WO2017105047A1 - 냉장고 및 그의 제어방법 - Google Patents

냉장고 및 그의 제어방법 Download PDF

Info

Publication number
WO2017105047A1
WO2017105047A1 PCT/KR2016/014555 KR2016014555W WO2017105047A1 WO 2017105047 A1 WO2017105047 A1 WO 2017105047A1 KR 2016014555 W KR2016014555 W KR 2016014555W WO 2017105047 A1 WO2017105047 A1 WO 2017105047A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
output
cold air
supply means
air supply
Prior art date
Application number
PCT/KR2016/014555
Other languages
English (en)
French (fr)
Inventor
정명진
김경윤
김경석
김소윤
안승욱
차경훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150179493A external-priority patent/KR101811928B1/ko
Priority claimed from KR1020160161285A external-priority patent/KR102629604B1/ko
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP22172086.5A priority Critical patent/EP4095465A1/en
Priority to CN201680073965.0A priority patent/CN108474612B/zh
Priority to CN202110060732.XA priority patent/CN112797705B/zh
Priority to EP16875989.2A priority patent/EP3392583B1/en
Priority to ES16875989T priority patent/ES2917185T3/es
Priority to US15/780,587 priority patent/US10941969B2/en
Publication of WO2017105047A1 publication Critical patent/WO2017105047A1/ko
Priority to US17/148,379 priority patent/US11549736B2/en
Priority to US18/078,608 priority patent/US11885547B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/11Reducing heat transfers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/02Geometry problems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/04Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/02Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature

