WO2018088845A1 - 냉장고 및 냉장고의 제어 방법 - Google Patents

냉장고 및 냉장고의 제어 방법 Download PDF

Info

Publication number
WO2018088845A1
WO2018088845A1 PCT/KR2017/012739 KR2017012739W WO2018088845A1 WO 2018088845 A1 WO2018088845 A1 WO 2018088845A1 KR 2017012739 W KR2017012739 W KR 2017012739W WO 2018088845 A1 WO2018088845 A1 WO 2018088845A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
defrosting
temperature
pressure difference
defrost
Prior art date
Application number
PCT/KR2017/012739
Other languages
English (en)
French (fr)
Inventor
김성욱
최상복
백우경
박경배
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN202111067625.6A priority Critical patent/CN113720078B/zh
Priority to CN201780068330.6A priority patent/CN109906346B/zh
Priority to EP17868985.7A priority patent/EP3540343B1/en
Priority to US16/348,711 priority patent/US11231219B2/en
Publication of WO2018088845A1 publication Critical patent/WO2018088845A1/ko
Priority to US17/529,935 priority patent/US11940200B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/008Defroster control by timer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/004Control mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/067Evaporator fan units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate
    • F25D21/025Detecting the presence of frost or condensate using air pressure differential detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/02Refrigerators including a heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/06Controlling according to a predetermined profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/10Sensors measuring the temperature of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to a refrigerator and a control method thereof, and more particularly, to a refrigerator and an control method thereof with improved energy efficiency.
  • the refrigerator includes a machine room at the bottom of the main body.
  • the machine room is generally installed in the lower part of the refrigerator for the center of gravity of the refrigerator, the efficiency of assembly and the vibration reduction.
  • the refrigerator's machine room is equipped with a refrigeration cycle device, and keeps the food fresh by keeping the inside of the refrigerator frozen / refrigerated by using the property of absorbing external heat while the low-pressure liquid refrigerant is changed into a gaseous refrigerant. Done.
  • the refrigeration cycle apparatus of the refrigerator includes a compressor for changing a low temperature low pressure gaseous refrigerant into a high temperature high pressure gaseous refrigerant, and a high temperature high pressure gaseous refrigerant changed by the compressor into a high temperature high pressure liquid state refrigerant. And a condenser and an evaporator for absorbing external heat while changing the liquid refrigerant having a low temperature and high pressure changed in the condenser into a gaseous state.
  • the heater is driven to remove the ice from the evaporator.
  • the heater is driven unnecessarily and frequently, there is a problem that the power consumed in the refrigerator increases.
  • the present invention provides a refrigerator having improved energy efficiency and a control method thereof.
  • the present invention to provide a refrigerator and a control method thereof that can defrost differently depending on the degree of implantation to the evaporator.
  • the present invention also provides a refrigerator capable of performing secondary defrosting and a control method thereof when defrosting is not sufficiently performed after performing the first defrosting.
  • the present invention comprises the steps of determining whether the defrost start condition for the evaporator; When the defrost start condition is satisfied, the pressure at the first through hole disposed between the inlet port through which air is introduced from the storage chamber and the evaporator, and the second through hole disposed between the outlet port through which the air is discharged to the storage chamber and the evaporator. Detecting the pressure difference by one differential pressure sensor measuring the difference; It provides a control method of a refrigerator comprising a; defrosting step of performing a defrost differently according to the measured pressure difference.
  • the defrosting step it is possible to heat the evaporator by driving a heater.
  • the defrosting step if the measured pressure difference is greater than a specific pressure, the evaporator to rise to a first set temperature, if the measured pressure difference is less than a specific pressure, the evaporator to rise to a second set temperature It is possible.
  • the first set temperature may be higher than the second set temperature.
  • the temperature is measured in an evaporator temperature sensor installed in the evaporator.
  • the defrosting step if the measured pressure difference is greater than the specific pressure, it is possible to supply relatively less heat in the heater than if the measured pressure difference is smaller than the specific pressure.
  • the measured pressure difference is greater than the specific pressure, it is possible to continuously drive the heater until the defrosting step is completed.
  • the measured pressure difference is smaller than the specific pressure, it is possible to repeat on / off of the heater while the defrosting step is performed.
  • the compressor In the normal operation step, if the measured pressure difference is greater than a certain pressure, the compressor is driven to generate a relatively high cold force, and if the measured pressure difference is less than a certain pressure, the compressor generates a relatively low cold force. It is possible to be driven so that.
  • the present invention is a cabinet provided with a storage compartment; A door for opening and closing the storage compartment; A case having an inlet through which air is introduced from the storage compartment, an outlet through which air is discharged into the storage compartment, and an evaporator provided therein; A fan generating an air flow introduced through the inlet and discharged to the outlet; A differential pressure sensor provided inside the case; And a controller configured to perform defrosting on the evaporator differently according to the pressure difference sensed by the differential pressure sensor.
  • the controller may drive the heater so that the evaporator reaches a higher temperature if the pressure difference sensed by the differential pressure sensor is greater than a specific pressure.
  • the controller may continuously drive the heater until the defrost for the evaporator is completed.
  • the controller may control the compressor to supply a greater cooling force after the defrosting of the evaporator is completed.
  • the differential pressure sensor may include a first through hole disposed between the evaporator and the inlet, a second through hole disposed between the evaporator and the outlet, and a body part connecting the first through hole and the second through hole. It includes, the differential pressure sensor is capable of detecting the pressure difference of the air passing through the first through the second through hole.
  • the present invention is the first defrosting step of performing a defrost for the evaporator, and ends when the evaporator reaches the first temperature;
  • the step of detecting the pressure difference if the measured pressure difference is less than the set pressure, it is possible to further include an operation step of driving the compressor for cooling the storage compartment.
  • the operation step may be performed after the second defrosting step is finished.
  • a heater for heating the evaporator may be driven.
  • the first temperature may be lower than the second temperature.
  • the first temperature may be the same as the second temperature.
  • first defrosting step it is possible to further comprise the step of driving a fan for supplying the heat exchanged air to the evaporator.
  • the driving of the fan may be performed after a predetermined time elapses after the first defrost is finished.
  • the first defrosting step and the second defrosting step it is possible not to drive a fan for supplying the heat exchanged air to the evaporator to the storage compartment.
  • the present invention is a cabinet provided with a storage compartment; A door for opening and closing the storage compartment; A case having an inlet through which air is introduced from the storage compartment, an outlet through which air is discharged into the storage compartment, and an evaporator provided therein; A fan generating an air flow introduced through the inlet and discharged to the outlet; A differential pressure sensor provided inside the case; And a controller configured to determine whether to further defrost the evaporator according to the pressure difference sensed by the differential pressure sensor.
  • the controller may measure the pressure difference after performing the defrosting to heat the evaporator.
  • defrosting may be performed differently according to the degree of implantation in the evaporator, whereby the reliability of the defrosting may be improved.
  • the reliability of the defrosting may be improved.
  • frost on the evaporator consumes more energy in the defrost
  • a lot of frost on the evaporator is less energy consumption in the defrost can be improved energy efficiency.
  • the cooling power of the compressor can be adjusted to save energy consumed for the storage compartment cooling.
  • the defrost is strong, the storage compartment is cooled more rapidly, and when the defrost is weak, the storage compartment is cooled slowly to prevent the temperature of the food stored in the storage compartment from rising.
  • the present invention after performing the first defrost relatively weakly, it is possible to verify whether the evaporator needs additional defrosting, thereby preventing unnecessary defrosting of the evaporator unnecessarily. That is, it is possible to save energy consumed when performing the defrost by performing the second defrost only when the additional defrost is needed for the evaporator after the first defrost.
  • FIG. 1 is a side cutaway view of a refrigerator according to an embodiment of the present invention.
  • Fig. 2 is a diagram explaining the main part of Fig. 1;
  • FIG. 3 is a plan view of FIG.
  • FIG. 4 is a control block diagram in accordance with the present invention.
  • FIG. 5 is a control flow diagram for detecting the implantation of the evaporator according to one embodiment.
  • FIG. 6 is a control flow diagram for detecting an implantation of an evaporator according to one modified embodiment.
  • FIG. 7 is a view for explaining a time point for performing defrosting in another embodiment.
  • FIG. 8 is a control flow chart for detecting the degree of implantation of the evaporator after the start of the defrost in another embodiment of the present invention.
  • 9 is a control flow diagram for determining whether additional defrost is needed after primary defrost in another embodiment of the present invention.
  • the pressure difference can be calculated at two locations using the difference in the respective pressures measured by the two pressure sensors.
  • the pressure sensor generally measures 100 Pa, but in the exemplary embodiment of the present invention, a differential pressure sensor is adopted to enable more precise pressure difference measurement than a general pressure sensor.
  • the differential pressure sensor cannot measure the absolute pressure value of the measured position, it is easy to measure the difference in small units compared to the pressure sensor because it can calculate the pressure difference at the two positions.
  • the position where the differential pressure sensor is installed is a space where the air passing through the storage compartment is cooled by the evaporator. Since the air supplied from the storage compartment contains a lot of moisture by foods contained in the storage compartment, the air is cooled while being exchanged with the evaporator, thereby generating a lot of water droplets. That is, the space where the differential pressure sensor is installed is a space with high humidity.
  • the space where the evaporator is installed has a severe temperature variation depending on the conditions of use of the evaporator.
  • a differential pressure sensor may be applied. Compared to other sensors, it is possible to detect accurate information.
  • FIG. 1 is a side cutaway view of a refrigerator according to an embodiment of the present invention
  • FIG. 2 is a view illustrating main parts of FIG. 1
  • FIG. 3 is a plan view of FIG. 2.
  • the evaporator is omitted to simplify the drawing.
  • the refrigerator includes a cabinet 2 having a plurality of storage compartments 6 and 8 and a door 4 opening and closing the storage compartments 6 and 8.
  • the plurality of storage compartments 6 and 8 are divided into a first storage compartment 6 and a second storage compartment 8, respectively, and the first storage compartment 6 and the first storage compartment 6 each constitute a refrigerating compartment or a freezing compartment. It is possible. Of course, on the contrary, the first storage compartment 6 and the first storage compartment 6 may respectively constitute a freezing compartment and a refrigerating compartment, and both the first storage compartment 6 and the first storage compartment 6 form a refrigerating compartment. It is also possible to form a freezer compartment.
  • the storage compartments 6 and 8 are provided with a storage compartment temperature sensor 90 capable of measuring the temperature of the storage compartments 6 and 8.
  • the temperature sensor 90 is provided in each of the storage chambers 6 and 8, so that the temperature of each storage chamber can be measured individually.
  • the case 35 has a discharge port 38 through which air can be supplied from the case 35 to the storage chamber, and an inlet 32 through which air is supplied from the storage chamber to the case 35 is formed. do.
  • the inlet 32 is provided with an inlet pipe 30 through which air is guided into the case 35, so that the air passages can be formed by connecting the storage chambers 6 and 8 to the case 35. .
  • a fan 40 may be provided at the outlet 38 to generate an air flow through which the air inside the case 35 may move to the storage compartments 6 and 8. Since the case 35 has a sealed structure as a whole except for the inlet 32 and the outlet 38, when the fan 40 is driven, the case 35 is moved from the inlet 32 to the outlet 38. A moving air stream is created.
  • Air passing through the fan 40 is provided with a duct 7 for guiding the air to the first storage chamber 6, the cold air can be supplied to the first storage chamber (6). Air passing through the fan 40 may also be supplied to the second storage chamber 8.
  • the evaporator 20 for evaporating the refrigerant compressed by the compressor 60 to generate cold air is accommodated.
  • the internal air of the case 35 is cooled while being heat exchanged with the evaporator 20.
  • the lower part of the evaporator 20 is provided with a heater 50 for generating heat to defrost the evaporator 20.
  • the heater 50 does not need to be installed below the evaporator 20, but is provided inside the case 35, and it is sufficient to be able to heat the evaporator 20.
  • the evaporator 20 may be provided with an evaporator temperature sensor 92 to measure the temperature of the evaporator 20.
  • the evaporator temperature sensor 92 may sense a low temperature when the refrigerant passing through the evaporator 20 is vaporized, and sense a high temperature when the heater 20 is driven.
  • the compressor 60 may be installed in a machine room provided in the cabinet 2 to compress the refrigerant supplied to the evaporator 20.
  • the compressor 60 is installed outside the case 35.
  • the inlet 32 is located below the evaporator 20, and the outlet 38 is located above the evaporator 20.
  • the outlet 38 is disposed higher than the evaporator 20, and the inlet 32 is disposed lower than the evaporator 20.
  • the air moves up in the case 35.
  • the air introduced into the inlet 32 is heat-exchanged while passing through the evaporator 20 and is discharged to the outside of the case 35 through the outlet 38.
  • the differential pressure sensor 100 is provided inside the case 35.
  • the differential pressure sensor 100 has a first through hole 110 disposed between the evaporator 20 and the inlet 32, and a second through hole disposed between the evaporator 20 and the outlet 32. Ball 120.
  • the differential pressure sensor 100 includes a body portion connecting the first through hole 110 and the second through hole 120, wherein the body portion includes a first tube 150 having the first through hole 110 formed therein. ), And a second tube 170 having the second through hole 120 formed therein, and a connection member 200 connecting the first tube 150 and the second tube 170 to each other.
  • connection member 200 may be disposed higher than the evaporator 20 so that moisture condensed in the evaporator 20 may not fall on the connection member 200.
  • An electronic device may be installed in the connection member 200, because when the water drops fall, the electronic device may be damaged.
  • the water droplets formed on the evaporator 20 fall down by gravity, and when the connection member 200 is disposed above the evaporator 20, the water droplets of the evaporator 20 fall to the connection member 200. It doesn't work.
  • first tube 150 and the second tube 170 may be extended to higher than the evaporator 20.
  • the connection member 200 In order for the connection member 200 to be positioned above the evaporator 20, the first tube 150 and the second tube 170 must extend long beyond the evaporator 20.
  • the first through hole 110 and the second through hole 120 are disposed to face downward, so that the water droplets condensed inside the case 35 are passed through the first through hole 110 and the second through hole. Through the ball 120, it can be prevented from entering the first tube 150 and the second tube 170, respectively.
  • the first through hole 110 and the second through hole 120 is looking upwards, the water droplets falling by gravity through the first through hole 110 and the second through hole 120
  • the first pipe 150 and the second pipe 170 may be introduced to generate an error in the value measured by the differential pressure sensor 100.
  • the differential pressure sensor 100 detects a pressure difference between the air passing through the first through hole 110 and the second through hole 120.
  • the first through-hole 110 and the second through-hole 120 are also different in height, and the pressure difference is generated because the evaporator 20 is disposed therebetween.
  • the second through hole 120 takes a relatively low pressure to the low pressure portion
  • the first through hole 110 takes a relatively high pressure to the high pressure portion
  • the differential pressure sensor 100 detects the pressure difference.
  • the pressure difference may be measured by the differential pressure sensor 100.
  • FIG. 4 is a control block diagram according to the present invention.
  • the present invention includes a compressor 60 capable of compressing a refrigerant.
  • the controller 96 may drive the compressor 60 to supply cold air to the bottom storage compartment. Information about whether the compressor 60 is driven may be transmitted to the controller 96.
  • It also includes a fan 40 for generating an air flow for supplying cold air to the storage compartment.
  • Information about whether the fan 40 is driven may be transmitted to the controller 96, and the controller 96 may transmit a signal to drive the fan 40.
  • a door switch 70 is provided for acquiring information regarding whether the door 4 for opening and closing the storage compartment opens and closes the storage compartment.
  • the door switch 70 is provided in each door individually, it can detect whether each door opens and closes the storage compartment.
  • a timer 80 capable of detecting elapsed time is provided.
  • the time measured by the timer 80 is transmitted to the controller 96.
  • the control unit 96 acquires a signal that the door 4 has closed the storage compartment by the door switch 70, and then the door 4 is stored in the storage compartment by the time measured by the timer 80. After closing the information about the elapsed time can be received.
  • Temperature information of the storage compartment measured by the storage compartment temperature sensor 90 capable of sensing the temperature of the storage compartment may be transmitted to the controller 96.
  • temperature information measured by the evaporator temperature sensor 92 which may measure the temperature of the evaporator, may also be transmitted to the controller 96.
  • the controller 96 may terminate the defrost of the evaporator according to the temperature information measured by the evaporator temperature sensor 92.
  • a heater 50 for heating the evaporator is provided, so that the controller 96 may give a command to drive the heater 50.
  • the controller 96 allows the heater 50 to be driven, and when the defrost is finished, the controller 96 may terminate the driving of the heater 50.
  • the information measured by the differential pressure sensor 100 is transmitted to the control unit 96.
  • FIG. 5 is a control flowchart of detecting an implantation of an evaporator according to one embodiment.
  • the step S40 of detecting the pressure difference and the pressure difference greater than the set pressure include driving the heater 50 to perform defrosting on the evaporator 20.
