WO2010125974A1 - 半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法 - Google Patents

半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法 Download PDF

Info

Publication number
WO2010125974A1
WO2010125974A1 PCT/JP2010/057217 JP2010057217W WO2010125974A1 WO 2010125974 A1 WO2010125974 A1 WO 2010125974A1 JP 2010057217 W JP2010057217 W JP 2010057217W WO 2010125974 A1 WO2010125974 A1 WO 2010125974A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
electrode
silicon fine
disposed
metal oxide
Prior art date
Application number
PCT/JP2010/057217
Other languages
English (en)
French (fr)
Inventor
吉川 雅人
真理 宮野
信吾 大野
三博 西田
椎野 修
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009111661A external-priority patent/JP5519178B2/ja
Priority claimed from JP2009111662A external-priority patent/JP5519179B2/ja
Priority claimed from JP2009111663A external-priority patent/JP5519180B2/ja
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201080029668.9A priority Critical patent/CN102460822B/zh
Priority to US13/318,244 priority patent/US20120118375A1/en
Priority to EP10769673.4A priority patent/EP2426781A4/en
Priority to KR1020117028295A priority patent/KR101246385B1/ko
Publication of WO2010125974A1 publication Critical patent/WO2010125974A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • H01L31/04
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2045Light-sensitive devices comprising a semiconductor electrode comprising elements of the fourth group of the Periodic Table with or without impurities, e.g. doping materials
    • H01L31/0224
    • H01L31/18
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2036Light-sensitive devices comprising an oxide semiconductor electrode comprising mixed oxides, e.g. ZnO covered TiO2 particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a semiconductor electrode that converts light energy into electric energy, a solar cell using the semiconductor electrode, and a method for manufacturing the semiconductor electrode.
  • substrates such as crystalline silicon (Si) and amorphous silicon are used as photoelectric conversion elements (see Patent Document 1).
  • Some conventional solar cells use an oxide semiconductor sensitized with an organic dye instead of silicon as a photoelectric conversion element (see Patent Document 2).
  • the photoelectric conversion element converts light energy into electrical energy.
  • an object of the present invention is to provide a new semiconductor electrode that can be used as an electrode for a solar cell, a solar cell using the semiconductor electrode, and a method for manufacturing the semiconductor electrode.
  • a feature of the present invention is that it has a transparent electrode disposed on the surface of a light-transmitting substrate, and in the transparent electrode, a metal oxide layer is disposed on the opposite surface of the surface disposed on the substrate.
  • the metal oxide layer includes silicon fine particles that absorb a specific wavelength among wavelengths of light transmitted through the substrate, and metal oxide fine particles, and the silicon fine particles are formed of the metal oxide.
  • the gist is to be disposed between the fine particles.
  • the silicon fine particles are formed in a predetermined particle size by etching the mixed powder containing the silicon fine particles with an etching solution containing hydrofluoric acid and an oxidizing agent.
  • H atoms added to the surface of the silicon fine particles during the etching are substituted with unsaturated hydrocarbon groups.
  • the unsaturated hydrocarbon group has a hydrophilic group.
  • Another feature of the present invention is that the silicon fine particles having a plurality of types of particle diameters are mixed and used.
  • the semiconductor electrode has light-transmitting properties and has an incident surface on which light is incident, a counter electrode disposed to face the semiconductor electrode, the semiconductor electrode, and the counter electrode An electrolyte disposed in a space between the first electrode and a sealing material that seals the electrolyte disposed in the space, and converts light energy of light incident on the semiconductor electrode into electrical energy.
  • the semiconductor electrode has a transparent electrode disposed on a surface opposite to the incident surface side of the light-transmitting substrate, and the transparent electrode is disposed on the substrate.
  • a metal oxide layer is disposed on the opposite surface of the surface, and the metal oxide layer includes silicon fine particles that absorb a specific wavelength among light wavelengths transmitted through the substrate, and metal oxide fine particles. And the silicon fine particles are fine particles of the metal oxide It is the fact that the gist disposed between.