Definitions

  • the present invention relates to a refrigerator and a control method thereof.
  • Refrigerators are home appliances that keep food at a low temperature, and it is essential to keep the storage compartment at a constant low temperature at all times.
  • the storage compartment is maintained at a temperature within the upper limit range and the lower limit range based on the set temperature. That is, the refrigerator is controlled by driving a refrigeration cycle when the storage compartment temperature rises to the upper limit temperature, cooling the storage compartment, and stopping the refrigeration cycle when the storage compartment temperature reaches the lower limit temperature.
  • Korean Unexamined Patent Publication No. 1997-0022182 (published May 28, 1997) discloses a method for controlling a constant temperature for maintaining a storage compartment of a refrigerator at a constant temperature.
  • An object of the present invention is to provide a refrigerator and a control method thereof, which are controlled to reduce the possibility of the temperature of the storage compartment escaping from the constant temperature state in order to improve the freshness of the stored object.
  • An object of the present invention is to provide a refrigerator capable of quickly recovering to a constant temperature when the temperature of the storage compartment is out of the constant temperature state for improving freshness of the stored object, and a control method thereof.
  • a control method of a refrigerator includes: detecting a temperature of a storage compartment; When the sensed temperature of the storage compartment is equal to or greater than the first reference temperature, operating the cold air supply means to an output for cooling; While the cold air supply means is operating at the output for cooling, when the sensed temperature of the storage compartment is lower than the second reference temperature lower than the first reference temperature, the cold air supply means is operated at a delay output which is an output lower than the cooling output. step; And while the cold air supply means is operated at a delayed output, the controller determines a cooling output or a delayed output of the cold air supply means according to the temperature of the storage compartment, and determines the cold air at the determined cooling output or the delayed output. Operating the feed means.
  • a control method of a refrigerator includes: detecting a temperature of a storage compartment; When the sensed temperature of the storage compartment is equal to or greater than the first reference temperature, operating the compressor at an output for initial cooling; Operating the compressor at a delayed output that is lower than the initial cooling output when the detected temperature of the storage compartment is lower than the second reference temperature lower than the first reference temperature while the compressor is operating at the initial cooling output. ; And while the compressor is operating at a delay output, the controller determines a cooling output or a delay output of the compressor according to the temperature of the storage compartment, and operates the compressor at the determined cooling output or the delay output. It may include.
  • the controller may continuously operate the compressor such that the temperature of the storage compartment is maintained within the first reference temperature and the second reference temperature range.
  • a control method of a refrigerator includes: detecting a temperature of a storage compartment; When the detected temperature of the storage compartment is equal to or greater than a first reference temperature, operating a fan motor for cold air circulation of the storage compartment at an initial cooling output; While the fan motor is operating at the initial cooling output, when the sensed temperature of the storage compartment is lower than the second reference temperature lower than the first reference temperature, the fan motor is operated at a delay output which is an output lower than the initial cooling output. Becoming; And while the fan motor is operating at a delayed output, the controller determines a cooling output or a delayed output of the fan motor according to the temperature of the storage compartment, and operates the fan motor at the determined cooling output or the delayed output. Actuating.
  • the controller may continuously drive the fan motor such that the temperature of the storage compartment is maintained within a first reference temperature and a second reference temperature range.
  • a control method of a refrigerator includes: detecting a temperature of a refrigerator compartment; When the temperature of the refrigerating compartment is equal to or greater than the first reference temperature, opening the damper at an angle for cooling for the opening angle of the damper to flow the cold air of the freezing compartment into the refrigerating compartment; After the damper is opened to open at the cooling angle, when the detected temperature of the refrigerating chamber is lower than or equal to the second reference temperature lower than the first reference temperature, the opening angle of the damper decreases to a delay angle smaller than the cooling angle. step; After reducing the opening angle of the damper, the control unit may determine the opening angle of the damper according to the temperature of the refrigerating chamber, and the determined opening angle may include the damper opening.
  • the control unit may maintain the damper in an open state while the compressor is operated so that the temperature of the refrigerating compartment is maintained within a first reference temperature and a second reference temperature range.
  • a refrigerator includes a cabinet having a storage compartment; A compressor operative to cool the storage compartment; A fan for circulation of cold air in the storage compartment; A fan motor for rotating the fan; And a controller for controlling the compressor and the fan motor.
  • the control unit may be configured to adjust the temperature of the storage compartment within a range between a first reference temperature higher than a target temperature of the storage compartment and a second reference temperature lower than a target temperature in the process of continuously operating one or more of the compressor and the fan motor.
  • the output of one or more of the compressor and the fan motor can be adjusted to be maintained.
  • the controller may control the compressor to operate the compressor at a delay output of more than the minimum output.
  • the control unit When the temperature of the storage compartment reaches a predetermined temperature while the compressor is operating at an output greater than or equal to the minimum output, the control unit operates the compressor at an output for cooling lower than the initial cooling output or the initial cooling output of the compressor. You can.
  • a refrigerator includes a cabinet including a freezing compartment and a refrigerating compartment; A compressor operable to cool the freezer compartment; A fan for circulation of cold air in the freezer compartment; A damper positioned on a flow path for guiding cold air of the freezing compartment to the refrigerating compartment; And a controller for controlling the opening angle of the damper.
  • the controller may be configured such that the compressor operates and maintains the temperature of the refrigerator compartment within a range between a first reference temperature higher than a target temperature of the refrigerator compartment and a second reference temperature lower than a target temperature of the damper.
  • the opening angle can be adjusted.
  • the control unit controls the opening angle of the damper such that when the temperature of the refrigerating chamber becomes lower than the second reference temperature during the operation of the compressor, the control unit controls the opening angle of the damper to be an angle greater than or equal to a minimum angle greater than zero. can do.
  • the controller opens the cooling angle at a cooling angle of which the opening angle of the damper is smaller than the maximum angle or the maximum angle. It is possible to control the opening angle of the damper so that.
  • the temperature of the storage compartment can be kept constant, there is an advantage that the storage period of the stored object can be extended. That is, there is an advantage that the food stored in the storage compartment may be overcooled or sieved.
  • the compressor in order to maintain a constant temperature of the storage compartment, the compressor is maintained without driving, but is driven at an output lower than the cooling output at initial startup, thereby reducing the power consumption required for driving the compressor. have.
  • the continuous operation without stopping the operation of the compressor may reduce power consumption as compared with the intermittent operation of repeatedly driving and stopping the compressor.
  • FIG. 1 is a view schematically showing a configuration of a refrigerator according to a first embodiment of the present invention.
  • FIGS. 2A to 4 are flowcharts illustrating a control method of a refrigerator according to a first embodiment of the present invention.
  • 5 and 6 are graphs showing a change in temperature of a storage compartment and a change in output of cold air supply means according to a control method of a refrigerator according to a first embodiment
  • FIG. 7 is a graph showing a change in the temperature of the storage compartment and a change in the opening angle of the damper according to the control method of the refrigerator according to the first embodiment of the present invention.
  • FIGS. 8 and 9 are graphs showing a change in temperature of a storage compartment and a change in output of cold air supply means according to a control method of a refrigerator according to a second embodiment of the present invention.
  • 10 to 12 are graphs showing a change in temperature of a storage compartment and a change in output of cold air supply means according to a control method of a refrigerator according to a third embodiment of the present invention.
  • FIG. 13 is a graph showing a change in temperature of a storage compartment and a change in output of cold air supply means according to a control method of a refrigerator according to a fourth embodiment of the present invention
  • FIG. 14 is a graph showing a change in temperature of a storage compartment and a change in output of a cold air supply means according to a control method of a refrigerator according to a fifth embodiment
  • 15 is a graph showing a change in temperature of a storage compartment and an output of cold air supply means according to a control method of a refrigerator according to a sixth embodiment
  • FIG 16 is a schematic view of a refrigerator according to a seventh embodiment of the present invention.
  • FIG 17 is a view schematically showing a refrigerator according to an eighth embodiment of the present invention.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be “connected”, “coupled” or “connected”.
  • FIG. 1 is a view schematically showing a configuration of a refrigerator according to a first embodiment of the present invention.
  • the refrigerator 1 includes a cabinet 11 in which a freezing compartment 111 and a refrigerating chamber 112 are formed therein, and is coupled to the cabinet 11. It may include a door (not shown) for opening and closing the freezer compartment 111 and the refrigerating compartment 112, respectively.
  • the freezer compartment 111 and the refrigerating compartment 112 may store stored objects such as food.
  • the freezing compartment 111 and the refrigerating compartment 112 may be partitioned in the left and right or up and down directions in the cabinet 11 by the partition wall 113.
  • a cold air hole may be formed in the partition wall 113, and a damper 12 may be installed in the cold air hole to open or close the cold air hole.
  • the refrigerator 1 includes a refrigerating cycle 20 for cooling the freezer compartment 111 and / or the refrigerating compartment 112.
  • the refrigerating cycle 20 includes a compressor 21 for compressing a refrigerant into a high temperature and high pressure gaseous refrigerant, a condenser 22 for condensing the refrigerant passing through the compressor 21 to a high temperature and high pressure liquid refrigerant, An expansion member 23 for expanding the refrigerant passing through the condenser 22 and an evaporator 24 for evaporating the refrigerant passing through the expansion member 23.
  • the evaporator 24 may include a freezer evaporator.
  • the refrigerator 1 includes a fan 26 for allowing air to flow toward the evaporator 24 for circulation of cold air in the freezer compartment 111, and a fan motor 25 for driving the fan 26. It may include.
  • the compressor 21 and the fan motor 25 must be operated to supply cold air to the freezing compartment 111, and the compressor 21 and the fan motor to supply cold air to the refrigerating compartment 112. Not only does 25 work, but the damper 12 must be open. At this time, the damper 12 is operated by the damper motor 13.
  • the compressor 21, the fan motor 25 and the damper 12 may be referred to as "cold air supply means" which operate only to supply cold air to the storage compartment.
  • Adjusting the output of the cold air supply means herein adjusting the output of at least one of the compressor 21 and the fan motor 25 and adjusting the opening angle of the damper 12 (the state of the damper). it means.
  • the refrigerator 1 includes a freezer compartment temperature sensor 41 for sensing a temperature of the freezer compartment 111, a refrigerating compartment temperature sensor 42 for sensing a temperature of the refrigerating compartment 112, and the temperature sensors 41, respectively. It may include a control unit 50 for controlling the cold air supply means based on the temperature sensed in 42).
  • the controller 50 may control one or more of the compressor 21 and the fan motor 25 to maintain the temperature of the freezer compartment 111 at a target temperature.
  • controller 50 may control the output of the compressor 21 while the fan motor 25 operates at a constant speed.
  • controller 50 may control the output (rotational speed) of the fan motor 25 while the compressor 21 operates at a constant output.
  • the controller 50 may control the output of one or more of the compressor 21, the fan motor 25, and the damper motor 13 to maintain the temperature of the refrigerating chamber 112 at a target temperature.
  • the controller 50 may adjust the opening angle of the damper 12 while the compressor 21 and the fan motor 25 operate at a constant output.
  • the output of the cold air supply means "determined" by the controller 50 is a concept including both a predetermined constant value or a variable value determined by a predetermined calculation method.
  • the set temperature range of the storage compartment means a range between a first reference temperature higher than a target temperature and a second reference temperature lower than the target temperature, and controlling the temperature of the storage chamber to be maintained within the set temperature range. It is called temperature control of the storage room.
  • the temperature between the first reference temperature and the second reference temperature may be referred to as a third reference temperature.
  • the third reference temperature may be a target temperature of the storage compartment or an average temperature of the first reference temperature and the second reference temperature, but is not limited thereto.
  • FIGS. 5 and 6 are temperature changes and a cold air supply means of a storage compartment according to a control method of a refrigerator according to a first embodiment.
  • the temperature T of the storage compartment is sensed by the temperature sensors 41 and 42 in order to control the constant temperature (S1).
  • S1 constant temperature
  • the controller 50 determines whether the sensed temperature T of the storage compartment is equal to or greater than the first reference temperature (S2).
  • the detected temperature T of the storage compartment will be greater than or equal to the first reference temperature.
  • the controller 50 may reduce the temperature of the storage compartment by outputting the cooling output P1 of the cold air supply means (initial stage). Output power for cooling), and the cold air supply means operates with the determined cooling power output P1 (S3).
  • the cooling output may be controlled stepwise or linearly, and an actual output value may be calculated and controlled or calculated and controlled as a leveled value.
  • the value of the cooling output described in the drawings of the present specification is an exemplary value, which is a leveled value and is determined as a natural number for ease of understanding (when the cooling output calculated by the control unit has a decimal point, the level is rounded up. Determined).
  • controller 50 may control the compressor 21 to operate at the first reference output and the fan motor 25 to operate at the second reference output for the constant temperature of the freezing compartment 111. .
  • control unit 50 may adjust the output of the damper motor 13 so that the opening angle of the damper 12 is the first reference angle for the constant temperature of the refrigerating chamber 112.
  • the first reference output may be the maximum output of the compressor 21 or an output lower than the maximum output.
  • the second reference output may be the maximum output of the fan motor 25 (output of which the rotation speed of the fan motor is maximum) or an output lower than the maximum output.
  • the temperature drop rate of the storage compartment may be faster.
  • the temperature of the storage compartment may be periodically detected by the temperature sensors 41 and 42 (S4).
  • the controller 50 determines whether the detected temperature T1 of the storage compartment is equal to or less than the second reference temperature (S5).
  • control unit 50 may increase the temperature of the storage compartment, but the temperature of the cold air supply means is delayed to increase the temperature. Control to operate as the rising delay output (P2) (hereinafter referred to as “delay output”) (S6).
  • the cold air supply means is stopped when the temperature of the storage compartment reaches the second reference temperature
  • the temperature of the storage compartment is increased.
  • the time to reach a value above 1 reference temperature can be delayed.
  • the freshness of the stored object can be improved.
  • the on / off frequency of the cold air supply means can be reduced, thereby improving the reliability of parts of the cold air supply means.
  • the temperature of the storage compartment should be increased for controlling the temperature of the storage compartment.
  • the cold air supply means when the cold air supply means is stopped (including when the damper is closed), the temperature increase rate of the storage compartment will be the fastest, but in the present invention, the cold air supply means does not stop so that the power consumption of the cold air supply means is reduced, and for delay. Output the cold air supply means to operate.
  • the delay output P2 determined in step S6 is preferably determined to be smaller than the cooling output P1 determined in the previous step S3.
  • the delay output (P2) may be equal to or greater than the minimum output that the cold air supply means can operate.
  • the delay output P2 may be an angle at which an opening angle of the damper is greater than zero, which is a closing angle.
  • the controller 50 may allow one or more of the compressor 21 and the fan motor 25 to operate at an output of a minimum output or more. can do.
  • the controller 50 may determine an angle at which the opening angle of the damper 12 is greater than 0 degrees (the temperature rising delay angle).
  • the damper motor 13 may be controlled to maintain the damper motor 13.
  • the temperature T2 of the storage chamber is sensed by the temperature sensors 41 and 42 (S7).
  • the controller 50 determines whether the sensed temperature T2 of the storage compartment has reached the third reference temperature (S8).
  • step S8 If it is determined in step S8 that the detected temperature T2 of the storage compartment has reached the third reference temperature, the controller 50 controls the cooling outputs P3, P5, and P7 of the cold air supply means. In operation S9, the cooling air supply means is operated at the determined cooling outputs P3, P5, and P7.
  • the cooling output determined in step S9 is determined to be greater than the delay output determined in the previous step S6 so that the temperature of the storage compartment may be lowered again. It is preferable.
  • cooling output determined in step S9 is greater than the delay output determined in the previous step S6, and may be determined to be smaller than or equal to the cooling output determined in step S3 before step S6.
  • each of the cooling outputs P3, P5, and P7 determined is greater than any one of the delay outputs P2, P4, and P6, and may be determined to be smaller than or equal to any one of the previous cooling outputs. Can be.
  • cooling outputs P3, P5 and P7 determined in step S9 may be an output between the delaying outputs P2, P4 and P6 and the previously determined cooling output.
  • each of the cooling outputs P3, P5, and P7 when the detected temperature T2 of the storage compartment reaches the third reference temperature is (delay output P2, P4 driven in the previous step). , P6) and the value of any one of the cooling output driven in the previous step) x ⁇ .
  • is larger than 0 and smaller than 1, and may be set in the memory in advance, and may be set or automatically changed by the user.
  • the cooling outputs P3, P5, and P7 when the sensed temperature T2 of the storage compartment reaches the third reference temperature are (sum of the delay output and the previously determined cooling output) x 0.5. It may be determined by the value of (the average output value of the delay output and the cooling output previously determined), but is not limited thereto.
  • step S4 After returning, steps S4 to S9 may be repeated.
  • step S9-1 may be immediately performed without detecting the storage temperature T3, and if the power-off command of the refrigerator is not input (S9-1), step S4 is performed. You can return.
  • control unit 50 determines whether the detected temperature (T3) of the storage compartment is below the third reference temperature (S10) ) May be added.
  • step S10 when the detected temperature T3 of the storage compartment is equal to or lower than the third reference temperature, unless the power-off command of the refrigerator is input (S20), the process returns to step S4. Thus, steps S4 to S9 may be repeated.
  • the temperature of the storage compartment may be maintained between the third reference temperature and the second reference temperature.
  • the output for cooling gradually decreases during the operation of the cold air supply means, so that the power consumption of the cold gas supply means can be reduced even if the cold air supply means is continuously operated.
  • protection logic A (S12 to S13) will be described with reference to FIG. 3.
  • step S12 After the cold air supply means detects the storage temperature T2 in the section (i.e., the temperature rising section) operating with the delayed output determined in step S6 (S7), it is determined whether the temperature of the storage chamber falls in the temperature rising section.
  • the determining step S12 may be added.
  • step S12 when it is determined that the temperature of the storage chamber is falling, the step of reducing or stopping the delay output may be added (S13).
  • step S8 may be omitted in FIG. 2A or FIG. 2B, and the process may directly proceed to step S12.
  • step S12 may be further performed by the need to minimize the temperature rise delay of the storage compartment.
  • the amount of change in the temperature T2 of the storage compartment has a negative value for a predetermined time after the cold air supply means starts to operate with the delayed output (P6 in FIG. 6) determined in step S6, or the cold air supply means
  • the storage temperature T2 during operation at this delay output P6 reaches a value below a specific value (for example, the storage temperature at the start of operation at the delay output P6 or the second reference temperature). In this case, it may be determined that the temperature of the storage compartment falls in the temperature rise section.
  • the controller 50 determines whether the temperature T2 of the storage compartment falls in the temperature rising section. It may be determined whether or not (S12).
  • step S12 if it is determined that the temperature T2 of the storage chamber is falling, a step S13 of reducing the delay output or stopping the cold air supply means may be added.
  • the controller 50 may be configured to output the delayed output of the cold air supply means such that the cold air supply means operates as the delayed output (P4 or P2 in FIG. 6) determined at the minimum output or in the previous step. In FIG. 6, P7) can be determined.
  • the controller 50 may determine the average output value of the previously determined delay outputs P4 and P2 as the delay output P7 of the cold air supply means.
  • may be decreased to determine a value smaller than the immediately preceding delay output as the delay output P7.
  • step (S13) after performing the step (S13) to reduce or stop the delay output as described above, and after detecting the temperature of the storage compartment, it may be added to determine whether or not the temperature of the storage compartment in the temperature rise section again. . As a result of the determination, if it is determined that the temperature of the storage chamber is falling, the delay output can be further reduced.
