WO2010126267A2 - 난방부하를 고려한 정유량 자동제어장치 - Google Patents

난방부하를 고려한 정유량 자동제어장치 Download PDF

Info

Publication number
WO2010126267A2
WO2010126267A2 PCT/KR2010/002624 KR2010002624W WO2010126267A2 WO 2010126267 A2 WO2010126267 A2 WO 2010126267A2 KR 2010002624 W KR2010002624 W KR 2010002624W WO 2010126267 A2 WO2010126267 A2 WO 2010126267A2
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
chamber
room
inlet
flow
Prior art date
Application number
PCT/KR2010/002624
Other languages
English (en)
French (fr)
Other versions
WO2010126267A3 (ko
Inventor
양창칠
Original Assignee
(주)샘시스템
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41683707&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010126267(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by (주)샘시스템 filed Critical (주)샘시스템
Priority to JP2012508393A priority Critical patent/JP5646601B2/ja
Priority to EP10769912.6A priority patent/EP2426421B1/en
Priority to US13/266,863 priority patent/US20120043389A1/en
Priority to CN201080027546.6A priority patent/CN102460023B/zh
Publication of WO2010126267A2 publication Critical patent/WO2010126267A2/ko
Publication of WO2010126267A3 publication Critical patent/WO2010126267A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1932Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces
    • G05D23/1934Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces each space being provided with one sensor acting on one or more control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/10Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/10Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
    • F24D3/1058Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system disposition of pipes and pipe connections
    • F24D3/1066Distributors for heating liquids
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/005Control of flow characterised by the use of auxiliary non-electric power combined with the use of electric means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention calculates the required amount of heat required for optimal heating of the room in consideration of the heating load in each room, finds the optimum flow rate value that is proportional to the amount of heat, and the total flow of the household by the optimum flow rate corresponding to the room where the heating is stopped.
  • the present invention relates to a constant flow automatic control device considering a heating load in which fuel cost is reduced and pipe noise due to cavitation is reduced in proportion to the flow rate at which heating is stopped.
  • the heating system used in multi-family houses or large buildings uses individual heating to heat the fluid by means of a heat source such as a boiler installed independently in each household, and heats the fluid by an external heating source installed outside the household. After heating, the heated fluid is supplied to each household, and it is divided into the group heating.
  • the group heating is again divided into the central heating using a heat source such as a central boiler in a multi-family complex or a large building, and the outside of the multi-family housing complex. Distinguished by district heating using the same heat source as the local power plant.
  • such a heating system uses water as a heating fluid.
  • a supply pipe branched into each generation from a central supply pipe supplied with hot water heated from a heat source is provided with a hot water supply header, a plurality of hot water pipes, and hot water return.
  • the generation of hot water distribution system including a header and a return pipe for each generation is heated by each generation, after each generation return pipe is concentrated back to the central return pipe has a circulation system that is returned to the heat source.
  • each return pipe is provided with a driver separately to function to keep the temperature of the room constant by opening and closing the passage of the return pipe according to the set temperature of each room.
  • cavitation occurs as the flow velocity increases in the return pipe being heated, causing the water hammer to hit the inside of the pipe when the fluid flows, causing noise.
  • FIG. 1 is a block diagram showing a hot water distributor using a conventional differential pressure control valve.
  • the hot water distributor is a hot water supply header (3) connected to the supply pipe (2) branched from the central supply pipe (1), branched from the hot water supply header (3) to each room to supply heat
  • a plurality of hot water pipe passages 4 a return pipe 5 communicating with the hot water pipe passages 4, a hot water return header 6 to which the return pipes 5 are connected, and the hot water It consists of a return pipe (7) connected to the return header (6), and the central return pipe (8) connected to the household return pipe (7) to one place again.
  • the return pipe (7) is provided with a differential pressure flow control valve (10) which is operated by the fluid pressure difference between the return pipe (7) and the supply pipe (2) is any one room by the driver (9) When closed, the fluid velocity is not increased to another room.
  • a differential pressure flow control valve (10) which is operated by the fluid pressure difference between the return pipe (7) and the supply pipe (2) is any one room by the driver (9) When closed, the fluid velocity is not increased to another room.
  • differential pressure flow control valve 10 is a mechanical operation using the differential pressure, not only the total flow rate control is not active, but there is a disadvantage in that the flow rate is not properly adjusted, and moreover, it actually flows through the differential pressure flow control valve. Since the fixed flow rate of the fluid is not known, there is a problem that a separate flow rate valve must be installed.
  • the control unit detects this and reduces the total flow rate in the flow control valve by the flow rate that flowed in the room, thereby substantially reducing fuel costs and preventing the increase in flow rate, thereby preventing cavitation from occurring. Heating devices are being introduced.
  • the control unit of the heating device controls the flow rate of the flow regulating valve according to the following two methods.
  • the first method detects whether the actuator of the branch valve is open or closed and the branch valve valve opened from the total number of branch valve valves. It is to control the flow regulating valve to the flow rate value corresponding to the number of open branch valves uniformly by calculating the "opening valve opening ratio", which is the ratio of the number of openings.
  • the flow control method that calculates the “open valve opening ratio” as described above is assumed to be 100 when the indoor temperature of two of the four actuators reaches the desired temperature in the case of a four-room house and the actuator is closed. It is a control system that supplies only 50 flow rates uniformly. This is applicable to a room with the same area and the same heating load. In reality, the required heating amount (hereinafter referred to as “required calorie”) is not only different because the area of the room is different but the heating loads are different even though the room area is the same. It is different from each other and controlling the total flow rate by only opening the number of valves of the actuator is very large. As a result, overflow or low flow may occur in a room in which the optimum heating cannot be performed and the driver is open, which may cause cavitation problems and lower heating efficiency.
  • the length of the branch pipe is proportional to the room area.
  • the controller detects all the open branch valves, and each length of the heating water branch pipe in which the open branch valve is installed. Calculate the branch-opening length value of the sum of all the parts, and calculate the “opening valve length ratio”, which is the ratio of the branch-opening length value to the total length of the branch pipes in which the respective length values of all the heating water branching pipes are added.
  • the flow rate control valve is controlled to a flow rate value corresponding to.
  • the control method based on the “open valve length ratio” is more advanced than the “open valve number ratio” control method, which reflects the fact that the room sizes are different, but the heating load of the room is different even in the same area. Because it is overlooked, there is a problem that the flow rate supply is not made enough to actually provide the required heat of the room.
  • the heating load is different because the difference in heat loss inevitably occurs depending on the number of windows provided in the room or whether the room is made of an outer wall having a large heat exchange with the outside air.
  • the amount of heat required for optimal heating will also vary.
  • the above-mentioned heating apparatus approaches the total flow rate control from a very conceptual point of view, so at first glance, the total flow rate may be effectively controlled, but in reality, it does not consider the heating load which is very important in the heating design. Since the flow rate supply was not made suitable for the heat amount, as can be seen in the comparison table with the present invention to be described later, it can be seen that the error with the required heat amount is very large and the optimum heating distance.
  • the indoor supply temperature must be set to 60 °C
  • the indoor return temperature must be 45 °C bar, even if the heating load is not considered, even if hot water is supplied at 60 °C can not match the indoor return temperature to 45 °C. This is because the heat loss varies greatly depending on the heating load, so if the above design criteria are not met, the construction of the heating will be deemed inadequate.
  • the present invention is to solve the problems as described above, the purpose is to ensure that the total amount of oil refined by generation active control proportionally in accordance with the heating of each room, if the room does not perform heating, the total oil refinery flows through the room By reducing the amount, the heating efficiency is ultimately increased, thereby reducing the heating cost and solving the noise problem caused by the cavitation.
  • Another object of the present invention when controlling the total amount of oil in response to the heating of each room to control the total amount of oil flow by the flow rate corresponding to the required amount of heat required for each room so that the optimum heating is always maintained It is for.
  • the present invention to solve the above object,
  • a supply pipe for supplying hot water to each household A hot water pipe communicating with the supply pipe so as to branch to each room and allow the latent heat of the hot water to exchange heat with the corresponding room; A return pipe communicating with each of the hot water pipe passages to return hot water after heat exchange; A return pipe in which the flow rates of the return pipes are gathered in one place and discharged outside the household; A temperature controller configured to be individually installed in each room so as to set a desired temperature of each room, and to measure an indoor temperature of the corresponding room; Drivers respectively installed in the return pipes to open and close the passages of the return pipes by electrical signals; A variable flow valve installed in the supply pipe or the return pipe to change the flow rate of the supply pipe or the return pipe by another electrical signal; And a controller configured to control the driver and the variable flow valve by receiving the signal of the temperature controller, wherein the controller stores an optimum flow rate value proportional to a required heat quantity of the corresponding room in consideration of heating load of each room, Closes the return pipe passage of the room by controlling the actuator of the room in
  • the heating load of each room stored in the control unit is calculated by adding all of the “surface loads” on each side of the room, wherein the surface loads are one or more selected factors from “heat permeation rate, area, orientation coefficient, and corresponding temperature difference”. It is characterized by being obtained by multiplying.
  • the variable flow valve according to the first embodiment includes a body in which a flow path communicating with an inlet and an outlet is provided therein, and a sheet having a cross-sectional area of the flow path reduced between the inlet and the outlet; A chamber in which a hydraulic passage is formed so that the inlet side hydraulic pressure and the seat side hydraulic pressure respectively act on an inner side of the body; A diaphragm installed to separate the chamber so that the inlet side hydraulic pressure and the seat side hydraulic pressure are acted on both sides thereof and deformed by the pressure difference; A movable body coupled to one side of the diaphragm and elastically installed to adjust a cross-sectional area leading from the seat to the outlet by a pressure difference in the chamber; And an actuator configured to adjust an opening amount of the sheet by a control signal of the controller at the other side of the body.
  • the movable body the head portion coupled to the diaphragm;
  • a stem portion extending from the head portion toward the seat to adjust a flow cross sectional area from the seat to the outlet in accordance with the deformation of the diaphragm;
  • an elastic member installed between the movable body and the chamber so that the movable body is restored when both pressures are the same based on the diaphragm.
  • the variable flow valve according to the second embodiment includes a body in which a flow path communicating with an inlet and an outlet is provided therein, and a sheet having a cross-sectional area of the flow path reduced between the inlet and the outlet; A chamber in which a hydraulic passage is formed so that the seat side hydraulic pressure and the outlet side hydraulic pressure respectively act on one inner side of the body; A diaphragm installed to separate the chamber so that the seat side hydraulic pressure and the outlet side hydraulic pressure are acted on both sides thereof and deformed by the pressure difference; A moving body coupled to the diaphragm and moved so that the flow rate cross-sectional area of the inflection portion from the inlet side to the seat side is reduced if the pressure at the seat side is greater than the outlet side; And an actuator for adjusting the opening amount of the sheet according to a control signal of the controller.
  • the diaphragm, the outer peripheral surface is fixed to the inner wall of the chamber, the inner peripheral surface is characterized in that the through portion for coupling the movable body is formed.
  • the movable body a head portion fitted to the through portion of the diaphragm; A stem portion extending from the head portion to an inflection portion in which the inlet side and the seat side communicate with each other to adjust a flow cross-sectional area passing through the inflection portion according to the deformation of the diaphragm; And an elastic member installed on the movable body so that the movable body is restored when both pressures are the same based on the diaphragm.
  • the inflection portion is characterized in that the adjustment screw for adjusting the interval with the stem portion to adjust the initial passage flow rate is installed.
  • a variable flow valve including: a body having a sheet having a flow path communicating with an inlet and an outlet therein and having a cross section of the flow path reduced between the inlet and the outlet; A flow rate sensor installed on the flow path of the body to measure a flow rate of the fluid passing through the flow path; And an actuator for adjusting the opening amount of the sheet according to a control signal of the controller.
  • the flow sensor is installed on the flow path
  • the housing is formed with a through-hole through which the fluid passes
  • the magnetic portion is provided to be spaced apart a predetermined distance along the circumferential direction of the through-hole, rotatably installed in the through-hole It is made of an impeller, characterized in that the magnetic portion detects the rotational speed and transmits to the controller when the rotational speed of the impeller changes according to the flow rate passing through the flow path.
  • the actuator may include: a driving body electrically connected to the controller to convert an electrical signal of the controller into a kinetic force; And a moving rod extending from the driving body and inserted into the body and moving toward the seat to adjust the opening amount of the seat.
  • the drive body a drive motor electrically connected to the control unit for generating a driving force; A drive gear transferring the driving force generated by the drive motor to the moving rod; And a variable resistor that detects the displacement of the moving rod in conjunction with the drive gear and feeds back the detected displacement to the controller.
  • the variable flow valve according to the fourth embodiment includes a body provided with a flow path through which an inlet and an outlet communicate with each other; A chamber defined by the upper and lower supporters in the body and communicating with the inlet and the outlet of the body; One end is fixed on the lower support of the chamber, the other end is fixed to the slider coupled to the elastic member installed in the chamber, the first hydraulic chamber is in communication with the inlet of the body and the second hydraulic pressure in communication with the outlet of the body A diaphragm allowing compartments to be separated; And an actuator installed to be movable along the upper support of the chamber, and configured to adjust a cross-sectional area that passes from the inlet of the body toward the chamber by an electrical signal of the controller.
  • the elastic member is interposed between the guide protrusion and the movable rod on which the slider is movably mounted, and the elastic member is elastic by the slider when the diaphragm is deformed due to the pressure difference between the first hydraulic chamber and the second hydraulic chamber. It is characterized by being biased.
  • the actuator the driving body electrically connected to the control unit for converting the electrical signal of the control unit to the kinetic force;
  • a moving rod rotatably installed from the driving body and having a thread formed at a lower end thereof;
  • a flow rate blocker coupled to the thread of the movable rod and adjusting the cross-sectional area from the inlet of the body toward the chamber while moving up and down along the upper support when the movable rod is rotated.
  • the actuator the driving body electrically connected to the control unit for converting the electrical signal of the control unit into the kinetic force;
  • a moving rod which is installed to allow a linear reciprocating motion from the drive body and has a thread formed at its lower end;
  • a flow blocker coupled to the thread of the moving rod and adjusting a cross-sectional area from the inlet of the body toward the chamber while moving up and down along the upper support during the linear reciprocating motion of the moving rod.
  • the drive body a drive motor electrically connected to the control unit for generating a driving force; A drive gear transferring the driving force generated by the drive motor to the moving rod; And a variable resistor that detects the displacement of the moving rod in conjunction with the drive gear and feeds back the detected displacement to the controller.
  • the total flow rate of the household is automatically reduced by the flow rate corresponding to the room, and thus, more overflow rate than the predetermined flow rate is prevented from flowing to another room during heating, thereby reducing the heating cost.
  • the noise caused by cavitation disappears.
  • the total amount of refined oil is automatically reduced in response to a room that is stopped heating, it is reduced by a flow rate that satisfies the required heat quantity of the corresponding room, so that the optimum heating state can be maintained at all times.
  • FIG. 1 is a block diagram showing a hot water distributor using a conventional differential pressure control valve
  • FIG. 2 is a block diagram showing a control logic and configuration according to a preferred embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing the structure of a variable flow valve according to a first embodiment of the present invention
  • FIG. 4 is a cross-sectional view showing the structure of a variable flow valve according to a second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing the structure of a variable flow valve according to a third embodiment of the present invention.
  • FIG. 6 is a front view showing a flow sensor used in the variable flow valve according to the third embodiment of the present invention.
  • FIG. 7 and 8 are cross-sectional views showing the structure of a variable flow valve according to a fourth embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing the structure of a drive body used in the present invention.
  • Figures 10 to 12 show the difference in reduction of the total flow rate of the generation corresponding to the room in which the heating is actually stopped by comparing the apparatus according to the present invention and the conventional differential pressure flow valve for four rooms having different flow rates.
  • FIG. 13 is a diagram showing the parameters of a house in which the present invention is constructed.
  • 14 to 16 are diagrams showing the results according to the calorie control of the prior art compared to the present invention.
  • Each household can be composed of several rooms (1st, 2nd, 3rd, ... nth rooms) of different sizes, as shown in FIG. Assuming smaller n rooms, it is common to assume that the required heat to heat each room will be proportional to the floor area.
  • the required heat requirement is proportional to the floor area is only a theoretical one ignoring the heating load.
  • the required heat demand may be different even if the floor area is the same. It may happen that the required calories are larger than that of a large room.
  • the heating load for each room is calculated by considering all the heat losses such as the number and size of windows and the location of the room, as well as considering the floor area according to the design criteria. Calories are determined.
  • the heating load for each room is calculated by adding up all of the "surface loads” on each side of the room, and the surface loads are obtained by multiplying all of one or more selected factors from "heat transmission rate, area, azimuth coefficient, and equivalent temperature difference".
  • Equation 1 exemplifies a case in which all four factors (heat permeability, area, azimuth coefficient, and corresponding temperature difference) are selected as an ideal equation for obtaining the most precise heating load.
  • the heat permeability value which is one of the factors for calculating the heating load in Equation 1, is related to the properties of the material constituting the room.
  • a large heat permeation rate means a large heat loss.
  • the heat transmission rate of the glass door is 4.73, which is larger than the heat transmission rate of 1.38 of the wood door, so that the glass door has a larger heat loss than the wood door.
  • the heat transmission rate can be found in the "heat transfer rate table of building parts by region" in accordance with Article 21 of the Rules.
  • the area value among the above factors means not only the floor area of the room but also all the surface areas surrounding the room. Generally, since the room is a hexahedron, the values for the wall, ceiling, and floor of four sides are different. Is considered.
  • the bearing coefficient of the factor is considering the difference of heat loss according to each of the bearing in consideration of the orientation of the east, west, South, North.
  • the equivalent temperature difference refers to a temperature difference between the outer surface and the inner surface of one surface (for example, the wall surface) constituting the room. In the case of the outer wall, the heat loss increases, so that the corresponding temperature difference becomes large.
  • the surface loads (heat permeation rate ⁇ area ⁇ orientation coefficient ⁇ equivalent temperature difference) of each side of the room can be obtained by adding all of them. If the materials are made of different materials, the thermal permeability, area, orientation coefficient, and corresponding temperature difference for each material can be obtained and added to each other.
  • the area of the glass window is multiplied by the heat transmission rate of concrete, the bearing coefficient and the corresponding temperature difference of concrete. Adding them together calculates the heating load on the wall.
  • the surface load amount does not need to be multiplied by all the four factors presented above, and can be calculated with only the factors selected as necessary.
  • the orientation coefficient of the factors should be considered, In this case, the bearing coefficient may be calculated.
  • the surface load may be considered only the "area” even if the precision is somewhat less, and only the "area x heat permeability" may be considered, and at least one or more factors of the azimuth coefficient and the corresponding temperature difference may be additionally considered. .
  • the specific heat is a constant value (the specific heat is 1 because hot water is used), and the temperature change value can be regarded as a constant value because it must always be maintained at 15 ° C. to meet the design criteria described in the prior art.
  • the heat quantity and the flow rate are in a proportional relationship, so the flow rate may be increased to increase the required calorific value.
  • an optimum flow rate for meeting the room can be set.
  • the flow rate value can be calculated.
  • the optimum flow rate value calculated for each room is stored in a controller which will be described later, and used to control the flow rate of the variable flow valves 200 to 500. This will be described later.
  • the present invention is largely supply pipe (2), hot water pipe (4), return pipe (5), return pipe (7), temperature control unit 110, driver 120, variable flow valve ( 200 to 500) and the control unit 130.
  • the supply pipe (2) is a configuration for supplying hot water for each generation, the hot water pipe passage (4) is in communication with the supply pipe (2) is branched by each room and configured to allow the latent heat of the hot water to exchange heat with the room.
  • the hot water pipe line 4 may be in direct communication with the supply pipe 2, but in general, the supply pipe 2 is connected to the hot water supply header 3, and the hot water supply line 3 is connected to the hot water pipe line 4. Is branched into each room and hot water flows to heat each room individually.
  • the hot water is returned through the return pipe 5 connected to each hot water pipe line 4, and the returned hot water is collected in the hot water return header 6 and then connected to the hot water return header 6.
  • the return pipe (7) the flow rate of the return pipes (5) is collected in one place and returned to the central return pipe outside the generation not shown.
  • the total amount of refined oil is also reduced by substantially corresponding to the flow rate (preliminarily calculated optimal flow rate) of the room where the heating is stopped. It is intended to suppress the generation of noise due to cavitation by preventing the flow rate of the return pipe during heating to be prevented by applying more flow rate than the optimum flow rate originally set to another room in operation.
  • the temperature controller 110 is installed in each room so that the user can individually set the desired temperature of each room, the temperature controller 110 measures the room temperature of each room as well as setting the desired temperature of the user. can do.
  • the temperature control unit 110 has a built-in air temperature sensor and the user can set the desired temperature by rotating a button or control knob, the temperature control unit 110 is generally known in the art Therefore, further description is omitted.
  • the driver 120 is installed in each of the return pipes 5 in each room, and is configured to individually open and close the passages of the return pipes 5 by an electrical signal of the controller 130 to be described later. Opening the return pipe (5) can be heated because hot water can flow in the room, and if the driver (120) closes the return pipe (5), the heating stops because hot water does not flow in the room. do.
  • the driver 120 is operated by an external electrical signal, and the passage of the return pipe 5 is opened and closed by operating the valve inside the return pipe 5 in response to the electrical signal.
  • variable flow valves 200 to 500 are installed in the supply pipe 2 or the return pipe 7, and the flow rate of the supply pipe 2 or the return pipe 7 by another electrical signal of the controller 130. By changing the, the total flow rate of the generation in the variable flow valves (200 ⁇ 500) is limited.
  • variable flow valves 200 to 500 When an electrical signal is applied to the variable flow valves 200 to 500, the supply pipe 2 or the return pipe 7 (for convenience, the variable flow valves 200 to 500 are provided to the return pipe 7 as shown in the drawings below).