  • the silicon fine particles are formed in a predetermined particle size by etching the mixed powder containing the silicon fine particles with an etching solution containing hydrofluoric acid and an oxidizing agent.
  • the solar cell has at least one intermediate electrode having a transparent substrate having light permeability and the transparent electrode, and the metal oxide layer is formed on the surface of the intermediate electrode.
  • the intermediate electrode is located between the semiconductor electrode and the counter electrode, and between the semiconductor electrode and the intermediate electrode and between the intermediate electrode and the counter electrode.
  • the gist is to be sealed with the sealing material in a state where the electrolyte is filled.
  • the intermediate electrode is disposed on a light-transmitting transparent base material and the incident surface of the transparent base material, and a catalyst electrode is disposed on the surface on the incident surface side.
  • the gist of the present invention is to have a first transparent electrode that is formed and a second transparent electrode that is disposed on a surface opposite to the incident surface of the transparent substrate.
  • Another feature of the present invention is that the silicon fine particles contained in the metal oxide layer disposed on the semiconductor electrode and the metal oxide layer disposed on the intermediate electrode are provided for each metal oxide layer.
  • the gist is that the particle sizes are different.
  • Other features of the present invention include a step of firing a mixture containing a silicon source and a carbon source in an inert atmosphere, a step of extracting a product gas from the inert atmosphere and rapidly cooling to obtain a mixed powder containing silicon fine particles, Extracting the silicon fine particles from the mixed powder; and a transparent electrode is disposed on the surface of the light-transmitting substrate.
  • a metal oxide is formed on the surface opposite to the surface disposed on the substrate.
  • the gist of the invention is to include a step of disposing a physical layer and a step of adsorbing the silicon fine particles to the metal oxide layer.
  • the step of extracting the silicon fine particles includes a step of etching by immersing the mixed powder in an etching solution containing hydrofluoric acid and an oxidizing agent.
  • Another feature of the present invention is that, in the etching step, the particle size of the silicon fine particles is controlled by adjusting the etching time.
  • the step of extracting the silicon fine particles includes a termination step of substituting H atoms added to the surface of the silicon fine particles by unsaturated hydrocarbon groups by the etching.
  • the silicon source is ethyl silicate.
  • the carbon source is a phenol resin.
  • a new semiconductor electrode that can be used as an electrode for a solar cell, a solar cell using the semiconductor electrode, and a method for manufacturing a new semiconductor electrode that can be used for a solar cell can be provided.
  • FIG. 1 is a configuration diagram of a single-layer solar cell according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram of a tandem solar cell according to an embodiment of the present invention.
  • FIG. 3 is a configuration diagram illustrating an intermediate electrode according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a mixed powder containing silicon fine particles.
  • FIG. 5 is a flowchart illustrating a method for manufacturing a semiconductor electrode.
  • FIG. 6 is a schematic view of a manufacturing apparatus used for manufacturing silicon fine particles.
  • Embodiments of a semiconductor electrode and a solar cell according to the present invention will be described with reference to the drawings. Specifically, (1) structure of solar cell, (2) silicon fine particle and semiconductor electrode production method, (3) silicon source and carbon source, (4) silicon fine particle production apparatus, (5) action and effect, (6) Other embodiments will be described.
  • FIG. 1 is a configuration diagram of a single layer type solar cell according to the present invention.
  • the solar cell 1 includes a semiconductor electrode 10, a counter electrode 20, an electrolyte 30, and a sealing material 40.
  • the semiconductor electrode 10 is light transmissive and has an incident surface 11a on which light is incident.
  • the counter electrode 20 is disposed to face the semiconductor electrode 10.
  • the electrolyte 30 is disposed in a space between the semiconductor electrode 10 and the counter electrode 20.
  • the sealing material 40 seals the electrolyte 30 disposed in the space.
  • the transparent electrode 12 and the counter electrode 20 are electrically connected by a terminal and an electric wire (not shown).
