WO2017164710A1 - 냉장고의 제어방법 - Google Patents

냉장고의 제어방법 Download PDF

Info

Publication number
WO2017164710A1
WO2017164710A1 PCT/KR2017/003231 KR2017003231W WO2017164710A1 WO 2017164710 A1 WO2017164710 A1 WO 2017164710A1 KR 2017003231 W KR2017003231 W KR 2017003231W WO 2017164710 A1 WO2017164710 A1 WO 2017164710A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
storage chamber
compartment
cold air
storage
Prior art date
Application number
PCT/KR2017/003231
Other languages
English (en)
French (fr)
Inventor
이남교
강성희
김진동
김혁순
남윤성
임지현
조용현
홍태화
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160035198A external-priority patent/KR102518816B1/ko
Priority claimed from KR1020160161305A external-priority patent/KR102593575B1/ko
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/087,956 priority Critical patent/US10837686B2/en
Publication of WO2017164710A1 publication Critical patent/WO2017164710A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature

Definitions

  • the present invention relates to a control method of a refrigerator.
  • Refrigerators are home appliances that keep food at a low temperature, and it is essential to keep the storage compartment at a constant low temperature at all times.
  • the storage compartment is maintained at a temperature within the upper limit range and the lower limit range based on the set temperature. That is, the refrigerator is controlled by driving a refrigeration cycle when the storage compartment temperature rises to the upper limit temperature, cooling the storage compartment, and stopping the refrigeration cycle when the storage compartment temperature reaches the lower limit temperature.
  • refrigerators have been developed in which a freezer and a refrigerating chamber each have an evaporator and an expansion device.
  • the refrigerator controls each expansion device to adjust the amount of refrigerant supplied from the compressor to each evaporator to maintain the internal temperatures of the freezer compartment and the refrigerating compartment at the refrigerating and freezing temperatures, respectively.
  • Korean Patent Publication No. 10-2016-0011110 (published on Jan. 29, 2016), which is a prior art document, discloses a refrigerator and a control method thereof.
  • the refrigerator of the prior art includes a first freezer for cooling the freezer compartment and a second freezer for cooling the refrigerator compartment.
  • the first and second freezers operate simultaneously. And, when the refrigerator compartment temperature is lower than the desired temperature, the first refrigeration unit is stopped.
  • the first and second refrigeration apparatus is controlled to continue to operate.
  • the second refrigeration unit is stopped. At this time, when the temperature of the freezer compartment does not satisfy the desired temperature, the first and second refrigeration apparatus are controlled to continue to operate.
  • each refrigeration unit since the on / off of each refrigeration unit is determined based on the desired temperature of each of the freezer compartment and the refrigerating compartment, there is a problem that the power consumption is increased because the refrigeration unit is frequently turned on / off.
  • the first refrigeration unit and the second refrigeration unit are operated alternately, power consumption may be reduced, but it is difficult to maintain the respective temperatures of the freezer compartment and the refrigerating compartment at a constant temperature, that is, at a constant temperature state. There is.
  • An object of the present invention is to provide a refrigerator capable of maintaining the temperature of the storage compartment at a constant temperature and a control method thereof.
  • Another object of the present invention is to provide a refrigerator capable of reducing the power consumption according to the operation of a cooling cycle for maintaining the temperature of the storage compartment at a constant temperature and a control method thereof.
  • Another object of the present invention is to provide a refrigerator and a control method thereof, which are controlled to reduce the possibility that the temperature of the storage compartment is out of the constant temperature state in order to improve the freshness of the stored object.
  • the subject of this invention is providing the refrigerator which can solve defrost reliability, and its control method, while the temperature of a storage compartment is kept at a constant temperature.
  • Another object of the present invention is to provide a refrigerator and a control method thereof in which the power consumption of the cold air supply means is reduced while the temperature of the storage compartment is kept at a constant temperature.
  • the control method of the refrigerator of the present invention includes a first compressor and a second compressor for compressing a refrigerant, a first evaporator for receiving coolant from the first compressor and generating cold air for cooling the first storage chamber, and cold air in the first storage chamber.
  • the cold air supply means for the second storage chamber increases the output. step; And after the sensed temperature of the second storage chamber reaches a first reference temperature for the second storage chamber, reducing or stopping the output of the cold air supply means for the second storage chamber.
  • the detected first output while the output of the cold air supply means for the second storage chamber is generated.
  • the temperature of the storage chamber reaches a value that is equal to or greater than the first reference temperature for the first storage chamber, a predetermined time has elapsed since the arrival or the temperature of the detected first storage chamber is the first reference temperature for the first storage chamber. And reducing or stopping the output of the cold air supply means for the second storage chamber when the second predetermined value N + c between the and the second reference temperature is reached.
  • the first specific value N + a may be greater than a second reference temperature for the first storage chamber and less than a target temperature of the first storage chamber.
  • the third specific value N + c may be greater than a target temperature of the first storage chamber and smaller than a first reference temperature for the first storage chamber.
  • the cold air supply means for the first storage compartment may include the first cooling fan, and the cold air supply means for the second storage compartment may include the second cooling fan.
  • the cold air supply means for the first storage chamber includes the first cooling fan and the first compressor, and when the detected temperature of the first storage chamber reaches a value equal to or less than a second reference temperature for the first storage chamber, In the reducing or stopping of the output of at least one of the cold air supply means for the first storage chamber, the first cooling fan may be turned off while the first compressor is turned on.
  • the temperature of the first storage chamber reaches a first specific value N + a between the first reference temperature and the second reference temperature for the first storage chamber, and thus, at least one of the cold air supply means for the first storage chamber.
  • the first compressor in operation can be turned off and the first cooling fan can be turned on.
  • the condenser for the first storage compartment and the condenser for the second storage compartment constitute one heat exchanger, and the refrigerant is configured to flow in two portions, and the refrigerant for cooling the first storage compartment is the first portion of the condenser. And a refrigerant for cooling the second storage compartment flow to the second portion of the condenser, and the condenser fin for the first portion and the condenser fin for the second portion may be connected to each other.
  • a control method of a refrigerator includes: stopping a refrigeration cycle for cooling the refrigerating compartment, and operating a refrigeration cycle for cooling the freezing compartment; During the refrigerating cycle, when the refrigerating compartment temperature reaches a first refrigerating compartment reference temperature, operating the refrigeration cycle; Determining whether a stop condition of the refrigeration cycle is satisfied while the refrigeration cycle is in operation; When the stop condition of the refrigeration cycle is satisfied, stopping the refrigeration cycle; And when the detected refrigerator compartment temperature reaches a second refrigerator compartment reference temperature lower than the first refrigerator compartment reference temperature, the refrigeration cycle is stopped and the refrigeration cycle is operated.
  • the determining whether the stop condition of the refrigerating cycle is satisfied it may be determined whether the freezer compartment temperature reaches a first freezer compartment reference temperature lower than a target temperature of the freezer compartment.
  • the refrigeration cycle is stopped. Can be.
  • the stop reference temperature may be a temperature between the first refrigerating compartment reference temperature and a target temperature of the refrigerating compartment.
  • the step of determining whether the stop condition of the refrigeration cycle is satisfied it is determined whether the reference time has elapsed after the start of the refrigeration cycle operation, and if the reference time has elapsed after the refrigeration cycle operation starts, the refrigeration cycle is stopped. Can be.
  • the refrigerating compartment fan is turned on.
  • the fan on reference temperature is higher than the fan off reference temperature, and the fan off reference temperature is higher than the second refrigerator compartment reference temperature.
  • the fan on reference temperature is higher than a target temperature of the refrigerating compartment and the second refrigerating compartment reference temperature.
  • the refrigerating compartment fan is turned on.
  • the refrigerator compartment fan is turned on, and when the second reference time elapses, the refrigerator compartment fan is turned off.
  • a refrigerator includes a freezing cycle including a compressor for a freezer compartment and operating for cooling the freezer compartment; A refrigeration cycle comprising a refrigerator compartment compressor and a refrigerating compartment fan, the refrigeration cycle operating for cooling the refrigerating compartment; A freezer compartment temperature sensor detecting a temperature of the freezer compartment; A refrigerator compartment temperature sensor for sensing a temperature of the refrigerator compartment; And a control unit for controlling the operation of the refrigeration cycle and the refrigeration cycle based on the temperature sensed by each temperature sensor.
  • the control unit activates the refrigerating cycle, and the refrigerating compartment temperature is lower than the second refrigerating compartment reference temperature lower than the target temperature of the refrigerating compartment.
  • stop the refrigeration cycle and start the refrigeration cycle When it is reached, stop the refrigeration cycle and start the refrigeration cycle.
  • the control unit stops the freezing cycle when the temperature of the freezing chamber reaches a first freezing chamber reference temperature lower than a target temperature of the freezing chamber.
  • the controller stops the freezing cycle.
  • the refrigerator compartment fan on condition is satisfied after the refrigeration cycle is stopped, the refrigerator compartment fan is turned on and stopped.
  • the temperature of the refrigerating compartment may be maintained within the refrigerating compartment set temperature range, but also the temperature of the freezing compartment may be maintained within the refrigerating compartment set temperature range.
  • the storage period of the food stored in the refrigerator compartment can be increased. That is, there is an advantage that the food stored in the refrigerating compartment may be overcooled or sieved.
  • the refrigerating cycle and the refrigerating cycle can be simultaneously operated in the process of maintaining the freezing compartment and the refrigerating compartment at a constant temperature, power consumption can be reduced.
  • the off cycle of the cooling cycle for cooling the refrigerating compartment or the freezing compartment may be long, there is an advantage that the number of on / off of the cold air supply means is reduced to reduce power consumption.
  • FIG. 1 is a view schematically showing the configuration of a refrigerator according to one embodiment of the present invention.
  • FIG. 2 is a block diagram of a refrigerator of the present invention.
  • FIG. 3 is a flowchart illustrating a control method of a refrigerator according to an embodiment of the present invention.
  • FIG. 4 is a view showing the operating state of the temperature change and the cooling cycle of the freezer compartment and the refrigerating compartment according to the control method of the refrigerator according to an embodiment of the present invention.
  • FIG. 5 is a graph showing a storage period according to a temperature deviation between a first reference temperature and a second reference temperature.
  • FIG. 6 is a flowchart illustrating a control method of a refrigerator according to another embodiment of the present invention.
  • FIG. 7 is a view showing a temperature change of a storage compartment according to a control method of a refrigerator according to another embodiment of the present invention.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be “connected”, “coupled” or “connected”.
  • FIG. 1 is a view schematically showing the configuration of a refrigerator according to an embodiment of the present invention
  • Figure 2 is a block diagram of a refrigerator of the present invention.
  • the refrigerator 1 includes a cabinet 10 having a freezing compartment 111 and a refrigerating compartment 112 formed therein, and the freezer compartment coupled to the cabinet 10.
  • 111 and a refrigerating compartment 112 may include a door (not shown), respectively.
  • the freezer compartment 111 and the refrigerating compartment 112 may store a stored object such as food.
  • the freezing compartment 111 and the refrigerating compartment 112 may be partitioned in the left and right or up and down directions in the cabinet 10 by the partition wall 113.
  • the refrigerator 1 may include a cooling cycle for cooling the freezing compartment 111 and the refrigerating compartment 112, respectively.
  • the cooling cycle may include a refrigerating cycle for cooling the freezer compartment 111 and a refrigerating cycle for cooling the refrigerating compartment 112.
  • the refrigeration cycle may include a freezer compartment compressor 11 (or a first compressor), a condenser 13, a first expansion member 14, a first evaporator 16, and a freezer compartment 18. Can be.
  • the freezer compartment fan 18 may blow air to the first evaporator 16 side for circulation of the cold air of the freezer compartment 111.
  • freezer compartment compressor 11 and the freezer compartment fan 18 may be referred to as "freezer cold air supply means" which operate only to supply cold air to the freezer compartment 111.
  • the refrigerating cycle may include a refrigerator compartment compressor 12 (or a second compressor), a condenser 13, a second expansion member 15, a second evaporator 17, and a refrigerator compartment fan 19. Can be.
  • the refrigerating compartment fan 19 may blow air to the second evaporator 17 side for circulation of cold air in the refrigerating compartment 112.
  • the refrigerating chamber compressor 12 and the refrigerating chamber fan 19 may be referred to as "cold room cold air supply means" which operate only to supply cold air to the refrigerating chamber 112.
  • the condenser 13 is made of one heat exchanger, it may be divided into two parts to allow the refrigerant to flow. That is, the refrigerant discharged from the first compressor 11 may flow through the first portion 131 of the condenser 13, and the refrigerant discharged from the second compressor 12 may be the second of the condenser 13. The portion 132 may flow.
  • the condenser fin for the first portion 131 and the condenser fin for the second portion 132 may be connected to increase the condensation efficiency of the condenser 13.
  • the first portion 131 may be referred to as a first condenser
  • the second portion 132 may also be referred to as a second condenser.
  • the refrigerator 1 may include a freezer compartment temperature sensor 31 (or a first temperature sensor) for sensing a temperature of the freezer compartment 111, and a freezer compartment temperature sensor for sensing a temperature of the refrigerating compartment 112. 32 (or a second temperature sensor), an input unit 33 for inputting a target temperature (or desired temperature) of each of the freezer compartment 111 and the refrigerating chamber 112, and the input target temperature and temperature sensor 31.
  • the controller 20 may further include a controller 20 for controlling the cooling cycle based on the temperature sensed by the reference numeral 33.
  • a temperature higher than a target temperature of the freezer compartment 111 may be referred to as a second freezer compartment reference temperature, and a temperature lower than a target temperature of the freezer compartment 111 may be referred to as a first freezer compartment reference temperature.
  • a range between the first freezer compartment reference temperature and the second freezer compartment reference temperature may be referred to as a freezer compartment set temperature range.
  • the target temperature of the freezer compartment 111 may be an average temperature of the first freezer compartment reference temperature and the second freezer compartment reference temperature.
  • the controller 20 controls the temperature of the freezer compartment 111 to be maintained within the set temperature range. At this time, the control to maintain the temperature of the freezer compartment 111 within the set temperature range is referred to as "constant temperature control of the freezer compartment”.
  • a temperature higher than a target temperature of the refrigerating chamber 112 may be referred to as a first refrigerating chamber reference temperature
  • a temperature lower than a target temperature of the refrigerating chamber 112 may be referred to as a second refrigerating chamber reference temperature
  • a range between the first refrigerator compartment reference temperature and the second refrigerator compartment reference temperature may be referred to as a refrigerator compartment set temperature range.
  • the target temperature of the refrigerator compartment 112 may be an average temperature of the first refrigerator compartment reference temperature and the second refrigerator compartment reference temperature.
  • control unit 20 controls so that the temperature of the refrigerating chamber 112 is maintained within the set temperature range.
  • a control for maintaining the temperature of the refrigerating compartment 112 within the set temperature range is referred to as "constant temperature control of the refrigerating compartment".
  • FIG. 3 is a flowchart illustrating a control method of a refrigerator according to an embodiment of the present invention
  • FIG. 4 is a view illustrating an operation state of a temperature change and a cooling cycle of a freezer compartment and a refrigerator compartment according to a control method of a refrigerator according to an embodiment of the present invention. Figure showing.
  • the cycle for cooling the first storage compartment (either the freezer compartment or the refrigerating compartment) and the second storage compartment (the other one of the freezer compartment and the refrigerating compartment) may be simultaneously cycled.
  • the operation logic for reducing the power consumption and improving the efficiency of the cooling cycle will be described.
  • the operation logic may be applied to a cooling cycle having a section in which cold air supply means for the first storage chamber and the second storage chamber are simultaneously driven.
  • Cooling cycles for the first storage chamber and the second storage chamber are each cold air supply means according to the first reference temperature and the second reference temperature of the first storage chamber, the first reference temperature and the second reference temperature of the second storage chamber Each cooling cycle can be configured to work independently of this.
  • the cooling cycle for the first storage compartment may increase the output of the cold air supply means for the first storage compartment when the temperature of the first storage compartment reaches the first reference temperature for the first storage compartment.
  • it may be operable to reduce the output of the cold air supply means for the first storage chamber.
  • the cooling cycle for the second storage compartment may increase the output of the cold air supply means for the second storage compartment when the temperature of the second storage compartment reaches the first reference temperature for the second storage compartment.
  • the temperature of the second storage compartment reaches a second reference temperature for the second storage compartment, it may be operable to reduce the output of the cold air supply means for the second storage compartment.
  • a section in which cold air supply means for the first storage chamber and the second storage chamber are simultaneously driven may occur, thereby increasing power consumption.
  • the cooling efficiency may be lowered in the simultaneous driving section, thereby increasing power consumption.
  • the condenser for the first storage compartment and the condenser for the second storage compartment are commonly used as follows.
  • the condenser 13 constitutes one heat exchanger, and may be divided into two parts to allow the refrigerant to flow. That is, the refrigerant discharged from the first compressor 11 may flow through the first portion 131 of the condenser 13, and the refrigerant discharged from the second compressor 12 may be the second of the condenser 13.
  • the portion 132 may flow. Accordingly, the first portion 131 may be referred to as a first condenser, and the second portion 132 may also be referred to as a second condenser.
  • the cooling cycles for the first storage compartment and the second storage compartment constitute respective cooling cycles to operate according to the first reference temperature and the second reference temperature of the first storage compartment and the second reference temperature of the second storage compartment. You may.
  • the cooling cycle for the first storage compartment increases the output of the cold air supply means for the first storage compartment when the temperature of the first storage compartment reaches the first reference temperature for the first storage compartment, When the temperature reaches a second reference temperature for the first storage compartment, the output of the cold air supply means for the first storage compartment may be reduced or stopped.
  • the cooling cycle for the second storage compartment increases the output of the cold air supply means for the second storage chamber when the temperature of the first storage chamber reaches the second reference temperature for the first storage chamber, and the temperature of the first storage chamber is increased.
  • the predetermined time elapses after reaching the first reference temperature for the first storage room or reaches a specific temperature (N + c) after reaching the first reference temperature for the first storage room, the second storage room is opened. It can be configured to reduce or stop the output of the cold air supply means for.
  • the refrigerating cycle may operate for controlling the temperature of the freezer compartment 111 (S1). That is, the freezer compartment compressor 11 and the freezer compartment 18 operate to control the temperature of the freezer compartment 111.
  • the temperature of the freezer compartment 111 is lowered.
  • the temperature of the refrigerating chamber 112 increases.
  • the temperature of the refrigerating compartment 112 is periodically detected by the refrigerating compartment temperature sensor 32, and the temperature of the freezing compartment 111 is periodically detected by the freezing compartment temperature sensor 31.
  • the controller 20 determines whether the detected refrigerator compartment temperature reaches the first refrigerator compartment reference temperature (S2).
  • step S3 when it is determined that the detected refrigerator compartment temperature reaches the first refrigerator compartment reference temperature, the controller 20 operates the refrigeration cycle (S3). That is, the controller 20 operates the refrigerator compartment compressor 12 and the refrigerator compartment fan 19 to lower the temperature of the refrigerator compartment 112.
  • the refrigerating cycle may already be in operation at the time when the refrigerating cycle is operated.
  • the controller 20 may determine whether the detected temperature of the refrigerating chamber 111 reaches a stop reference temperature N + c (third specific value) (S4). .
  • the stop reference temperature is a temperature for determining whether the stop condition of the refrigeration cycle is satisfied.
