WO2015129272A1 - 超電導ケーブルの端末構造体及びその製造方法 - Google Patents

超電導ケーブルの端末構造体及びその製造方法 Download PDF

Info

Publication number
WO2015129272A1
WO2015129272A1 PCT/JP2015/000989 JP2015000989W WO2015129272A1 WO 2015129272 A1 WO2015129272 A1 WO 2015129272A1 JP 2015000989 W JP2015000989 W JP 2015000989W WO 2015129272 A1 WO2015129272 A1 WO 2015129272A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
layer
superconducting cable
electrode
cable
Prior art date
Application number
PCT/JP2015/000989
Other languages
English (en)
French (fr)
Inventor
北村 祐
達尚 中西
康雄 引地
Original Assignee
昭和電線ケーブルシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電線ケーブルシステム株式会社 filed Critical 昭和電線ケーブルシステム株式会社
Priority to CN201580009121.5A priority Critical patent/CN106030909B/zh
Publication of WO2015129272A1 publication Critical patent/WO2015129272A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/68Connections to or between superconductive connectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/34Cable fittings for cryogenic cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/01Connections using shape memory materials, e.g. shape memory metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • H01R4/023Soldered or welded connections between cables or wires and terminals
    • H01R4/024Soldered or welded connections between cables or wires and terminals comprising preapplied solder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a terminal structure of a superconducting cable, and more particularly to a terminal structure of a superconducting cable in which a superconducting layer of a superconducting wire having a superconducting layer is spirally wound toward the inside of the cable.
  • a tape-shaped superconducting wire (hereinafter also referred to as “superconducting tape”) is spirally wound around the outer periphery of a core (former).
  • superconducting tapes are often concentrically arranged in multiple layers to enable large current transmission. Between the layers of the superconducting tapes arranged in multiple layers (that is, between the superconducting tapes), a presser tape is provided for pressing the superconducting tape and for electrically insulating the superconducting tape.
  • the yttrium-based superconducting wire has a superconducting layer formed on a tape-like substrate via an intermediate layer. In a superconducting cable having this, the superconducting tape is placed so that the substrate is on the outer peripheral side and the superconducting layer is on the inner peripheral side. Each layer is formed by winding around a core material.
  • a superconducting cable having a multilayer structure When such a superconducting cable having a multilayer structure is applied to a superconducting application device, for example, as shown in Patent Document 1, a superconducting tape of a superconducting cable and a metal terminal (electrode) connected to an external power source or an external circuit, A terminal structure in which the terminals are electrically connected is used.
  • the terminal structure of this superconducting cable can also be said to be the structure of the termination
  • the superconducting tape of the superconducting cable is connected to the outer surface of a normal conducting connecting member that is a cylindrical metal terminal (electrode) into which the core of the superconducting cable is inserted.
  • the outer surface of the normal conductive connecting member is provided with a step whose outer diameter increases along the axis from the superconducting tape side. These steps correspond to the layers of the superconducting tape, and the superconducting tape of each layer is connected on the superconducting layer side for each upper surface (also referred to as “connection surface”) of the stepped portion.
  • connection surface also referred to as “connection surface”
  • connection surface the outer diameter of the connection surface
  • the layer of the superconducting tape the layer of the superconducting tape Then, the outer diameter of a connection part becomes larger than the outer diameter of the original state wound by the core material.
  • the interval in the circumferential direction of the superconducting tape is larger than the interval in the original state wound around the core material.
  • connection resistance values of the connection portions tend to vary.
  • Patent Document 2 and Patent Document 3 unlike Patent Document 1, a configuration in which a superconducting tape of a superconducting cable is connected to an inner surface of a cylindrical electrode into which a core material of the superconducting cable is inserted is disclosed.
  • the conductor which connects the edge part of the bushing in a terminal container part is inserted in the one end side in the normal conducting connection member as a cylindrical electrode, and the inner periphery of the other end side (superconducting cable side) Has a stepped connection surface to which the superconducting tape is connected.
  • the connecting surface is configured such that the inner diameter gradually decreases from the other end (superconducting cable side) of the normal conducting connection member to one end (normal conducting conductor side), and each layer of the superconducting tape in the superconducting cable It is formed to correspond to the stage state.
  • a superconducting sheet for connection which is connected on the superconducting layer side of the superconducting tape, is attached to these connecting surfaces by soldering to electrically connect the superconducting tape and the end of the bushing.
  • Patent Document 3 discloses superconducting tapes each having a bismuth-based 2223 superconducting layer such as (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O 10-X (0 ⁇ X ⁇ 1).
  • a configuration is disclosed in which a metal terminal and a superconducting tape are connected by being inserted into a cylindrical metal terminal having an inner diameter corresponding to the diameter. With such a configuration, Patent Document 2 and Patent Document 3 solve the problem of Patent Document 1.
  • the superconducting wire is connected to the inner surface of the terminal.
  • a superconducting wire is assumed to be a superconducting wire provided with a bismuth-based oxide 2223 (bismuth-based oxide superconducting conductor), and the problem is clearly different from the terminal structure of a superconducting cable provided with an yttrium-based superconducting wire. That is, in a superconducting cable provided with an yttrium-based superconducting wire, it is necessary to wind the superconducting tape around the core so that the substrate side is the outer peripheral side and the superconducting layer side is the inner peripheral side.
  • the cross section of the superconducting wire with a bismuth-based oxide superconducting conductor is not asymmetrical on the substrate side and superconducting layer side with respect to the center, but is a symmetrical tape-like wire, so let's connect it to the back side of the tape-like wire In either case, even if the connection is made on the front side, the problem that AC loss and connection resistance change greatly does not occur in the first place.
  • An object of the present invention is to provide a superconducting cable having a superconducting wire provided with a superconducting layer on a substrate via an intermediate layer, around the core so that the superconducting layer is wound on the inner peripheral side and the substrate on the outer peripheral side. It is an object of the present invention to provide a terminal structure of a superconducting cable that can be easily and suitably connected to an electrode with reduced contact resistance.
  • One aspect of the terminal structure of the superconducting cable of the present invention has a plurality of superconducting wires provided with a superconducting layer via an intermediate layer on a substrate, and the plurality of superconducting wires are concentrically around the core material.
  • a superconducting cable terminal structure comprising: a superconducting cable in which the superconducting layer is wound on an inner peripheral side and the substrate is wound on an outer peripheral side, and a cylindrical electrode on which the superconducting wire is terminated and connected.
  • the superconducting cable is disposed in the electrode, and the inner surface of the electrode is connected to the outer peripheral surface of the superconducting wire located in the outermost layer in the electrode among the plurality of superconducting wires. Take the configuration.
  • One aspect of the method for manufacturing a terminal structure of a superconducting cable according to the present invention includes a plurality of superconducting wires provided with a superconducting layer on a substrate, and the superconducting wires are concentrically formed around a core material.
  • a method of manufacturing a superconducting cable terminal structure comprising a superconducting cable arranged in multiple layers by winding a layer on the inner peripheral side and the substrate on the outer peripheral side, and a cylindrical electrode to which the superconducting wire is terminated.
  • the electrode is configured in a cylindrical shape by a plurality of divided bodies divided along the extending direction of the superconducting cable, the superconducting cable is disposed in the cylindrical divided body, and the divided body A solder is disposed between an inner peripheral surface of the superconducting wire and an outer peripheral surface of the superconducting wire located in the outermost layer of the plurality of superconducting wires, and the outer periphery of the electrode can be reduced in diameter.
  • Cylindrical reduced diameter part The by diameter and exterior, a step of pressing the inner surface of the electrode on the outer surface of the superconducting cable, and a heating step of heating the solder from the outside of the reduced-diameter member, and so.
  • a superconducting wire provided with a superconducting layer on a substrate is contacted between a superconducting cable and an electrode wound around the core so that the superconducting layer is on the inner peripheral side and the substrate is on the outer peripheral side.
  • the perspective view which shows the modification of the cylindrical electrode in the terminal structure of the superconducting cable which concerns on embodiment The figure which uses for description of the manufacturing method of the terminal structure of the superconducting cable of this Embodiment
  • the figure which uses for description of the manufacturing method of the terminal structure of the superconducting cable of this Embodiment The figure which uses for description of the manufacturing method of the terminal structure of the superconducting cable of this Embodiment
  • the figure which uses for description of the manufacturing method of the terminal structure of the superconducting cable of this Embodiment The figure which uses for description of the manufacturing method of the terminal structure of the superconducting cable of this Embodiment
  • the figure which uses for description of the manufacturing method of the terminal structure of the superconducting cable of this Embodiment The figure which uses for description of the manufacturing method of the terminal structure of the superconducting cable of this Embodiment
  • FIG. 1 is a side view showing a schematic configuration of a terminal structure of a superconducting cable according to an embodiment of the present invention.
  • the superconducting cable has a two-layer structure, that is, a two-layer superconducting tape (superconducting wire) is illustrated, but a one-layer structure, or a three-layer structure or more, The present invention is applicable even when the superconducting tape has three or more layers.
  • FIG. 2 is a main part configuration diagram of the cylindrical electrode 120 of the terminal structure 100 as viewed from the rear side (that is, the right side of FIG. 1 and the rear side of the cylindrical electrode).
  • the terminal structure 100 includes a superconducting cable 110, a cylindrical extraction electrode (hereinafter referred to as a cylindrical electrode) 120, and a cylindrical reduced-diameter member 140.
  • the cylindrical electrode 120 is provided by the number of layers of the superconducting tape. In the example of the present embodiment, since the number of layers of the superconducting tape of the superconducting cable 110 is two, two cylindrical electrodes 120-1 and 120-2 are provided. Lead cables 130-1 and 130-2 are electrically connected to the respective cylindrical electrodes 120-1 and 120-2.
  • superconducting cable 110 and cylindrical electrode 120 are immersed in a cryogenic liquid such as liquid nitrogen. And the electric current of the superconducting cable 110 is drawn out to the normal temperature part by the lead cable 130 through the cylindrical electrode 120.
  • the lead cable 130 is led into the air through a polymer sleeve (not shown) or the like.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the terminal structure of the superconducting cable shown in FIG.
  • the superconducting cable 110 includes a core material (former) 111, a pressing tape 112, a first superconducting tape 113, a pressing tape 114, a second superconducting tape 115, and a pressing tape 116.
