WO2010126099A1 - 超電導線材の電流端子構造及びこの電流端子構造を備える超電導ケーブル - Google Patents

超電導線材の電流端子構造及びこの電流端子構造を備える超電導ケーブル Download PDF

Info

Publication number
WO2010126099A1
WO2010126099A1 PCT/JP2010/057611 JP2010057611W WO2010126099A1 WO 2010126099 A1 WO2010126099 A1 WO 2010126099A1 JP 2010057611 W JP2010057611 W JP 2010057611W WO 2010126099 A1 WO2010126099 A1 WO 2010126099A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
superconducting wire
wire
layer
solder
Prior art date
Application number
PCT/JP2010/057611
Other languages
English (en)
French (fr)
Inventor
正史 八木
平雄 平田
光男 鈴木
晋一 向山
融 塩原
Original Assignee
財団法人 国際超電導産業技術研究センター
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人 国際超電導産業技術研究センター, 古河電気工業株式会社 filed Critical 財団法人 国際超電導産業技術研究センター
Priority to JP2011511446A priority Critical patent/JP5619731B2/ja
Priority to CN2010800163827A priority patent/CN102396112B/zh
Publication of WO2010126099A1 publication Critical patent/WO2010126099A1/ja
Priority to US13/243,630 priority patent/US8260388B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/34Cable fittings for cryogenic cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/68Connections to or between superconductive connectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a current terminal structure of a superconducting wire and a superconducting cable having this current terminal structure.
  • a superconducting conductor has a structure in which a tape-shaped superconducting wire is wound around a winding core (former) in multiple layers.
  • the thin-film superconducting wire used is formed by forming a superconducting layer made of, for example, ReBCO (Re-Ba-Cu-O, Re is a rare earth metal) on a substrate via an intermediate layer, and forming a stable state made of silver on the superconducting layer. It has a structure in which a chemical layer is formed.
  • the current terminal portion When a current is passed through such a superconducting conductor, the current terminal portion is designed so that the current flows evenly through the superconducting layer of each superconducting wire, and the heat generation at the connecting portion is reduced in connection with the current lead that supplies the current.
  • the connection resistance must be low.
  • the superconducting wire has a front and a back, and the connection at the current terminal is usually made so that the superconducting layer side is on the outside or the front side. If the connection is made so that the substrate side becomes the front side, the substrate has a high resistance, so that a large Joule heat is generated, resulting in inefficiency.
  • the superconducting layer is very thin, about 1 ⁇ m, so the area where the magnetic field penetrates is thin and the AC loss is very small.
  • the AC loss is drastically reduced because a parallel magnetic field is mainly used.
  • the cross section of the cable has a shape in which a gap exists between the wires and a magnetic field is attracted to the gap. And the component of a perpendicular magnetic field arises in this part, and will share most AC loss (for example, refer nonpatent literature 1).
  • Non-Patent Document 1 when the substrate has magnetism, the magnetic field is attracted to the magnetic substrate, so that complicated magnetic field lines are drawn. That is, the magnetic flux concentrates at the end portion of the wire, and the vertical magnetic field increases in this portion, resulting in a large loss (see, for example, Non-Patent Document 1).
  • FIG. 7 shows a current terminal portion of a normal multilayer superconducting cable.
  • the first superconducting wire 22 of the first layer and the second superconducting wire 23 of the second layer are wound around the former 21 in a spiral shape.
  • the first superconducting wire 22 of the first layer includes a substrate 22a and a superconducting layer 22b formed on the substrate 22a
  • the second superconducting wire 23 of the second layer includes the substrate 23a and the substrate.
  • Both the first and second superconducting wires 22 and 23 are arranged so that the superconducting layers 22b and 23b are on the front side (outside). End portions of the first and second superconducting wires 22 and 23 arranged in this way are stepped and formed as current terminal portions integrated by a solder fixing portion 24 (see, for example, Patent Document 1). ).
  • connection resistance is very small, and the degree of shunting to each superconducting layer is determined by the winding spiral of the superconducting layer. I can do it.
  • FIG. 8 shows a current terminal portion of a multilayer superconducting cable having a magnetic substrate.
  • the first superconducting wire 22 of the first layer and the second superconducting wire 23 of the second layer are wound around the former 21 in a spiral shape.
  • the first superconducting wire 22 of the first layer is arranged so that the magnetic substrate 22a side faces the outside of the superconducting cable, contrary to the normal arrangement, and the second superconducting wire 23 of the second layer is arranged. If the superconducting layer 23b is arranged so as to face the outside of the superconducting cable, the effect of magnetism is closed inside the superconducting conductor, and the AC loss can be kept low (see, for example, Patent Document 2).
  • the connection resistance is increased, and the same current is applied to the first and second layers. Is not shared. That is, since it does not have sufficient electrode capacity, Joule heat is generated when the current flowing through the second superconducting wire 23 in the second layer exceeds the critical current Ic, and the AC loss becomes very large.
  • the present invention has been made under the circumstances as described above, and an object of the present invention is to provide a current terminal structure of a superconducting wire having a low connection resistance and a low AC loss, and a superconducting cable including the current terminal structure.
  • a first aspect of the present invention is a superconducting conductor in which a superconducting wire having a superconducting layer formed on a substrate is wound around one or more layers of a former, and is a single layer wound immediately above the former.
  • the surface facing the inside of the superconducting layer at the end of the first superconducting wire there is provided a current terminal structure of a superconducting conductor, characterized in that a part of the surface of the connecting superconducting wire facing the outside of the superconducting layer is connected to face.
  • Such a superconducting conductor has a current terminal structure in which the second superconducting wire is wound on the first superconducting wire so that the superconducting layer side is on the outside and the substrate side is on the inside.
  • a portion where the superconducting layer is exposed and an end portion of the superconducting wire of the second layer can be provided with a solder fixing portion integrated using solder.
  • the resistivity at the liquid nitrogen temperature of the solder used for the connecting portion between the connecting superconducting wire and the first superconducting wire is equal to or lower than the resistivity of the solder used for the solder fixing portion.
  • the melting point of the solder used for the connecting portion between the connecting superconducting wire and the first superconducting wire is preferably equal to or higher than the melting point of the solder used for the solder fixing portion.
  • the second aspect of the present invention is a superconducting conductor in which a superconducting wire having a superconducting layer formed on a substrate is wound around four or more layers on a former, the odd-numbered superconducting wire being on the outside on the substrate side and the superconducting layer on the inside
  • the current terminal structure of the superconducting conductor arranged so as to be, the surface facing the inside of the superconducting layer at the end of the odd-numbered superconducting wire and the surface facing the outside of the superconducting layer of the connecting superconducting wire
  • a current terminal structure of a superconducting conductor characterized in that a part thereof is connected to face each other.
  • Such a superconducting conductor current terminal structure is formed by winding the odd-numbered superconducting wire on the odd-numbered superconducting wire so that the superconducting layer side is on the outside and the substrate side is on the inside.
  • a portion where the superconducting layer of the superconducting wire is exposed and an end of the odd-numbered plus first superconducting wire can be provided with a solder fixing portion integrated using solder.
  • the resistivity at the liquid nitrogen temperature of the solder used for the connecting portion between the connecting superconducting wire and the odd-numbered superconducting wire is equal to or lower than the resistivity of the solder used for the solder fixing portion.
  • the melting point of the solder used for the connecting portion between the connecting superconducting wire and the odd-numbered superconducting wire is preferably equal to or higher than the melting point of the solder used for the solder fixing portion.
  • the third aspect of the present invention provides a superconducting cable characterized by comprising the above current terminal structure.
  • a current terminal structure of a superconducting wire having a low connection resistance and a low AC loss, and a superconducting cable including the current terminal structure are provided.
  • FIG. 1 is a cross-sectional view of a current terminal portion of a superconducting cable having a two-layer structure according to a first embodiment of the present invention.
  • FIG. 1 the same applies to the following figures, the cross section of the upper half of the superconducting cable is shown, and the lower half is omitted.
  • the first superconducting wire 2 in the first layer and the second superconducting wire 3 in the second layer are wound around the former 1 in a spiral shape.