  • step S4 when it is determined that the detected temperature of the refrigerating chamber 112 reaches the stop reference temperature, the control unit 20 stops the refrigerating cycle (S5). That is, the control unit 20 stops the freezer compartment compressor 11 and the freezer compartment fan 18.
  • the controller 20 may determine that the freezer compartment 111 is detected by the freezer compartment temperature sensor 31. It is determined whether the temperature has reached the first freezer compartment reference temperature (S6).
  • step S6 when it is determined that the detected freezer temperature reaches the first freezer reference temperature, the control unit 20 stops the freezing cycle (S5).
  • step S4 and step S6 may be referred to as determining whether the stop condition of the refrigeration cycle is satisfied.
  • the refrigeration cycle and the refrigeration cycle can be operated at the same time. At this time, the longer the time that the refrigeration cycle and the refrigeration cycle is operating at the same time, the power consumption increases.
  • the refrigerating chamber 112 detected even before the temperature of the freezer compartment 111 detected after the start of the refrigerating cycle reaches the first freezing chamber reference temperature so that the time for simultaneously operating the refrigerating cycle and the refrigerating cycle is reduced. Is determined to reach the stop reference temperature, the refrigeration cycle is stopped.
  • the stop reference temperature is a temperature between the first refrigerator compartment reference temperature and the second refrigerator compartment reference temperature.
  • the stop reference temperature may be set to a temperature between the target temperature of the refrigerating chamber 112 and the first refrigerating chamber reference temperature.
  • the controller 20 may determine whether the reference time has elapsed after the start of the refrigeration cycle operation. Do. When the reference time elapses after the refrigeration cycle operation starts, the refrigeration cycle may be stopped.
  • the step of determining whether the reference time has elapsed after the operation of the refrigerating cycle may be referred to as determining whether the stop condition of the refrigerating cycle is satisfied.
  • the control unit 20 stops the refrigerating cycle and operates the refrigerating cycle (S8).
  • the operation start time of the refrigerating cycle is a time point when the temperature of the refrigerating compartment 111 reaches the first refrigerating compartment reference temperature
  • the stop point of the refrigerating cycle is the temperature of the refrigerating compartment 111. It is time to reach the reference temperature of the second refrigerator compartment.
  • the operation start time of the refrigeration cycle is the time when the temperature of the refrigerating chamber 111 reaches the second refrigerating chamber reference temperature.
  • the start time of the refrigeration cycle may be determined according to the temperature change of the refrigerating chamber 112.
  • step S6 If the start point of the operation of the refrigeration cycle is determined according to the temperature change of the refrigerating chamber 112, assuming that step S6 is not applied, the following problems may occur.
  • the operating time of the refrigeration cycle is increased, the operating time of the next refrigeration cycle (N + 1th) after the stop of the current refrigeration cycle (Nth) is shortened. In this case, since the waiting time until the refrigeration cycle is operated again after the next refrigeration cycle operation becomes longer, there is a problem that the operation time of the next refrigeration cycle (N + 2) is longer.
  • the refrigerating cycle and the refrigerating cycle simultaneously operate as in the present invention, even after the refrigerating cycle starts to operate, even if the detected freezer temperature reaches the first freezer reference temperature, the detected refrigerating compartment temperature stops. If it is determined that x is reached, by stopping the refrigeration cycle, it is possible to prevent an increase in the redundant operation time of the refrigeration cycle and the refrigeration cycle.
  • step S9 and S10 operation logic including a temperature rise delay output period will be described (steps S9 and S10).
  • the operation logic may be applied to all cycles regardless of whether there is a section in which cold air supply means for the first storage chamber and the second storage chamber are simultaneously driven.
  • At least one output adjustment of the cold air supply means (which may include a compressor, a blower fan, a damper provided on the flow path connecting the freezer compartment and the refrigerating compartment, a cold switching valve for switching the flow of the refrigerant, etc.) Reducing the temperature deviation between the first reference temperature (e.g., upper limit value) and the second reference temperature (e.g., lower limit value) from which the off is determined) can improve the freshness of the object.
  • the first reference temperature e.g., upper limit value
  • the second reference temperature e.g., lower limit value
  • FIG. 5 is a graph showing a storage period according to a temperature deviation between a first reference temperature and a second reference temperature.
  • the storage period of the stored object is increased.
  • the day when the weight of vegetables is reduced by 6% is increased from 8.5 days to 12 days.
  • the temperature increase delay means may be operated at some point after the temperature of the storage compartment reaches the second reference temperature.
  • the refrigerator has the first storage compartment and the second storage compartment, and the refrigerator has a first reference temperature (for example, an upper limit value) and a second reference temperature (for example, a lower limit value) for each storage room.
  • the temperature of each storage compartment may be controlled to be maintained between the first reference temperature and the second reference temperature.
  • the controller of the refrigerator may reduce or stop the output of the cold air blowing fan and maintain the operation of the compressor when the temperature of the storage compartment detected during the cooling cycle reaches the second reference temperature.
  • the controller of the refrigerator may reduce or stop the output of the cold air blowing fan and reduce or stop the output of the compressor when the temperature of the storage compartment detected while the cycle is operating reaches the second reference temperature.
  • the controller 20 may determine whether the detected temperature of the refrigerating compartment has reached a fan on reference temperature N + a. There is (S9).
  • the controller 20 may turn on the refrigerator compartment fan 19 (S10). That is, the refrigerator compartment fan 19 is turned on while the refrigeration cycle is stopped so that cold air flows toward the refrigerator compartment evaporator 17.
  • the case where the detected temperature of the refrigerating compartment reaches the fan on reference temperature may be referred to as a case where the on condition of the refrigerating compartment fan 19 is satisfied.
  • the reason why the refrigerator compartment fan 19 is turned on in the present invention is that the temperature of the refrigerator compartment 112 is lowered by using the latent heat of evaporation of the refrigerator compartment evaporator 17 so that the off cycle of the refrigerator cycle is longer. To do this.
  • the refrigerator compartment compressor 12 and the refrigerator compartment fan 19 are stopped, when the detected temperature of the refrigerator compartment reaches the fan on reference temperature, the refrigerator compartment fan 19 By turning on, the off cycle of the refrigerating cycle can be lengthened to reduce power consumption.
  • the fan on reference temperature may be a temperature between the target temperature of the refrigerating chamber 112 and the second refrigerating chamber reference temperature.
  • the fan on reference temperature may be lower than the stop reference temperature.
  • step S11 and S12 which operate to stop the temperature rise delay output will be described.
  • the protection logic may be applied to all cycles regardless of whether there is a section in which cold air supply means for the first storage chamber and the second storage chamber are simultaneously driven.
  • the addition of a section operating with a temperature rise delay output provides the advantage that the temperature of the reservoir fluctuates gently between the first and second reference temperatures, but on the one hand the entire cooling cycle. By increasing the section operated to supply cold air during the process, the likelihood of implantation may increase.
  • protection logic may be added to stop the temperature rise delay output.
  • the cold air supply means starts to operate with a temperature rise delay output, when a predetermined time elapses or when the temperature of the storage compartment reaches a certain temperature (eg, N + b) (second specific value), The output of the cold air supply means can be reduced or stopped.
  • a predetermined time elapses or when the temperature of the storage compartment reaches a certain temperature (eg, N + b) (second specific value).
  • N + b second specific value
  • the operation logic including the temperature increase delay output section may be terminated. That is, output control of the cold air supply means for the first storage compartment may be terminated.
  • the controller 20 determines whether the detected refrigerating compartment temperature reaches the fan-off reference temperature N + b. (S11).
  • step S11 when it is determined that the detected temperature of the refrigerating chamber 112 reaches the fan-off reference temperature, the controller 20 may turn off the refrigerating compartment fan 19 (S12).
  • the fan off reference temperature is lower than the fan on reference temperature and is a temperature between the fan on reference temperature and the second refrigerating chamber reference temperature.
  • the reason for turning off the refrigerator compartment fan 19 when the refrigerator compartment temperature reaches the fan-off reference temperature while the refrigerator compartment fan 19 is operating in the present invention is to prevent freezing of the refrigerator compartment evaporator 17. to be.
  • the refrigerator compartment fan 19 is turned on when the refrigerator compartment fan 19 is stopped and a first reference time has elapsed, and the refrigerator compartment fan 19 is turned on when the refrigerator compartment fan 19 is turned on and the second reference time has elapsed. Can be turned off.
  • the first reference time is such that the temperature of the refrigerating chamber 112 can reach a temperature close to the target temperature of the refrigerating chamber 112 while the refrigerating cycle is stopped and the temperature of the refrigerating chamber 112 is increased. It can be determined by the time of.
  • the second reference time is the temperature of the refrigerator compartment 112 to reach a predetermined temperature higher than the second refrigerator compartment reference temperature while the refrigerator compartment fan 19 is turned on to decrease the temperature of the refrigerator compartment 112. It can be determined as long as possible.
  • the case where the refrigeration cycle is stopped and the first reference time elapses may be referred to as a case where an on condition of the refrigerating compartment fan 19 is satisfied.
  • step S6 it is also possible to add a step of determining whether the freezer compartment temperature reaches the first freezer compartment reference temperature during the operation of the refrigeration cycle. That is, the same step as step S6 can be added between step S1 and step S2.
  • the freezer cycle may be stopped when the temperature of the freezer compartment reaches the first freezer compartment reference temperature. In this state, all of the refrigerating cycle and the refrigerating cycle are stopped.
  • the temperature of the refrigerating chamber is maintained within the refrigerating chamber set temperature range, but also the temperature of the freezer compartment can be maintained within the freezer compartment set temperature range.
  • the storage period of the food stored in the refrigerator compartment can be increased. That is, there is an advantage that the food stored in the refrigerating compartment may be overcooled or sieved.
  • the refrigerating cycle and the refrigerating cycle can be simultaneously operated in the process of maintaining the freezing compartment and the refrigerating compartment at a constant temperature, power consumption can be reduced.
  • FIG. 6 is a flowchart illustrating a control method of a refrigerator according to another embodiment of the present invention
  • FIG. 7 is a view illustrating a temperature change of a storage compartment according to a control method of a refrigerator according to another embodiment of the present invention.
  • This embodiment is the same as the previous embodiment in other parts, there is a difference in the operation logic and the protection logic including the temperature rise delay output interval. Therefore, hereinafter, only characteristic parts of the embodiment will be described.
  • a total of four steps may be sequentially performed to maintain a temperature of a storage compartment selected from one of a freezer compartment and a freezer compartment within a predetermined temperature range.
  • the refrigerator may form one cooling cycle using a single compressor and a single evaporator.
  • the refrigerator may form, for example, two cooling cycles separated by using two compressors and two evaporators.
  • the compressor and the fan when the storage compartment is a refrigerator compartment, the compressor and the fan may be a refrigerator compartment refrigerator and a refrigerator compartment fan.
  • the compressor and the fan when the storage compartment is a freezer compartment, the compressor and the fan may be a freezer compartment compressor and a freezer compartment fan.
  • the control method of the refrigerator of the present invention includes a first step of driving a compressor for compressing a refrigerant and a fan for moving air, a second step of driving the compressor, stopping the fan, stopping the compressor, and the fan It may include a third step of driving and a fourth step of stopping the compressor and the fan.
  • the first step may be immediately performed.
  • the temperature of the storage compartment is lowered, in the second step, the temperature of the storage compartment is increased, in the third step, the temperature of the storage compartment is lowered, and in the fourth step, the temperature of the storage compartment is increased.
  • the first step begins when the start condition of the first step is satisfied (S21).
  • the start condition of the first step refers to a temperature change width allowed at a set temperature of the storage chamber, that is, a temperature obtained by adding a first set difference value (first reference temperature). That is, when the temperature of the storage compartment is increased by the set temperature and the first predetermined temperature difference value, the first step is performed (S22).
  • the first set temperature difference value may be approximately 0.5 degrees.
  • the evaporator is cooled, and the air cooled by the fan through the evaporator is moved to the storage compartment, whereby the temperature of the storage compartment may be lowered.
  • the temperature of the storage chamber may be changed in the form of a curve rather than a straight line as shown in FIG. 7.
  • the condition for starting the second step is satisfied (S30). At this time, the condition in which the second step begins is the same as the condition in which the first step ends. This is because the second step is performed immediately after the first step is completed.
  • the first step may be completed at a temperature (second reference temperature) obtained by subtracting the first set difference value from the set temperature. That is, the second step may be started at a temperature in which the temperature of the storage chamber is obtained by subtracting the first set difference value from the set temperature.
  • the storage chamber may be changed within a range of a temperature obtained by adding the first predetermined difference value to a preset temperature and a temperature obtained by subtracting the first predetermined difference value from the set temperature.
  • a temperature change may be made within a range of 1 degree based on the set temperature of the storage compartment.
  • the compressor maintains driving, while the fan may stop driving (S32). Since the compressor is driven, the evaporator cools the air around the evaporator at a low temperature. However, since the fan is not driven, most of the air cooled by the evaporator is not moved to the storage compartment and is located around the evaporator.
  • the temperature of the storage compartment is raised compared to the temperature at which the second step begins.
  • the condition for starting the third step is satisfied (S40). At this time, the condition in which the third step starts is the same as the condition in which the second step ends. This is because the third step is performed immediately after the second step is completed.
  • the second step may be terminated when the temperature of the storage chamber reaches a temperature obtained by adding a second set difference value to a set temperature.
  • the second predetermined difference value may increase as the temperature outside the refrigerator increases. Increasing the second predetermined difference value may mean that the execution time of the second step is increased.
  • the second set difference is greatly changed from the set temperature and the second set difference value, which are the end conditions of the second step, wait until the temperature of the storage chamber rises higher, and then the execution of the second step is finished. It is possible to do
  • the user tends to be relatively sensitive to noise when the compressor is repeatedly driven and stopped with frequent cycles.
  • the compressor since the compressor is less energy efficient if the compressor is repeatedly driven and stopped, it is preferable that the compressor is stopped after being driven so as not to be driven for a long time after securing sufficient cold air after starting the drive. .
  • the second set difference value can be changed in size while having a total of four sections.
  • the second set difference value may be selected according to the temperature measured by the external temperature sensor while having only a total of four change values.
  • the second set difference value is preferably smaller than the first set difference value. That is, it is preferable that the temperature of the storage compartment at the end of the second step is lower than the temperature of the storage compartment at the start of the first step.
  • the temperature change range in a said 1st step includes the temperature change range in a said 2nd step, and the temperature change range of a said storage chamber becomes small. Therefore, the storage compartment is changed within a narrow range around the set temperature, thereby reducing the temperature variation of the storage compartment.
  • the second step it may be determined whether the second step has been performed during the first preset time T1 (S40).
  • the execution time of the second step that is, the first preset time T1
  • the first set time may be changed in size while having a total of four sections.
  • the first set time may be selected according to the temperature measured by the external temperature sensor while having only a total of four change values.
  • the first set time T1 may be measured by a timer.
  • the timer starts measuring the elapsed time when the second stage starts, that is, when the compressor is driven and the fan stops, and the controller transmits information on whether the first preset time T1 has elapsed. I can deliver it.
  • the compressor stops driving, and the fan is driven (S42). Since the compressor is not driven, no cold air is generated in the evaporator, so that the ambient air of the evaporator is hardly cooled continuously. Meanwhile, since the air around the evaporator is cooled in the second step, when the fan is driven, the cold air is moved to the storage compartment to cool the storage compartment. Therefore, as shown in FIG. 7, the internal temperature of the storage compartment may be lowered.
  • the third step since the compressor is not driven, noise caused by the compressor is not generated.
  • the third stage may maintain a smaller noise level than the second stage.
  • the condition for starting the fourth step is satisfied (S50). At this time, the condition in which the fourth step starts is the same as the condition in which the third step ends. This is because the fourth step is performed immediately after the third step is completed.
  • the third step may be terminated when the temperature of the evaporator reaches a certain temperature.
  • the temperature of the evaporator can be measured at a temperature sensor for the evaporator.
  • the specific temperature may mean a temperature at which the sublimation phenomenon of the ice implanted in the evaporator due to the operation of the fan does not affect the reliability of dew or freezing inside the storage compartment.
  • the specific temperature may specifically mean 0 degrees Celsius or more, that is, an image.
  • the temperature sensor for the evaporator can measure the temperature of one side of the tube or the evaporator in which the refrigerant is introduced into the evaporator.
  • the third step may be performed and terminated during the second set time T2.
  • the compressor when the external temperature is high, the compressor needs to be driven more to cool the storage compartment to the same temperature. If it is determined that the external temperature is high in the second step, since the first set time is long, it is driven for a longer time of the compressor, and more cold air is accumulated. Accordingly, in order to sufficiently move the cold air accumulated in the second step to the storage chamber in the third step, it is possible to drive the fan for a longer time. That is, since more cold air is included, the fan is driven more so that the cool air around the evaporator is sufficiently transferred to the storage compartment so that the storage compartment can be cooled.
  • the second predetermined time may be changed in size while having a total of four sections.
  • the second set time may be selected according to the temperature measured by the external temperature sensor while having only a total of four change values.
  • the start condition of the fourth step may be started when the temperature of the storage chamber reaches the value obtained by subtracting the first set difference value from the set temperature in addition to the above two. Since the related content is the same as the case of starting the second step, a detailed description thereof will be omitted.
  • the condition for terminating the fourth step is satisfied (S60). At this time, the condition in which the fourth step ends is the same as the condition in which the first step begins. This is because the first step is performed immediately after the fourth step is completed.
  • the fourth step may be terminated at a temperature in which the temperature of the storage chamber is equal to the first preset difference value. Therefore, the change range of the internal temperature of the storage compartment may be included in the change range of the temperature of the first step.
  • the temperature change range in the first step may be the same as the temperature change range in the fourth step.
  • the period for driving and stopping the compressor may be long. Therefore, the noise due to the driving of the compressor can be reduced.
  • the energy efficiency consumed to operate the compressor may be improved. If the compressor is frequently turned off and on again, the power consumed to drive the compressor can be greatly increased.
  • the temperature change range of the first step includes the temperature change range of the second step, the third step and the third step, so that the temperature of the storage chamber as a whole may be changed within the temperature change range of the first step. Can be.
  • the temperature of the storage compartment may be changed within the temperature change range of the fourth step. Therefore, the width of the change range of the temperature of the storage compartment is reduced so that the temperature of the food stored in the storage compartment can be maintained within a certain range, and the storage period of the food can be increased.
  • the storage compartment may be a refrigerating compartment. Since the refrigerator has a set temperature of the image, food is stored at a higher temperature than the freezer. Therefore, the food stored in the refrigerator compartment is more sensitive to the temperature change in the storage compartment than the food stored in the freezer compartment. It is possible to apply the control flow described in the present invention to the refrigerating chamber to reduce the temperature change range of the refrigerating chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