  • the flow rate passing through the return pipe 7 is changed by adjusting the flow path cross-sectional area of the flow path of the installed flow path.
  • the structure of the variable flow valves 200 to 500 is shown in FIG. Fig. 4 (second embodiment), Fig. 5 (third embodiment), Figs. 7 and 8 (fourth embodiment) are shown in detail.
  • variable flow valve 200 has a body 210, a chamber 220, a diaphragm 230, a movable body 240, and an actuator ( 250).
  • An inlet 211 is formed at one side of the body 210 to receive the fluid to be returned, and an outlet 212 is formed at the other side thereof to the fluid.
  • the body 210 has the inlet 211.
  • a flow path through which the outlet 212 communicates is provided therein.
  • the body 210 has a sheet 213 is formed between the inlet 211 and the outlet 212 to reduce the cross-sectional area of the flow path is the fluid entering the body 210 through the inlet 211 is Passed through the sheet 213 is discharged to the outside through the outlet (212).
  • the chamber 220 is a predetermined space formed in one side of the body 210, the hydraulic pressure of the inlet 211 side and the hydraulic pressure of the seat 213 side acts on the chamber 220, respectively. Hydraulic passages (221, 222) are formed to.
  • the chamber 220 has a first hydraulic passage 221 communicating with the inlet 211 side so that the hydraulic pressure acts on the inlet 211 side and the hydraulic pressure on the seat 213 side acts.
  • a second hydraulic passage 222 is formed in communication with the seat 213 side.
  • the chamber 220 includes a first hydraulic chamber 223 communicating with the first hydraulic passage 221 and a second hydraulic chamber 224 communicating with the second hydraulic passage 222. Is separated by).
  • the diaphragm 230 is installed in the chamber 220 so that the first hydraulic chamber 223 and the second hydraulic chamber 224 are separated from each other, and both sides of the diaphragm 230 face the inlet 211.
  • the hydraulic pressure and the hydraulic pressure on the seat 213 side act, respectively, they are deformed by the pressure difference.
  • the movable body 240 is coupled to one side of the diaphragm 230 is elastically installed to adjust the cross-sectional area from the seat 213 toward the outlet 212 by the pressure difference in the chamber 220, When the diaphragm 230 is deformed due to the pressure difference of the chamber 220, the diaphragm 230 receives the deformation force and approaches the sheet 213.
  • the movable body 240 includes a head portion 241, a stem portion 242, and an elastic member 243, wherein the head portion 241 is coupled to the diaphragm 230. to be.
  • the stem portion 242 extends from the head portion 241 toward the seat 213 to adjust the flow cross-sectional area from the seat 213 toward the outlet 212 according to the deformation of the diaphragm 230. It is a part to do
  • the stem portion 242 is moved in accordance with the deformation of the diaphragm 230 while increasing or decreasing the cross-sectional area from the seat 213 toward the outlet 212 to lower or lower the hydraulic pressure at the seat 213 side. Raised.
  • the second hydraulic passage 222 communicating with the second hydraulic chamber 224 may be formed in the body 210 so as to communicate with the seat 213 side. However, in the present invention, the second hydraulic passage may be formed. 222 may be formed inside the stem 242.
  • the second hydraulic chamber 224 communicates with the seat 213 through the second hydraulic passage 222 formed in the stem 242.
  • the movable body 240 should be restored to an initial position as shown in FIG. 243 is installed between the movable body 240 and the chamber 220.
  • the hydraulic pressure of the inlet 211 becomes higher than the hydraulic pressure of the seat 213, and thus the inlet 211.
  • the pressure of the first hydraulic chamber 223 in communication with the () is higher than the pressure of the second hydraulic chamber 224 in communication with the seat 213 bar pressure due to this pressure difference
  • the diaphragm 230 is bent toward the second hydraulic chamber 224 by acting toward the second hydraulic chamber 224, and the movable body 240 is caused by the deformation of the diaphragm 230.
  • the end of the movable body 240 is pushed toward the seat 213 to reduce the cross-sectional area leading from the seat 213 toward the outlet 212.
  • the chamber 220, the diaphragm 230, and the movable body 240 are configured such that the hydraulic pressure at the inlet 211 side and the seat 213 side can always be maintained the same.
  • the reason for maintaining the same is that the pressure at the inlet 211 side and the sheet 213 side should be the same so that the desired flow rate can be precisely controlled by adjusting the cross-sectional area of the flow rate from the inlet 211 side to the sheet 213 side. Because.
  • the actuator 250 is installed on the other side of the body 210, and controls the actual flow rate by adjusting the cross-sectional area from the inlet 211 toward the seat 213 by an electrical signal, the actuator 250 Since is a configuration commonly used in other embodiments will be described in detail again after another embodiment first.
  • variable flow valve 300 largely the body 310, the chamber 320, the diaphragm 330, the moving body 340, the actuator It comprises 350.
  • An inlet 311 is formed in one side of the body 310, the fluid is returned, the outlet 312 is formed on the other side of the body 310, the inside of the body 310, the inlet 311 ) And the outlet 312 is provided with a flow path.
  • the body 310 is formed between the inlet 311 and the outlet 312 is formed a sheet 313 is reduced in cross-sectional area of the flow path through the inlet 311 fluid entering the body 310 must be Passed through the sheet 313 is discharged to the outside through the outlet 312.
  • the chamber 320 is a predetermined space formed between the inlet 311 and the outlet 312 in the interior of the body 310, in this embodiment, the chamber 320 is formed near the seat 313 side. Bars, the hydraulic passages 321 and 322 are formed in the chamber 320 so that the hydraulic pressure on the seat 313 side and the hydraulic pressure on the outlet 312 side are acted on, respectively.
  • the chamber 320 is provided with a first hydraulic passage 321 communicating with the seat 313 side so that the hydraulic pressure acts on the seat 313 side and the hydraulic pressure acts on the outlet 312 side.
  • a second hydraulic passage 322 is formed in communication with the outlet 312 side.
  • the chamber 320 includes a first hydraulic chamber 323 in communication with the first hydraulic passage 321, and a second hydraulic chamber 324 in communication with the second hydraulic passage 322. 330).
  • the diaphragm 330 is installed in the chamber 320 so as to be divided into a first hydraulic chamber 323 and a second hydraulic chamber 324, and the sheet 313 is provided on both sides of the diaphragm 330.
  • the hydraulic pressure and the hydraulic pressure on the outlet 312 side respectively act, they are deformed by the pressure difference.
  • the diaphragm 330 has an outer circumferential surface fixed to the inner wall of the chamber 320 so that the diaphragm 330 is installed in the chamber 320, and a through part 331 is formed on the inner circumferential surface to which the moving body 340 to be described later is coupled. do.
  • the moving body 340 is coupled to the diaphragm 330, where the direction of the change in the direction from the inlet 311 side to the seat 313 side by the pressure difference in the chamber 320 (hereinafter, “ And the movable body 340 is provided with a deformation force from the diaphragm 330 when the pressure at the seat 313 side is greater than the outlet 312 side.
  • the cross-sectional area of the inflection portion 314 is moved to decrease.
  • the movable body 340 includes a head portion 341, a stem portion 342, and an elastic member 343, wherein the head portion 341 is a through portion of the diaphragm 330. 331 is a portion to be fitted.
  • the stem portion 342 extends from the head portion 341 toward the inflection portion 314 in which the inlet 311 side and the seat 313 side communicate with each other, so that the stem portion 342 is deformed according to the deformation of the diaphragm 330.
  • the inlet portion 311 is a portion for adjusting the cross-sectional area of the inflection portion 314 leading toward the sheet 313.
  • the stem portion 342 is moved in accordance with the deformation of the diaphragm 330 to increase or decrease the flow rate cross-sectional area of the inflection portion 314 to adjust the flow rate of the inflection portion 314 according to the pressure change.
  • the hydraulic pressure is always constant.
  • the movable body 340 should be restored to an initial position, and the elastic member 343 may be a diaphragm ( The movable body 340 is elastically installed so that the movable body 340 is restored when both pressures are the same with respect to 330.
  • an adjustment screw 315 is installed at the inflection section 314 to adjust an initial passage flow rate passing through the inflection section 314 by adjusting a gap with the stem part 342.
  • the adjustment screw 315 is to be manually operated when the initial flow rate is set, and once adjusted, it is not changed until it is manually operated again.
  • the hydraulic pressure at the seat 313 side is higher than the hydraulic pressure at the outlet 312 side.
  • the pressure of the first hydraulic chamber 323 in communication with the seat 313 side is higher than the pressure of the second hydraulic chamber 324 in communication with the outlet 312 side.
  • the pressure difference causes the first hydraulic chamber.
  • the pressure of 323 acts toward the second hydraulic chamber 324 so that the diaphragm 330 bends toward the second hydraulic chamber 324, and the deformation of the diaphragm 330 causes the deformation.
  • a moving body 340 is moved toward the inflection section 314 so that the end of the stem portion 342 reduces the flow cross-sectional area of the inflection section 314 from the inlet 311 toward the seat 313.
  • the chamber 320, the diaphragm 330, and the movable body 340 are configured to maintain the same hydraulic pressure at the seat 313 side and the outlet 312 side at all times.
  • the reason for maintaining the same is because the pressure on the sheet 313 side and the outlet 312 side must be the same so that the cross-sectional area of the flow rate passing through the sheet 313 can be adjusted to the desired flow rate. It is natural that the change in pressure causes a change in the flow rate through the sheet 313.
  • the actuator 350 is installed on the other side of the body 310 to adjust the actual flow rate by adjusting the opening amount of the sheet 313 by an electrical signal, the actuator 350 is the seat 313
  • the flow rate control is enabled by substantially adjusting the cross-sectional area of the flow rate passing through. The actuator 350 will be described in detail later.
  • variable flow valve 400 includes a body 410, a flow sensor 430, and an actuator 450.
  • An inlet 411 is formed at one side of the body 410 to receive the fluid to be returned, and an outlet 412 is formed at the other side of the body 410.
  • the inlet 411 is formed inside the body 410.
  • the outlet 412 is provided with a flow path.
  • the body 410 has a sheet 413 is formed between the inlet 411 and the outlet 412 is reduced in the cross-sectional area of the flow path so that the fluid entering the body 410 through the inlet 411 Passed through the seat 413 is discharged to the outside through the outlet 412.
  • the flow sensor 430 is configured to directly measure the flow rate of the fluid passing through the flow path is installed on the flow path of the body 410, in the embodiment of the present invention, the flow sensor 430 is the outlet 412 side
  • the flow rate of the fluid passing through the seat 413 can be measured, but the arrangement of the flow sensor 430 is not necessarily limited thereto, and may be provided at the inlet 411 side. Do.
  • the flow path of the body 410 connected to the return pipe (7) the pressure of the fluid is most likely to be changed at any time, so as to control the flow rate through the actuator 450 to be described later in the situation that the pressure is continuously changed
  • a means for equalizing the pressures before and after the sheet 413 is generally used.
  • the flow rate inside the flow path is directly measured to adjust the flow rate cross-sectional area in real time according to the flow rate change. Allow to control the flow rate.
  • the flow cross-sectional area of the sheet 413 should be reduced, and if the flow rate is small, the flow cross-sectional area of the sheet 413 is increased, Ensure that a constant flow rate is always present, regardless of flow rate changes.
  • the flow sensor 430 includes a housing 431, a magnetic portion 432, and an impeller 433.
  • the housing 431 is disposed on the flow path of the body 410. It is preferably made of a material having a high corrosion resistance so as not to be corroded by the fluid to be installed, the through hole 431a for the fluid to pass through is formed in the housing 431.
  • the magnetic part 432 is configured to be installed in the inner circumferential direction of the through hole 431a, but only one magnetic part 432 may be provided, but in case a single magnetic part 432 fails.
  • a plurality of predetermined distances are installed along the inner circumferential direction of the through hole 431a, which may be selected according to the needs of the implementer.
  • the magnetic part 432 is configured to combine a magnet and a coil to generate a magnetic field around the bar, which is generally known in the art, and thus description of the principle will be omitted.
  • the impeller 433 is configured to be rotatably installed in the through hole 431a.
  • the impeller 433 is rotated by receiving collision energy from the fluid flowing through the flow path, and when the impeller 433 is rotated.
  • the entire impeller 433 may be made of a metallic material or a metallic material may be provided at the end of the impeller 433 so that the magnetic part 432 may detect the rotation speed of the impeller 433.
  • the magnetic flux density of the magnetic part 432 is changed accordingly.
  • a voltage is generated in a coil inside the magnetic part 432, which is formed in a pulse form to the controller 130 when several vanes (wings) pass through the magnetic part 432 by the rotation of the impeller 433.
  • the control unit 130 receives the pulse signal to detect the rotational speed of the impeller 433.
  • the actuator 450 is configured to adjust the opening amount of the seat 413, the flow rate passing through the seat 413 by the actuator 450 is adjusted, the seat When the flow rate through the 413 is adjusted, the total flow rate through the return pipe 7 is adjusted.
  • the actuator 450 is installed at one side of the body 410 so that the opening amount of the seat 413 is adjusted by an electrical signal.
  • the control unit 130 is based on the information of the flow sensor 430 the actuator 450 By controlling the flow rate cross-sectional area in the seat 413 so that a constant flow rate can always flow.
  • the actuators 250, 350, and 450 used in the first to third embodiments of the present invention generally include driving bodies 251, 351, 451 and moving rods 252, 352, 452.
  • the driving bodies 251, 351, 451 are control units 130 to be described later. It is electrically connected to and receives an electrical signal from the control unit 130 is converted to the kinetic force.
  • the driving force of the driving bodies 251, 351, 451 is transmitted to the moving rods 252, 352, 452 and the opening amounts of the seats 213, 313, 413 are adjusted by the length change according to the movement of the moving rods 252, 352, 452.
  • the driving body will be described later.
  • variable flow valve 500 includes a body 510, a chamber 520, a diaphragm 530, and an actuator 550. Is done.
  • An inlet 511 is formed at one side of the body 510 to receive the fluid to be returned, and an outlet 512 is formed at the other side of the body 510.
  • the inlet 511 and the inlet 511 are formed on the body 510.
  • a flow path through which the outlet 512 communicates is provided therein.
  • the chamber 520 is a predetermined space formed on one side of the body 510, and is defined by cylindrical upper and lower supports 521 and 522 mounted inside the body 510, and an inlet 511 of the body. And an outlet 512.
  • the upper and lower supports 521 and 522 may be mounted inside the body 510 as one cylindrical part or may extend as part of the body.
  • the chamber 520 is partitioned into a first hydraulic chamber 524 and a second hydraulic chamber 525 by a diaphragm 530 installed under the body 510, and is provided in the first hydraulic chamber 524. Hydraulic pressure on the inlet 511 side is applied by the hydraulic passage 523 connected from the inlet 511 of the body 510, and the second hydraulic chamber 525 is deformed by the diaphragm 530. As the cross-sectional area leading toward the outlet 512 is increased or decreased, the hydraulic pressure therein is changed.
  • the chamber 520 is divided into a first hydraulic chamber 524 communicating with the inlet 511 of the body 510 and a second hydraulic chamber 525 communicating with the outlet 512 of the body 510. Are separated.
  • one end of the diaphragm 530 is installed on the lower support 522 of the chamber 520, the first hydraulic chamber 524 and the second hydraulic chamber It is fixed not to move even if the hydraulic pressure of the 525.
  • the other end of the diaphragm 530 is fixed to the slider 540, the slider 540 is fitted to the guide protrusion 513 protruding from the bottom of the chamber 520 and the first hydraulic chamber 524 and The second hydraulic chamber 525 is mounted to be moved up and down in accordance with the hydraulic pressure change.
  • An elastic member 545 such as a coil spring is fitted between the guide protrusion 513 and the moving rod 552 to be described later.
  • fitting jaws 514 and 554 are formed at the upper end of the guide protrusion 513 and the lower end of the moving rod 552, respectively.
  • the elastic member 545 is mounted such that the slider 540 is elastically biased when the first hydraulic chamber 524 moves along the guide protrusion 513 by the hydraulic change of the second hydraulic chamber 525.
  • the elastic member 545 restores the slider 540 to its initial position as indicated by the solid line in FIG. 7. .
  • the configuration of the chamber 520, the diaphragm 530, and the slider 540 is such that the hydraulic pressure at the inlet 511 side and the outlet 512 side can always be kept the same.
  • the reason for maintaining it is that the pressure at the inlet 511 side and the outlet 512 side should be the same so that the desired flow rate can be accurately controlled by adjusting the cross-sectional area of the flow rate from the inlet 511 side to the outlet 512 side. .
  • the actuator 550 is installed on the upper portion of the body 510, and controls the actual flow rate by adjusting the cross-sectional area from the inlet 511 toward the chamber 520 by an electrical signal, the actuator 550 is The flow rate control is enabled by substantially adjusting the cross-sectional area d 1 leading to the chamber 520 from the inlet 511 side.
  • the actuator 550 largely includes a driving body 551, a moving rod 552, and a flow blocker 555.
  • the driving body 551 is electrically connected to the controller 130 to be described later. When the electric signal is received from the control unit 130 it is converted into a kinetic force.
  • the driving body 551 will be described in detail later.
  • Operation of the movable rod 552 and the flow blocker 555 in the actuator 550 can be implemented in two ways, each of which will be briefly described with reference to FIGS. 7 and 8.
  • the movable rod 552 is rotatably installed from the driving body 551 and the thread 553 is formed at the lower end thereof, and is coupled to the thread 553 of the movable rod 552. Adjusting the cross-sectional area (d 1 ) from the inlet 511 of the body 510 toward the chamber 520 while moving up and down along the upper support 521 of the chamber 520 when the movable rod 552 rotates. It consists of the flow blocker 555 to make.
  • the moving rod 552 only rotates in both directions in place, and the flow blocker 555 adjusts the cross-sectional area while moving up and down along the thread of the moving rod 552. At this time, since the moving rod 552 does not move up and down, it does not elastically bias the elastic member 545 fitted to the lower end thereof.
  • the movable rod 552 is installed to enable a linear reciprocating motion from the driving body 551 and the thread 553 is formed at the lower end thereof, and the thread 553 of the movable rod 552. Coupled to the chamber 520 from the inlet 511 of the body 510 to the chamber 520 while linearly moving up and down along the upper support 521 of the chamber 520 during a linear reciprocation of the moving rod 552. It is composed of a flow blocker 555 for adjusting the cross-sectional area (d 1 ).
  • the elastic member 545 fitted to the lower end thereof is elastically biased, thereby making the change of the cross-sectional area more uniform and smooth.
  • the driving bodies 251, 351, 451 and 551 used in the first to fourth embodiments according to the present invention have a structure as shown in FIG. 9, and the control unit 130 includes the driving motors 253 of the driving bodies 251, 351, 451 and 551. ) Is electrically connected to the drive motor 253, and the drive motor 253 applies rotational force to the drive gear 255 through the reduction gear 254.
  • the drive gear 255 is connected to the moving rods 252, 352, 452 and 552 so as to be power-transmitted to provide an external force for the linear movement of the moving rods 252, 352, 452 and 552.
  • the controller 130 may know the flow rate passing through the seats 213, 313, 413, 513 only when the controller 130 receives the information about the position of the linear movement rods 252, 352, 452, 552, the driving gear 255. ) Is power connected to the sensor gear 257 through the connection gear (256).
  • the sensor gear 257 is rotated in conjunction with the sensor gear 257.
  • the sensor gear 257 has a variable resistor 258, which is generally known, and the variable resistor 258. Since the output value of the controller 130 is input to the controller 130, the controller 130 receives the output value of the variable resistor 258 in real time, that is, the amount of rotation of the drive gear 255, that is, of the moving rods 252, 352, 452, and 552. The location is known.
  • the drive gear 255 may be rotated one or more times, but since the sensor gear 257 must be rotated in contact with the variable resistor 258, the number of revolutions is limited to less than one time. It is preferable that an appropriate gear ratio is set between the drive gear 255 and the sensor gear 257.
  • the rotation angle of the sensor gear 257 is limited to 270 degrees or less, and a variable resistor 258 is installed within the rotation angle range, and the control unit 130 moves the moving rods 252, 352, 452, and 552.
  • Various parameters such as the distance and the diameter of the seat 213 are input, and the flow rate can be estimated by knowing the moving distances of the moving rods 252, 352, 452 and 552.
  • the movable rods 252, 352, 452, 552 extend from the driving bodies 251, 351, 451, 551, and receive a force from the driving bodies 251, 351, 451, 551 in the state of being inserted into the bodies 210, 310, 410, 510 to enter the seats 213, 313, 413, 513.
  • the flow rate is controlled as the moving rods 252, 352, 452 and 552 adjust the cross-sectional areas of the seats 213, 313, 413 and 513.
  • the outer diameter of the movable rods 252, 352, 452 and 552 is preferably set to a size corresponding to the inner diameter of the sheets 213, 313, 413 and 513.
  • the controller 130 receives a signal from the temperature controller 110 and controls the driver 120 and the variable flow valves 200 to 500 based on the signal. to be.
  • the temperature controller 110 may not only set the desired temperature of the user, but also measure the current room temperature. Therefore, the temperature controller 110 controls the desired temperature and temperature set by the user. All current temperatures detected by the unit 110 are input to the controller 130.
  • control unit 130 Since the control unit 130 needs to perform heating when the present temperature is lower than the desired temperature by comparing the input desired temperature with the present temperature, the control unit 130 gives an on signal to the driver 120 to provide the corresponding return pipe 5. To be opened.
  • the control unit 130 gives an off signal to the driver 120 of the room, and the return pipe 5 of the room is To be closed.
  • control unit 130 reduces the flow rate of the variable flow valves 200 to 500 according to the ratio of the optimum flow rate value of the closed room to the sum of the optimum flow rate values of the entire room, the variable flow valve 200 to 500
  • the total oil refinement per household passing through becomes equal to the sum of the flow rates of each heating room, and the control unit has a proportional relationship with the required heat required for optimal heating of the room considering the heating load of each room as described above.
  • the optimum flow rate value is stored.
  • the control signal sent from the control unit 130 to the variable flow valves 200 to 500 is sent to the driving bodies 251, 351, 451 and 551 among the actuators 250, 350, 450 and 550 of the variable flow valves 200 to 500, and the movement of the moving rods 252, 352, 452 and 552.
  • the controller 130 inputs various parameters such as the moving distance of the moving rods 252, 352, 452 and 552 and the diameters of the seats 213, 313, 413 and 513 to estimate the flow rate according to the moving distance of the moving rods 252, 352, 452 and 552. It becomes possible.
  • the controller 130 opens only the return pipe 5 of the room where the heating is performed, and closes the return pipe 5 of the other rooms (heating stopped rooms).
  • the flow rate valves 200 to 500 are controlled so that only the same flow rate as the optimum flow rate value (flow rate considering the heating load) of the room where heating is performed is allowed to flow.
  • Figures 10 to 12 show the difference in the reduction of the total flow rate of the generation corresponding to the room in which the heating is actually stopped by comparing the apparatus according to the present invention and the conventional differential pressure flow valve for four rooms having different flow rates.
  • the optimal value here is an idealized calculation of the total quantity of oil in a given household depending on the heating of each room.
  • the driver opening means that the corresponding number of rooms are heated. For example, if the driver opening is “1 + 2 + 3 + 4”, it means that the 1,2,3,4 rooms are all heated. "1" means only room 1 is heating, and rooms 2, 3, and 4 are in the off state.
  • the area of the "living room” is smaller than the "room + dressing room” of the construction example, but the living room is usually large and has a large number of windows, so the heat loss is large, so the optimum flow rate is large compared to other rooms. .
  • the apparatus according to the present invention when the apparatus according to the present invention is constructed to control the actual flow rate, it can be seen that the errors are all 0% for each room. This is because, from the beginning, the total flow rate is controlled based on the optimum flow rate for each room.Because the total flow rate is controlled by the flow rate corresponding to the optimum flow rate value of the room where the heating is stopped, it meets the design criteria and performs optimal heating accordingly. The heating efficiency is improved and the cavitation phenomenon is reduced.
  • Figure 15 is a conventional "open valve number ratio" control method, the flow rate is controlled data, in this case, since the flow rate is controlled by the number of actuators without considering the area of the room or heating load at all, the actual control flow rate is the same in every room Comes out.
  • Figure 16 is a conventional control data of the flow rate is controlled by the "open valve length ratio" control method, although the error is slightly reduced compared to Figure 15 because the area of the room is considered, but still overheating or low heating phenomenon occurs It was found that they did not maintain optimal heating conditions.
  • controlling the flow rate according to the "opening valve opening ratio" has a problem that does not meet the temperature change 15 °C proposed in the district heating design standards.
  • the return temperature is 34 ° C, which is significantly lower than the 45 ° C suggested in the district heating design standards. This leads to a large imbalance.
  • the flow rate is controlled according to the "open valve length ratio" control method while the actual control flow rate is greater than the optimum flow rate as an example.
  • the heating load of the study is 1,065 [kcal / h] and thus the actual control flow rate is 1.88, although the optimum flow rate value is 1.18. ) Is calculated as follows.
  • 1,065 (1.88 ⁇ 60) ⁇ 1 ⁇ ⁇ T