  • the first superconducting wire 2 of the first layer is composed of a substrate 2a and a wire A composed of a superconducting layer 2b formed on the substrate 2a, and a substrate 4a connected to the end thereof and the substrate 4a. It is comprised by the connecting wire B which consists of the superconducting layer 4b formed on the top.
  • the second superconducting wire 3 of the second layer is composed of a substrate 3a and a superconducting layer 3b formed on the substrate 3a.
  • the wire A is arranged so that the substrate 2a is on the front side (outside), and the connecting wire B is arranged so that the superconducting layer 4b is on the front side (outside).
  • the superconducting layer 2b of A and the superconducting layer 4b of the connecting wire B face each other.
  • the second superconducting wire 3 is arranged such that the superconducting layer 3b is on the front side (outside).
  • the end portions of the first superconducting wire 2 and the second superconducting wire 3 arranged in this way are integrated by a solder fixing portion 5.
  • a specific method of forming the current terminal structure by integrating the end portions of the first superconducting wire 2 and the second superconducting wire 3 will be described later.
  • the wire A is arranged so that the substrate 2a is on the front side (outside), the AC loss is reduced, and the connecting wire B is The superconducting layer 4b is arranged on the front side (outside), and the superconducting layer 2b of the wire A and the superconducting layer 4b of the connecting wire B are combined, so the first superconducting wire 2 and the second superconducting wire 3 are combined.
  • the current flowing through the capacitor is uniform and the connection resistance is low.
  • the melting point of the solder used for connecting the wire A and the connecting wire B is desirably equal to or higher than the melting point of the solder used for the solder fixing portion 5.
  • the resistance value of the solder used for connecting the wire A and the connecting wire B at the liquid nitrogen temperature is preferably equal to or lower than the resistance value of the solder used for the solder fixing portion 5 at the liquid nitrogen temperature.
  • the liquid nitrogen temperature means an operating temperature of a superconducting cable or the like having a current terminal structure, and specifically, is about 63K to 90K when liquid nitrogen is used as a refrigerant.
  • connection length (exposed length) b of the connecting wire B to the solder fixing portion 5 and the connection length (exposed length) c of the second superconducting wire 3 to the solder fixing portion 5 are set to b ⁇ c. Is desirable.
  • the value of c is usually 30 mm or more, preferably 50 to 100 mm when the diameter of the superconducting conductor is 15 to 100 mm.
  • the value of b is usually 30 mm or more, preferably 50 to 110 mm.
  • the diameter of the superconducting conductor is the diameter of the layer on which the first superconducting wire 2 is formed.
  • the superconducting conductor to which the connecting wire (second superconducting wire 3) is connected is meant.
  • FIG. 2 is a sectional view of a current terminal structure of a superconducting cable having a four-layer structure according to a second embodiment of the present invention.
  • the superconducting cable shown in FIG. 2 has a four-layer structure in which a third superconducting wire 6 in the third layer and a fourth superconducting wire 7 in the fourth layer are wound in a spiral shape on the superconducting cable shown in FIG. It has a structure.
  • the structures of the ends of the third superconducting wire 6 in the third layer and the fourth superconducting wire 7 in the fourth layer expose the superconducting layer 3b of the second superconducting wire 3 upward due to stepping.
  • the structure is the same as that of the end portions of the first superconducting wire 2 in the first layer and the second superconducting wire 3 in the second layer, except that they are disposed backward.
  • the third superconducting wire 6 in the third layer is composed of a substrate 8a and a superconducting layer 6b formed on the substrate 6a, and a substrate 8a connected to the end of the substrate 8a and the substrate 8a. It is comprised by the wire D for a connection which consists of the superconducting layer 8b formed in this.
  • the wire C is arranged so that the substrate 6a is on the front side (outside), and the connecting wire D Are arranged so that the superconducting layer 8b is on the front side (outside), that is, the superconducting layer 6b of the wire C and the superconducting layer 8b of the connecting wire D face each other.
  • the fourth superconducting wire 7 of the fourth layer composed of the substrate 7a and the superconducting layer 7b formed on the substrate 7a is a superconducting layer. 7b is arranged on the front side (outside).
  • the ends of the first superconducting wire 2, the second superconducting wire 3, the third superconducting wire 6, and the fourth superconducting wire 7 arranged in this way are integrated by a solder fixing portion 9.
  • the length (connection length) d in which the ends of the wire C and the connecting wire D overlap each other is preferably 50 mm or more, more preferably 50 to 100 mm.
  • connection length f between the fourth superconducting wire 7 and the solder fixing portion 9 and the connection length e between the superconducting wire D and the solder fixing portion 9 are e ⁇ f.
  • f is usually 30 mm or more, preferably 50 to 100 mm when the diameter of the superconducting conductor is 15 to 100 mm.
  • the value of e is usually 30 mm or more, preferably 50 to 110 mm.
  • connection lengths d, e, and f Even if the third superconducting wire 6 is arranged so that the substrate 6a is on the front side, the current of the multilayered superconducting conductor can be equalized. Can be achieved reliably.
  • FIG. 3 is a cross-sectional view of a current terminal structure of a six-layer superconducting cable according to the third embodiment of the present invention.
  • the superconducting cable shown in FIG. 3 has a sixth layer in which a fifth superconducting wire 13 in the fifth layer and a sixth superconducting wire 14 in the sixth layer are wound in a spiral shape with respect to the superconducting cable shown in FIG. It has a structure.
  • the structures of the ends of the fifth superconducting wire 13 in the fifth layer and the sixth superconducting wire 14 in the sixth layer are formed by stripping the fourth superconducting wire. 7 at the end of the first superconducting wire 2 of the first layer and the second superconducting wire 3 of the second layer, except that the superconducting layer 7b of the seventh layer is disposed so as to be exposed upward.
  • the structure is the same.
  • the fifth superconducting wire 13 in the fifth layer is composed of a wire E composed of a substrate and a superconducting layer formed on the substrate, and a superconducting formed on the substrate and the substrate connected to the ends thereof. It is comprised with the connecting wire F which consists of a layer. Further, in the fifth superconducting wire 13, the wire E is arranged so that the substrate is on the front side (outside), and the connecting wire F is arranged so that the superconducting layer is on the front side (outside), The superconducting layer of the wire E faces the superconducting layer of the connecting wire F.
  • the sixth superconducting wire 14 of the sixth layer comprising the substrate and the superconducting layer formed on the substrate is the superconducting layer on the front side ( (Outside) End portions of first superconducting wire 2, second superconducting wire 3, third superconducting wire 6, fourth superconducting wire 7, fifth superconducting wire 13, and sixth superconducting wire 14 arranged in this way.
  • solder fixing portion 15 are integrated by solder fixing portion 16.
  • the superconducting wires in the odd-numbered layers for example, the third layer, the fifth layer, and the seventh layer, those having the connecting wires connected to the end portions are used, and the superconducting layers at the end portions are integrated.
  • the integration by the solder fixing portion is performed on the end from the first superconducting wire to the uppermost odd layer plus the first superconducting wire.
  • connection length a between the superconducting wire of the odd-numbered layer and the connecting wire is preferably 50 mm or more, more preferably 50 to 100 mm.
  • connection length b of the connecting wire with the solder fixing portion and the connection length c of the odd number plus the first layer superconducting wire with the solder fixing portion satisfy the relationship of b ⁇ c.
  • the value of c is usually 30 mm or more, preferably 50 to 100 mm when the diameter of the superconducting conductor is 15 to 100 mm.
  • the value of b is usually 30 mm or more, preferably 50 to 110 mm.
  • substrate having magnetism means a metal substrate having a saturation magnetization at an ambient temperature (typically 77 K) or less at which the superconducting conductor is used, and in particular, the saturation magnetization during use is 0.
  • the effect of the present invention is exhibited in the case of 15T or more.
  • Specific examples of the magnetic metal include ferromagnetic materials represented by Fe, Co, Ni, and the like, and alloys based on these.
  • the even-layer superconducting wire may include a magnetic substrate or a non-magnetic substrate (for example, Hastelloy (registered trademark)). (IBAD wire etc.) may be used.
  • FIG. 4 is a cross-sectional view of a current terminal structure of a superconducting cable having a three-layer structure according to a fourth embodiment of the present invention.
  • the superconducting cable shown in FIG. 4 is a three-layered structure in which a nonmagnetic superconducting wire 16 that is a superconducting wire including a non-magnetic substrate is wound in a spiral shape on the superconducting cable shown in FIG. It has a structure.