본 발명은 냉장고의 제어방법에 관한 것이다. 본 발명의 냉장고의 제어방법은, 감지된 제1저장실의 온도가 상기 제1저장실을 위한 제2기준 온도 이하인 값에 도달한 경우, 상기 제1저장실을 위한 냉기공급수단 중 적어도 하나의 출력을 줄이거나 정지시키는 단계; 상기 제1저장실의 온도가 상기 제2기준 온도 이하의 값에 도달한 이후, 일정시간이 경과하거나 혹은 감지된 상기 제1저장실의 온도가 상기 제1저장실을 위한 제1기준 온도와 제2기준 온도 사이의 제1특정값(N+a)에 도달하면, 상기 제1저장실을 위한 냉기공급수단 중 적어도 하나의 출력을 증가시키는 단계; 및 이전 단계에서 상기 냉기공급수단의 출력이 변경된 후 일정 시간이 경과하거나 혹은 감지된 상기 제1저장실의 온도가 상기 제1특정값 (N+a)과 상기 제2기준 온도 사이의 미리 설정된 제2특정값(N+b)에 도달하면, 상기 제1저장실을 위한 냉기공급수단 중 적어도 하나의 출력을 감소시키거나 정지시키는 단계를 포함한다.

Description

냉장고의 제어방법
본 발명은 냉장고의 제어방법에 관한 것이다.
냉장고는 음식물을 저온으로 보관하는 가전 기기로서, 저장실이 항상 일정한 저온으로 유지되도록 하는 것이 필수적이다. 현재 가정용 냉장고의 경우, 저장실이 설정 온도를 기준으로 상한 범위와 하한 범위 내의 온도로 유지되도록 하고 있다. 즉, 저장실 온도가 상한 온도로 상승하면 냉동 사이클을 구동하여 저장실을 냉각하고, 저장실 온도가 하한 온도에 도달하면 냉동 사이클을 정지하는 방법으로 냉장고를 제어하고 있다.
근래에는, 냉동실 및 냉장실에 증발기와 팽창장치가 각각 설치된 냉장고가 개발되었다. 이 냉장고는 각 팽창장치를 제어하여 압축기에서 각 증발기로 공급되는 냉매의 량을 조절함으로써 냉동실 및 냉장실의 고내 온도를 냉장 온도 및 냉동 온도로 각각 유지시킨다.
선행문헌인 한국공개특허공보 10-2016-0011110호(공개일 2016.01.29.)에는 냉장고 및 그 제어방법이 개시된다.
선행문헌의 냉장고의 경우, 냉동실 냉각을 위한 제1냉동장치와 냉장실 냉각을 위한 제2냉동장치를 포함한다.
냉동실 및 냉장실 각각의 온도를 하강시키기 위하여 상기 제1냉동장치와 상기 제2냉동장치가 동시에 작동한다. 그리고, 냉장실 온도가 희망온도 보다 낮은 경우 제1냉동장치가 정지되도록 한다.
이때, 냉장실의 온도가 희망온도를 만족하지 못하는 경우에는 제1 및 제2냉동장치가 계속 작동하도록 제어한다.
또한, 냉동실 온도가 희망온도 보다 낮은 경우, 제2냉동장치가 정지되도록 한다. 이때, 냉동실의 온도가 희망온도를 만족하지 못하는 경우에는 제1 및 제2냉동장치가 계속 작동하도록 제어한다.
그런데, 선행문헌에 의하면, 냉장실의 희망 온도가 만족되거나 냉동실의 희망 온도가 만족될 때까지는 제1 및 제2냉동장치가 동시에 작동하므로, 소비 전력이 증가되는 문제가 있다.
또한, 선행문헌의 경우, 냉동실과 냉장실 각각의 희망 온도를 기준으로 각 냉동장치의 온/오프가 결정되므로, 빈번하게 냉동장치가 온/오프되므로 소비 전력이 증가되는 문제가 있다.
만약, 선행문헌에서 제1냉동장치와 제2냉동장치를 교번하여 작동시키는 경우, 소비 전력은 감소할 수 있으나, 냉동실과 냉장실의 각각의 온도가 일정 온도로 유지, 즉 정온 상태로 유지하기 어려운 문제가 있다.
본 발명의 과제는, 저장실의 온도가 정온 상태로 유지될 수 있는 냉장고 및 그의 제어방법을 제공하는 것에 있다.
또한, 본 발명의 과제는, 저장실의 온도를 정온 상태로 유지시키기 위한 냉각 사이클의 작동에 따른 소비 전력이 줄어들 수 있는 냉장고 및 그의 제어방법을 제공하는 것에 있다.
또한, 본 발명의 과제는, 피보관물의 신선도 향상을 위하여, 저장실의 온도가 정온 상태에서 벗어날 가능성을 줄이도록 제어되는 냉장고 및 그의 제어방법을 제공하는 것에 있다.
또한, 본 발명의 과제는, 저장실의 온도가 정온 상태로 유지되는 동안 제상 신뢰성을 해결할 수 있는 냉장고 및 그의 제어방법을 제공하는 것에 있다.
또한, 본 발명의 과제는, 저장실의 온도가 정온 상태로 유지되면서도 냉기공급수단의 소비전력이 줄어들 수 있는 냉장고 및 그의 제어방법을 제공하는 것에 있다.
본 발명의 냉장고의 제어방법은, 냉매를 압축하는 제1압축기 및 제2압축기, 상기 제1압축기로부터 냉매를 공급받아 제1저장실을 냉각시키기 위한 냉기를 발생시키는 제1증발기, 제1저장실에 냉기를 공급하기 위한 제1냉각팬, 상기 제2압축기로부터 냉매를 공급받아 제2저장실을 냉각하기 위한 냉기를 발생시키는 제2증발기 및 상기 제2저장실에 냉기를 공급하기 위한 제2냉각팬을 포함하고, 상기 제1저장실의 냉각 사이클과 상기 제2저장실 냉각 사이클이 동시 운전 혹은 교번 운전이 가능한 냉장고의 제어방법에 있어서, 상기 제1저장실의 온도가 감지되는 단계; 감지된 상기 제1저장실의 온도가 상기 제1저장실을 위한 제1기준 온도 이상인 값에 도달한 경우, 상기 제1저장실을 위한 냉기공급수단의 출력을 증가시키는 단계; 감지된 상기 제1저장실의 온도가 상기 제1저장실을 위한 제2기준 온도 이하인 값에 도달한 경우, 상기 제1저장실을 위한 냉기공급수단 중 적어도 하나의 출력을 줄이거나 정지시키는 단계; 상기 제1저장실의 온도가 상기 제2기준 온도 이하의 값에 도달한 이후, 일정시간이 경과하거나 혹은 감지된 상기 제1저장실의 온도가 상기 제1저장실을 위한 제1기준 온도와 제2기준 온도 사이의 제1특정값(N+a)에 도달하면, 상기 제1저장실을 위한 냉기공급수단 중 적어도 하나의 출력을 증가시키는 단계; 및 이전 단계에서 상기 냉기공급수단의 출력이 변경된 후 일정 시간이 경과하거나 혹은 감지된 상기 제1저장실의 온도가 상기 제1특정값 (N+a)과 상기 제2기준 온도 사이의 미리 설정된 제2특정값(N+b)에 도달하면, 상기 제1저장실을 위한 냉기공급수단 중 적어도 하나의 출력을 감소시키거나 정지시키는 단계를 포함한다.
본 발명의 냉장고의 제어방법은, 감지된 제1저장실의 온도가 상기 제1저장실을 위한 상기 제2기준 온도 이하인 값에 도달한 이후에, 상기 제2저장실을 위한 냉기공급수단이 출력을 증가시키는 단계; 및 감지된 제2저장실의 온도가 상기 제2저장실을 위한 제1기준 온도에 도달한 이후에, 상기 제2저장실을 위한 냉기공급수단의 출력을 감소시키거나 정지시키는 단계를 더 포함할 수 있다.
상기 제1저장실을 위한 냉기 공급과 상기 제2저장실을 위한 냉기 공급이 동시에 이루어지는 구간이 길어지는 것을 방지하기 위하여, 상기 제2저장실을 위한 냉기공급수단의 출력이 발생하고 있는 중에 상기 감지된 제1저장실의 온도가 상기 제1저장실을 위한 제1기준 온도 이상인 값에 도달하면, 그 도달한 때로부터 일정 시간이 경과하거나 또는 감지된 상기 제1저장실의 온도가 상기 제1저장실을 위한 제1기준 온도와 제2기준 온도사이의 미리 설정된 제2특정값 (N+c)에 도달하면 상기 제2저장실을 위한 냉기공급수단의 출력을 감소시키거나 정지시키는 단계를 추가로 포함할 수 있다.
상기 제1특정값(N+a)은 상기 제1저장실을 위한 제2기준 온도 보다 크고, 상기 제1저장실의 목표 온도 보다 작을 수 있다.
상기 제3특정값(N+c)은, 상기 제1저장실의 목표 온도 보다 크고, 상기 제1저장실을 위한 제1기준 온도 보다 작을 수 있다.
상기 제1저장실을 위한 냉기공급수단은 상기 제1냉각팬을 포함하고, 상기 제2저장실을 위한 냉기공급수단은 상기 제2냉각팬을 포함할 수 있다.
상기 제1저장실을 위한 냉기공급수단은 상기 제1냉각팬 및 상기 제1압축기를 포함하고, 감지된 상기 제1저장실의 온도가 상기 제1저장실을 위한 제2기준 온도 이하인 값에 도달한 경우, 상기 제1저장실을 위한 냉기공급수단 중 적어도 하나의 출력을 줄이거나 정지시키는 단계에서는, 상기 제1압축기가 온된 상태에서 상기 제1냉각팬을 오프시킬 수 있다.
상기 제1저장실의 온도가 상기 제1저장실을 위한 제1기준 온도와 제2기준 온도 사이의 제1특정값(N+a)에 도달하여, 상기 제1저장실을 위한 냉기공급수단 중 적어도 하나의 출력을 증가시키는 단계에서는, 작동 중인 제1압축기를 오프시키고, 상기 제1냉각팬은 온시킬 수 있다.
감지된 상기 제1저장실의 온도가 상기 제1저장실을 위한 제2기준 온도 이하인 값에 도달하여 상기 제1저장실을 위한 냉기공급수단 중 적어도 하나의 출력을 줄이거나 정지시킨 이후에, 상기 제1저장실의 온도에 따라서 상기 제1저장실을 위한 냉기공급수단의 출력을 제어하는 단계 들은, 상기 제1저장실의 온도가 상기 제1저장실을 위한 제2기준 온도 이하인 값에 도달한 시점부터 설정 시간이 경과되거나, 혹은 상기 제1증발기의 온도를 감지하는 센서에서의 온도 값이 설정값에 도달하는 경우 종료될 수 있다.
상기 제1저장실을 위한 응축기와 상기 제2저장실을 위한 응축기는 하나의 열교환기를 이루되, 두 개의 부분으로 냉매가 유동되도록 구성되며, 상기 제1저장실을 냉각하기 위한 냉매는 상기 응축기의 제1부분을 유동하고, 상기 제2저장실을 냉각하기 위한 냉매는 상기 응축기의 제2부분으로 유동하며, 상기 제1부분을 위한 응축기 핀과 상기 제2부분을 위한 응축기 핀은 서로 연결될 수 있다.
다른 측면에 따른 냉장고의 제어방법은, 냉장실의 냉각을 위한 냉장 사이클이 정지되고, 냉동실의 냉각을 위한 냉동 사이클이 작동되는 단계; 상기 냉동 사이클 작동 중에, 냉장실 온도가 제1냉장실 기준온도에 도달하면, 상기 냉장 사이클이 작동되는 단계; 상기 냉동 사이클이 작동되는 중에, 상기 냉동 사이클의 정지 조건이 만족되었는지 여부를 판단하는 단계; 상기 냉동 사이클의 정지 조건이 만족된 경우, 상기 냉동 사이클이 정지되는 단계; 및 감지된 냉장실 온도가 상기 제1냉장실 기준온도 보다 낮은 제2냉장실 기준온도에 도달하면 상기 냉장 사이클이 정지되고 상기 냉동 사이클이 작동되는 단계를 포함할 수 있다.
상기 냉동 사이클의 정지 조건이 만족되었는지 여부를 판단하는 단계에서는, 냉동실 온도가 상기 냉동실의 목표 온도 보다 낮은 제1냉동실 기준온도에 도달하였는지 여부를 판단할 수 있다.
상기 냉동 사이클의 정지 조건이 만족되었는지 여부를 판단하는 단계에서, 상기 냉동실 온도가 제1냉동실 기준온도에 도달하기 전에, 감지된 냉장실 온도가 정지 기준온도에 도달한 것으로 판단되면, 상기 냉동 사이클이 정지될 수 있다.
상기 정지 기준온도는 상기 제1냉장실 기준온도와 상기 냉장실의 목표 온도의 사이 온도일 수 있다.
상기 냉동 사이클의 정지 조건이 만족되었는지 여부를 판단하는 단계에서는, 상기 냉장 사이클 작동 시작 후 기준 시간이 경과되었는지 여부를 판단하고, 상기 냉장 사이클 작동 시작 후 기준 시간이 경과되면, 상기 냉동 사이클이 정지될 수 있다.
상기 냉장 사이클이 정지되고 상기 냉동 사이클이 작동되는 단계에서, 냉장실의 온도가 팬 온 기준온도에 도달하면, 냉장실 팬이 온된다.
상기 냉장실 팬이 온된 후 상기 냉장실의 온도가 팬 오프 기준온도에 도달하면, 상기 냉장실 팬이 오프된다.
상기 팬 온 기준온도는 상기 팬 오프 기준온도 보다 높은 온도이며, 상기 팬 오프 기준온도는 상기 제2냉장실 기준온도 보다 높은 온도이다.
상기 팬 온 기준온도는 상기 냉장실의 목표 온도와 상기 제2냉장실 기준온도 보다 높은 온도이다.
상기 냉장 사이클이 정지되고 상기 냉동 사이클이 작동되는 단계에서, 상기 냉장 사이클의 정지되고 제1기준 시간이 경과되면, 냉장실 팬이 온된다.
상기 냉장실 팬이 온되고, 제2기준 시간이 경과되면 상기 냉장실 팬이 오프된다.
또 다른 측면에 따른 냉장고는, 냉동실용 압축기를 포함하며, 냉동실의 냉각을 위하여 작동하는 냉동 사이클; 냉장실용 압축기와 냉장실 팬을 포함하고, 냉장실의 냉각을 위하여 작동하는 냉장 사이클; 상기 냉동실의 온도를 감지하는 냉동실 온도센서; 상기 냉장실의 온도를 감지하는 냉장실 온도센서; 및 상기 각 온도센서에서 감지된 온도에 기초하여 상기 냉동 사이클 및 냉장 사이클의 작동을 제어하는 제어부를 포함한다.
상기 제어부는, 상기 냉장실의 온도가 상기 냉장실의 목표 온도 보다 높은 제1냉장실 기준온도에 도달하면, 상기 냉장 사이클을 작동시키고, 상기 냉장실의 온도가 상기 냉장실의 목표 온도 보다 낮은 제2냉장실 기준온도에 도달하면, 상기 냉장 사이클을 정지시키고 상기 냉동 사이클을 작동시킨다.
또한, 상기 제어부는, 상기 냉동실의 온도가 상기 냉동실의 목표 온도 보다 낮은 제1냉동실 기준온도에 도달하면, 상기 냉동 사이클을 정지시킨다.
상기 냉동실 온도가 제1냉동실 기준온도에 도달하기 전에, 감지된 냉장실 온도가 정지 기준온도에 도달하면, 상기 제어부는 상기 냉동 사이클을 정지시킨다.
상기 냉장 사이클이 정지된 후 상기 냉장실 팬 온 조건이 만족되면 상기 냉장실 팬은 온 시킨 후 정지시킨다.
제안되는 발명에 의하면, 냉장실의 온도가 냉장실 설정 온도 범위 내에서 유지될 뿐만 아니라 냉동실의 온도가 냉장실의 온도가 냉동실 설정 온도 범위 내에서 유지될 수 있다.
따라서, 냉장실에 보관된 음식물의 보관 기간이 증가될 수 있다. 즉, 냉장실에 저장된 음식물이 과냉되거나 시드는 현상이 제거될 수 있는 장점이 있다.
또한, 냉동실 및 냉장실 각각을 정온 유지하는 과정에서 냉장 사이클과 냉동 사이클이 동시에 작동하는 시간이 줄어들 수 있으므로, 소비 전력이 줄어들 수 있는 장점이 있다.
또한, 냉장실 또는 냉동실의 냉각을 위한 냉각 사이클의 오프 주기가 길어질 수 있으므로, 냉기공급수단의 온/오프 횟수가 줄어들어 소비 전력이 줄어들 수 있는 장점이 있다.