  • the pressure difference used herein may mean a pressure difference value measured once, and may also be an average value of the pressure difference measured several times.
  • the pressure measured by the differential pressure sensor 100 may be temporarily abnormal due to various external factors.
  • the reliability of the pressure difference measured by the differential pressure sensor 100 increases. Can be.
  • the pressure difference value measured by the differential pressure sensor 100 is larger than the set pressure, it means that the pressure difference between the first through hole 110 and the second through hole 120 is increased.
  • the increase in the pressure difference may mean a state in which the amount of ice implanted in the evaporator 20 increases and it is difficult to perform a smooth heat exchange in the evaporator 20. Therefore, since cold air is not smoothly supplied from the evaporator 20 to the storage chambers 6 and 8, defrosting may be necessary.
  • the door 4 closes the storage compartments 6 and 8, and determines whether a predetermined time has elapsed. Otherwise, the differential pressure sensor 100 may not detect a pressure difference (S30). ). Before measuring the elapsed time in the timer 80, it is possible to first determine whether the door 4 is closed by the door switch 70, and then measure the elapsed time. In this case, the elapsed time may mean about 1 minute, but may vary.
  • the air flow in the case 35 may be different from the air flow in the case 35 is closed.
  • an unexpected air flow may be generated to the inlet 32 or the outlet 38 by the closing of the door 4.
  • the heater 50 may be frequently driven unnecessarily or the heater 50 may be driven at a necessary time to defrost the evaporator 20. Can be.
  • the pressure difference is measured by the differential pressure sensor 100 at the first through hole 110 and the second through hole 120 (S40). In this case, the information about the measured pressure difference may be transmitted to the controller 96.
  • the controller 96 compares the measured pressure difference, that is, the differential pressure with the set pressure P1 (S50). If the differential pressure is greater than the set pressure P1, it may be determined that a lot of ice is formed on the evaporator 20, so that defrost is necessary. When much ice forms on the evaporator 20, sufficient heat exchange is difficult in the evaporator 20, and sufficient cold air is hardly supplied to the storage chambers 6 and 8.
  • the set pressure P1 may be set to about 20 Pa, but may be changed in consideration of the capacity, size, and the like of the refrigerator.
  • the controller 96 drives the heater 50 to perform defrost while supplying heat to the evaporator 20 (S60). Since the evaporator 20 is disposed in the same space partitioned inside the heater 50 and the case 35, when the heater 50 is driven, the temperature inside the case 35 is increased while the evaporator is increased. The temperature of 20 can also be raised.
  • the ice that has been entangled in the evaporator 20 may be melted and turned into water, and some of the ice may not be attached to the evaporator 20 while being melted, and may fall from the evaporator 20. Therefore, the area in which the evaporator 20 and air can be directly in thermal contact is increased, and thus the heat exchange efficiency of the evaporator 20 may be improved.
  • the evaporator temperature sensor 92 measures the temperature of the evaporator 20 while defrosting is being performed, ie while the heater 50 is being driven. If the temperature of the evaporator 20 is greater than the set temperature (T1), it is determined that the evaporator 20 is sufficiently defrosted (S70).
  • the controller 96 may stop driving of the heater 50.
  • the evaporator 20 may be larger than the set temperature T1 so that the evaporator 20 may supply cold air to the storage chambers 6 and 8, rather than to remove all the ice formed on the evaporator 20. It can mean a state that can be changed to a condition.
  • the heater 50 may continue to be driven to supply heat.
  • the defrosting time of the evaporator 20 is determined by the differential pressure measured by the differential pressure sensor 100.
  • a condition may be added in which the air flow inside the case 35 may be stabilized.
  • the heater 50 is frequently driven to increase the power consumed by the heater 50 to lower the energy efficiency of the refrigerator as a whole.
  • the heat supplied from the heater 50 when the heat supplied from the heater 50 is introduced into the storage compartments 6 and 8 through the inlet or the outlet, food stored in the storage compartment may be altered.
  • the evaporator 20 in order to cool the air heated by the heat supplied by the heater 50, the evaporator 20 may need to supply more cold air.
  • a refrigerator and a control method thereof which can reduce power consumption unnecessarily by reliably judging a defrosting time and improve energy efficiency as a whole.
  • FIG. 6 is a control flowchart of detecting an idea of an evaporator according to a modified embodiment.
  • the sensing period means a time interval for measuring the differential pressure by using the differential pressure sensor 100.
  • the sensing period may be set to 20 seconds, but may be changed by various conditions.
  • the differential pressure sensor 100 when the pressure difference is measured by using the differential pressure sensor 100, the differential pressure sensor 100 detects the pressure difference while having a sensing period, that is, a predetermined time interval. The power consumed can be reduced.
  • the differential pressure sensor 100 continuously has a pressure difference without a sensing period, the power consumed by the differential pressure sensor 100 and the information measured by the differential pressure sensor 100 are transmitted to the controller 96. Much power must be consumed.
  • the differential pressure sensor 100 measures the pressure difference with a sensing period.
  • FIG. 7 is a view illustrating a time point for performing defrost in another embodiment.
  • the evaporator is divided into a freezer compartment evaporator and a refrigerating compartment evaporator.
  • the defrost of the freezer compartment evaporator is performed and the defrost of the refrigerating compartment evaporator are performed, it is also possible to be independent of each other. That is, if defrost is performed on the freezer compartment evaporator, it is also possible to perform defrost on the refrigerating compartment evaporator at the same time. On the other hand, regardless of the start point of the defrost for the freezer compartment evaporator, it is possible to perform defrost for the refrigerating compartment evaporator when the defrost condition for the refrigerating compartment evaporator is completed.
  • the condition at which defrosting for the freezer compartment evaporator starts may be based on a point in time at which the freezer compartment operation time is reduced from 43 hours to 7 hours. Based on a maximum of 43 hours, 7 minutes is reduced when the freezer door is opened for 1 second, so that defrosting the freezer compartment evaporator can be performed when the operation time reaches 7 hours.
  • Defrosting for the refrigerating compartment evaporator may be performed together with defrosting if the above-described conditions for starting the freezing compartment evaporator defrosting are satisfied.
  • defrosting may be performed such that the defrosting for the refrigerating compartment evaporator is dependent on the defrosting for the freezing compartment evaporator without considering the conditions in which defrosting for the refrigerating compartment evaporator starts.
  • the heater is driven to defrost the freezer compartment evaporator, it is possible to perform a defrost for the refrigerator compartment evaporator together.
  • the condition at which defrosting for the refrigerator compartment evaporator is started may be based on a specific time, for example, when the refrigerator compartment operation time is reduced from 20 hours to 7 hours. Based on a maximum of 20 hours, it is possible to reduce the 7 minutes when the refrigerator compartment door is open for 1 second, so that defrosting the refrigerator compartment evaporator can be performed when the operation time reaches 7 hours.
  • defrosting for the refrigerator compartment evaporator can be performed independently, independent of defrosting for the freezer compartment evaporator. That is, if the defrosting condition for the freezer compartment evaporator is satisfied, defrosting for the freezer compartment evaporator is performed. If the defrosting condition for the refrigerator compartment evaporator is satisfied, defrosting for the refrigerator compartment evaporator may be performed.
  • FIG. 7 the freezer compartment evaporator and the refrigerator compartment evaporator have been described separately, but when only one evaporator is installed in the refrigerator, one of the above-described defrosting conditions for the refrigerating compartment evaporator or defrosting conditions for the freezer compartment evaporator is selected and the corresponding condition is selected. If satisfied, it is possible to start defrosting the evaporator.
  • FIG. 8 is a control flowchart for detecting the degree of implantation of the evaporator after the start of the defrost in another embodiment of the present invention.
  • the degree of defrosting of the evaporator may be sensed, and when defrosting is small, the defrost logic may be optimized to improve power consumption.
  • the defrost starting condition may be set in consideration of the driving time of the compressor 60 for cooling the storage compartment and the opening time of the door 4.
  • the pressure difference sensor 100 detects a pressure difference.
  • the measured pressure difference value is transmitted to the controller 96, it is determined whether the pressure difference value is greater than or equal to a specific pressure (S120).
  • the specific pressure may be variously changed by the user or the operator.
  • a first defrosting is performed (S130).
  • the heater 50 may be driven in order to melt the ice formed on the evaporator 20.
  • the controller 96 may be heated by the heater 50 so that the evaporator 20 is raised to a first set temperature.
  • the first preset temperature may be approximately 5 ° C.
  • the controller 96 may drive the heater 50 until the evaporator 20 rises to the first set temperature if the pressure difference measured by the differential pressure sensor 100 is equal to or greater than a specific pressure. .
  • the heater 50 may continuously drive the heater 50 until the end of S130, that is, until the temperature measured by the evaporator temperature sensor 92 rises to the first set temperature. .
  • the controller 96 does not turn off the heater 50 until the temperature measured by the evaporator temperature line 92 rises to a first predetermined temperature, thereby turning on the ice formed on the evaporator 20. Can be removed.
  • the second defrost is performed (S150).
  • the heater 50 may be driven in order to melt the ice formed on the evaporator 20.
  • the controller 96 may be heated by the heater 50 so that the evaporator 20 is raised to a second set temperature.
  • the second preset temperature may be approximately 1 ° C.
  • the first set temperature may be higher than the second set temperature. That is, in the second defrost, the defrost may be terminated when the evaporator 20 reaches a lower temperature than the first defrost.
  • the second defrost judges that the amount of ice implanted in the evaporator 20 is smaller than that of the first defrost, the evaporator 20 is lowered to a lower temperature in order to remove the ice implanted in the evaporator 20. Heat it.
  • the amount of ice implanted in the evaporator 20 is estimated by the differential pressure sensor 100, and when the ice is relatively formed, the evaporator 20 is heated to a high temperature, If less ice is formed, the evaporator 20 is heated to a low temperature.
  • the heat exchange efficiency of the evaporator 20 may be normalized by supplying a relatively small amount of heat from the heater 50. Since the amount of ice to be dissolved in the evaporator 20 is small, defrosting of the evaporator 20 is performed by supplying a small amount of heat from the heater 50.
  • the temperature of the evaporator 20 is increased rapidly by the heater 50, whereas if the temperature exceeds a certain temperature, the heater 50 is moved to the evaporator 20. Try to raise the temperature relatively late.
  • the temperature of the evaporator 20 is rapidly increased, while when the temperature is higher than a predetermined temperature, a time period during which circulation of air is allowed to occur between the evaporator 20 and the heater 50 may be performed. You can arrange. Therefore, even if the temperature of the evaporator 20 does not rise excessively, the ice formed by the evaporator 20 is exposed to a certain temperature or more can be removed by the less energy.
  • the on / off of the heater 50 is repeated to save energy consumed by the heater 50.
  • the first defrost allows the evaporator 20 to be heated to a high temperature
  • the second defrost has a difference that allows the evaporator 20 to be heated to a low temperature.
  • the two defrosts may be chosen differently depending on the amount of ice implanted in the evaporator 20.
  • the first normal operation step refers to a process of cooling the storage compartment.
  • the first normal operation step may mean that the storage compartment is cooled to a predetermined temperature for the first time after the first defrost is completed.
  • the set temperature may mean a temperature having a slight deviation from the storage temperature or the storage temperature set by the user.
  • the compressor 60 can be driven to generate a high cooling force.
  • the evaporator 20 Since the evaporator 20 is raised to a relatively high temperature in the first defrost, a large cooling force is required to lower the temperature of the evaporator 20. In addition, since the internal temperature of the case 35 is increased, the temperature of the storage compartment may be increased. Therefore, the compressor 60 is driven by a relatively fast driving rpm to generate a large cooling force, thereby rapidly cooling the evaporator 20.
  • the second normal operation step refers to a process of cooling the storage compartment.
  • the second normal operation step may mean cooling the storage compartment to a set temperature for the first time after the second defrost is completed.
  • the set temperature may mean a temperature having a slight deviation from the storage temperature or the storage temperature set by the user.
  • the compressor 60 can be driven to generate low cooling force.
  • the defrost is completed by supplying less heat to the heater 50 in the second defrost than in the first defrost.
  • the temperature of the evaporator 20 in the second defrost is low, there is little concern that the temperature of the storage chamber is increased compared with the first defrost.
  • the controller 96 may drive the compressor 60 with a relatively slow driving rpm, and slowly cool the evaporator 20.
  • the degree of implantation of the evaporator 20 is sensed.
  • the amount of implantation is large according to the detected information, a large amount of energy is input to defrost the evaporator 20. If the amount of implantation is small, less energy is input to defrost the evaporator 20.
  • the strength of the defrost is adjusted in accordance with the amount of implantation, the reliability of the evaporator 20 defrost can be improved, and unnecessary energy consumption can be prevented.
  • the size of the cooling force may be different when the temperature of the storage compartment is later cooled for the first time according to the strength of the defrost.
  • the compressor 60 In a state where the temperature of the evaporator 20 is high, the compressor 60 is quickly driven to supply a large cooling force to rapidly cool the evaporator 20.
  • the compressor 60 In the state where the temperature of the evaporator 20 is low, the compressor 60 is slowly driven to supply a small amount of cooling power to slowly cool the evaporator 20.
  • FIG. 9 is a control flowchart for determining whether additional defrost is required after the first defrost in another embodiment of the present invention.
  • the defrosting is divided into a first defrosting step and a second defrosting step, and it is determined whether the second defrosting step is performed according to the remaining amount of implantation.
  • the heater 50 is driven by satisfying a condition of starting defrost of the evaporator 20 (S210).
  • the temperature of the evaporator 20 is measured by the evaporator temperature sensor 92 to determine whether the measured temperature reaches the first temperature (S220).
  • the heater 50 Since the heater 50 is off, the heater 50 is no longer supplied with power.
  • the pressure difference sensor 100 can measure the pressure difference (S250).
  • the defrosting to the evaporator 20 may be regarded as sufficient.
  • the heat exchange efficiency of the evaporator 20 is expected to be a certain level or more, it can be seen in a state capable of supplying sufficient cold air to the storage compartment.
  • the pressure difference measured by the differential pressure sensor 100 is greater than the set pressure, it can be seen that the defrost for the evaporator 20 is insufficient. In other words, it is expected that the heat exchange efficiency of the evaporator 20 does not exceed a predetermined level, so that it is possible to supply sufficient cold air to the storage compartment.
  • the controller 96 may turn on the heater 50 again to supply heat to the evaporator 20 (S270).
  • the controller 96 may supply heat until the evaporator 20 reaches the second temperature after turning on the heater 50.
  • the defrosting is completed as the additional defrosting is completed (S280).
  • the second defrosting steps S270 and S280 are not performed, and an operation step is performed.
  • the fan 40 for supplying the heat exchanged air to the evaporator 20 to the storage compartment is driven. That is, the refrigerant compressed by the compressor 60 is supplied to the evaporator 20, so that the air is cooled while heat exchanged with the evaporator 20. At this time, the cold air is guided to the storage compartment by the fan 40.
  • the second temperature of the second defrosting step performed in S270 may be the same as the first temperature of the first defrosting step performed in S210.
  • the temperature of the evaporator 20 is lowered while exchanging heat with the air introduced from the storage compartment.
  • the temperature of the evaporator 20 is lowered by the fan 40 and the evaporator 20 is exposed to a temperature at which ice can be removed for a long time. Therefore, ice formed on the evaporator 20 may be removed in the first defrosting step as well as in the second defrosting step.
  • the second temperature of the second defrosting step performed in S270 may be higher than the first temperature of the first defrosting step performed in S210.
  • the heater 50 supplies more heat to the evaporator 20, thereby providing an environment in which ice remaining in the evaporator 20 can be removed.
  • the evaporator 20 rises to a relatively high second temperature in the second defrosting step, ice not removed in the first defrosting step may be removed. Therefore, defrosting reliability of the evaporator 20 may be improved.
  • the evaporator Since the second defrosting step raises the evaporator to a higher temperature, the evaporator is exposed to a higher temperature than the first defrosting step.
  • the evaporator may be given a time during which the ice can melt during the first defrosting step and during the second defrosting step, thereby increasing the time for the ice to melt as a whole.
  • ice formed on the evaporator 20 may be further removed in the second defrosting step, thereby improving reliability of the defrosting.
  • S250 may be performed after the driving of the fan 40 is driven for a specific time.
  • a value in which noise is high due to unstable air flow inside the case 35 may be measured by the differential pressure sensor 100. Therefore, after the fan 40 is driven for a specific time, for example, about 5 seconds, the pressure difference value measured by the differential pressure sensor 100 is used to detect the amount of residual ice remaining in the evaporator 20. It is preferable.
  • S240 is preferably performed after a predetermined time elapses after S230 is performed.
  • the heater 50 is supplied with power to release heat. On the other hand, even if the heater 50 is off, since there is heat remaining in the heater, the temperature inside the case 35 may be increased for a predetermined time.
  • the fan 40 is driven after a predetermined time, for example, about one minute of rest. Therefore, it is possible to prevent the air heated by the heater 50 from being supplied to the storage chamber without melting ice formed on the evaporator 20.
  • the fan 40 is not driven in the first defrosting step and the second defrosting step.
  • the hot air heated by the heater 50 is not supplied to the storage compartment by the fan 40.
  • the heater 50 since the heater 50 generates heat when the heater 50 is turned on, it is preferable not to drive the fan 40.
  • the present invention provides a refrigerator having improved energy efficiency and a control method thereof.