  • the core material 111 has a cylindrical shape and is composed of a stranded wire of Cu (copper).
  • a pressing tape 112 made of a nonwoven fabric is wound around the outer periphery of the core material 111.
  • the first superconducting tape 113 constituting the first superconducting tape layer spirals with a predetermined gap G between the tapes in the circumferential direction. It is wound in a shape.
  • a presser tape 114 made of a nonwoven fabric is wound around the outer periphery of the first superconducting tape 113.
  • Each of the presser tapes 112 and 114 is configured as a layered insulating portion by winding a single non-woven fabric in a spiral shape without a gap.
  • the second superconducting tape 115 constituting the second superconducting tape layer is wound around the outer periphery of the presser tape 114 in a spiral manner with a predetermined interval in the circumferential direction, like the first superconducting tape 113. It has been turned.
  • a presser tape 116 is wound in a spiral shape with no gap therebetween, like the presser tapes 112 and 114.
  • each superconducting tape layer formed by the first superconducting tape 113 and the second superconducting tape 115 is composed of ten superconducting tapes.
  • the number of superconducting tapes constituting each layer of the superconducting tape may be any number, may be composed of 10 or more such as 12, and may be at least one.
  • a layer made of the superconducting tapes 113 and 115 for example, ten superconducting tapes having a thickness of 0.1 mm and a width of 5 mm are wound at a twist pitch of 250 mm.
  • the presser tapes 112 and 114 for example, a non-woven fabric having a thickness of 0.2 mm and a width of 45 mm is wound in half wrap (that is, half of the tape width is wound in an overlapping manner).
  • the superconducting tapes 113 and 115 As materials for the superconducting tapes 113 and 115, various conventionally proposed superconducting materials can be used.
  • the superconducting tape 113 and 115, REBa formed along the substrate and the substrate y Cu 3 O z system (RE is Y, Nd, Sm, Eu, 1 or more elements selected from Gd, and Ho And y ⁇ 2 and z 6.2 to 7).)
  • a superconducting layer which is a high-temperature superconducting thin film.
  • FIG. 5 is a cross-sectional view schematically showing the main configuration of the superconducting tape.
  • the superconducting tape 115 has the same configuration as that of the superconducting tape 113 and is arranged around the core material 111 in the same manner as the superconducting tape 113. Therefore, only the configuration of the superconducting tape 113 will be described, and the description of the superconducting tape 115 will be omitted.
  • Superconducting tape (YBCO superconducting wire) 113 (115) is in the form of a tape, and an intermediate layer 1132, a tape-shaped superconducting layer 1133, and a stabilizing layer 1134 are laminated on a tape-like metal substrate 1131 in this order. Formed by.
  • the laminated structure including the substrate 1131, the intermediate layer 1132, the superconducting layer 1133, and the stabilizing layer 1134 is covered with a covering material made of a conductive material (copper).
  • the substrate 1131 is made of, for example, Ni—Cr (specifically, Ni—Cr—Fe—Mo based Hastelloy (registered trademark) B, C, X, etc.), W—Mo, Fe—Cr (for example, An austenitic stainless steel) or a low magnetic crystal grain non-oriented heat resistant high strength metal substrate represented by a material such as Fe—Ni (for example, nonmagnetic composition type).
  • the intermediate layer 1132 includes a plurality of layers such as a diffusion preventing layer for preventing diffusion of elements from the substrate 1131 to the superconducting layer 1133 and an orientation layer for orienting crystals of the superconducting layer 1133 in a certain direction.
  • the intermediate layer 1132 has an Al 2 O 3 layer as a first intermediate layer on the substrate 1131, has a Y 2 O 3 layer as a second intermediate layer on the Al 2 O 3 layer, and Y An MgO layer as a third intermediate layer is provided on the 2 O 3 layer.
  • the intermediate layer 1132 has a LaMnO 3 layer as a fourth intermediate layer on the MgO layer, and a CeO 2 layer as a fifth intermediate layer on the LaMnO 3 layer.
  • the Al 2 O 3 layer as the first intermediate layer is formed on the substrate 1131 by a sputtering method.
  • the first intermediate layer is replaced with Al 2 O 3 by using ReZrO (Re: Y, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb, or one or more selected from them. May be formed by RF-sputtering, MOD, or the like.
  • This first intermediate layer has high heat resistance and is a layer for reducing interfacial reactivity, and also functions as a bed layer used for obtaining the orientation of the film disposed thereon.
  • the MgO layer as the second intermediate layer is formed on the Al 2 O 3 layer by the IBAD method.
  • the LaMnO 3 layer as the third intermediate layer is formed on the MgO layer by a sputtering method.
  • the CeO 2 layer which is the fourth intermediate layer, is a layer disposed immediately below the superconducting layer 1133, and is formed on the LaMnO 3 layer by a sputtering method.
  • the CeO 2 layer is known as one of the most excellent intermediate layers because of its good compatibility with the superconducting layer (YBCO layer) 1133 and low reactivity with the superconducting layer 1133.
  • the CeO 2 layer may be formed by a PLD (Pulsed Laser Deposition) method instead of the sputtering method.
  • the layer above the MgO layer also functions as a reaction preventing layer that prevents reaction with the superconducting layer 1133.
  • the intermediate layer 1132 may be formed of one to three layers, or five or more layers.
  • the superconducting layer 1133 is typically an yttrium-based superconductor (YBCO layer) represented by YBa 2 Cu 3 O 7 .
  • YBCO layer yttrium-based superconductor
  • oxide particles containing at least one of Zr, Sn, Ce, Ti, Hf, and Nb are dispersed as magnetic flux pinning points. Preferably it is.
  • a TFA-MOD method using trifluoroacetate (TFA) is suitable as a method for forming the superconducting layer as the high-temperature superconducting thin film.
  • a Zr-containing oxide particle (BaZrO 3 ) is added to a high-temperature superconducting thin film made of a RE-based superconductor by mixing a Zr-containing naphthenate having a high affinity with Ba into a Ba solution containing TFA. It can be distributed as flux pinning points.
  • a known technique can be applied as a method of dispersing the magnetic flux pinning points in the high-temperature superconducting thin film (for example, Japanese Patent Application Laid-Open No. 2012-059468).
  • the stabilization layer 1134 is a noble metal such as silver, gold, platinum, or an alloy thereof, and is formed on the superconducting layer 1133 with a low resistance metal. Note that the stabilization layer 1134 is formed immediately above the superconducting layer 1133 to prevent performance degradation caused by the reaction of the superconducting layer 1133 due to direct contact with materials other than precious metals such as gold and silver, or alloys thereof. To do. In addition to this, the stabilization layer 1134 disperses heat generated by an accident current or alternating current to prevent destruction and performance degradation due to heat generation.
  • the plurality of superconducting tapes 113 and 115 are provided with the superconducting layer 1133 on the substrate 1131.
  • the plurality of superconducting tapes 113 and 115 are arranged around the core 111 so that the surface 113a on the superconducting layer side faces the inner peripheral side and the surface 113b on the substrate side faces the outer peripheral side.
  • the superconducting cable 110 is actually provided with an electrical insulating layer, a superconducting shield layer, an external stabilization layer, a corrugated tube, and the like on the outer peripheral side of the holding tape 116. However, since these members are removed at the terminal portions where the superconducting tapes 113 and 115 are connected to the cylindrical electrode 120, they are not shown in FIGS.
  • the superconducting cable 110 is disposed in the cylindrical electrode 120 (120-1, 120-2) so as to pass through the cylindrical electrode 120 (120-1, 120-2).
  • the cylindrical electrode 120 (120-1, 120-2) has a cylindrical shape as a whole and is formed of a conductive metal material such as Cu (copper). As is apparent from FIG. 2, the cylindrical electrode 120 (120-1, 120-2) has a hollow structure through which the superconducting cable 110 can penetrate.
  • the second superconducting tape 115 provided on the outermost peripheral side is soldered to the inner surface of the cylindrical electrode 120-1 provided farthest from the terminal side of the superconducting cable 110. It is connected directly via.
  • the first superconducting tape 113 provided second from the outermost circumference is next to the end of the superconducting cable 110 (FIG. 1) after the cylindrical electrode 120-1. In the case of this example, it is directly connected to the inner surface of the cylindrical electrode 120-2 provided on the right side of the drawing showing the most terminal side via solder.
  • the superconducting cable 110 is arranged in a state in which the plurality of cylindrical electrodes 120-1 and 120-2 are sequentially penetrated from the terminal end side of the superconducting cable 110. Then, on the inner surfaces of the cylindrical electrodes 120-1 and 120-2, in the superconducting cable 110 disposed in the cylindrical electrodes 120 (120-1 and 120-2), layers from the superconducting tapes 115 and 113 on the outer peripheral side are sequentially arranged. Superconducting tapes 115 and 113 are connected layer by layer toward the end side.
  • cylindrical electrodes 120 (120-1 and 120-2) are joined to the superconducting tapes 113 and 115 located on the innermost (inner circumferential surface) on the innermost layer only by soldering (so-called so-called Directly attached).
  • the cylindrical electrode 120-1 has a second superconducting tape 115 positioned on the innermost surface of the cylindrical electrode 120-1 and solder 170 (solder plating). Are connected (so-called direct attachment) through only solder so as to be energized through the preliminary solder portions 171 and 172).
  • cylindrical electrode 120-2 can be energized on the inner surface thereof via the first superconducting tape 113 positioned in the outermost layer in the cylindrical electrode 120-2 and the solder 170 (preliminary solder portions 171 and 172). It is joined (so-called direct attachment) via solder only.
  • the cylindrical electrode 120 (120-1, 120-2) is configured in a cylindrical shape by a plurality of divided bodies 121 and 122 that are divided along the extending direction of the superconducting cable 110.
  • the cylindrical electrodes 120 (120-1, 120-2) are arranged in a cylindrical shape so as to surround the predetermined position by combining the divided bodies 121, 122 on the predetermined position on the outer periphery of the superconducting cable 110.
  • FIG. 6 is a cross-sectional view showing the AA cross section of FIG.
  • the lead cable 130-1 (see FIG. 1) connected to the cylindrical electrode 120-1 is omitted to simplify the drawing.
  • the cylindrical electrode 120 (120-1, 120-2) can be divided into two parts (half parts) 121, 122 along the horizontal direction. It is.
  • the inner diameter of cylindrical electrode 120 (120-1, 120-2) is substantially the same as the outer diameter of superconducting cable 110 arranged inside, or is larger than the outer diameter of superconducting cable 110 arranged inside. It is small.
  • a portion facing the end of the superconducting tape 115 constituting the outermost layer of the superconducting cable 110, that is, a connecting portion is provided with a spare solder portion 172 by a preliminary soldering process.
  • a preliminary solder portion 171 is provided at the end connected to the inner surface of the cylindrical electrode 120-1 by preliminary solder processing. The inner surface of the cylindrical electrode 120-1 and the end portion of the superconducting tape 115 are soldered by melting the preliminary solder portions 171 and 172 between them.
  • the configuration is such that the preliminary solder portions 171 and 172 are provided by the preliminary soldering process on both of the inner surface of the cylindrical electrode 120-1 and the end portion of the superconducting tape 115, but the present invention is not limited thereto. It should just be provided in at least one.
  • a cylindrical diameter-reducing member 140 capable of reducing the diameter is disposed on the outer periphery of the cylindrical electrode 120 (120-1, 120-2).
  • the cylindrical electrodes 120 (120-1, 120-2) are reduced in diameter by the reduced diameter member 140, so that the inner surfaces of the cylindrical electrodes 120 (120-1, 120-2), that is, The inner surface is pressed so as to be in close contact with the outer surface of the superconducting cable 110.
  • the reduced diameter member 140 is a cylindrical body having thermal conductivity, and is configured to be able to expand and contract.
