption processes related thereto
US8784534B2 (en) 2011-03-01 2014-07-22 Exxonmobil Research And Engineering Company Pressure-temperature swing adsorption process
US9120049B2 (en) 2011-03-01 2015-09-01 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US8852322B2 (en) 2011-03-01 2014-10-07 Exxonmobil Research And Engineering Company Gas purification process utilizing engineered small particle adsorbents
US9162175B2 (en) 2011-03-01 2015-10-20 Exxonmobil Upstream Research Company Apparatus and systems having compact configuration multiple swing adsorption beds and methods related thereto
US9168485B2 (en) 2011-03-01 2015-10-27 Exxonmobil Upstream Research Company Methods of removing contaminants from a hydrocarbon stream by swing adsorption and related apparatus and systems
AU2012223560B2 (en) * 2011-03-01 2016-04-14 Exxonmobil Research And Engineering Company Selective sulfur removal process
US9352269B2 (en) 2011-03-01 2016-05-31 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US9358493B2 (en) 2011-03-01 2016-06-07 Exxonmobil Upstream Research Company Apparatus and systems having an encased adsorbent contactor and swing adsorption processes related thereto
US9593778B2 (en) 2011-03-01 2017-03-14 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
US8808426B2 (en) 2012-09-04 2014-08-19 Exxonmobil Research And Engineering Company Increasing scales, capacities, and/or efficiencies in swing adsorption processes with hydrocarbon gas feeds
US9034078B2 (en) 2012-09-05 2015-05-19 Exxonmobil Upstream Research Company Apparatus and systems having an adsorbent contactor and swing adsorption processes related thereto
WO2017097851A1 (de) * 2015-12-09 2017-06-15 Basf Se Verfahren und anlage zur sauergasanreicherung
EA036135B1 (ru) * 2015-12-09 2020-10-02 Басф Се Способ обработки содержащего углеводороды потока текучей среды и устройство для его осуществления
US10875769B2 (en) 2015-12-09 2020-12-29 Basf Se Acid gas enrichment method and system
US10449479B2 (en) 2016-08-04 2019-10-22 Exxonmobil Research And Engineering Company Increasing scales, capacities, and/or efficiencies in swing adsorption processes with hydrocarbon gas feeds

Also Published As

Publication number Publication date
PL2429686T3 (pl) 2013-12-31
CA2760732A1 (en) 2010-11-18
EA020754B1 (ru) 2015-01-30
US20100288125A1 (en) 2010-11-18
EA201171402A1 (ru) 2012-05-30
CA2760732C (en) 2017-05-09
US8221712B2 (en) 2012-07-17
CN102421507A (zh) 2012-04-18
BRPI1011367A2 (pt) 2016-03-15
PE20121040A1 (es) 2012-07-31
UA106753C2 (uk) 2014-10-10
AU2010247405B2 (en) 2015-10-01
EP2429686B1 (de) 2013-07-17
JP2012526648A (ja) 2012-11-01
AU2010247405A1 (en) 2011-12-22
EP2429686A1 (de) 2012-03-21
JP5665855B2 (ja) 2015-02-04
CN102421507B (zh) 2014-07-23
ZA201109017B (en) 2013-02-27
ES2425429T3 (es) 2013-10-15
KR20120020167A (ko) 2012-03-07

Similar Documents

Publication Publication Date Title
EP2429686B1 (de) Absorptionsmittel zum selektiven entfernen von schwefelwasserstoff aus fluidströmen
EP2391437B1 (de) Aminosäure und sauren Promotor enthaltendes Absorptionsmittel zum Entfernen saurer Gase
EP2024059B1 (de) Entfernen saurer gase aus einem fluidstrom bei verminderter coabsorption von kohlenwasserstoffen und sauerstoff
EP2026896B1 (de) Kohlendioxid-absorptionsmittel mit verringertem regenerations-energiebedarf
EP3185988B1 (de) Absorptionsmittel zur selektiven entfernung von schwefelwasserstoff aus einem fluidstrom
EP3356013B1 (de) Absorptionsmittel zur selektiven entfernung von schwefelwasserstoff
DE102005043142A1 (de) Verfahren zum Entsäuern eines Fluidstroms und Absorptionsmittel hierfür
EP3356011B1 (de) Zyklische amine zur selektiven entfernung von schwefelwasserstoff
WO2008145658A1 (de) Absorptionsmittel zum entfernen von sauren gasen, umfassend eine basische aminocarbonsäure
CN106604771B (zh) 用于气体洗涤的具有叔烷基氨基和伯氨基的二胺
EP3185989A2 (de) Entfernung von schwefelwasserstoff und kohlendioxid aus einem fluidstrom
EP3185990A2 (de) Entfernung von kohlendioxid aus einem fluidstrom mit einem tert-butylamin und einem aktivator
CA3130537A1 (en) Process for removal of acid gases from a fluid stream with a liquid absorbent comprising a piperazine ring
EP3386608B1 (de) Verfahren und anlage zur sauergasanreicherung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080020874.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10721454

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2760732

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 001951-2011

Country of ref document: PE

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012510293

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010721454

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 8634/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010247405

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20117029541

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201171402

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2010247405

Country of ref document: AU

Date of ref document: 20100512

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1011367

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1011367

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111109