  • the solar cell 1 converts light energy of light incident on the semiconductor electrode 10 into electric energy.
  • the semiconductor electrode 10 includes a substrate 11, a transparent electrode 12, and a metal oxide layer 13.
  • the transparent electrode 12 is disposed on the surface of the substrate 11 having optical transparency. Specifically, in the substrate 11 having light transmittance and having the incident surface 11a, the substrate 11 is disposed on the surface opposite to the incident surface 11a side.
  • a metal oxide layer 13 is disposed on the surface opposite to the surface disposed on the substrate 11. That is, the substrate 11 is disposed on one surface of the transparent electrode 12 on the incident surface 11a side, and the metal oxide layer 13 is disposed on the other surface opposite to the one surface of the transparent electrode 12.
  • the transparent electrode 12 is located closer to the incident surface 11a than the metal oxide layer 13.
  • the metal oxide layer 13 includes metal oxide fine particles 14 and silicon fine particles 15.
  • the substrate 11 is a substrate having optical transparency.
  • the substrate 11 has an incident surface 11a on which light is incident.
  • Examples of the material used for the substrate 11 include silicate glass and a plastic substrate.
  • Various plastic substrates may be bonded together.
  • a resin having a glass transition temperature of 50 ° C. or higher is preferable.
  • polyester resins such as polyethylene terephthalate, polycyclohexylene terephthalate, and polyethylene naphthalate
  • polyamide resins such as nylon 46, modified nylon 6T, nylon MXD6, and polyphthalamide
  • ketone resins such as polyphenylene sulfide and polythioethersulfine Sulphone resins such as polysulfone and polyethersulfone, polyether nitrile, polyarylate, polyetherimide, polyamideimide, polycarbonate, polymethyl methacrylate, triacetyl cellulose, polystyrene, polyvinyl chloride and other organic resins as the main component
  • a transparent resin substrate can be used.
  • polycarbonate, polymethyl methacrylate, polyvinyl chloride, polystyrene, and polyethylene terephthalate are excellent in transparency. Also, the birefringence value is good.
  • the transparent electrode 12 is a thin film of conductive metal oxide containing In 2 O 3 and SnO 2 .
  • conductive metal oxides include In 2 O 3 : Sn (ITO), SnO 2 : Sb (ATO), SnO 2 : F (FTO), ZnO: Al (AZO), ZnO: F, CdSnO 4 can be mentioned.
  • titanium oxide As the metal oxide fine particles 14, one or more of known semiconductors such as titanium oxide, zinc oxide, tungsten oxide, antimony oxide, niobium oxide, indium oxide, barium titanate, strontium titanate, and cadmium sulfide are used. Can be used. From the viewpoint of stability, it is preferable to use titanium oxide.
  • titanium oxide include various types of titanium oxide such as anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide, metatitanic acid, orthotitanic acid, titanium hydroxide, and hydrous titanium oxide.
  • the silicon fine particles 15 have a characteristic of absorbing a specific wavelength corresponding to the particle diameter among wavelengths of light transmitted through the substrate 11. That is, the silicon fine particles 15 are excited by light having a specific wavelength and emit electrons.
  • the silicon fine particles 15 are disposed between the metal oxide fine particles 14.
  • the silicon fine particles 15 are disposed around the metal oxide layer 13. That is, the silicon fine particles 15 are disposed so as to cover the metal oxide fine particles 14.
  • the silicon fine particles 15 are used by mixing a plurality of types of silicon fine particles.
  • the particle size of the silicon fine particles 15 is included in a predetermined size range.
  • the predetermined size range is a range in which the silicon fine particles 15 are excited by light having a specific wavelength to emit electrons.
  • the silicon fine particles 15 may be generated by immersing a mixed powder of silicon dioxide and silicon in an etching solution.
  • the particle size of the silicon fine particles 15 is determined by the etching time in the etching process.
  • the silicon fine particles 15 are obtained by immersing a mixed powder of silicon dioxide and silicon in an etching solution and then etching to replace H atoms added to the surface of the silicon fine particles 15 with unsaturated hydrocarbon groups having hydrophilic groups. You may do it.