  • the reduced diameter member 140 is disposed on the outer periphery side of the superconducting tape 113 and on the outer periphery of the connection portion between the superconducting tape 113 and the cylindrical electrode 120.
  • the diameter-reducing member 140 (140-1, 140-2) has a cylindrical electrode 120 (120-1, 120-2) covering the end of the superconducting tape 113 connected via the solder 170 on the outer peripheral side.
  • the cylindrical electrode 120 is spirally wound so as to cover from the above.
  • FIG. 7 is a perspective view showing the reduced diameter member 140 of FIG.
  • the diameter-reducing member 140 has a shape in which a spring material having a tape-like thermal conductivity is wound in a roll shape and is extended spirally in the axial direction of the roll. .
  • the reduced diameter member 140 may be referred to as a roll spring.
  • the inner diameter of the reduced diameter member 140 is smaller than the outer diameter of the cylindrical electrode 120 (120-1, 120-2).
  • the diameter-reducing member 140 covers the cylindrical electrode 120 (120-1, 120-2) with an increased diameter (in the direction of an arrow pointing outward in the radial direction).
  • the diameter-reducing member 140 is reduced in diameter (in the arrow direction toward the center side in the radial direction), and the cylindrical electrode 120 (120-1, 120-2) is formed over the entire surface from the outer peripheral side. It is pressed against the center side of 120 (120-1, 120-2), that is, the outer surface side of the superconducting cable 110 in the cylindrical electrode 120 (120-1, 120-2).
  • the cylindrical electrode 120 (120-1, 120-2) is divided into two along the extending direction of the superconducting cable 110. You may comprise by the division body of.
  • FIG. 8 is a perspective view showing a modification of the cylindrical electrode in the terminal structure of the superconducting cable according to the embodiment.
  • a cylindrical electrode 120A which is a modification of the cylindrical electrode 120 (120-1, 120-2) shown in FIG. 8, is divided into three along the extending direction of the superconducting cable 110 (corresponding to the axial center C direction).
  • the divided bodies 123 to 125 are formed into a cylindrical shape.
  • the cylindrical electrode 120A has the same effects as the cylindrical electrodes 120 (120-1 and 120-2).
  • the cylindrical electrodes 120 (120-1, 120-2) are fixed to the superconducting cable 110 disposed in the cylindrical electrodes 120 (120-1, 120-2) by the reduced diameter of the reduced diameter member 140. It is in the state. That is, the superconducting cable 110 can be fixed to the cylindrical electrode 120-1 without subjecting the superconducting cable 110 itself to drilling or the like.
  • FIGS. 9 to 14 are views for explaining a method of manufacturing the terminal structure of the superconducting cable according to the present embodiment.
  • a method for manufacturing the terminal structure 100 of the superconducting cable a method of connecting the cylindrical electrode 120-1 and the superconducting cable 110 among the cylindrical electrodes 120 (120-1 and 120-2) will be described.
  • the presser tape 116 at a predetermined location is folded to expose the end portion of the second superconducting tape 115 connected to the cylindrical electrode 120-1. Further, the end of the superconducting tape 115 is attached to the cylindrical electrode 120-1 by peeling off the electrical insulating layer, the superconducting shield layer and the external stabilizing layer provided on the outer peripheral side of the presser tape 116 at the terminal. It is exposed as the outer surface.
  • preliminary soldering (solder plating) is performed on at least one of the cylindrical electrode 120-1 and the second superconducting tape 115 connected to each other.
  • preliminary solder portions 172 and 172 are provided. ing.
  • the length in the longitudinal direction of the preliminary solder portion 172 provided on the inner surface of the cylindrical electrode 120-1 and the length in the longitudinal direction of the preliminary solder portion 171 provided at the end of the superconducting tape 115 are the same as the portions connected to each other. It becomes the length in the longitudinal direction.
  • the ends of the superconducting tape 115 are positioned so as not to overlap each other.
  • the divided bodies 121 and 122 are arranged at positions covering a predetermined position of the superconducting tape 115 to form a cylinder.
  • the divided bodies 121 and 122 may be formed in a cylindrical shape so as to become the cylindrical electrode 120-1, and the superconducting cable 110 may be inserted into the cylindrical body.
  • the reduced diameter member 140 is packaged on the cylindrical electrode 120-1 (divided bodies 121 and 122) so as to surround from the outer peripheral side.
  • the diameter-reducing member 140 is arranged so as to cover the connection portion between the end of the superconducting tape 115 and the cylindrical electrode 120-1 from the outer peripheral side from the outer peripheral side of the divided bodies 121 and 122.
  • the diameter-reducing member 140 (140-1) is installed while expanding its diameter against the urging force in the diameter-reducing direction.
  • the diameter-reducing member 140 is reduced in diameter on the cylindrical electrode 120-1, that is, on the connecting portion between the superconducting tape 115 and the cylindrical electrode 120-1 (the outer peripheral side of the connecting portion). At this time, as shown in FIG. 13, the diameter-reducing member 140 is reduced in diameter so that the cylindrical electrode 120-1 (divided bodies 121, 122) is placed over the entire circumference of the shaft (superconducting cable 110). To the superconducting tape 115 side.
  • the cylindrical electrode 120-1 is pressed against the outer surface of the superconducting tape 115 through the preliminary solder portions 171 and 172, and is in close contact with the superconducting cable 110 itself.
  • This configuration can be said to be a state where the superconducting cable 110 is supported by the cylindrical electrode 120-1.
  • the inner surface of the cylindrical electrode 120-1 located on the inner peripheral side of the diameter-reducing member 140 is the second surface constituting the outer surface of the superconducting cable 110 disposed inside.
  • the superconducting tape 115 is pressed through the preliminary solder portions 171 and 172.
  • the diameter-reducing member 140 is formed of a tape-shaped spring material and is disposed over the entire circumference of the cylindrical electrode 120-1, so that the inner surface of the cylindrical electrode 120-1 is the outer surface of the superconducting tape 115. It is fixed by being pressed against the entire surface.
  • the connecting portion between the superconducting tape 115 and the cylindrical electrode 120-1 is heated from the outside of the reduced diameter member 140 by a heat source 180 such as a heater (heating process), so that the preliminary solder portion 171 and 172 are melted.
  • a heat source 180 such as a heater (heating process)
  • the cylindrical electrode 120-1 pressed against the superconducting tape 115 is electrically connected to the superconducting tape 115 via the solder 170 (preliminary solder portions 171 and 172).
  • the diameter-reducing member 140 always presses the cylindrical electrode 120-1 from the outer peripheral side to the superconducting tape 115 side over the entire surface.
  • the layers formed by the preliminary solder portions 171 and 172 constituting the mutual connection portions can be uniformly thinned between the plurality of superconducting tapes 115 and the inner surface of the cylindrical electrode 120-1.
  • connection resistance between the superconducting tapes 113 and 115 and the cylindrical electrode 120 can be kept low, and the generation of Joule heat at the connection portion can be reduced. Further, since there is no variation, drift does not easily occur, and the current capacity that can be applied to the superconducting cable 110 does not decrease.
  • the superconducting tapes 113 and 115 of the superconducting cable 110 are arranged one by one. There is no need to perform soldering, and the connection resistance values of the connecting portions do not vary greatly depending on the work.
  • the terminal structure of the conventional superconducting cable Unlike literature 2
  • direct connection is made without using a superconducting sheet for connection. That is, the inner surface of the cylindrical electrode 120 and the superconducting tapes 113 and 115 passing through the cylindrical electrode 120 are connected (directly attached) only with solder. Therefore, it is possible to reduce the number of connection points when connecting both, and to reduce the connection resistance as much as possible.
  • the connection between the cylindrical electrode 120 and the superconducting tapes 113 and 115 can be performed without manually connecting the superconducting tapes one by one. Can connect.
  • the plurality of superconducting tapes 113 and 115 and the cylindrical electrode 120 can be easily and suitably connected with reduced contact resistance via solder, which is reliable and suitable. Energizing capacity can be secured.
  • the diameter-reducing member 140 is formed by winding a spring material having a tape-like thermal conductivity in a roll shape, and in the axial direction of the roll. Although the shape is extended in a spiral shape, the shape is not limited to this as long as the diameter is reduced.
  • the diameter-reducing member 140 may be configured by winding a tape-like spring material having thermal conductivity in a roll shape so as to form a multilayer.
  • the diameter-reducing member 140 is formed by winding a spring material having a tape-like thermal conductivity into a spiral shape, that is, a roll shape. It is good also as a coil which formed the linear material in the spiral form.
  • the superconducting cable 110 is arranged in the same number of cylindrical electrodes 120, and each cylindrical electrode is on the inner surface of the superconducting cable on the terminal side of the superconducting cable. It becomes the structure which connects the superconducting tape which comprises the layer located inside toward in order.
  • Example 1 The REBa y Cu 3 O z- based superconducting wire shown in FIG. 5 is formed with a thickness of 0.12 [mm] ⁇ width of 5 [mm], and this is wound around a core material to constitute each layer of the superconducting tape.
  • the terminal structure 100 having the above-described configuration was manufactured using a cable, a cylindrical electrode, and a reduced diameter member.
  • the inner surface of the cylindrical electrode 120-1 was connected to the superconducting tape 115 on the outer peripheral surface (substrate-side surface) via the solder 170. Further, when the cylindrical electrode 120 and the superconducting tape 115 were connected, preliminary solder portions 171 and 172 were provided on both connection surfaces, and these were manufactured as shown in FIGS.
  • the cylindrical electrode formed of the divided body is changed to a cylindrical electrode that is one cylindrical body of the same shape, and the superconducting cable is inserted into the cylindrical electrode.
  • the superconducting tape on the outer layer side of the cable was connected to the outer surface instead of the inner surface of the cylindrical electrode.
  • the superconducting tape was connected to the outer surface of the cylindrical electrode via solder on the inner peripheral surface (surface on the superconducting layer side).
  • Example 1 the internal conductor AC loss [W / m] was measured in the state where the terminal structures of Example 1, Comparative Example 1, and Comparative Example 2 were immersed in liquid nitrogen (@ 77K). These are shown in Table 1. Moreover, when the connection resistance between each superconducting wire and the cylindrical electrode was measured by the DC four-terminal method, the average value [ ⁇ / piece] of the connection resistance of the connection portion including the electrode or the superconducting tape in Example 1 was 0. The value was 25 ⁇ , and Comparative Example 1 showed almost the same value. However, Comparative Example 2 showed a value far exceeding the connection resistance value of Example 1.
  • the superconducting cable is arranged on the inner peripheral surface of the cylindrical electrode by concentrically arranging the superconducting wire around the core, winding the superconducting layer on the inner peripheral side and the substrate on the outer peripheral side. It was found that the connected configuration can reduce the AC loss more than the configuration connected to the outer peripheral surface.
  • a terminal structure of a superconducting cable according to the present invention is a superconducting cable in which a superconducting wire having a superconducting layer on a substrate is wound around the core so that the superconducting layer is on the inner peripheral side and the substrate is on the outer peripheral side.
  • the electrode can be easily and suitably connected with reduced contact resistance, and is useful as a terminal structure of a multilayer superconducting cable.