  • the structure of the end portion of the nonmagnetic superconducting wire 16 of the third layer is disposed so as to be retreated so that the superconducting layer 3b of the second superconducting wire 3 is exposed upward by stepping.
  • the ends of the first superconducting wire 2, the second superconducting wire 3, and the nonmagnetic superconducting wire 16 arranged in this way are integrated by a solder fixing portion 17.
  • FIG. 5 is a cross-sectional view of a current terminal structure of a superconducting cable having a five-layer structure according to a fifth embodiment of the present invention.
  • the superconducting cable shown in FIG. 5 has a five-layered structure in which a nonmagnetic superconducting wire 18 that is a superconducting wire including a non-magnetic substrate is spirally wound on the superconducting cable shown in FIG. It has a structure.
  • the structure of the end portion of the nonmagnetic superconducting wire 18 of the fifth layer is disposed so as to be retreated so that the superconducting layer 7b of the fourth superconducting wire 7 is exposed upward by stepping.
  • the ends of the first superconducting wire 2, the second superconducting wire 3, the third superconducting wire 6, the fourth superconducting wire 7, and the nonmagnetic superconducting wire 18 arranged in this way are integrated by a solder fixing portion 19. It has become.
  • the use of a superconducting wire including a non-magnetic substrate for the outermost layer eliminates the need for a connecting superconducting wire.
  • the current terminal structure can be formed more compactly.
  • the first and second superconducting wires 2 and 3 wound spirally around the former 1 are stepped off as shown in FIG. 6A. Then, the end portions of the first and second superconducting wires 2 and 3 are curled along the jig 11 to escape backward.
  • the connecting wire B is disposed so that the superconducting layer (not shown) is on the front side (outside).
  • the surface of the superconducting layer of the connecting wire B is polished and smoothed, and flux is applied.
  • the flux for example, a resin-based flux containing no halogen can be used.
  • a thin solder tape having a thickness of, for example, 0.1 mm is wound on the flux.
  • the solder tape for example, Sn-43Pb-14Bi having a melting point (liquidus) of 165 ° C. can be used.
  • the end of the wire A of the first superconducting wire 2 of the first layer that is curled and rearward is removed from the jig 11 and placed on the solder tape. Wrap the heater. Turn on the power of the heater and heat it above the melting point of the solder tape. When the solder tape is melted by such heating, the superconducting layer of the connecting wire B and the superconducting layer of the first superconducting wire 2 are bonded.
  • the second superconducting wire 3 in the second layer is returned onto the end portion of the first superconducting wire 2 connected by the solder tape.
  • the exposed length b of the second superconducting wire 3 and the exposed length c of the connecting wire B have a relationship of b ⁇ c.
  • the first superconducting wire 2 and the second superconducting wire 3 are collectively connected to the structure shown in FIG. 6D. Hereinafter, the procedure will be described.
  • the mesh tape 12 is wound with one or several turns so as to cover the exposed length b of the second superconducting wire 3 and the exposed length c of the connecting wire B.
  • the mesh tape 12 is formed by braiding fine conductive fine metal wires.
  • a copper flat knitted wire can be preferably used.
  • solder for example, Sn-43Pb-14Bi
  • Sn-43Pb-14Bi which is a low melting point metal
  • this integration operation is performed by using a net-like tape of the first superconducting wire 2 in the first layer and the second superconducting wire 3 in the second layer in the molten solder accommodated in the crucible. This can be done by immersing the portion covered with 12 and allowing the solder to penetrate from the mesh tape 12 to the first and second superconducting wires 2 and 3.
  • the exposed portions of the connecting wire B and the second superconducting wire 3 may be wound using a fine conductive metal wire that is not mesh.
  • Such integration of the end portions of the first and second superconducting wires 2 and 3 can reduce the thickness of the solder having a high electrical resistance. Therefore, the terminal regions of the first and second superconducting wires 2 and 3 are reduced.
  • the connection resistance at can be made very small.
  • the highly conductive fine metal wire constituting the mesh tape 12 serves as a current path, the connection resistance of the end portions of the first and second superconducting wires 2 and 3 becomes uniform.
  • the first superconducting wire 2 of the first layer and the end of the second superconducting wire 3 of the second layer are integrated to form the solder fixing portion 5.
  • the solder for forming the solder fixing portion 5 is the wire A of the first superconducting wire 2. It is desirable that the solder has a lower melting point than the solder used for joining the wire B. The larger the difference between the melting points, the better.
  • the construction temperature at the time of integration is desirably not exceeding the melting point of the solder used for joining the wire A of the superconducting wire 2 and the connecting wire B.
  • the solder used for joining the wire A and the wire B of the first superconducting wire 2 is a low melting point metal having a melting point (liquidus) of 250 ° C. or less.
  • the solder tape is arranged on the connecting wire B, the wire A of the first superconducting wire 2 of the first layer is arranged on the solder tape, and the connecting wire B and the first layer are arranged.
  • the first superconducting wire 2 is heated above the melting point of the solder tape. At this time, if the heating is high, the superconducting layer of the connecting wire B and the first superconducting wire 2 deteriorates, so that the solder used for joining the wire A of the first superconducting wire 2 and the connecting wire B is used.
  • solders 1 to 5 shown in Table 1 below were used.
  • the room temperature means 25 ° C.
  • the liquid nitrogen temperature means 77K.
  • Solder 1 BI165 (Nippon Superior Co., Ltd.)
  • Solder 2 Low temperature plaster 120 (Aoki Metal Co., Ltd.)
  • Solder 3 BI57 (Nippon Superior Co., Ltd.)
  • Solder 4 H60A (Aoki Metal Co., Ltd.)
  • Solder 5 SN100C (manufactured by Nippon Superior Co., Ltd.)
  • Example 1 The first superconducting wire of the first layer was wound in a spiral shape on a 20 mm diameter former formed by twisting conductor wires covered with insulation in multiple layers so that the substrate would be on the front side (outside).
  • YBCO wires in which a YBCO layer was formed on a magnetic substrate made of Ni5W were used.
  • the second superconducting wire of the second layer having the same structure as the first superconducting wire of the first layer was wound in a spiral shape so that the surface of the superconducting layer was on the front side (outside).
  • the end portions of the first and second superconducting wires are integrated by using a connecting wire, a mesh tape, and a tape-like solder composed of the solders 1 to 5 shown in Table 1.
  • a connecting portion of the wire used for joining the wire A of the first superconducting wire 2 and the connecting wire B
  • the type of solder forming the solder fixing portion 5 the first Samples as shown in Table 1 were obtained by variously changing the connection length a at which the ends of the superconducting wire A and the connecting wire B overlap.
  • the superconducting conductor diameter (conductor diameter in the first superconducting wire) is 50 mm
  • the exposed length of the connecting wire B (Connection length with solder fixing portion) c is the same length
  • the solder thickness at the connection portion between the wire A of the first superconducting wire 2 and the connecting wire B is 0.1 mm.
  • the solder to be used is Pb-free, and in that case, from the Pb-free solder as in Samples 1-21 to 1-24, the connecting portion It is desirable to use the same type of solder in which the resistivity of the solder in liquid nitrogen is lower than that of the solder fixing portion or Pb-free solder.
  • solder resistivity ⁇ solder thickness ⁇ cross-sectional area of the connecting portion As described above, it is preferable to select a solder having a relatively high melting point and a low resistivity among the low melting point solders from the relationship with the solder fixing portion, as the solder used for the connecting portion of the wire. Considering the influence of heat on the superconducting wire, solder 1 or the like is preferable to solder 5.
  • the shape of the solder used for joining the wire A and the wire B of the first superconducting wire 2 is preferably a tape, and the thinner the tape, the more difficult it is to manufacture.
  • the connection between the superconducting wire for connection and the superconducting wire in the first layer is made.
  • the length a is adjusted.
  • the connection length is about 50 mm to 100 mm.
  • Comparative Example 1 In the same manner as in Example 1, after the first superconducting wire of the first layer and the second superconducting wire of the second layer are spirally wound on the former, the connecting wire B is different from the first example. Instead, the end portions were integrated using a mesh tape and solder to obtain a sample having a structure as shown in FIG.
  • the first superconducting wire of the first layer and the second superconducting wire of the second layer are both non-magnetic substrates and are wound in a spiral shape so that the surface of the superconducting layer is on the front side (outside).
  • the ends were integrated in the same manner as in Comparative Example 1 to obtain a sample having a structure as shown in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