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Remote Sensing (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Flow Control (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Safety Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

각 방마다 난방부하를 고려하여 해당 방의 최적난방에 필요한 요구열량을 산출하고 그 열량과 비례관계에 있는 최적 유량값을 찾아내 난방이 중지된 방에 해당하는 최적 유량만큼 그 세대의 전체 정유량을 감소시킴으로써 난방 중지된 유량에 비례하여 연료비가 절감되고 캐비테이션에 의한 관 소음이 줄어드는 난방부하를 고려한 정유량 자동제어장치가 소개된다.

Description

난방부하를 고려한 정유량 자동제어장치
본 발명은 각 방마다 난방부하를 고려하여 해당 방의 최적난방에 필요한 요구열량을 산출하고 그 열량과 비례관계에 있는 최적 유량값을 찾아내 난방이 중지된 방에 해당하는 최적 유량만큼 그 세대의 전체 정유량을 감소시킴으로써 난방 중지된 유량에 비례하여 연료비가 절감되고 캐비테이션에 의한 관 소음이 줄어드는 난방부하를 고려한 정유량 자동제어장치에 관한 것이다.
공동주택이나 대형건물에 사용되는 난방시스템은, 각 세대에 독립적으로 설치된 보일러와 같은 열원에 의해 유체를 가열한 후 이를 이용하여 난방을 실시하는 개별난방과, 세대 외부에 설치된 외부 열원에 의해 유체를 가열한 후 가열된 유체를 각 세대별로 공급받아 난방을 실시하는 집단난방으로 구별되며, 다시 집단난방은 공동주택 단지 또는 대형건물 내의 중앙 보일러와 같은 열원을 사용하는 중앙난방과, 공동주택 단지 외부의 지역 발전소와 같은 열원을 사용하는 지역난방으로 구별된다.
이러한 난방 시스템은 가열 유체로서 물을 사용하는 것이 일반적이며, 특히 집단난방은 열원으로부터 가열된 온수가 공급되는 중앙공급관으로부터 각 세대별로 분기되는 공급관이 온수공급헤더와, 다수의 온수관로와, 온수환수헤더 및 환수관을 포함하는 세대별 온수분배기 장치를 통해 각 세대별 난방을 실시하고 이후 각 세대별 환수관들이 다시 중앙환수관으로 집중된 후 열원으로 환수되는 순환시스템을 갖는다.
종래의 온수분배기는 본 출원인의 ‘등록실용신안 제371794호’에 나타나 있는 바와 같이 온수환수헤더와 연결된 환수관에 정유량밸브가 설치되어 세대별로 전체 정유량을 제한하고 있으며, 그 세대별 전체 정유량은 각 방을 흐르는 환수파이프에서의 유량의 합이 된다.
이때, 각각의 환수파이프에는 구동기가 개별 설치되어 각 방의 설정온도에 따라 그 환수파이프의 통로를 개폐하여 해당 방의 온도를 일정하게 유지하는 기능을 한다.
그러나, 상술한 종래의 온수분배기는 시공할 때 정유량밸브의 전체 정유량이 한번 설정되면 바꿀 수 없도록 셋팅되어 있어서 그 정유량밸브에는 항상 설정된 정유량이 흐르게 되어 있고, 이 때문에 난방이 필요 없는 방이 구동기에 의해 폐쇄되어도 난방 중인 다른 방의 환수파이프를 통해 원래 흐르도록 설정된 양보다 더 많은 유량이 더 빠른 유속으로 흐르게 되는바[유량(Q) = 단면적×유속(AV) 참고], 이것은 결국 난방 중인 환수파이프만 놓고 보더라도 유량은 비록 커졌지만 유속이 빨라서 방과 유체 간에 열교환이 충분히 일어나지 않아 전체적으로 난방 면적이 줄었음에도 불구하고 오히려 난방비 절감이 되지 않는 문제점이 있고 이는 결국 난방효율의 저하로 이어진다.
특히, 어느 하나 이상의 방이 난방 중지되면 난방 중인 환수파이프에서 유속이 빨라짐에 따라 캐비테이션(공동현상)이 발생되어 유체가 흐를 때 유체가 파이프 내부를 치는 수격현상을 초래하여 소음발생의 원인이 된다.
또한, 종래에는 ‘등록특허 제635107호’에 소개된 바와 같이 파이프의 캐비테이션 문제를 해소하기 위하여 공급관과 환수관 내의 유체 압력차이에 기초하여 그들의 차압을 일정하게 유지해주는 차압유량조절밸브가 제시된다.
도1은 종래 차압유량조절밸브가 사용된 온수분배기를 나타낸 블록도이다.
도1에 도시된 바와 같이, 온수분배기는 중앙공급관(1)에서 분기된 공급관(2)과 연결된 온수공급헤더(3)와, 상기 온수공급헤더(3)에서 각 방으로 분기되어 열을 공급하는 다수의 온수관로(4)들과, 상기 온수관로(4)들과 각각 연통되는 환수파이프(5)와, 상기 환수파이프(5)들이 한 곳으로 연결되는 온수환수헤더(6)와, 상기 온수환수헤더(6)와 연결되는 환수관(7)과, 상기 세대별 환수관(7)이 다시 한 곳으로 연결되는 중앙환수관(8)으로 이루어진다.
여기에서, 상기 환수관(7)에는 그 환수관(7)과 공급관(2) 사이의 유체 압력 차이에 의해 작동되는 차압유량조절밸브(10)가 설치되어 어느 하나의 방이 구동기(9)에 의해 폐쇄될 때 다른 방으로 유체 속도가 증가되지 않도록 하고 있다.
그러나, 상기 차압유량조절밸브(10)는 차압을 이용한 기계식 작동이기 때문에 전체 정유량 제어가 능동적이지 않을 뿐만 아니라, 유량조절이 제대로 이루어지지 않는 단점이 있고, 더욱이 차압유량조절밸브를 통해서는 실제로 흐르고 있는 유체의 정유량을 알 수 없기 때문에 정유량밸브를 별도로 설치하여야 하는 문제점이 있다.
나아가, 세대의 전체 정유량 제어가 난방 중지된 방에 비례하여 제대로 이루어지지 않기 때문에 하나 이상의 방이 난방 중지된 경우, 처음에 제기하였던 난방효율의 저하문제나 캐비테이션으로 인한 소음 문제 등이 사라지지 않고 그대로 존재하는 것이 실험결과 밝혀졌다.
이에 따라 최근에는, 어느 방의 난방이 중지되면 제어부가 이를 감지하여 원래 그 방에 흐르던 유량만큼 유량조절밸브에서 전체 정유량을 감소시켜 실질적으로 연료비를 절감하고 유속증가를 방지하여 캐비테이션이 일어나는 것을 예방하는 난방장치가 소개되고 있다.
이 난방장치의 제어부는 다음과 같은 두 가지 방법에 따라 유량조절밸브의 유량값을 제어하는데, 첫 번째 방식은 분기관밸브의 구동기 개폐 여부를 감지하여 전체 분기관밸브의 개수 중에서 개방된 분기관밸브의 개수 비율인 “개방밸브개수비율”을 계산하여 일률적으로 개방된 분기관밸브 개수에 해당하는 유량값으로 유량조절밸브를 제어하는 것이다.
위와 같은 “개방밸브개수비율”을 계산한 유량제어 방식은 예컨대 4개의 방을 가진 주택의 경우 4개의 구동기 중 2개 방의 실내온도가 희망온도에 도달하여 구동기가 닫히면 전체 정유량을 100으로 가정할 때 일률적으로 50의 유량만 공급하는 제어방식이다. 이것은 동일한 면적과 동일한 난방부하를 갖는 방에나 적용 가능한 것으로서 현실적으로는 방의 면적이 각각 다를 뿐만 아니라 방 면적이 동일하여도 난방부하가 서로 다르기 때문에 난방에 필요한 요구열량(이하, “필요요구열량”)이 서로 달라져 일률적으로 구동기의 밸브개방개수만으로 전체 정유량을 제어하는 것은 오차가 매우 커지게 된다. 그 결과, 최적의 난방을 수행할 수 없고 구동기가 열려 있는 방으로 과유량 또는 저유량 현상이 일어나 캐비테이션 문제 및 난방효율 저하가 일어날 수 있다.
한편 두 번째 방식은 방 면적에 따라 분기관의 길이가 비례한다는 점을 염두에 둔 것으로, 상기 제어부가 개방된 분기관밸브를 모두 감지하고 그 개방된 분기관밸브가 설치된 난방수 분기관의 각 길이를 모두 합한 분기관개방길이값을 계산하여, 그 분기관개방길이값이 전체 난방수 분기관의 각각의 길이값을 합한 분기관전체길이값 중에 차지하는 비율인 “개방밸브길이비율”을 산출하여 여기에 대응되는 유량값으로 상기 유량조절밸브를 제어하는 것이다.
이 “개방밸브길이비율”에 따른 제어방식은 “개방밸브개수비율” 제어방식보다는 한층 진보된 것이어서 실제로 방 크기가 서로 다르다는 점을 반영한 것이지만, 동일한 면적의 방이라도 그 방의 난방부하가 서로 다르다는 점은 간과하였기 때문에 실제로 해당 방의 “필요요구열량”을 제공할 정도로 유량 공급이 이루어지지 않는 문제점이 있다.
참고로, 방 면적이 동일하여도 그 방에 구비된 창의 개수나, 그 방이 외기와의 열교환이 큰 외벽으로 이루어졌는가의 여부 등에 따라 손실열량의 차이가 필연적으로 생기기 때문에 난방부하가 상이해지고, 이에 따라 최적 난방을 위한 필요요구열량도 달라지는 것이다.
즉, 상술한 난방장치는 전체 정유량 제어를 매우 개념적인 시각에서 접근하였으므로, 얼핏 보면 전체 정유량이 효과적으로 제어될 것 같지만 현실적으로 난방설계를 함에 있어서 매우 중요한 난방부하를 전혀 고려하지 않았기 때문에 그에 따른 필요요구열량에 적합한 유량 공급이 이루어지지 않았는바, 후술하게 될 본 발명과의 대비표에서 보듯이 필요요구열량과의 오차가 매우 커 최적 난방과 거리가 있는 것을 알 수 있다.
위와 같은 난방장치를 실제로 주택에 설치하면 이러한 난방부하가 전혀 고려되지 않았기 때문에 지역난방설계 기준인 “실내공급온도 - 실내환수온도 = 15℃”를 충족할 수 없게 된다.
난방장치를 시공하기 위해서는 설계 기준에 반드시 맞추어야 하는바, 『2009년 대한주택공사 설계기준 99페이지』를 인용하면 아래와 같다.
2) 지역난방 기준
가) 온도 조건
(1) 1차측 공급온도 : 115℃
(2) 1차측 환수온도 : 50℃
(3) 실내 공급온도 : 60℃
(4) 실내 환수온도 : 45℃
(5) 외기 온도 : 건축물의 에너지절약설계기준의 해당지구 외기온도 적용
(6) 실내 온도 : 20℃
나) 배관설계
(1) 유량산정을 위한 온도기준
(가) 난방수 (1차측) : t1=115℃ , t2=50℃
(나) 난방수 (2차측) : t1=60℃ , t2=45℃
(다) 급탕용 (1차측) : t1=75℃ , t2=40℃
(2) 배관경
(가) 관 마찰저항 : 1차측 : 20mmAq/m
2차측 : 10mmAq/m
(나) 유속 : 1.5 m/s 이하
(다) 관경 선정(1차측) : 한국지역난방공사 “관경별 열부하기준표”에 의함
(라) 관경 선정(2차측) : 제X장 13-13 온수 유량표 참조
여기서 보면 실내공급온도는 60℃로, 실내환수온도는 45℃로 반드시 맞추어야 하는바, 난방부하를 고려하지 않는다면 온수를 60℃로 공급하더라도 실내환수온도를 45℃로 맞출 수 없게 된다. 이는 난방부하에 따라 열손실이 크게 달라지기 때문으로 상기한 설계기준을 충족하지 못하면 난방시공에서 부적합 판정을 받을 수 밖에 없다.
본 발명은 상술한 바와 같은 문제점을 해결하기 위한 것으로, 그 목적은 세대별 전체 정유량이 각 방의 난방 유무에 맞추어 비례적으로 능동 제어되도록 하여 난방이 수행되지 않는 방이 생기면 그 방을 흐르는 유량만큼 전체 정유량이 감소되도록 함으로써 궁극적으로 난방효율을 높여 난방비를 절감하고 캐비테이션에 의한 소음 문제를 해결함에 있다.
또한 본 발명의 다른 목적은, 각 방의 난방 유무에 대응하여 전체 정유량을 제어할 때 각 방마다의 필요요구열량에 해당하는 유량값만큼 전체 정유량값을 제어하여 항상 최적 난방이 유지될 수 있도록 하기 위한 것이다.
상술한 바와 같은 목적을 해결하기 위하여 본 발명은,
각 세대로 온수가 공급되는 공급관; 상기 공급관에 연통되어 각 방별로 분기되고 상기 온수의 잠열이 해당 방과 열교환되도록 하는 온수관로; 상기 온수관로와 각각 연통되어 열교환이 끝난 온수가 환수되는 환수파이프; 상기 환수파이프들의 유량이 한곳으로 모여 세대 외부로 배출되는 환수관; 각 방의 희망온도를 설정할 수 있도록 방마다 개별 설치되고, 해당 방의 실내온도를 측정할 수 있는 온도조절부; 상기 환수파이프에 각각 개별 설치되어 전기적 신호에 의해 그 환수파이프의 통로를 개폐하는 구동기; 상기 공급관 또는 환수관에 설치되어 또 다른 전기적 신호에 의해 그 공급관 또는 환수관의 유량을 변경하는 가변유량밸브; 상기 온도조절부의 신호를 입력받아 상기 구동기와 상기 가변유량밸브를 제어하는 제어부;를 포함하는 것으로, 상기 제어부에는 각 방별 난방부하를 고려하여 해당 방의 필요요구열량에 비례하는 최적유량값이 저장되고, 상기 온도조절부의 신호에 따라 난방이 중지되어야 할 방의 구동기를 제어하여 해당 방의 환수파이프 통로를 폐쇄하며, 전체 최적유량값의 합에 대한 폐쇄된 방의 최적유량값의 비율에 따라 상기 가변유량밸브의 유량을 감소시키는 것을 특징으로 하는 난방부하를 고려한 정유량 자동제어장치를 제공한다.
여기서 상기 제어부에 저장되는 각방의 난방부하는 방을 이루고 있는 각 면에서의 “면부하량”을 모두 더하여 계산되는 것으로, 상기 면부하량은 “열관류율, 면적, 방위계수, 상당온도차”중에서 하나이상의 선택된 인자를 곱하여 구해지는 것을 특징으로 한다.
제1실시예에 따른 가변유량밸브는, 입구와 출구가 연통되는 유로가 내부에 마련되고 그 입구와 출구 사이에 유로의 단면적이 감소되는 시트가 형성된 바디; 상기 바디의 내부 일측에 상기 입구측 유압과 상기 시트측 유압이 각각 작용하도록 유압통로가 형성된 챔버; 상기 챔버가 구획분리되도록 설치되어 그 양측으로 상기 입구측 유압과 상기 시트측 유압이 각각 작용되며, 그 압력차에 의해 변형되는 다이아프램; 상기 다이아프램 일측에 결합되어 상기 챔버에서의 압력차에 의해 상기 시트에서 출구 쪽으로 통하는 단면적을 조절하도록 탄성 설치된 이동체; 상기 바디의 타측에서, 상기 제어부의 제어신호에 의해 상기 시트의 개방량을 조절하는 액츄에이터;를 포함하는 것을 특징으로 한다.
이때 상기 이동체는, 상기 다이아프램에 결합되는 헤드부; 상기 헤드부로부터 상기 시트쪽으로 연장되어 상기 다이아프램의 변형에 따라 상기 시트에서 출구 쪽으로 통하는 유량 단면적을 조절하는 스템부; 상기 다이아프램을 기준으로 양측 압력이 동일할 때 상기 이동체가 복원되도록 상기 이동체와 챔버 사이에 설치된 탄성부재;를 포함하는 것을 특징으로 한다.
제2실시예에 따른 상기 가변유량밸브는, 입구와 출구가 연통되는 유로가 내부에 마련되고 그 입구와 출구 사이에 유로의 단면적이 감소되는 시트가 형성된 바디; 상기 바디의 내부 일측에 상기 시트측 유압과 상기 출구측 유압이 각각 작용하도록 유압통로가 형성된 챔버; 상기 챔버가 구획분리되도록 설치되어 그 양측으로 상기 시트측 유압과 상기 출구측 유압이 각각 작용되며, 그 압력차에 의해 변형되는 다이아프램; 상기 다이아프램에 결합되어 상기 시트측에서의 압력이 출구측보다 크면 상기 입구측에서 시트측으로 통하는 변곡부의 유량 단면적이 감소되도록 이동되는 이동체; 상기 제어부의 제어신호에 의해 상기 시트의 개방량을 조절하는 액츄에이터;를 포함하는 것을 특징으로 한다.
이때 상기 다이아프램은, 그 외주면이 상기 챔버 내벽에 고정되며, 그 내주면에는 상기 이동체가 결합되기 위한 관통부가 형성된 것을 특징으로 한다.
또한 상기 이동체는, 상기 다이아프램의 관통부에 끼워지는 헤드부; 상기 헤드부로부터 상기 입구측과 시트측이 연통되는 변곡부로 연장되어 상기 다이아프램의 변형에 따라 상기 변곡부를 통과하는 유량 단면적을 조절하는 스템부; 상기 다이아프램을 기준으로 양측 압력이 동일할 때 상기 이동체가 복원되도록 상기 이동체에 설치된 탄성부재;를 포함하는 것을 특징으로 한다.
그리고 상기 변곡부에는 상기 스템부와의 간격을 조절해 초기 통과 유량을 조정하기 위한 조정나사가 설치된 것을 특징으로 한다.
제3실시예에 따른 상기 가변유량밸브는, 입구와 출구가 연통되는 유로가 내부에 마련되고 그 입구와 출구 사이에 유로의 단면적이 감소되는 시트가 형성된 바디; 상기 바디의 유로 상에 설치되어 유로를 지나는 유체의 유량을 측정하는 유량센서; 상기 제어부의 제어신호에 의해 상기 시트의 개방량을 조절하는 액츄에이터;를 포함하는 것을 특징으로 한다.
여기서 상기 유량센서는, 상기 유로 상에 설치되는 것으로 내부에 유체가 지나가는 관통구가 형성된 하우징과, 상기 관통구의 원주방향을 따라 일정거리 이격되게 설치되는 마그네틱부와, 상기 관통구에 회전가능하게 설치되는 임펠러로 이루어져, 유로를 지나가는 유량에 따라 상기 임펠러의 회전속도가 변하면 상기 마그네틱부가 그 회전속도를 검출하여 상기 제어부로 전달하는 것을 특징으로 한다.
상기 액츄에이터는, 상기 제어부와 전기적으로 연결되어 제어부의 전기신호를 운동력으로 변환하는 구동본체; 상기 구동본체로부터 연장되어 상기 바디 내부에 삽입되는 것으로, 상기 시트의 개방량을 조절하기 위해 시트 쪽으로 이동되는 이동로드;를 포함하는 것을 특징으로 한다.
여기서 상기 구동본체는, 상기 제어부와 전기적으로 연결되어 구동력을 발생시키는 구동모터; 이 구동모터에 의해 발생된 구동력을 상기 이동로드로 전달하는 구동기어; 및 이 구동기어와 연동하여 상기 이동로드의 변위량을 감지하고, 감지된 변위량을 상기 제어부로 피드백하는 가변저항기;로 이루어진 것을 특징으로 한다.