  • the metal oxide fine particles 14 and the silicon fine particles 15 may be dispersed in a binder and applied to the transparent electrode 12.
  • the binder only needs to disperse the metal oxide fine particles 14 and the silicon fine particles 15.
  • polymers are used.
  • polyalkylene glycol for example, polyethylene glycol
  • acrylic resin for example, polyethylene glycol
  • polyester for example, polyurethane
  • epoxy resin for example, epoxy resin
  • silicon resin fluorine resin
  • polyvinyl acetate polyvinyl alcohol
  • polyacetal polybutyral
  • petroleum resin polystyrene, fiber resin, etc.
  • the electrolyte 30 is, for example, a redox electrolyte. Examples thereof include I ⁇ / I 3 ⁇ system, Br ⁇ / Br 3 ⁇ system, and quinone / hydroquinone system. An electrolyte of the I ⁇ / I 3 ⁇ system can be obtained by mixing an ammonium salt of iodine and iodine.
  • the electrolyte 30 may be a liquid or a solid. For example, a liquid electrolyte or a solid polymer electrolyte containing a liquid electrolyte in a polymer substance.
  • an electrochemically inert electrolyte can be used as the solvent for the liquid electrolyte.
  • the liquid electrolyte for example, acetonitrile, propylene carbonate, ethylene carbonate, or the like can be used.
  • the solvent for the liquid electrolyte may have conductivity. I 3 - it is preferred to use those having a catalytic ability to perform fast enough the reduction reaction of oxidized-type redox ions such as ions.
  • a platinum electrode, a surface of a conductive material subjected to platinum plating or platinum deposition, rhodium metal, ruthenium metal, ruthenium oxide, carbon, and the like can be given.
  • the solar cell 1 is fabricated using each of the above-described configurations.
  • a metal oxide layer 13 is formed on the substrate 11 on which the transparent electrode 12 is formed.
  • a dispersion in which a binder is added to the metal oxide fine particles 14 as necessary is prepared and applied onto the substrate 11 to form the metal oxide fine particles 14. If necessary, after heating, pressurizing and the like, the substrate 11 is immersed in the silicon fine particle dispersion, and the silicon fine particles 15 are adsorbed on the surface of the metal oxide fine particles 14. Heating or the like may be added to strengthen the chemical bond.
  • the counter electrode 20 uses a substrate in which a transparent base material and a catalyst transparent electrode (for example, a platinum electrode produced by vacuum deposition) are disposed on the incident surface side surface of the transparent base material. The counter electrode 20 is bonded to the substrate 11 on which the metal oxide layer 13 is disposed via the sealing material 40. An electrolyte 30 is sealed in a space between the substrate 11 and the counter electrode 20.
  • the silicon fine particles 15 arranged around the metal oxide fine particles 14 absorb a specific wavelength corresponding to the particle diameter among wavelengths of light transmitted through the substrate 11. That is, the silicon fine particles 15 are excited by light having a specific wavelength and emit electrons. The emitted electrons are delivered to the transparent electrode 12 through the metal oxide fine particles 14. The holes remaining in the silicon fine particles 15 oxidize the electrolyte 30. For example, I ⁇ is changed to I 3 ⁇ or Br ⁇ is changed to Br 3 ⁇ . The oxidized iodide ion or bromide ion receives electrons again at the counter electrode 20 and is reduced. Thus, a solar cell is comprised by an electron cycling between both poles.
  • FIG. 2 is a configuration diagram of a tandem solar cell according to the present invention.
  • the solar cell 2 includes a semiconductor electrode 10, a plurality of intermediate electrodes 500, a counter electrode 20, an electrolyte 30, and a sealing material 40.
  • the substrate 11 is light transmissive and has an incident surface 11a.
  • a catalyst transparent electrode for example, a platinum electrode produced by vacuum deposition
  • the solar cell 2 has at least one intermediate electrode 500. In the present embodiment, the solar cell 2 has four intermediate electrodes 500.