  • the protection logic (A) It can be configured to terminate repetition. Alternatively, when the cold air supply means is operated for a predetermined time with the reduced output, it may be configured to terminate the execution of the protection logic (A).
  • Terminating execution of the protection logic A means returning to any one of steps S1 to S9-1 (“basic logic”) and performing a subsequent step (S13-1).
  • steps after step S2 may be performed.
  • steps after step S5 may be performed.
  • steps after step S8 may be performed.
  • the delay output P7 modified according to the protection logic A is performed.
  • the cold air supply means can be driven.
  • the output P8 of the next stage may be determined as a value of x ⁇ (sum of the cooling output P6 of the previous stage and the delay output P7 of the previous stage). Can be. Since the delay output P6 is actually cooled without raising the temperature of the storage compartment, it is recognized as the cooling output P6 of the previous step.
  • the controller 50 may stop the operation of the cold air supply means (S13).
  • the operation of the cold air supply means is stopped to actually control the opening angle of the damper so that the opening angle of the damper becomes zero.
  • the controller 50 may control the cold air supply unit to operate at the minimum output.
  • the temperature of the storage compartment can be increased.
  • can be varied.
  • may be set to a value lower than the current value.
  • the temperature T3 of the storage compartment reaches a value equal to or greater than the first reference temperature while the cold air supply unit is operating at the output for cooling, for example, when the temperature of the storage compartment is increased by opening the refrigerator door or going to the storage compartment.
  • the food may be additionally introduced, or may be a case where the preset ⁇ is low.
  • protection logic B S14 to S16 related to FIG. 4 will be described.
  • step S9 In the section in which the cold air supply means operates at the cooling output (P7 in FIG. 5) determined in step S9 (that is, the temperature drop section), after detecting the temperature T3 of the storage room (S10), the storage room in the temperature drop section If it is determined that the temperature of the (S14) is increased (S15) may be added to increase the cooling output. In other words, after completion of step S9-1 in FIG. 2A, step S14 may be directly performed.
  • the refrigerator door is opened and the temperature of the storage compartment is increased, if food is additionally introduced into the storage compartment, or if the predetermined temperature ⁇ 3 is low, such as when the preset ⁇ is low, the storage compartment may overheat. Because of the potential, delays in temperature storage in the storage room should be minimized.
  • the controller 50 may be a cooling output of any one of the cooling outputs P5, P3, and P1 determined in the previous stage of the maximum output of the cold air supply means or the current output.
  • the cooling output P8 of the cold air supply means can be determined to operate.
  • the controller 50 may determine the average output value of the cooling outputs P5, P3, and P1 previously determined as the cooling output P8 of the cold air supply means.
  • may be increased so that a value larger than the immediately preceding cooling output may be determined as the cooling output P8.
  • the change amount of the temperature T3 of the storage compartment has a positive value for a predetermined time after the cold air supply means starts to operate at the cooling output (P7 in FIG. 5), or the cold air supply means is for cooling
  • the storage temperature T3 during operation at the output P7 reaches a value above a certain value (for example, the temperature of the storage chamber or the first reference temperature when starting operation at the cooling output P7), the temperature decreases. It may be determined that the temperature of the storage compartment increases in the section.
  • the cold air supply means operates at the cooling output P7
  • the temperature T3 of the storage compartment at a time elapses for a predetermined time starts to operate at a specific value (for example, the cooling output P7).
  • the temperature of the storage compartment or the first reference temperature is reached, or when a certain time has elapsed since the refrigerator door is opened, it may be determined that the temperature of the storage compartment rises in the temperature lowering section.
  • the temperature T3 of the storage compartment in step S10 after detecting the temperature T3 of the storage compartment in step S10 as shown in FIG. 2B, when the detected temperature T3 of the storage compartment exceeds the third reference temperature, the temperature T3 of the storage compartment in the temperature falling section. It is also possible to determine (S14) whether is rising.
  • the cooling output P8 may be increased from the previous cooling output P7 (S15).
  • step S15 after performing the step (S15) to increase the output for cooling, and after detecting the storage temperature (T4) (S16), further determines the step (S19) to determine again whether the temperature (T4) of the storage chamber rises in the temperature drop section. can do.
  • the cooling output may be configured to be increased again (S15). That is, after detecting the storage temperature T4 in step S16, step S19 may be immediately performed.
  • step S15 after performing the step (S15) to increase the output for cooling as described above (S16) after detecting the storage temperature (T4), determining whether the detected temperature (T4) has reached the third reference temperature ( S17) can be added.
  • step S17 if the detected temperature does not reach the third reference temperature, adding the step S19 of re-determining whether the temperature T4 of the storage compartment rises in the temperature lowering period, and re-adding the cooling output. You can increase it.
  • the cold air supply means is operated at an increased output (S15), after detecting the storage temperature (T4) (S16), it is determined that the temperature of the storage compartment is not rising (S19) the protection logic (B). Can be terminated. Alternatively, when the operation is performed for a predetermined time with the increased output, the protection logic B may be terminated.
  • Terminating execution of the protection logic B may mean returning to any one of steps S1 to S9-1 (basic logic) and performing a subsequent step.
  • the step after S2 may be performed.
  • step after step S5 may be performed.
  • step after step S8 may be performed.
  • the cooling output P8 modified according to the protection logic B.
  • the cold air supply means can be driven.
  • the protection logic B is terminated and may return to the basic logic. Therefore, when the storage temperature reaches the third reference temperature, the output P9 of the next stage may be determined as the sum x ⁇ of the cooling output P8 of the previous stage and the delay output P7 of the previous stage. . Since the cooling output P7 is actually raised without lowering the temperature of the storage chamber, it is recognized as the delay output P7 of the previous step.
  • the controller 50 may store the storage compartment. Increase the current cooling output of the cold air supply means to lower the temperature of the.
  • the controller 50 may determine the cooling output P5 determined immediately before the current cooling output P7 as the increased cooling output P8. If the temperature T3 of the storage compartment is equal to or greater than the first reference temperature even when the cold air supply means is driven to the cooling output P8, the control unit 50 determines the cooling output determined immediately before the cooling output P5. (P3) can be determined as the increased cooling output.
  • the temperature of the storage compartment may be lower than the first reference temperature by an increase in the cooling output of the cold air supply means. Can be.
  • controller 50 determines whether the detected temperature T4 of the storage compartment has reached the third reference temperature (S17).
  • step S17 when it is determined that the detected temperature T4 of the storage compartment has reached the third reference temperature, the controller 50 transfers the current cooling output of the cold air supply means (the current cooling output and the previous one). The sum of the cooling outputs determined in Fig. 2) is changed to x ⁇ (S18).
  • step S15 while the cold air supply means is operating at the previously determined cooling output P8, the controller 50 determines that the detected temperature T4 of the storage compartment is equal to or lower than the second reference temperature. It is also possible to determine whether the value has been reached. When the detected temperature T4 of the storage compartment reaches a value equal to or less than the second reference temperature, the controller 50 may cause the cold air supply unit to operate as a delay output.
  • step S17 if it is determined in step S17 that the detected temperature T4 of the storage compartment has not reached the third reference temperature, the controller 50 increases the temperature in the section where the cold air supply means operates as a cooling output. It may be determined whether or not (S19).
  • the controller 50 may determine whether the detected temperature T4 of the storage compartment is greater than or equal to the first reference temperature.
  • step S19 when the detected temperature T4 of the storage compartment is equal to or greater than the first reference temperature, the controller 50 additionally increases the current cooling output of the cold air supply means (S15).
  • the controller 50 determines the previously determined cooling.
  • the cold air supply means can be operated with the dragon output P3.
  • the output for delay is not changed unless the temperature of the storage compartment is less than the second reference temperature in the process of operating the cold air supply means for the delay output. That is, the delay output may be a fixed output that is independent of the temperature change of the storage compartment.
  • the compressor and the fan motor constituting the cold air supply means do not stop unless the temperature of the storage compartment is less than the second reference temperature.
  • the compressor 21 and the fan motor 25 continue to drive without stopping, the output is controlled so that the output is gradually converged to a state close to the minimum output, the compressor according to the storage temperature
  • the power consumption can be reduced compared to the case of repeating the on and off process of the 21 and the fan motor 25.
  • the storage room temperature is kept at a constant temperature within a set range, there is an advantage that the stored food can be kept fresh for a long time without repeatedly undergoing a state of overcooling and fading.
  • FIG. 7 is a graph illustrating a change in temperature of a storage compartment and a change in an opening angle of a damper according to a control method of a refrigerator according to a first embodiment of the present invention.
  • the angle of the damper is fully opened (for example, 90 degrees) in the initial state when the temperature of the refrigerating chamber is higher than or equal to the first reference temperature, and the opening degree of the damper is adjusted thereafter.
  • the temperature of the refrigerating compartment can be maintained within the set temperature range.
  • the refrigerating chamber temperature is closed when the damper 12 is closed or the opening angle of the damper 12 is a minimum angle.
  • N is a value between 0 and 100
  • the opening angle of the damper may be increased to the previous opening angle by the protection logic B. have.
  • the opening angle of the damper 12 may be readjusted to an average value of the current opening angle and the previous opening angle.
  • the protection logic A may change the initial opening angle, that is, the opening angle of the damper 12 to the fully open state. Can be.
  • FIGS. 8 and 9 are graphs illustrating changes in temperature of a storage compartment and changes in output of cold air supply means according to a control method of a refrigerator according to a second embodiment of the present invention.
  • This embodiment is the same as the first embodiment in other parts, except that there is a difference in the method of determining the output for cooling. Therefore, hereinafter, only the characteristic parts of the present embodiment will be described, and the same parts as the first embodiment will be described with reference to the first embodiment.
  • steps S1 to S6 of the first embodiment are the same as the control method of the present embodiment, and thus detailed descriptions thereof will be omitted.
  • the difference from step S8 will be described.
  • the controller 50 determines whether the detected temperature T2 of the storage compartment reaches a value equal to or greater than the first reference temperature. do.
  • the controller 50 determines the cooling outputs P3, P5, and P7 of the cold air supply means, and determines the determined cooling output. P3, P5, and P7 control the cold air supply means to operate.
  • the controller 50 determines whether the sensed temperature of the storage compartment has reached a value below the second reference temperature. When it is determined that the detected temperature of the storage chamber reaches a value equal to or less than the second reference temperature, the controller 50 determines the delay outputs P4 and P6 of the cold air supply means, and determines the determined delay output ( P4, P6) controls the cold air supply means to operate.
  • 10 to 12 are graphs illustrating changes in temperature of a storage compartment and changes in output of cold air supply means according to a control method of a refrigerator according to a third embodiment of the present invention.
  • This embodiment is the same as the first embodiment in other parts, except that there is a difference in the method of determining the output for cooling. Therefore, hereinafter, only the characteristic parts of the present embodiment will be described, and the same parts as the first embodiment will be described with reference to the first embodiment.
  • the controller 50 may include: In order to lower the temperature of the storage compartment, the cooling output P1.1 of the cold air supply means is determined, and the cold air supply means operates with the determined cooling output P1.1 (see S3 of FIG. 2).
  • the control unit 50 Cooling output can be reduced.
  • the predetermined temperature may be an average temperature of the first reference temperature and the second reference temperature, or may be a target temperature (third reference temperature) of the storage compartment.
  • the controller 50 indicates that the cold air supply means is configured to delay the output P2. To work.
  • the controller 50 determines the cooling output P3.
  • the controller 50 determines the cooling output P1.1 of the cold air supply means to lower the temperature of the storage compartment, and the determined output for cooling. (P1.1) allow the cold air supply means to operate (see S3 in FIG. 2).
  • the controller 50 may increase the current output for cooling even when the temperature of the storage compartment rises to reach the first reference temperature while the cold air supply means is operating at the determined output P1.1 for cooling. (The same as the protection logic B described in the first embodiment).
  • the controller 50 May reduce the output of the cold air supply means or stop the operation (same as the protection logic A described in the first embodiment).
  • FIG. 13 is a graph showing a change in temperature of a storage compartment and a change in output of a cold air supply means according to a control method of a refrigerator according to a fourth embodiment of the present invention.
  • This embodiment is the same as the first embodiment in other parts, except that there is a difference in the method of determining the output for cooling. Therefore, hereinafter, only the characteristic parts of the present embodiment will be described, and the same parts as the first embodiment will be described with reference to the first embodiment.
  • the controller 50 decreases the temperature of the storage compartment.
  • the cooling output (P1.1) of the cold air supply means and to operate the cold air supply means with the determined cooling output (P1.1) (see S3 of FIG. 2).
  • the controller 50 decreases the current cooling output when the temperature of the storage compartment reaches the third reference temperature. .
  • the controller 50 indicates that the cold air supply means is configured to delay the output P2. To work.
  • the controller 50 determines whether the sensed temperature of the storage compartment has reached a value above the first reference temperature.
  • the controller 50 determines the cooling outputs P3, P5, and P7 of the cold air supply means, and determines the determined cooling output. P3, P5, and P7 control the cold air supply means to operate.
  • FIG. 14 is a graph showing a change in temperature of a storage compartment and a change in output of a cold air supply means according to a control method of a refrigerator according to a fifth embodiment.
  • This embodiment is the same as the first embodiment in other parts, except that there is a difference in the method of determining the delay output. Therefore, hereinafter, only the characteristic parts of the present embodiment will be described, and the same parts as the first embodiment will be described with reference to the first embodiment.
  • the delay outputs P2, P4, and P6 may be fixed values, and in such a manner as to adjust the cooling outputs P3, P5, and P7. I can understand.
  • FIG. 14 is not necessarily so, but on one side, the cooling outputs P3, P5, and P7 may be fixed values, and may be understood in a manner in which the delay outputs P2, P4, and P6 are adjusted.
  • FIG. 14 is not necessarily so, but on one side, the cooling outputs P3, P5, and P7 may be fixed values, and may be understood in a manner in which the delay outputs P2, P4, and P6 are adjusted.
  • the controller 50 controls cold air to lower the temperature of the storage compartment.
  • the cooling output P1 of the supply means is determined, and the cold air supply means is operated with the determined cooling output P1.
  • the controller 50 When the cold air supply means operates at the cooling output P1, the temperature of the storage compartment decreases, and when the temperature of the storage compartment reaches a value equal to or less than the second reference temperature, the controller 50 indicates that the cold air supply means outputs the delay. To be operated at (P2).
  • the controller 50 determines whether the sensed temperature T2 of the storage compartment has reached a value above the first reference temperature.
  • the controller 50 determines the cooling outputs P3 and P5 of the cold air supply means, and determines the determined cooling output P3. , P5, P7) to control the cold air supply means to operate.
  • the cooling outputs P3 and P5 may be fixed outputs that are not variable.
  • the cooling output may be determined as a maximum output or an output lower than the maximum output.
  • the cooling outputs P3 and P5 may be the cooling output P1 (initial cooling output) determined for the first time.
  • the delay outputs P4 and P6 are preferably determined to be larger than the delay output P2 of the previous step.
  • the delay outputs P4 and P6 are smaller than the cooling output of the previous stage, and may be determined to be greater than or equal to the delay output P2 of the previous stage.
  • Each of the delay outputs P4 and P6 is smaller than any one of the cooling outputs P1, P3 and P5, and may be determined to be greater than or equal to any one of the outputs between the previous delay outputs.
  • the delay outputs P4 and P6 may be outputs between the cooling output of the previous stage and the delay output P2 of the previous stage.
  • each of the delay outputs (P4, P6) when the detected temperature of the storage chamber reaches the third reference temperature of the cooling outputs (P1, P3, P5) driven in the previous step It can be determined by the sum of the value of any one of the value of any one of the delay output driven in the previous step x ⁇ .
  • is larger than 0 and smaller than 1, and may be set in memory in advance, and may be set or automatically changed by a user.
  • the delayed outputs P4 and P6 when the sensed temperature of the storage chamber reaches a value below the second reference temperature are (a sum of the cooling output and the previously determined delayed output) x 0.5. (The average output value of the cooling output and the previously determined delay output), but is not limited thereto.
  • 15 is a graph showing a change in temperature of a storage compartment and a change in output of a cold air supply means according to a control method of a refrigerator according to a sixth embodiment.
  • This embodiment is the same as the first embodiment in other parts, except that there is a difference in the method of determining the delay output. Therefore, hereinafter, only the characteristic parts of the present embodiment will be described, and the same parts as the first embodiment will be described with reference to the first embodiment.
  • the controller 50 may cool the air to lower the temperature of the storage compartment.
  • the cooling output P1 of the supply means is determined, and the cold air supply means is operated with the determined cooling output P1.
  • the controller 50 When the cold air supply means operates at the cooling output P1, the temperature of the storage compartment decreases, and when the temperature of the storage compartment reaches a value equal to or less than the second reference temperature, the controller 50 indicates that the cold air supply means outputs the delay. To be operated at (P2).
  • the controller 50 determines whether the sensed temperature of the storage compartment has reached the third reference temperature.
  • the controller 50 determines the cooling outputs P3 and P5 of the cold air supply means, and determines the determined cooling outputs P3 and P5. ) To operate the cold air supply means.
  • the method of determining the output for cooling is the same as the method applied in the embodiment of FIGS. 5 to 13.
  • the controller 50 may delay output P4 of the cold air supply means. , P6) and controls the cold air supply means to operate with the determined delay outputs P4 and P6.
  • the method of determining the delay output is the same as the method applied in the embodiment of FIG.
  • FIG. 16 is a view schematically illustrating a refrigerator according to a seventh embodiment of the present invention.
  • the refrigerator 1A of the present embodiment may include a freezer compartment evaporator 31 and a refrigerator compartment evaporator 32.
  • the refrigerator 1A may include a first fan motor 34 for rotating the freezing compartment fan 33 and the freezing compartment fan 33, a refrigerating compartment fan 35, and a rotation for the refrigerating compartment fan 35. It may include a two fan motor 36.
  • the refrigerator 1A includes the compressor 21, the condenser 22, the expansion member 23, and the refrigerant passing through the expansion member 23 in the freezer compartment evaporator 31 and the refrigerator compartment evaporator 32. It may include a valve 45 for flowing to any one of the).
  • the constant temperature control of the freezer compartment 111 may be performed by the control of the compressor 21 and the first fan motor 34, and the constant temperature control of the refrigerator compartment 112 may be performed by the compressor 21 and the second fan motor 34. Can be controlled by In addition, the constant temperature control of the refrigerating chamber 112 is also possible by the opening angle control of the valve 45.
  • control method for the constant temperature mentioned in the first to sixth embodiments may also be applied to the refrigerator as it is.
  • FIG 17 is a view schematically illustrating a refrigerator according to an eighth embodiment of the present invention.
  • the refrigerator 1B of the present embodiment includes a cabinet 11 including a freezer compartment 111 and a refrigerating compartment 112, a freezer compartment evaporator 127, and a refrigerator A practical evaporator 128 and a freezer compartment 121 may be included.
  • the refrigerator 1B includes a refrigerator compartment compressor 122, a condenser 123 and 124, a freezer compartment expansion member 125, a refrigerator compartment expansion member 126, and a freezer compartment fan motor assembly 129. And, may further include a fan motor assembly 130 for the refrigerator compartment.
  • the freezing compartment 111 and the refrigerating compartment 112 may be independently cooled by separate compressors and evaporators.
  • the condenser 123, 124 is made of one heat exchanger, it may be divided into two parts to allow the refrigerant to flow. That is, the refrigerant discharged from the freezer compartment compressor 121 may flow through the first portion 123 of the condenser 123 and 124, and the refrigerant discharged from the refrigerator compartment compressor 122 may move into the condenser 123 and 124. The second portion 124 may flow.
  • control method for the constant temperature described in the first to sixth embodiments may be applied as it is, except that the freezing chamber 111 and the refrigerating chamber 112 are independently cooled.
  • the constant temperature control of the freezer compartment 111 may be performed by the control of the freezer compartment compressor 121 and the freezer compartment fan motor assembly 129, and the constant temperature control of the refrigerator compartment 112 may be the refrigerator compartment compressor 122. And by the control of the fan motor assembly 130 for the refrigerator compartment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