제4실시예에 따른 상기 가변유량밸브는, 내부에 입구와 출구가 연통되는 유로가 마련된 바디; 이 바디의 내부에서 상,하단 지지대에 의해 구획되고 상기 바디의 입구 및 출구와 연통되도록 형성된 챔버; 일단이 상기 챔버의 하단 지지대 상에 고정되고, 타단은 챔버 내에 설치되는 탄성부재와 결합된 슬라이더에 고정되며, 상기 챔버를 바디의 입구와 연통되는 제1 유압실과 바디의 출구와 연통되는 제2 유압실로 구획분리되도록 해주는 다이아프램; 및 상기 챔버의 상단 지지대를 따라 이동 가능하게 설치되고, 상기 제어부의 전기적 신호에 의해 상기 바디의 입구로부터 챔버 쪽으로 통하는 단면적을 조절하는 액츄에이터;를 포함하는 것을 특징으로 한다.
여기서 상기 탄성부재는, 상기 슬라이더가 이동 가능하게 장착된 가이드 돌기와 상기 이동로드 사이에 끼움 설치되고, 상기 제1 유압실과 제2 유압실의 압력 차이에 의해 다이아프램이 변형될 때 상기 슬라이더에 의해 탄성 바이어스되는 것을 특징으로 한다.
이때 상기 액츄에이터는, 상기 제어부와 전기적으로 연결되어 제어부의 전기신호를 운동력으로 변환하는 구동본체; 이 구동본체로부터 회전 가능하게 설치되고 그 하단에 나사산이 형성된 이동로드; 및 이 이동로드의 나사산에 결합되고, 이동로드의 회전 시에 상기 상단 지지대를 따라 상하로 이동하면서 상기 바디의 입구로부터 챔버 쪽으로 통하는 단면적을 조절하는 유량 차단체;를 포함하는 것을 특징으로 한다.
다른 실시예로 상기 액츄에이터는, 상기 제어부와 전기적으로 연결되어 제어부의 전기신호를 운동력으로 변환하는 구동본체; 이 구동본체로부터 직선 왕복 운동이 가능하게 설치되고 그 하단에 나사산이 형성된 이동로드; 및 이 이동로드의 나사산에 결합되고, 이동로드의 직선 왕복 운동 시에 상기 상단 지지대를 따라 상하로 이동하면서 상기 바디의 입구로부터 챔버 쪽으로 통하는 단면적을 조절하는 유량 차단체;를 포함하는 것을 특징으로 한다.
여기서 상기 구동본체는, 상기 제어부와 전기적으로 연결되어 구동력을 발생시키는 구동모터; 이 구동모터에 의해 발생된 구동력을 상기 이동로드로 전달하는 구동기어; 및 이 구동기어와 연동하여 상기 이동로드의 변위량을 감지하고, 감지된 변위량을 상기 제어부로 피드백하는 가변저항기;로 이루어진 것을 특징으로 한다.
본 발명에 의하면, 난방이 중지되는 방이 생기면 그 방에 해당하는 유량만큼 세대의 전체 정유량이 자동으로 감소되므로, 난방 수행중인 다른 방으로 정해진 유량보다 많은 과유량이 흐르는 것이 방지되므로, 결국 난방비가 절감되는 것은 물론 캐비테이션에 의한 소음이 사라지게 된다.
또한, 난방 중지된 방에 대응하여 전체 정유량이 자동 감소될 때 그 해당 방의 필요요구열량을 충족하는 유량만큼 감소되므로 언제나 최적의 난방상태를 유지할 수 있다.
도1은 종래 차압유량조절밸브가 사용된 온수분배기를 나타낸 블록도,
도2는 본 발명의 바람직한 실시예에 따른 제어로직 및 구성을 나타낸 구성도,
도3은 본 발명의 제1실시예에 따른 가변유량밸브의 구조를 나타낸 단면도,
도4는 본 발명의 제2실시예에 따른 가변유량밸브의 구조를 나타낸 단면도,
도5는 본 발명의 제3실시예에 따른 가변유량밸브의 구조를 나타낸 단면도,
도6은 본 발명의 제3실시예에 따른 가변유량밸브에 사용된 유량센서를 나타낸 정면도,
도7 및 도8은 본 발명의 제4실시예에 따른 가변유량밸브의 구조를 나타낸 단면도,
도9는 본 발명에 사용되는 구동본체의 구조를 나타낸 단면도,
도10 내지 도12은 서로 다른 유량을 갖는 4개의 방을 대상으로 본 발명에 따른 장치와 종래의 차압유량밸브를 비교하여 실제로 난방이 중지된 방에 대응하여 세대의 전체 정유량의 감소 차이를 나타낸 실험도표,
도13은 본 발명이 시공된 주택의 파라미터를 나타낸 도표,
도14 내지 도16은 본 발명 대비 종래기술의 열량 제어에 따른 결과를 나타낸 도표.
이하, 본 발명의 바람직한 실시예를 첨부된 도면에 의거하여 상세하게 설명한다.
각 세대는 도2에 도시된 바와 같이 그 크기가 서로 다른 여러 개의 방(제1방, 제2방, 제3항, ... 제n방)으로 이루어질 수 있는데, 편의상 제1방이 가장 크고 제n방으로 갈수록 작아진다고 가정하면 그 각각의 방을 난방하기 위한 필요요구열량은 방바닥 면적에 비례할 것이라고 생각하는 것이 일반적이다.
그러나, 필요요구열량이 방바닥 면적에 비례한다는 것은 난방부하를 무시한 이론적인 것일 뿐이고, 실제로 난방설계를 함에 있어 난방부하를 고려하게 되면 방바닥 면적이 동일해도 필요요구열량이 달라질 수 있으며 심지어 바닥면적이 작은 방이 큰 방보다 필요요구열량이 큰 경우도 생길 수 있다.
따라서, 난방설계를 할 때에는 설계기준에 맞추어 각 방바닥 면적에 대한 고려뿐만 아니라 창의 개수나 크기, 방의 위치 등 제반 열손실을 모두 고려하여 각 방별 난방부하를 계산하게 되고, 그 난방부하에 맞추어 필요요구열량이 결정된다.
각 방별 난방부하를 계산하는 식은 아래와 같다.
L = ∑(K × A × N × △t) ------- (식1)
L : 난방부하량
K : 열관류율[kcal/hk)
A : 면적
N : 방위계수
△t : 상당온도차
즉, 각 방별 난방부하는 방을 이루고 있는 각 면에서의 “면부하량”을 모두 더하여 계산되는 것으로, 상기 면부하량은 “열관류율, 면적, 방위계수, 상당온도차” 중에서 하나 이상의 선택된 인자를 모두 곱하여 구해지는바, 상기 식1은 가장 정밀한 난방부하를 얻기 위한 이상적인 식으로서 4개의 인자(열관류율, 면적, 방위계수, 상당온도차)가 모두 선택된 경우를 예시한다.
상기 식1에서 난방부하를 구하는 인자 중 하나인 열관류율값은 방을 구성하고 있는 재료자체의 특성과 관련된 것으로, 열관류율이 크면 열손실이 크다는 의미가 된다. 예컨대, 유리문의 열관류율은 4.73으로 목재문의 열관류율 1.38보다 그 값이 크므로 유리문일 경우 열손실이 목재문에 비해 크다는 것을 알 수 있다.
통상 열관류율은 설비기준규칙 제21조에 의거하여 『지역별 건축물 부위의 열관류율표』에 나타나 있는 것을 보고 해당 재료에 따라 그 값을 찾으면 된다.
또한, 상기 인자 중 면적값은 해당 방의 바닥면적만을 의미하는 것이 아니라 해당 방을 둘러싸고 있는 모든 표면적을 뜻하는 것으로, 일반적으로 방은 육면체이기 때문에 4면의 벽과 천장, 바닥의 면적에 대한 값이 고려된다.
또한, 상기 인자 중 방위계수는 동,서,남,북의 방위를 고려하여 그 각 방위에 따른 열손실 차이를 고려한 것이다.
그리고 상기 상당온도차는 방을 구성하고 있는 어느 하나의 면(예를 들어 벽면)을 기준으로 그 외면과 내면간의 온도차를 의미하는 것으로 외벽일 경우 열손실이 크게 되므로 상기 상당온도차가 커지게 된다.
이와 같이 가장 정밀한 난방부하를 구하기 위해서는, 상기 식1에 나타낸 것처럼 방을 이루고 있는 각 면의 “면부하량(열관류율×면적×방위계수×상당온도차)”을 모두 더하여 구할 수 있고, 어느 하나의 벽면이 서로 다른 재료로 이루어져 있으면 그 각 재료에 대한 열관류율, 면적, 방위계수, 상당온도차를 각각 구하여 이들을 서로 더하여 구할 수 있다.
예를 들어, 어느 한 벽면이 콘크리트와 유리창으로 이루어져 있다면 상기 유리창을 뺀 면적에 콘크리트의 열관류율과 콘크리트의 방위계수 및 상당온도차를 곱한 후, 다시 상기 유리창 면적에 유리창 열관류율, 방위계수, 상당온도차를 곱하고 이들을 서로 더하면 그 벽면에서의 난방부하가 계산된다.
또한, 상기 면부하량은 앞에 제시된 4개의 인자를 모두 곱할 필요는 없고 필요에 따라 선택된 인자만을 가지고 계산할 수 있는바, 예컨대 어느 한 벽면이 외벽인 경우에는 상기 인자들 중 방위계수가 고려되어야 하지만 내벽인 경우에는 방위계수는 제외하고 계산할 수 있다.
따라서, 상기 면부하량은 다소 정밀도는 떨어지더라도 “면적”만 고려될 수도 있고, “면적×열관류율”만 고려될 수도 있으며, 여기에 방위계수나 상당온도차 중 적어도 어느 하나 이상의 인자가 추가적으로 고려될 수도 있다.
난방부하가 계산되면, 이것은 곧 그 방을 최적으로 난방하기 위하여 요구되는 필요요구열량이 되는데, 상기 필요요구열량은 아래의 식으로 구할 수 있다.
Q = G × C × △T ------- (식2)
Q : 필요요구열량[kcal/h]
G : 유량[lph]
C : 비열[kcal/kg℃]
△T : 온도변화 (실내공급온도 - 실내환수온도)
여기서 비열은 상수값(온수가 사용되므로 비열은 1)이 되고, 온도변화값도 종래기술에서 설명한 설계기준을 충족하려면 항상 15℃로 유지해야 하기 때문에 상수값으로 볼 수 있다.
결과적으로, 열량과 유량은 비례관계에 놓이게 되므로 필요요구열량을 높이기 위해서는 유량을 증가시키면 되는바, 각 방별 필요요구열량이 결정되면 그것을 충족하기 위한 최적의 유량도 설정될 수 있기 때문에 각 방마다의 최적유량값이 산출될 수 있다.
각 방별로 산출된 최적 유량값은 후술하게 될 제어부에 저장되어 가변유량밸브(200~500)의 유량을 제어할 때 사용되는바 이것에 대해서는 뒤에서 다시 설명한다.
이하, 본 발명의 바람직한 실시예에 따른 기본 구성에 대하여 설명한다.
도2에 도시된 바와 같이 본 발명은 크게 공급관(2), 온수관로(4), 환수파이프(5), 환수관(7), 온도조절부(110), 구동기(120), 가변유량밸브(200~500), 제어부(130)를 포함하여 이루어진다.
상기 공급관(2)은 각 세대별로 온수를 공급하기 위한 구성이며, 상기 온수관로(4)는 상기 공급관(2)에 연통되어 각 방별로 분기되고 상기 온수의 잠열이 해당 방과 열교환되도록 하는 구성이다.
상기 온수관로(4)는 상기 공급관(2)에 직접 연통되어도 무방하지만 일반적으로 상기 공급관(2)은 온수공급헤더(3)와 연결되고, 상기 온수공급헤더(3)에서 상기 온수관로(4)가 각 방별로 분기되어 온수가 흐르면서 각 방을 개별 난방하게 된다.
방들과 열교환이 끝난 온수는 각각의 온수관로(4)에 연통된 환수파이프(5)를 통해 환수되고, 환수된 온수는 온수환수헤더(6)에 다시 모인 후 상기 온수환수헤더(6)에 연결된 환수관(7)을 통해 환수파이프(5)들의 유량이 한 곳으로 모여 도시되지 않는 세대 외부의 중앙환수관으로 환수된다.
본 발명은 이와 같은 난방 구조를 갖는 세대에서 어느 하나 이상의 방이 난방 중지되면, 실질적으로 난방 중지된 방의 유량(미리 산출한 최적유량)에 해당하는 만큼 전체 정유량 또한 감소되도록 함으로써 난방비를 절감하고, 난방 수행 중인 다른 방으로 원래 설정되어 있는 최적유량보다 더 많은 유량이 가해지는 것을 방지하여 난방 수행 중인 환수파이프의 유속증가를 방지함으로써 캐비테이션에 의한 소음 발생을 억제하고자 하는 것이다.
여기서, 상기 온도조절부(110)는 사용자가 각 방의 희망온도를 개별적으로 설정할 수 있도록 방마다 개별 설치되는데, 상기 온도조절부(110)는 사용자가 원하는 희망온도의 설정뿐만 아니라 각 방의 실내온도를 측정할 수 있다.
상기 온도조절부(110)에는 공기온도감지센서가 내장되어 있고 버튼이나 조절노브를 회전시켜 사용자가 원하는 온도를 설정할 수 있도록 되어 있는바, 상기 온도조절부(110)는 일반적으로 널리 알려진 공지기술에 해당하므로 더 이상의 설명은 생략한다.
상기 구동기(120)는 각 방의 환수파이프(5)에 각각 설치되어 후술할 제어부(130)의 전기적 신호에 의해 그 환수파이프(5)의 통로를 개별적으로 개폐하는 구성으로서, 상기 구동기(120)가 상기 환수파이프(5)를 개방하면 해당 방에 온수가 흐를 수 있기 때문에 난방이 가능하고, 상기 구동기(120)가 상기 환수파이프(5)를 폐쇄하면 해당 방에 온수가 흐르지 못하기 때문에 난방이 중지된다.
상기 구동기(120)는 외부의 전기적 신호에 의해 작동되는 것으로, 그 전기적 신호를 받아 상기 환수파이프(5) 내부에 있는 밸브를 동작시킴으로써 상기 환수파이프(5)의 통로가 개폐된다.
또한, 상기 가변유량밸브(200~500)는 상기 공급관(2) 또는 환수관(7)에 설치되어 제어부(130)의 또 다른 전기적 신호에 의해 그 공급관(2) 또는 환수관(7)의 유량을 변경하는 것으로, 상기 가변유량밸브(200~500)에서 세대의 전체 정유량이 제한된다.
상기 가변유량밸브(200~500)에 전기적 신호가 가해지면 상기 공급관(2) 또는 환수관(7)(편의상 이하에서는 도면에 도시된 것처럼 가변유량밸브(200~500)가 환수관(7)에 설치된 것을 가정하여 설명한다)의 유로 단면적을 조절하여 그 환수관(7)을 지나는 유량이 변경되도록 하는데, 상기 가변유량밸브(200~500)의 구조는 실시예에 따라 도3(제1실시예), 도4(제2실시예), 도5(제3실시예), 도7 및 도8(제4실시예)에 자세하게 도시된다.
먼저 도3에 도시된 바와 같이, 제1실시예에 따른 가변유량밸브(200)는 크게 바디(210)와, 챔버(220)와, 다이아프램(230)과, 이동체(240)와, 액츄에이터(250)를 포함하여 이루어진다.
상기 바디(210)의 내부 일측에는 환수되는 유체가 들어오는 입구(211)가 형성되고 타측에는 그 유체가 나가는 출구(212)가 형성되는바, 이와 같이 상기 바디(210)에는 상기 입구(211)와 출구(212)가 연통되는 유로가 내부에 마련된다.
또한, 상기 바디(210)에는 상기 입구(211)와 출구(212) 사이에 유로의 단면적이 감소되는 시트(213)가 형성되어 상기 입구(211)를 통해 바디(210) 내부로 들어온 유체는 상기 시트(213)를 통과하여 상기 출구(212)를 통해 외부로 배출된다.
상기 챔버(220)는 상기 바디(210)의 내부 일측에 형성되는 소정의 공간으로서, 상기 챔버(220)에는 상기 입구(211)측 유압(流壓)과 상기 시트(213)측 유압이 각각 작용하도록 유압통로(221,222)가 형성된다.
도3에서 보면, 상기 챔버(220)에는 상기 입구(211)측 유압이 작용하도록 상기 입구(211)측과 연통된 제1유압통로(221)가 형성되고 상기 시트(213)측 유압이 작용하도록 상기 시트(213)측과 연통된 제2유압통로(222)가 형성된다.
따라서, 상기 챔버(220)는 상기 제1유압통로(221)와 연통되는 제1유압실(223)과 상기 제2유압통로(222)와 연통되는 제2유압실(224)이 다이아프램(230)에 의해 구획 분리된다.
상기 다이아프램(230)은 제1유압실(223)과 제2유압실(224)이 구획분리되도록 상기 챔버(220)에 설치되며, 상기 다이아프램(230)의 양측으로 상기 입구(211)측 유압과 시트(213)측 유압이 각각 작용할 때 그 압력차에 의해 변형된다.
상기 이동체(240)는 상기 다이아프램(230) 일측에 결합되어 상기 챔버(220)에서의 압력차에 의해 상기 시트(213)에서 상기 출구(212) 쪽으로 통하는 단면적을 조절하도록 탄성 설치되는 구성으로, 상기 다이아프램(230)이 챔버(220)의 압력차로 인해 변형될 때 그 변형력을 제공받아 상기 시트(213) 쪽으로 접근하게 된다.
여기서, 상기 이동체(240)는 헤드부(241)와, 스템부(242)와, 탄성부재(243)를 포함하여 이루어지는데, 상기 헤드부(241)는 상기 다이아프램(230)에 결합되는 부위이다.
또한, 상기 스템부(242)는 상기 헤드부(241)로부터 상기 시트(213)쪽으로 연장되어 상기 다이아프램(230)의 변형에 따라 상기 시트(213)에서 출구(212) 쪽으로 통하는 유량 단면적을 조절하는 부위이다.
따라서, 상기 다이아프램(230)의 변형에 따라 상기 스템부(242)가 이동되면서 상기 시트(213)에서 출구(212) 쪽으로 통하는 단면적을 증가시키거나 감소시켜 상기 시트(213)측에서의 유압을 낮추거나 높이게 된다.
그리고, 상기 제2유압실(224)과 연통되는 상기 제2유압통로(222)는 상기 시트(213)측과 통하도록 상기 바디(210)에 형성되어도 무방하지만, 본 발명에서는 상기 제2유압통로(222)가 상기 스템부(242) 내부에 형성되도록 실시된다.
따라서, 상기 스템부(242) 내부에 형성된 상기 제2유압통로(222)를 통해 상기 제2유압실(224)이 상기 시트(213)측과 연통된다.
또한, 상기 제1유압실(223)과 제2유압실(224)이 서로 동일한 압력 상태에 있을 때에는 상기 이동체(240)가 도3에 나타낸 바와 같은 초기 위치로 복원되어야 하는바, 상기 탄성부재(243)가 상기 이동체(240)와 챔버(220) 사이에 설치된다.
상기 바디(210)에 일정 유압의 유체가 들어오다가 어느 순간 이보다 높은 고압의 유체가 들어오면 상기 입구(211) 측의 유압은 상기 시트(213)의 유압보다 높게 되고, 이에 따라 상기 입구(211)와 연통된 상기 제1유압실(223) 압력이 상기 시트(213)와 연통된 제2유압실(224) 압력보다 높게 되는바 이러한 압력차이로 인해 상기 제1유압실(223)의 압력이 상기 제2유압실(224) 쪽으로 작용해 상기 다이아프램(230)이 상기 제2유압실(224) 쪽으로 구부러지는 변형이 일어나며, 이러한 다이아프램(230)의 변형에 의해 상기 이동체(240)가 상기 시트(213) 쪽으로 밀려서 상기 이동체(240)의 끝단이 시트(213)에서 출구(212) 쪽으로 통하는 단면적을 축소하게 된다.