Abstract

본 발명은 증발기에 대한 제상을 수행하고, 상기 증발기가 제1온도에 도달하면 종료되는 제1제상 단계; 저장실로부터 공기가 유입되는 유입구와 상기 증발기의 사이에 배치된 제1관통공과, 상기 저장실로 공기가 배출되는 배출구와 상기 증발기의 사이에 배치된 제2관통공에서의 압력 차이를 측정하는 하나의 차압 센서에 의해서 압력 차이가 감지되는 단계; 측정된 압력 차이가 설정 압력 보다 크면 상기 증발기에 대한 제상을 추가로 수행하는 제2제상 단계;를 포함하는 냉장고의 제어 방법을 제공한다.

Description

냉장고 및 냉장고의 제어 방법
본 발명은 냉장고 및 그 제어 방법에 관한 것으로서, 보다 상세하게는 에너지 효율이 향상된 냉장고 및 그 제어 방법에 관한 것이다.
일반적으로, 냉장고는 본체의 하부에 기계실을 포함한다. 상기 기계실은 냉장고의 무게중심과 조립의 효용성 및 진동저감을 위해 냉장고의 하부에 설치되는 것이 일반적이다.
이러한 냉장고의 기계실에는 냉동사이클장치가 설치되어, 저압의 액체상태 냉매가 기체상태의 냉매로 변화하면서 외부의 열을 흡수하는 성질을 이용하여 냉장고 내부를 냉동/냉장상태로 유지함으로써 식품을 신선하게 보관하게 된다.
상기 냉장고의 냉동사이클장치는 저온저압의 기체상태의 냉매를 고온고압의 기체상태의 냉매로 변화시키는 압축기와, 상기 압축기에서 변화된 고온고압의 기체상태의 냉매를 고온고압의 액채상태의 냉매로 변화시키는 응축기와, 상기 응축기에서 변화된 저온고압의 액체상태의 냉매를 기체상태로 변화시키면서 외부의 열을 흡수하는 증발기 등으로 구성된다.
압축기가 구동될 때에는 증발기는 온도가 하강되어, 증발기에 얼음이 엉겨 붙을 수 있다. 증발기에 얼음이 많아지면, 증발기와 공기의 열교환 효율이 떨어져서 저장실로 공급되는 냉기가 충분히 냉각되기 어려워진다. 따라서 압축기가 더 많은 횟수와 더 많은 시간 동안 구동되어야 한다는 문제가 있다.
또한 증발기에 얼음이 착상되면 증발기로부터 얼음을 제거하기 위해 히터가 구동되는데, 히터가 불필요하게 자주 구동되면 냉장고에서 소모되는 전력이 증가한다는 문제가 있다.
특히 최근에 생산되는 냉장고는 저장 용량이 커져가면서 냉장고의 소비 전력이 커지는 경향이 있는데, 이러한 소비 전력을 줄이고자 하는 연구가 진행된다.
본 발명은 에너지 효율이 향상된 냉장고 및 그 제어 방법을 제공하는 것이다.
또한 본 발명은 증발기에 대한 착상 정도에 따라서 다르게 제상을 할 수 있는 냉장고 및 그 제어 방법을 제공하는 것이다.
또한 본 발명은 1차 제상을 수행한 후에, 제상이 충분히 수행되지 않은 경우에는 2차 제상을 수행할 수 있는 냉장고 및 그 제어 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 증발기에 대한 제상 시작 조건을 만족하는지 판단하는 단계; 제상 시작 조건을 만족하면, 저장실로부터 공기가 유입되는 유입구와 상기 증발기의 사이에 배치된 제1관통공과, 상기 저장실로 공기가 배출되는 배출구와 상기 증발기의 사이에 배치된 제2관통공에서의 압력 차이를 측정하는 하나의 차압 센서에 의해서 압력 차이가 감지되는 단계; 측정된 압력 차이에 따라 다르게 제상을 수행하는 제상 수행 단계;를 포함하는 냉장고의 제어 방법을 제공한다.
상기 제상 수행 단계에서는, 히터를 구동해서 상기 증발기를 가열하는 것이 가능하다.
상기 제상 수행 단계에서, 측정된 압력 차이가 특정 압력보다 크면, 상기 증발기가 제1설정 온도까지 상승하도록 하고, 측정된 압력 차이가 특정 압력보다 작으면, 상기 증발기가 제2설정 온도까지 상승하도록 하는 것이 가능하다.
상기 제1설정 온도는 상기 제2설정 온도보다 높은 것이 가능하다.
상기 증발기에 설치된 증발기 온도 센서에서 온도가 측정되는 것이 가능하다.
상기 제상 수행 단계에서, 측정된 압력 차이가 특정 압력보다 크면, 측정된 압력 차이가 특정 압력 보다 작은 경우보다 상기 히터에서 상대적으로 적은 열량을 공급하는 것이 가능하다.
측정된 압력 차이가 특정 압력보다 크면, 상기 제상 수행 단계가 종료될 때까지 상기 히터를 지속적으로 구동하는 것이 가능하다.
측정된 압력 차이가 특정 압력보다 작으면, 상기 제상 수행 단계가 수행되는 동안 상기 히터의 on/off를 반복하는 것이 가능하다.
상기 증발기의 온도가 특정 온도까지 상승될 때까지 상기 히터를 지속적으로 구동하는 것이 가능하다.
상기 증발기의 온도가 특정 온도만큼 상승된 이후에는 상기 히터를 단속적으로 구동하는 것이 가능하다.
상기 제상 수행 단계가 종료되고, 상기 저장실을 냉각하는 정상 운전 단계를 더 포함하는 것이 가능하다.
상기 정상 운전 단계는 상기 제상 수행 단계가 종료된 후에, 처음으로 상기 저장실을 설정된 온도까지 냉각하는 것이 가능하다.
상기 정상 운전 단계에서, 측정된 압력 차이가 특정 압력보다 크면, 압축기가 상대적으로 높은 냉력을 발생시키도록 구동되고, 측정된 압력 차이가 특정 압력보다 작으면, 상기 압축기가 상대적으로 낮은 냉력을 발생시키도록 구동되는 것이 가능하다.
상기 압축기가 상대적으로 높은 냉력을 발생시킬 때에는 상대적으로 낮은 냉력을 발생시킬 때보다, 상기 압축기의 구동 알피엠이 상대적으로 큰 것이 가능하다.
본 발명은 저장실이 마련된 캐비닛; 상기 저장실을 개폐하는 도어; 상기 저장실로부터 공기가 유입되는 유입구와, 상기 저장실로 공기가 배출되는 배출구가 형성되고, 내부에 증발기가 구비되는 케이스; 상기 유입구를 통해서 유입되고 상기 배출구로 배출되는 공기 유동을 발생시키는 팬; 상기 케이스 내부에 구비되는 차압 센서; 및 상기 차압 센서에서 감지된 압력 차이에 따라 상기 증발기에 대한 제상을 다르게 수행하는 제어부;를 포함하는 냉장고를 제공한다.
상기 증발기를 가열하는 히터를 더 포함하는 것이 가능하다.
상기 제어부는, 상기 차압 센서에서 감지된 압력 차이가 특정 압력보다 크면, 상기 증발기를 더 높은 온도까지 도달하도록 상기 히터를 구동하는 것이 가능하다.
상기 제어부는, 상기 차압 센서에서 감지된 압력 차이가 특정 압력보다 크면, 상기 증발기에 대한 제상이 종료될 때까지 상기 히터를 지속적으로 구동하는 것이 가능하다.
상기 제어부는, 상기 차압 센서에서 감지된 압력 차이가 특정 압력보다 크면, 상기 증발기에 대한 제상이 종료된 후에 상기 압축기가 더 큰 냉력을 공급하도록 제어하는 것이 가능하다.
상기 차압 센서는, 상기 증발기와 상기 유입구의 사이에 배치되는 제1관통공과, 상기 증발기와 상기 배출구의 사이에 배치되는 제2관통공과, 상기 제1관통공과 상기 제2관통공을 연결하는 몸체부를 포함하며, 상기 차압 센서는 상기 제1관통공과 상기 제2관통공을 통과하는 공기의 압력 차이를 감지는 것이 가능하다.
또한 본 발명은 증발기에 대한 제상을 수행하고, 상기 증발기가 제1온도에 도달하면 종료되는 제1제상 단계; 저장실로부터 공기가 유입되는 유입구와 상기 증발기의 사이에 배치된 제1관통공과, 상기 저장실로 공기가 배출되는 배출구와 상기 증발기의 사이에 배치된 제2관통공에서의 압력 차이를 측정하는 하나의 차압 센서에 의해서 압력 차이가 감지되는 단계; 측정된 압력 차이가 설정 압력 보다 크면 상기 증발기에 대한 제상을 추가로 수행하는 제2제상 단계;를 포함하는 냉장고의 제어 방법을 제공한다.
상기 압력 차이가 감지되는 단계 이후에, 측정된 압력 차이가 설정 압력 이하이면, 상기 저장실을 냉각하는 압축기가 구동되는 운전 단계를 더 포함하는 것이 가능하다.
측정된 압력 차이가 설정 압력 보다 크면, 상기 운전 단계는 상기 제2제상 단계가 종료된 후에 수행되는 것이 가능하다.
상기 운전 단계에서는, 상기 증발기에 열교환된 공기를 상기 저장실에 공급하는 팬을 구동하는 것이 가능하다.
상기 제1제상 단계와 상기 제2제상 단계에서는 상기 증발기를 가열하는 히터가 구동되는 것이 가능하다.
상기 제1온도는 상기 제2온도보다 낮은 것이 가능하다.
상기 제1온도는 상기 제2온도와 동일한 것이 가능하다.
상기 제1제상 단계와 상기 압력 차이가 감지되는 단계의 사이에 마련되고, 상기 증발기에 열교환된 공기를 상기 저장실에 공급하는 팬을 구동하는 단계를 더 포함하는 것이 가능하다.
상기 팬을 구동하는 단계가 특정 시간 동안 구동된 후에, 압력 차이가 측정되는 것이 가능하다.
상기 팬을 구동하는 단계는 상기 제1제상이 종료된 후에 소정 시간이 경과한 후에 수행되는 것이 가능하다.
상기 제1제상 단계와 상기 제2제상 단계에서는, 상기 증발기에 열교환된 공기를 상기 저장실에 공급하는 팬을 구동하지 않는 것이 가능하다.
또한 본 발명은 저장실이 마련된 캐비닛; 상기 저장실을 개폐하는 도어; 상기 저장실로부터 공기가 유입되는 유입구와, 상기 저장실로 공기가 배출되는 배출구가 형성되고, 내부에 증발기가 구비되는 케이스; 상기 유입구를 통해서 유입되고 상기 배출구로 배출되는 공기 유동을 발생시키는 팬; 상기 케이스 내부에 구비되는 차압 센서; 및 상기 차압 센서에서 감지된 압력 차이에 따라 증발기의 추가 제상 여부를 판단하는 제어부;를 포함하는 냉장고를 제공한다.
상기 제어부는, 상기 증발기를 가열하는 제상을 수행한 후에 압력 차이를 측정하는 것이 가능하다.
본 발명에 따르면, 증발기에 착상이 이루어진 정도에 따라서 제상을 다르게 수행해서, 제상의 신뢰성이 향상될 수 있다. 또한 증발기에 착상이 많이 되면 제상에 에너지를 더 많이 소모하고, 증발기에 착상이 많이 이루어지지 않으면 제상에 에너지를 적게 소모해서 에너지 효율이 향상될 수 있다.
또한 제상의 강도에 따라 추후에 압축기를 구동해서 저장실을 냉각할 때에, 압축기의 냉력을 조절해서 저장실 냉각에 소모되는 에너지를 절약할 수 있다. 제상이 강하게 이루어진 경우에는 저장실을 보다 급속히 냉각하고, 제상이 약하게 이루어진 경우에는 저장실을 천천히 냉각해서 저장실에 보관된 식품의 온도가 상승되는 것을 방지할 수 있다.
또한 본 발명에 따르면, 1차 제상을 상대적으로 약하게 수행한 후에 증발기에 추가 제상이 필요한지를 검증해서, 불필요하게 증발기를 과도하게 제상하는 것을 방지할 수 있다. 즉 1차 제상 후에 증발기에 대해 추가 제상이 필요한 경우에만 2차 제상을 수행해서 제상을 수행할 때에 소모되는 에너지를 절약할 수 있다.
또한 1차 제상이 수행된 후에 증발기에 착상된 정도를 파악해서, 증발기 제상에 대한 신뢰성을 확보할 수 있다.
도 1은 본 발명의 일 실시예에 따른 냉장고의 측면 절개도.
도 2는 도 1의 요부를 설명한 도면.
도 3은 도 2의 평면도.
도 4는 본 발명에 따른 제어 블록도.
도 5는 일 실시예에 따른 증발기의 착상을 감지하는 제어 흐름도.
도 6은 변형된 일 실시예에 따른 증발기의 착상을 감지하는 제어 흐름도.
도 7은 다른 실시예에서 제상을 수행하기 위한 시점을 설명한 도면.
도 8은 본 발명의 다른 실시예에서 제상이 시작된 후에 증발기의 착상 정도를 감지하는 제어 흐름도.
도 9는 본 발명의 또 다른 실시예에서 1차 제상 후에 추가 제상이 필요한지를 판단하는 제어 흐름도.
이하 상기의 목적을 구체적으로 실현할 수 있는 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 설명한다.
이 과정에서 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다. 또한, 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 한다.
본 발명의 실시예에서 하나의 차압 센서를 사용해서, 두 개의 압력 센서를 사용하는 것과 기술적 차별성이 있다. 두 개의 압력 센서를 사용하면, 두 개의 압력 센서에 의해서 측정된 각각의 압력의 차이를 이용해서 두 위치에서 압력 차이를 계산할 수 있다.
통상적으로 압력 센서는 100Pa을 단위로 측정하는 것이 일반적인데, 본 발명의 실시예에서는 차압 센서를 채택해서 일반적인 압력 센서보다 정교한 압력 차이 측정이 가능하다. 차압 센서는 측정되는 위치의 절대 압력값은 측정할 수 없지만, 두 위치에서의 압력 차이를 산출할 수 있기 때문에 압력 센서에 비해서 작은 단위의 차이를 측정하는 데 용이하다.
또한 두 개의 압력 센서를 사용하는 경우에는 센서가 2개 적용되기 때문에 비용이나, 센서 2개를 설치하기 위한 전선 등의 자원이 많이 필요하다. 반면에 하나의 차압 센서를 사용하게 되면 센서를 설치하기 위한 비용과 자원 등이 절약될 수 있다.
차압 센서가 설치되는 위치는 저장실을 통과한 공기가 증발기에 의해서 냉각되는 공간이다. 저장실로부터 공급되는 공기는 저장실에 포함된 식품들에 의해서 수분이 많이 포함된 상태기 때문에 증발기와 열교환이 되면서 냉각되어 많은 물방울이 발생될 수 있다. 즉 차압 센서가 설치되는 공간은 습도가 높은 공간이다.