  • the configuration of the intermediate electrode 500 is shown in FIG.
  • the intermediate electrode 500 includes a transparent substrate 501, a transparent electrode 502, and a transparent electrode 504.
  • the transparent substrate 501 has light transparency.
  • the transparent base material 501 can use the same material as the substrate 11.
  • the transparent electrode 502 is disposed on the incident surface of the transparent substrate 501.
  • a catalyst electrode 503 is formed on the incident-side surface of the transparent electrode 502. Therefore, the catalyst electrode 503 is in contact with the electrolyte 30. Examples of the catalyst electrode 503 include a platinum electrode manufactured by vacuum deposition.
  • the transparent electrode 504 is disposed on the surface opposite to the incident surface of the transparent substrate 501. Therefore, the transparent electrode 504 is in contact with the metal oxide layer.
  • the same material as the transparent electrode 12 can be used for the transparent electrode 502 and the transparent electrode 504.
  • the intermediate electrode 500 is located between the semiconductor electrode 10 and the counter electrode 20.
  • the gap between the semiconductor electrode 10 and the intermediate electrode 500 and the gap between the intermediate electrode 500 and the counter electrode 20 are sealed with the sealing material 40 while being filled with the electrolyte 30.
  • the solar cell 2 has a plurality of intermediate electrodes 500.
  • the sealing material is filled not only between the semiconductor electrode 10 and the intermediate electrode 500 and between the intermediate electrode 500 and the counter electrode 20 but also between the intermediate electrode 500 and the intermediate electrode 500. 40 is sealed. Therefore, the electrolyte 30 is disposed in the space between the intermediate electrode 500 and the intermediate electrode 500.
  • the sealing material 40 seals the electrolyte 30 in the space.
  • a metal oxide layer is disposed on the surface of the intermediate electrode 500.
  • the metal oxide layer has metal oxide fine particles 14 on which silicon fine particles are supported.
  • a metal oxide layer 130, a metal oxide layer 230, a metal oxide layer 330, and a metal oxide layer 430 are disposed on the surface of each intermediate electrode 500, respectively.
  • the metal oxide layer 130 includes metal oxide fine particles 14 and silicon fine particles 115.
  • the metal oxide layer 230 includes metal oxide fine particles 14 and silicon fine particles 215.
  • the metal oxide layer 330 includes metal oxide fine particles 14 and silicon fine particles 315.
  • the metal oxide layer 430 includes metal oxide fine particles 14 and silicon fine particles 415.
  • the silicon fine particles 15, the silicon fine particles 115, the silicon fine particles 215, the silicon fine particles 315, and the silicon fine particles 415 are so-called silicon nanodots.
  • the silicon fine particles 115, the silicon fine particles 215, the silicon fine particles 315, and the silicon fine particles 415 the same material as the silicon fine particles 15 can be used.
  • the particle size of the silicon fine particles is classified for each predetermined size. That is, the particle sizes of the silicon fine particles 15, the silicon fine particles 115, the silicon fine particles 215, the silicon fine particles 315, and the silicon fine particles 415 are different from each other. Therefore, the silicon fine particles contained in the metal oxide layer disposed on the semiconductor electrode 10 and the metal oxide layer disposed on the intermediate electrode 500 have different particle sizes for each metal oxide layer.
  • the silicon fine particles 15, the silicon fine particles 115, the silicon fine particles 215, the silicon fine particles 315, and the silicon fine particles 415 absorb different specific wavelengths among the wavelengths of light transmitted through the substrate 11.
  • the absorption wavelength of the silicon fine particles 15 is 500 nm.
  • the absorption wavelength of the silicon fine particles 115 is 600 nm.
  • the absorption wavelength of the silicon fine particles 215 is 700 nm.
  • the absorption wavelength of the silicon fine particles 315 is 900 nm.
  • the absorption wavelength of the silicon fine particles 415 is 1100 nm.