Abstract

 基板上に中間層を介して超電導層を備える超電導線材を、芯材の周囲に、 超電導層を内周側及び 基板を外周側となるように巻き付けた超電導ケーブルと電極とを接触抵抗を低減した状態で容易に好適に接続する超電導ケーブルの端末構造体。この端末構造体では、超電導ケーブル(110)は、基板上に中間層を介して超電導層を備える超電導線材(113、115)を複数有し、これら複数の超電導線材(113、115)を、芯材(111)の周囲に同心円状に、 超電導層を内周側及び 基板を外周側となるように巻き付けて多層配置されている。筒状電極(120)内に超電導ケーブル(110)は配置され、筒状電極(120)の内面は、複数の超電導線材(113、115)のうち、筒状電極(120)内で最外層に位置する超電導線材(113、115)における基板側の面に半田で接続されている。

Description

超電導ケーブルの端末構造体及びその製造方法
 本発明は、超電導ケーブルの端末構造体に関し、特に、超電導層を有する超電導線材の超電導層をケーブルの内側に向けて螺旋状に巻回されてなる超電導ケーブルの端末構造体に関する。
 従来、超電導ケーブルにおいては、芯材(フォーマ)の外周にテープ状の超電導線材(以下、「超電導テープ」とも称する)が螺旋状に巻回されている。また、超電導ケーブルでは、大電流送電を可能とするために、超電導テープを、同心円状に多層に配置している場合が多い。多層配置された超電導テープの層間(すなわち超電導テープの間)には、超電導テープを押えるとともに、超電導テープ間での電気絶縁をとる押えテープが設けられる。また、超電導テープとしては、REBaCu系(REは、Y、Nd、Sm、Eu、Gd及びHoから選択された1種以上の元素を示し、y≦2及びz=6.2~7である。)の超電導線材が知られている。REBaCuBaCu系超電導体としては、YBaCuで表されるイットリウム系超電導線材が代表的である。イットリウム系超電導線材は、テープ状の基板上に中間層を介して超電導層が形成されており、これを備える超電導ケーブルでは、基板が外周側、超電導層が内周側となるように超電導テープを芯材に巻回することで各層が構成されている。
 このような多層構造の超電導ケーブルを、超電導応用機器に応用する場合、例えば、特許文献1に示すように、超電導ケーブルの超電導テープと、外部電源或いは外部回路に接続される金属端子(電極)とを電気的に接続した端末構造体が用いられる。なお、この超電導ケーブルの端末構造体は、超電導ケーブルの終端部の構成と言うこともできる。
 特許文献1の端末構造体では、超電導ケーブルの超電導テープは、超電導ケーブルの芯材が挿入された筒状の金属端子(電極)である常電導接続部材の外面に接続されている。具体的には、この常電導接続部材の外面には、軸心に沿って超電導テープ側から離れるに従って外径が大きくなる段差が設けられている。これら段差は、超電導テープの層に対応しており、段差がつけられた段部の上面(「接続面」とも称する)毎に、各層の超電導テープが超電導層側で接続されている。この常電導接続部材を介して、極低温部に配された超電導ケーブルは常温部に引き出されている。
 このように超電導テープが常電導接続部材の外面(接続面)に接続された構成において、接続面の外径が、接続対象である超電導テープの層の外径よりも大きい場合、超電導テープの層では、接続部分の外径が、芯材に巻回された本来の状態の外径よりも大きくなる。
 すなわち、超電導テープの各層における接続部分(接続面に接続する部分)では、超電導テープの周方向の間隔は、芯材に巻回された本来の状態における間隔よりも拡がることになる。このように、超電導テープの各層において超電導テープ同士の周方向での間隔に変化がある場合、超電導ケーブル及び常電導接続部材に液体窒素温度で通電(交流電流で通電)すると、超電導テープに発生する交流損失が大きくなる。この大きな交流損失の発生に伴い、熱損失が大きくなり、これを冷却する冷凍機の負荷が増大することが考えられる。よって、超電導テープを電極の外面の接続面に接続する構成では、外面における接続面の外径を、対応する超電導テープの層の外径と正確に合わせる必要があり、接続面を有する常電導接続部材の製作に手間がかかる。また、端末構造体の組み立て作業時においても、各層の超電導テープと、対応する常電導接続部材の接続面との接続を、各層で正確に注意して行う必要があり手間がかかるものとなる。また、これら接続を一本ずつ手作業で行う場合、互いの接続部分の接続抵抗値にばらつき生じやすくなるという問題がある。
 一方、特許文献2及び特許文献3では、特許文献1と異なり、超電導ケーブルの超電導テープを超電導ケーブルの芯材が挿入される筒状の電極の内面に接続する構成が開示されている。
 特許文献2では、筒状の電極としての常電導接続部材では一端側に、端末容器部内のブッシングの端部を接続する導体が挿入されており、他端側(超電導ケーブル側)の内周には、超電導テープが接続される段階状の接続面が形成されている。接続面は、常電導接続部材の他端(超電導ケーブル側)から一端(常電導導体部側)に向かって段階的に内径が減少するように構成され、かつ、超電導ケーブルにおける超電導テープによる各層の段階状態に対応するように形成されている。これら接続面に、超電導テープの超電導層側で接続した接続用超電導シートを半田で取り付けることで超電導テープとブッシングの端部とを電気的に接続している。
 また、特許文献3には、(Bi,Pb)SrCaCu10-X(0≦X<1)等のビスマス系2223超電導層を有する超電導テープの各層を、これら各層の外径に対応した内径の筒状の金属端子内にそれぞれ挿入して、金属端子と超電導テープとを接続した構成が開示されている。このような構成により特許文献2及び特許文献3は、特許文献1の問題点を解消している。
特開2010-263699号公報 特開2010-287349号公報 特開平10-126917号公報
 近年では、基板上に中間層を介して超電導層を備えるイットリウム系超電導線材と、電極とを接触抵抗を極力低減して接続したいという要望がある。
 しかしながら、特許文献2の超電導ケーブルの端末構造体では、超電導ケーブルの超電導テープと常電導接続部材(電極)との接続は、超電導層を有する超電導シートを介在させている。このため、超電導テープと常電導接続部材(電極)とを直接接続する構成よりも、接続箇所が増えることになり、結果として接続抵抗が高くなるという課題が生ずる。る。また、特許文献3の超電導ケーブル導体の端末構造では、端子の内面に超電導線材が接続されている。しかし、かかる超電導線材は、ビスマス系2223(ビスマス系酸化物超電導導体)を備える超電導線材を想定しており、イットリウム系超電導線材を備える超電導ケーブルの端末構造とは、その課題が明らかに相違する。つまり、イットリウム系超電導線材を備える超電導ケーブルでは、超電導テープを、基板側が外周側、超電導層側が内周側となるように芯材に巻回する必要がある。これにより、イットリウム系超電導線材を備える超電導ケーブルの端末構造体では、超電導テープの基板側を電極と接続するのか、超電導層側を電極と接続するのかにより、交流損失や接続抵抗が大きく変化するという課題が生ずる。
 一方で、ビスマス系酸化物超電導導体を備える超電導線材の断面は、中心を挟み基板側、超電導層側で非対称ではなく、対称的なテープ状線材であることから、テープ状線材の裏側に接続しようとも、表側に接続しようとも、そもそも交流損失や接続抵抗が大きく変化するという課題は発生しない。
 本発明の目的は、基板上に中間層を介して超電導層を備える超電導線材を、芯材の周囲に、前記超電導層を内周側及び前記基板を外周側となるように巻き付けた超電導ケーブルと電極とを接触抵抗を低減した状態で容易に好適に接続できる超電導ケーブルの端末構造体を提供することである。
 本発明の超電導ケーブルの端末構造体の一つの態様は、基板上に中間層を介して超電導層を備える超電導線材を複数有し、これら複数の超電導線材を、芯材の周囲に同心円状に、前記超電導層を内周側及び前記基板を外周側となるように巻き付けて多層配置されている超電導ケーブルと、前記超電導線材が終端接続される筒状の電極と、を備える超電導ケーブル端末構造体であって、前記超電導ケーブルは前記電極内に配置され、前記電極の内面は、前記複数の超電導線材のうち前記電極内で最外層に位置する前記超電導線材の外周側の面に接続されている、構成を採る。
 本発明の超電導ケーブルの端末構造体の製造方法の一つの態様は、基板上に超電導層を備える超電導線材を複数有し、これら複数の超電導線材を、芯材の周囲に同心円状に、前記超電導層を内周側及び前記基板を外周側となるように巻き付けて多層配置されている超電導ケーブルと、前記超電導線材が終端接続される筒状の電極とを備える超電導ケーブル端末構造体の製造方法であって、前記電極は、前記超電導ケーブルの延在方向に沿って分割された複数の分割体により筒状に構成され、前記超電導ケーブルを筒状の前記分割体内に配置し、且つ、前記分割体の内周面と前記複数の超電導線材のうち前記電極内で最外層に位置する前記超電導線材の外周側の面との間に半田を配置する工程と、前記電極の外周に、縮径可能な筒状の縮径部材を外装して縮径することで、前記電極の内面を前記超電導ケーブルの外面に押し付ける工程と、前記縮径部材の外方から前記半田を加熱する加熱工程とを有する、ようにした。