상기 시트(213)에서 출구(212) 쪽으로 통하는 단면적이 축소되면 상기 시트(213)에서의 유압이 점차 상승하여 마침내 입구(211)측 유압과 동일해지는 상태에 이르게 되고, 이처럼 입구(211)측과 시트(213)측의 유압이 동일해지면 상기 제1유압실(223)과 제2유압실(224)의 압력이 평형상태에 이르러 상기 이동체(240)는 탄성력에 의해 다시 원위치로 복원된다.
이와 같이 상기 챔버(220)와, 다이아프램(230)과, 이동체(240)는 상기 입구(211)측과 상기 시트(213)측의 유압이 항상 동일하게 유지될 수 있도록 하는 구성으로, 이렇게 압력을 동일하게 유지시키는 이유는 입구(211)측과 시트(213)측의 압력이 동일해야 그 입구(211)측에서 시트(213)측으로 통하는 유량의 단면적을 조절하여 원하는 유량으로 정확하게 제어할 수 있기 때문이다.
한편, 위와 같은 구성에 의하여 입구(211)측과 시트(213)측의 유압이 동일한 상태로 유지되면 상기 액츄에이터(250)에 의하여 상기 시트(213)를 지나는 유량이 조절된다.
상기 액츄에이터(250)는 상기 바디(210)의 타측에 설치되어, 전기적 신호에 의해 상기 입구(211)에서 시트(213) 쪽으로 통하는 단면적을 조절함으로써 실질적인 유량을 조절하는 구성인데, 상기 액츄에이터(250)는 다른 실시예에서도 공통적으로 사용되는 구성이므로 다른 실시예를 먼저 설명한 후 뒤에서 다시 자세하게 설명한다.
한편, 도4에 도시된 바와 같이, 제2실시예에 따른 가변유량밸브(300)는 크게 바디(310)와, 챔버(320)와, 다이아프램(330)과, 이동체(340)와, 액츄에이터(350)를 포함하여 이루어진다.
상기 바디(310)의 내부 일측에는 환수되는 유체가 들어오는 입구(311)가 형성되고 타측에는 그 유체가 나가는 출구(312)가 형성되는바, 이와 같이 상기 바디(310)의 내부에는 상기 입구(311)와 출구(312)가 연통되는 유로가 마련된다.
또한, 상기 바디(310)에는 상기 입구(311)와 출구(312) 사이에 유로의 단면적이 감소되는 시트(313)가 형성되어 상기 입구(311)를 통해 바디(310) 내부로 들어온 유체는 반드시 상기 시트(313)를 통과하여 상기 출구(312)를 통해 외부로 배출된다.
상기 챔버(320)는 상기 바디(310)의 내부 중에서 입구(311)와 출구(312) 사이에 형성되는 소정의 공간으로 본 실시예에서는 상기 챔버(320)가 상기 시트(313) 측 부근에 형성되는바, 상기 챔버(320)에는 상기 시트(313)측 유압과 상기 출구(312)측 유압이 각각 작용하도록 유압통로(321,322)가 형성된다.
도4에서 보면, 상기 챔버(320)에는 상기 시트(313)측 유압이 작용하도록 상기 시트(313)측과 연통된 제1유압통로(321)가 형성되고 상기 출구(312)측 유압이 작용하도록 상기 출구(312)측과 연통된 제2유압통로(322)가 형성된다.
따라서, 상기 챔버(320)는 상기 제1유압통로(321)와 연통되는 제1유압실(323)과, 상기 제2유압통로(322)와 연통되는 제2유압실(324)이 다이아프램(330)에 의해 구획 분리된다.
상기 다이아프램(330)은 제1유압실(323)과 제2유압실(324)로 구획분리되도록 상기 챔버(320)에 설치되며, 상기 다이아프램(330)의 양측으로 상기 시트(313)측 유압과 출구(312)측 유압이 각각 작용할 때 그 압력차에 의해 변형된다.
여기서, 상기 다이아프램(330)은 상기 챔버(320)에 설치되도록 그 외주면이 상기 챔버(320) 내벽에 고정되며, 그 내주면에는 후술할 이동체(340)가 결합되기 위한 관통부(331)가 형성된다.
또한, 상기 이동체(340)는 상기 다이아프램(330)에 결합되어 챔버(320)에서의 압력차에 의해 상기 입구(311)측에서 시트(313)측으로 통하는 곳 중 방향이 바뀌는 곳(이하, “변곡부”라 한다)의 단면적이 조절되도록 탄성 설치되는 구성으로, 상기 이동체(340)는 상기 시트(313)측에서의 압력이 출구(312)측보다 크면 상기 다이아프램(330)으로부터 변형력을 제공받아 상기 변곡부(314)의 단면적이 감소되도록 이동된다.
여기서, 상기 이동체(340)는 헤드부(341)와, 스템부(342)와, 탄성부재(343)를 포함하여 이루어지는데, 상기 헤드부(341)는 상기 다이아프램(330)의 관통부(331)에 끼워지는 부위이다.
또한, 상기 스템부(342)는 상기 헤드부(341)로부터 상기 입구(311)측과 시트(313)측이 연통되는 변곡부(314) 쪽으로 연장되어 상기 다이아프램(330)의 변형에 따라 상기 입구(311)에서 시트(313) 쪽으로 통하는 변곡부(314)의 단면적을 조절하는 부위이다.
따라서, 상기 다이아프램(330)의 변형에 따라 상기 스템부(342)가 이동되면서 상기 변곡부(314)의 유량 단면적을 증가시키거나 감소시켜 압력변화에 따른 변곡부(314)의 유량을 조절함으로써 상기 시트(313)측에서는 유압이 항상 일정해지도록 한다.
또한, 상기 제1유압실(323)과 제2유압실(324)이 서로 동일한 압력 상태에 있을 때에는 상기 이동체(340)가 초기 위치로 복원되어야 하는바, 상기 탄성부재(343)는 다이아프램(330)을 기준으로 양측 압력이 동일할 때 상기 이동체(340)가 복원되도록 상기 이동체(340)에 탄성 설치된다.
그리고, 상기 변곡부(314)에는 상기 스템부(342)와의 간격을 조절해 변곡부(314)를 지나는 초기 통과유량을 조정하기 위한 조정나사(315)가 설치되는 것이 바람직하다.
상기 조정나사(315)는 초기 유량을 설정할 때 수동으로 조작할 수 있도록 되어 있으며, 한번 조정해 놓으면 다시 수동으로 조작하기 전까지 변경되지 않는다.
정리해 보면, 상기 바디(310)에 일정 유압의 유체가 들어오다가 어느 순간 이보다 높은 고압의 유체가 들어오면 상기 시트(313) 측의 유압은 상기 출구(312) 측의 유압보다 높게 되고, 이에 따라 상기 시트(313) 측과 연통된 상기 제1유압실(323) 압력이 상기 출구(312) 측과 연통된 제2유압실(324) 압력보다 높게 되는바 이러한 압력차이로 인해 상기 제1유압실(323)의 압력이 상기 제2유압실(324) 쪽으로 작용해 상기 다이아프램(330)이 상기 제2유압실(324) 쪽으로 구부러지는 변형이 일어나며, 이러한 다이아프램(330)의 변형에 의해 상기 이동체(340)가 상기 변곡부(314) 쪽으로 이동되어 상기 스템부(342)의 끝단이 입구(311)에서 시트(313) 쪽으로 통하는 변곡부(314)의 유량 단면적을 축소하게 된다.
상기 변곡부(314)의 유량 단면적이 축소되면 상기 시트(313)에서의 유압이 점차 하강하여 마침내 출구(312)측 유압과 동일해지는 상태에 이르게 되고, 이처럼 시트(313)측과 출구(312)측의 유압이 동일해지면 상기 제1유압실(323)과 제2유압실(324)의 압력이 평형상태에 이르러 상기 이동체(340)는 탄성력에 의해 다시 원위치로 복원된다.
이와 같이 상기 챔버(320)와, 다이아프램(330)과, 이동체(340)는 상기 시트(313)측과 상기 출구(312)측의 유압이 항상 동일하게 유지될 수 있도록 하는 구성으로, 이렇게 압력을 동일하게 유지시키는 이유는 시트(313)측과 출구(312)측의 압력이 동일해야 상기 시트(313)를 통과하는 유량의 단면적을 조절하여 원하는 유량으로 정확하게 제어할 수 있기 때문이다. 압력이 달라지면 시트(313)를 통과하는 유량에 변화가 생기는 것은 당연하다.
위와 같은 구성에 의하여 시트(313) 전후 측의 유압이 동일한 상태로 유지되면 상기 액츄에이터(350)에 의하여 상기 시트(313)를 지나는 유량이 조절되는데, 상기 액츄에이터(350)에 의하여 결국 환수관(7)을 통과하는 총유량이 정밀하게 조절된다.
상기 액츄에이터(350)는 상기 바디(310)의 타측에 설치되어, 전기적 신호에 의해 상기 시트(313)의 개방량을 조절함으로써 실질적인 유량을 조절하는 구성인데, 상기 액츄에이터(350)가 상기 시트(313)를 통과하는 유량의 단면적을 실질적으로 조절함으로써 유량 제어가 가능해진다. 상기 액츄에이터(350)는 뒤에서 다시 자세하게 설명한다.
한편, 도5에 도시된 바와 같이, 제3실시예에 따른 가변유량밸브(400)는 크게 바디(410)와, 유량센서(430)와, 액츄에이터(450)를 포함하여 이루어진다.
상기 바디(410)의 내부 일측에는 환수되는 유체가 들어오는 입구(411)가 형성되고 타측에는 그 유체가 나가는 출구(412)가 형성되는바, 이와 같이 상기 바디(410)의 내부에는 상기 입구(411)와 출구(412)가 연통되는 유로가 마련된다.
또한, 상기 바디(410)에는 상기 입구(411)와 출구(412) 사이에 유로의 단면적이 감소되는 시트(413)가 형성되어 상기 입구(411)를 통해 바디(410) 내부로 들어온 유체는 반드시 상기 시트(413)를 통과하여 상기 출구(412)를 통해 외부로 배출된다.
상기 유량센서(430)는 상기 바디(410)의 유로 상에 설치되어 유로를 지나가는 유체의 유량을 직접 측정하기 위한 구성으로, 본 발명의 실시예에서는 상기 유량센서(430)가 출구(412)측에 설치되어 상기 시트(413)를 통과한 유체의 유량을 측정할 수 있도록 되어 있지만, 상기 유량센서(430)의 배치가 반드시 여기에 국한되어야만 하는 것은 아니고 상기 입구(411)측에 설치되어 있어도 무방하다.
환수관(7)과 연결되어 있는 상기 바디(410)의 내부, 유로 상에는 유체의 압력이 대부분 시시각각 변할 수밖에 없는데, 이와 같이 압력이 계속 변하는 상황에서 후술할 액츄에이터(450)를 통해 정유량을 제어하기 위해서 통상적으로 상기 시트(413) 전,후의 압력을 동일하게 해주는 수단이 사용되었으나, 본 발명의 제3실시예에서는 유로 내부의 유량을 직접 계측하여 그 유량변화에 따라 실시간으로 유량 단면적을 조절함으로써 정유량을 제어할 수 있도록 한다.
따라서 상기 유량센서(430)를 통해 계측한 유로에서의 통과 유량이 크다면 상기 시트(413)에서의 유량 단면적을 감소시켜야 하고, 유량이 작다면 상기 시트(413)에서의 유량 단면적을 증가시켜, 유량 변화와 무관하게 항상 일정한 유량이 흐를 수 있도록 한다.
도6에 나타낸 바와 같이, 상기 유량센서(430)는 하우징(431)과, 마그네틱부(432)와, 임펠러(433)로 이루어지는데, 상기 하우징(431)은 상기 바디(410)의 유로 상에 설치되는 구성으로 유체에 의해 부식되지 않도록 내식성이 큰 재료로 이루어지는 것이 바람직하며, 상기 하우징(431)의 내부에는 유체가 지나가기 위한 관통구(431a)가 형성된다.
따라서, 상기 하우징(431)이 상기 유로 상에서 유체의 흐름방향과 교차하는 방향으로 설치되면 유로를 흐르는 모든 유체는 상기 관통구(431a)를 통과하게 된다.
상기 마그네틱부(432)는 상기 관통구(431a)의 내측 원주방향에 설치되는 구성으로, 상기 마그네틱부(432)는 하나만 마련되어도 무방하지만 하나의 마그네틱부(432)가 고장이 날 경우를 대비하고 센서의 정밀도를 높이기 위하여 본 발명의 실시예와 같이 관통구(431a)의 내측 원주방향을 따라 일정거리 이격되게 여러 개가 설치되는 것이 바람직한 바, 이는 실시자의 필요에 따라 선택하면 된다.
상기 마그네틱부(432)는 자석과 코일이 조합되어 주위에 자기장이 생성되도록 하는 구성으로, 이에 대한 것은 일반적으로 널리 알려진 공지기술에 해당하는바, 원리 설명은 생략한다.
상기 임펠러(433)는 상기 관통구(431a)에 회전 가능하게 설치되는 구성으로, 상기 임펠러(433)는 상기 유로를 흐르는 유체로부터 충돌에너지를 전달받아 회전되며, 상기 임펠러(433)가 회전될 때 상기 마그네틱부(432)가 상기 임펠러(433)의 회전수를 검출할 수 있도록 임펠러(433) 전체가 금속성 재료로 이루어지거나 상기 임펠러(433)의 끝단에 금속성 물질이 구비된다.
따라서 상기 임펠러(433)가 회전되는 동작에서 임펠러(433)를 구성하고 있는 베인(날개) 하나가 상기 마그네틱부(432) 근처를 지나가게 되면 상기 마그네틱부(432)의 자속밀도가 변하게 되고 이에 따라 상기 마그네틱부(432) 내부의 코일에 전압이 발생하는데, 이 전압은 임펠러(433)의 회전에 의해 여러 개의 베인(날개)이 상기 마그네틱부(432)를 지날 때 제어부(130)에 펄스 형태로 입력되는바 상기 제어부(130)는 이 펄스 신호를 입력받아 상기 임펠러(433)의 회전속도를 검출하게 된다.
상기 유로를 흐르는 유량이 많아질수록 상기 임펠러(433)로 전달되는 충돌에너지가 증가하여 상기 임펠러(433)의 회전속도는 증가되기 때문에, 상기 임펠러(433)의 회전속도를 통해 유로를 흐르는 유량을 직접적으로 계측할 수 있다.
또한, 도5에 도시된 바와 같이 상기 액츄에이터(450)는 상기 시트(413)의 개방량을 조절하는 구성으로, 상기 액츄에이터(450)에 의하여 상기 시트(413)를 지나는 유량이 조절되는데, 상기 시트(413)를 지나는 유량이 조절되면 결국 상기 환수관(7)을 통과하는 총유량이 조절된다.
상기 액츄에이터(450)는 전기적 신호에 의해 상기 시트(413)의 개방량이 조절되도록 상기 바디(410)의 일측에 설치된다.
따라서, 상기 유량센서(430)가 유로 내부를 흐르는 유량을 직접적으로 계측하여 그에 대한 정보를 제어부(130)로 보내면, 상기 제어부(130)는 유량센서(430)의 정보에 의거 상기 액츄에이터(450)를 제어하여 상기 시트(413)에서의 유량단면적을 조절함으로써 항상 일정한 유량이 흐를 수 있도록 한다.
본 발명의 제1 내지 제3실시예에 사용되는 상기 액츄에이터(250,350,450)는 크게 구동본체(251,351,451)와 이동로드(252,352,452)를 포함하여 이루어지는데, 상기 구동본체(251,351,451)는 후술할 제어부(130)와 전기적으로 연결되어 상기 제어부(130)로부터 전기신호를 받으면 이것을 운동력으로 변환하게 된다.
상기 구동본체(251,351,451)의 운동력은 상기 이동로드(252,352,452)로 전달되어 상기 이동로드(252,352,452)의 이동에 따른 길이변화에 의해 상기 시트(213,313,413)의 개방량이 조절된다. 여기서, 구동본체에 대해서는 뒤에서 다시 설명한다.
한편, 도7 및 도8에 도시된 바와 같이, 제4실시예에 따른 가변유량밸브(500)는 크게 바디(510), 챔버(520), 다이아프램(530) 및 액츄에이터(550)를 포함하여 이루어진다.
상기 바디(510)의 내부 일측에는 환수되는 유체가 들어오는 입구(511)가 형성되고 타측에는 그 유체가 나가는 출구(512)가 형성되는바, 이와 같이 상기 바디(510)에는 상기 입구(511)와 출구(512)가 연통되는 유로가 내부에 마련된다.
상기 챔버(520)는 상기 바디(510)의 내부 일측에 형성되는 소정의 공간으로서, 바디(510)의 내부에 장착된 원통형의 상,하단 지지대(521,522)에 의해 구획되고 바디의 입구(511) 및 출구(512)와 연통되도록 형성된다. 상기 상, 하단 지지대(521,522)는 하나의 원통형 부품으로 바디(510)의 내부에 장착될 수도 있고, 바디의 일부분으로서 연장 형성될 수도 있다.
상기 챔버(520)는 바디(510)의 하부에 설치된 다이아프램(530)에 의해 제1 유압실(524)과 제2 유압실(525)로 구획분리되고, 상기 제1 유압실(524)에는 상기 바디(510)의 입구(511)으로부터 연결된 유압통로(523)에 의해 입구(511)측 유압이 가해지도록 구성되고, 상기 제2 유압실(525)은 상기 다이아프램(530)의 변형에 의해 상기 출구(512) 쪽으로 통하는 단면적이 증감됨에 따라 내부의 유압이 변화되도록 구성된다.
상기 다이아프램(530)은 일단이 상기 챔버(520)의 하단 지지대(522) 상에 고정되고, 타단은 챔버(520) 내에 설치되는 탄성부재(543)와 결합된 슬라이더(540)에 고정된다. 그 결과, 상기 챔버(520)는 바디(510)의 입구(511)와 연통되는 제1 유압실(524)과 바디(510)의 출구(512)와 연통되는 제2 유압실(525)로 구획분리된다.
상기 다이아프램(530)의 장착 형태를 보다 상세히 설명하면, 다이아프램(530)의 일단은 상기 챔버(520)의 하단 지지대(522) 상에 설치되어 제1 유압실(524)과 제2 유압실(525)의 유압 변화에도 움직이지 않도록 고정된다. 한편, 다이아프램(530)의 타단은 상기 슬라이더(540)에 고정되고, 이 슬라이더(540)는 챔버(520)의 바닥부로부터 돌출 형성된 가이드 돌기(513)에 끼워져 제1 유압실(524)과 제2 유압실(525)의 유압 변화에 따라 상하로 이동되도록 장착된다.