또한 증발기에서 냉매가 기화될 때에는 증발기 주변의 온도가 굉장히 낮은 반면에, 증발기에서 냉매가 기화되지 않을 때에는 저장실의 온도와 비슷하다. 따라서 증발기가 설치되는 공간은 증발기의 사용 조건에 따라서 온도 편차가 심하다.
증발기가 설치되는 공간은 온도 편차가 크고, 습도도 높기 때문에 다양한 오차가 발생할 수 있고, 일반적으로 센서에 의해서 정확한 정보가 측정되기 어려운 조건인데, 본 발명의 실시예에서는 차압 센서를 적용해서, 악조건하에서도 다른 센서에 비해서 정확한 정보를 감지할 수 있다는 장점이 있다.
이하 상기의 목적을 구체적으로 실현할 수 있는 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 설명한다.
도 1은 본 발명의 일 실시예에 따른 냉장고의 측면 절개도이고, 도 2는 도 1의 요부를 설명한 도면이며, 도 3은 도 2의 평면도이다. 도 2에서는 도면을 간략히 하기 위해서 증발기를 생략했다.
이하 도 1 내지 도 3을 참조해서 설명한다.
냉장고는 다수 개의 저장실(6, 8)이 구비된 캐비닛(2)과 상기 저장실(6, 8)을 개폐하는 도어(4)가 구비된다.
상기 복수 개의 저장실(6, 8)은 각각 제1저장실(6)과 제2저장실(8)로 구분되고, 상기 제1저장실(6)과 상기 제1저장실(6)은 각각 냉장실 또는 냉동실을 이루는 것이 가능하다. 물론 이와는 반대로 상기 제1저장실(6)과 상기 제1저장실(6)이 각각 냉동실과 냉장실을 이루는 것도 가능하며, 상기 제1저장실(6)과 상기 제1저장실(6)이 모두 냉장실을 이루거나, 모두 냉동실을 이루는 것도 가능하다.
상기 저장실(6, 8)에는 상기 저장실(6, 8)의 온도를 측정할 수 있는 저장실 온도 센서(90)이 구비된다. 상기 온도 센서(90)은 상기 저장실(6, 8) 각각에 설치되어서, 각각의 저장실의 온도를 개별적으로 측정하는 것도 가능하다.
상기 저장실의 후방에는 증발기(8)을 수용하는 케이스(35)가 구비된다.
상기 케이스(35)에는 상기 케이스(35)로부터 상기 저장실로 공기가 공급될 수 있는 배출구(38)이 형성되고, 상기 저장실로부터 상기 케이스(35)의 내부로 공기가 공급되는 유입구(32)가 형성된다.
상기 유입구(32)에는 상기 케이스(35) 내부로 공기가 안내되는 유입관(30)이 마련되어서, 상기 저장실(6, 8)과 상기 케이스(35)를 연결해서 공기 유로를 형성하는 것이 가능하다.
상기 배출구(38)에는 팬(40)이 마련되어서, 상기 케이스(35)의 내부의 공기가 상기 저장실(6, 8)로 이동될 수 있는 공기 흐름을 발생시킬 수 있다. 상기 케이스(35)는 상기 유입구(32)와 상기 배출구(38)를 제외하고는 전체적으로 밀폐된 구성을 가지기 때문에, 상기 팬(40)이 구동되면, 상기 유입구(32)로부터 상기 배출구(38)로 이동되는 공기 흐름이 생성된다.
상기 팬(40)을 통과한 공기는 제1저장실(6)으로 공기를 안내하는 덕트(7)가 마련되어서, 상기 제1저장실(6)로 냉기가 공급될 수 있다. 상기 팬(40)을 통과한 공기는 상기 제2저장실(8)로도 공급될 수 있다.
상기 케이스(35)의 내부에는 압축기(60)에 의해서 압축된 냉매가 기화되어 냉기를 발생시키는 상기 증발기(20)가 수용된다. 상기 케이스(35)의 내부 공기는 상기 증발기(20)와 열교환되면서 냉각된다.
상기 증발기(20)의 하부에는 상기 증발기(20)를 제상하도록 열을 발생시키는 히터(50)가 구비된다. 상기 히터(50)는 상기 증발기(20)의 하부에 설치될 필요는 없고, 상기 케이스(35)의 내부에 마련되어서, 상기 증발기(20)을 가열할 수 있으면 충분하다.
상기 증발기(20)에는 증발기 온도 센서(92)가 마련되어서, 상기 증발기(20)의 온도를 측정할 수 있다. 상기 증발기 온도 센서(92)는 상기 증발기(20)의 내부를 통과하는 냉매가 기화될 때에는 저온을 감지하고, 상기 히터(20)가 구동될 때에는 고온을 감지하는 것이 가능하다.
상기 압축기(60)는 상기 캐비닛(2)에 구비되는 기계실에 설치되어서, 상기 증발기(20)에 공급되는 냉매를 압축할 수 있다. 상기 압축기(60)는 상기 케이스(35)의 외부에 설치된다.
상기 유입구(32)는 상기 증발기(20)의 하부에 위치하고, 상기 배출구(38)는 상기 증발기(20)의 상부에 위치한다. 상기 배출구(38)는 상기 증발기(20)보다 높게 배치되고, 상기 유입구(32)는 상기 증발기(20)보다 낮게 배치된다.
따라서 상기 팬(40)이 구동되면, 상기 케이스(35) 내부에서는 공기는 상승하는 운동을 하게 된다. 상기 유입구(32)로 유입된 공기는 상기 증발기(20)를 거치면서 열교환되고, 상기 배출구(38)를 통해서 상기 케이스(35)의 외부로 배출된다.
상기 케이스(35)의 내부에는 차압 센서(100)가 구비된다.
상기 차압 센서(100)는 상기 증발기(20)와 상기 유입구(32)의 사이에 배치되는 제1관통공(110)과 상기 증발기(20)와 상기 배출구(32)의 사이에 배치되는 제2관통공(120)을 포함한다.
상기 차압 센서(100)는 상기 제1관통공(110)과 상기 제2관통공(120)을 연결하는 몸체부를 포함하는데, 상기 몸체부는 상기 제1관통공(110)이 형성된 제1관(150)과,상기 제2관통공(120)이 형성된 제2관(170)과, 상기 제1관(150)과 상기 제2관(170)을 연결하는 연결 부재(200)를 포함한다.
이때 상기 연결 부재(200)는 상기 증발기(20)보다 높게 배치되어서, 상기 증발기(20)에서 응축되는 수분이 상기 연결 부재(200)에 떨어지지 않도록 할 수 있다. 상기 연결 부재(200)에는 전자 장치가 설치될 수 있는데, 물방울이 떨어지는 경우에는 파손될 염려가 크기 때문이다. 상기 증발기(20)에 맺힌 물방울은 중력에 의해서 아래로 떨어지는데, 상기 연결 부재(200)가 상기 증발기(20)의 상측에 배치되면, 상기 증발기(20)의 물방울은 상기 연결 부재(200)로 낙하되지 않는다.
한편 상기 제1관(150)과 상기 제2관(170)은 상기 증발기(20)보다 높게까지 연장된 것이 가능하다. 상기 연결 부재(200)가 상기 증발기(20)의 상측에 위치하기 위해서는 상기 제1관(150)과 상기 제2관(170)은 상기 증발기(20)를 넘어서 길게 연장되어야 한다.
상기 제1관통공(110)과 상기 제2관통공(120)은 하방에 바라보도록 배치되어서, 상기 케이스(35)의 내부에서 응축된 물방울이 상기 제1관통공(110)과 상기 제2관통공(120)을 통해서, 각각 제1관(150)과 제2관(170)으로 유입되는 것을 막을 수 있다. 상기 제1관통공(110)과 상기 제2관통공(120)이 상측을 바라보면, 중력에 의해서 떨어지는 물방울이 상기 제1관통공(110)과 상기 제2관통공(120)을 통해서 상기 제1관(150)과 상기 제2관(170)으로 유입되어서, 상기 차압 센서(100)에 의해서 측정되는 값에 오차를 발생시킬 수 있다.
상기 차압 센서(100)는 상기 제1관통공(110)과 상기 제2관통공(120)을 통과하는 공기의 압력 차이를 감지한다. 상기 제1관통공(110)과 상기 제2관통공(120)은 설치되는 높이도 상이하고, 상기 증발기(20)를 사이에 두고 배치되기 때문에 압력 차이가 발생된다. 상기 제2관통공(120)은 저압부로 상대적으로 낮은 압력이 걸리고, 상기 제1관통공(110)은 고압부로 상대적으로 높은 압력이 걸려서, 상기 차압 센서(100)에서는 압력 차이를 감지한다.
특히 상기 팬(40)이 구동될 때에는 상기 케이스(35)의 내부에 공기 유동이 발생되기 때문에 상기 차압 센서(100)에서 압력 차이가 측정될 수 있다.
도 4는 본 발명에 따른 제어 블록도이다.
도 4를 참조하면, 본 발명은 냉매를 압축할 수 있는 압축기(60)를 포함한다. 제어부(96)는 저장실을 냉각할 필요가 있을 때에는 상기 압축기(60)를 구동해서 저상기 저장실로 냉기를 공급할 수 있다. 상기 압축기(60)가 구동되는 지에 관한 정보는 상기 제어부(96)로 전달될 수 있다.
또한 상기 저장실로 냉기를 공급하는 공기 유동을 발생시키는 팬(40)을 포함한다. 상기 팬(40)이 구동되는지에 관한 정보는 상기 제어부(96)로 전달될 수 있고, 상기 제어부(96)에서 상기 팬(40)을 구동하라고 신호를 전달할 수 있다.
상기 저장실을 개폐하는 도어(4)가 상기 저장실을 개폐하는지에 관한 정보를 획득할 수 있는 도어 스위치(70)가 마련된다. 상기 도어 스위치(70)는 각각의 도어에 개별적으로 구비되어서, 각각의 도어가 상기 저장실을 개폐하는지 감지할 수 있다.
또한 경과된 시간을 감지할 수 있는 타이머(80)가 구비된다. 상기 타이머(80)에서 측정된 시간은 상기 제어부(96)로 전달된다. 예를 들어, 상기 제어부(96)는 상기 도어 스위치(70)에서 도어(4)가 저장실을 닫았다는 신호를 획득한 후에 상기 타이머(80)에서 측정된 시간에 의해서, 상기 도어(4)가 저장실을 닫은 후에 경과된 시간에 대한 정보를 전송받을 수 있다.
상기 저장실의 온도를 감지할 수 있는 저장실 온도 센서(90)에서 측정된 저장실의 온도 정보는 상기 제어부(96)로 전달될 수 있다.
제상이 수행될 때에, 상기 증발기의 온도를 측정할 수 있는 증발기 온도 센서(92)에서 측정된 온도 정보도 상기 제어부(96)로 전달될 수 있다. 상기 제어부(96)에서는 상기 증발기 온도 센서(92)에서 측정된 온도 정보에 따라, 상기 증발기에 대한 제상을 종료할 수 있다.
또한 상기 증발기를 가열하는 히터(50)가 구비되어서, 상기 제어부(96)는 상기 히터(50)를 구동하기 위한 명령을 내릴 수 있다. 제상이 시작되면 상기 제어부(96)는 상기 히터(50)가 구동되도록 하고, 제상이 종료되면 상기 제어부(96)는 상기 히터(50)의 구동을 종료시킬 수 있다.
본 발명에서 상기 차압 센서(100)에서 측정된 정보는 상기 제어부(96)로 전달된다.
도 5는 일 실시예에 따른 증발기의 착상을 감지하는 제어 흐름도이다.
이하 도 5를 참조해서 설명하면, 본 발명의 일 실시예에서는 저장실(6, 8)로부터 공기가 유입되는 유입구(32)와 증발기(20)의 사이에 배치된 제1관통공(110)과, 상기 저장실(4,6)로 공기가 배출되는 배출구(38)와 상기 증발기(20)의 사이에 배치된 제2관통공(120)에서의 압력 차이를 측정하는 하나의 차압 센서(100)에 의해서 압력 차이가 감지되는 단계(S40)와 압력 차이가 설정 압력보다 크면 히터(50)를 구동해서 상기 증발기(20)에 대한 제상을 수행하는 단계를 포함한다.
한편 본 명세서에서 사용된 압력 차이는 한 번 측정된 압력 차이값을 의미하는 것도 가능하고, 수차례 측정된 압력 차이의 평균값도 가능하다. 상기 차압 센서(100)에서 측정된 압력은 일시적으로 다양한 외부 요인에 의해서 비 정상적인 값이 나올 수 있는데, 압력 차이의 평균값을 이용하는 경우에는 상기 차압 센서(100)에서 측정된 압력 차이에 대한 신뢰성이 증가될 수 있다.
상기 차압 센서(100)에 의해서 측정된 압력 차이 값이 설정 압력 보다 크게 되면, 상기 제1관통공(110)과 상기 제2관통공(120)의 사이에서 압력 차이가 커진 것을 의미한다. 압력 차이가 커진 것은, 상기 증발기(20)에 착상된 얼음량이 증가하고 상기 증발기(20)에서 원활한 열교환이 수행되기 어려운 상태를 의미할 수 있다. 따라서 상기 증발기(20)에서 상기 저장실(6, 8)로 냉기 공급이 원활하게 이루어지지 않아서, 제상이 필요할 수 있다.
또한 상기 차압 센싱을 하기 전에, 상기 팬(40)이 구동 중인지를 판단할 수 있다(S20).
상기 팬(40)이 구동되어야, 상기 차압 센서(100)에서 상기 제1관통공(110)과 상기 제2관통공(120)의 사이에 공기 유동이 발생될 수 있고, 그에 의해서 상기 차압 센서(100)에서 압력 차이를 원활히 측정할 수 있다.
따라서 만약 상기 팬(40)이 구동되지 않는 상태라면, 상기 차압 센서(100)에서 압력 차이를 측정하지 않는 것도 가능하다.
상기 도어 스위치(70)에서 상기 도어(4)가 상기 저장실(6, 8)을 닫고, 소정 시간이 경과한지 판단하고, 그렇지 않으면 상기 차압 센서(100)에서 압력 차이를 감지하지 않을 수 있다(S30). 상기 타이머(80)에서 경과 시간을 측정하기 전에 상기 도어 스위치(70)에서 상기 도어(4)가 닫힌 상태인지를 먼저 판단한 후에, 경과 시간을 측정하는 것이 가능하다. 이때 상기 경과시간은 대략 1분을 의미하는 것도 가능하지만, 다양하게 변화될 수 있다.