도 1은 본 발명의 일 실시 예에 따른 냉장고의 구성을 개략적으로 보여주는 도면.
도 2는 본 발명의 냉장고의 블럭도.
도 3은 본 발명의 일 실시 예에 따른 냉장고의 제어 방법을 보여주는 흐름도.
도 4는 본 발명의 일 실시 예에 따른 냉장고의 제어 방법에 따른 냉동실 및 냉장실의 온도 변화와 냉각 사이클의 작동 상태를 보여주는 도면.
도 5는 제 1 기준 온도와 제 2 기준 온도 간의 온도 편차에 따른 저장 기간을 보여주는 그래프.
도 6은 본 발명의 다른 실시 예에 따른 냉장고의 제어방법을 설명하는 흐름도.
도 7은 본 발명의 다른 실시 예에 따른 냉장고의 제어방법에 따른 저장실의 온도 변화를 보여주는 도면.
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 1은 본 발명의 일 실시 예에 따른 냉장고의 구성을 개략적으로 보여주는 도면이고, 도 2는 본 발명의 냉장고의 블럭도이다.
도 1 및 도 2를 참조하면, 본 발명에 따른 냉장고(1)는, 내부에 냉동실(111)과 냉장실(112)이 형성되는 캐비닛(10)과, 상기 캐비닛(10)에 결합되어 상기 냉동실(111)과 냉장실(112)을 각각 개폐하는 도어(미도시)를 포함할 수 있다.
상기 냉동실(111)과 냉장실(112)에는 음식물과 같은 피보관물이 저장될 수 있다.
상기 냉동실(111)과 냉장실(112)은 구획벽(113)에 의하여 상기 캐비닛(10)의 내부에서 좌우 방향 또는 상하 방향으로 구획될 수 있다.
또한, 상기 냉장고(1)는, 상기 냉동실(111) 및 상기 냉장실(112)을 각각 냉각하기 위한 냉각 사이클을 포함할 수 있다.
상기 냉각 사이클은, 상기 냉동실(111)을 냉각하기 위한 냉동 사이클과, 상기 냉장실(112)을 냉각하기 위한 냉장 사이클을 포함할 수 있다.
상기 냉동 사이클은, 냉동실용 압축기(11)(또는 제1압축기)와, 응축기(13)와, 제 1 팽창부재(14)와, 제 1 증발기(16)와, 냉동실 팬(18)을 포함할 수 있다. 상기 냉동실 팬(18)은 상기 냉동실(111)의 냉기 순환을 위하여 제 1 증발기(16) 측으로 공기를 송풍할 수 있다.
본 발명에서 상기 냉동실용 압축기(11) 및 상기 냉동실 팬(18)은 상기 냉동실(111)로 냉기를 공급하기 위하여야 작동하는 "냉동실용 냉기공급수단"이라 이름할 수 있다.
상기 냉장 사이클은, 냉장실용 압축기(12)(또는 제2압축기)와, 응축기(13)와, 제 2 팽창부재(15)와, 제 2 증발기(17)와, 냉장실 팬(19)을 포함할 수 있다. 상기 냉장실 팬(19)은 상기 냉장실(112)의 냉기 순환을 위하여 상기 제 2 증발기(17) 측으로 공기를 송풍할 수 있다.
본 발명에서 상기 냉장실용 압축기(12) 및 상기 냉장실 팬(19)은 상기 냉장실(112)로 냉기를 공급하기 위하여야 작동하는 "냉장실용 냉기공급수단"이라 이름할 수 있다.
이때, 상기 응축기(13)는 하나의 열교환기를 이루되, 두 개의 부분으로 나뉘어 냉매가 유동되도록 할 수 있다. 즉, 상기 제 1 압축기(11)에서 배출된 냉매가 응축기(13) 중 제 1 부분(131)을 유동할 수 있고, 상기 제 2 압축기(12)에서 배출된 냉매가 응축기(13) 중 제 2 부분(132)을 유동할 수 있다.
상기 응축기(13)의 응축 효율을 높일 수 있도록 상기 제 1 부분(131)을 위한 응축기 핀과 상기 제 2 부분(132)을 위한 응축기 핀이 연결되어 있을 수 있다.
본 발명에 의하면, 기계실 내부에 별도의 2개의 응축기를 설치하는 것에 비해 응축기 설치 공간을 줄이면서도 응축기의 응축 효율을 높일 수 있는 장점이 있다. 따라서, 상기 제 1 부분(131)을 제 1 응축기라 할 수 있고, 상기 제 2 부분(132)을 제 2 응축기라고도 할 수 있다.
또한, 상기 냉장고(1)는, 상기 냉동실(111)의 온도를 감지하기 위한 냉동실 온도센서(31)(또는 제 1 온도 센서)와, 상기 냉장실(112)의 온도를 감지하기 위한 냉동실 온도센서(32)(또는 제 2 온도 센서)와, 상기 냉동실(111)과 냉장실(112) 각각의 목표 온도(또는 희망 온도)를 입력할 수 있는 입력부(33)와, 입력된 목표 온도와 온도센서(31, 33)에서 감지된 온도에 기초하여 상기 냉각 사이클을 제어하는 제어부(20)를 더 포함할 수 있다.
본 명세서에서, 상기 냉동실(111)의 목표 온도 보다 높은 온도를 제 2 냉동실 기준 온도라 하고, 상기 냉동실(111)의 목표 온도 보다 낮은 온도를 제 1 냉동실 기준 온도라 이름할 수 있다. 또한, 상기 제 1 냉동실 기준 온도와 제 2 냉동실 기준 온도 사이의 범위를 냉동실 설정 온도 범위라 이름할 수 있다.
제한적이지는 않으나, 상기 냉동실(111)의 목표 온도는 상기 제 1 냉동실 기준 온도와 제 2 냉동실 기준 온도의 평균 온도일 수 있다.
본 발명에서는 상기 제어부(20)는 상기 냉동실(111)의 온도가 상기 설정 온도 범위 내에서 유지되도록 제어한다. 이때, 상기 냉동실(111)의 온도가 상기 설정 온도 범위 내에서 유지되도록 하는 제어를 "냉동실의 정온 제어"라고 한다.
또한, 본 명세서에서, 상기 냉장실(112)의 목표 온도 보다 높은 온도를 제 1 냉장실 기준 온도라 하고, 상기 냉장실(112)의 목표 온도 보다 낮은 온도를 제 2 냉장실 기준 온도라 이름할 수 있다. 또한, 상기 제 1 냉장실 기준 온도와 제 2 냉장실 기준 온도 사이의 범위를 냉장실 설정 온도 범위라 이름할 수 있다.
제한적이지는 않으나, 상기 냉장실(112)의 목표 온도는 상기 제 1 냉장실 기준 온도와 제 2 냉장실 기준 온도의 평균 온도일 수 있다.
본 발명에서는 상기 제어부(20)는 상기 냉장실(112)의 온도가 상기 설정 온도 범위 내에서 유지되도록 제어한다. 이때, 상기 냉장실(112)의 온도가 상기 설정 온도 범위 내에서 유지되도록 하는 제어를 "냉장실의 정온 제어"라고 한다.
도 3은 본 발명의 일 실시 예에 따른 냉장고의 제어 방법을 보여주는 흐름도이고, 도 4는 본 발명의 일 실시 예에 따른 냉장고의 제어 방법에 따른 냉동실 및 냉장실의 온도 변화와 냉각 사이클의 작동 상태를 보여주는 도면이다.
이하에서는 냉장 사이클이 정지된 상태에서 냉동 사이클이 작동하는 중에 냉동실 및 냉장실의 온도 변화에 따른 냉동 사이클 및 냉장 사이클의 정온을 위한 제어 방법에 대해서 설명하기로 한다.
하기에서는 도 3의 단계 S1 내지 S8에 대한 설명에 기초하여, 제 1 저장실(냉동실과 냉장실 중 어느 하나)의 냉각을 위한 사이클과 제 2 저장실(냉동실과 냉장실 중 다른 하나)의 냉각을 사이클이 동시에 운전되는 구간을 줄임으로써, 소비전력을 저감하고 냉각 사이클의 효율을 향상시키기 위한 운전 로직에 대해 설명한다.
상기 운전 로직은, 제 1 저장실 및 제 2 저장실을 위한 냉기공급수단이 동시에 구동되는 구간을 가지는 냉각 사이클에 적용될 수 있다.
상기 제 1 저장실 및 제 2 저장실을 위한 냉각 사이클은 상기 제 1 저장실의 제 1 기준 온도 및 제2 기준 온도와, 상기 제 2 저장실의 제 1 기준 온도 및 제 2 기준 온도에 따라 각각의 냉기공급수단이 독립적으로 작동하도록 각각의 냉각 사이클을 구성할 수 있다.
상기 제 1 저장실을 위한 냉각 사이클은 상기 제 1 저장실의 온도가 제 1 저장실을 위한 제 1 기준 온도에 도달하면, 상기 제 1 저장실을 위한 냉기공급수단의 출력을 증가시킬 수 있다. 또한, 상기 제 1 저장실의 온도가 상기 제 1 저장실을 위한 제2 기준 온도에 도달하면, 상기 제 1 저장실을 위한 냉기공급수단의 출력을 감소시키도록 작동할 수 있다.
이와는 별개로 상기 제 2 저장실을 위한 냉각 사이클은 상기 제 2 저장실의 온도가 상기 제 2 저장실을 위한 제 1 기준 온도에 도달하면, 상기 제 2 저장실을 위한 냉기공급수단의 출력을 증가시킬 수 있다. 또한, 상기 제 2 저장실의 온도가 상기 제 2 저장실을 위한 제 2 기준 온도에 도달하면, 상기 제 2 저장실을 위한 냉기공급수단의 출력을 감소시키도록 작동할 수 있다.
이 경우 상기 제 1 저장실 및 제 2 저장실을 위한 냉기공급수단이 동시에 구동되는 구간이 발생하여, 소비 전력이 증가될 수 있다. 특히 제 1 저장실을 위한 응축기와 제 2 저장실을 위한 응축기를 공용으로 사용하는 경우에는 동시 구동 구간에서 냉각 효율이 저하되어 소비 전력이 더욱 증가될 수 있다.
상기 제 1 저장실을 위한 응축기와 상기 제 2 저장실을 위한 응축기를 공용으로 사용하는 경우는 아래와 같다.
상기 응축기(13)는 하나의 열교환기를 이루되, 두 개의 부분으로 나뉘어 냉매가 유동되도록 할 수 있다. 즉, 상기 제 1 압축기(11)에서 배출된 냉매가 응축기(13) 중 제 1 부분(131)을 유동할 수 있고, 상기 제 2 압축기(12)에서 배출된 냉매가 응축기(13) 중 제 2 부분(132)을 유동할 수 있다. 따라서, 상기 제 1 부분(131)을 제 1 응축기라 할 수 있고, 상기 제 2 부분(132)을 제 2 응축기라고도 할 수 있다.
한편, 상기 제 1 저장실 및 상기 제 2 저장실을 위한 냉각 사이클은 상기 제 1 저장실의 제 1 기준 온도 및 제 2 기준 온도와 상기 제 2 저장실의 제 2 기준 온도에 따라 작동하도록 각각의 냉각 사이클을 구성할 수도 있다.
상기 제 1 저장실을 위한 냉각 사이클은 상기 제 1 저장실의 온도가 상기 제 1 저장실을 위한 제 1 기준 온도에 도달하면, 상기 제 1 저장실을 위한 냉기공급수단의 출력을 증가시키고, 상기 제 1 저장실의 온도가 상기 제 1 저장실을 위한 제 2 기준 온도에 도달하면, 상기 제 1 저장실을 위한 냉기공급수단의 출력을 감소시키거나 정지시킬 수 있다.
상기 제 2 저장실을 위한 냉각 사이클은 상기 제 1 저장실의 온도가 제 1 저장실을 위한 제 2 기준온도에 도달하면, 상기 제 2 저장실을 위한 냉기공급수단의 출력을 증가시키고, 상기 제 1 저장실의 온도가 상기 제 1 저장실을 위한 제 1 기준온도에 도달한 후 일정시간이 경과하거나 혹은 상기 제 1 저장실을 위한 제 1 기준온도에 도달한 후 특정 온도(N+c)에 도달하면 상기 제 2 저장실을 위한 냉기공급수단의 출력을 감소시키거나 정지시키도록 구성될 수 있다.
이와 같이 사이클을 구성함으로써, 상기 동시 구동 구간을 줄임으로써, 소비전력을 감소시키고 사이클의 냉각 효율을 증대할 수 있게 된다.
도 1 내지 도 4를 참조하여, 일 예를 설명하면, 냉장 사이클이 정지된 상태에서, 상기 냉동실(111)의 정온 제어를 위하여 냉동 사이클이 작동할 수 있다(S1). 즉, 상기 냉동실(111)의 정온 제어를 위하여 상기 냉동실용 압축기(11)와, 냉동실 팬(18)이 작동한다.
상기 냉동 사이클이 작동하게 되면, 상기 냉동실(111)의 온도는 하강하게 된다. 반면, 냉장 사이클이 정지된 상태에서는 상기 냉장실(112)의 온도는 상승한다.
상기 냉장실(112)의 온도는 냉장실 온도센서(32)에서 주기적으로 감지되고, 상기 냉동실(111)의 온도는 냉동실 온도센서(31)에서 주기적으로 감지된다.
상기 제어부(20)는, 감지된 냉장실 온도가 제1 냉장실 기준온도에 도달하였는지 여부를 판단한다(S2).
단계 S2에서 판단 결과, 감지된 냉장실 온도가 상기 제1 냉장실 기준 온도에 도달한 것으로 판단되면, 상기 제어부(20)는 상기 냉장 사이클을 작동시킨다(S3). 즉, 상기 냉장실(112)의 온도를 하강시키기 위하여 상기 제어부(20)는 상기 냉장실용 압축기(12)와 상기 냉장실 팬(19)을 작동시킨다.
이때, 상기 냉장 사이클이 작동되는 시점에서 상기 냉동 사이클은 이미 작동 중일 수 있다.
상기 냉장 사이클이 작동 시작한 후, 상기 제어부(20)는, 감지된 냉장실(111)의 온도가 정지 기준온도(N+c)(제3특정값)에 도달하였는지 여부를 판단할 수 있다(S4).
본 발명에서 정지 기준온도는 상기 냉동 사이클의 정지 조건이 만족되었는지 여부를 판단하기 위한 온도이다.
단계 S4에서 판단 결과, 감지된 냉장실(112)의 온도가 정지 기준온도에 도달한 것으로 판단되면, 상기 제어부(20)는 상기 냉동 사이클을 정지시킨다(S5). 즉, 상기 제어부(20)는 상기 냉동실용 압축기(11)와, 상기 냉동실 팬(18)을 정지시킨다.
반면, 단계 S4에서 판단 결과, 감지된 냉장실(112)의 온도가 정지 기준온도에 도달하지 않은 것으로 판단되면, 상기 제어부(20)는, 상기 냉동실 온도센서(31)에서 감지된 냉동실(111)의 온도가 제1 냉동실 기준온도에 도달하였는지 여부를 판단한다(S6).
단계 S6에서 판단 결과, 감지된 냉동실 온도가 제1냉동실 기준온도에 도달하였다고 판단되면, 상기 제어부(20)는 상기 냉동 사이클을 정지시킨다(S5).
본 발명에서 단계 S4 및 단계 S6을 냉동 사이클의 정지 조건 만족 여부 판단 단계라 이름할 수 있다.
본 발명에서 냉동 사이클과 냉장 사이클은 동시에 작동할 수 있다. 이때, 냉동 사이클과 냉장 사이클이 동시에 작동하는 시간이 길수록 소비 전력이 증가된다.
따라서, 본 발명에서는 냉장 사이클과 냉동 사이클이 동시에 작동하는 시간이 줄어들도록, 상기 냉장 사이클이 작동 시작한 후 감지된 냉동실(111)의 온도가 제1 냉동실 기준온도에 도달하기 전이라도 감지된 냉장실(112)의 온도가 정지 기준온도에 도달한 것으로 판단되면, 상기 냉동 사이클을 정지시킨다.
여기서, 상기 정지 기준온도는 상기 제1 냉장실 기준온도와 상기 제2 냉장실 기준온도 사이의 온도이다.