상기 가이드 돌기(513)와 후술하는 이동로드(552) 사이에는 코일 스프링과 같은 탄성부재(545)가 끼움 설치된다. 이 탄성부재(545)가 이탈되는 것을 방지하기 위해 상기 가이드 돌기(513)의 상단과 이동로드(552)의 하단에는 각각 끼움턱(514)(554)이 형성된다.
상기 탄성부재(545)는 상기 슬라이더(540)가 제1 유압실(524)가 제2 유압실(525)의 유압 변화에 의해 가이드 돌기(513)를 따라 이동할 때 탄성 바이어스되도록 장착된다. 상기 제1 유압실(524)과 제2 유압실(525)이 서로 동일한 압력 상태가 되면 상기 탄성부재(545)가 상기 슬라이더(540)를 도7에서 실선으로 표시된 바와 같이 초기 위치로 복원시켜 준다.
상기 바디(510)에 일정 유압의 유체가 들어오다가 어느 순간 이보다 높은 고압의 유체가 들어오면 입구(511) 측의 유압은 출구(512)의 유압보다 높게 되고, 이에 따라 입구(511)와 연통된 제1 유압실(524)의 압력(P1)이 출구(512)와 연통된 제2유압실(525)의 압력(P2)보다 높게 된다. 이러한 압력의 차이로 인해 상기 제1 유압실(524)의 압력이 상기 제2 유압실(525) 쪽으로 작용해 도7에서 점선으로 나타낸 바와 같이 상기 다이아프램(530)과 결합된 슬라이더(540)가 상기 제2 유압실(525) 쪽으로 상승함과 동시에 다이아프램(530) 자체도 제2 유압실(525) 쪽으로 부풀어 오르는 변형이 일어나게 된다. 그 결과, 상기 제2 유압실(525)과 출구(512)가 연통되는 통로의 단면적(d2)이 축소된다.
상기 제2 유압실(525)에서 출구(512) 쪽으로 통하는 단면적(d2)이 축소되면 상기 제2 유압실(525)의 유압이 점차 상승하여 마침내 제1 유압실(524)의 유압과 동일하게 되고, 제1 유압실(524) 및 제2 유압실(525)의 압력이 평형상태(P1 = P2)에 이르게 되면 상기 슬라이더(540)는 탄성부재(545)에 의해 초기 위치로 복원된다.
이와 같이 상기 챔버(520), 다이아프램(530) 및 슬라이더(540)의 구성은 입구(511)측과 출구(512)측의 유압이 항상 동일하게 유지될 수 있도록 하는 구성으로, 이렇게 압력을 동일하게 유지시키는 이유는 입구(511)측과 출구(512)측의 압력이 동일해야 그 입구(511)측에서 출구(512)측으로 통하는 유량의 단면적을 조절하여 원하는 유량으로 정확하게 제어할 수 있기 때문이다.
한편, 위와 같은 구성에 의하여 입구(511)측과 출구(512)측의 유압이 동일한 상태로 유지되면 상기 액츄에이터(550)에 의하여 상기 챔버(520)를 지나는 유량이 조절된다.
상기 액츄에이터(550)는 바디(510)의 상부에 설치되어, 전기적 신호에 의해 상기 입구(511)에서 챔버(520) 쪽으로 통하는 단면적을 조절함으로써 실질적인 유량을 조절하는 구성인데, 상기 액츄에이터(550)가 상기 입구(511)측에서 챔버(520)로 통하는 단면적(d1)을 실질적으로 조절함으로써 유량 제어가 가능해진다.
상기 액츄에이터(550)는 크게 구동본체(551), 이동로드(552) 및 유량 차단체(555)를 포함하여 이루어지는데, 상기 구동본체(551)는 후술할 제어부(130)와 전기적으로 연결되어 상기 제어부(130)로부터 전기신호를 받으면 이것을 운동력으로 변환하게 된다. 상기 구동본체(551)에 대해서는 뒤에서 다시 자세하게 설명한다.
상기 액츄에이터(550)에 있어서 상기 이동로드(552)와 유량 차단체(555)의 작동은 2가지 방식으로 구현될 수 있는 바, 도7 및 도8을 참조로 각각의 실시예를 간단히 설명한다.
도7에 도시된 바와 같이 상기 구동본체(551)로부터 회전 가능하게 설치되고 그 하단에 나사산(553)이 형성된 이동로드(552)와, 이 이동로드(552)의 나사산(553)에 결합되고, 이동로드(552)의 회전 시에 상기 챔버(520)의 상단 지지대(521)를 따라 상하로 이동하면서 상기 바디(510)의 입구(511)로부터 챔버(520) 쪽으로 통하는 단면적(d1)을 조절하는 유량 차단체(555)로 구성된다.
이에 따르면, 상기 이동로드(552)는 제자리에서 양 방향으로 회전 운동만 하고, 상기 유량 차단체(555)가 이동로드(552)의 나사산을 따라 상하로 이동하면서 단면적을 조절하게 된다. 이때, 이동로드(552)는 상하로 이동하지 않기 때문에 그 하단에 끼움 설치된 탄성부재(545)를 탄성 바이어스시키지 아니한다.
또한 도8에 도시된 바와 같이 상기 구동본체(551)로부터 직선 왕복 운동이 가능하게 설치되고 그 하단에 나사산(553)이 형성된 이동로드(552)와, 이 이동로드(552)의 나사산(553)에 결합되고, 이동로드(552)의 직선 왕복 운동 시에 상기 챔버(520)의 상단 지지대(521)를 따라 상하로 직선 이동하면서 상기 바디(510)의 입구(511)로부터 챔버(520) 쪽으로 통하는 단면적(d1)을 조절하는 유량 차단체(555)로 구성된다.
이에 따르면, 상기 이동로드(552)가 상하로 직선 왕복 운동함에 따라 그 하단에 끼움 설치된 탄성부재(545)가 탄성 바이어스되면서 단면적의 변화가 보다 균일하고 원활하게 이루어지도록 해준다.
본 발명에 따른 제1실시예 내지 제4실시예에 사용되는 상기 구동본체(251,351,451,551)는 도9에 나타낸 바와 같은 구조를 이루고 있는데, 상기 제어부(130)는 구동본체(251,351,451,551)의 구동모터(253)와 전기적으로 연결되어 상기 구동모터(253)를 작동시키는데, 상기 구동모터(253)는 감속기어(254)를 통해 구동기어(255)에 회전력을 가한다.
상기 구동기어(255)는 도9에 도시되지는 않았지만 상기 이동로드(252,352,452,552)에 동력전달 가능하도록 연결되어 상기 이동로드(252,352,452,552)가 직선운동을 하도록 외력을 제공한다.
이때, 상기 직선운동하는 이동로드(252,352,452,552)의 위치에 대한 정보를 상기 제어부(130)가 입력받아야 상기 시트(213,313,413,513)를 통과하는 유량을 제어부(130)가 알 수 있기 때문에, 상기 구동기어(255)는 연결기어(256)를 통해 센서기어(257)와 동력 연결된다.
따라서, 상기 구동기어(255)가 회전되면 상기 센서기어(257)가 연동하여 회전되는데, 상기 센서기어(257)에는 일반적으로 알려져 있는 가변저항기(258)가 내장되어 있고, 상기 가변저항기(258)의 출력값은 상기 제어부(130)로 입력되기 때문에, 상기 제어부(130)는 상기 가변저항기(258)의 출력값을 실시간으로 입력받아 상기 구동기어(255)의 회전량, 즉 상기 이동로드(252,352,452,552)의 위치를 알 수 있게 된다.
상기 구동기어(255)는 1회 이상 회전될 수 있지만, 상기 센서기어(257)는 가변저항기(258)와 접촉된 상태로 회전되어야 하기 때문에 회전수가 1회 미만으로 제한되는바, 이러한 원리를 고려하여 상기 구동기어(255)와 상기 센서기어(257)간에 적정한 기어비가 설정되는 것이 바람직하다. 참고로, 본 발명에서는 상기 센서기어(257)의 회전각이 270도 이하로 제한되며 그 회전각도 범위내에 가변저항기(258)가 설치되며, 상기 제어부(130)에는 상기 이동로드(252,352,452,552)의 이동거리와 시트(213)의 직경 등, 각종 파라미터가 입력되어 있어서 상기 이동로드(252,352,452,552)의 이동거리를 알면 유량의 추정이 가능하다.
이와 같이, 상기 이동로드(252,352,452,552)는 상기 구동본체(251,351,451,551)로부터 연장되어 상기 바디(210,310,410,510) 내부에 삽입된 상태에서 상기 구동본체(251,351,451,551)로부터 힘을 제공받아 상기 시트(213,313,413,513) 쪽으로 들어가는 단면적을 조절하게 되는데, 상기 이동로드(252,352,452,552)가 상기 시트(213,313,413,513)의 단면적을 조절함에 따라 유량이 제어된다.
이때, 상기 이동로드(252,352,452,552)의 외경은 상기 시트(213,313,413,513)의 내경에 대응되는 크기로 설정되는 것이 바람직한바, 상기 이동로드(252,352,452,552)가 상기 시트(213,313,413,513)에 완전히 끼워지면 유체가 전혀 흐를 수 없게 되어 통과유량이 “0”이 된다.
한편, 상기 제어부(130)는 도2에 나타낸 바와 같이 상기 온도조절부(110)의 신호를 입력받아 그 신호에 근거하여 상기 구동기(120)와 상기 가변유량밸브(200~500)를 제어하는 구성이다.
상기 온도조절부(110)는 앞에서 설명한 바와 같이 사용자가 원하는 희망온도를 설정할 수 있을 뿐만 아니라 현재 실내온도를 측정할 수 있기 때문에, 상기 온도조절부(110)에서 사용자가 설정한 희망온도와 온도조절부(110)가 감지한 현재온도는 모두 상기 제어부(130)로 입력된다.
상기 제어부(130)는 입력받은 희망온도와 현재온도를 비교하여 현재온도가 희망온도보다 낮은 경우에 난방을 수행하여야 하므로, 상기 구동기(120)에 온(on) 신호를 주어 해당 환수파이프(5)가 개방되도록 한다.
이때, 어느 하나의 방의 희망온도가 현재온도와 동일해져서 난방이 중지되어야 할 경우, 상기 제어부(130)는 그 해당 방의 구동기(120)에 오프(off) 신호를 주어 그 방의 환수파이프(5)가 폐쇄되도록 한다.
이때, 상기 제어부(130)는 전체 방의 최적유량값의 합에 대한 폐쇄된 방의 최적유량값의 비율에 따라 상기 가변유량밸브(200~500)의 유량을 감소시켜, 상기 가변유량밸브(200~500)를 통과하는 세대별 전체 정유량이 난방 중인 각 방의 유량의 합과 동일해지도록 하는데, 상기 제어부에는 앞에서 설명한 바와 같이 각 방별 난방부하를 고려하여 해당 방의 최적 난방에 필요한 필요요구열량과 비례관계에 있는 최적유량값이 저장되어 있다.
상기 제어부(130)가 상기 가변유량밸브(200~500)에 보내는 제어신호는 가변유량밸브(200~500)의 액츄에이터(250,350,450,550) 중에서도 구동본체(251,351,451,551)로 보내져, 상기 이동로드(252,352,452,552)의 이동거리를 조정하는데, 상기 제어부(130)에는 상기 이동로드(252,352,452,552)의 이동거리와 시트(213,313,413,513)의 직경 등, 각종 파라미터가 입력되어 있어서 상기 이동로드(252,352,452,552)의 이동거리에 따른 유량을 추정할 수 있게 된다.
만약, 하나의 방에서만 난방이 수행되면 상기 제어부(130)는 난방이 수행되는 방의 환수파이프(5)만을 개방하고 다른 나머지 방(난방 중지된 방)들의 환수파이프(5)는 폐쇄하며, 상기 가변유량밸브(200~500)에 난방이 수행되는 방의 최적유량값(난방부하를 고려한 유량)과 동일한 유량만 흐를 수 있도록 제어한다.
이에 대한 추가적인 예시는, 도10 내지 도12의 실험데이터를 참고하여 아래에서 설명한다.
도10 내지 도12는 서로 다른 유량을 갖는 4개의 방을 대상으로 본 발명에 따른 장치와 종래의 차압유량밸브를 비교하여 실제로 난방이 중지된 방에 대응하여 세대의 전체 정유량의 감소 차이를 나타낸 도표인데, 여기서 최적값이라고 하는 것은 각 방의 난방 유무에 따라 해당 세대의 전체 정유량을 계산적으로 나타낸 이상적인 값이다.
또한, 구동기열림이라고 하는 것은 해당숫자의 방이 난방된다는 뜻으로 예를 들어 구동기열림이 “1+2+3+4”이면, 1,2,3,4번 방이 모두 난방되고 있다는 뜻이며, 구동기열림이 “1”이면 1번 방만 난방되고, 2,3,4번 방은 난방 중지 상태에 있다는 뜻이다.
먼저, 도10을 보면 구동기열림이 “1+2+3+4” 상태에 있을 때, 본 발명이나 차압유량밸브나 모두 최적값과 유사한 것을 알 수 있으나, 하나의 방이 난방 중지된 “1+2+4”, “1+2+3”, “1+3+4”에서는 본 발명은 최적값에 모두 근접하였으나 종래의 차압유량밸브는 최적값과 차이를 보여 유량제어가 목표하는 대로 제대로 이루어지지 않는 것을 알 수 있다.
이것은, 실제로 하나의 방이 난방되지 않음에도 불구하고 세대의 전체 정유량은 그에 비례하여 감소되지 않았는바, 결국 난방이 되고 있는 다른 방으로 과유량이 흘러 연료비 절감이 되지 않을 뿐만 아니라 유속 증가로 인해 캐비테이션이 발생한다는 것을 알 수 있다.
이러한 차이는 도11 및 도12에서 보는 바와 같이 난방 중지되는 방이 늘어날수록 더욱 극명하게 나타나는 바, 도12에서와 같이 하나의 방만을 난방하는 경우 본 발명에 따른 장치는 최적값에 매우 근접하여 실질적인 연료비 절감이 이루어지고 소음이 발생하지 않는 것을 알 수 있으나, 종래의 차압유량밸브는 최적값과 큰 차이를 보여 난방효율이 저하되고 캐비테이션에 의한 소음이 발생한다는 것을 알 수 있다.
한편 본 발명에 따른 장치 대비 종래기술에서 설명한 난방장치 중 “개방밸브개수비율”제어방식과 “개방밸브길이비율”제어방식을 각각 동일세대에 시공하여 최적유량과 실제 제어유량과의 오차를 살펴보았다.
시공을 한 “대한민국 고양시 행신동 신동아 아파트 48평형(이하, “시공예”)”의 파라미터는 도13과 같다.
도13에서 보듯이, 시공예의 “안방+드레스실”보다 “거실”의 면적이 작지만 거실은 대개 창이 크고 창수도 많으므로 열손실이 많아 난방부하가 크기 때문에 최적유량도 다른 방에 비해 클 수밖에 없다.
도14와 같이 상기 시공예에 본 발명에 따른 장치를 시공하여 실제 유량을 제어하면 오차가 방별로 모두 0%인 것을 알 수 있다. 이것은 처음부터 방별 최적유량값에 기초하여 전체 정유량을 제어하기 때문인데, 난방이 중지된 방의 최적유량값에 해당하는 유량만큼 전체 정유량이 제어되기 때문에 설계기준에 적합하고 이에 따라 최적의 난방을 수행하게 난방효율이 개선되고 캐비테이션 현상이 감소된다.
반면, 도15는 종래 “개방밸브개수비율”제어방식으로 정유량이 제어된 데이터인데, 여기서 보면 방의 면적이나 난방부하를 전혀 고려하지 않고 구동기 개수에 의하여 정유량이 제어되기 때문에 실제 제어유량은 방마다 모두 동일하게 나온다.
이는 해당 방이 요구하는 최적유량값과 전혀 무관하므로 과난방 또는 저난방 현상을 초래하여 에너지 낭비 및 사용자의 난방 만족도를 저하시키며 과난방되는 방에서는 캐비테이션 현상이 발생한다.
또한, 도16은 종래 “개방밸브길이비율” 제어방식으로 정유량이 제어된 데이터인데, 이것은 방의 면적을 고려하였기 때문에 도15에 비해 오차가 다소 감소하기는 하였지만, 여전히 과난방 또는 저난방 현상이 일어나 최적의 난방상태를 유지하지 못하는 것으로 나타났다.
이하, 본 발명 대비 “개방밸브개수비율”제어방식과 “개방밸브길이비율”제어방식의 『지역난방 설계기준의 온도변화(△T) 충족 여부』에 대해서 살펴본다.
도13에서 보듯이 거실만 난방되는 경우 거실의 난방부하는 3,422[kcal/h]이고 이것은 곧 거실의 필요요구열량을 의미하는 바, 도14를 참조하면 거실의 실제제어유량은 3.8[lpm]이 되고 이것을 시간개념으로 변환하기 위하여 60을 곱하여 상기 온도변화(△T)를 계산하면 아래와 같다.
3,422 = (3.8×60)×1×△T
△T = 15(℃)
그러나, 도15에서 보듯이 “개방밸브개수비율”제어방식에 따라 유량을 제어하게 되면 거실의 실제제어유량은 2.23[lpm]이고 이때의 상기 온도변화(△T)는 아래와 같다.
3,422 = (2.23×60)×1×△T
△T = 약 26(℃)
따라서, 상기 “개방밸브개수비율”에 따라 유량을 제어하는 것은 지역난방 설계기준에서 제시하고 있는 온도변화 15℃를 충족하지 못하는 문제점이 있다. 또한, 최적유량값보다 실제제어유량이 작은 경우 환수온도가 지역난방 설계기준에서 제시하고 있는 45℃보다 현저히 낮은 34℃가 되는바, 이에 따라 방 온도가 전체적으로 균일하지 못하고 온수의 입구측과 출구측의 편차가 커지는 불균형을 초래하게 된다.
한편, “개방밸브길이비율”제어방식에 따라 유량을 제어하면서 최적유량값보다 실제제어유량이 큰 경우를 예로 들어본다.
도13 및 도16을 참조하면, 서재의 난방부하는 1,065[kcal/h]이고 이에 따라 최적유량값은 1.18임에도 불구하고 실제제어유량은 1.88이 되는 것을 알 수 있는데, 이때의 온도변화(△T)를 계산하면 아래와 같다.
1,065 = (1.88×60)×1×△T
△T = 약 9.4(℃)
따라서, 최적유량보다 과유량이 흐를 때에는 지역난방 설계기준을 충족하지 못하는 것은 물론 방과의 충분한 열전달이 이루어지지 않아 난방효율이 저하되며, 이는 결국 난방비 증가의 원인이 된다.
이상, 본 발명을 바람직한 실시예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 설명된 특정 실시예에 한정되는 것은 아니며, 당해 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 범위 내에서 얼마든지 구성요소의 치환과 변형이 가능한바, 이 또한 본 발명의 권리에 속하게 된다.