만약 상기 도어(4)가 상기 저장실(6, 8)을 닫지 않은 상태라면, 상기 케이스(35)의 내부에 공기 유동은 상기 케이스(35)가 닫힌 상태에서의 공기 유동이 달라질 수 있다.
또한 상기 도어(4)가 닫히고, 소정 시간이 경과하지 않은 상태라면, 상기 도어(4)의 닫힘에 의해서 상기 유입구(32)나 상기 배출구(38)로 예상하지 못한 공기 흐름이 발생될 수 있다.
따라서 이러한 경우에 상기 차압 센서(100)에서 압력 차이를 측정하게 되면, 측정된 압력 차이는 상기 케이스(35)의 내부에 압력을 제대로 반영한 것으로 보기 어렵다. 그러한 잘못된 정보를 이용해서 상기 증발기(20)의 제상 시점을 판단하면 상기 히터(50)를 불필요하게 자주 구동시키거나, 상기 히터(50)를 필요한 시점에 구동시켜서 상기 증발기(20)를 제상하지 못할 수 있다.
그리고 상기 차압 센서(100)에 의해서 상기 제1관통공(110)과 상기 제2관통공(120)에서 압력 차이를 측정한다(S40). 이때 측정된 압력 차이에 관한 정보는 상기 제어부(96)로 전달될 수 있다.
상기 제어부(96)는 측정된 압력 차이 즉, 차압을 설정 압력(P1)과 비교한다(S50). 차압이 설정 압력(P1)보다 크면, 상기 증발기(20)에 많은 얼음이 착상되어서 제상이 필요한 것으로 판단할 수 있다. 상기 증발기(20)에 얼음이 많이 맺히면, 상기 증발기(20)에서 충분한 열교환이 어려워서 상기 저장실(6, 8)로 충분한 냉기가 공급되기 어렵다. 설정 압력(P1)은 대략 20Pa 정도로 설정될 수 있으나, 냉장고의 용량, 크기 등을 고려해서 변화될 수 있다.
상기 제어부(96)는 상기 히터(50)를 구동해서 상기 증발기(20)에 열을 공급하면서 제상을 수행한다(S60). 상기 증발기(20)는 상기 히터(50)와 상기 케이스(35)의 내부에 구획된 동일한 공간에 배치되기 때문에, 상기 히터(50)가 구동되면 상기 케이스(35) 내부의 온도가 증가되면서 상기 증발기(20)의 온도도 상승될 수 있다.
그러면 상기 증발기(20)에 엉겨붙어 있던 얼음은 일부가 녹아 물로 변하고, 일부는 녹으면서 상기 증발기(20)에 붙어 있지 못하고 상기 증발기(20)로부터 떨어질 수 있다. 따라서 상기 증발기(20)와 공기가 직접 열접촉할 수 있는 면적이 증가되어서, 상기 증발기(20)의 열교환 효율이 향상될 수 있다.
제상이 수행되는 동안, 즉 상기 히터(50)가 구동되는 동안에 상기 증발기 온도 센서(92)는 상기 증발기(20)의 온도를 측정한다. 상기 증발기(20)의 온도가 설정 온도(T1) 보다 커지면, 상기 증발기(20)가 충분히 제상된 것으로 판단한다(S70).
즉, 상기 제어부(96)는 상기 히터(50)의 구동을 중지할 수 있다. 상기 증발기(20)가 설정 온도(T1)보다 커진다는 것은, 상기 증발기(20)에 착상된 모든 얼음이 제거된다기 보다는, 상기 증발기(20)가 상기 저장실(6, 8)에 냉기를 공급할 수 있는 조건으로 변화될 수 있는 상태를 의미할 수 있다.
만약 상기 증발기(20)의 온도가 설정 온도(T1) 만큼 상승되지 않으면, 상기 증발기(20)가 충분히 제상되지 않은 것으로 판단해서, 상기 히터(50)가 계속 구동되어 열을 공급하는 것이 가능하다.
일 실시예에서는 상기 증발기(20)의 제상 시점을 상기 차압 센서(100)에서 측정된 차압에 의해서 결정한다. 상기 차압 센서(100)에서 측정된 차압값의 신뢰성을 향상시키기 위해서, 상기 케이스(35) 내부의 공기 유동이 안정된 상태를 이룰 수 있는 조건을 부가하기도 한다.
불필요하게 상기 증발기(20)에 대한 제상을 자주 하면, 상기 히터(50)가 자주 구동되어서 상기 히터(50)에서 소모되는 전력이 증가해 냉장고 전체적으로 에너지 효율이 낮아진다.
또한 상기 히터(50)에서 공급된 열기가 상기 유입구 또는 상기 배출구를 통해서 상기 저장실(6, 8)로 유입되면 상기 저장실에 저장된 식품이 변질될 수도 있다. 또한 상기 히터(50)에 의해서 공급된 열기에 의해서 가열된 공기를 냉각하기 위해서 상기 증발기(20)에서는 더 많은 냉기를 공급해야 할 수 있다.
따라서 일 실시예에서는 제상 시점을 신뢰성있게 판단해서 불필요하게 소비되는 전력을 줄일 수 있고, 전체적으로 에너지 효율이 향상된 냉장고 및 그 제어 방법을 제공할 수 있다.
도 6은 변형된 일 실시예에 따른 증발기의 착상을 감지하는 제어 흐름도이다.
도 6은 도 5에서 설명된 실시예와 달리 상기 팬이 구동중인지를 판단하는 단계(S20) 이전에 상기 차압 센서(100)를 이용하는 센싱 주기를 만족하는지 판단한다(S10).
센싱 주기는 상기 차압 센서(100)를 이용해서 차압을 측정하는 시간 간격을 의미한다. 예를 들어 센싱 주기가 20초로 설정될 수 있으나, 다양한 조건에 의해서 변화될 수 있다.
변형된 예에서는 상기 차압 센서(100)를 이용해서 압력 차이를 측정할 때에, 센싱 주기, 즉 소정 시간 간격을 가지면서 상기 차압 센서(100)에서 압력 차이를 감지하기 때문에 상기 차압 센서(100)에서 소모되는 전력이 감소할 수 있다.
만약 센싱 주기 없이 상기 차압 센서(100)에서 연속적으로 압력 차이를 가지하면, 상기 차압 센서(100)에서 소모되는 전력과 상기 차압 센서(100)에서 측정된 정보를 상기 제어부(96)로 전송하는데에 많은 전력이 소모될 수밖에 없다.
따라서 변형된 실시예에서는 냉장고의 에너지 효율을 증가시키기 위해서 상기 차압 센서(100)에서 센싱 주기를 가지고 압력 차이를 측정하도록 한다.
도 6에서 다른 단계는 도 5에서 설명한 내용과 동일하기 때문에 중복되는 내용에 대한 설명은 생략한다.
도 7은 다른 실시예에서 제상을 수행하기 위한 시점을 설명한 도면이다.
상술한 일 실시예와 다른 실시예에서는 증발기가 냉동실 증발기와 냉장실 증발기로 구분되어 증발기가 2개 구비된 경우로 설명한다.
냉동실 증발기의 제상이 수행되는 시점과 냉장실 증발기의 제상이 수행되는 시점이 동일하도록 할 수 있는 반면에, 서로 무관하도록 하는 것도 가능하다. 즉 냉동실 증발기에 제상이 수행되면, 동시에 냉장실 증발기에 대한 제상을 수행하는 것도 가능하다. 반면에 냉동실 증발기에 대한 제상 시작 시점과 무관하게 냉장실 증발기에 대한 제상 조건이 완료되면 냉장실 증발기에 대한 제상을 수행하는 것이 가능하다.
우선, 냉동실 증발기에 대한 제상이 시작되는 조건은 특정 시간, 예를 들어 냉동실 운전 시간이 43시간에서 7시간으로 줄어드는 시점을 기준으로 하는 것이 가능하다. 최대 43시간을 기준으로 하되, 냉동실 도어가 1초 열린 상태에서는 7분이 줄어들도록 해서, 운전 시간이 7시간에 도달하면 냉동실 증발기에 대한 제상을 수행하는 것이 가능하다.
냉장실 증발기에 대한 제상은 상술한 냉동실 증발기 제상이 시작되는 조건이 만족하면 함께 제상이 수행되는 것이 가능하다. 이 경우에는 냉장실 증발기에 대한 제상이 시작되는 조건을 고려하지 않고, 냉장실 증발기에 대한 제상은 냉동실 증발기에 대한 제상에 종속되도록 제상이 수행될 수 있다. 이 경우에는 상기 냉동실 증발기를 제상하기 위해서 히터를 구동하게 되면, 냉장실 증발기에 대한 제상도 함께 함께 수행하는 것이 가능하다.
반면에, 냉장실 증발기에 대한 제상이 시작되는 조건은 특정 시간, 예를 들어 냉장실 운전 시간이 20시간에서 7시간으로 줄어드는 시점을 기준으로 하는 것이 가능하다. 최대 20시간을 기준으로 하되, 냉장실 도어가 1초 열린 상태에서는 7분이 줄어들도록 해서, 운전 시간이 7시간에 도달하면 냉장실 증발기에 대한 제상을 수행하는 것이 가능하다.
이러한 조건하에서는 냉장실 증발기에 대한 제상은 냉동실 증발기에 대한 제상과 무관하게, 독립적으로 수행할 수 있다. 즉 냉동실 증발기에 대한 제상 조건이 만족하면 냉동실 증발기에 대한 제상이 수행되고, 냉장실 증발기에 대한 제상 조건이 만족하면 냉장실 증발기에 대한 제상이 수행되는 것이 가능하다.
즉 냉동실 증발기 제상과 냉장실 증발기 제상이 서로 독립적으로 수행되는 방식으로 각각의 증발기에 대한 제상이 수행되는 것이 가능하다. 이 경우에는 상기 냉동실 증발기를 제상하기 위해서 히터를 구동하게 되더라도, 냉장실 증발기에 대한 제상 조건이 만족하지 않으면, 냉장실 증발기에 대한 제상을 수행하지 않게 된다.
즉 다른 실시예에서는 냉동실 증발기에 대한 제상이 수행되기 시작하는 조건과 냉장실 증발기에 대한 제상이 수행되기 시작하는 조건을 개별적으로 구성하는 것이 가능하다. 반면에, 냉동실 증발기에 대한 제상이 수행되는 시점을 냉장실 증발기에 대한 제상이 수행되는 시점으로 일치시키는 것도 가능하다. 또한 냉장실 증발기에 대한 제상이 수행되는 시점을 냉동실 증발기에 대한 제상이 수행되는 시점으로 일치시키는 것도 가능하다.
도 7에서는 냉동실 증발기와 냉장실 증발기를 나누어서 설명했지만, 냉장고에 증발기가 하나만 설치된 경우에는 상술한 냉장실 증발기에 대한 제상이 수행되는 조건 또는 냉동실 증발기에 대한 제상이 수행되는 조건 중에 하나를 선택해서 해당 조건이 만족되면, 증발기에 대한 제상을 시작하는 것이 가능하다.
도 8은 본 발명의 다른 실시예에서 제상이 시작된 후에 증발기의 착상 정도를 감지하는 제어 흐름도이다.
도 8의 다른 실시예에서는 증발기에 대한 착상 정도를 감지해서, 착상이 적을 경우에는 제상 로직을 최적화해서 소비 전력을 개선할 수 있다.
도 8을 참조하면, 우선 상기 증발기(20)에 대한 제상 시작 조건을 만족하는지 판단한다(S110). 제상 시작 조건은 도 7에서 설명한 바와 같이, 저장실을 냉각하기 위한 압축기(60)의 구동 시간과 상기 도어(4)의 개방 시간을 고려해서 설정될 수 있다.
물론, 다른 방식에 의해서 제상 시작 조건을 설정하는 것이 가능하고, 상기 차압 센서(100)을 이용해서 제상 시작 조건을 판단하는 것도 가능하다.
제상 시작 조건을 만족하면, 상기 차압 센서(100)에서 압력 차이를 감지한다. 그리고 상기 제어부(96)에 측정된 압력 차이값이 전달되면, 압력 차이 값이 특정 압력 이상인지 여부를 판단한다(S120).
이때 특정 압력은 사용자 또는 작업자에 의해서 다양하게 변경될 수 있다.
측정된 압력 차이가 특정 압력 이상이면, 제1제상을 수행한다(S130).
제1제상에서는 상기 증발기(20)에 착상된 얼음을 녹이기 위해서, 상기 히터(50)를 구동할 수 있다.
이때 상기 제어부(96)는 상기 히터(50)에 의해서 상기 증발기(20)가 제1설정 온도까지 상승되도록 가열하는 것이 가능하다. 이때 상기 제1설정 온도는 대략 5℃인 것이 가능하다.
즉 상기 제어부(96)는 상기 차압 센서(100)에서 측정된 압력 차이가 특정 압력 이상이면, 상기 증발기(20)가 상기 제1설정 온도로 상승할 때까지 상기 히터(50)를 구동할 수 있다.
이때 상기 히터(50)는 S130이 종료될 때까지, 즉 상기 증발기 온도 센서(92)에 의해서 측정된 온도가 제1설정 온도까지 상승될 때까지 상히 히터(50)를 지속적으로 구동하는 것이 가능하다. 상기 제어부(96)는 상기 증발기 온도 센선(92)에 의해서 측정된 온도가 제1설정 온도까지 상승될 때까지 상기 히터(50)를 off시키지 않고, on시켜서 상기 증발기(20)에 착상된 얼음을 제거할 수 있다.
반면에, 측정된 압력 차이가 특정 압력보다 작으면, 제2제상을 수행한다(S150).
제2제상에서는 상기 증발기(20)에 착상된 얼음을 녹이기 위해서, 상기 히터(50)를 구동할 수 있다.
이때 상기 제어부(96)는 상기 히터(50)에 의해서 상기 증발기(20)가 제2설정 온도까지 상승되도록 가열하는 것이 가능하다. 이때 상기 제2설정 온도는 대략 1℃인 것이 가능하다.
상기 제1설정 온도는 상기 제2설정 온도보다 높은 것이 가능하다. 즉 제2제상에서는 제1제상에 비해서 상기 증발기(20)가 더 낮은 온도에 도달하면 제상이 종료될 수 있다.
제2제상은 제1제상에 비해서, 상기 증발기(20)에 착상된 얼음의 양이 작다고 판단했기 때문에, 상기 증발기(20)에 착상된 얼음을 제거하기 위해서, 보다 낮은 온도까지 상기 증발기(20)를 가열한다.
즉 본 실시예에서는 상기 증발기(20)에 착상된 얼음의 양을 상기 차압 센서(100)에 의해서 예상하고, 상대적으로 얼음이 많이 착상된 경우에는 상기 증발기(20)를 높은 온도까지 가열하고, 상대적으로 얼음이 적게 착상된 경우에는 상기 증발기(20)를 낮은 온도까지 가열한다.
상기 증발기(20)에 착상된 얼음의 양이 작으면, 상기 히터(50)에서 상대적으로 적은 열량을 공급해서 상기 증발기(20)의 열교환 효율이 정상화시킬 수 있다. 상기 증발기(20)에 녹여야 하는 얼음의 양이 작기 때문에, 상기 히터(50)에서 적은 열량을 공급해서 상기 증발기(20)의 제상을 수행하는 것이다.