 基板上に超電導層を形成した超電導線材をフォーマに1層以上巻き付けた超電導導体であって、前記フォーマの直上に巻き付けられた1層目の超電導線材が、基板側が外側に、超電導層側が内側になるように配置されている超電導導体の電流端子構造において、前記1層目の超電導線材の端部の超電導層の内側に向いた面と、接続用超電導線材の超電導層の外側に向いた面の一部とを対面させて接続したことを特徴とする超電導導体の電流端子構造。

Description

超電導線材の電流端子構造及びこの電流端子構造を備える超電導ケーブル
 本発明は、超電導線材の電流端子構造及びこの電流端子構造を備える超電導ケーブルに関する。
 一般に、超電導導体は、巻き芯(フォーマ)にテープ状の超電導線材を多層に巻き付けた構造を有する。使用される薄膜系の超電導線材は、基板上に中間層を介して、例えばReBCO(Re-Ba-Cu-O、Reは希土類金属)からなる超電導層を形成し、その上に銀からなる安定化層を形成した構造を有する。
 このような超電導導体に電流を流す場合、各超電導線材の超電導層に均等に電流が流れるようにし、また電流を供給する電流リードとの接続において接続部の発熱が小さくなるように、電流端子部の接続抵抗が低くなければならない。
 超電導線材は、表と裏が存在し、通常、電流端子での接続は、超電導層側が外側または表側になるように接続する。基板側が表になるように接続すると、基板は高い抵抗を有するため、大きなジュール熱が発生し、非効率になる。
 超電導層としてYBCO(Y-Ba-Cu-O)層を用いたYBCO超電導線材の面に垂直な磁場をかけた場合、大きな交流損失が発生する。即ち、磁場が大きくなると、磁場が超電導線材に侵入し、侵入しようとする方向のローレンツ力とピン止め力が釣り合う。交流の場合、磁場が周期的に変動し、ピン止め力に逆らって動くため、交流損失が生ずる。
 しかし、超電導線材の面に平行な磁場をかけた場合、超電導層は1μm程度と非常に薄いため、磁場の侵入する領域が薄く、交流損失は非常に小さくなる。例えば、YBCO超電導線材を使用してケーブルをつくると、平行磁場が主であるため、交流損失は飛躍的に小さくなる。ただし、実際の超電導線材の幅は有限であるため、ケーブルの断面は線材間にギャップが存在し、このギャップに磁場が吸い寄せられるような形となる。そして、この部分に垂直磁場の成分が生じ、交流損失の大部分を分担することになる(例えば、非特許文献1参照)。
 このように垂直磁場を減らすことがYBCO超電導線材を電力機器へ利用する際に非常に重要である。
 一方、基板が磁性を有する場合、磁場は磁性基板に吸い寄せられるので、複雑な磁力線を描く。即ち、線材の端部で磁束が集中し、この部分に垂直磁場が多くなり、損失が大きくなる(例えば、非特許文献1参照)。
 図7は、通常の多層超電導ケーブルの電流端子部を示す。図4において、フォーマ21の周囲に、1層目の第1の超電導線材22と、2層目の第2の超電導線材23とが、スパイラル状に巻回されている。この場合、1層目の第1の超電導線材22は、基板22aとこの基板22a上に形成された超電導層22bとからなり、2層目の第2の超電導線材23は、基板23aとこの基板23a上に形成された超電導層23bとからなる。
 第1及び第2の超電導線材22,23は、いずれも超電導層22b,23bが表側(外側)になるように配置されている。このように配置された第1及び第2の超電導線材22,23の端部は、段切りにされ、半田固定部24により一体化された電流端子部とされている(例えば、特許文献1参照)。
 このような電流端子部によると、接続抵抗は非常に小さく、各超電導層への分流の度合いは、超電導層の巻きスパイラルにより決定され、この巻きスパイラルを調整することで、ほぼ均等に分流することが出来る。
 図8は、基板が磁性を有する多層超電導ケーブルの電流端子部を示す。図5において、フォーマ21の周囲に、1層目の第1の超電導線材22と、2層目の第2の超電導線材23とが、スパイラル状に巻回されている。この場合、1層目の第1の超電導線材22を、通常の配置とは逆に、磁性を有する基板22a側が超電導ケーブルの外側を向くように配置し、2層目の第2の超電導線材23を、超電導層23bが超電導ケーブルの外側を向くように配置して導体化すると、磁性の影響を超電導導体内部にクローズし、交流損失を低く抑えることが出来る(例えば、特許文献2参照)。
 しかしながら、1層目の第1の超電導線材22の超電導層22bが裏側(内側)を向くように配置したときの電流端子部は、接続抵抗が大きくなり、1層目と2層目に同じ電流が分担されない。即ち、十分な電極容量を持たないため、2層目の第2の超電導線材23を流れる電流が臨界電流Icを越えた段階で、ジュール熱が発生し、交流損失は非常に大きくなる。
N. Amemiya and M. Nakahata, Physica C 463-465 (2007) 775-780
特開2004-87265号公報 特開2008-47519号公報
 本発明は、以上のような事情の下になされ、接続抵抗が低く、交流損失の少ない超電導線材の電流端子構造及びこの電流端子構造を備える超電導ケーブルを提供することを目的とする。
 上記課題を解決するため、本発明の第1の態様は、基板上に超電導層を形成した超電導線材をフォーマに1層以上巻き付けた超電導導体であって、前記フォーマの直上に巻き付けられた1層目の超電導線材が、基板側が外側に、超電導層側が内側になるように配置されている超電導導体の電流端子構造において、前記1層目の超電導線材の端部の超電導層の内側に向いた面と、接続用超電導線材の超電導層の外側に向いた面の一部とを対面させて接続したことを特徴とする超電導導体の電流端子構造を提供する。
 このような超電導導体の電流端子構造は、前記1層目の超電導線材上に、2層目の超電導線材が、超電導層側が外側に、基板側が内側になるように巻き付けられ、前記接続用超電導線材の超電導層が露出する部分と、前記2層目の超電導線材の端部とが、半田を用いて一体化された半田固定部を具備することが出来る。
 この場合、前記接続用超電導線材と前記1層目の超電導線材との接続部に用いる半田の液体窒素温度での抵抗率は、前記半田固定部に用いる半田の抵抗率以下であることが望ましい。また、前記接続用超電導線材と前記1層目の超電導線材との接続部に用いる半田の融点は、前記半田固定部に用いる半田の融点以上であることが望ましい。このとき、前記接続用超電導線材の前記半田固定部との接続長bと、前記2層目の超電導線材の前記半田固定部との接続長cとは、b≧cの関係を満たすことが望ましい。
 本発明の第2の態様は、基板上に超電導層を形成した超電導線材をフォーマに4層以上巻き付けた超電導導体であって、奇数層目の超電導線材が、基板側が外側に、超電導層側が内側になるように配置されている超電導導体の電流端子構造において、前記奇数層目の超電導線材の端部の超電導層の内側に向いた面と、接続用超電導線材の超電導層の外側に向いた面の一部とを対面させて接続したことを特徴とする超電導導体の電流端子構造を提供する。
 このような超電導導体の電流端子構造は、前記奇数層目の超電導線材上に、前記奇数プラス1層目の超電導線材が、超電導層側が外側に、基板側が内側になるように巻き付けられ、前記接続用超電導線材の超電導層が露出する部分と、前記奇数プラス1層目の超電導線材の端部とが、半田を用いて一体化された半田固定部を具備することが出来る。
 この場合、前記接続用超電導線材と前記奇数層目の超電導線材との接続部に用いる半田の液体窒素温度での抵抗率は、前記半田固定部に用いる半田の抵抗率以下であることが望ましい。また、前記接続用超電導線材と前記奇数層目の超電導線材との接続部に用いる半田の融点は、前記半田固定部に用いる半田の融点以上であることが望ましい。このとき、前記接続用超電導線材の前記半田固定部との接続長bと、前記奇数プラス1層目の超電導線材の前記半田固定部との接続長cとは、b≧cの関係を満たすことが望ましい。
 本発明の第3の態様は、以上の電流端子構造を具備することを特徴とする超電導ケーブルを提供する。
 本発明によると、接続抵抗が低く、交流損失の少ない超電導線材の電流端子構造及びこの電流端子構造を備える超電導ケーブルが提供される。
本発明の一実施形態に係る超電導線材の電流端子構造を示す断面図である。 本発明の他の実施形態に係る超電導線材の電流端子構造を示す断面図である。 本発明の他の実施形態に係る超電導線材の電流端子構造を示す断面図である。 本発明の他の実施形態に係る超電導線材の電流端子構造を示す断面図である。 本発明の他の実施形態に係る超電導線材の電流端子構造を示す断面図である。 本発明の一実施形態に係る超電導線材の電流端子構造を作製する手順を示す概略図である。 本発明の一実施形態に係る超電導線材の電流端子構造を作製する手順を示す概略図である。 本発明の一実施形態に係る超電導線材の電流端子構造を作製する手順を示す概略図である。 本発明の一実施形態に係る超電導線材の電流端子構造を作製する手順を示す概略図である。 本発明の一実施形態に係る超電導線材の電流端子構造を作製する手順を示す概略図である。 本発明の一実施形態に係る超電導線材の電流端子構造を作製する手順を示す概略図である。 従来の多層超電導ケーブルの電流端子構造を示す断面図である。 基板が磁性を有する従来の多層超電導ケーブルの電流端子構造を示す断面図である。
 以下、本発明の実施の形態について、図面を参照して説明する。
 図1は、本発明の第1の実施形態に係る2層構造の超電導ケーブルの電流端子部の断面図である。なお、図1(以下の図も同様)では、超電導ケーブルの上半分の断面が記載され、下半分は省略されている。
 図1において、フォーマ1の周囲に、1層目の第1の超電導線材2と、2層目の第2の超電導線材3とが、スパイラル状に巻回されている。この場合、1層目の第1の超電導線材2は、基板2aとこの基板2a上に形成された超電導層2bとからなる線材Aと、その端部に接続された、基板4aとこの基板4a上に形成された超電導層4bとからなる接続用線材Bとにより構成されている。なお、2層目の第2の超電導線材3は、基板3aとこの基板3a上に形成された超電導層3bとから構成されている。