Claims (17)

  1. 각 세대로 온수가 공급되는 공급관(2);
    상기 공급관(2)에 연통되어 각 방별로 분기되고 상기 온수의 잠열이 해당 방과 열교환되도록 하는 온수관로(4);
    상기 온수관로(4)와 각각 연통되어 열교환이 끝난 온수가 환수되는 환수파이프(5);
    상기 환수파이프(5)들의 유량이 한곳으로 모여 세대 외부로 배출되는 환수관(7);
    각 방의 희망온도를 설정할 수 있도록 방마다 개별 설치되고, 해당 방의 실내온도를 측정할 수 있는 온도조절부(110);
    상기 환수파이프(5)에 각각 개별 설치되어 전기적 신호에 의해 그 환수파이프(5)의 통로를 개폐하는 구동기(120);
    상기 공급관(2) 또는 환수관(7)에 설치되어 또 다른 전기적 신호에 의해 그 공급관 또는 환수관의 유량을 변경하는 가변유량밸브(200,300,400,500);
    상기 온도조절부(110)의 신호를 입력받아 상기 구동기(120)와 상기 가변유량밸브를 제어하는 제어부(130);를 포함하는 것으로,
    상기 제어부(130)에는 각 방별 난방부하를 고려하여 해당 방의 필요요구열량에 비례하는 최적유량값이 저장되고, 상기 온도조절부(110)의 신호에 따라 난방이 중지되어야 할 방의 구동기(120)를 제어하여 해당 방의 환수파이프(5) 통로를 폐쇄하며, 전체 최적유량값의 합에 대한 폐쇄된 방의 최적유량값의 비율에 따라 상기 가변유량밸브의 유량을 감소시키는 것을 특징으로 하는 난방부하를 고려한 정유량 자동제어장치.
  2. 청구항 1에 있어서, 상기 제어부에 저장되는 각방의 난방부하는 방을 이루고 있는 각 면에서의 “면부하량”을 모두 더하여 계산되는 것으로, 상기 면부하량은 “열관류율, 면적, 방위계수, 상당온도차”중에서 하나이상의 선택된 인자를 곱하여 구해지는 것을 특징으로 하는 난방부하를 고려한 정유량 자동제어장치.
  3. 청구항 1에 있어서, 상기 가변유량밸브(200)는,
    입구(211)와 출구(212)가 연통되는 유로가 내부에 마련되고 그 입구(211)와 출구(212) 사이에 유로의 단면적이 감소되는 시트(213)가 형성된 바디(210); 상기 바디(210)의 내부 일측에 상기 입구(211)측 유압과 상기 시트(213)측 유압이 각각 작용하도록 유압통로가 형성된 챔버(220); 상기 챔버(220)가 구획분리되도록 설치되어 그 양측으로 상기 입구(211)측 유압과 상기 시트(213)측 유압이 각각 작용되며, 그 압력차에 의해 변형되는 다이아프램(230); 상기 다이아프램(230) 일측에 결합되어 상기 챔버(220)에서의 압력차에 의해 상기 시트(213)에서 출구(212) 쪽으로 통하는 단면적을 조절하도록 탄성 설치된 이동체(240); 상기 바디(210)의 타측에서, 상기 제어부(130)의 제어신호에 의해 상기 시트(213)의 개방량을 조절하는 액츄에이터(250);를 포함하는 것을 특징으로 하는 난방부하를 고려한 정유량 자동제어장치.
  4. 청구항 3에 있어서, 상기 이동체(240)는,
    상기 다이아프램(230)에 결합되는 헤드부(241); 상기 헤드부(241)로부터 상기 시트(213)쪽으로 연장되어 상기 다이아프램(230)의 변형에 따라 상기 시트(213)에서 출구(212) 쪽으로 통하는 유량 단면적을 조절하는 스템부(242); 상기 다이아프램(230)을 기준으로 양측 압력이 동일할 때 상기 이동체(240)가 복원되도록 상기 이동체(240)와 챔버(220) 사이에 설치된 탄성부재(243);를 포함하는 것을 특징으로 하는 난방부하를 고려한 정유량 자동제어장치.
  5. 청구항 1에 있어서, 상기 가변유량밸브(300)는,
    입구(311)와 출구(312)가 연통되는 유로가 내부에 마련되고 그 입구(311)와 출구(312) 사이에 유로의 단면적이 감소되는 시트(313)가 형성된 바디(310); 상기 바디(310)의 내부 일측에 상기 시트(313)측 유압과 상기 출구(312)측 유압이 각각 작용하도록 유압통로가 형성된 챔버(320); 상기 챔버(320)가 구획분리되도록 설치되어 그 양측으로 상기 시트(313)측 유압과 상기 출구(312)측 유압이 각각 작용되며, 그 압력차에 의해 변형되는 다이아프램(330); 상기 다이아프램(330)에 결합되어 상기 시트(313)측에서의 압력이 출구(312)측보다 크면 상기 입구(311)측에서 시트(313)측으로 통하는 변곡부(314)의 유량 단면적이 감소되도록 이동되는 이동체(340); 상기 제어부(130)의 제어신호에 의해 상기 시트(313)의 개방량을 조절하는 액츄에이터(350);를 포함하는 것을 특징으로 하는 난방부하를 고려한 정유량 자동제어장치.
  6. 청구항 5에 있어서, 상기 다이아프램(330)은,
    그 외주면이 상기 챔버(320) 내벽에 고정되며, 그 내주면에는 상기 이동체(340)가 결합되기 위한 관통부(331)가 형성된 것을 특징으로 하는 난방부하를 고려한 정유량 자동제어장치.
  7. 청구항 6에 있어서, 상기 이동체(340)는,
    상기 다이아프램(330)의 관통부(331)에 끼워지는 헤드부(341); 상기 헤드부(341)로부터 상기 입구(311)측과 시트(313)측이 연통되는 변곡부(314)로 연장되어 상기 다이아프램(330)의 변형에 따라 상기 변곡부(314)를 통과하는 유량 단면적을 조절하는 스템부(342); 상기 다이아프램(330)을 기준으로 양측 압력이 동일할 때 상기 이동체(340)가 복원되도록 상기 이동체(340)에 설치된 탄성부재(343);를 포함하는 것을 특징으로 하는 난방부하를 고려한 정유량 자동제어장치.
  8. 청구항 7에 있어서, 상기 변곡부(314)에는 상기 스템부(342)와의 간격을 조절해 초기 통과 유량을 조정하기 위한 조정나사(315)가 설치된 것을 특징으로 하는 난방부하를 고려한 정유량 자동제어장치.
  9. 청구항 1에 있어서, 상기 가변유량밸브(400)는,
    입구(411)와 출구(412)가 연통되는 유로가 내부에 마련되고 그 입구(411)와 출구(412) 사이에 유로의 단면적이 감소되는 시트(413)가 형성된 바디(410); 상기 바디(410)의 유로 상에 설치되어 유로를 지나는 유체의 유량을 측정하는 유량센서(430); 상기 제어부(130)의 제어신호에 의해 상기 시트(413)의 개방량을 조절하는 액츄에이터(450);를 포함하는 것을 특징으로 하는 난방부하를 고려한 정유량 자동제어장치.
  10. 청구항 9에 있어서, 상기 유량센서(430)는,
    상기 유로 상에 설치되는 것으로 내부에 유체가 지나가는 관통구(431a)가 형성된 하우징(431)과, 상기 관통구(431a)의 원주방향을 따라 일정거리 이격되게 설치되는 마그네틱부(432)와, 상기 관통구(431a)에 회전가능하게 설치되는 임펠러(433)로 이루어져, 유로를 지나가는 유량에 따라 상기 임펠러(433)의 회전속도가 변하면 상기 마그네틱부(432)가 그 회전속도를 검출하여 상기 제어부(130)로 전달하는 것을 특징으로 하는 난방부하를 고려한 정유량 자동제어장치.
  11. 청구항 3, 5, 9 중 어느 하나에 있어서, 상기 액츄에이터(250,350,450)는,
    상기 제어부(130)와 전기적으로 연결되어 제어부(130)의 전기신호를 운동력으로 변환하는 구동본체(251,351,451);
    상기 구동본체(251,351,451)로부터 연장되어 상기 바디(210,310,410) 내부에 삽입되는 것으로, 상기 시트(213,313,413)의 개방량을 조절하기 위해 시트 쪽으로 이동되는 이동로드(252,352,452);를 포함하는 것을 특징으로 하는 난방부하를 고려한 정유량 자동제어장치.
  12. 청구항 11에 있어서, 상기 구동본체(251,351,451)는,
    상기 제어부(130)와 전기적으로 연결되어 구동력을 발생시키는 구동모터(253); 이 구동모터(253)에 의해 발생된 구동력을 상기 이동로드(252,352,452)로 전달하는 구동기어(255); 및 이 구동기어(255)와 연동하여 상기 이동로드(252,352,452)의 변위량을 감지하고, 감지된 변위량을 상기 제어부(130)로 피드백하는 가변저항기(258);로 이루어진 것을 특징으로 하는 난방부하를 고려한 정유량 자동제어장치.
  13. 청구항 1에 있어서, 상기 가변유량밸브(500)는,
    내부에 입구(511)와 출구(512)가 연통되는 유로가 마련된 바디(510);
    이 바디(510)의 내부에서 상,하단 지지대(521,522)에 의해 구획되고 상기 바디의 입구(511) 및 출구(512)와 연통되도록 형성된 챔버(520);
    일단이 상기 챔버(520)의 하단 지지대(522) 상에 고정되고, 타단은 챔버(520) 내에 설치되는 탄성부재(545)와 결합된 슬라이더(540)에 고정되며, 상기 챔버(520)를 바디(510)의 입구(511)와 연통되는 제1 유압실(524)과 바디(510)의 출구(512)와 연통되는 제2 유압실(525)로 구획분리되도록 해주는 다이아프램(530); 및
    상기 챔버(520)의 상단 지지대(521)를 따라 이동 가능하게 설치되고, 상기 제어부(130)의 전기적 신호에 의해 상기 바디(510)의 입구(511)로부터 챔버(520) 쪽으로 통하는 단면적을 조절하는 액츄에이터(550);를 포함하는 것을 특징으로 하는 난방부하를 고려한 정유량 자동제어장치.
  14. 청구항 13에 있어서, 상기 탄성부재(545)는,
    상기 슬라이더(540)가 이동 가능하게 장착된 가이드 돌기(513)와 상기 이동로드(552) 사이에 끼움 설치되고,
    상기 제1 유압실(524)과 제2 유압실(525)의 압력 차이에 의해 다이아프램(530)이 변형될 때 상기 슬라이더(540)에 의해 탄성 바이어스되는 것을 특징으로 하는 난방부하를 고려한 정유량 자동제어장치.
  15. 청구항 13에 있어서, 상기 액츄에이터(550)는,
    상기 제어부(130)와 전기적으로 연결되어 제어부(130)의 전기신호를 운동력으로 변환하는 구동본체(551); 이 구동본체(551)로부터 회전 가능하게 설치되고 그 하단에 나사산(553)이 형성된 이동로드(552); 및 이 이동로드(552)의 나사산(553)에 결합되고, 이동로드(552)의 회전 시에 상기 상단 지지대(521)를 따라 상하로 이동하면서 상기 바디(510)의 입구(511)로부터 챔버(520) 쪽으로 통하는 단면적을 조절하는 유량 차단체(555);를 포함하는 것을 특징으로 하는 난방부하를 고려한 정유량 자동제어장치.
  16. 청구항 13에 있어서, 상기 액츄에이터(550)는,
    상기 제어부(130)와 전기적으로 연결되어 제어부(130)의 전기신호를 운동력으로 변환하는 구동본체(551); 이 구동본체(551)로부터 직선 왕복 운동이 가능하게 설치되고 그 하단에 나사산(553)이 형성된 이동로드(552); 및 이 이동로드(552)의 나사산(553)에 결합되고, 이동로드(552)의 직선 왕복 운동 시에 상기 상단 지지대(521)를 따라 상하로 이동하면서 상기 바디(510)의 입구(511)로부터 챔버(520) 쪽으로 통하는 단면적을 조절하는 유량 차단체(555);를 포함하는 것을 특징으로 하는 난방부하를 고려한 정유량 자동제어장치.
  17. 청구항 15 또는 청구항 16에 있어서, 상기 구동본체(551)는,
    상기 제어부(130)와 전기적으로 연결되어 구동력을 발생시키는 구동모터(253); 이 구동모터(253)에 의해 발생된 구동력을 상기 이동로드(552)로 전달하는 구동기어(255); 및 이 구동기어(255)와 연동하여 상기 이동로드(552)의 변위량을 감지하고, 감지된 변위량을 상기 제어부(130)로 피드백하는 가변저항기(258);로 이루어진 것을 특징으로 하는 난방부하를 고려한 정유량 자동제어장치.
PCT/KR2010/002624 2009-04-29 2010-04-27 난방부하를 고려한 정유량 자동제어장치 WO2010126267A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012508393A JP5646601B2 (ja) 2009-04-29 2010-04-27 暖房負荷を考慮した定流量自動制御装置
EP10769912.6A EP2426421B1 (en) 2009-04-29 2010-04-27 Apparatus for automatically controlling a constant flow by considering a heating load
US13/266,863 US20120043389A1 (en) 2009-04-29 2010-04-27 Apparatus for automatically controlling a constant flow by considering a heating load the specification of which
CN201080027546.6A CN102460023B (zh) 2009-04-29 2010-04-27 考虑热负荷而自动地控制恒流量的装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20090037729 2009-04-29
KR10-2009-0037729 2009-04-29