 本発明によれば、基板上に超電導層を備える超電導線材を、芯材の周囲に、前記超電導層を内周側及び前記基板を外周側となるように巻き付けた超電導ケーブルと電極とを接触抵抗を低減した状態で容易に好適に接続できる。
本実施の形態の超電導ケーブルの端末構造体の概略構成を示す側面図 同端末構造体の筒状電極を超電導ケーブルの端末側から見た要部構成図 図1に示す超電導ケーブルの端末構造体の概略構成を示す断面図 超電導テープの巻回状態を示す図 超電導テープの要部構成を模式的に示す断面図 図3のA-A断面を示す断面図 図1の縮径部材を示す斜視図 実施の形態に係る超電導ケーブルの端末構造体における筒状電極の変形例を示す斜視図 本実施の形態の超電導ケーブルの端末構造体の製造方法の説明に供する図 本実施の形態の超電導ケーブルの端末構造体の製造方法の説明に供する図 本実施の形態の超電導ケーブルの端末構造体の製造方法の説明に供する図 本実施の形態の超電導ケーブルの端末構造体の製造方法の説明に供する図 本実施の形態の超電導ケーブルの端末構造体の製造方法の説明に供する図 本実施の形態の超電導ケーブルの端末構造体の製造方法の説明に供する図
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 図1は、本発明の実施の形態の超電導ケーブルの端末構造体の概略構成を示す側面図である。実施の形態では、説明を簡単化するために、超電導ケーブルが2層構造、すなわち、2層の超電導テープ(超電導線材)を有する場合を例示するが、1層構造、或いは、3層構造以上すなわち3層以上の超電導テープを有する場合でも、本発明を適用可能である。図2は、端末構造体100の筒状電極120を後方側(つまり図1の右側であり、筒状電極の後方)から見た要部構成図である。
 図1及び図2に示すように、端末構造体100は、超電導ケーブル110、筒状の引出用電極(以下、筒状電極と呼ぶ)120及び筒状の縮径部材140を有する。筒状電極120は、超電導テープの層数分だけ設けられている。本実施の形態の例では、超電導ケーブル110の超電導テープの層数が2層なので、2個の筒状電極120-1、120-2が設けられている。各筒状電極120-1、120-2には、リードケーブル130-1、130-2が電気的に接続されている。実際の使用時には、超電導ケーブル110および筒状電極120は、液体窒素等の極低温の液体に浸される。そして、超電導ケーブル110の電流が、筒状電極120を介してリードケーブル130によって常温部に引き出されるようになっている。例えば、リードケーブル130は、ポリマー套管(図示せず)等を介して気中に導出される。
 図3は、図1に示す超電導ケーブルの端末構造体の概略構成を示す断面図である。
 図1及び図3に示すように、超電導ケーブル110は、芯材(フォーマ)111、押えテープ112、第1の超電導テープ113、押えテープ114、第2の超電導テープ115、押えテープ116を有する。
 芯材111は、円筒形状であり、Cu(銅)の撚線から構成されている。この芯材111の外周には、不織布からなる押えテープ112が巻回されている。
 押えテープ112の外周には、第1の超電導テープ層を構成する第1の超電導テープ113が、図4に示すように、周方向で各テープ間に若干の所定間隔Gを空けて、それぞれスパイラル状に巻回されている。第1の超電導テープ113の外周には、不織布からなる押えテープ114が巻回されている。なお、押えテープ112、114は、それぞれ、1本の不織布が間隔を空けずにスパイラル状に巻回されることにより層状の絶縁部分として構成されている。なお、押えテープ114の外周には、第2の超電導テープ層を構成する第2の超電導テープ115が第1の超電導テープ113と同様に、周方向で所定間隔を空けて、それぞれスパイラル状に巻回されている。この第2の超電導テープ115の外周には、押えテープ116が、押えテープ112、114と同様に、1本の不織布が間隔を空けずにスパイラル状に巻回されている。
 本実施の形態の例では、1層あたり10本の超電導テープがスパイラル状に所定間隔を空けて巻回されている。つまり、第1の超電導テープ113および第2の超電導テープ115による各超電導テープ層は、それぞれ、10本の超電導テープから構成されている。なお、超電導ケーブル110において、超電導テープによる各層を構成する超電導テープの本数は、何本でもよく、12本等の10本以上で構成して良いし、少なくとも1本以上であればよい。超電導テープ113、115による層としては、例えば、厚さ0.1mm、幅5mmの超電導テープが撚ピッチ250mmで、10枚巻回されている。押えテープ112、114としては、例えば、厚さ0.2mm、幅45mmの不織布が1/2ラップ巻きされている(つまり、テープ幅の半分ずつがオーバーラップして巻回されている)。
 超電導テープ113、115の材料としては、従来提案されている種々の超電導材料を用いることができる。ここでは、超電導テープ113、115は、基板と基板に沿って形成されたREBaCu系(REは、Y、Nd、Sm、Eu、Gd及びHoから選択された1種以上の元素を示し、y≦2及びz=6.2~7である。)の高温超電導薄膜である超電導層を備える。
 図5は超電導テープの要部構成を模式的に示す断面図である。なお、超電導テープ115は、超電導テープ113と同様の構成を有し、超電導テープ113と同様に、芯材111の周囲に配置されるものである。よって、超電導テープ113の構成のみ説明し、超電導テープ115の説明は省略する。
 超電導テープ(YBCO超電導線材)113(115)は、テープ状であり、テープ状の金属製の基板1131上に、中間層1132、テープ状の超電導層1133、安定化層1134が順に積層されることによって形成される。なお、超電導テープ113では、基板1131、中間層1132、超電導層1133及び安定化層1134からなる積層構造は、導電材料(銅)からなる被覆材によって被覆されていることが好ましい。
 基板1131は、例えば、Ni-Cr系(具体的には、Ni-Cr-Fe-Mo系のハステロイ(登録商標)B、C、X等)、W-Mo系、Fe-Cr系(例えば、オーステナイト系ステンレス)、又は、Fe-Ni系(例えば、非磁性の組成系のもの)等の材料に代表される低磁性の結晶粒無配向・耐熱高強度金属基板である。中間層1132は、例えば基板1131からの元素の拡散が超電導層1133に及ぶのを防止するための拡散防止層、超電導層1133の結晶を一定の方向に配向させるための配向層等の複数の層を有する。ここでは、中間層1132は、基板1131上に第1中間層としてのAl層を有し、Al層上に第2中間層としてのY層を有し、Y層上に第3中間層としてのMgO層を有する。また、中間層1132は、MgO層上に第4中間層としてのLaMnO層を有し、LaMnO層上に第5中間層としてのCeO層を有する。第1中間層としてのAl層は、基板1131上にスパッタリング法で成膜される。なお、第1中間層は、Alに代えて、ReZrO(Re:Y、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm及びYbから選択される1又は2種以上の希土類元素)で、RF-スパッタリング法、MOD法などで成膜してもよい。この第1中間層は、耐熱性が高く、界面反応性を低減するための層であり、その上に配される膜の配向性を得るために用いられるベッド層としても機能する。第2中間層としてのMgO層は、Al層上にIBAD法により成膜される。第3中間層としてのLaMnO層は、MgO層上にスパッタリング法により成膜される。第4中間層であるCeO層は、超電導層1133の直下に配置される層であり、LaMnO層上にスパッタリング法で成膜される。CeO層は、超電導層(YBCO層)1133との整合性がよく、且つ、超電導層1133との反応性が小さいため最も優れた中間層の一つとして知られている。CeO層は、スパッタリング法に代えてPLD(Pulsed Laser Deposition:パルスレーザ蒸着法)法で、成膜されてもよい。なお、MgO層より上方の層は、超電導層1133との反応を防止する反応防止層としても機能する。なお、中間層1132は、1層~3層或いは5層以上で形成されてもよい。
 超電導層1133は、YBaCuで表されるイットリウム系超電導体(YBCO層)が代表的なものである。
 超電導テープ113、115の超電導層1133には、Zr、Sn、Ce、Ti、Hf、Nbのうち少なくとも1つを含む酸化物粒子(粒径50[μm]以下)が磁束ピンニング点として分散していることが好ましい。この場合、高温超電導薄膜としての超電導層の成膜法としては、三フッ化酢酸塩(TFA)を用いたTFA-MOD法が好適である。例えば、TFAを含むBa溶液中に、Baと親和性の高いZr含有ナフテン酸塩等を混合することにより、RE系超電導体からなる高温超電導薄膜に、Zrを含む酸化物粒子(BaZrO)を磁束ピンニング点として分散させることができる。なお、高温超電導薄膜中に磁束ピンニング点を分散する手法は、公知の技術を適用することができる(例えば特開2012-059468号公報)。超電導テープ113、115の高温超電導薄膜中に磁束ピンニング点を分散させることにより、超電導テープ113、115が湾曲した状態で用いられても、磁場の影響を受けにくく、安定した超電導特性が発揮される。