 第1の超電導線材2では、線材Aは基板2aが表側(外側)になるように配置され、接続用線材Bは超電導層4bが表側(外側)になるように配置されており、即ち、線材Aの超電導層2bと接続用線材Bの超電導層4bとが対面している。また、第2の超電導線材3は、超電導層3bが表側(外側)になるように配置されている。
 このように配置された第1の超電導線材2及び第2の超電導線材3の端部は、半田固定部5により一体化されている。なお、第1の超電導線材2と第2の超電導線材3の端部の一体化による電流端子構造の形成の具体的方法について、後述する。
 以上のように構成される超電導線材の電流端子構造は、線材Aは、基板2aが表側(外側)になるように配置されているため、交流損失が低減され、また、接続用線材Bは、超電導層4bが表側(外側)になるように配置され、線材Aの超電導層2bと接続用線材Bの超電導層4bとが合わされているため、第1の超電導線材2と第2の超電導線材3に流れる電流が均一であり、接続抵抗も低い。
 この場合、第1の超電導線材2において、線材Aと接続用線材Bの接続に用いる半田の融点は、半田固定部5に用いる半田の融点以上とすることが望ましい。また、線材Aと接続用線材Bの接続に用いる半田の液体窒素温度での抵抗値は、半田固定部5に用いる半田の液体窒素温度における抵抗値以下とすることが望ましい。なお、液体窒素温度とは、電流端子構造を有する超電導ケーブル等の運転時温度を意味し、具体的には、液体窒素を冷媒に利用したときの63K~90K程度である。
 また、接続用線材Bの半田固定部5との接続長(剥き出し長)bと第2の超電導線材3の半田固定部5との接続長(剥き出し長)cとは、b≧cとすることが望ましい。なお、cの値は、超電導導体の径が15~100mmの場合に、通常、30mm以上、好ましくは50~100mmである。また、bの値は、通常、30mm以上、好ましくは50~110mmである。
 長さa、接続長b、cがこのような条件を満たすことにより、基板2aが表側になるように第1の超電導線材2が配置されていても、多層化した超電導導体の電流の均流化をより確実に達成することが出来る。なお、超電導導体の径は、図1の場合では、第1の超電導線材2が形成された層での径であり、言い換えると、接続用線材(第2の超電導線材3)が接続される超電導線材(第1の超電導線材2)が形成する層での導体径を意味する。
 図2は、本発明の第2の実施形態に係る4層構造の超電導ケーブルの電流端子構造の断面図である。図2に示す超電導ケーブルは、図1に示す超電導ケーブルに対し、更に3層目の第3の超電導線材6及び4層目の第4の超電導線材7がスパイラル状に巻回されている4層構造を有する。
 この場合、3層目の第3の超電導線材6及び4層目の第4の超電導線材7の端部の構造は、段剥ぎにより、第2の超電導線材3の超電導層3bが上方に露出するように、後退して配置されていることを除いて、1層目の第1の超電導線材2及び2層目の第2の超電導線材3の端部の構造と同様である。
 即ち、3層目の第3の超電導線材6は、基板6aとこの基板6a上に形成された超電導層6bとからなる線材Cと、その端部に接続された、基板8aとこの基板8a上に形成された超電導層8bとからなる接続用線材Dとにより構成されている。また、この第3の超電導線材6では、線材Cは基板6aが表側(外側)になるように配置され、接続用線材D
は超電導層8bが表側(外側)になるように配置されており、即ち、線材Cの超電導層6bと接続用線材Dの超電導層8bとが対面している。
 更に、このような3層目の第3の超電導線材6の上に、基板7aとこの基板7a上に形成された超電導層7bとからなる4層目の第4の超電導線材7が、超電導層7bが表側(外側)になるように配置されている。
 このように配置された第1の超電導線材2、第2の超電導線材3、第3の超電導線材6、及び第4の超電導線材7の端部は、半田固定部9により一体化されている。
 この場合、第3の超電導線材6において、線材Cと接続用線材Dの端部同士が重なる長さ(接続長)dは、好ましくは50mm以上、より好ましくは50~100mmとすることがよい。
 また、第4の超電導線材7の半田固定部9との接続長fと、超電導線材Dの半田固定部9との接続長eとは、e≧fとすることが望ましい。なお、fの値は、超電導導体の径が15~100mmの場合に、通常、30mm以上、好ましくは50~100mmである。
また、eの値は、通常、30mm以上、好ましくは50~110mmである。
 接続長d、e、fがこのような条件を満たすことにより、基板6aが表側になるように第3の超電導線材6が配置されていても、多層化した超電導導体の電流の均流化を確実に達成することが出来る。
 図3は、本発明の第3の実施形態に係る6層構造の超電導ケーブルの電流端子構造の断面図である。図3に示す超電導ケーブルは、図2に示す超電導ケーブルに対し、更に5層目の第5の超電導線材13及び6層目の第6の超電導線材14がスパイラル状に巻回されている6層構造を有する。
 この場合、4層構造の超電導ケーブルと同様に、5層目の第5の超電導線材13及び6層目の第6の超電導線材14の端部の構造は、段剥ぎにより、第4の超電導線材7の超電導層7bが上方に露出するように、後退して配置されていることを除いて、1層目の第1の超電導線材2及び2層目の第2の超電導線材3の端部の構造と同様である。
 即ち、5層目の第5の超電導線材13は、基板とこの基板上に形成された超電導層とからなる線材Eと、その端部に接続された、基板とこの基板上に形成された超電導層とからなる接続用線材Fとにより構成されている。また、この第5の超電導線材13では、線材Eは基板が表側(外側)になるように配置され、接続用線材Fは超電導層が表側(外側)になるように配置されており、即ち、線材Eの超電導層と接続用線材Fの超電導層とが対面している。
 更に、このような5層目の第5の超電導線材13の上に、基板とこの基板上に形成された超電導層とからなる6層目の第6の超電導線材14が、超電導層が表側(外側)になるように配置されている。このように配置された第1の超電導線材2、第2の超電導線材3、第3の超電導線材6、第4の超電導線材7、第5の超電導線材13及び第6の超電導線材14の端部は、半田固定部15により一体化されている。
 このように、奇数層目、例えば3層目、5層目、7層目の超電導線材について、その端部に接続用線材が接続されたものを用い、その端部の超電導層を一体化することにより、上記と同様の効果を得ることが出来る。半田固定部による一体化は、1層目の超電導線材から最上層の奇数層プラス1層目の超電導線材までの端部について行われる。
 この場合、奇数層目の超電導線材と接続用線材との接続長aを好ましくは50mm以上、より好ましくは50~100mmとすることがよい。また、接続用線材の半田固定部との接続長bと、奇数プラス1層目の超電導線材の半田固定部との接続長cとは、b≧cの関係を満たすことが望ましい。なお、cの値は、超電導導体の径が15~100mmの場合に、通常、30mm以上、好ましくは50~100mmである。また、bの値は、通常、30mm以上、好ましくは50~110mmである。
 また、奇数層の超電導線材が磁性を有する基板を含む場合に、特にその効果が発揮される。ここで、「磁性を有する基板」とは、超電導導体を使用する環境温度(代表的には77K)以下において、飽和磁化を有する金属基板のことを意味し、特に、使用時の飽和磁化が0.15T以上のものの場合に本発明の効果を発揮する。なお、磁性金属としては、具体的には、Fe,Co,Ni等を代表とした強磁性体や、これらを基とした合金が挙げられる。
 奇数層の超電導線材が磁性を有する基板を含む場合、偶数層の超電導線材は磁性を有する基板を含んでいてもよいし、磁性を有しない基板(例えば、ハステロイ(登録商標))を含む超電導線材(IBAD線材等)を用いてもよい。
 図4は、本発明の第4の実施形態に係る3層構造の超電導ケーブルの電流端子構造の断面図である。図4に示す超電導ケーブルは、図1に示す超電導ケーブルに対し、更に3層目に、磁性を有しない基板を含む超電導線材である非磁性超電導線材16がスパイラル状に巻回されている3層構造を有する。
 この場合、3層目の非磁性超電導線材16の端部の構造は、段剥ぎにより、第2の超電導線材3の超電導層3bが上方に露出するように、後退して配置されている。
 このように配置された第1の超電導線材2、第2の超電導線材3及び非磁性超電導線材16の端部は、半田固定部17により一体化されている。
 図5は、本発明の第5の実施形態に係る5層構造の超電導ケーブルの電流端子構造の断面図である。図5に示す超電導ケーブルは、図2に示す超電導ケーブルに対し、更に5層目に、磁性を有しない基板を含む超電導線材である非磁性超電導線材18がスパイラル状に巻回されている5層構造を有する。
 この場合、5層目の非磁性超電導線材18の端部の構造は、段剥ぎにより、第4の超電導線材7の超電導層7bが上方に露出するように、後退して配置されている。
 このように配置された第1の超電導線材2、第2の超電導線材3、第3の超電導線材6、第4の超電導線材7及び非磁性超電導線材18の端部は、半田固定部19により一体化されている。
 このように、3層以上からなる場合であって、最外層が奇数層で終わる場合には、最外層には、磁性を有しない基板を含む超電導線材を用いると、接続用超電導線材が不要になり、よりコンパクトに電流端子構造を形成することができる。
 次に、超電導導体の端部の超電導層を一体化する半田固定部の形成方法について、図6A~図6Fを参照して説明する。
 まず、フォーマ1にスパイラル状に巻回された第1及び第2の超電導線材2,3を、図6Aに示すように段剥ぎする。そして、第1及び第2の超電導線材2,3の端部を、冶具11に沿わせてカールして後方に逃がしておく。次いで、図6Bに示すように、接続用線材Bを、超電導層(図では省略)が表側(外側)になるように配置する。
 次に、接続用線材Bの超電導層の表面を研磨して平滑にし、フラックスを塗布する。フラックスとしては、例えば、ハロゲン無添加の樹脂系のフラックスを用いることが出来る。そして、フラックスを塗布した上に、例えば厚さ0.1mmの薄い半田テープを巻き付ける。半田テープとしては、例えば、融点(液相線)165℃のSn-43Pb-14Biを用いることが出来る。
 その後、図6Cに示すように、カールされて後方にある1層目の第1の超電導線材2の線材Aの端部を治具11から外して、半田テープ上に配置し、押さえのテープ及びヒータを巻く。ヒータの電源をONにして半田テープの融点以上に加熱する。このような加熱により半田テープが溶融すると、接続用線材Bの超電導層と、第1の超電導線材2の超電導層とが接着される。