  • Silicon Fine Particle A manufacturing process for manufacturing the above-described silicon fine particle 15, silicon fine particle 115, silicon fine particle 215, silicon fine particle 315, and silicon fine particle 415 will be described.
  • the silicon fine particles 15, the silicon fine particles 115, the silicon fine particles 215, the silicon fine particles 315, and the silicon fine particles 415 are collectively referred to as silicon fine particles or silicon fine particles 15 as appropriate.
  • a powder (silicon carbide powder) used for forming the silicon carbide sintered body is manufactured.
  • a method for producing silicon carbide powder there is a method of firing a high-purity silicon carbide precursor (referred to as a high-purity precursor).
  • the high purity precursor is a mixture obtained by homogeneously mixing a silicon source, a carbon source, and a polymerization or crosslinking catalyst.
  • the silicon fine particles used in the present embodiment are separated from the gas produced as a by-product in the step of firing the high purity precursor.
  • silicon carbide powder from a high-purity precursor, after mixing a silicon source and a carbon source, when the mixture is heated at a temperature of 1600 ° C. or higher in a non-oxidizing atmosphere, silicon carbide (SiC) is converted into a powder. It is taken out.
  • silicon monoxide (SiO) gas is generated by a chemical reaction represented by the following formulas (1) and (2) in an inert atmosphere (non-oxidizing atmosphere). Via, silicon carbide is produced. According to this method, silicon carbide is extracted as a powder.
  • SiO + 2C ⁇ SiC + CO (2) When the gas extracted from the inert atmosphere after the silicon carbide is generated is rapidly cooled to a temperature of less than 1600 ° C., the present inventors cause a chemical reaction represented by the following formula (3) to generate silicon (Si ) And silicon dioxide (SiO 2 ) was found to be obtained.
  • the silicon fine particles used in the present embodiment are included in the mixed powder formed by the formula (3).
  • the mixed powder containing silicon fine particles shown as an embodiment of the present invention is to separate silicon fine particles from the gas generated as a by-product in the step of firing the high purity precursor.
  • FIG. 4 is a flowchart for explaining a mixed powder containing silicon fine particles. As shown in FIG. 4, the mixed powder containing silicon fine particles has a firing step S1, a rapid cooling step S2, and an extraction step S3.
  • the firing step S1 is a step of firing a mixture containing a silicon source and a carbon source in an inert atmosphere.
  • the firing step S1 is a mixture in which a silicon source containing at least one silicon compound, a carbon source containing at least one organic compound that generates carbon by heating, and a polymerization or crosslinking catalyst are mixed.
  • This is a step of firing (called a high-purity precursor) in an inert atmosphere.
  • the silicon source is, for example, ethyl silicate.
  • the carbon source is, for example, a phenol resin. Details of the silicon source and the carbon source will be described later.
  • a mixture of ethyl silicate as a silicon source, a phenol resin as a carbon source, and maleic acid as a polymerization catalyst is first heated and cured at about 150 ° C.
  • the Si / C ratio is preferably 0.5 to 3.0.
  • the cured product is heated at 800 to 1200 ° C. in a nitrogen or argon atmosphere for 0.5 to 2 hours. Thereafter, heating is performed at 1500 to 2000 ° C. in a nitrogen or argon atmosphere.
  • the rapid cooling step S2 is a step of extracting a generated gas from an inert atmosphere and rapidly cooling to obtain a mixed powder containing silicon fine particles.
  • the rapid cooling step S2 is a step in which the gas generated when the high-purity precursor is baked in the baking step is extracted from the inert atmosphere and rapidly cooled. That is, a gas which is a by-product of the reaction for generating silicon carbide by firing a high-purity precursor is taken out and cooled. When the gas as a by-product is cooled under the above conditions, a mixed powder containing silicon fine particles is obtained.
  • the product gas is extracted by placing it in an argon gas stream.
  • the product gas is quenched to room temperature.
  • a mixed powder composed of silicon (Si) and silica (SiO 2 ) is obtained from the generated gas.