 安定化層1134は、銀、金、白金等の貴金属、あるいはそれらの合金であり低抵抗の金属により超電導層1133上に成膜される。なお、安定化層1134は、超電導層1133の直上に形成することによって、超電導層1133が金、銀などの貴金属、あるいはそれらの合金以外の材料と直接的な接触によって反応によって引き起こす性能低下を防止する。これに加えて、安定化層1134は、事故電流や交流通電により発生した熱を分散して発熱による破壊・性能低下を防止する。
 このように複数の超電導テープ113、115は、基板1131上に超電導層1133を備える。そして、複数の超電導テープ113、115は、超電導ケーブル110において、超電導層側の面113aを内周側に向け、且つ、基板側の面113bを外周側に向くようにして、芯材111の周囲に同心円状に配置されている。すなわち、超電導テープ113、115は、芯材111の周囲に、且つ、押えテープで構成される層状の絶縁部分間に、超電導層1133を内周側及び基板1131を外周側となるように巻き付けて多層配置されている。
 なお、超電導ケーブル110は、実際には、押えテープ116の外周側に、電気絶縁層や、超電導シールド層、外部安定化層、コルゲート管等が設けられている。しかしながら、これらの部材は、超電導テープ113、115が筒状電極120に接続される端末箇所では取り除かれるため、図1~図3では、これらは省略して示している。
 超電導ケーブル110は、筒状電極120(120-1、120-2)内を通るように、筒状電極120(120-1、120-2)内に配置されている。
 筒状電極120(120-1、120-2)は、全体として筒状であり、Cu(銅)等の導電性を有する金属材料により形成されている。筒状電極120(120-1、120-2)は、図2から明らかなように、超電導ケーブル110が内部を貫通できる中空構造となっている。
 超電導ケーブル110の超電導テープ113、115のうち、最外周側に設けられた第2の超電導テープ115は、超電導ケーブル110の終端側から最も遠くに設けられた筒状電極120-1の内面に半田を介して直接接続される。
 最外周から2番目(図1の例の場合、最内周)に設けられた第1の超電導テープ113は、先の筒状電極120-1の次に、超電導ケーブル110の終端側(図1の例の場合、最も終端側を示す図面右側)に設けられた筒状電極120-2の内面に半田を介して直接接続される。
 すなわち、超電導ケーブル110は、複数の筒状電極120-1、120-2に、超電導ケーブル110の終端側から順次貫通した状態で配置される。そして、筒状電極120-1、120-2の内面に、筒状電極120(120-1,120-2)内に配置された超電導ケーブル110において外周側の超電導テープ115、113による層から順に終端側に向かって一層ずつ、超電導テープ115、113が接続される。
 言い換えれば、筒状電極120(120-1、120-2)は、その内面(内周面)で、内部で最外層に位置する超電導テープ113、115に、半田のみを介して接合(所謂、直付け)されている。
 具体的には、図3に示すように、筒状電極120-1は、その内面で、筒状電極120-1内で最外層に位置する第2の超電導テープ115と、半田170(半田メッキである予備半田部171、172)を介して通電可能に半田のみを介して接合(所謂、直付け)されている。
 また、筒状電極120-2は、その内面で、筒状電極120-2内で最外層に位置する第1の超電導テープ113と、半田170(予備半田部171、172)を介して通電可能に半田のみを介して接合(所謂、直付け)されている。
 筒状電極120(120-1、120-2)は、超電導ケーブル110の延在方向に沿って分割された複数の分割体121、122により筒状に構成されている。
 すなわち、筒状電極120(120-1、120-2)は、分割体121、122を、超電導ケーブル110の外周の所定位置上で組み合わせることで、当該所定位置を囲むように筒状に配置される。
 図6は図3のA-A断面を示す断面図である。なお、図6では、図を簡単化するために、筒状電極120-1に接続されるリードケーブル130-1(図1参照)は省略して示してある。
 図1~3及び図6に示すように、筒状電極120(120-1、120-2)は、水平方向に沿って2つの分割体(半割体)121、122として2分割可能な構成である。
 筒状電極120(120-1、120-2)の内径は、内部に配置される超電導ケーブル110の外径と略同じであるか、或いは、内部に配置される超電導ケーブル110の外径よりも小さいものとなっている。
 筒状電極120-1の内面において、超電導ケーブル110の最外層を構成する超電導テープ115の端部と対向する部分、つまり、接続部分には、予備半田処理により予備半田部172が設けられている。また、超電導テープ115側において、筒状電極120-1の内面と接続する端部に、予備半田処理により予備半田部171が設けられている。これら筒状電極120-1の内面と超電導テープ115の端部は、双方の間の予備半田部171、172が溶融されることで、半田接続されている。ここでは、筒状電極120-1の内面と超電導テープ115の端部との互いの接続部分の双方に予備半田処理により予備半田部171、172が設けられている構成としたが、これに限らず少なくとも一方に設けられていればよい。
 筒状電極120(120-1、120-2)の外周には、縮径可能な筒状の縮径部材140が配置されている。筒状電極120(120-1、120-2)は、縮径部材140が縮径することで、筒状電極120(120-1、120-2)の内面、つまり、分割体121、122の内面は、超電導ケーブル110の外面に密着するように押圧されている。
 縮径部材140は、熱伝導性を有する筒状体であり、拡縮可能に構成されている。縮径部材140は、超電導テープ113の外周側で、超電導テープ113と筒状電極120とによる接続部分の外周に配置されている。
 ここでは、縮径部材140(140-1、140-2)は、半田170を介して接続された超電導テープ113の端部を覆う筒状電極120(120-1、120-2)を外周側から覆うように、筒状電極120に対して螺旋状に巻き付けられている。
 図7は、図1の縮径部材140を示す斜視図である。
 ここでは、縮径部材140は、図7に示すように、テープ状の熱伝導性を有するバネ材をロール状に巻回し、且つ、ロールの軸方向にスパイラル状で延在させた形状を有する。縮径部材140はロールスプリングと称することもある。
 この縮径部材140の内径は、筒状電極120(120-1、120-2)の外径よりも小さい。縮径部材140は、筒状電極120(120-1、120-2)に、拡径(半径方向で外方に向く矢印方向)して被せている。これにより、縮径部材140は、縮径(半径方向で中心側に向く矢印方向)して、筒状電極120(120-1、120-2)を外周側から全面に亘って、筒状電極120(120-1、120-2)の中心側、つまり、筒状電極120(120-1、120-2)内の超電導ケーブル110の外面側に押し付けている。
 なお、筒状電極120(120-1、120-2)は、本実施の形態では、超電導ケーブル110の延在方向に沿って2分割された構成としたが、これに限らず、2分割以上の分割体により構成してもよい。
 図8は、実施の形態に係る超電導ケーブルの端末構造体における筒状電極の変形例を示す斜視図である。図8に示す筒状電極120(120-1、120-2)の変形例である筒状電極120Aは、超電導ケーブル110の延在方向(軸心C方向に相当)に沿って3分割された分割体123~125によって筒状に構成されている。筒状電極120Aは、筒状電極120(120-1、120-2)と同様の作用効果を奏する。
 また、筒状電極120(120-1、120-2)は、縮径部材140の縮径によって、筒状電極120(120-1、120-2)内に配置される超電導ケーブル110に固定された状態となっている。すなわち、超電導ケーブル110自体に、穿孔加工等の加工を施すこと無く、超電導ケーブル110を筒状電極120-1に固定させることができる。
 次に、図9~図14を参照して、本実施の形態の超電導ケーブルの端末構造体100の製造方法を説明する。図9~図14は、本実施の形態の超電導ケーブルの端末構造体の製造方法の説明に供する図である。ここでは、超電導ケーブルの端末構造体100の製造方法として、筒状電極120(120-1、120-2)のうち筒状電極120-1と、超電導ケーブル110とを接続する方法について説明する。
 図9に示すように、超電導ケーブル110において、所定箇所の押えテープ116を矧がして、筒状電極120-1に接続される第2の超電導テープ115の端部を露出させる。また、端末において押えテープ116の外周側に設けられている電気絶縁層、超電導シールド層及び外部安定化層を剥いでおく等して、超電導テープ115の端部を、筒状電極120-1の外面として露出させておく。