 次に、図6Dに示すように、半田テープにより接続された第1の超電導線材2の端部上に、2層目の第2の超電導線材3を戻す。このとき、第2の超電導線材3の剥き出し長bと、接続用線材Bの剥き出し長cとが、b≧cの関係とする。
 この図6Dに示す構造に対し、第1の超電導線材2と第2の超電導線材3とを一括して電気的に接続する処理を行う。以下、その手順について説明する。
 図6Eに示すように、第2の超電導線材3の剥き出し長bと、接続用線材Bの剥き出し長cを覆うように、網状テープ12を、1層ないし数層の巻き数で巻き付ける。網状テープ12は、良導電性の金属細線を編み上げたものである。例えば、銅の平編み線を好ましく用いることが出来る。
 次に、低融点金属である半田(例えば、Sn-43Pb-14Bi)を溶融し、網状テープ12の網目に浸透させ、網状テープ12と第2の超電導線材3及び接続用線材Bとを半田により接合し、1層目の第1の超電導線材2と2層目の第2の超電導線材3の端部を一体化する。参照数字5は、半田固定部を示す。
 この一体化作業は、例えば、図6Fに示すように、るつぼに収容された溶融半田の中に、1層目の第1の超電導線材2と2層目の第2の超電導線材3の網状テープ12で覆われた部分を浸漬し、半田を網状テープ12から第1及び第2の超電導線材2,3まで浸透させることにより、行うことが出来る。なお、網状テープ12の代わりに、網状ではない良導電性の金属細線を用いて、接続用線材Bと第2の超電導線材3の剥き出し部分を巻き付けてもよい。
 このような第1及び第2の超電導線材2,3の端部の一体化によると、電気抵抗の高い半田の厚みが薄くて済むため、第1及び第2の超電導線材2,3の端末領域における接続抵抗を非常に小さくすることが出来る。また、網状テープ12を構成する良導電性の金属細線が電流の通路となることから、第1及び第2の超電導線材2,3の端部の接続抵抗が均一となる。
 ここで、1層目の第1の超電導線材2と2層目の第2の超電導線材3の端部を一体化し、半田固定部5を形成する半田は、第1の超電導線材2の線材Aと線材Bの接合の際に用いる半田よりも融点が低いものが望ましい。この融点の差は、大きければ大きいほど良く、一体化を行う際の施工温度は、超電導線材2の線材Aと接続用線材Bの接合に使用した半田の融点を超えないことが望ましい。
 また、第1の超電導線材2の線材Aと線材Bの接合の際に用いる半田は融点(液相線)が250℃以下の低融点金属であることが望ましい。先に説明したように、接続用線材Bの上に、半田テープを配し、1層目の第1の超電導線材2の線材Aを半田テープ上に配置し、接続用線材B及び1層目の第1の超電導線材2を半田テープの融点以上に加熱する。このとき加熱が高温の場合には、接続用線材Bと第1の超電導線材2の超電導層が劣化するため、第1の超電導線材2の線材Aと接続用線材Bの接合の際に用いる半田は低融点金属であることが望ましく、超電導線材の耐熱性から見ても、250℃以下、更に好ましくは、200℃未満が望ましい。
 なお、以下の実施例では、下記表1に記載の半田1~5を用いた。なお、表1における室温は25℃、液体窒素温度は77Kを意味する。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示す半田1~5として、以下の製品を用いた。
半田1: BI165(株式会社日本スペリア社製)
半田2: 低温プラスタン120(株式会社青木メタル製)
半田3: BI57(株式会社日本スペリア社製) 
半田4: H60A(株式会社青木メタル製)
半田5: SN100C(株式会社日本スペリア社製)
 実施例
 以下本発明の実施例を示し、本発明をより具体的に説明するとともに、本発明の効果を説明する。
 実施例1
 絶縁被覆された導体線を多層に撚り合わされて構成された20mm径のフォーマ上に、1層目の第1の超電導線材を基板が表側(外側)になるようにスパイラル状に巻き付けた。なお、第1及び第2の超電導線材としては、磁性を有するNi5Wからなる基板上にYBCO層を形成したYBCO線材を用いた。
 次に、1層目の第1の超電導線材と同一の構造の2層目の第2の超電導線材を、超電導層の面が表側(外側)になるようにスパイラル状に巻き付けた。
 その後、図3に示す方法により、接続用線材、網状テープ及び表1に記載の半田1~5からなるテープ状半田を用い、第1及び第2の超電導線材の端部を一体化し、図1に示すような構造を得た。この場合、第1の超電導線材2の線材Aと接続用線材Bの接合の際に用いる半田(以下、線材の接続部と言う)の種類と半田固定部5を形成する半田の種類、第1の超電導線材の線材Aと接続用線材Bの端部同士が重なる接続長aを種々変化させて、表1に示すような試料を得た。なお、このときの超電導導体径(第1の超電導線材での導体径)は50mmとし、第2の超電導線材の剥き出し長(半田固定部との接続長)bと、接続用線材Bの剥き出し長(半田固定部との接続長)cは同じ長さとし、第1の超電導線材2の線材Aと接続用線材Bの接続部における半田の厚みは0.1mmとした。
 これらの試料について、液体窒素中で約1000A通電し、第1の超電導線材と第2の超電導線材への分流割合を測定したところ、下記表2に示す結果を得た。
Figure JPOXMLDOC01-appb-T000002
 上記表2から、いずれの試料も、1層目と2層目の超電導線材への許容し得る程度の分流が行われているが、試料1-1~1-4のように、線材の接続部の半田と半田固定部の半田で、同種のものを用いた場合、線材の接続長(距離a)が長いほど良い。一方、試料1-5~1-28のように、線材の接続部の半田と半田固定部の半田が異種であり、かつ、接続部の半田の液体窒素中での抵抗率が半田固定部より低いと線材の接続長(距離a)の依存度は小さくなる。特に、試料1-9~1-12、1-17~1-28のように、一体化時の施工温度が線材の接続部に用いた半田の融点を超えないならば、接続長の依存度はさらに小さくなる。一体化時の施工温度をこのように制御するためには、接続用線材Bと超電導線材2の線材Aとの接続部に用いる半田の融点は、前記半田固定部に用いる半田の融点より高いことが望ましい。
 一方、試料1-29~1-32のように、線材の接続部の半田と半田固定部の半田が異種であっても、線材の接続部の半田に液体窒素中での抵抗率が半田固定部の半田よりも高いものを使用すると、接続長の依存度は大きくなる。
 なお、環境への影響を考えた場合には、用いる半田はPbフリーであることが望ましく、その場合には、試料1-21~1-24のように、Pbフリー半田の中から、接続部の半田の液体窒素中での抵抗率が半田固定部の半田よりも低いもの、または、Pbフリー半田で同種を用いることが望ましい。
 なお、線材の接続部の抵抗は、「半田の抵抗率×半田の厚み÷接続部の断面積」で調整を行うことができる。前述したように、線材の接続部に使用する半田は、半田固定部との関係より、低融点半田の中でも、比較的高い融点で、かつ、抵抗率の低いものを選択することが好ましいが、超電導線材に対する熱の影響を考慮すると、半田5よりも半田1などが好ましい。
 また、第1の超電導線材2の線材Aと線材Bの接合の際に用いる半田の形状としては、テープ状のものが好ましく、このときのテープ厚さは薄くなればなるほど製造が困難である。
 つまり、線材の接続部では、半田種類(抵抗率)と半田の厚みが限定されるため、線材の接続部の抵抗の調整においては、前記接続用超電導線材と1層目の超電導線材との接続長aを調整するのが最も好ましい。ただし、接続長aを長くすると、電流端子の半田固定部部分を多くとることとなり、コンパクト性から考えると好ましくなく、望ましくは50mmから100mm程度の接続長とすることが好ましい。
 比較例1
 実施例1と同様にして、1層目の第1の超電導線材及び2層目の第2の超電導線材をフォーマ上にスパイラル状に巻き付けた後、実施例1とは異なり、接続用線材Bを用いずに、網状テープ及び半田を用いて端部の一体化を行い、図8に示すような構造の試料を得た。
 この試料について、液体窒素中で通電し、第1の超電導線材と第2の超電導線材への分流割合を測定したところ、第1の超電導線材へは1%未満、第2の超電導線材へは99%以上であり、第1の超電導線材へは電流は殆ど分流されていなかった。
 なお、参考例として、1層目の第1の超電導線材及び2層目の第2の超電導線材ともに非磁性の基板を用い、超電導層の面が表側(外側)になるようにスパイラル状に巻き付け、比較例1と同様に端部の一体化を行い、図7に示すような構造の試料を得た。
 この試料について、液体窒素中で通電し、第1の超電導線材と第2の超電導線材への分流割合を測定したところ、第1の超電導線材へは50%、第2の超電導線材へは50%であり、ほぼ均等に分流されていた。
 実施例2
 実施例1と同様にして、図1に示すような構造を得た。この場合、第2の超電導線材の剥き出し長(半田固定部との接続長)bと、接続用線材Bの剥き出し長(半田固定部との接続長)cの関係を種々変化させて、7つの試料を得た。なお、b<c+10(mm)の試料については1つ、b=c、b>c+10(mm)、b>c+100(mm)の試料については2つずつの試料を得た。なお、このときのbとcの関係性以外は、実施例1の試料1-1~1-3と同じ条件を用いた。
 これらの試料について、液体窒素中で通電し、第1の超電導線材と第2の超電導線材への分流割合を測定したところ、下記表3に示す結果を得た。
Figure JPOXMLDOC01-appb-T000003
 上記表3から、いずれの試料も、1層目と2層目の超電導線材への許容し得る程度の分流が行われているが、b=cか又はb>cの時に、特に特に均一な分流が行われていることがわかる。
 1,21…フォーマ、2,22…第1の超電導線材、2a,3a,4a,6a,7a,8a,22a,23a…基板、2b,3b,4b,6b,7b,8b,22b,23b…超電導層、3,23…第2の超電導線材、5,9,15,17,19,24…半田固定部、
6…第3の超電導線材、7…第4の超電導線材、11…治具、12…網状テープ、13…第5の超電導線材、14…第6の超電導線材、16,18…非磁性超電導線材。