따라서 본 실시예를 통해서, 상기 증발기(20)의 제상을 수행할 때에, 에너지 효율이 향상될 수 있다.
한편 상기 제2제상이 수행되는 동안에 상기 증발기(20)의 온도가 특정 온도, 예를 들어 -5℃에 도달할 때까지는 상기 히터(50)를 on/off하지 않고 지속적으로 구동하는 것이 가능하다.
반면에 상기 증발기(20)가 상기 특정 온도를 넘어서면, 상기 히터(50)를 on/off시키면서 단속적으로 구동하는 것이 가능하다.
제2제상이 수행되는 동안에, 낮은 온도에서는 상기 히터(50)에 의해서 상기 증발기(20)의 온도가 빠르게 상승하도록 한 반면에, 특정 온도를 넘어가면 상기 히터(50)가 상기 증발기(20)의 온도를 상대적으로 늦게 상승시키도록 한다. 초기에 제상이 수행될 때에는 상기 증발기(20)의 온도를 빠르게 높이는 반면에, 일정 온도 이상이 되면 상기 증발기(20)와 상기 히터(50) 사이에 공기의 대류에 의한 순환이 이루어질 수 있는 시간을 마련할 수 있다. 따라서 상기 증발기(20)의 온도가 과도하게 상승하지 않더라도, 상기 증발기(20)가 특정 온도 이상에 노출되어서 착상된 얼음이 적은 에너지에 의해서도 제거될 수 있다.
즉 상기 제2제상이 수행되는 동안에는 상기 히터(50)의 on/off가 반복되어서, 상기 히터(50)에 의해서 소모되는 에너지가 절약될 수 있다.
상기 제1제상은 상기 증발기(20)가 높은 온도까지 가열되도록 하는 반면에, 상기 제2제상은 상기 증발기(20)가 낮은 온도까지 가열되도록 하는 차이가 있다. 두 가지 제상은 상기 증발기(20)에 착상된 얼음의 양에 따라 다르게 선택될 수 있다.
상기 제1제상이 종료된 후에는, 제1정상 운전이 수행된다(S140).
제1정상 운전 단계는 상기 저장실을 냉각하는 과정을 의미한다. 특히 제1정상 운전 단계는 상기 제1제상이 종료된 후에, 처음으로 상기 저장실을 설정된 온도까지 냉각하는 것을 의미할 수 있다. 이때 설정된 온도는 사용자가 설정한 저장실 온도 또는 저장실 온도에서 약간의 편차를 가지는 온도를 의미하는 것이 가능하다.
상기 제1정상 운전에서는 상기 압축기(60)가 높은 냉력을 발생시키도록 구동하는 것이 가능하다.
제1제상에서 상기 증발기(20)가 상대적으로 높은 온도까지 상승되었기 때문에, 상기 증발기(20)의 온도를 낮추기 위해서는 큰 냉력이 필요하다. 또한 상기 케이스(35)의 내부 온도가 상승되었기 때문에, 상기 저장실의 온도가 상승될 우려가 있다. 따라서 상기 압축기(60)가 큰 냉력을 발생시킬 수 있도록, 상대적으로 빠른 구동 알피엠(rpm)으로 구동되도록 해서, 상기 증발기(20)를 빠르게 냉각하게 된다.
상기 제2제상이 종료된 후에는, 제2정상 운전이 수행된다(S160).
제2정상 운전 단계는 상기 저장실을 냉각하는 과정을 의미한다. 특히 제2정상 운전 단계는 상기 제2제상이 종료된 후에, 처음으로 상기 저장실을 설정된 온도까지 냉각하는 것을 의미할 수 있다. 이때 설정된 온도는 사용자가 설정한 저장실 온도 또는 저장실 온도에서 약간의 편차를 가지는 온도를 의미하는 것이 가능하다.
상기 제2정상 운전에서는 상기 압축기(60)가 낮은 냉력을 발생시키도록 구동하는 것이 가능하다.
제1제상 보다는 제2제상에서 상기 히터(50)가 적은 열량을 공급해서 제상이 완료된다. 또한 제2제상에서 상기 증발기(20)의 온도가 낮기 때문에, 제1제상에 비해서 상기 저장실의 온도가 상승될 우려가 크지 않다.
따라서 제2정상 운전 단계에서는 상기 압축기(60)에서 상대적으로 낮은 냉력을 발생시켜서, 에너지 효율이 향상되도록 하는 것이 가능하다. 즉 상기 제어부(96)는 상기 압축기(60)를 상대적으로 느린 구동 알피엠(rpm)으로 구동해서, 상기 증발기(20)를 천천히 냉각할 수 있다.
즉 본 실시예에서는, 제상이 시작되어야 판단하는 조건이 만족하면 상기 증발기(20)에 대한 착상 정도를 감지한다.
감지된 정보에 따라 착상된 양이 많으면 많은 에너지를 투입해서 상기 증발기(20)를 제상하고, 착상된 양이 적으면 적은 에너지를 투입해서 상기 증발기(20)를 제상한다.
착상량에 따라 제상의 강도를 조절하기 때문에, 상기 증발기(20) 제상에 대한 신뢰성이 향상될 수 있고, 불필요하게 과도한 에너지가 소모되는 것도 방지할 수 있다.
또한 본 실시예에서는 제상의 강도에 따라 추후에 저장실의 온도를 처음으로 냉각할 때에 냉력의 크기를 다르게 할 수 있다. 상기 증발기(20)의 온도가 높은 상태에서는 상기 압축기(60)가 빠르게 구동되어 큰 냉력을 공급해서 상기 증발기(20)를 빠르게 냉각시킨다. 반면에 상기 증발기(20)의 온도가 낮은 상태에서는 상기 압축기(60)를 느리게 구동해서 적은 냉력을 공급해서 상기 증발기(20)를 천천히 냉각시킨다.
도 9는 본 발명의 또 다른 실시예에서 1차 제상 후에 추가 제상이 필요한지를 판단하는 제어 흐름도이다.
본 실시예에서는 한 번 제상을 수행한 후에, 추가 제상이 필요하다고 판단된 경우에 한해서 추가로 제상을 수행해서, 제상에 소모되는 에너지를 절약할 수 있다.
적은 제상에도 불구하고 상기 증발기(20)의 얼음이 충분히 제거된 상태에서, 추가로 제상을 하게 되면 상기 히터(50)에 의해서 소모되는 에너지가 커질 수 밖에 없다. 또한 상기 히터(50)에 의해서 상승된 온도를 낮추기 위해서 상기 압축기(60)가 운전되어야 하기 때문에, 상기 압축기(60)에서 소모되는 에너지도 함께 증가하게 된다.
본 실시예에서는 상술한 문제점을 해결하기 위해서, 제상을 제1제상 단계와 제2제상 단계로 나누고, 제2제상 단계의 수행 여부를 착상 잔존량에 따라 판단하게 된다.
도 9를 참조하면, 본 실시예에서는 상기 증발기(20)에 대한 제상을 시작해야 한다는 조건을 만족해서, 상기 히터(50)를 구동한다(S210).
상기 히터(50)가 구동되면서, 상기 증발기(20)에 대한 제상이 수행된다.
상기 증발기 온도 센서(92)에서 상기 증발기(20)의 온도를 측정해서, 측정된 온도가 제1온도에 도달한 지를 판단한다(S220).
상기 증발기(20)가 상기 제1온도에 도달하면, 상기 증발기(20)에 대한 제상이 완료된 것으로 보고, 상기 히터(50)을 off한다(S230).
상기 히터(50)는 off되었기 때문에, 상기 히터(50)에는 더 이상 전력이 공급되지 않는다.
그리고 상기 팬(40)을 구동한다(S240).
상기 팬(40)에 의해서 발생되는 공기 유동에 의해서, 상기 차압 센서(100)에서는 압력 차이를 측정할 수 있다(S250).
측정된 압력 차이가 설정 압력 이하인지를 판단한다(S260).
상기 차압 센서(100)에 의해서 측정된 압력 차이가 설정 압력 이하라면, 상기 증발기(20)에 대한 제상이 충분한 것으로 볼 수 있다. 즉 상기 증발기(20)의 열교환 효율이 일정 수준 이상인 것으로 예상해서, 상기 저장실에 충분한 냉기를 공급할 수 있는 상태로 볼 수 있다.
따라서 추가적으로 상기 증발기(20)에 대한 제상은 필요하지 않은 것으로 보고, 이후에 상기 압축기(60)를 구동해서 상기 저장실에 냉기를 공급할 수 있다.
반면에, 상기 차압 센서(100)에 의해서 측정된 압력 차이가 설정 압력 보다 크면, 상기 증발기(20)에 대한 제상이 불충분한 것으로 볼 수 있다. 즉 상기 증발기(20)의 열교환 효율이 일정 수준 이상이 되지 못한 것으로 예상해서, 상기 저장실에 충분한 냉기를 공급할 수 없는 상태로 볼 수 있다.
따라서, 상기 제어부(96)에서는 상기 히터(50)를 다시 on시켜서, 상기 증발기(20)에 열을 공급할 수 있다(S270).
상기 제어부(96)는 상기 히터(50)를 on시킨 후에, 상기 증발기(20)가 제2온도에 도달할 때까지 열을 공급할 수 있다.
그리고 상기 증발기(20)가 상기 제2온도에 도달하면 추가 제상도 완료된 것으로 보아서 제상을 종료한다(S280).
S260 또는 S280에서 제상이 종료된 후에는 상기 저장실을 냉각하는 상기 압축기(60)가 구동되는 운전 단계가 수행된다.
S250에서 측정된 압력 차이가 설정 압력 이하라면 제2제상 단계(S270, S280)이 수행되지 않고, 운전 단계가 수행된다.
반면에, S250에서 측정된 압력 차이가 설정 압력 이상이라면 제2제상 단계(S270, S280)이 수행된 후에, 운전 단계가 수행된다.
상기 운전 단계에서는 상기 증발기(20)에 열교환된 공기를 상기 저장실에 공급하는 팬(40)을 구동한다. 즉 상기 압축기(60)에서 압축된 냉매가 상기 증발기(20)로 공급되어서, 공기는 상기 증발기(20)와 열교환되면서 냉각된다. 이때 차가워진 공기는 상기 팬(40)에 의해서 저장실로 안내된다.
한편 S270에서 수행되는 제2제상 단계의 제2온도는 S210에서 수행되는 제1제상 단계의 제1온도와 동일한 것이 가능하다.
상기 팬(40)이 구동된 후에는 상기 증발기(20)의 온도가 저장실로부터 유입된 공기와 열교환하면서 낮아지게 된다. 상기 팬(40)이 구동된 후에 다시 상기 히터(50)를 상기 제1온도와 동일한 제2온도 만큼 상기 증발기(20)가 가열되도록 제어하는 것도 가능하다.
상기 제1온도와 상기 제2온도가 동일하더라도, 상기 팬(40)에 의해서 상기 증발기(20)의 온도가 낮아지고, 상기 증발기(20)가 얼음이 제거될 수 있는 온도에 오랜 시간 동안 노출되기 때문에, 제1제상 단계는 물론 제2제상 단계에서도 상기 증발기(20)에 착상된 얼음이 제거될 수 있다.
이와는 달리, S270에서 수행되는 제2제상 단계의 제2온도는 S210에서 수행되는 제1제상 단계의 제1온도보다 높은 것이 가능하다.
제2제상 단계에서는 상기 히터(50)가 상기 증발기(20)에 더 많은 열량을 공급해서, 상기 증발기(20)에 남아있는 얼음을 제거할 수 있는 환경을 마련하는 것이 가능하다.
제2제상 단계에서 상기 증발기(20)가 상대적으로 높은 제2온도까지 올라가기 때문에, 제1제상 단계에서 제거되지 않은 얼음이 제거될 수 있다. 따라서 상기 증발기(20)에 대한 제상 신뢰성이 향상될 수 있다.
상기 제2제상 단계는 상기 증발기를 더 높은 온도까지 상승시키기 때문에, 상기 증발기는 제1제상 단계에 비해서 보다 높은 온도에 노출된다. 또한 상기 증발기는 제1제상 단계가 수행되는 동안과, 제2제상 단계가 수행되는 동안 얼음이 녹을 수 있는 시간이 주어져서, 전체적으로 얼음이 녹을 수 있는 시간이 증가될 수 있다.
따라서 상기 증발기(20)에 착상된 얼음이 제2제상 단계에서 추가로 제거되어서, 제상의 신뢰성이 향상될 수 있다.
한편, S250은 상기 팬(40)을 구동하는 단계가 특정 시간 동안 구동된 후에, 수행되는 것이 가능하다. 상기 팬(40)이 구동되는 순간에는 상기 케이스(35)의 내부에 공기 유동이 불안정해서 노이즈가 많은 값이 상기 차압 센서(100)에 의해서 측정될 수 있다. 따라서 상기 팬(40)이 특정 시간, 예를 들어 대략 5초 정도 구동된 후에 상기 차압 센서(100)에서 측정된 압력 차이값을 사용해서, 상기 증발기(20)에 남아 있는 잔빙의 양을 감지하는 것이 바람직하다.
한편, S240은 S230이 수행되고 소정 시간이 경과한 후에 수행되는 것이 바람직하다.
S230이 수행되기 전까지 상기 히터(50)에는 전력이 공급되어서 열을 방출하는 상태이다. 한편 상기 히터(50)가 off되더라도 히터에는 잔존하는 열이 있기 때문에, 소정 시간 동안 상기 케이스(35) 내부의 온도를 상승시킬 수 있다.
따라서, 상기 히터(50)가 off되자마자 상기 팬(40)을 구동하면 상기 팬(40)에 의해서 발생된 공기 유동에 의해서 뜨거운 공기가 상기 저장실로 공급된다. 상기 저장실의 온도가 상승되면 저장된 식품이 변질될 우려가 있다.
본 실시에에서는 상기 제1제상이 종료된 후, 즉 상기 히터(50)가 off된 후에, 소정 시간 예를 들어, 대략 1분 정도의 휴식기를 가진 후에 상기 팬(40)을 구동한다. 따라서 상기 히터(50)에 의해서 뜨거워진 공기가 상기 증발기(20)에 착상된 얼음을 녹이지 않고 상기 저장실로 공급되는 것을 방지할 수 있다.
또한 상기 제1제상 단계와 상기 제2제상 단게에서는 상기 팬(40)을 구동하지 않는 것이 바람직하다. 상기 히터(50)에 의해서 가열된 뜨거워진 공기가 상기 팬(40)에 의해서 상기 저장실로 공급되지 않도록 한다.
즉 상기 히터(50)가 켜진 상태에서는 상기 히터(50)가 열을 발생시키기 때문에, 상기 팬(40)을 구동하지 않는 것이 바람직하다.
본 발명은 상술한 실시예에 한정되지 않으며, 첨부된 청구범위에서 알 수 있는 바와 같이 본 발명이 속한 분야의 통상의 지식을 가진 자에 의해 변형이 가능하고 이러한 변형은 본 발명의 범위에 속한다.
본 발명은 에너지 효율이 향상된 냉장고 및 그 제어 방법을 제공하는 것이다.