상기 정지 기준온도가 상기 제2 냉장실 기준온도에 가까우면, 상기 냉장 사이클과 냉동 사이클이 동시에 작동하는 시간이 증가되고, 상기 정지 기준온도가 상기 제1 냉장실 기준온도에 가까우면, 상기 냉장 사이클과 냉동 사이클이 동시에 작동하는 시간이 감소될 수 있다.
따라서, 제한적이지는 않으나, 상기 정지 기준온도는 상기 냉장실(112)의 목표 온도와 상기 제1 냉장실 기준온도 사이의 온도로 설정될 수 있다.
다른 예로서, 단계 S4에서 판단 결과, 감지된 냉장실 온도가 정지 기준온도에 도달하지 않은 것으로 판단되면, 상기 제어부(20)는, 상기 냉장 사이클 작동 시작 후 기준 시간이 경과되었는지 여부를 판단하는 것도 가능하다. 그리고, 상기 냉장 사이클 작동 시작 후 기준 시간이 경과되면, 상기 냉동 사이클을 정지시킬 수 있다.
본 발명에서 상기 냉장 사이클의 작동 시작 후 기준 시간이 경과되었는지 여부를 판단하는 단계를 냉동 사이클의 정지 조건 만족 여부 판단 단계라 이름할 수 있다.
한편, 상기 냉장 사이클이 작동하는 중에, 감지된 냉장실 온도가 제2 냉장실 기준온도에 도달하면, 상기 제어부(20)는, 상기 냉장 사이클을 정지하고 상기 냉동 사이클을 작동시킨다(S8).
즉, 본 발명에서 상기 냉장 사이클의 작동 시작 시점은 상기 냉장실(111)의 온도가 상기 제1 냉장실 기준온도에 도달하는 시점이고, 상기 냉장 사이클의 정지 시점은 상기 냉장실(111)의 온도가 상기 제2냉 장실 기준온도에 도달하는 시점이다. 또한, 상기 냉동 사이클의 작동 시작 시점은 상기 냉장실(111) 온도가 상기 제2 냉장실 기준온도에 도달하는 시점이다.
결국, 상기 냉동 사이클의 시작 시점은 상기 냉장실(112)의 온도 변화에 따라 결정될 수 있다.
한편, 본 발명에서 하나의 응축기가 두 개의 부분으로 나뉘어 사용되므로, 냉장 사이클이 작동 시작되어 냉장 사이클과 냉동 사이클이 동시에 작동하면, 상기 응축기(13)의 응축 온도가 상승하게 되어 소비 전력이 상승하게 될 뿐만 아니라 냉동 사이클의 작동 시간이 증가하게 된다.
상기 냉동 사이클의 작동 시작 시점이 상기 냉장실(112)의 온도 변화에 따라 결정되는 경우에, 단계 S6이 적용되지 않는 것을 가정하면 아래와 같은 문제점이 발생할 수 있다.
상기 냉동 사이클의 작동 시간이 증가되면, 현재 냉동 사이클(N번째)의 정지 후 다음 번의 냉동 사이클(N+1번째)의 작동 시간이 짧아진다. 이 경우, 다음 번 냉장 사이클 작동 후 상기 냉동 사이클이 다시 작동할 때까지의 대기 시간이 길어지므로, 그 다음 냉동 사이클(N+2번째)의 작동 시간은 더 길어지는 문제가 있다.
이는, 냉동 사이클의 작동 시간 증가에 따른 냉동실용 압축기의 소비 전력이 증가되는 문제를 야기한다.
그러나, 본 발명과 같이 냉동 사이클과 냉장 사이클이 동시에 작동할 때, 상기 냉장 사이클이 작동 시작한 후, 감지된 냉동실의 온도가 제1 냉동실 기준온도에 도달하기 전이라도 감지된 냉장실의 온도가 정지 기준온도에 도달한 것으로 판단되면, 상기 냉동 사이클을 정지시킴으로써, 냉동 사이클과 냉장 사이클의 중복 작동 시간이 증가되는 것이 방지될 수 있다.
이하에서는 온도 상승 지연 출력 구간을 포함하는 운전 로직에 대해서 설명하기로 한다(단계 S9, S10).
상기 운전 로직은 상기 제 1 저장실 및 제 2 저장실을 위한 냉기공급수단이 동시에 구동되는 구간이 있는지 여부에 관계없이 모든 사이클에 적용될 수 있다.
냉장고에서 피보관물의 신선도 향상을 위해서는 시간에 따른 저장실 내의 온도 변화량을 줄이는 것이 필요하다.
즉, 냉기공급수단(압축기, 송풍팬, 냉동실과 냉장실을 연결하는 유로 상에 구비되는 댐퍼, 냉매의 유동을 절환하기 위한 냉절환밸브 등을 포함할 수 있음) 중 적어도 하나의 출력 조절(온/오프 포함)이 결정되는 제 1 기준 온도(예를 들어 상한 값)와 제 2 기준온도(예를 들어 하한 값) 사이의 온도 편차를 줄이면 피보관물의 신선도를 향상시킬 수 있다.
도 5는 제 1 기준 온도와 제 2 기준 온도 간의 온도 편차에 따른 저장 기간을 보여주는 그래프이다.
예를 들어, 도 5에 따르면, 상기 제 1 기준 온도와 제 2 기준 온도 사이의 온도 편차가 4도(degree)에서 1도(degree)로 줄어들게 되면, 피보관물의 보관 기간이 증가되는 것을 알 수 있다. 즉, 일 예로 야채의 무게가 6% 감소되는 날이 8.5일에서 12일로 증대됨을 알 수 있다.
한편, 신선도 향상을 위하여 제 1 기준 온도와 제 2 기준 온도 사이의 온도 편차를 줄이게 될 경우에는 냉기공급수단의 출력조절 횟수(온/오프 횟수 포함)가 증가하게 되어 냉기공급수단의 부품 신뢰성에 문제가 발생할 수 있고, 냉기공급수단의 잦은 온/오프로 인해 소비 전력이 증대될 수 있다. 이와 같이 부품 신뢰성 향상 및 잦은 온/오프로 인한 소비 전력 감소를 위하여 상기 저장실의 온도가 제 2 기준 온도에 도달한 이후의 어느 시점에, 온도 상승 지연 수단을 작동킬 수 있다.
냉장고는 상기 제 1 저장실과 상기 제 2 저장실을 가지고 있고, 상기 냉장고는 각각의 저장실을 위한 제 1 기준 온도(예를 들어 상한 값)과 제 2 기준 온도(예를 들어 하한 값)을 가지고 있다. 그리고, 각 저장실의 온도는 제 1 기준 온도와 제 2 기준 온도 사이에서 유지되도록 제어될 수 있다.
일 예로, 상기 냉장고의 제어부는 냉각 사이클이 작동하는 중에 감지된 저장실의 온도가 제 2 기준온도에 도달하면, 냉기 송풍용 팬의 출력을 줄이거나 정지시키고 압축기의 작동은 유지할 수 있다.
한편, 일정 시간이 경과하거나 혹은 저장실의 온도가 일정 온도(예를 들어 N+a)(제1특정값)에 도달하면 상기 압축기의 출력을 줄이거나 정지시키고, 상기 냉기 송풍용 팬을 온함으로써, 상기 저장실의 온도 상승이 지연되도록 할 수 있다.
다른 예로는, 상기 냉장고의 제어부는 사이클이 작동하는 중에 감지된 저장실의 온도가 제 2 기준 온도에 도달하면, 냉기 송풍용 팬의 출력을 줄이거나 정지시키고 압축기의 출력도 줄이거나 정지시킬 수 있다.
한편, 일정 시간이 경과하거나 혹은 저장실의 온도가 일정온도(예를 들어 N+a)에 도달하면, 상기 압축기의 출력을 줄이거나 정지시키고, 상기 냉기 송풍용 팬을 온함으로써, 상기 저장실의 온도 상승이 지연되도록 할 수 있다.
도 1 내지 도 4를 통해 일 예를 설명하면, 상기 냉동 사이클이 작동하는 중에, 상기 제어부(20)는 감지된 냉장실의 온도가 팬 온 기준온도(N+a)에 도달하였는지 여부를 판단할 수 있다(S9).
단계 S9에서 판단 결과, 감지된 냉장실 온도가 팬 온 기준온도에 도달하였다고 판단되면, 상기 제어부(20)는 상기 냉장실 팬(19)을 온시킬 수 있다(S10). 즉, 냉장 사이클이 정지된 상태에서 상기 냉장실 팬(19)을 온시켜 냉기가 상기 냉장실용 증발기(17) 측으로 유동되도록 한다.
감지된 냉장실의 온도가 상기 팬 온 기준온도에 도달하는 경우를 상기 냉장실 팬(19)의 온 조건이 만족된 경우라 할 수 있다.
본 발명에서 상기 냉장실 팬(19)이 온되도록 하는 이유는, 상기 냉장실용 증발기(17)의 증발 잠열을 이용하여 상기 냉장실(112)의 온도가 하강되도록 함으로써, 상기 냉장 사이클의 오프 주기가 길어지도록 하기 위함이다.
일반적으로 상기 냉장실용 압축기(12)의 구동 초기에는 냉력이 많이 필요하므로, 상기 냉장실용 압축기(12)의 전력 소비가 증가된다. 상기 냉장실용 압축기(12)의 오프 주기가 길어지면 상기 냉장실용 압축기(12)의 온 횟수가 줄어들게 되어 소비 전력을 낮출 수 있다.
따라서, 본 발명에 의하면, 상기 냉장실용 압축기(12) 및 상기 냉장실 팬(19)이 정지된 상태에서, 감지된 냉장실의 온도가 상기 팬 온 기준온도에 도달하게 되면, 상기 냉장실 팬(19)을 온시킴으로써, 상기 냉장 사이클의 오프 주기가 길어져 소비 전력이 줄어들 수 있다.
본 발명에서 상기 팬 온 기준온도는 상기 냉장실(112)의 목표 온도와 상기 제2 냉장실 기준온도 사이의 온도일 수 있다. 또한, 상기 팬 온 기준온도는 상기 정지 기준온도 보다 낮을 수 있다.
이하에서는 상기 온도 상승 지연 출력을 중단하도록 작동하는 보호 로직(단계 S11 및 S12)에 대해서 설명하기로 한다.
상기 보호 로직은 상기 제 1 저장실 및 제 2 저장실을 위한 냉기공급수단이 동시에 구동되는 구간이 있는지 여부에 관계없이 모든 사이클에 적용될 수 있다.
위에서 설명한 바와 같이 온도 상승 지연 출력으로 작동되는 구간이 추가되면, 상기 저장실의 온도가 상기 제 1 기준 온도와 제 2 기준 온도 사이에서 완만하게 변동하게 하는 장점을 얻을 수 있지만, 한편으로는 전체 냉각 사이클 중에 냉기를 공급하도록 작동되는 구간을 증가시킴으로써, 증발기에 착상이 생길 가능성이 높아질 수도 있다.
이와 같이 증발기에 과도한 착상으로 인해 발생하는 제상 신뢰성 문제를 해결하기 위해 상기 온도 상승 지연 출력을 중단되게 하는 보호 로직이 추가될 수 있다.
일예로, 상기 냉기공급수단이 온도 상승 지연 출력으로 작동을 시작한 후, 일정 시간이 경과하거나 혹은 저장실의 온도가 일정온도(예를 들어, N+b)(제2특정값)에 도달하거면 상기 냉기공급수단의 출력을 줄이거나 정지시킬 수 있다.
또는, 냉장실용 증발기의 온도를 측정하는 센서에서 감지된 온도가 설정값에 도달하면, 상기 온도 상승 지연 출력 구간을 포함하는 운전 로직이 종료될 수 있다. 즉, 상기 제 1 저장실을 위한 냉기공급수단의 출력 제어가 종료될 수 있다.
도 1 내지 도 4를 통해 일 예를 설명하면, 상기 냉장실 팬(19)이 온된 후, 상기 제어부(20)는 감지된 냉장실의 온도가 팬 오프 기준온도(N+b)에 도달하였는지 여부를 판단한다(S11).
단계 S11에서 판단 결과, 감지된 냉장실(112)의 온도가 상기 팬 오프 기준온도에 도달하였다고 판단되면, 상기 제어부(20)는 상기 냉장실 팬(19)을 오프시킬 수 있다(S12).
본 발명에서 상기 팬 오프 기준온도는 상기 팬 온 기준온도 보다 낮은 온도이며, 상기 팬 온 기준온도와 상기 제2 냉장실 기준온도 사이의 온도이다.
본 발명에서 상기 냉장실 팬(19)이 작동하는 중에 상기 냉장실 온도가 상기 팬 오프 기준온도에 도달하면 상기 냉장실 팬(19)을 오프시키는 이유는, 상기 냉장실용 증발기(17)의 결빙을 방지하기 위함이다.
다른 예로서, 상기 냉장실 팬(19)이 정지되고 제1기준 시간 경과되면 상기 냉장실 팬(19)이 온되고, 상기 냉장실 팬(19)이 온되고 제2기준 시간이 경과되면 냉장실 팬(19)이 오프될 수 있다.
이때, 상기 제1기준 시간은 상기 냉장 사이클이 정지되어 냉장실(112)의 온도가 증가되는 과정에서 상기 냉장실(112)의 온도가 상기 냉장실(112)의 목표 온도에 근접한 온도에 도달할 수 있을 정도의 시간으로 결정될 수 있다.
또한, 상기 제2기준 시간은 상기 냉장실 팬(19)이 온되어 상기 냉장실(112)의 온도가 하강하는 과정에서 상기 냉장실(112)의 온도가 제2냉장실 기준 온도 보다 소정 온도 높은 온도에 도달할 수 있을 정도의 시간으로 결정될 수 있다.
상기 냉장 사이클이 정지되고 상기 제1기준 시간 경과되는 경우를 상기 냉장실 팬(19)의 온 조건이 만족된 경우라 할 수 있다.
상기 냉장실 팬(19)이 오프된 후 상기 냉장고의 전원이 오프되지 않으면(S13), 단계 S2로 복귀한다.
즉, 상기 냉동 사이클이 작동하는 중에, 냉장실 온도가 제1냉장실 기준온도에 도달하면, 상기 냉장 사이클이 작동하게 된다.
이때, 도 3에서는 도시되지 않았으나, 상기 냉동 사이클이 작동하는 중에 냉동실 온도가 제1 냉동실 기준온도에 도달하는지 여부를 판단하는 단계가 추가되는 것도 가능하다. 즉, 단계 S1과 단계 S2 사이에 단계 S6과 동일한 단계가 추가될 수 있다.
이 경우, 상기 냉동 사이클이 작동하는 중에 냉장실의 온도가 제1냉장실 기준온도에 도달하기 전이라도 상기 냉동실의 온도가 제1 냉동실 기준온도에 도달하는 경우 상기 냉동 사이클이 정지될 수 있다. 이 상태는 상기 냉동 사이클과 냉장 사이클이 전부 정지된 상태가 된다.
이와 같은 본 발명에 의하면, 상기 냉장실의 온도가 냉장실 설정 온도 범위 내에서 유지될 뿐만 아니라 상기 냉동실의 온도가 냉장실의 온도가 냉동실 설정 온도 범위 내에서 유지될 수 있다.
따라서, 냉장실에 보관된 음식물의 보관 기간이 증가될 수 있다. 즉, 냉장실에 저장된 음식물이 과냉되거나 시드는 현상이 제거될 수 있는 장점이 있다.
또한, 냉동실 및 냉장실 각각을 정온 유지하는 과정에서 냉장 사이클과 냉동 사이클이 동시에 작동하는 시간이 줄어들 수 있으므로, 소비 전력이 줄어들 수 있는 장점이 있다.
또한, 냉장 사이클의 오프 주기가 길어질 수 있으므로, 냉장실용 압축기의 온 횟수가 줄어들어 소비 전력이 줄어들 수 있는 장점이 있다.
도 6은 본 발명의 다른 실시 예에 따른 냉장고의 제어방법을 설명하는 흐름도이고, 도 7은 본 발명의 다른 실시 예에 따른 냉장고의 제어방법에 따른 저장실의 온도 변화를 보여주는 도면이다.
본 실시 예는 다른 부분에 있어서는 이전 실시 예와 동일하고, 온도 상승 지연 출력 구간을 포함하는 운전 로직과 보호 로직에 있어서 차이가 있다. 따라서, 이하에서는 본 실시 예의 특징적인 부분에 대해서만 설명하기로 한다.
도 6 및 도 7을 참조하면, 본 실시 예에서 냉동실 및 냉동실 중 어느 하나로 선택되는 저장실의 온도가 일정한 온도 범위 내에 유지되도록 하기 위하여 총 4단계의 과정이 순차적으로 수행될 수 있다.
냉장고는 단일의 압축기와 단일의 증발기를 이용하여 하나의 냉각 사이클을 형성할 수 있다.