Claims (11)

  1.  基板上に超電導層を形成した超電導線材をフォーマに1層以上巻き付けた超電導導体であって、前記フォーマの直上に巻き付けられた1層目の超電導線材が、基板側が外側に、超電導層側が内側になるように配置されている超電導導体の電流端子構造において、前記1層目の超電導線材の端部の超電導層の内側に向いた面と、接続用超電導線材の超電導層の外側に向いた面の一部とを対面させて接続したことを特徴とする超電導導体の電流端子構造。
  2.  前記1層目の超電導線材上に、2層目の超電導線材が、超電導層側が外側に、基板側が内側になるように巻き付けられ、前記接続用超電導線材の超電導層が露出する部分と、前記2層目の超電導線材の端部とが、半田を用いて一体化された半田固定部を具備することを特徴とする請求項1に記載の超電導導体の電流端子構造。
  3.  前記接続用超電導線材と前記1層目の超電導線材との接続部に用いる半田の液体窒素温度での抵抗率は、前記半田固定部に用いる半田の抵抗率以下であることを特徴とする請求項2に記載の超電導導体の電流端子構造。
  4.  前記接続用超電導線材と前記1層目の超電導線材との接続部に用いる半田の融点は、前記半田固定部に用いる半田の融点より高いことを特徴とする請求項2に記載の超電導導体の電流端子構造。
  5.  前記接続用超電導線材の前記半田固定部との接続長bと、前記2層目の超電導線材の前記半田固定部との接続長cとは、b≧cの関係を満たすことを特徴とする請求項2に記載の超電導導体の電流端子構造。
  6.  基板上に超電導層を形成した超電導線材をフォーマに4層以上巻き付けた超電導導体であって、奇数層目の超電導線材が、基板側が外側に、超電導層側が内側になるように配置されている超電導導体の電流端子構造において、前記奇数層目の超電導線材の端部の超電導層の内側に向いた面と、接続用超電導線材の超電導層の外側に向いた面の一部とを対面させて接続したことを特徴とする超電導導体の電流端子構造。
  7.  前記奇数層目の超電導線材上に、前記奇数プラス1層目の超電導線材が、超電導層側が外側に、基板側が内側になるように巻き付けられ、前記接続用超電導線材の超電導層が露出する部分と、前記奇数プラス1層目の超電導線材の端部とが、半田を用いて一体化された半田固定部を具備することを特徴とする請求項6に記載の超電導導体の電流端子構造。
  8.  前記接続用超電導線材と前記奇数層目の超電導線材との接続部に用いる半田の液体窒素温度での抵抗率は、前記半田固定部に用いる半田の抵抗率以下であることを特徴とする請求項7に記載の超電導導体の電流端子構造。
  9.  前記接続用超電導線材と前記奇数層目の超電導線材との接続部に用いる半田の融点は、前記半田固定部に用いる半田の融点より高いことを特徴とする請求項7に記載の超電導導体の電流端子構造。
  10.  前記接続用超電導線材の前記半田固定部との接続長bと、前記奇数プラス1層目の超電導線材の前記半田固定部との接続長cとは、b≧cの関係を満たすことを特徴とする請求項7に記載の超電導導体の電流端子構造。
  11.  請求項1~8のいずれかに記載の電流端子構造を具備することを特徴とする超電導ケーブル。
PCT/JP2010/057611 2009-04-28 2010-04-28 超電導線材の電流端子構造及びこの電流端子構造を備える超電導ケーブル WO2010126099A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011511446A JP5619731B2 (ja) 2009-04-28 2010-04-28 超電導線材の電流端子構造及びこの電流端子構造を備える超電導ケーブル
CN2010800163827A CN102396112B (zh) 2009-04-28 2010-04-28 超导线材的电流端子结构及具备该电流端子结构的超导电缆
US13/243,630 US8260388B2 (en) 2009-04-28 2011-09-23 Current terminal structure of superconducting wire and superconducting cable having the current terminal structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009109808 2009-04-28
JP2009-109808 2009-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/243,630 Continuation US8260388B2 (en) 2009-04-28 2011-09-23 Current terminal structure of superconducting wire and superconducting cable having the current terminal structure