Claims (15)

  1. 증발기에 대한 제상을 수행하고, 상기 증발기가 제1온도에 도달하면 종료되는 제1제상 단계;
    저장실로부터 공기가 유입되는 유입구와 상기 증발기의 사이에 배치된 제1관통공과, 상기 저장실로 공기가 배출되는 배출구와 상기 증발기의 사이에 배치된 제2관통공에서의 압력 차이를 측정하는 하나의 차압 센서에 의해서 압력 차이가 감지되는 단계;
    측정된 압력 차이가 설정 압력 보다 크면 상기 증발기에 대한 제상을 추가로 수행하는 제2제상 단계;를 포함하는 냉장고의 제어 방법.
  2. 제1항에 있어서,
    상기 압력 차이가 감지되는 단계 이후에,
    측정된 압력 차이가 설정 압력 이하이면, 상기 저장실을 냉각하는 압축기가 구동되는 운전 단계를 더 포함하는 냉장고의 제어 방법.
  3. 제1항에 있어서,
    측정된 압력 차이가 설정 압력 보다 크면, 상기 운전 단계는 상기 제2제상 단계가 종료된 후에 수행되는 것을 특징으로 하는 냉장고의 제어 방법.
  4. 제2항에 있어서,
    상기 운전 단계에서는,
    상기 증발기에 열교환된 공기를 상기 저장실에 공급하는 팬을 구동하는 것을 특징으로 하는 냉장고의 제어 방법.
  5. 제1항에 있어서,
    상기 제1제상 단계와 상기 제2제상 단계에서는 상기 증발기를 가열하는 히터가 구동되는 것을 특징으로 하는 냉장고의 제어 방법.
  6. 제1항에 있어서,
    상기 제1온도는 상기 제2온도보다 낮은 것을 특징으로 하는 냉장고의 제어 방법.
  7. 제1항에 있어서,
    상기 제1온도는 상기 제2온도와 동일한 것을 특징으로 하는 냉장고의 제어 방법.
  8. 제1항에 있어서,
    상기 제1제상 단계와 상기 압력 차이가 감지되는 단계의 사이에 마련되고,
    상기 증발기에 열교환된 공기를 상기 저장실에 공급하는 팬을 구동하는 단계를 더 포함하는 것을 특징으로 하는 냉장고의 제어 방법.
  9. 제8항에 있어서,
    상기 팬을 구동하는 단계가 특정 시간 동안 구동된 후에, 압력 차이가 측정되는 것을 특징으로 하는 냉장고의 제어 방법.
  10. 제8항에 있어서,
    상기 팬을 구동하는 단계는 상기 제1제상이 종료된 후에 소정 시간이 경과한 후에 수행되는 것을 특징으로 하는 냉장고의 제어 방법.
  11. 제1항에 있어서,
    상기 제1제상 단계와 상기 제2제상 단계에서는,
    상기 증발기에 열교환된 공기를 상기 저장실에 공급하는 팬을 구동하지 않는 것을 특징으로 하는 냉장고의 제어 방법.
  12. 저장실이 마련된 캐비닛;
    상기 저장실을 개폐하는 도어;
    상기 저장실로부터 공기가 유입되는 유입구와, 상기 저장실로 공기가 배출되는 배출구가 형성되고, 내부에 증발기가 구비되는 케이스;
    상기 유입구를 통해서 유입되고 상기 배출구로 배출되는 공기 유동을 발생시키는 팬;
    상기 케이스 내부에 구비되는 차압 센서; 및
    상기 차압 센서에서 감지된 압력 차이에 따라 증발기의 추가 제상 여부를 판단하는 제어부;를 포함하는 냉장고.
  13. 제12항에 있어서,
    증발기를 가열하는 히터를 더 포함하는 것을 특징으로 하는 냉장고.
  14. 제12항에 있어서,
    상기 제어부는,
    상기 증발기를 가열하는 제상을 수행한 후에 압력 차이를 측정하는 것을 특징으로 하는 냉장고.
  15. 제12항에 있어서,
    상기 차압 센서는,
    상기 증발기와 상기 유입구의 사이에 배치되는 제1관통공과,
    상기 증발기와 상기 배출구의 사이에 배치되는 제2관통공과,
    상기 제1관통공과 상기 제2관통공을 연결하는 몸체부를 포함하며,
    상기 차압 센서는 상기 제1관통공과 상기 제2관통공을 통과하는 공기의 압력 차이를 감지는 것을 특징으로 하는 냉장고.
PCT/KR2017/012739 2016-11-10 2017-11-10 냉장고 및 냉장고의 제어 방법 WO2018088845A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202111067625.6A CN113720078B (zh) 2016-11-10 2017-11-10 冰箱及冰箱的控制方法
CN201780068330.6A CN109906346B (zh) 2016-11-10 2017-11-10 冰箱及冰箱的控制方法
EP17868985.7A EP3540343B1 (en) 2016-11-10 2017-11-10 Refrigerator and control method of refrigerator
US16/348,711 US11231219B2 (en) 2016-11-10 2017-11-10 Refrigerator and control method of refrigerator
US17/529,935 US11940200B2 (en) 2016-11-10 2021-11-18 Refrigerator and control method of refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0149421 2016-11-10
KR1020160149421A KR20180052285A (ko) 2016-11-10 2016-11-10 냉장고 및 냉장고의 제어 방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/348,711 A-371-Of-International US11231219B2 (en) 2016-11-10 2017-11-10 Refrigerator and control method of refrigerator
US17/529,935 Continuation US11940200B2 (en) 2016-11-10 2021-11-18 Refrigerator and control method of refrigerator