본 발명의 냉장고의 제어방법은, 저장실의 온도가 감지하고, 감지된 저장실의 온도가 제1기준 온도 이상인 경우, 냉기공급수단이 냉각용 출력으로 작동되는 단계와, 상기 냉기공급수단이 냉각용 출력으로 작동하는 중에, 감지된 저장실의 온도가 제1기준 온도 보다 낮은 제2기준 온도 이하인 경우, 상기 냉기공급수단이 냉각용 출력 보다 낮은 출력인 지연용 출력으로 작동되는 단계; 및 상기 냉기공급수단이 지연용 출력으로 작동되는 중에, 상기 저장실의 온도에 따라서, 제어부가 상기 냉기공급수단의 냉각용 출력 또는 지연용 출력을 결정하고, 결정된 냉각용 출력 또는 지연용 출력으로 상기 냉기공급수단을 작동시키는 단계를 포함한다.

Description

냉장고 및 그의 제어방법
본 발명은 냉장고 및 그의 제어방법에 관한 것이다.
냉장고는 음식물을 저온으로 보관하는 가전 기기로서, 저장실이 항상 일정한 저온으로 유지되도록 하는 것이 필수적이다. 현재 가정용 냉장고의 경우, 저장실이 설정 온도를 기준으로 상한 범위와 하한 범위 내의 온도로 유지되도록 하고 있다. 즉, 저장실 온도가 상한 온도로 상승하면 냉동 사이클을 구동하여 저장실을 냉각하고, 저장실 온도가 하한 온도에 도달하면 냉동 사이클을 정지하는 방법으로 냉장고를 제어하고 있다.
한국공개특허공보 제1997-0022182호(공개일 1997년5월28일)에는 냉장고의 저장실을 일정 온도로 유지하기 위한 정온 제어 방법이 개시된다.
선행문헌에 따르면, 저장실 온도가 설정 온도보다 높으면 압축기와 팬을 구동하고, 이와 동시에 저장실 댐퍼를 완전히 개방하며, 저장실 온도가 설정 온도로 냉각되면 압축기 및/또는 팬의 구동을 정지함과 동시에 저장실 댐퍼를 닫는 것을 특징으로 한다.
상기와 같은 선행 기술에 의한 냉장고의 제어 방법에 의하면 다음과 같은 문제점이 있다.
첫째, 냉장고의 저장실 온도가 설정 온도 이상으로 상승하여 압축기를 구동한 이후에, 저장실 온도가 설정 온도 이하로 냉각되면 압축기 구동을 중지하는 과정을 반복하기 때문에, 압축기를 재구동할 때 전력 소비가 증가하는 단점이 있다.
그리고, 압축기의 구동 초기에는 냉력이 많이 필요하게 되어, 압축기 구동에 따른 전력 소모가 증가하는 단점이 있다.
둘째, 저장실을 냉각하기 위하여 댐퍼를 완전 개방하기 때문에, 댐퍼가 완전 개방된 상태에서 저장실 쪽으로 냉기가 과도하게 공급될 가능성이 높아, 저장실이 과냉각되는 문제점이 발생할 수 있다. 즉, 저장실의 정온 상태 유지가 어려운 단점이 있다.
셋째, 냉동실과 냉장실을 구획하는 구획벽에 댐퍼가 설치되고, 냉장실 냉각을 위하여 댐퍼가 완전 개방되어 냉동실 냉기가 냉장실로 공급되는 구조에서는, 냉기의 과도한 공급으로 인하여 냉장실은 과냉각되는 반면 냉동실 부하가 급상승하는 문제점이 발생할 수 있다.
본 발명의 목적은, 피보관물의 신선도 향상을 위하여, 저장실의 온도가 정온 상태에서 벗어날 가능성이 줄어들도록 제어되는 냉장고 및 그의 제어방법을 제공하는 것에 있다.
본 발명의 목적은, 피보관물의 신선도 향상을 위하여 저장실의 온도가 정온 상태에서 벗어난 경우 신속하게 정온 상태로 회복할 수 있는 냉장고 및 그의 제어방법을 제공하는 것에 있다.
또한, 본 발명의 목적은, 저장실의 온도가 정온 상태로 유지하면서도 냉기공급수단의 소비 전력이 줄어들 수 있는 냉장고 및 그의 제어방법을 제공하는 것에 있다.
일 측면에 따른 냉장고의 제어방법은, 저장실의 온도가 감지되는 단계; 감지된 저장실의 온도가 제1기준 온도 이상인 경우, 냉기공급수단이 냉각용 출력으로 작동되는 단계; 상기 냉기공급수단이 냉각용 출력으로 작동하는 중에, 감지된 저장실의 온도가 제1기준 온도 보다 낮은 제2기준 온도 이하인 경우, 상기 냉기공급수단이 냉각용 출력 보다 낮은 출력인 지연용 출력으로 작동되는 단계; 및 상기 냉기공급수단이 지연용 출력으로 작동되는 중에, 상기 저장실의 온도에 따라서, 제어부가 상기 냉기공급수단의 냉각용 출력 또는 지연용 출력을 결정하고, 결정된 냉각용 출력 또는 지연용 출력으로 상기 냉기공급수단을 작동시키는 단계를 포함한다.
다른 측면에 따른 냉장고의 제어방법은, 저장실의 온도가 감지되는 단계; 감지된 저장실의 온도가 제1기준 온도 이상인 경우, 압축기가 초기 냉각용 출력으로 작동되는 단계; 상기 압축기가 초기 냉각용 출력으로 작동하는 중에, 감지된 저장실의 온도가 제1기준 온도 보다 낮은 제2기준 온도 이하인 경우, 상기 초기 냉각용 출력 보다 낮은 출력인 지연용 출력으로 상기 압축기가 작동되는 단계; 및 상기 압축기가 지연용 출력으로 작동되는 중에, 상기 저장실의 온도에 따라서, 제어부가 상기 압축기의 냉각용 출력 또는 지연용 출력을 결정하고, 결정된 냉각용 출력 또는 지연용 출력으로 상기 압축기를 작동시키는 단계를 포함할 수 있다.
상기 제어부는, 상기 저장실의 온도가 상기 제1기준 온도와 제2기준 온도 범위 내에서 유지되도록 상기 압축기를 연속 운전시킬 수 있다.
또 다른 측면에 따른 냉장고의 제어방법은, 저장실의 온도가 감지되는 단계; 감지된 저장실의 온도가 제1기준 온도 이상인 경우, 상기 저장실의 냉기 순환을 위한 팬 모터가 초기 냉각용 출력으로 작동되는 단계; 상기 팬 모터가 초기 냉각용 출력으로 작동하는 중에, 감지된 저장실의 온도가 제1기준 온도 보다 낮은 제2기준 온도 이하인 경우, 상기 초기 냉각용 출력 보다 낮은 출력인 지연용 출력으로 상기 팬 모터가 작동되는 단계; 및 상기 팬 모터가 지연용 출력으로 작동되는 중에, 상기 저장실의 온도에 따라서, 제어부가 상기 팬 모터의 냉각용 출력 또는 지연용 출력을 결정하고, 결정된 냉각용 출력 또는 지연용 출력으로 상기 팬 모터를 작동시키는 단계를 포함할 수 있다.
상기 제어부는, 상기 저장실의 온도가 제1기준 온도와 제2기준 온도 범위 내에 내에서 유지되도록 상기 팬 모터를 연속 운전시킬 수 있다.
또 다른 측면에 따른 냉장고의 제어방법은, 냉장실의 온도가 감지되는 단계; 냉장실의 온도가 제1기준 온도 이상인 경우, 냉동실의 냉기를 냉장실로 유동시키도록 댐퍼의 개방 각도가 위한 냉각용 각도로 개방되는 단계; 상기 댐퍼가 냉각용 각도로 개방로 개방된 이후, 감지된 냉장실의 온도가 제1기준 온도 보다 낮은 제2기준 온도 이하인 경우, 상기 냉각용 각도 보다 작은 지연용 각도로 상기 댐퍼의 개방 각도가 감소하는 단계; 상기 댐퍼의 개방 각도 감소 이후, 상기 냉장실의 온도에 따라서, 제어부가 상기 댐퍼의 개방 각도를 결정하고, 결정된 개방 각도가 상기 댐퍼가 개방되도록 하는 단계를 포함할 수 있다.
상기 제어부는, 상기 냉장실의 온도가 제1기준 온도와 제2기준 온도 범위 내에 내에서 유지되도록 압축기가 동작되는 과정에서 상기 댐퍼가 개방된 상태를 유지시킬 수 있다.
또 다른 측면에 따른 냉장고는, 저장실을 구비하는 캐비닛; 상기 저장실을 냉각하기 위하여 작동하는 압축기; 상기 저장실의 냉기의 순환을 위한 팬; 상기 팬을 회전시키기 위한 팬 모터; 및 상기 압축기 및 팬 모터를 제어하는 제어부를 포함할 수 있다.
상기 제어부는, 상기 압축기 및 상기 팬 모터 중 하나 이상이 연속적으로 운정되는 과정에서, 상기 저장실의 목표 온도 보다 높은 제1기준 온도와 목표 온도 보다 낮은 제2기준 온도 사이 범위 내에서 상기 저장실의 온도가 유지되도록 상기 압축기 및 상기 팬 모터 중 하나 이상의 출력을 조절할 수 있다.
상기 압축기가 작동하는 과정에서 상기 저장실의 온도가 상기 제2기준 온도 이하가 되면, 상기 제어부는 상기 압축기가 최소 출력 이상의 지연용 출력으로 작동하도록 상기 압축기를 제어할 수 있다.
상기 압축기가 최소 출력 이상의 출력으로 작동하는 중에 상기 저장실의 온도가 소정의 온도에 도달하면, 상기 제어부는, 상기 압축기의 초기 냉각용 출력 또는 상기 초기 냉각용 출력 보다 낮은 냉각용 출력으로 상기 압축기를 작동시킬 수 있다.
또 다른 측면에 따른 냉장고는, 냉동실과 냉장실을 구비하는 캐비닛; 상기 냉동실을 냉각하기 위하여 작동하는 압축기; 상기 냉동실의 냉기의 순환을 위한 팬; 상기 냉동실의 냉기를 상기 냉장실로 안내하는 유로 상에 위치되는 댐퍼; 및 상기 댐퍼의 개방 각도를 제어하는 제어부를 포함할 수 있다.
상기 제어부는, 상기 냉장실의 목표 온도 보다 높은 제1기준 온도와 목표 온도 보다 낮은 제2기준 온도 사이 범위 내에서 상기 냉장실의 온도가 유지되도록, 압축기가 동작되고 상기 댐퍼를 개방시킨 상태에서 상기 댐퍼의 개방 각도를 조절할 수 있다.
상기 제어부는, 상기 압축기가 작동하는 과정에서 상기 냉장실의 온도가 상기 제2기준 온도 이하가 되면, 상기 제어부는 상기 댐퍼의 개방 각도가 0보다 큰 최소 각도 이상의 각도가 되도록 상기 댐퍼의 개방 각도를 제어할 수 있다.
상기 댐퍼의 개방 각도가 최소 각도 이상의 각도가 개방된 상태에서, 상기 냉장실의 온도가 소정의 온도에 도달하면, 상기 제어부는, 상기 댐퍼의 개방 각도가 최대 각도 또는 최대 각도 보다 작은 냉각용 각도로 개방되도록 상기 댐퍼의 개방 각도를 제어할 수 있다.
제안되는 발명에 의하면, 저장실의 온도가 일정하게 유지될 수 있으므로, 피보관물의 보관 기간이 늘어날 수 있는 장점이 있다. 즉, 저장실에 저장된 음식물이 과냉되거나 시드는 현상이 제거될 수 있는 장점이 있다.
또한, 저장실의 온도가 일정하게 유지되도록 하기 위하여, 압축기가 정지하지 않고 구동 상태를 유지하되, 초기 기동 시의 냉각용 출력 보다 낮은 출력으로 구동하기 때문에, 압축기 구동에 필요한 소비 전력이 절감되는 효과가 있다.
다시 말하면, 압축기의 구동을 멈추지 않고 연속 운전하는 경우가, 압축기의 구동과 정지를 반복하는 단속 운전하는 경우에 비하여 전력 소모가 감소될 수 있다.
또한, 압축기의 온오프 반복에 의한 소음이 저감될 수 있는 장점이 있다.
도 1은 본 발명의 제1실시 예에 따른 냉장고의 구성을 개략적으로 보여주는 도면.
도 2a 내지 도 4는 본 발명의 제1실시 예에 따른 냉장고의 제어 방법을 보여주는 흐름도.
도 5 및 도 6은 제1실시 예에 따른 냉장고의 제어 방법에 따른 저장실의 온도 변화와 냉기공급수단의 출력 변화를 보여주는 그래프.
도 7은 본 발명의 제1실시 예에 따른 냉장고의 제어 방법에 따른 저장실의 온도 변화와 댐퍼의 개방 각도 변화를 보여주는 그래프.
도 8 및 도 9는 본 발명의 제2실시 예에 따른 냉장고의 제어방법에 따른 저장실의 온도 변화와 냉기공급수단의 출력 변화를 보여주는 그래프.
도 10 내지 도 12는 본 발명의 제3실시 예에 따른 냉장고의 제어방법에 따른 저장실의 온도 변화와 냉기공급수단의 출력 변화를 보여주는 그래프.
도 13은 본 발명의 제4실시 예에 따른 냉장고의 제어방법에 따른 저장실의 온도 변화와 냉기공급수단의 출력 변화를 보여주는 그래프.
도 14는 제5실시 예에 따른 냉장고의 제어방법에 따른 저장실의 온도 변화와 냉기공급수단의 출력 변화를 보여주는 그래프.
도 15는 제6실시 예에 따른 냉장고의 제어방법에 따른 저장실의 온도 변화와 냉기공급수단의 출력 변화를 보여주는 그래프.
도 16은 본 발명의 제7실시 예에 따른 냉장고를 개략적으로 보여주는 도면.
도 17은 본 발명의 제8실시 예에 따른 냉장고를 개략적으로 보여주는 도면.
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 1은 본 발명의 제1실시 예에 따른 냉장고의 구성을 개략적으로 보여주는 도면이다.
도 1을 참조하면, 본 발명의 제1실시 예에 따른 냉장고(1)는, 내부에 냉동실(111)과 냉장실(112)이 형성되는 캐비닛(11)과, 상기 캐비닛(11)에 결합되어 상기 냉동실(111)과 냉장실(112)을 각각 개폐하는 도어(미도시)를 포함할 수 있다.
상세히, 상기 냉동실(111)과 냉장실(112)에는 음식물과 같은 피보관물이 저장될 수 있다.
상기 냉동실(111)과 냉장실(112)은 구획벽(113)에 의하여 상기 캐비닛(11)의 내부에서 좌우 방향 또는 상하 방향으로 구획될 수 있다. 그리고, 상기 구획벽(113)에는 냉기홀이 형성될 수 있고, 상기 냉기홀에는 댐퍼(12)가 설치되어, 상기 냉기홀을 개방 또는 폐쇄할 수 있다.
또한, 상기 냉장고(1)는, 상기 냉동실(111) 및/또는 냉장실(112)을 냉각하기 위한 냉동 사이클(20)을 포함한다.
상세히, 상기 냉동 사이클(20)은, 냉매를 고온 고압의 기상 냉매로 압축하는 압축기(21)와, 상기 압축기(21)를 통과한 냉매를 고온 고압의 액상 냉매로 응축하는 응축기(22)와, 상기 응축기(22)를 통과한 냉매를 팽창시키는 팽창 부재(23)와, 상기 팽창 부재(23)를 통과한 냉매를 증발시키는 증발기(24)를 포함한다. 그리고, 상기 증발기(24)는 냉동실용 증발기를 포함할 수 있다.
또한, 상기 냉장고(1)는 상기 냉동실(111)의 냉기 순환을 위하여 상기 증발기(24)를 향하여 공기가 유동되도록 하는 팬(26)과, 상기 팬(26)을 구동시키는 팬 모터(25)를 포함할 수 있다.
본 발명에서 상기 냉동실(111)로 냉기가 공급되기 위해서는 상기 압축기(21)와 팬 모터(25)가 작동하여야 하며, 상기 냉장실(112)로 냉기가 공급되기 위해서 상기 압축기(21)와 상기 팬 모터(25)가 작동할 뿐만 아니라 상기 댐퍼(12)가 개방되어야 한다. 이때, 상기 댐퍼(12)는 댐퍼 모터(13)에 의해서 작동된다.
상기 압축기(21), 팬 모터(25) 및 댐퍼(12)는 저장실로 냉기를 공급하기 위하여야 작동하는 "냉기공급수단"이라 이름할 수 있다.
본 명세서에서 상기 냉기공급수단의 출력을 조절하는 것은 상기 압축기(21) 및 팬 모터(25) 중 하나 이상의 출력을 조절하는 것과 상기 댐퍼(12)의 개방 각도(댐퍼의 상태임)를 조절하는 것을 의미한다.
상기 냉장고(1)는, 상기 냉동실(111)의 온도를 감지하는 냉동실 온도센서(41)와, 상기 냉장실(112)의 온도를 감지하는 냉장실 온도센서(42)와, 상기 각 온도센서(41, 42)에서 감지된 온도에 기초하여 상기 냉기공급수단을 제어하는 제어부(50)를 포함할 수 있다.
상기 제어부(50)는 상기 냉동실(111)의 온도를 목표 온도로 유지시키기 위하여 상기 압축기(21)와 상기 팬 모터(25) 중 하나 이상을 제어할 수 있다.
일 예로 상기 제어부(50)는 상기 팬 모터(25)가 정속으로 작동하는 중에 상기 압축기(21)의 출력을 제어할 수 있다.
또는, 상기 제어부(50)는 상기 압축기(21)가 일정 출력으로 작동하는 중에 상기 팬 모터(25)의 출력(회전 속도)을 제어할 수 있다.
상기 제어부(50)는 상기 냉장실(112)의 온도를 목표 온도로 유지시키기 위하여 상기 압축기(21), 상기 팬 모터(25) 및 상기 댐퍼 모터(13) 중 하나 이상의 출력을 제어할 수 있다.
일 예로, 상기 제어부(50)는, 상기 압축기(21) 및 상기 팬 모터(25)가 일정 출력으로 작동하는 중에 상기 댐퍼(12)의 개방 각도를 조절할 수 있다.
본 명세서에서 상기 제어부(50)에 의해서 "결정"되는 상기 냉기공급수단의 출력은 미리 설정되어 있는 상수 값 혹은 미리 설정되어 있는 계산 방식에 의해서 결정되는 변수 값을 모두 포함하는 개념이다.
이하에서는 본 발명의 제1실시예에 따른 냉장고의 제어 방법에 대하여 상세히 설명한다.
본 명세서에서 저장실의 설정 온도 범위는 목표 온도 보다 높은 제1기준 온도와, 목표 온도 보다 낮은 제2기준 온도 사이의 범위를 의미하며, 상기 저장실의 온도가 상기 설정 온도 범위 내에서 유지되도록 제어하는 것을 저장실의 정온 제어라고 한다.
그리고, 상기 제1기준 온도와 상기 제2기준 온도 사이의 온도를 제3기준 온도라 할 수 있다.
이때, 상기 제3기준 온도는 상기 저장실의 목표 온도이거나, 상기 제1기준 온도와 상기 제2기준 온도의 평균 온도일 수 있으나, 이에 제한되는 것은 아니다.
도 2 내지 도 4는 본 발명의 제1실시 예에 따른 냉장고의 제어 방법을 보여주는 흐름도이고, 도 5 및 도 6은 제1실시 예에 따른 냉장고의 제어 방법에 따른 저장실의 온도 변화와 냉기공급수단의 출력 변화를 보여주는 그래프이다.
도 2 내지 도 6을 참조하면, 정온 제어를 하기 위하여 저장실의 온도(T)가 온도 센서(41, 42)에 의해서 감지된다(S1). 본 발명에서는 냉장고가 온된 초기 상태인 것을 가정하여 설명하기로 한다.
상기 제어부(50)는, 감지된 저장실의 온도(T)가 제1기준 온도 이상인지 여부를 판단한다(S2).
냉장고가 온된 초기에는 상기 저장실의 온도(T)은 상온에 가까우므로, 감지된 저장실의 온도(T)가 제1기준 온도 이상일 것이다.
단계 S2에서 판단 결과, 상기 저장실의 온도(T)가 상기 제1기준 온도 이상인 것으로 판단되면, 상기 제어부(50)는, 상기 저장실의 온도를 낮추기 위하여 냉기공급수단의 냉각용 출력(P1)(초기 냉각용 출력)을 결정하고, 결정된 냉각용 출력(P1)으로 냉기공급수단이 작동하도록 한다(S3).
본 명세서에서 냉각용 출력은 단계적 또는 선형적으로 제어될 수 있으며, 실제 출력 값이 계산되어 제어되거나 레벨화된 값으로 계산되어 제어될 수 있다.
본 명세서의 도면에 기재된 냉각용 출력의 값은 예시적인 값으로서, 레벨화된 값이며 이해의 편의상 자연수로 결정되는 것임을 밝혀둔다(제어부에 의해서 계산되는 냉각용 출력이 소숫점을 가지는 경우 반올림되어 레벨이 결정됨).
예를 들어, 냉동실(111)의 정온을 위해서는 상기 제어부(50)는 상기 압축기(21)가 제1기준 출력으로 작동하고, 상기 팬 모터(25)가 제2기준 출력으로 작동하도록 제어할 수 있다.
또한, 냉장실(112)의 정온을 위해서는 상기 제어부(50)는, 추가적으로, 상기 댐퍼(12)의 개방 각도가 제1기준 각도가 되도록 상기 댐퍼 모터(13)의 출력을 조절할 수 있다.
이때, 상기 제1기준 출력은 상기 압축기(21)의 최대 출력이거나 최대 출력 보다 낮은 출력일 수 있다.
또한, 상기 제2기준 출력은 상기 팬 모터(25)의 최대 출력(팬 모터의 회전 속도가 최대가 되는 출력)이거나 최대 출력 보다 낮은 출력일 수 있다.
다만, 제1기준 출력 및 제2기준 출력 각각이 최대 출력에 가까울수록 상기 저장실의 온도 하강 속도가 빠를 수 있다. 또한, 상기 제1기준 각도가 상기 댐퍼(12)의 최대 개방 각도에 가까울수록 상기 저장실의 온도 하강 속도가 빠를 수 있다.
상기 냉기공급수단이 냉각용 출력(P1)으로 작동하게 되면, 상기 저장실의 온도는 점점 하강하게 될 것이다.
상기 저장실의 온도는 온도 센서(41, 42)에 의해서 주기적으로 감지될 수 있다(S4).
그리고, 상기 제어부(50)는, 감지된 저장실의 온도(T1)가 상기 제2기준 온도 이하인지 여부를 판단한다(S5).
단계 S5에서 판단 결과, 감지된 저장실의 온도(T1)가 상기 제2기준 온도 이하인 것으로 판단되면, 상기 제어부(50)는, 상기 저장실의 온도가 상승되되 온도 상승이 지연되도록 상기 냉기공급수단이 온도 상승 지연용 출력(P2)(이하 "지연용 출력"이라 함)으로 작동하도록 제어한다(S6).
상기 저장실의 온도가 상기 제2기준 온도에 도달하면 상기 냉기공급수단이 정지되는 종래의 기술에 비하여, 본 발명의 경우 상기 온도 상승 지연용 출력으로 냉기공급수단을 작동시킴으로써, 저장실의 온도가 상기 제1기준 온도 이상의 값으로 도달하는 시간을 지연시킬 수 있다. 이 경우, 상기 저장실 내의 온도 변화량을 감소시킴으로써, 피보관물의 신선도를 향상시킬 수 있다.
또한, 냉기공급수단의 온/오프 횟수가 줄어들 수 있어 냉기공급수단의 부품 신뢰도를 향상시킬 수 있다.