또는, 냉장고는, 일 예로 두 개의 압축기와 두 개의 증발기를 이용하여 구분되는 두 개의 냉각 사이클을 형성할 수 있다.
본 명세서에서 상기 저장실이 냉장실인 경우에는, 압축기 및 팬은, 냉장실용 압축기 및 냉장실 팬일 수 있다. 또한, 상기 저장실이 냉동실인 경우에는, 압축기 및 팬은, 냉동실용 압축기 및 냉동실 팬일 수 있다.
본 발명의 냉장고의 제어방법은, 냉매를 압축하는 압축기와 공기를 이동시키는 팬을 구동하는 제1단계, 상기 압축기를 구동하고, 상기 팬을 정지하는 제2단계, 상기 압축기를 정지하고, 상기 팬을 구동하는 제3단계 및 상기 압축기와 상기 팬을 정지하는 제4단계를 포함할 수 있다.
상기 제4단계의 수행이 종료되면, 바로 상기 제1단계가 수행될 수 있다.
상기 제1단계에서는 상기 저장실의 온도가 하강되고, 상기 제2단계에서는 상기 저장실의 온도가 상승되며, 상기 제3단계에서는 상기 저장실의 온도가 하강되고, 상기 제4단계에서는 상기 저장실의 온도가 상승되는 온도 변화 분포를 가질 수있다.
상기 제1단계는 상기 제1단계의 시작 조건을 만족하면 시작된다(S21). 상기 제1단계의 시작 조건은 상기 저장실의 설정 온도에서 허용되는 온도 변화 폭, 즉 제1설정 차이값을 더한 온도(제1 기준 온도)를 의미한다. 즉 상기 저장실의 온도가 설정 온도와 제1설정 온도 차이값 만큼 상승되면, 상기 제1단계가 수행된다(S22).
이때 상기 제1설정 온도 차이값은 대략 0.5도 일 수 있다.
상기 제1단계에서는 상기 압축기가 구동되기 때문에 상기 증발기가 냉각되고, 상기 팬에 의해서 상기 증발기를 통해서 냉각된 공기가 상기 저장실로 이동되면서 상기 저장실의 온도가 하강될 수 있다. 이때 상기 저장실의 온도는 도 7에서와 같이 직선이 아닌, 곡선의 형태로 변화되는 것이 가능하지만, 설명의 편의를 위해서 도 7에서는 간략히 직선으로 표현한다.
상기 제1단계가 수행되는 동안에, 상기 제2단계가 시작되는 조건을 만족하는지 판단한다(S30). 이때 상기 제2단계가 시작되는 조건은 상기 제1단계가 종료되는 조건과 동일하다. 상기 제1단계가 종료되면 즉시 상기 제2단계가 수행되기 때문이다.
상기 제1단계는 상기 저장실의 온도가 상기 설정 온도에서 상기 제1설정 차이값을 뺀 온도(제2 기준 온도)에서 수행이 종료될 수 있다. 즉 상기 제2단계는 상기 저장실의 온도가 상기 설정 온도에서 상기 제1설정 차이값을 뺀 온도에서 시작될 수 있다.
따라서 상기 제1단계에서는 상기 저장실이 설정 온도에서 상기 제1설정 차이값을 더한 온도와 설정 온도에서 상기 제1설정 차이값을 뺀 온도의 범위 내에서 변화될 수 있다. 이때 상기 제1설정 차이값이 대략 0.5도라면, 상기 제1단계에서는 상기 저장실의 설정 온도를 기준으로 1도의 범위에서 온도변화가 이루어질 수 있다.
상기 제2단계에서는 상기 압축기는 구동을 유지하는 반면에, 상기 팬은 구동을 중지할 수 있다(S32). 상기 압축기는 구동되기 때문에 상기 증발기에서는 낮은 온도를 가지고 상기 증발기 주변의 공기를 냉각한다. 하지만 상기 팬은 구동되지 않기 때문에 상기 증발기에 의해서 냉각된 공기의 대부분은 상기 저장실로 이동되지 못하고, 상기 증발기 주변에 위치하게 된다.
따라서 상기 저장실의 온도는 상기 제2단계가 시작될 때의 온도에 비해서 상승된다.
상기 제2단계가 수행되는 동안에, 상기 제3단계가 시작되는 조건을 만족하는지 판단한다(S40). 이때 상기 제3단계가 시작되는 조건은 상기 제2단계가 종료되는 조건과 동일하다. 상기 제2단계가 종료되면 즉시 상기 제3단계가 수행되기 때문이다.
상기 제2단계는 상기 저장실의 온도가 설정 온도에서 제2설정 차이값을 더한 온도에 도달하면 종료될 수 있다. 이때 상기 제2설정 차이값은 냉장고 외부 온도가 올라갈수록 커지는 것이 가능하다. 상기 제2설정 차이값이 커진다는 것은 상기 제2단계의 수행 시간이 커지는 것을 의미할 수 있다.
외부 온도(℃) T<18 18<T<22 22<T<34 34<T
제2설정차이값 작아짐 <-> 커짐
외부 온도 T가 커지면, 상기 저장실을 냉각하기 위한 냉기가 더 많이 필요하게 된다. 즉 외부 온도가 높으면 상기 저장실을 동일한 온도로 냉각하기 위해서는 상기 압축기가 더 많이 구동되어야 한다.
상기 제2단계에서는 상기 제3단계에서 상기 압축기가 구동되지 않더라도 상기 저장실을 냉각할 수 있을 충분한 냉기를 확보해야 한다. 따라서, 외부 온도가 높아질수록 상기 제2단계에서 더 많은 냉기를 축적하기 위해서는 상기 제2단계의 수행 시간이 길어져야 한다. 이를 위해서 상기 제2단계의 종료 조건인 설정 온도와 제2설정 차이값에서 상기 제2설정 차이값을 크게 변화시켜서, 상기 저장실의 온도가 더 높게 올라갈 때까지 기다린 후에 상기 제2단계의 수행을 종료하는 것이 가능하다.
또한 사용자는 상기 압축기가 잦은 주기를 가지고 구동과 중지를 반복하면 상대적으로 소음에 민감하게 반응하는 경향이 있다. 또한 상기 압축기가 잦은 구동과 중지를 반복하면 에너지 효율이 떨어지기 때문에, 상기 압축기는 구동을 시작한 후에는 충분한 냉기를 확보한 후에, 오랜 시간 동안 구동되지 않아도 될 만큼 구동을 한 후에 정지되는 것이 바람직하다.
한편 상기 제2설정 차이값은 위의 표1에서 볼 수 있듯이, 총 4개의 구간을 가지면서 크기가 변화되는 것이 가능하다. 예를 들어서, 상기 제2설정 차이값은 총 4개의 변화값만을 가지면서, 외부 온도 센서에서 측정된 온도에 따라서 선택되는 것이 가능하다.
한편 상기 제2설정 차이값은 상기 제1설정 차이값보다 작은 것이 바람직하다. 즉 상기 제2단계의 종료 시점에서의 상기 저장실의 온도는 상기 제1단계의 시작 시점에서의 상기 저장실의 온도에 비해서 낮은 것이 바람직하다.
상기 제1단계에서의 온도 변화 범위는 상기 제2단계에서의 온도 변화 범위를 포함해서, 상기 저장실의 온도 변화 범위는 작아지는 것이 바람직하다. 따라서 상기 저장실이 상기 설정 온도를 중심으로 좁은 범위 내에서 변화되어, 상기 저장실의 온도 변화폭이 줄어들 수 있다.
상기 제2단계의 또 다른 종료 조건으로 상기 제2단계가 제1설정 시간(T1) 동안 수행되었는지를 판단할 수 있다(S40).
외부 온도(℃) T<18 18<T<22 22<T<34 34<T
제1설정시간(T1) 작아짐 <-> 커짐
외부 온도 T가 커지면, 상기 저장실을 냉각하기 위한 냉기가 더 많이 필요하게 된다. 즉 외부 온도가 높으면 상기 저장실을 동일한 온도로 냉각하기 위해서는 상기 압축기가 더 많이 구동되어야 한다.
상기 제2단계에서는 상기 제3단계에서 상기 압축기가 구동되지 않더라도 상기 저장실을 냉각할 수 있을 충분한 냉기를 확보해야 한다. 따라서, 외부 온도가 높아질수록 상기 제2단계에서 더 많은 냉기를 축적하기 위해서는 상기 제2단계의 수행 시간 즉 제1설정 시간(T1)이 길어져야 한다.
한편 상기 제1설정 시간은 위의 표2에서 볼 수 있듯이, 총 4개의 구간을 가지면서 크기가 변화되는 것이 가능하다. 예를 들어서, 상기 제1설정 시간은 총 4개의 변화값만을 가지면서, 상기 외부 온도 센서에서 측정된 온도에 따라서 선택되는 것이 가능하다.
상기 제1설정 시간(T1)은 타이머에 의해서 측정되는 것이 가능하다. 상기 타이머는 상기 제2단계의 시작, 즉 상기 압축기는 구동되고 상기 팬은 정지된 상태가 시작되면 경과된 시간을 측정하기 시작해서, 제1설정 시간(T1)을 경과했는지에 관한 정보를 제어부에 전달할 수 있다.
상기 제3단계에서는 상기 압축기는 구동을 중지하고, 상기 팬은 구동된다(S42). 상기 압축기는 구동되지 않기 때문에, 상기 증발기에는 냉기가 발생되지 않아서, 상기 증발기의 주변 공기는 지속적으로 냉각되기는 어렵다. 한편 상기 제2단계에서 상기 증발기 주변의 공기는 냉각된 상태이기 때문에, 상기 팬이 구동되면 차가워진 공기는 상기 저장실로 이동되어서 상기 저장실이 냉각될 수 있다. 따라서 도 7에 도시된 것처럼 상기 저장실의 내부 온도는 하강될 수 있다.
상기 제3단계에서는 상기 압축기가 구동되지 않기 때문에 상기 압축기에 의한 소음이 발생되지 않는다. 통상적으로 상기 압축기에 의한 소음은 상기 팬에 의한 소음보다는 크기 때문에, 상기 제3단계에서는 상기 제2단계에 비해서 소음이 작은 상태가 유지될 수 있다.
상기 제3단계가 수행되는 동안에, 상기 제4단계가 시작되는 조건을 만족하는지 판단한다(S50). 이때 상기 제4단계가 시작되는 조건은 상기 제3단계가 종료되는 조건과 동일하다. 상기 제3단계가 종료되면 즉시 상기 제4단계가 수행되기 때문이다.
상기 제3단계는 증발기의 온도가 특정 온도에 도달하면 종료되는 것이 가능하다. 증발기의 온도는 증발기용 온도 센서에서 측정되는 것이 가능하다. 상기 특정 온도는 상기 팬의 운전으로 인해 상기 증발기에 착상된 얼음의 승화현상이 발생되어, 상기 저장실의 내부에 이슬이나 결빙에 대한 신뢰성에 영향을 주지 않을 수 있는 온도를 의미할 수 있다. 상기 특정 온도는 구체적으로 섭씨 0도 이상, 즉 영상을 의미하는 것이 가능하다.
이때 상기 증발기용 온도 센서는 상기 증발기로 냉매가 유입되는 관 또는 상기 증발기의 일측의 온도를 측정하는 것이 가능하다.
또한 상기 제3단계는 제2설정 시간(T2) 동안 수행되고 종료되는 것이 가능하다.
외부 온도(℃) T<18 18<T<22 22<T<34 34<T
제2설정시간(T2) 작아짐 <-> 커짐
외부 온도 T가 커지면, 상기 저장실을 냉각하기 위한 냉기가 더 많이 필요하게 된다.
즉 외부 온도가 높으면 상기 저장실을 동일한 온도로 냉각하기 위해서는 상기 압축기가 더 많이 구동되어야 한다. 상기 제2단계에서 외부 온도가 높다고 측정되면, 상기 제1설정 시간이 길기 때문에 상기 압축기의 더 오랜 시간 동안 구동되어서 더 많은 냉기가 축적된 상태이다. 이에 따라서 상기 제3단계에서 상기 제2단계에 축적된 냉기를 상기 저장실로 충분히 이동시키기 위해서는 상기 팬을 더 오랜 시간 동안 구동하는 것이 가능하다. 즉 더 많은 냉기가 포함되어 있기 때문에, 상기 팬을 더 많이 구동해서 상기 증발기의 주변의 냉기가 상기 저장실로 충분히 이동되어서 상기 저장실이 냉각될 수 있도록 한다.
한편 상기 제2설정 시간은 위의 표3에서 볼 수 있듯이, 총 4개의 구간을 가지면서 크기가 변화되는 것이 가능하다. 예를 들어서, 상기 제2설정 시간은 총 4개의 변화값만을 가지면서, 상기 외부 온도 센서에서 측정된 온도에 따라서 선택되는 것이 가능하다.
상기 제4단계의 시작 조건은 상술한 두 가지 이외에 상기 저장실의 온도가 상기 설정 온도에서 상기 제1설정 차이값을 뺀 값에 도달하면 시작되는 것도 가능하다. 관련 내용은 상기 제2단계를 시작하는 경우와 동일하기 때문에 자세한 설명은 생략한다.
상기 제4단계가 수행되면 상기 팬과 상기 압축기가 구동되지 않기 때문에, 소음이 발생되지 않는다(S52). 반면에 상기 저장실로는 냉기가 공급되지 않아서 상기 저장실의 온도가 상승될 수 있다.
상기 제4단계가 수행되는 동안에, 상기 제4단계가 종료되는 조건을 만족하는지 판단한다(S60). 이때 상기 제4단계가 종료되는 조건은 상기 제1단계가 시작되는 조건과 동일하다. 상기 제4단계가 종료되면 즉시 상기 제1단계가 수행되기 때문이다.
상기 제4단계는 상기 저장실의 온도가 설정 온도에서 제1설정 차이값을 더한 온도에서 수행이 종료되는 것이 가능하다. 따라서 상기 저장실의 내부 온도의 변화 범위가 상기 제1단계의 온도 변화 범위에 포함될 수 있다.
한편 상기 제1단계의 온도 변화 범위는 상기 제4단계에서 온도 변화 범위와 동일한 것이 가능하다.
본 발명에서는 상기 압축기를 상기 제1단계와 상기 제2단계에서만 구동하고, 상기 제3단계와 상기 제4단계에서 구동하지 않기 때문에 상기 압축기의 구동과 정지에 대한 주기가 길어질 수 있다. 따라서 상기 압축기의 구동에 따른 소음이 줄어들 수 있다.
또한 상기 압축기의 구동 주기가 길어지기 때문에 상기 압축기를 운전하는 데에 소모되는 에너지 효율이 향상될 수 있다. 상기 압축기를 자주 껐다 켰다하면 상기 압축기를 구동하는 데에 소모되는 전력이 크게 증가할 수 있기 때문이다.
또한 상기 제1단계의 온도 변화 범위는 상기 제2단계, 상기 제3단계 및 상기 제3단계의 온도 변화 범위를 포함해서, 전체적으로 상기 저장실의 온도가 상기 제1단계의 온도 변화 범위 내에서 변화될 수 있다. 물론 상기 저장실의 온도가 상기 제4단계의 온도 변화 범위 내에서 변화될 수 있다. 따라서 상기 저장실의 온도의 변화 범위 폭이 줄어들어서 상기 저장실에 저장된 식품의 온도가 일정 범위 내에서 유지될 수 있고, 식품의 저장 기간이 증가될 수 있다.
특히 상기 저장실은 냉장실인 것이 가능하다. 냉장실은 영상의 온도를 설정 온도로 가지고 있기 때문에, 식품들이 냉동실에 비해서 높은 온도에서 보관된다. 따라서 냉장실에 보관된 식품은 냉동실에 보관된 식품에 비해서 저장실의 온도 변화에 대해서 민감하다. 본 발명에서 설명되는 제어 흐름이 냉장실에 적용되어서 냉장실의 온도 변화 폭을 줄이는 것이 가능하다.
본 명세서에서는 두 개의 실시 예를 구분하여 설명하였으나, 이에 제한되는 것은 아니며, 두 번째 실시 예의 내용을 첫 번재 실시 예에 추가하거나 두 개의 실시 예를 조합하는 것도 가능하다.
본 발명은 상술한 실시예에 한정되지 않으며, 첨부된 청구범위에서 알 수 있는 바와 같이 본 발명이 속한 분야의 통상의 지식을 가진 자에 의해 변형이 가능하고 이러한 변형은 본 발명의 범위에 속한다.