 そして、図10に示すように、筒状電極120-1及び第2の超電導テープ115の互いに接続される部分の少なくとも一方に、予備半田処理(半田メッキ)を施す。ここでは、筒状電極120-1の内面の一部と、この内面に対応する第2の超電導テープ115の外面の双方に、半田メッキ処理を施したので、予備半田部172、172が設けられている。なお、筒状電極120-1の内面に設けられる予備半田部172の長手方向の長さと超電導テープ115の端部に設けられる予備半田部171の長手方向の長さは、互いに接続される部分の長手方向の長さとなる。
 このとき、超電導テープ115の端部は、それぞれ重ならないように位置した状態となっている。
 次いで、図11に示すように、超電導テープ115の外周側から、分割体121、122(筒状電極120-1)を超電導テープ115の所定位置を覆う位置に配置して、筒状にする。このとき、分割体121、122を筒状電極120-1となるように筒状にし、その筒状体内に超電導ケーブル110を挿入することで配置してもよい。
 そして、図12に示すように、筒状電極120-1(分割体121、122)に、縮径部材140を、外周側から囲むように外装する。言い換えれば、縮径部材140は、分割体121、122の外周側から、超電導テープ115の端部と筒状電極120-1との接続部分を、外周側から覆うように配置される。このとき、縮径部材140(140-1)は、縮径方向への付勢力に抗して拡径させつつ、設置される。
 そして、縮径部材140を、筒状電極120-1上、つまり、超電導テープ115と筒状電極120-1との接続部分上(接続部分の外周側)で縮径させる。このとき、図13に示すように、縮径部材140は、縮径することで、筒状電極120-1(分割体121、122)を、その全周に亘って、軸心(超電導ケーブル110の軸心に相当)側、言い換えれば、超電導テープ115側に押し付ける。
 これにより、筒状電極120-1は、予備半田部171、172を介して、超電導テープ115の外面に押し付けられて密着した状態となり、超電導ケーブル110自体に固定される。この構成は、超電導ケーブル110が筒状電極120-1に支持された状態といえる。
 このように縮径部材140が縮径することで、縮径部材140の内周側に位置する筒状電極120-1の内面は、内部に配置される超電導ケーブル110の外面を構成する第2の超電導テープ115に予備半田部171、172を介して押し付けられる。特に、縮径部材140は、テープ状のバネ材により構成され、筒状電極120-1の全周に亘って配置されているため、筒状電極120-1内の内面は超電導テープ115の外面全面に対して押圧されることで固定される。
 次いで、図14に示すように、超電導テープ115と筒状電極120-1との接続部分を、縮径部材140の外方からヒータ等の熱源180により加熱して(加熱工程)、予備半田部171、172を溶融する。これにより、超電導テープ115に押し付けられる筒状電極120-1は、超電導テープ115と半田170(予備半田部171、172)を介して電気的に接続する。予備半田部171、172が溶融している間も常に、縮径部材140は、筒状電極120-1を、外周側から、全面に亘って超電導テープ115側に押し付ける。これにより、互いの接続部分を構成する予備半田部171、172による層は、複数の超電導テープ115と筒状電極120-1の内面との間で、均一に薄くできる。
 このように本実施の形態の超電導ケーブルの端末構造体100では、超電導テープ113、115と筒状電極120との接続抵抗を低く抑えることが可能で、接続部分におけるジュール熱の発生を低減でき、さらに、ばらつくことがないため偏流が起きにくく、超電導ケーブル110に通電できる電流容量が低下することはない。
 例えば、筒状電極の外面に、筒状電極内部を貫通する超電導ケーブルの超電導線材を手作業で接続する従来の構成と異なり、超電導ケーブル110の超電導テープ113、115を1本ずつ筒状電極120に半田付けを行う必要がなく、互いの接続部分の接続抵抗値が作業によって大きくばらつくことがない。
 また、本実施の形態によれば、筒状電極120の内面と、筒状電極120内を通る超電導テープ113、115とを接続する構成であっても、従来の超電導ケーブルの端末構造体(特許文献2)と異なり、接続用超電導シートを介すことなく、直接接続している。つまり、筒状電極120の内面と、筒状電極120内を通る超電導テープ113、115とは、半田のみで接続(直付け)している。よって、双方を接続する際の接続箇所を極力少なくすることができ、接続抵抗を極力低減できる。また、筒状電極120と超電導テープ113、115との接続は、超電導テープを手作業で一本ずつ接続することなく行うことができるため、接続箇所における接続抵抗のばらつきが生じ難く双方を容易に接続できる。
 このように、超電導ケーブルの端末構造体100では、複数の超電導テープ113、115と筒状電極120とを半田を介して、接触抵抗を低減した状態で容易に好適に接続でき、確実で好適な通電容量を確保できる。
 なお、本実施の形態の端末構造体100では、縮径部材140を、図7に示すように、テープ状の熱伝導性を有するバネ材をロール状に巻回し、且つ、ロールの軸方向にスパイラル状で延在させた形状としたが、縮径する構成であれば、これに限らない。縮径部材140は、テープ状の熱伝導性を有するバネ材をロール状で、複層となるように巻回して構成してもよい。
 また、本実施の形態では、縮径部材140は、テープ状の熱伝導性を有するバネ材をスパイラル状、つまり、ロール状に巻回したものとしたが、これに限らず、棒状材等の線状材をスパイラル状に形成したコイルとしてもよい。
 また、超電導テープの層数が2層以上の場合、層数と同じ数の筒状電極120内に、超電導ケーブル110を配置し、各筒状電極は、その内面で、超電導ケーブルの端末側に向かって内側に位置する層を構成する超電導テープを順に接続する構成となる。
 <実施例1>
 図5に示すREBaCu系超電導線材を、厚さ0.12[mm]×幅5[mm]で形成し、これを10本芯材に巻き付けて超電導テープの各層を構成した超電導ケーブルと、筒状電極と、縮径部材とを用いて上記構成の端末構造体100を製造した。筒状電極120-1の内面は、超電導テープ115に、外周側の面(基板側の面)で、半田170を介して接続した。また、筒状電極120と超電導テープ115との接続に際し、双方の接続面に、予備半田部171、172を設け、これらを図9~図14に示すように製造した。
 <比較例1>
 実施例1の超電導ケーブルの端末構造体において、分割体からなる筒状電極を、同形状の一つの筒状体である筒状電極に変更し、この筒状電極に超電導ケーブルを挿入し、超電導ケーブルの外層側にある超電導テープを、筒状電極の内面ではなく外面に接続した。このとき、超電導テープは、筒状電極の外面に、内周側の面(超電導層側の面)で半田を介して接続した。
 <比較例2>
 実施例1の超電導ケーブルの端末構造体において、筒状電極の内周面と、筒状電極内の超電導ケーブルの内周側の面とを、特許文献2の接続用シートと同様のシートを介して接続した。筒状電極の内周面とシート及び筒状電極内の超電導ケーブルの内周側の面とシートとは半田で接続した。
 そして、実施例1、比較例1、比較例2の端末構造体を液体窒素中(@77K)に浸漬した状態で、内部導体交流損失[W/m]を測定した。これらを表1に示す。また、各超電導線材と筒状電極との接続抵抗を、直流4端子法で測定したところ、実施例1における電極或いは超電導テープを含む接続箇所の接続抵抗の平均値[μΩ/本]が0.25μΩであり、比較例1もほぼ同様の値を示した。しかしながら、比較例2では、実施例1の接続抵抗の値をはるかに超える値を示した。
Figure JPOXMLDOC01-appb-T000001
 表1から、超電導線材を、芯材の周囲に同心円状に、超電導層を内周側及び基板を外周側となるように巻き付けて多層配置された超電導ケーブルを、筒状電極の内周面に接続した構成は、外周面に接続した構成よりも交流損失を低下できることがわかった。
 2014年2月27日出願の特願2014-037117の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明に係る超電導ケーブルの端末構造体は、基板上に超電導層を備える超電導線材を、芯材の周囲に、前記超電導層を内周側及び前記基板を外周側となるように巻き付けた超電導ケーブルと電極とを接触抵抗を低減した状態で容易に好適に接続できる効果を有し、多層の超電導ケーブルの端末構造体として有用である。
 100 端末構造体
 110 超電導ケーブル
 111 芯材
 112、114、116 押えテープ
 113、115 超電導テープ
 113a 超電導層側の面
 113b 基板側の面
 120、120A 筒状電極
 121、122、123、124、125 分割体
 130 リードケーブル
 140 縮径部材
 170 半田
 171、172 予備半田部
 180 熱源
 1131 基板
 1132 中間層
 1133 超電導層
 1134 安定化層