본 발명에서, 감지된 저장실의 온도(T1)가 상기 제2기준 온도 이하인 것으로 판단된 이후에는, 상기 저장실의 정온 제어를 위해서는 상기 저장실의 온도가 상승되어야 한다.
이때, 상기 냉기공급수단이 정지되면(댐퍼가 닫힌 경우 포함) 저장실의 온도 상승 속도가 가장 빠를 것이나, 본 발명에서는 상기 냉기공급수단의 소비 전력이 줄어들도록 상기 냉기공급수단을 정지하지 않고, 지연용 출력으로 상기 냉기공급수단이 작동하도록 한다.
단계 S6에서 결정되는 상기 지연용 출력(P2)은 이전 단계인 S3 단계에서 결정된 냉각용 출력(P1) 보다 작은 값으로 결정되는 것이 바람직하다.
한편, 상기 지연용 출력(P2)은 상기 냉기공급수단이 작동할 수 있는 최소 출력과 동일하거나 클 수 있다. 또한, 상기 지연용 출력(P2)은 댐퍼의 개방 각도가 닫힘 각도인 0보다 큰 각도일 수 있다.
예를 들어, 감지된 저장실의 온도(T1)가 상기 제2기준 온도 이하인 경우, 상기 제어부(50)는 상기 압축기(21) 및 상기 팬 모터(25) 중 하나 이상이 최소 출력 이상의 출력으로 작동하도록 할 수 있다.
또는, 감지된 저장실의 온도(T1)가 상기 제2기준 온도 이하인 경우, 상기 제어부(50)는 상기 댐퍼(12)의 개방 각도가 닫힘 각도인 0도 보다 큰 각도(온도 상승 지연용 각도임)를 유지하도록 상기 댐퍼 모터(13)를 제어할 수 있다.
그리고, 저장실의 온도(T2)가 온도 센서(41, 42)의 의해서 감지된다(S7).
상기 제어부(50)는, 감지된 저장실의 온도(T2)가 상기 제3기준 온도에 도달하였는지 여부를 판단한다(S8).
단계 S8에서 판단 결과, 감지된 저장실의 온도(T2)가 상기 제3기준 온도에 도달한 것으로 판단되면, 상기 제어부(50)는, 상기 냉기공급수단의 냉각용 출력(P3, P5, P7)을 결정하고, 결정된 냉각용 출력(P3, P5, P7)으로 상기 냉기공급수단이 작동하도록 제어한다(S9).
저장실의 온도가 상승하여 상기 제3기준 온도에 도달하면, 다시 저장실의 온도를 하강시킬 수 있도록 단계 S9에서 결정되는 상기 냉각용 출력은 이전 단계인 S6 단계에서 결정된 지연용 출력 보다 큰 값으로 결정되는 것이 바람직하다.
또한, 단계 S9에서 결정되는 냉각용 출력은 이전 단계인 S6에서 결정된 지연용 출력보다 큰 값이며, 단계 S6 이전의 단계 S3에서 결정된 냉각용 출력보다 작거나 동일한 값으로 결정될 수 있다.
한편, 결정되는 각각의 냉각용 출력(P3, P5, P7)은 지연용 출력 (P2, P4, P6) 중 어느 하나 보다 큰 값이며, 이전의 냉각용 출력 중 어느 하나 보다 작거나 동일한 값으로 결정될 수 있다.
한편, 단계 S9에서 결정된 냉각용 출력(P3, P5, P7)은 지연용 출력(P2, P4, P6)과 이전에 결정된 냉각용 출력 사이의 출력일 수 있다.
제한적이지는 않으나, 감지된 저장실의 온도(T2)가 상기 제3기준 온도에 도달한 경우의 각각의 냉각용 출력(P3, P5, P7)은 (이전 단계에서 구동된 지연용 출력(P2, P4, P6) 중 어느 하나의 값과 이전 단계에서 구동된 냉각용 출력 중 어느 하나의 값) x α의 값으로 결정될 수 있다. 이때, α는 0 보다 크고 1보다 작으며, 미리 메모리에 설정될 수 있고, 사용자의 설정 또는 자동으로 가변될 수 있다.
일 예로, 상기 감지된 저장실의 온도(T2)가 상기 제3기준 온도에 도달한 경우의 냉각용 출력(P3, P5, P7)은 (지연용 출력과 이전에 결정된 냉각용 출력의 합) x 0.5의 값(지연용 출력과 이전에 결정된 냉각용 출력의 평균 출력값)으로 결정될 수 있으나, 이에 제한되는 것은 아니다.
한편, 도 2a에 도시된 바와 같이, 상기 냉기공급수단이 결정된 냉각용 출력(P3)으로 작동된 후에는(S9), 상기 냉장고의 전원 오프 명령이 입력되지 않는다면(S9-1), 단계 S4로 복귀하여 단계 S4 내지 S9를 반복하여 수행할 수 있다.
즉, 도 2a에서 단계 S9 단계 완료 후 저장실 온도(T3)를 감지하지 않고, 바로 단계 S9-1을 수행할 수 있고, 상기 냉장고의 전원 오프 명령이 입력되지 않는다면(S9-1), 단계 S4로 복귀할 수 있다.
한편, 도 2b와 같이, 단계 S9에서 결정된 냉각용 출력(P3)으로 작동하는 중에, 제어부(50)가 감지된 저장실의 온도(T3)가 상기 제3기준 온도 이하인지 여부를 판단하는 단계(S10)가 추가될 수 있다.
단계 S10에서 판단 결과, 감지된 저장실의 온도(T3)가 상기 제3기준 온도 이하인 경우, 상기 냉장고의 전원 오프 명령이 입력되지 않는 한(S20), 단계 S4로 복귀한다. 따라서, 단계 S4 내지 S9가 반복되어 수행할 수 있다.
이때, 단계 S4 내지 S9가 반복되면, 도 5에 도시된 바와 같이, 저장실의 온도가 제3기준 온도와 제2기준 온도 사이에서 유지될 수 있다.
또한, 단계 S4 내지 S9가 반복되면, 도 5에 도시된 바와 같이, 감지된 저장실의 온도(T2)가 상기 제3기준 온도에 도달한 경우에 결정되는 냉각용 출력P3, P5, P7)이 점점 줄어들어, 지연용 출력(P2, P4, P6)에 가깝게 될 것이다.
이와 같이 단계 S4 내지 S9가 반복되면, 냉기공급수단의 작동 시 냉각용 출력이 점점 줄어들게 되어 냉기공급수단이 연속적으로 작동하더라도 냉긱공급수단의 소비 전력이 줄어들 수 있는 장점이 있다.
이하에서는 도 3을 참조하여, 보호 로직(A)(S12 내지 S13)에 대해서 설명하기로 한다.
상기 냉기공급수단이 단계 S6에서 결정된 지연용 출력으로 작동하는 구간(즉, 온도 상승 구간)에서 저장실 온도(T2)를 감지한 후(S7), 상기 온도 상승 구간에서 저장실의 온도가 하강하는지 여부를 판단하는 단계(S12)가 추가될 수 있다.
단계 S12에서 판단 결과, 저장실의 온도가 하강하고 있다고 판단되는 경우에는 상기 지연용 출력을 감소시키거나 정지시키는 단계(S13)가 추가될 수 있다.
즉, 도 2a 또는 도 2b에서 단계 S8이 생략되고 바로 단계 S12로 진행할 수 있다.
냉장고 도어가 열린 상태에서 저장실의 공기보다 낮은 외기가 유입되어 저장실의 온도가 감소되는 경우이나, 저장실로 냉원이 추가로 인입되는 경우이거나 미리 설정된 α가 높은 경우 등의 경우에 상기 온도 상승 구간에서 저장실의 온도(T2)가 하강하게 되면 저장실이 과냉각될 가능성이 있다. 따라서, 저장실의 온도 상승 지연을 최소화시켜야 할 필요에 의해서 단계 S12가 추가로 수행될 수 있다.
상기 냉기공급수단이 단계 S6에서 결정된 지연용 출력(도 6에서 P6)로 작동을 시작한 후 일정 시간 경과하는 동안 저장실의 온도(T2)의 변화량이 (-) 값을 가지거나, 혹은 상기 냉기공급수단이 지연용 출력(P6)로 작동하는 중의 저장실 온도(T2)가 특정 값(예를 들어, 지연용 출력(P6)으로 작동을 시작할 때의 저장실 온도 혹은 제2기준 온도) 이하의 값에 도달하는 경우에는 온도 상승 구간에서 저장실의 온도가 하강한다고 판단할 수 있다.
또는, 단계 S8에서 판단 결과, 감지된 저장실의 온도(T2)가 상기 제3기준 온도에 도달하지 않았다고 판단되면, 상기 제어부(50)는, 상기 온도 상승 구간에서 저장실의 온도(T2)가 하강하는지 여부를 판단할 수 있다(S12).
단계 S12에서 판단 결과, 저장실의 온도(T2)가 하강하고 있다고 판단되면, 상기 지연용 출력을 감소시키거나 냉기공급수단을 정지시키는 단계(S13)가 추가될 수 있다.
일 예로, 상기 제어부(50)는 상기 냉기공급수단이 최소 출력 또는 이전 단계에서 결정된 지연용 출력(도 6에서 P4, P2) 중 어느 한 지연용 출력으로 작동하도록 상기 냉기공급수단의 지연용 출력(도 6에서 P7)을 결정할 수 있다.
또는, 상기 제어부(50)는 이전에 결정된 지연용 출력(P4, P2)의 평균 출력값을 상기 냉기공급수단의 지연용 출력(P7)으로 결정할 수 있다. 혹은 α를 감소시켜 직전의 지연용 출력보다 작은 값을 상기 지연용 출력(P7)으로 결정할 수도 있다.
한편, 위와 같이 지연용 출력을 감소시키거나 정지시키는 단계(S13)를 수행하고, 저장실의 온도를 감지한 후, 온도 상승 구간에서 저장실의 온도가 하강하는지 여부를 다시 판단하는 단계를 추가할 수 있다. 판단 결과, 저장실의 온도가 하강하고 있다고 판단되면, 상기 지연용 출력을 추가로 감소시킬 수 있다.
한편, 상기 냉기공급수단이 정지되거나 최소 출력을 포함한 감소된 출력으로 작동하고(S13), 저장실 온도를 감지한 후, 저장실의 온도가 하강하고 있지 않다고 판단되는 경우에, 상기 보호 로직(A)을 반복 수행하는 것을 해지하도록 구성할 수 있다. 또는 상기 감소된 출력으로 냉기공급수단이 일정 시간동안 작동한 경우에, 상기 보호 로직(A)을 수행하는 것을 해지하도록 구성할 수 있다.
상기 보호 로직(A)을 수행하는 것을 해지한다는 것은 단계 S1 내지 S9-1단계("기본 로직") 중 어느 단계로 복귀하여 그 이후 단계를 수행하는 것을 의미한다(S13-1).
예를 들면, 상기 냉기공급수단이 정지되거나 최소 출력을 포함한 감소된 출력으로 작동한 후, 저장실의 온도가 제1기준 온도 이상이 되면, 단계 S2 이후의 단계를 수행할 수 있다. 또는, 상기 냉기공급수단이 정지되거나 최소 출력을 포함한 감소된 출력으로 작동한 후, 저장실의 온도가 제2기준 온도 이하가 되면, 단계 S5 이후의 단계를 수행할 수 있다. 또는, 상기 냉기공급수단이 정지되거나 최소 출력을 포함한 감소된 출력으로 작동한 후, 저장실의 온도가 제3기준 온도가 되면, 단계 S8 이후의 단계를 수행할 수 있다.
예를 들어, 도 6에서 지연용 출력(P6)으로 냉기공급수단이 구동되었으나, 저장실의 온도가 제2기준 온도 이하로 과냉각되면, 상기 보호 로직(A)에 따라 수정된 지연용 출력(P7)으로 냉기공급수단이 구동될 수 있다.
상기 지연용 출력(P7)으로 냉기공급수단이 구동되어 저장실 온도가 다시 상승하면, 상기 보호 로직(A)은 해지되고 상기 기본 로직으로 복귀한다.
따라서, 저장실 온도가 제3기준 온도에 도달하면, 다음 단계의 출력(P8)은 (이전 단계의 냉각용 출력(P6)과 이전 단계의 지연용 출력(P7)의 합) x α의 값으로 결정될 수 있다. 상기 지연용 출력(P6)은 실제로는 저장실의 온도를 상승시키지 못하고 냉각시켰으므로, 이전 단계의 냉각용 출력(P6)으로 인식된다.
일 예로, 단계 S12에서 판단 결과, 감지된 저장실의 온도(T2)가 상기 제2기준 온도 이하인 것으로 판단되면, 상기 제어부(50)는 상기 냉기공급수단의 작동을 정지시킬 수 있다(S13). 본 발명에서 냉장실 정온 제어의 경우에는 냉기공급수단의 작동이 정지되는 것은 실제로 댐퍼의 개방 각도가 0이 되도록 댐퍼의 개방 각도를 제어하는 것을 의미한다.
또는, 상기 지연용 출력(P2, P4, P6)이 최소 출력 보다 높은 출력인 경우에는 상기 제어부(50)는 상기 냉기공급수단이 최소 출력으로 작동하도록 제어할 수 있다.
상기 냉기공급수단이 정지되거나 최소 출력으로 작동하면, 상기 저장실의 온도는 증가될 수 있다.
한편, 단계 S13을 수행한 후에는, α는 가변될 수 있다. 일 예로 단계 S13을 수행한 후에는, α는 현재 값 보다 낮은 값으로 설정될 수 있다.
상기 냉기공급수단이 냉각용 출력으로 작동하는 중에 저장실의 온도(T3)가 상기 제1기준 온도 이상의 값에 도달하는 경우는, 일 예로, 냉장고 도어가 열려 저장실의 온도가 증가되는 경우이거나, 저장실로 음식물이 추가로 인입되는 경우이거나, 미리 설정된 α가 낮은 경우 등일 수 있다.
이하에서는 도 4와 관련한 보호 로직(B)(S14 내지 S16)에 대해서 설명하기로 한다.
상기 냉기공급수단이 단계 S9에서 결정된 냉각용 출력(도 5에서 P7)으로 작동하는 구간(즉 온도 하강 구간)에서, 저장실의 온도(T3)를 감지한 후(S10), 상기 온도 하강 구간에서 저장실의 온도가 상승한다고 판단(S14)되는 경우에는 상기 냉각용 출력을 증가시키는 단계(S15)가 추가될 수 있다. 즉, 도 2a에서 단계 S9-1의 완료 후 단계 S14가 바로 수행될 수 있다.
냉장고 도어가 열려 저장실의 온도가 증가되는 경우이거나, 저장실로 음식물이 추가로 인입되는 경우이거나, 미리 설정된 α가 낮은 경우 등에 상기 온도 하강구간에서 저장실의 온도(T3)가 상승하게 되면 저장실이 과열될 가능성이 있으므로, 저장실의 온도 하강 지연을 최소화시켜야 한다.
상기 냉각용 출력을 증가시키기 위하여, 일 예로 상기 제어부(50)는 상기 상기 냉기공급수단의 최대 출력 혹은 현재 출력의 이전 단계에서 결정된 냉각용 출력(P5, P3, P1) 중 어느 한 냉각용 출력으로 작동하도록 냉기공급수단의 냉각용 출력(P8)을 결정할 수 있다. 또는, 상기 제어부(50)는 이전에 결정된 냉각용 출력(P5, P3, P1)의 평균 출력값을 상기 냉기공급수단의 냉각용 출력(P8)으로 결정할 수 있다. 또는 α를 증가시켜 직전의 냉각용 출력보다 큰 값을 상기 냉각용 출력 (P8)으로 결정할 수도 있다.
상기 냉기공급수단이 상기 냉각용 출력(도 5에서 P7)으로 작동을 시작한 후 일정 시간 경과하는 동안 저장실의 온도(T3)의 변화량이 (+) 값을 가지거나, 또는 상기 냉기공급수단이 냉각용 출력(P7)으로 작동하는 중의 저장실 온도(T3)가 특정값(예를 들어, 냉각용 출력(P7)으로 작동을 시작할 때 저장실의 온도 또는 제1기준 온도)이상의 값에 도달하는 경우, 온도 하강 구간에서 저장실의 온도가 상승한다고 판단할 수 있다.
또는 상기 냉기공급수단이 냉각용 출력(P7)으로 작동한 후, 일정시간이 경과하였을 시점에서의 저장실의 온도(T3)가 특정값(예를 들어, 냉각용 출력 (P7)으로 작동을 시작할 때 저장실의 온도 혹은 제1기준 온도)이상의 값에 도달하거나, 혹은 냉장고 도어가 열린 후 일정 시간이 경과한 경우에는 온도 하강 구간에서 저장실의 온도가 상승한다고 판단할 수 있다.
한편, 도 2b와 같이 단계 S10에서 저장실의 온도(T3)를 감지한 후, 감지된 저장실의 온도(T3)가 상기 제3기준 온도를 초과하는 경우, 상기 온도 하강 구간에서 저장실의 온도(T3)가 상승하고 있는지 여부를 판단(S14)하는 것도 가능하다.
단계 S14에서 판단 결과, 저장실의 온도(T3)가 상승하고 있다고 판단되면, 상기 냉각용 출력(P8)을 이전의 냉각용 출력(P7)보다 증가시킬 수 있다(S15).
한편, 냉각용 출력을 증가시키는 단계(S15)를 수행하고 저장실 온도(T4)를 감지(S16)한 후, 온도 하강 구간에서 저장실의 온도(T4)가 상승하는지 다시 판단하는 단계(S19)를 추가할 수 있다. 단계 S19에서 판단 결과, 저장실의 온도(T4)가 상승하고 있다고 판단되면, 상기 냉각용 출력을 다시 증가시킬 수 있도록 구성할 수 있다(S15). 즉, 단계 S16에서 저장실 온도(T4) 감지 후, 단계 S19가 바로 수행될 수 있다.
한편, 위와 같이 냉각용 출력을 증가시키는 단계(S15)를 수행하고 저장실 온도(T4)를 감지한 후(S16), 감지된 온도(T4)가 제3기준 온도에 도달하였는지 여부를 판단하는 단계(S17)를 추가할 수 있다. 단계 S17에서 판단 결과, 감지된 온도가 제3기준 온도에 도달하지 않았으면, 온도 하강 구간에서 저장실의 온도(T4)가 상승하는지 다시 판단하는 단계(S19)를 추가하여, 상기 냉각용 출력을 다시 증가시킬 수 있도록 할 수 있다.
한편, 상기 냉기공급수단이 증가된 출력으로 작동하고(S15), 저장실 온도 (T4)를 감지한 후(S16), 저장실의 온도가 상승하고 있지 않다고 판단되는 경우 (S19)에는 상기 보호 로직(B)을 수행하는 것을 해지할 수 있다. 혹은 상기 증가된 출력으로 일정 시간 동안 작동한 경우에, 상기 보호 로직(B)을 수행하는 것을 해지할 수 있다.
상기 보호 로직(B)을 수행하는 것을 해지한다는 것은 단계 S1 내지 S9-1단계 (기본 로직) 중 어느 단계로 복귀하여 그 이후 단계를 수행하는 것을 의미할 수 있다.
예를 들면, 상기 냉기공급수단이 증가된 출력으로 작동한 후(S15), 저장실의 온도가 제1기준 온도 이상이 되면, 단계 S2 이후 단계를 수행할 수 있다.
또는, 상기 냉기공급수단이 증가된 출력으로 작동한 후, 저장실의 온도가 제2기준 온도이하가 되면, 단계 S5 이후 단계를 수행할 수 있다.
또는, 상기 냉기공급수단이 증가된 출력으로 작동한 후, 저장실의 온도가 제3기준온도가 되면, 단계 S8 이후 단계를 수행할 수 있다.
예를 들어, 도 5에서 냉각용 출력(P7)으로 냉기공급수단이 구동되었으나, 저장실의 온도가 제1기준 온도 이상으로 과열되면, 상기 보호 로직(B)에 따라 수정된 냉각용 출력(P8)으로 냉기공급수단이 구동될 수 있다. 상기 냉각용 출력(P8)으로 냉기공급수단이 구동되어 저장실 온도가 다시 하강하면, 상기 보호 로직(B)은 해지되고, 상기 기본 로직으로 복귀할 수 있다. 따라서, 저장실 온도가 제3기준 온도에 도달하면, 다음 단계의 출력(P9)은 이전 단계의 냉각용 출력(P8)과 이전 단계의 지연용 출력(P7)의 합 x α의 값으로 결정될 수 있다. 상기 냉각용 출력(P7)은 실제로는 저장실의 온도를 하강시키지 못하고 상승시켰으므로, 이전 단계의 지연용 출력(P7)으로 인식된다.
도 5를 참조하여, 일 예를 들면, 냉각용 출력(P7)으로 냉기공급수단이 작동하는 중에 감지된 저장실의 온도(T3)가 상기 제1기준 온도 이상이 되면, 상기 제어부(50)는 저장실의 온도를 하강시키기 위하여 냉기공급수단의 현재의 냉각용 출력을 증가시킨다.
일 예로 상기 제어부(50)는 현재의 냉각용 출력(P7)의 직전에 결정된 냉각용 출력(P5)을 상기 증가된 냉각용 출력(P8)으로 결정할 수 있다. 상기 냉각용 출력(P8)으로 냉기공급수단이 구동하여도 저장실의 온도(T3)가 상기 제1기준 온도 이상이라면, 상기 제어부(50)는 상기 냉각용 출력(P5)의 직전에 결정된 냉각용 출력(P3)을 상기 증가된 냉각용 출력으로 결정할 수 있다.
이전에 결정된 냉각용 출력(P5, P3, P1)은 현재의 냉각용 출력(P7) 보다 높으므로, 상기 냉기공급수단의 냉각용 출력의 증가에 의해서 상기 저장실의 온도가 상기 제1기준 온도 보다 낮아질 수 있다.
상기 냉기공급수단이 변경된 냉각용 출력(P8)으로 작동하는 중에, 저장실의 온도(T4)가 감지된다(S16).
그리고, 상기 제어부(50)는, 감지된 저장실의 온도(T4)가 상기 제3기준 온도에 도달하였는지 여부를 판단한다(S17).
단계 S17에서 판단 결과, 감지된 저장실의 온도(T4)가 상기 제3기준 온도에 도달하였다고 판단되면, 상기 제어부(50)는, 상기 냉기공급수단의 현재 냉각용 출력을 (현재 냉각용 출력과 이전에 결정된 냉각용 출력의 합) x α 로 변경시킨다(S18).
단계 S17과 달리, 단계 S15에서, 냉기공급수단이 이전에 결정된 냉각용 출력(P8)으로 작동하는 중에, 상기 제어부(50)는, 감지된 저장실의 온도(T4)가 상기 제2기준 온도 이하의 값에 도달하였는지 여부를 판단하는 것도 가능하다. 그리고, 감지된 저장실의 온도(T4)가 상기 제2기준 온도 이하의 값에 도달하면, 상기 제어부(50)는 상기 냉기공급수단이 지연용 출력으로 작동하도록 할 수 있다.
한편, 단계 S17에서 판단 결과, 감지된 저장실의 온도(T4)가 상기 제3기준 온도에 도달하지 않았다고 판단되면, 상기 제어부(50)는 냉각용 출력으로 냉기공급수단이 작동하는 구간에서 온도가 상승하는지 여부를 판단할 수 있다(S19).
일 예로, 상기 제어부(50)는, 감지된 저장실의 온도(T4)가 제1기준 온도 이상인지 여부를 판단할 수 있다.