Claims (10)

  1. 냉매를 압축하는 제1압축기 및 제2압축기, 상기 제1압축기로부터 냉매를 공급받아 제1저장실을 냉각시키기 위한 냉기를 발생시키는 제1증발기, 제1저장실에 냉기를 공급하기 위한 제1냉각팬, 상기 제2압축기로부터 냉매를 공급받아 제2저장실을 냉각하기 위한 냉기를 발생시키는 제2증발기 및 상기 제2저장실에 냉기를 공급하기 위한 제2냉각팬을 포함하고, 상기 제1저장실의 냉각 사이클과 상기 제2저장실 냉각 사이클이 동시 운전 혹은 교번 운전이 가능한 냉장고의 제어방법에 있어서,
    상기 제1저장실의 온도가 감지되는 단계;
    감지된 상기 제1저장실의 온도가 상기 제1저장실을 위한 제1기준 온도 이상인 값에 도달한 경우, 상기 제1저장실을 위한 냉기공급수단의 출력을 증가시키는 단계;
    감지된 상기 제1저장실의 온도가 상기 제1저장실을 위한 제2기준 온도 이하인 값에 도달한 경우, 상기 제1저장실을 위한 냉기공급수단 중 적어도 하나의 출력을 줄이거나 정지시키는 단계;
    상기 제1저장실의 온도가 상기 제2기준 온도 이하의 값에 도달한 이후, 일정시간이 경과하거나 혹은 감지된 상기 제1저장실의 온도가 상기 제1저장실을 위한 제1기준 온도와 제2기준 온도 사이의 제1특정값(N+a)에 도달하면, 상기 제1저장실을 위한 냉기공급수단 중 적어도 하나의 출력을 증가시키는 단계; 및
    이전 단계에서 상기 냉기공급수단의 출력이 변경된 후 일정 시간이 경과하거나 혹은 감지된 상기 제1저장실의 온도가 상기 제1특정값 (N+a)과 상기 제2기준 온도 사이의 미리 설정된 제2특정값(N+b)에 도달하면, 상기 제1저장실을 위한 냉기공급수단 중 적어도 하나의 출력을 감소시키거나 정지시키는 단계를 포함하는 냉장고의 제어방법.
  2. 제 1 항에 있어서,
    감지된 제1저장실의 온도가 상기 제1저장실을 위한 상기 제2기준 온도 이하인 값에 도달한 이후에, 상기 제2저장실을 위한 냉기공급수단이 출력을 증가시키는 단계; 및
    감지된 제2저장실의 온도가 상기 제2저장실을 위한 제1기준 온도에 도달한 이후에, 상기 제2저장실을 위한 냉기공급수단의 출력을 감소시키거나 정지시키는 단계를 더 포함하는 냉장고의 제어방법.
  3. 제 2 항에 있어서,
    상기 제1저장실을 위한 냉기 공급과 상기 제2저장실을 위한 냉기 공급이 동시에 이루어지는 구간이 길어지는 것을 방지하기 위하여,
    상기 제2저장실을 위한 냉기공급수단의 출력이 발생하고 있는 중에 상기 감지된 제1저장실의 온도가 상기 제1저장실을 위한 제1기준 온도 이상인 값에 도달하면, 그 도달한 때로부터 일정 시간이 경과하거나 또는 감지된 상기 제1저장실의 온도가 상기 제1저장실을 위한 제1기준 온도와 제2기준 온도사이의 미리 설정된 제2특정값 (N+c)에 도달하면 상기 제2저장실을 위한 냉기공급수단의 출력을 감소시키거나 정지시키는 단계를 추가로 포함하는 냉장고의 제어방법.
  4. 제 1 항에 있어서,
    상기 제1특정값(N+a)은 상기 제1저장실을 위한 제2기준 온도 보다 크고, 상기 제1저장실의 목표 온도 보다 작은 냉장고의 제어방법.
  5. 제 3 항에 있어서,
    상기 제3특정값(N+c)은, 상기 제1저장실의 목표 온도 보다 크고, 상기 제1저장실을 위한 제1기준 온도 보다 작은 냉장고의 제어방법.
  6. 제 1 항에 있어서,
    상기 제1저장실을 위한 냉기공급수단은 상기 제1냉각팬을 포함하고,
    상기 제2저장실을 위한 냉기공급수단은 상기 제2냉각팬을 포함하는 냉장고의 제어방법.
  7. 제 1 항에 있어서,
    상기 제1저장실을 위한 냉기공급수단은 상기 제1냉각팬 및 상기 제1압축기를 포함하고,
    감지된 상기 제1저장실의 온도가 상기 제1저장실을 위한 제2기준 온도 이하인 값에 도달한 경우, 상기 제1저장실을 위한 냉기공급수단 중 적어도 하나의 출력을 줄이거나 정지시키는 단계에서는, 상기 제1압축기가 온된 상태에서 상기 제1냉각팬을 오프시키는 냉장고의 제어방법.
  8. 제 7 항에 있어서,
    상기 제1저장실의 온도가 상기 제1저장실을 위한 제1기준 온도와 제2기준 온도 사이의 제1특정값(N+a)에 도달하여, 상기 제1저장실을 위한 냉기공급수단 중 적어도 하나의 출력을 증가시키는 단계에서는, 작동 중인 제1압축기를 오프시키고, 상기 제1냉각팬은 온시키는 냉장고의 제어방법.
  9. 제 1 항에 있어서,
    감지된 상기 제1저장실의 온도가 상기 제1저장실을 위한 제2기준 온도 이하인 값에 도달하여 상기 제1저장실을 위한 냉기공급수단 중 적어도 하나의 출력을 줄이거나 정지시킨 이후에, 상기 제1저장실의 온도에 따라서 상기 제1저장실을 위한 냉기공급수단의 출력을 제어하는 단계 들은,
    상기 제1저장실의 온도가 상기 제1저장실을 위한 제2기준 온도 이하인 값에 도달한 시점부터 설정 시간이 경과되거나, 혹은 상기 제1증발기의 온도를 감지하는 센서에서의 온도 값이 설정값에 도달하는 경우 종료되는 냉장고의 제어방법.
  10. 제 1 항에 있어서,
    상기 제1저장실을 위한 응축기와 상기 제2저장실을 위한 응축기는 하나의 열교환기를 이루되, 두 개의 부분으로 냉매가 유동되도록 구성되며,
    상기 제1저장실을 냉각하기 위한 냉매는 상기 응축기의 제1부분을 유동하고, 상기 제2저장실을 냉각하기 위한 냉매는 상기 응축기의 제2부분으로 유동하며,
    상기 제1부분을 위한 응축기 핀과 상기 제2부분을 위한 응축기 핀은 서로 연결되어 있는 것을 특징으로 하는 냉장고의 제어방법.
PCT/KR2017/003231 2016-03-24 2017-03-24 냉장고의 제어방법 WO2017164710A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/087,956 US10837686B2 (en) 2016-03-24 2017-03-24 Control method for refrigerator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020160035198A KR102518816B1 (ko) 2016-03-24 2016-03-24 냉장고 및 그 제어 방법
KR10-2016-0035198 2016-03-24
KR1020160161305A KR102593575B1 (ko) 2016-11-30 2016-11-30 냉장고 및 그의 제어방법
KR10-2016-0161305 2016-11-30