Publications (1)

Publication Number Publication Date
WO2018088845A1 true WO2018088845A1 (ko) 2018-05-17

Family

ID=62109836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012739 WO2018088845A1 (ko) 2016-11-10 2017-11-10 냉장고 및 냉장고의 제어 방법

Country Status (5)

Country Link
US (2) US11231219B2 (ko)
EP (1) EP3540343B1 (ko)
KR (1) KR20180052285A (ko)
CN (2) CN113720078B (ko)
WO (1) WO2018088845A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019164115A1 (en) * 2018-02-26 2019-08-29 Lg Electronics Inc. Refrigerator and controlling method for the same
CN110631319A (zh) * 2019-10-24 2019-12-31 江苏精英冷暖设备工程有限公司 一种综合智能冷库化霜装置
CN113819696A (zh) * 2021-10-13 2021-12-21 合肥美的电冰箱有限公司 冰箱及其化霜控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230031903A (ko) * 2020-06-30 2023-03-07 일렉트로룩스 어플라이언스 아크티에볼레그 팬 및 압력 센서를 갖는 냉장 기기
WO2022002377A1 (en) * 2020-06-30 2022-01-06 Electrolux Appliances Aktiebolag Refrigerating appliance with pressure sensor
CN112665286A (zh) * 2021-01-04 2021-04-16 珠海格力电器股份有限公司 一种冰箱除湿化霜装置、控制方法和冰箱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0120536B1 (ko) * 1992-11-11 1997-10-22 윤종용 냉장고의 성에제거방법 및 그 장치
KR980010300A (ko) * 1996-07-24 1998-04-30 구자홍 냉장고의 제상주기 제어방법 및 그 장치
KR100304907B1 (ko) * 1999-02-26 2001-09-24 구자홍 가스온풍기의 운전 제어장치 및 그 방법
KR100652775B1 (ko) * 2000-01-28 2006-12-01 주식회사 엘지이아이 냉장고 및 그의 제상시기 결정방법
KR101463041B1 (ko) * 2013-06-03 2014-11-27 유한회사 이지시스템 진공압을 이용한 제상시스템

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2975611A (en) * 1959-08-31 1961-03-21 Gen Electric Control system for air conditioning units
US3299237A (en) 1964-03-02 1967-01-17 Robertshaw Controls Co Defroster control or the like
US3309887A (en) 1965-10-18 1967-03-21 Gen Electric Household refrigerator including defrost control means
US3377817A (en) 1966-12-27 1968-04-16 Trane Co Defrost control for heating and cooling refrigeration systems
US3487654A (en) * 1968-05-14 1970-01-06 Ranco Inc Deicing control apparatus for forced air refrigeration system
SE7406316L (sv) 1974-05-10 1975-11-11 Projectus Ind Produkter Ab Forfarande och anordning for avfrostning av forangare till vermepumpar.
US4407138A (en) * 1981-06-30 1983-10-04 Honeywell Inc. Heat pump system defrost control system with override
KR19980010300U (ko) 1996-08-05 1998-05-15 홍군선 배관 연결용 니플의 편차를 조절할 수 있게 한 조절 아답타(adjustable adaptor for adjusting gap of pipe connecting nipple)
KR0170597B1 (ko) * 1996-08-31 1999-03-20 배순훈 냉장고 제상 휴지기의 제어방법
CN100516710C (zh) * 2003-06-27 2009-07-22 松下电器产业株式会社 冷冻冷藏单元及冷藏库
ITRM20050634A1 (it) * 2005-12-19 2007-06-20 Ixfin S P A Sistema per lo sbrinamento automatizzato di un apparato refrigeratore.
EP2574868B1 (en) * 2011-09-29 2019-06-12 LG Electronics Inc. Refrigerator
WO2013082401A1 (en) * 2011-12-02 2013-06-06 Welbilt Walk-Ins, Lp Refrigeration apparatus and method
KR101918224B1 (ko) * 2012-01-31 2018-11-13 엘지전자 주식회사 냉장고 및 그 제상 운전 방법
JP5744265B1 (ja) * 2014-02-28 2015-07-08 シャープ株式会社 冷蔵庫
JP2016161256A (ja) * 2015-03-04 2016-09-05 株式会社富士通ゼネラル 空気調和装置
CN105783387B (zh) * 2016-04-29 2018-08-28 合肥美的电冰箱有限公司 化霜控制方法、化霜控制装置和冰箱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0120536B1 (ko) * 1992-11-11 1997-10-22 윤종용 냉장고의 성에제거방법 및 그 장치
KR980010300A (ko) * 1996-07-24 1998-04-30 구자홍 냉장고의 제상주기 제어방법 및 그 장치
KR100304907B1 (ko) * 1999-02-26 2001-09-24 구자홍 가스온풍기의 운전 제어장치 및 그 방법
KR100652775B1 (ko) * 2000-01-28 2006-12-01 주식회사 엘지이아이 냉장고 및 그의 제상시기 결정방법
KR101463041B1 (ko) * 2013-06-03 2014-11-27 유한회사 이지시스템 진공압을 이용한 제상시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3540343A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019164115A1 (en) * 2018-02-26 2019-08-29 Lg Electronics Inc. Refrigerator and controlling method for the same
EP3759408A4 (en) * 2018-02-26 2021-11-17 LG Electronics Inc. REFRIGERATOR AND CONTROL PROCEDURES FOR IT
US11549740B2 (en) 2018-02-26 2023-01-10 Lg Electronics Inc. Refrigerator and controlling method for the same
CN110631319A (zh) * 2019-10-24 2019-12-31 江苏精英冷暖设备工程有限公司 一种综合智能冷库化霜装置
CN113819696A (zh) * 2021-10-13 2021-12-21 合肥美的电冰箱有限公司 冰箱及其化霜控制方法
CN113819696B (zh) * 2021-10-13 2024-01-23 合肥美的电冰箱有限公司 冰箱及其化霜控制方法

Also Published As

Publication number Publication date
EP3540343B1 (en) 2024-02-21
KR20180052285A (ko) 2018-05-18
EP3540343A4 (en) 2020-09-02
CN113720078B (zh) 2023-07-25
CN109906346B (zh) 2021-09-28
CN113720078A (zh) 2021-11-30
US20190285331A1 (en) 2019-09-19
CN109906346A (zh) 2019-06-18
US11940200B2 (en) 2024-03-26
US20220074640A1 (en) 2022-03-10
US11231219B2 (en) 2022-01-25
EP3540343A1 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
WO2018088839A1 (ko) 냉장고 및 냉장고의 제어 방법
WO2018088845A1 (ko) 냉장고 및 냉장고의 제어 방법
WO2019172532A1 (ko) 냉장고 및 그 제어방법
WO2019190113A1 (ko) 냉장고 및 그 제어방법
WO2019190114A1 (ko) 냉장고 및 그 제어방법
WO2017164712A1 (ko) 냉장고 및 그의 제어방법
WO2015069006A1 (en) Refrigerator
WO2017105079A1 (en) Refrigerator
WO2016013798A1 (en) Refrigerator and control method thereof
WO2017164710A1 (ko) 냉장고의 제어방법
WO2011149152A1 (en) Hot water supply device associated with heat pump
WO2017039234A1 (en) Refrigerator
EP3338041A1 (en) Refrigerator
WO2019143087A1 (ko) 제빙장치
WO2017164711A1 (ko) 냉장고의 제어방법
WO2019045306A1 (ko) 냉장고 및 그 제어방법
WO2020027596A1 (ko) 냉장고의 제어방법
WO2019164115A1 (en) Refrigerator and controlling method for the same
WO2017105047A1 (ko) 냉장고 및 그의 제어방법
WO2018048102A1 (ko) 증발기 및 이를 구비하는 냉장고
AU2018286352B2 (en) Refrigerator and method of controlling the same
WO2022270772A1 (ko) 냉장고
WO2022145847A1 (ko) 냉장고 및 그의 제어 방법
AU2016316427B2 (en) Refrigerator
WO2022131562A1 (ko) 냉장고 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017868985

Country of ref document: EP

Effective date: 20190611