단계 S19에서 판단 결과, 감지된 저장실의 온도(T4)가 제1기준 온도 이상인 경우, 상기 제어부(50)는, 상기 냉기공급수단의 현재의 냉각용 출력을 추가적으로 증가시킨다(S15).
예를 들어, 이전에 결정된 냉각용 출력(P5)으로 상기 냉기공급수단을 작동시켰으나, 상기 감지된 저장실의 온도(T4)가 제1기준 온도 이상인 경우, 상기 제어부(50)는, 이전에 결정된 냉각용 출력(P3)으로 상기 냉기공급수단을 작동시킬 수 있다.
본 발명에서 냉기공급수단이 지연용 출력으로 작동되는 과정에서 저장실의 온도가 제2기준 온도 미만이 되지 않는 한 상기 지연용 출력은 가변되지 않는다. 즉, 상기 지연용 출력은 저장실의 온도 변화와 무관한 고정 출력일 수 있다.
결과적으로, 저장실의 온도가 제2기준 온도 미만이 되지 않는 한 냉기공급수단을 구성하는 압축기와 팬 모터는 정지하지 않는다.
이와 같은 본 발명에 의하면, 상기 압축기(21)와 팬 모터(25)가 정지하지 않고 계속 구동하되, 구동되는 출력이 최소 출력에 가까운 상태로 점점 수렴되도록 출력이 제어됨에 따라서, 저장실 온도에 따라서 압축기(21)와 팬 모터(25)의 온오프 과정을 반복하는 경우에 비하여 전력 소비를 줄일 수 있는 장점이 있다.
뿐만 아니라, 저장실 온도가 설정 범위 내에서 정온 상태로 유지되므로, 저장된 음식물이 과냉각되는 상태와 시들어버리는 상태를 반복하여 겪지 않고 신선한 상태를 오랫동안 유지할 수 있는 장점이 있다.
도 7은 본 발명의 제1실시 예에 따른 냉장고의 제어 방법에 따른 저장실의 온도 변화와 댐퍼의 개방 각도 변화를 보여주는 그래프이다.
도 7을 참조하면, 앞서 설명한 냉장고의 제어 방법에 따라서 댐퍼의 각도는 냉장실의 온도가 제1기준 온도 이상인 초기 상태에서는 댐퍼가 완전 개방(일 예로 90도)되고, 그 이후부터는 댐퍼의 개도가 조절되어 결과적으로는 냉장실의 온도가 설정 온도 범위 내에서 유지될 수 있다.
일 예로, 상기 댐퍼(12)가 완전히 개방된 상태에서 냉장실의 온도가 제2기준 온도 이하에 도달하면, 댐퍼(12)를 닫거나 댐퍼(12)의 개방 각도가 최소 각도가 되도록 한 우, 냉장실 온도가 제3기준 온도까지 상승하면 댐퍼의 개도를 이전 개방 각도의 N% (N은 0과 100사이 값임)로 감소시키는 동작을 반복할 수 있다.
그리고, 이전 개방 각도의 N%로 댐퍼(12)의 개방 각도를 감소하는 과정을 반복하다가 냉장실의 온도가 급격히 상승하면, 댐퍼의 개방 각도를 보호 로직(B)에 의해서 이전 개방 각도로 증가시킬 수 있다.
그리고, 이전 개방 각도로 댐퍼(12)의 개방 각도를 증가시킨 이후 냉장실의 온도가 다시 하강하면, 일 예로 현재 개방 각도와 이전 개방 각도의 평균값으로 댐퍼(12)의 개방 각도를 재조정할 수 있다.
반면, 도 7에는 도시되지 않았으나, 이전 개방 각도로 개방각을 늘여도 온도가 하강하지 않을 경우는 보호 로직(A)에 의해서 초기 개방 각도, 즉 완전 개방 상태로 댐퍼(12)의 개바 각도를 변경할 수 있다.
이러한 과정을 반복하여 수행하면, 압축기와 팬 모터의 구동을 정지하지 않고도 냉장실의 온도를 설정 온도 범위 내에서 안정적으로 제어(정온 제어)할 수 있다.
도 8 및 도 9는 본 발명의 제2실시 예에 따른 냉장고의 제어방법에 따른 저장실의 온도 변화와 냉기공급수단의 출력 변화를 보여주는 그래프이다.
본 실시 예는 다른 부분에 있어서는 제1실시 예와 동일하고, 다만 냉각용 출력의 결정 방법에 있어서 차이가 있다. 따라서, 이하에서는 본 실시 예의 특징적인 부분에 대해서만 설명하고, 제1실시 예와 동일한 부분은 제1실시 예의 설명을 원용하기로 한다.
도 2 내지 도 4, 도 8 및 도 9를 참조하면, 제1실시 예의 단계 S1 내지 S6은 본 실시 예의 제어 방법과 동일하므로 자세한 설명을 생략하고, 다만 단계 S8에서 차이가 있으므로, 제1실시 예의 단계 S8과의 차이점에 대해서 설명한다.
본 실시 예에서, 상기 냉기공급수단이 지연용 출력(P2)으로 작동하는 중에, 상기 제어부(50)는, 감지된 저장실의 온도(T2)가 상기 제1기준 온도 이상인 값에 도달하였는지 여부를 판단한다.
감지된 저장실의 온도가 상기 제1기준 온도 이상인 값에 도달한 것으로 판단되면, 상기 제어부(50)는, 상기 냉기공급수단의 냉각용 출력(P3, P5, P7)을 결정하고, 결정된 냉각용 출력(P3, P5, P7)으로 상기 냉기공급수단이 작동하도록 제어한다.
한편, 상기 냉기공급수단이 냉각용 출력(P3, P5, P7)으로 작동하는 중에, 상기 제어부(50)는 감지된 저장실의 온도가 상기 제2기준 온도 이하의 값에 도달하였는지 여부를 판단한다. 감지된 저장실의 온도가 상기 제2기준 온도 이하의 값에 도달한 것으로 판단되면, 상기 제어부(50)는, 상기 냉기공급수단의 지연용 출력(P4, P6)을 결정하고, 결정된 지연용 출력(P4, P6)으로 상기 냉기공급수단이 작동하도록 제어한다.
그 외에 상기 냉각용 출력 및 지연용 출력을 결정하는 방법과 보호 로직(A)(B)을 포함한 모든 운전 로직은 제1실시예와 동일하다.
도 10 내지 도 12는 본 발명의 제3실시 예에 따른 냉장고의 제어방법에 따른 저장실의 온도 변화와 냉기공급수단의 출력 변화를 보여주는 그래프이다.
본 실시 예는 다른 부분에 있어서는 제1실시 예와 동일하고, 다만 냉각용 출력의 결정 방법에 있어서 차이가 있다. 따라서, 이하에서는 본 실시 예의 특징적인 부분에 대해서만 설명하고, 제1실시 예와 동일한 부분은 제1실시 예의 설명을 원용하기로 한다.
먼저, 도 1 내지 도 4 및 도 10을 참조하면, 정온 제어를 하기 위하여 저장실의 온도가 온도 센서에 의해서 감지되며, 감지된 저장실의 온도가 제1기준 온도 이상인 경우, 상기 제어부(50)는, 상기 저장실의 온도를 낮추기 위하여 냉기공급수단의 냉각용 출력(P1.1)을 결정하고, 결정된 냉각용 출력(P1.1)으로 냉기공급수단이 작동하도록 한다(도 2의 S3 참조).
상기 냉기공급수단이 냉각용 출력(P1.1)으로 작동하면 저장실의 온도는 하강하게 되며, 상기 제어부(50)는, 저장실의 온도가 제2기준 온도 보다 높은 소정의 온도에 도달하면, 현재의 냉각용 출력을 감소시킬 수 있다.
이때, 상기 소정의 온도는 상기 제1기준 온도와 상기 제2기준 온도의 평균 온도이거나, 저장실의 목표 온도(제3기준 온도)일 수 있다.
상기 냉기공급수단이 변경된 냉각용 출력(P1.2)으로 작동하는 중에 상기 저장실의 온도가 제2기준 온도 이하의 값에 도달하면, 상기 제어부(50)는 상기 냉기공급수단이 지연용 출력(P2)으로 작동하도록 한다.
그리고, 냉기공급수단이 지연용 출력(P2)으로 작동하는 중에 상기 저장실의 기준 온도가 제3기준 온도에 도달하면, 상기 제어부(50)는 냉각용 출력(P3)을 결정한다.
그 외에 상기 냉각용 출력 및 지연용 출력을 결정하는 방법과 보호 로직(A)(B)를 포함한 모든 운전 로직은 제1실시예와 동일하다.
한편, 도 11과 같이 저장실의 온도가 제1기준 온도 이상인 경우, 제어부(50)는, 상기 저장실의 온도를 낮추기 위하여 냉기공급수단의 냉각용 출력(P1.1)을 결정하고, 결정된 냉각용 출력(P1.1)으로 냉기공급수단이 작동하도록 한다(도 2의 S3 참조).
상기 냉기공급수단이 결정된 냉각용 출력(P1.1)으로 작동하는 중에 저장실의 온도가 하강하지 않고 상승하여 제1기준 온도에 도달하는 경우에도 상기 제어부(50)는 현재의 냉각용 출력을 증가시킬 수 있다(제1실시 예에서 설명한 보호 로직(B)과 동일함).
다음으로, 도 12를 참조하면, 냉기공급수단이 지연용 출력(P2, P4, P5)으로 작동하는 중에 저장실의 온도가 상승하지 않고 하강하여 제2기준 온도 이하가 되는 경우, 상기 제어부(50)는, 상기 냉기공급수단의 출력을 감소시키거나 작동을 정지시킬 수 있다(제1실시 예에서 설명한 보호 로직(A)과 동일함).
도 13은 본 발명의 제4실시 예에 따른 냉장고의 제어방법에 따른 저장실의 온도 변화와 냉기공급수단의 출력 변화를 보여주는 그래프이다.
본 실시 예는 다른 부분에 있어서는 제1실시 예와 동일하고, 다만 냉각용 출력의 결정 방법에 있어서 차이가 있다. 따라서, 이하에서는 본 실시 예의 특징적인 부분에 대해서만 설명하고, 제1실시 예와 동일한 부분은 제1실시 예의 설명을 원용하기로 한다.
도 1 및 도 13을 참조하면, 정온 제어를 하기 위하여 저장실의 온도가 온도 센서에 의해서 감지되며, 감지된 저장실의 온도가 제1기준 온도 이상인 경우, 제어부(50)는, 상기 저장실의 온도를 낮추기 위하여 냉기공급수단의 냉각용 출력(P1.1)을 결정하고, 결정된 냉각용 출력(P1.1)으로 냉기공급수단이 작동하도록 한다(도 2의 S3 참조).
상기 냉기공급수단이 냉각용 출력(P1.1)으로 작동하면 저장실의 온도는 하강하게 되며, 상기 제어부(50)는, 저장실의 온도가 제3기준 온도에 도달하면 현재의 냉각용 출력을 감소시킨다.
상기 냉기공급수단이 변경된 냉각용 출력(P1.2)으로 작동하는 중에 상기 저장실의 온도가 제2기준 온도 이하의 값에 도달하면, 상기 제어부(50)는 상기 냉기공급수단이 지연용 출력(P2)으로 작동하도록 한다.
상기 냉기공급수단이 지연용 출력(P2)으로 작동하는 중에, 상기 제어부(50)는, 감지된 저장실의 온도가 상기 제1기준 온도 이상의 값에 도달하였는지 여부를 판단한다.
감지된 저장실의 온도가 상기 제1기준 온도 이상인 값에 도달한 것으로 판단되면, 상기 제어부(50)는, 상기 냉기공급수단의 냉각용 출력(P3, P5, P7)을 결정하고, 결정된 냉각용 출력(P3, P5, P7)으로 상기 냉기공급수단이 작동하도록 제어한다.
그 외에 상기 냉각용 출력 및 지연용 출력을 결정하는 방법과 보호 로직(A)(B)를 포함한 모든 운전 로직은 제1실시예와 동일하다.
도 14는 제5실시 예에 따른 냉장고의 제어방법에 따른 저장실의 온도 변화와 냉기공급수단의 출력 변화를 보여주는 그래프이다.
본 실시 예는 다른 부분에 있어서는 제1실시 예와 동일하고, 다만 지연용 출력의 결정 방법에 있어서 차이가 있다. 따라서, 이하에서는 본 실시 예의 특징적인 부분에 대해서만 설명하고, 제1실시 예와 동일한 부분은 제1실시 예의 설명을 원용하기로 한다.
도 5에서 도 13까지의 실시 예는 반드시 그런 것은 아니지만, 일면으로는 지연용 출력(P2, P4, P6)은 고정된 값일 수 있고, 냉각용 출력 (P3, P5, P7)을 조절하는 방식으로 이해할 수도 있다. 이에 반해, 도 14는 반드시 그런 것은 아니지만일면으로는 냉각용 출력(P3, P5, P7)이 고정된 값일 수 있고, 지연용 출력(P2, P4, P6)이 조절되는 방식으로 이해할 수도 있다. 도 14에서 지연용 출력이 조절되는 하나의 하나의 실시예만 제시하였지만, 도 5에서 도 13까지의 실시예 각각에 대해 대응하여 지연용 출력이 조절되는 방식도 가능하다.
한편 도 5에서 도 13까지의 방식과 도 14의 방식을 혼합하여, 일부 구간에서 또는 전 구간에서 냉각용 출력과 지연용 출력이 모두 조절되도록 하는 방식도 가능하다.
도 14를 참조하면, 정온 제어를 하기 위하여 저장실의 온도가 온도 센서에 의해서 감지되며, 감지된 저장실의 온도가 제1기준 온도 이상인 경우, 상기 제어부(50)는, 상기 저장실의 온도를 낮추기 위하여 냉기공급수단의 냉각용 출력(P1)을 결정하고, 결정된 냉각용 출력(P1)으로 냉기공급수단이 작동하도록 한다.
상기 냉기공급수단이 냉각용 출력(P1)으로 작동하면 저장실의 온도는 하강하게 되며 저장실의 온도가 제2기준 온도 이하의 값에 도달하면, 상기 제어부(50)는 상기 냉기공급수단이 지연용 출력(P2)으로 작동되도록 한다.
상기 냉기공급수단이 지연용 출력(P2)으로 작동하는 중에, 상기 제어부(50)는, 감지된 저장실의 온도(T2)가 상기 제1기준 온도 이상의 값에 도달하였는지 여부를 판단한다.
감지된 저장실의 온도가 상기 제1기준 온도 이상의 값에 도달한 것으로 판단되면, 상기 제어부(50)는, 상기 냉기공급수단의 냉각용 출력(P3, P5)을 결정하고, 결정된 냉각용 출력(P3, P5, P7)으로 상기 냉기공급수단이 작동하도록 제어한다.
이때, 상기 냉각용 출력(P3, P5)은 가변되지 않는 고정 출력일 수 있다. 일 예로 상기 냉각용 출력은 최대 출력 또는 최대 출력 보다 낮은 출력으로 결정될 수 있다. 또는, 상기 냉각용 출력(P3, P5)은 최초로 결정된 냉각용 출력(P1)(초기 냉각용 출력)일 수 있다.
상기 냉기공급수단이 냉각용 출력(P3, P5)으로 작동하는 중에 상기 저장실의 온도가 제2기준 온도 이하의 값에 도달하면, 상기 제어부(50)는, 상기 냉기공급수단의 지연용 출력(P4, P6)을 결정하고, 결정된 지연용 출력(P4, P6)으로 상기 냉기공급수단이 작동하도록 제어한다.
지연용 출력(P4, P6)은 이전 단계의 지연용 출력(P2) 보다 큰 값으로 결정되는 것이 바람직하다.
한편, 지연용 출력(P4, P6)은 이전 단계의 냉각용 출력보다 작은 값이며, 이전 단계의 지연용 출력(P2) 보다 크거나 동일한 값으로 결정될 수도 있다.
각각의 지연용 출력(P4, P6)은 냉각용 출력(P1, P3, P5) 중 어느 하나보다 작은 값이며, 이전의 지연용 출력 사이의 출력 중 어느 하나 보다 크거나 동일한 값으로 결정될 수 있다.
또는, 지연용 출력(P4, P6)은 이전 단계의 냉각용 출력과 이전 단계의 지연용 출력(P2) 사이의 출력일 수 있다.
한편, 제한적이지는 않으나, 감지된 저장실의 온도가 상기 제3기준 온도에 도달한 경우의 각각의 지연용 출력(P4, P6)은 이전 단계에서 구동된 냉각용 출력 (P1, P3, P5) 중 어느 하나의 값과 이전 단계에서 구동된 지연용 출력 중 어느 하나의 값의 합 x β의 값으로 결정될 수 있다. 이때, β는 0 보다 크고 1보다 작으며, 미리 메모리에 설정될 수 있고, 사용자의 설정 또는 자동으로 가변될 수 있다.
일 예로, 상기 감지된 저장실의 온도가 상기 제2기준 온도 이하의 값에 도달한 경우의 지연용 출력(P4, P6)은 (냉각용 출력과 이전에 결정된 지연용 출력의 합) x 0.5의 값(냉각용 출력과 이전에 결정된 지연용 출력의 평균 출력값)으로 결정될 수 있으나, 이에 제한되는 것은 아니다.
도 15는 제6실시 예에 따른 냉장고의 제어방법에 따른 저장실의 온도 변화와 냉기공급수단의 출력 변화를 보여주는 그래프이다.
본 실시 예는 다른 부분에 있어서는 제1실시 예와 동일하고, 다만 지연용 출력의 결정 방법에 있어서 차이가 있다. 따라서, 이하에서는 본 실시 예의 특징적인 부분에 대해서만 설명하고, 제1실시 예와 동일한 부분은 제1실시 예의 설명을 원용하기로 한다.
도 5에서 도 13까지의 실시 예 및 도 14의 실시 예와 비교하면, 도 15의 실시 예는 냉각용 출력(P3, P5, P7)과 지연용 출력 (P2, P4, P6)이 모두 조절되는 방식이다. 도 15에서 하나의 실시예만 제시하였지만, 도 5 내지 도 14에서 대응되는 모든 실시예에 대해 적용이 가능하다.
도 15를 참조하면, 정온 제어를 하기 위하여 저장실의 온도가 온도 센서에 의해서 감지되며, 감지된 저장실의 온도가 제1기준 온도 이상인 경우, 상기 제어부(50)는, 상기 저장실의 온도를 낮추기 위하여 냉기공급수단의 냉각용 출력(P1)을 결정하고, 결정된 냉각용 출력(P1)으로 냉기공급수단이 작동하도록 한다.
상기 냉기공급수단이 냉각용 출력(P1)으로 작동하면 저장실의 온도는 하강하게 되며 저장실의 온도가 제2기준 온도 이하의 값에 도달하면, 상기 제어부(50)는 상기 냉기공급수단이 지연용 출력(P2)으로 작동되도록 한다.
상기 냉기공급수단이 지연용 출력(P2)으로 작동하는 중에, 상기 제어부(50)는, 감지된 저장실의 온도가 상기 제3기준 온도에 도달하였는지 여부를 판단한다.
감지된 저장실의 온도가 상기 제3기준 온도에 도달한 것으로 판단되면, 상기 제어부(50)는, 상기 냉기공급수단의 냉각용 출력(P3, P5)을 결정하고, 결정된 냉각용 출력(P3, P5)으로 상기 냉기공급수단이 작동하도록 제어한다.
상기 냉각용 출력을 결정하는 방법은 도 5 내지 도 13의 실시 예에서 적용되는 방법과 동일하다.
상기 냉기공급수단이 냉각용 출력(P3, P5)으로 작동하는 중에 상기 저장실의 온도가 제2기준 온도 이하의 값에 도달하면, 상기 제어부(50)는, 상기 냉기공급수단의 지연용 출력(P4, P6)을 결정하고, 결정된 지연용 출력(P4, P6)으로 상기 냉기공급수단이 작동하도록 제어한다.
상기 지연용 출력을 결정하는 방법은 도 14의 실시예에서 적용되는 방법과 동일하다.
도 16은 본 발명의 제7실시 예에 따른 냉장고를 개략적으로 보여주는 도면이다.
도 16을 참조하면, 제1실시 예의 냉장고와 달리, 본 실시 예의 냉장고(1A)는, 냉동실용 증발기(31)와, 냉장실용 증발기(32)를 포함할 수 있다.
또한, 상기 냉장고(1A)는 냉동실 팬(33)과 상기 냉동실 팬(33)의 회전을 위한 제1팬 모터(34), 냉장실 팬(35)과, 상기 냉장실 팬(35)의 회전을 위한 제2팬 모터(36)를 포함할 수 있다.
그리고, 상기 냉장고(1A)는 압축기(21)와, 응축기(22)와, 팽창 부재(23)와, 상기 팽창 부재(23)를 지난 냉매를 상기 냉동실용 증발기(31) 및 냉장실용 증발기(32) 중 어느 하나로 유동되도록 하기 위한 밸브(45)를 포함할 수 있다.
본 실시 예에서 냉동실(111)의 정온 제어는 압축기(21)와 제1팬 모터(34)의 제어에 의해서 가능하고, 냉장실(112)의 정온 제어는 압축기(21)와 제2팬 모터(34)의 제어에 의해서 가능하다. 이에 추가하여 상기 밸브(45)의 열림각 제어에 의해서도 냉장실(112)의 정온 제어가 가능하다.
따라서, 본 실시 예에서 냉장고의 경우에도 제1실시 예 내지 제6실시 예에서 언급된 정온을 위한 제어 방법이 그대로 적용될 수 있다.
도 17은 본 발명의 제8실시 예에 따른 냉장고를 개략적으로 보여주는 도면이다.
도 17을 참조하면, 제1실시 예의 냉장고와 달리, 본 실시 예의 냉장고(1B)는, 냉동실(111)과 냉장실(112)을 구비하는 캐비닛(11)과, 냉동실용 증발기(127)와, 냉장실용 증발기(128)와, 냉동실용 압축기(121)를 포함할 수 있다.
또한, 상기 냉장고(1B)는, 냉장실용 압축기(122)와, 응축기(123, 124)와, 냉동실용 팽창부재(125)와, 냉장실용 팽창부재(126)와, 냉동실용 팬 모터 어셈블리(129)와, 냉장실용 팬 모터 어셈블리(130)를 더 포함할 수 있다.
본 발명에서는 냉동실(111)과 냉장실(112)이 별도의 압축기와 증발기에 의해서 독립적으로 냉각될 수 있다.
다만, 응축기(123, 124)는 하나의 열교환기를 이루되, 두 개의 부분으로 나뉘어 냉매가 유동되도록 할 수 있다. 즉, 냉동실용 압축기(121)에서 배출된 냉매가 응축기(123, 124) 중 제1부분(123)을 유동할 수 있고, 냉장실용 압축기(122)에서 배출된 냉매가 응축기(123, 124) 중 제2부분(124)을 유동할 수 있다.
한편, 본 실시 예의 경우에도 냉동실(111)과 냉장실(112)이 독립 냉각되는 것 외에는 제1실시 예 내지 제6실시 예에서 설명된 정온을 위한 제어 방법이 그대로 적용될 수 있다.
즉, 본 실시 예에서 냉동실(111)의 정온 제어는 냉동실용 압축기(121)와 냉동실용 팬 모터 어셈블리(129)의 제어에 의해서 가능하고, 냉장실(112)의 정온 제어는 냉장실용 압축기(122)와 냉장실용 팬 모터 어셈블리(130)의 제어에 의해서 가능하다.