Publications (1)

Publication Number Publication Date
WO2017164710A1 true WO2017164710A1 (ko) 2017-09-28

Family

ID=59900522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003231 WO2017164710A1 (ko) 2016-03-24 2017-03-24 냉장고의 제어방법

Country Status (2)

Country Link
US (1) US10837686B2 (ko)
WO (1) WO2017164710A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101721771B1 (ko) * 2015-09-17 2017-03-30 엘지전자 주식회사 냉장고 제어 방법
KR102409514B1 (ko) 2017-11-01 2022-06-16 엘지전자 주식회사 냉장고 및 그의 제어방법
EP3674631B1 (en) * 2018-12-28 2024-04-24 LG Electronics Inc. Refrigerator and method for controlling the same
CN109737566B (zh) * 2018-12-29 2021-09-21 青岛海尔空调电子有限公司 空调器及其控制方法
KR20210027869A (ko) * 2019-09-03 2021-03-11 엘지전자 주식회사 냉장고 및 그의 제어방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050056722A (ko) * 2003-12-10 2005-06-16 삼성전자주식회사 냉장고 및 그 제어 방법
KR100498395B1 (ko) * 2002-12-27 2005-07-01 엘지전자 주식회사 극변환 모터를 채용한 냉장고의 정/역회전 압축기운전제어장치 및 방법
KR20050103097A (ko) * 2004-04-24 2005-10-27 삼성전자주식회사 냉장고 및 그 제어방법
KR20160011110A (ko) * 2014-07-21 2016-01-29 엘지전자 주식회사 냉장고 및 그 제어방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0149916B1 (ko) 1994-11-11 1999-05-01 김광호 고효율 독립냉각 싸이클을 가지는 냉장고의 운전제어장치
KR100453236B1 (ko) * 2001-11-27 2004-10-15 삼성전자주식회사 다용도실을 구비한 냉장고 및 그 제어방법
KR100505254B1 (ko) * 2003-03-31 2005-08-03 엘지전자 주식회사 냉장고의 온도 제어 방법
DK177003B1 (en) * 2009-08-20 2010-11-15 Maersk Container Ind As Dehumidifier
KR101660042B1 (ko) * 2009-12-21 2016-09-26 엘지전자 주식회사 냉장고

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100498395B1 (ko) * 2002-12-27 2005-07-01 엘지전자 주식회사 극변환 모터를 채용한 냉장고의 정/역회전 압축기운전제어장치 및 방법
KR20050056722A (ko) * 2003-12-10 2005-06-16 삼성전자주식회사 냉장고 및 그 제어 방법
KR20050103097A (ko) * 2004-04-24 2005-10-27 삼성전자주식회사 냉장고 및 그 제어방법
KR20160011110A (ko) * 2014-07-21 2016-01-29 엘지전자 주식회사 냉장고 및 그 제어방법

Also Published As

Publication number Publication date
US20190120533A1 (en) 2019-04-25
US10837686B2 (en) 2020-11-17

Similar Documents

Publication Publication Date Title
WO2017164710A1 (ko) 냉장고의 제어방법
WO2017164712A1 (ko) 냉장고 및 그의 제어방법
WO2019190113A1 (ko) 냉장고 및 그 제어방법
WO2019172532A1 (ko) 냉장고 및 그 제어방법
WO2018088839A1 (ko) 냉장고 및 냉장고의 제어 방법
WO2017164711A1 (ko) 냉장고의 제어방법
WO2017039234A1 (en) Refrigerator
WO2016013798A1 (en) Refrigerator and control method thereof
WO2017105079A1 (en) Refrigerator
AU2018295869B2 (en) Refrigerator and method of controlling the same
WO2018088845A1 (ko) 냉장고 및 냉장고의 제어 방법
EP3338041A1 (en) Refrigerator
WO2019045306A1 (ko) 냉장고 및 그 제어방법
WO2020111688A1 (en) Refrigerator and control method thereof
WO2020027596A1 (ko) 냉장고의 제어방법
WO2018194324A1 (en) Refrigeration cycle device and three-way flow rate control valve
WO2017105047A1 (ko) 냉장고 및 그의 제어방법
WO2020111680A1 (en) Refrigerator and controlling method thereof
AU2018286352B2 (en) Refrigerator and method of controlling the same
WO2021040427A1 (en) Air conditioner and control method thereof
AU2018295870B2 (en) Refrigerator and method of controlling the same
WO2019164115A1 (en) Refrigerator and controlling method for the same
AU2016316427B2 (en) Refrigerator
WO2018230925A1 (en) Refrigerator and method of controlling the same
WO2022131562A1 (ko) 냉장고 및 그 제어방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770680

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770680

Country of ref document: EP

Kind code of ref document: A1