Publications (1)

Publication Number Publication Date
WO2010126099A1 true WO2010126099A1 (ja) 2010-11-04

Family

ID=43032243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057611 WO2010126099A1 (ja) 2009-04-28 2010-04-28 超電導線材の電流端子構造及びこの電流端子構造を備える超電導ケーブル

Country Status (4)

Country Link
US (1) US8260388B2 (ja)
JP (1) JP5619731B2 (ja)
CN (1) CN102396112B (ja)
WO (1) WO2010126099A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466882A (zh) * 2013-09-19 2015-03-25 尼克桑斯公司 超导电缆接头
JP2016095904A (ja) * 2014-11-12 2016-05-26 古河電気工業株式会社 超電導線材の接続構造、超電導ケーブル、超電導コイル及び超電導線材の接続処理方法
EP3218964A4 (en) * 2014-11-14 2018-08-15 Novum Industria LLC Field makeable cryostat/current connections for an hts tape power cable

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9755329B2 (en) * 2013-06-14 2017-09-05 Advanced Conductor Technologies Llc Superconducting cable connections and methods
JP6210537B2 (ja) * 2013-08-06 2017-10-11 古河電気工業株式会社 超電導ケーブルの接続構造、超電導ケーブル、超電導ケーブルの終端部の電流端子構造
CN110692052A (zh) * 2017-06-02 2020-01-14 苹果公司 用于呈现媒体容器的表示的设备、方法和图形用户界面
CN107579356B (zh) * 2017-08-23 2019-03-19 国家电网公司 一种具有均流作用的焊接式电缆导体接头及焊接方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266149A (ja) * 2006-03-28 2007-10-11 Toshiba Corp 超電導線材の接続方法及び超電導線材
JP2008234957A (ja) * 2007-03-20 2008-10-02 Furukawa Electric Co Ltd:The 薄膜超電導線の接続方法及びその接続構造体
JP2009016253A (ja) * 2007-07-06 2009-01-22 Sumitomo Electric Ind Ltd 超電導線材の接続構造、超電導機器および超電導線材の接続方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936771B2 (en) * 2001-10-12 2005-08-30 Southwire Company Superconducting cable termination
JP4391066B2 (ja) * 2002-08-26 2009-12-24 古河電気工業株式会社 多層超電導導体の端末構造およびその作製方法
JP4399763B2 (ja) * 2003-02-28 2010-01-20 住友電気工業株式会社 直流用超電導ケーブル線路
JP4191544B2 (ja) * 2003-06-19 2008-12-03 住友電気工業株式会社 超電導ケーブルのジョイント構造
JP4182832B2 (ja) * 2003-08-18 2008-11-19 住友電気工業株式会社 超電導板状体の接続方法及びその接続部
JP2005253204A (ja) * 2004-03-04 2005-09-15 Sumitomo Electric Ind Ltd 多相超電導ケーブルの端末構造
JP5192741B2 (ja) * 2006-07-20 2013-05-08 古河電気工業株式会社 超電導導体及び超電導導体を備えた超電導ケーブル
JP5416924B2 (ja) * 2008-06-18 2014-02-12 株式会社東芝 超電導線材及びその製造方法
EP2485222A4 (en) * 2009-09-29 2013-07-24 Furukawa Electric Co Ltd SUPERCONDUCTING WIRING SUBSTRATE, SUPERCONDUCTING WIRING AND METHOD FOR PRODUCING THE SAME

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266149A (ja) * 2006-03-28 2007-10-11 Toshiba Corp 超電導線材の接続方法及び超電導線材
JP2008234957A (ja) * 2007-03-20 2008-10-02 Furukawa Electric Co Ltd:The 薄膜超電導線の接続方法及びその接続構造体
JP2009016253A (ja) * 2007-07-06 2009-01-22 Sumitomo Electric Ind Ltd 超電導線材の接続構造、超電導機器および超電導線材の接続方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466882A (zh) * 2013-09-19 2015-03-25 尼克桑斯公司 超导电缆接头
JP2016095904A (ja) * 2014-11-12 2016-05-26 古河電気工業株式会社 超電導線材の接続構造、超電導ケーブル、超電導コイル及び超電導線材の接続処理方法
EP3218964A4 (en) * 2014-11-14 2018-08-15 Novum Industria LLC Field makeable cryostat/current connections for an hts tape power cable

Also Published As

Publication number Publication date
JP5619731B2 (ja) 2014-11-05
CN102396112B (zh) 2013-12-18
CN102396112A (zh) 2012-03-28
US8260388B2 (en) 2012-09-04
JPWO2010126099A1 (ja) 2012-11-01
US20120015816A1 (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5619731B2 (ja) 超電導線材の電流端子構造及びこの電流端子構造を備える超電導ケーブル
JP4810268B2 (ja) 超電導線材の接続方法及び超電導線材
US9418776B2 (en) Oxide superconductor wire and superconducting coil
JP4141957B2 (ja) 超伝導体ケーブルおよび磁気デバイス
US5801124A (en) Laminated superconducting ceramic composite conductors
WO2015129272A1 (ja) 超電導ケーブルの端末構造体及びその製造方法
JP2009043912A (ja) 超電導コイル
JP2011045169A (ja) 超電導ケーブルの中間接続構造
JP2014154320A (ja) 酸化物超電導線材の接続構造体及び超電導機器
JP6678509B2 (ja) 超電導テープ線、超電導テープを用いた超電導電流リード、永久電流スイッチおよび超電導コイル
JP2011124188A (ja) 酸化物超電導線の接続方法
JP6818578B2 (ja) 超電導ケーブルの接続部
JP2012195413A (ja) 超電導コイル
JP5701247B2 (ja) 酸化物超電導線材の接続構造体及び接続方法
JP5887085B2 (ja) 超電導コイル及びその製造方法
JP4947434B2 (ja) 超電導導体
JP2006059811A (ja) 多芯超伝導ストランドを備えた複合導体
JP6913570B2 (ja) 超電導テープ線、この超電導テープ線を用いた超電導電流リード、永久電流スイッチおよび超電導コイル
JP2010040962A (ja) 超電導コイル
JP4634954B2 (ja) 超電導装置
JP2020025014A (ja) 高温超電導コイル及び超電導磁石装置
JP7292257B2 (ja) 超電導線材の接続構造体および超電導線材の接続構造体の製造方法
JP2000067663A (ja) 超電導導体
JP2015032363A (ja) 超電導ケーブル
JP6401489B2 (ja) 超電導ケーブル、及び超電導機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016382.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769797

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011511446

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769797

Country of ref document: EP

Kind code of ref document: A1