Claims (27)

  1. 저장실의 온도가 감지되는 단계;
    감지된 저장실의 온도가 제1기준 온도 이상인 경우, 냉기공급수단이 냉각용 출력으로 작동되는 단계;
    상기 냉기공급수단이 냉각용 출력으로 작동하는 중에, 감지된 저장실의 온도가 제1기준 온도 보다 낮은 제2기준 온도 이하인 경우, 상기 냉기공급수단이 냉각용 출력 보다 낮은 출력인 지연용 출력으로 작동되는 단계; 및
    상기 냉기공급수단이 지연용 출력으로 작동되는 중에, 상기 저장실의 온도에 따라서, 제어부가 상기 냉기공급수단의 냉각용 출력 또는 지연용 출력을 결정하고, 결정된 냉각용 출력 또는 지연용 출력으로 상기 냉기공급수단을 작동시키는 단계를 포함하는 냉장고의 제어방법.
  2. 제 1 항에 있어서,
    상기 냉기공급수단이 지연용 출력으로 작동되는 중에, 상기 저장실의 온도가 상기 제2기준 온도 보다 높은 소정의 온도로 상승하면,
    상기 제어부는, 상기 냉기공급수단의 냉각용 출력을 이전에 결정된 냉각용 출력과 지연용 출력의 합 x α의 값으로 결정하고,
    결정된 냉각용 출력으로 상기 냉기공급수단을 작동시키며,
    α는 0보다 크고 1보다 작은, 냉장고의 제어방법.
  3. 제 1 항에 있어서,
    상기 제어부는, 상기 냉기공급수단의 냉각용 출력을 이전에 결정된 지연용 출력보다 크고 이전 단계의 냉각용 출력보다 작거나 동일한 값으로 결정하고,
    결정된 냉각용 출력으로 상기 냉기공급수단을 작동시키는 냉장고의 제어방법.
  4. 제 1 항에 있어서,
    상기 냉기공급수단이 지연용 출력으로 작동되는 중에, 저장실의 온도를 감지하여, 저장실의 온도가 하강하고 있다고 판단되는 경우에는 상기 지연용 출력을 감소시키거나 상기 냉기공급수단을 정지시키는 단계를 더 포함하는 냉장고의 제어방법.
  5. 제 1 항에 있어서,
    상기 냉기공급수단이 냉각용 출력으로 작동되는 중에, 저장실의 온도를 감지하여, 저장실의 온도가 상승하고 있다고 판단되는 경우에는 상기 냉각용 출력을 증가시키는 단계를 더 포함하는 냉장고의 제어방법.
  6. 제 2 항에 있어서,
    상기 결정된 냉각용 출력으로 상기 냉기공급수단이 작동되는 중에, 감지된 저장실의 온도가 제2기준 온도 이하가 되면, 상기 제어부는 지연용 출력을 결정하고 결정된 지연용 출력으로 상기 냉기공급수단을 작동시키는 냉장고의 제어방법.
  7. 제 2 항에 있어서,
    상기 소정의 온도는 상기 제1기준 온도인 냉장고의 제어방법.
  8. 제 2 항에 있어서,
    상기 소정의 온도는 상기 제1기준 온도와 상기 제2기준 온도의 평균 온도이거나 상기 저장실의 목표 온도인 냉장고의 제어방법.
  9. 제 2 항에 있어서,
    상기 저장실의 온도가 소정의 온도로 상승하여, 상기 냉각공급수단이 상기 결정된 냉각용 출력으로 작동되는 중에, 감지된 저장실의 온도가 제1기준 온도 이상이 되면, 상기 제어부는 상기 냉기공급수단의 현재의 냉각용 출력을 증가시키는 냉장고의 제어방법.
  10. 제 9 항에 있어서,
    증가된 냉각용 출력은, 이전에 결정된 냉각용 출력 중 어느 한 냉각용 출력이거나, 이전에 결정된 냉각용 출력의 평균 출력인 냉장고의 제어방법.
  11. 제 9 항에 있어서,
    증가된 냉각용 출력으로 상기 냉기공급수단이 작동되는 중에, 상기 저장실의 온도가 소정의 온도에 도달하면, 상기 제어부는 냉각용 출력 또는 지연용 출력을 추가로 결정하고, 추가로 결정된 냉각용 출력 또는 지연용 출력으로 상기 냉기공급수단을 작동시키는 냉장고의 제어방법.
  12. 제 6 항에 있어서,
    감지된 저장실의 온도가 제2기준 온도 이하가 되어 상기 냉기공급수단이 상기 결정된 지연용 출력으로 작동되는 중에, 상기 저장실의 온도가 상기 제2기준 온도 이하가 되면, 상기 제어부는 상기 냉기공급수단을 정지시키거나 상기 냉기공급수단을 최소 출력으로 작동시키는 냉장고의 제어방법.
  13. 제 1 항에 있어서,
    감지된 저장실의 온도가 제1기준 온도 이상이 되어 상기 냉각용 출력으로 상기 냉기공급수단이 작동하는 중에, 상기 저장실의 온도가 제2기준 온도 이하가 될 때까지 상기 냉각용 출력은 1회 이상 가변되는 냉장고의 제어방법.
  14. 제 13 항에 있어서,
    감지된 저장실의 온도가 제1기준 온도 이상이 되어 상기 냉각용 출력으로 상기 냉기공급수단이 작동하는 중에, 상기 저장실의 온도가 상기 제2기준 온도 보다 높은 소정의 온도에 도달하면 상기 냉각용 출력은 감소되는 냉장고의 제어방법.
  15. 제 14 항에 있어서,
    상기 소정의 온도는 상기 제1기준 온도와 상기 제2기준 온도의 평균 온도이거나 상기 저장실의 목표 온도인 냉장고의 제어방법.
  16. 제 1 항에 있어서,
    상기 저장실의 온도가 상기 제2기준 온도 보다 높은 소정의 온도로 상승하여 상기 냉기공급수단이 결정된 냉각용 출력으로 작동하는 중에, 감지된 저장실의 온도가 상기 제2기준 온도 이하가 되면,
    상기 제어부는, 상기 냉기공급수단의 지연용 출력을 냉각용 출력과 이전에 결정된 지연용 출력의 합 x β의 값으로 결정하고,
    결정된 지연용 출력으로 상기 냉기공급수단을 작동시키며,
    β는 0보다 크고 1보다 작은, 냉장고의 제어방법.
  17. 제 16 항에 있어서,
    상기 제어부는, 상기 냉기공급수단의 지연용 출력을 이전에 결정된 냉각용 출력보다 크고 이전 단계의 지연용 출력보다 크거나 동일한 값으로 결정하고,
    결정된 지연용 출력으로 상기 냉기공급수단을 작동시키는 냉장고의 제어방법.
  18. 제 1 항에 있어서,
    상기 지연용 출력은 상기 저장실의 온도에 무관하게 고정된 출력인 냉장고의 제어방법.
  19. 제 1 항에 있어서,
    상기 지연용 출력은 상기 냉기공급수단의 최소 출력 이상의 출력인 냉장고의 제어방법.
  20. 제 1 항에 있어서,
    냉장고 작동 초기의 상기 냉기공급수단의 냉각용 출력은 상기 냉기공급수단의 최대 출력인 냉장고의 제어방법.
  21. 제 1 항에 있어서,
    상기 냉기공급수단이 지연용 출력으로 작동되는 중에, 상기 저장실의 온도가 상기 제1기준 온도 이상이 되면, 상기 제어부는 이전에 결정된 냉각용 출력으로 상기 냉기공급수단을 작동시키는 냉장고의 제어방법.
  22. 제 21 항에 있어서,
    상기 냉기공급수단이 상기 이전에 결정된 냉각용 출력으로 작동하는 중에, 감지된 저장실의 온도가 상기 제2기준 온도 이하가 되면,
    상기 제어부는, 상기 냉기공급수단의 지연용 출력을 냉각용 출력과 이전에 결정된 지연용 출력의 합 x β의 값으로 결정하고,
    결정된 지연용 출력으로 상기 냉기공급수단을 작동시키며,
    β는 0보다 크고 1보다 작은, 냉장고의 제어방법.
  23. 제 22 항에 있어서,
    상기 냉각용 출력은 고정된 출력인 냉장고의 제어방법.
  24. 제 1 항에 있어서,
    상기 냉기공급수단은, 냉매를 압축시키는 압축기와, 상기 저장실의 냉기 순환을 위한 팬을 회전시키는 팬 모터 중 하나 이상을 포함하는 냉장고의 제어방법.
  25. 제 1 항에 있어서,
    상기 저장실은 냉동실과 냉장실을 포함하고,
    상기 냉기공급수단은 상기 냉동실의 냉기가 상기 냉장실로 유동하도록 제어하는 댐퍼를 포함하는 냉장고의 제어방법.
  26. 저장실을 구비하는 캐비닛;
    상기 저장실을 냉각하기 위하여 작동하는 압축기;
    상기 저장실의 냉기의 순환을 위한 팬;
    상기 팬을 회전시키기 위한 팬 모터; 및
    상기 압축기 및 팬 모터를 제어하는 제어부를 포함하고,
    상기 제어부는, 상기 압축기 및 상기 팬 모터 중 하나 이상이 연속적으로 운정되는 과정에서, 상기 저장실의 목표 온도 보다 높은 제1기준 온도와 목표 온도 보다 낮은 제2기준 온도 사이 범위 내에서 상기 저장실의 온도가 유지되도록 상기 압축기 및 상기 팬 모터 중 하나 이상의 출력을 조절하는 냉장고.
  27. 냉동실과 냉장실을 구비하는 캐비닛;
    상기 냉동실을 냉각하기 위하여 작동하는 압축기;
    상기 냉동실의 냉기의 순환을 위한 팬;
    상기 냉동실의 냉기를 상기 냉장실로 안내하는 유로 상에 위치되는 댐퍼; 및
    상기 댐퍼의 개방 각도를 제어하는 제어부를 포함하고,
    상기 제어부는, 상기 냉장실의 목표 온도 보다 높은 제1기준 온도와 목표 온도 보다 낮은 제2기준 온도 사이 범위 내에서 상기 냉장실의 온도가 유지되도록, 상기 압축기가 동작되고 상기 댐퍼를 개방시킨 상태에서 상기 댐퍼의 개방 각도를 조절하는 냉장고.
PCT/KR2016/014555 2015-12-15 2016-12-12 냉장고 및 그의 제어방법 WO2017105047A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP22172086.5A EP4095465A1 (en) 2015-12-15 2016-12-12 Refrigerator and control method therefor
CN201680073965.0A CN108474612B (zh) 2015-12-15 2016-12-12 冰箱及其控制方法
CN202110060732.XA CN112797705B (zh) 2015-12-15 2016-12-12 冰箱控制方法
EP16875989.2A EP3392583B1 (en) 2015-12-15 2016-12-12 A method for controlling a refrigerator
ES16875989T ES2917185T3 (es) 2015-12-15 2016-12-12 Un procedimiento para controlar un refrigerador
US15/780,587 US10941969B2 (en) 2015-12-15 2016-12-12 Refrigerator having a cold air supply means and control method therefore
US17/148,379 US11549736B2 (en) 2015-12-15 2021-01-13 Refrigerator having a cold air supply means and control method therefore
US18/078,608 US11885547B2 (en) 2015-12-15 2022-12-09 Refrigerator having a cold air supply means and control method therefore