Publications (2)

Publication Number Publication Date
WO2010126267A2 true WO2010126267A2 (ko) 2010-11-04
WO2010126267A3 WO2010126267A3 (ko) 2011-03-10

Family

ID=41683707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002624 WO2010126267A2 (ko) 2009-04-29 2010-04-27 난방부하를 고려한 정유량 자동제어장치

Country Status (6)

Country Link
US (1) US20120043389A1 (ko)
EP (1) EP2426421B1 (ko)
JP (1) JP5646601B2 (ko)
KR (4) KR100929210B1 (ko)
CN (1) CN102460023B (ko)
WO (1) WO2010126267A2 (ko)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100980753B1 (ko) * 2010-04-29 2010-09-07 주식회사 코텍 차압조절식 난방제어 시스템
KR101019723B1 (ko) * 2010-06-14 2011-03-07 김남용 정유량 밸브
KR101674202B1 (ko) * 2010-10-15 2016-11-09 주식회사 삼양발브종합메이커 공동주택의 동별 정유량 자동제어장치
KR101220997B1 (ko) * 2011-01-14 2013-02-07 주식회사 코텍 유량감지식 난방제어 시스템
KR20120110404A (ko) * 2011-03-29 2012-10-10 주식회사 경동원 난방장치의 제어방법
KR101334113B1 (ko) * 2011-11-03 2013-11-28 김남용 정유량 밸브
KR101263240B1 (ko) 2013-01-30 2013-05-10 김남용 적산열량계의 측정값을 이용한 오차 보정 제어 장치 및 방법
KR101528799B1 (ko) * 2013-08-09 2015-06-15 주식회사 삼양발브종합메이커 개별적인 정유량 밸브가 구비된 온수분배시스템
KR101453353B1 (ko) 2013-08-19 2014-10-22 주식회사 다에스 정유량 밸브
AT515085B1 (de) * 2014-01-16 2015-06-15 Vaillant Group Austria Gmbh Verfahren zur adaptiven Regelung eines Heizsystems
CN104033954A (zh) * 2014-05-20 2014-09-10 刘明 基于水力平衡的供暖热计量管理系统及其控制方法
KR101529278B1 (ko) * 2014-06-19 2015-06-17 홍종관 정유량 밸브
KR101692438B1 (ko) * 2015-06-30 2017-01-03 주식회사 우당기술산업 세대 온도제어 시스템용 밸브 제어기 및 그의 세대 열량 보상방법
DE102015119801A1 (de) * 2015-11-16 2017-05-18 Simplex Armaturen & Systeme Gmbh Sammelbalken und Heizkreisverteiler
US10690356B2 (en) * 2016-04-13 2020-06-23 Paul D Mercier, SR. Enhanced convection, differential temperature managed, hydronic heating appliance
KR101726571B1 (ko) * 2016-05-17 2017-04-14 (주) 현암바씨스 에너지 효율 향상을 위한 지역난방용 중온수 유량 조절 방법
RU167942U1 (ru) * 2016-07-25 2017-01-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" Импульсный нагнетатель-теплообменник
KR101916357B1 (ko) * 2017-03-28 2019-01-30 한혜숙 온수난방 시스템
CN107388859B (zh) * 2017-09-07 2023-06-02 华中科技大学 换热器组件及自调流量换热器
CN107515625A (zh) * 2017-10-09 2017-12-26 安徽理工大学 基于光圈原理的流量控制装置
KR102074587B1 (ko) * 2018-09-12 2020-02-06 지에스건설 주식회사 온수 난방시스템
EP3702872A1 (en) * 2019-02-27 2020-09-02 Siemens Schweiz AG Pressure independent control valve
CN110375370B (zh) * 2019-08-16 2024-03-08 烟台华蓝新瑞节能科技有限公司 一种智慧供热均温管控系统
CN111306608A (zh) * 2019-12-06 2020-06-19 西安瑞行城市热力发展集团有限公司 天然气智能供热系统及供热方法
CN111947227A (zh) * 2020-08-19 2020-11-17 宁波奥克斯电气股份有限公司 一种两联供系统换热控制方法、装置及两联供系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200371794Y1 (ko) 2004-10-07 2005-01-15 주식회사 삼양발부종합메이커 온수분배시스템용 열동식 구동기
KR100635107B1 (ko) 2006-05-04 2006-10-18 신우공업 주식회사 차압유량조절밸브 및 이를 포함하는 온수분배기 장치

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2611218A (en) * 1946-10-11 1952-09-23 Spence Engineering Company Inc Pilot-operated valve
US3729051A (en) * 1971-08-17 1973-04-24 G Mannion Process fluid flow regulation systems
US4124177A (en) * 1977-04-21 1978-11-07 Timmerman Robert W Heating system
JPS5471432A (en) * 1977-11-17 1979-06-08 Sotokazu Rikuta Flow rate constant value automatic control valve
US4463291A (en) * 1979-12-31 1984-07-31 Andale Company Automatic control system and valve actuator
DE3709085A1 (de) * 1987-03-19 1988-09-29 Thomas Baehr Verfahren zum steuern der vorlauftemperatur einer heizungsanlage
DE68914142T2 (de) * 1988-01-19 1994-07-07 Multistack Int Pty Ltd Heiz- und kühlsysteme.
JPH0285927U (ko) * 1988-12-22 1990-07-06
US5143116A (en) * 1989-12-11 1992-09-01 Skoglund Paul K Flow regulating valve and system using the same
US5089975A (en) * 1990-01-12 1992-02-18 Brdg-Tndr Corporation Method and apparatus for controlling the flow of process fluids
DE4019503A1 (de) * 1990-06-19 1992-01-02 Heimeier Gmbh Metall Theodor Einrichtung zur steuerung des stellventiles einer zentralheizungsanlage
US5119988A (en) * 1990-06-28 1992-06-09 Joachim Fiedrich Hydronic heating water temperature control system
US5138845A (en) * 1991-04-09 1992-08-18 Brdg-Tndr Corporation Method and apparatus for controlling the flow of process fluids
US5586449A (en) * 1993-07-02 1996-12-24 Krist; Gene Hydronic interface system, method and apparatus
US5347825A (en) * 1993-07-02 1994-09-20 Krist Gene D Hydronic interface system, method and apparatus
JPH08110059A (ja) * 1994-10-13 1996-04-30 Matsushita Electric Ind Co Ltd 熱交換装置
US5617994A (en) * 1994-10-17 1997-04-08 Fiedrich; Joachim Hydronic heating with satellite distribution stations for multi-temperature supply water to heating loops
JPH09310869A (ja) * 1996-05-24 1997-12-02 Matsushita Electric Works Ltd 温水床暖房の運転制御システム
DE19818131A1 (de) * 1998-04-23 1999-10-28 Gwk Ges Waerme Kaeltetechnik M Mehrkreistemperiersystem
KR100310330B1 (ko) 1998-11-09 2001-12-12 장사윤 온수온돌난방시스템용다기능온도제어장치
JP2002327948A (ja) * 2001-04-27 2002-11-15 Takenaka Komuten Co Ltd 給湯熱源を利用した空調システム
KR100409158B1 (ko) 2001-11-19 2003-12-12 주식회사 경동보일러 유량센서에 의한 보일러 난방제어방법
JP2004101163A (ja) 2002-07-16 2004-04-02 Tgk Co Ltd 定流量膨張弁
US6834714B2 (en) * 2002-11-22 2004-12-28 Paul J. Walsh Variable constant volume cooling/heating unit
US6782945B1 (en) * 2003-02-26 2004-08-31 Nissan Technical Center North America, Inc. Dual zone automatic climate control algorithm utilizing heat flux analysis
US7028768B2 (en) * 2003-08-20 2006-04-18 Itt Manufacturing Enterprises, Inc. Fluid heat exchange control system
KR100557506B1 (ko) 2004-04-30 2006-03-07 김재현 자동 유량조절밸브 및 이를 이용한 난방시스템
JP2006343026A (ja) * 2005-06-08 2006-12-21 Osaka Gas Co Ltd 集合住宅の暖房システム
JP4892697B2 (ja) * 2005-12-09 2012-03-07 日本電産サンキョー株式会社 バルブ駆動装置、バルブ駆動装置の制御方法、及びポンプ
DK200600734A (en) * 2006-05-30 2007-12-01 Broen As Flow Balancing
KR100898097B1 (ko) * 2007-05-11 2009-05-15 주식회사 우당기술산업 유량계 없는 난방시스템 및 난방제어방법
FI121552B (fi) * 2009-02-18 2010-12-31 Uponor Innovation Ab Lämmitys-/-jäähdytysjärjestelmän ohjaus
KR100902306B1 (ko) 2009-02-19 2009-06-10 주식회사 비비비솔루텍 난방장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200371794Y1 (ko) 2004-10-07 2005-01-15 주식회사 삼양발부종합메이커 온수분배시스템용 열동식 구동기
KR100635107B1 (ko) 2006-05-04 2006-10-18 신우공업 주식회사 차압유량조절밸브 및 이를 포함하는 온수분배기 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2426421A4

Also Published As

Publication number Publication date
JP2012525560A (ja) 2012-10-22
JP5646601B2 (ja) 2014-12-24
KR100948844B1 (ko) 2010-03-22
EP2426421A2 (en) 2012-03-07
US20120043389A1 (en) 2012-02-23
WO2010126267A3 (ko) 2011-03-10
EP2426421B1 (en) 2018-06-06
EP2426421A4 (en) 2013-12-18
CN102460023B (zh) 2014-04-30
KR100929210B1 (ko) 2009-12-01
CN102460023A (zh) 2012-05-16
KR100929211B1 (ko) 2009-12-01
KR100938588B1 (ko) 2010-01-26

Similar Documents

Publication Publication Date Title
WO2010126267A2 (ko) 난방부하를 고려한 정유량 자동제어장치
WO2019164084A1 (ko) 냉장고
WO2019172497A1 (ko) 냉장고
WO2019172532A1 (ko) 냉장고 및 그 제어방법
WO2016013798A1 (en) Refrigerator and control method thereof
WO2019190113A1 (ko) 냉장고 및 그 제어방법
WO2017164711A1 (ko) 냉장고의 제어방법
WO2014142562A1 (ko) 건설기계의 유압시스템
AU2018295869B2 (en) Refrigerator and method of controlling the same
WO2021125750A1 (ko) 수전 제어 장치 및 방법, 그리고 수전
WO2011059131A1 (ko) 히트 펌프를 이용한 발전장치
WO2019143195A1 (ko) 멀티형 공기조화기
WO2015163661A1 (ko) 흡입기, 동력발생기, 흡입기와 동력발생기를 이용한 외연기관 시스템, 흡입기와 동력발생기를 이용한 내연기관 시스템, 흡입기와 동력발생기를 이용한 에어 하이브리드 동력발생 시스템.
WO2017105047A1 (ko) 냉장고 및 그의 제어방법
WO2021172671A1 (en) Air conditioner and water filling method therefor
WO2021040427A1 (en) Air conditioner and control method thereof
WO2022270772A1 (ko) 냉장고
EP3724564A1 (en) Vacuum adiabatic body and refrigerator
WO2020013444A1 (ko) 온수 공급 장치 및 그 제어 방법
AU2018295870B2 (en) Refrigerator and method of controlling the same
WO2020226340A1 (en) Water dispensing apparatus and control method therefor
WO2019147023A1 (en) Water dispensing apparatus and method for controlling the same
WO2020159023A1 (ko) 단계적 압점지지를 이용한 저토크 지수형 부단수 밸브
WO2019143198A1 (ko) 멀티형 공기조화기
WO2020235801A1 (en) Air conditioning apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080027546.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769912

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012508393

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13266863

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010769912

Country of ref document: EP