Claims (5)

  1.  基板上に中間層を介して超電導層を備える超電導線材を複数有し、これら複数の超電導線材を、芯材の周囲に同心円状に、前記超電導層を内周側及び前記基板を外周側となるように巻き付けて多層配置されている超電導ケーブルと、
     前記超電導線材が終端接続される筒状の電極と、
     を備える超電導ケーブル端末構造体であって、
     前記超電導ケーブルは前記電極内に配置され、
     前記電極の内面は、前記複数の超電導線材のうち前記電極内で最外層に位置する前記超電導線材の外周側の面に接続されている、
     超電導ケーブルの端末構造体。
  2.  前記電極は、前記超電導ケーブルの延在方向に沿って分割された複数の分割体により筒状に構成されている、
     請求項1記載の超電導ケーブルの端末構造体。
  3.  前記電極の外周には、縮径可能な筒状の縮径部材が外装されている、
     請求項1または2記載の超電導ケーブルの端末構造体。
  4.  互いに接続される前記電極の内面及び前記電極内で最外層に位置する前記超電導線材の外周側の面のうち、少なくとも一方の面には半田メッキ処理が施されている、
     請求項1から3のいずれか一項に記載の超電導ケーブルの端末構造体。
  5.  基板上に超電導層を備える超電導線材を複数有し、これら複数の超電導線材を、芯材の周囲に同心円状に、前記超電導層を内周側及び前記基板を外周側となるように巻き付けて多層配置されている超電導ケーブルと、前記超電導線材が終端接続される筒状の電極とを備える超電導ケーブル端末構造体の製造方法であって、
     前記電極は、前記超電導ケーブルの延在方向に沿って分割された複数の分割体により筒状に構成され、
     前記超電導ケーブルを筒状の前記分割体内に配置し、且つ、前記分割体の内周面と前記複数の超電導線材のうち前記電極内で最外層に位置する前記超電導線材の外周側の面との間に半田を配置する工程と、
     前記電極の外周に、縮径可能な筒状の縮径部材を外装して縮径することで、前記電極の内面を前記超電導ケーブルの外面に押し付ける工程と、
     前記縮径部材の外方から前記半田を加熱する加熱工程と、
     を有する、
     超電導ケーブルの端末構造体の製造方法。
     
PCT/JP2015/000989 2014-02-27 2015-02-26 超電導ケーブルの端末構造体及びその製造方法 WO2015129272A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580009121.5A CN106030909B (zh) 2014-02-27 2015-02-26 超导电缆的末端结构体及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-037117 2014-02-27
JP2014037117A JP2015162367A (ja) 2014-02-27 2014-02-27 超電導ケーブルの端末構造体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2015129272A1 true WO2015129272A1 (ja) 2015-09-03

Family

ID=54008605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000989 WO2015129272A1 (ja) 2014-02-27 2015-02-26 超電導ケーブルの端末構造体及びその製造方法

Country Status (3)

Country Link
JP (1) JP2015162367A (ja)
CN (1) CN106030909B (ja)
WO (1) WO2015129272A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106253199A (zh) * 2016-08-08 2016-12-21 华北电力大学 一种冷绝缘高温超导电缆屏蔽层端部结构及连接方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6989422B2 (ja) * 2018-03-14 2022-01-05 古河電気工業株式会社 超電導ケーブルの端子構造
CN110136883B (zh) * 2019-06-19 2020-07-14 东部超导科技(苏州)有限公司 一种基于ybco超导材料的便于连接的超导电缆
CN111092304B (zh) * 2020-02-14 2021-05-28 埃塞克斯电气(南京)有限公司 一种超导电缆终端
CN111505360A (zh) * 2020-05-21 2020-08-07 西部超导材料科技股份有限公司 一种用伏安法测量非亲锡材料电阻的制样方法
CN112140898B (zh) * 2020-09-30 2022-03-22 中车株洲电力机车研究所有限公司 用于磁浮列车的电磁悬浮结构
CN115911897B (zh) * 2023-03-13 2023-05-16 中国科学院合肥物质科学研究院 套管式接头端子、套管式接头及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10126917A (ja) * 1996-10-21 1998-05-15 Sumitomo Electric Ind Ltd 超電導ケーブル導体の端末構造およびその接続方法
JP2004031128A (ja) * 2002-06-26 2004-01-29 Sumitomo Electric Ind Ltd 超電導薄膜線材およびその製造方法、ならびに超電導ケーブル導体
JP2008305765A (ja) * 2007-06-11 2008-12-18 Swcc Showa Cable Systems Co Ltd 酸化物超電導電流リード
WO2008152768A1 (ja) * 2007-06-12 2008-12-18 International Superconductivity Technology Center, The Juridical Foundation テープ状酸化物超電導体
JP2010521796A (ja) * 2007-03-21 2010-06-24 エヌコーテー ケーブルス ウルテラ アクティーゼルスカブ 終端装置
JP2010287349A (ja) * 2009-06-09 2010-12-24 Sumitomo Electric Ind Ltd 超電導ケーブルの端末構造
WO2014003049A1 (ja) * 2012-06-27 2014-01-03 古河電気工業株式会社 超電導線

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4298450B2 (ja) * 2003-09-24 2009-07-22 住友電気工業株式会社 超電導ケーブルの端末構造
JP4689984B2 (ja) * 2004-07-20 2011-06-01 株式会社ワイ・ワイ・エル 直流超伝導送電ケーブル及び送電システム
FR2878654B1 (fr) * 2004-12-01 2007-01-12 Nexans Sa Agencement de connexion des ecrans de cables supraconducteurs
JP2006221877A (ja) * 2005-02-08 2006-08-24 Sumitomo Electric Ind Ltd 超電導ケーブルの中間接続構造
AU2009356466B2 (en) * 2009-12-10 2015-09-24 Prysmian S.P.A. Biasing connector
US9008739B2 (en) * 2010-05-31 2015-04-14 Furukawa Electric Co., Ltd. Terminal structure of superconducting cable conductor and terminal member used therein

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10126917A (ja) * 1996-10-21 1998-05-15 Sumitomo Electric Ind Ltd 超電導ケーブル導体の端末構造およびその接続方法
JP2004031128A (ja) * 2002-06-26 2004-01-29 Sumitomo Electric Ind Ltd 超電導薄膜線材およびその製造方法、ならびに超電導ケーブル導体
JP2010521796A (ja) * 2007-03-21 2010-06-24 エヌコーテー ケーブルス ウルテラ アクティーゼルスカブ 終端装置
JP2008305765A (ja) * 2007-06-11 2008-12-18 Swcc Showa Cable Systems Co Ltd 酸化物超電導電流リード
WO2008152768A1 (ja) * 2007-06-12 2008-12-18 International Superconductivity Technology Center, The Juridical Foundation テープ状酸化物超電導体
JP2010287349A (ja) * 2009-06-09 2010-12-24 Sumitomo Electric Ind Ltd 超電導ケーブルの端末構造
WO2014003049A1 (ja) * 2012-06-27 2014-01-03 古河電気工業株式会社 超電導線

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106253199A (zh) * 2016-08-08 2016-12-21 华北电力大学 一种冷绝缘高温超导电缆屏蔽层端部结构及连接方法
CN106253199B (zh) * 2016-08-08 2018-05-25 华北电力大学 一种冷绝缘高温超导电缆屏蔽层端部结构及连接方法

Also Published As

Publication number Publication date
CN106030909B (zh) 2019-04-09
CN106030909A (zh) 2016-10-12
JP2015162367A (ja) 2015-09-07

Similar Documents

Publication Publication Date Title
WO2015129272A1 (ja) 超電導ケーブルの端末構造体及びその製造方法
JP6178779B2 (ja) 超電導線材の接続構造体および超電導線材の接続構造体の製造方法
US10249421B2 (en) Superconducting coil
JP5619731B2 (ja) 超電導線材の電流端子構造及びこの電流端子構造を備える超電導ケーブル
JP3521612B2 (ja) 超電導導体の接続構造
WO2007080794A1 (ja) 超電導ケーブル
JP2014143840A (ja) テープ状超電導線材の端末構造体及びテープ状超電導線材の端末構造体の製造方法
JP2014154320A (ja) 酸化物超電導線材の接続構造体及び超電導機器
JP6101490B2 (ja) 酸化物超電導線材の接続構造体及び超電導機器
JP6818578B2 (ja) 超電導ケーブルの接続部
WO2015092996A1 (ja) 超電導ケーブルの端末構造体の製造方法及び超電導ケーブルの端末構造体
JP2014220194A (ja) 酸化物超電導線材及びその製造方法
JP5693798B2 (ja) 酸化物超電導線材
JP5677116B2 (ja) 高温超電導コイル
JP6873848B2 (ja) 超電導コイル
JP5887085B2 (ja) 超電導コイル及びその製造方法
JP2015228357A (ja) 酸化物超電導線材、超電導機器及び酸化物超電導線材の製造方法
JP2014130730A (ja) 酸化物超電導線材の接続構造体及び接続方法並びに接続構造体を用いた酸化物超電導線材
JP6002602B2 (ja) 酸化物超電導線材の接続構造体及びその製造方法
JP4634954B2 (ja) 超電導装置
JP2014107149A (ja) 酸化物超電導線材並びに当該酸化物超電導線材の接続構造体
JP2023032076A (ja) 超電導コイル
JPH04188706A (ja) 超電導コイル
JPWO2014104333A1 (ja) 酸化物超電導線材の接続構造体およびその製造方法と超電導機器
JP2023032075A (ja) 超電導コイル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755185

Country of ref document: EP

Kind code of ref document: A1