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0179493 2015-12-15
KR1020150179493A KR101811928B1 (ko) 2015-12-15 2015-12-15 냉장고의 제어 방법
KR10-2016-0161285 2016-11-30
KR1020160161285A KR102629604B1 (ko) 2016-11-30 2016-11-30 냉장고 및 그의 제어방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/780,587 A-371-Of-International US10941969B2 (en) 2015-12-15 2016-12-12 Refrigerator having a cold air supply means and control method therefore
US17/148,379 Continuation US11549736B2 (en) 2015-12-15 2021-01-13 Refrigerator having a cold air supply means and control method therefore

Publications (1)

Publication Number Publication Date
WO2017105047A1 true WO2017105047A1 (ko) 2017-06-22

Family

ID=59057356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014555 WO2017105047A1 (ko) 2015-12-15 2016-12-12 냉장고 및 그의 제어방법

Country Status (5)

Country Link
US (3) US10941969B2 (ko)
EP (2) EP4095465A1 (ko)
CN (2) CN112797705B (ko)
ES (1) ES2917185T3 (ko)
WO (1) WO2017105047A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009643A1 (en) * 2017-07-05 2019-01-10 Lg Electronics Inc. REFRIGERATOR AND ITS CONTROL METHOD
WO2019009642A1 (en) * 2017-07-05 2019-01-10 Lg Electronics Inc. REFRIGERATOR AND ITS CONTROL METHOD
US11195246B2 (en) * 2017-10-20 2021-12-07 Toyota Jidosha Kabushiki Kaisha Delivery system, server, and vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210026864A (ko) * 2019-09-02 2021-03-10 엘지전자 주식회사 언더 카운터형 냉장고 및 그 제어방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0130056B1 (ko) * 1992-02-07 1998-04-07 강진구 냉장고의 냉장실 온도 제어방법
KR0129507B1 (ko) * 1993-08-09 1998-04-08 김광호 냉장고의 댐퍼제어방법
KR20010078702A (ko) * 2000-02-09 2001-08-21 윤종용 냉장고 및 그 온도제어방법
KR20080088849A (ko) * 2007-03-30 2008-10-06 엘지전자 주식회사 냉장고 및 그 제어방법
KR20090101000A (ko) * 2008-03-21 2009-09-24 엘지전자 주식회사 냉장고 및 그의 운전제어방법

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157432A (ja) * 1991-12-04 1993-06-22 Matsushita Refrig Co Ltd 冷凍冷蔵庫の制御装置
KR0129515B1 (ko) 1992-08-11 1998-04-08 강진구 냉장고의 고내온도 제어방법
NZ294934A (en) * 1994-11-11 1998-09-24 Samsung Electronics Co Ltd Vapour compression cycle refrigerator: forced air circulation freezing and refrigerating compartments with serial evaporators
KR100189103B1 (ko) 1995-10-20 1999-06-01 윤종용 냉장고 및 그 운전제어방법
KR100197697B1 (ko) * 1996-08-12 1999-06-15 윤종용 냉장실의 내기온도 상승방지 장치 및 방법
KR100187197B1 (ko) * 1996-12-16 1999-05-01 삼성전자주식회사 간냉식 냉장고의 냉기 토출 장치 및 그 제어 방법
KR19980054641A (ko) 1996-12-27 1998-09-25 배순훈 냉장고의 팬모우터 제어방법
KR100196943B1 (ko) * 1997-04-23 1999-06-15 윤종용 냉장고의 팬 회전속도 제어방법 및 그 제어장치
KR100293699B1 (ko) 1998-07-31 2001-11-22 구자홍 냉장고의제어방법
US6725680B1 (en) * 2002-03-22 2004-04-27 Whirlpool Corporation Multi-compartment refrigerator control algorithm for variable speed evaporator fan motor
KR100442276B1 (ko) * 2002-07-24 2004-07-30 엘지전자 주식회사 냉장고의 압축기 제어방법
CN100483049C (zh) * 2003-10-20 2009-04-29 星崎电机株式会社 冷却储藏库
JP2005188783A (ja) 2003-12-24 2005-07-14 Toshiba Corp 冷蔵庫
JP4343007B2 (ja) * 2004-04-01 2009-10-14 株式会社東芝 情報処理装置
KR101164815B1 (ko) 2005-01-11 2012-07-12 삼성전자주식회사 냉장고 및 그 제어방법
US8181472B2 (en) * 2005-03-17 2012-05-22 Electrolux Home Products, Inc. Electronic refrigeration control system
CN100538202C (zh) * 2005-07-29 2009-09-09 大金工业株式会社 冷冻装置
KR20080089780A (ko) 2007-04-02 2008-10-08 주식회사 대우일렉트로닉스 냉장고 온도 제어방법
JP5405009B2 (ja) * 2007-09-06 2014-02-05 ホシザキ電機株式会社 冷却貯蔵庫の庫内温度制御装置
KR101570348B1 (ko) * 2008-11-19 2015-11-19 엘지전자 주식회사 바텀프리져타입 냉장고 및 그 제어방법
KR101076055B1 (ko) 2009-06-01 2011-10-26 박청일 다층회전식 수경재배시스템
KR101105942B1 (ko) 2009-06-02 2012-01-18 이석기 팝업 텐트
KR101641225B1 (ko) * 2009-06-30 2016-07-20 엘지전자 주식회사 냉장고의 온도 제어방법 및 그를 이용한 냉장고
JP5017340B2 (ja) * 2009-09-09 2012-09-05 日立アプライアンス株式会社 冷蔵庫
AU2010350112B2 (en) * 2010-03-30 2014-09-25 Hefei Hualing Co., Ltd. Air-cooled refrigerator, method and system of controlling the same
JP5670792B2 (ja) * 2011-03-25 2015-02-18 ホシザキ電機株式会社 冷却貯蔵庫
US20120318007A1 (en) * 2011-06-16 2012-12-20 A.P. Moller - Maersk A/S Internal air circulation control in a refrigerated transport container
CN102506536B (zh) * 2011-09-30 2014-05-21 合肥美的电冰箱有限公司 一种风间冷冰箱及该风间冷冰箱的温度控制方法
US9140479B2 (en) * 2012-05-21 2015-09-22 Whirlpool Corporation Synchronous temperature rate control and apparatus for refrigeration with reduced energy consumption
KR101953120B1 (ko) * 2012-08-27 2019-03-04 삼성전자주식회사 냉장고 및 그 제어방법
US20140208783A1 (en) 2013-01-30 2014-07-31 Lg Electronics Inc. Refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0130056B1 (ko) * 1992-02-07 1998-04-07 강진구 냉장고의 냉장실 온도 제어방법
KR0129507B1 (ko) * 1993-08-09 1998-04-08 김광호 냉장고의 댐퍼제어방법
KR20010078702A (ko) * 2000-02-09 2001-08-21 윤종용 냉장고 및 그 온도제어방법
KR20080088849A (ko) * 2007-03-30 2008-10-06 엘지전자 주식회사 냉장고 및 그 제어방법
KR20090101000A (ko) * 2008-03-21 2009-09-24 엘지전자 주식회사 냉장고 및 그의 운전제어방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3392583A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2744558C1 (ru) * 2017-07-05 2021-03-11 ЭлДжи ЭЛЕКТРОНИКС ИНК. Холодильник и способ его управления
WO2019009643A1 (en) * 2017-07-05 2019-01-10 Lg Electronics Inc. REFRIGERATOR AND ITS CONTROL METHOD
KR20190005033A (ko) * 2017-07-05 2019-01-15 엘지전자 주식회사 냉장고의 제어방법
KR20190005032A (ko) * 2017-07-05 2019-01-15 엘지전자 주식회사 냉장고 및 그의 제어방법
CN110832262A (zh) * 2017-07-05 2020-02-21 Lg电子株式会社 冰箱及其控制方法
RU2731114C1 (ru) * 2017-07-05 2020-08-28 ЭлДжи ЭЛЕКТРОНИКС ИНК. Холодильник и способ управления для него
WO2019009642A1 (en) * 2017-07-05 2019-01-10 Lg Electronics Inc. REFRIGERATOR AND ITS CONTROL METHOD
AU2018295870B2 (en) * 2017-07-05 2021-11-11 Lg Electronics Inc. Refrigerator and method of controlling the same
KR102349193B1 (ko) 2017-07-05 2022-01-11 엘지전자 주식회사 냉장고의 제어방법
KR102346550B1 (ko) 2017-07-05 2022-01-04 엘지전자 주식회사 냉장고 및 그의 제어방법
US11906243B2 (en) 2017-07-05 2024-02-20 Lg Electronics Inc. Refrigerator and method of controlling the same
US11493267B2 (en) 2017-07-05 2022-11-08 Lg Electronics Inc. Refrigerator and method of controlling the same
US11662135B2 (en) 2017-07-05 2023-05-30 Lg Electronics Inc. Refrigerator and method of controlling the same
US11195246B2 (en) * 2017-10-20 2021-12-07 Toyota Jidosha Kabushiki Kaisha Delivery system, server, and vehicle

Also Published As

Publication number Publication date
EP4095465A1 (en) 2022-11-30
US20180363964A1 (en) 2018-12-20
US20210131712A1 (en) 2021-05-06
US20230114081A1 (en) 2023-04-13
CN108474612B (zh) 2021-02-05
US11549736B2 (en) 2023-01-10
US10941969B2 (en) 2021-03-09
EP3392583B1 (en) 2022-05-11
EP3392583A4 (en) 2019-08-21
EP3392583A1 (en) 2018-10-24
CN112797705A (zh) 2021-05-14
ES2917185T3 (es) 2022-07-07
US11885547B2 (en) 2024-01-30
CN112797705B (zh) 2023-03-31
CN108474612A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
WO2017164712A1 (ko) 냉장고 및 그의 제어방법
AU2018295869B2 (en) Refrigerator and method of controlling the same
WO2019190113A1 (ko) 냉장고 및 그 제어방법
WO2017105047A1 (ko) 냉장고 및 그의 제어방법
WO2016013798A1 (en) Refrigerator and control method thereof
WO2019172532A1 (ko) 냉장고 및 그 제어방법
WO2017164711A1 (ko) 냉장고의 제어방법
WO2016182249A1 (ko) 냉장고 및 그 제어 방법
WO2015069006A1 (en) Refrigerator
WO2017105079A1 (en) Refrigerator
WO2018088839A1 (ko) 냉장고 및 냉장고의 제어 방법
WO2018194324A1 (en) Refrigeration cycle device and three-way flow rate control valve
WO2020027596A1 (ko) 냉장고의 제어방법
WO2018088845A1 (ko) 냉장고 및 냉장고의 제어 방법
WO2020116987A1 (en) Refrigerator
WO2020111688A1 (en) Refrigerator and control method thereof
AU2018295870B2 (en) Refrigerator and method of controlling the same
WO2020111680A1 (en) Refrigerator and controlling method thereof
AU2018286352B2 (en) Refrigerator and method of controlling the same
WO2022270772A1 (ko) 냉장고
WO2019164115A1 (en) Refrigerator and controlling method for the same
EP3596413A1 (en) Refrigeration cycle device and three-way flow rate control valve
WO2022145847A1 (ko) 냉장고 및 그의 제어 방법
WO2022131564A1 (ko) 냉장고 및 그 제어방법
WO2021125653A1 (ko) 냉장고 및 그 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016875989

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016875989

Country of ref document: EP

Effective date: 20180716