  • Extraction step S3 is a step of extracting silicon fine particles from the mixed powder. Specifically, the extraction step S3 is a step of extracting silicon fine particles from the mixed powder obtained in the rapid cooling step S2. Silicon is taken out from the mixed powder obtained in the rapid cooling step S2. Thereafter, silicon is extracted from the solvent and dried. Thereby, silicon fine particles having a desired particle diameter are obtained.
  • the extraction step S3 includes an etching step S31 in which the mixed powder is etched by being immersed in an etching solution containing hydrofluoric acid and an oxidizing agent.
  • the oxidizing agent include nitric acid (HNO3) and hydrogen peroxide (H2O2).
  • a hydrophobic solvent such as cyclohexane or a slightly polar solvent such as 2-propanol may be mixed in the etching solution to facilitate the collection of silicon fine particles.
  • the etching time is adjusted so that a desired emission peak is obtained. As the etching time becomes longer, the emission peak tends to shift to the shorter wavelength side. For this reason, the particle size of the silicon fine particles can be controlled by adjusting the etching time.
  • the silicon fine particle light emitter is taken out of the etching solution.
  • the silicon fine particle light emitter is separated from the etching solution by filtering the etching solution.
  • the silicon fine particles having a desired extinction coefficient can be obtained by appropriately drying the separated silicon fine particles.
  • the extraction step S3 includes a termination step S32 in which H atoms added to the surface of the silicon fine particles by etching are replaced with unsaturated hydrocarbon groups.
  • etching step S31 When the etching step S31 is performed, instead of removing the silicon oxide that included the surface of the silicon fine particles, H atoms are partially added to the surface of the silicon fine particles by the hydrofluoric acid used in the etching step. ing. Therefore, inconvenience in handling silicon fine particles may occur. For example, silicon fine particles after the etching step become hydrophobic and easily aggregate in an aqueous solution.
  • an unsaturated hydrocarbon group having a hydrophilic group is introduced onto the surface of the silicon fine particle light emitter.
  • the H atom of Si—H which is the active terminal of the silicon fine particle, is replaced with a terminal material such as an unsaturated hydrocarbon group having a hydrophilic group.
  • the silicon fine particles are mixed with the silicon fine particles in a solution to which the termination material is added. The reaction is promoted by heating or irradiating the mixed solution with ultraviolet rays. Thereby, a silicon fine particle dispersion can be obtained.
  • the unsaturated hydrocarbon group only needs to have an unsaturated hydrocarbon group having a hydrophilic group.
  • an unsaturated hydrocarbon group having a hydrophilic group For example, 1-decene, tetradecene, 1-octene, styrene and the like can be mentioned.
  • generated from the isoprenoid compound which has a hydrophilic group may be sufficient.
  • monoterpenoids such as linalool are applicable.
  • the unsaturated hydrocarbon group having a hydrophilic group may be a group generated from an allyl compound having a hydrophilic group. For example, allyl alcohol, eugenol, etc. are applicable.
  • FIG. 5 is a flowchart illustrating a method for manufacturing the semiconductor electrode 10 according to the present embodiment.
  • the manufacturing method of the semiconductor electrode 10 according to the present embodiment includes a step S101 in which the transparent electrode 12 is disposed on the surface of the light-transmitting substrate 11, and a surface opposite to the surface disposed on the substrate 11 in the transparent electrode 12.
  • Step S102 in which the metal oxide layer is disposed, and Step S103 in which the silicon fine particles 15 are adsorbed on the metal oxide layer.
  • step S103 specifically, the silicon fine particle dispersion obtained through the above-described firing step S1, quenching step S2, and extraction step S3 is supported or adsorbed on the metal oxide layer.
  • step S102 for disposing the metal oxide layer 13 on the substrate 11 on which the transparent electrode 12 is disposed, and the firing step S1, the quenching step S2, and the extraction step S3 described above are in the order shown in FIG. It is not limited. That is, after the metal oxide layer 13 is provided on the substrate 11 on which the transparent electrode 12 is provided, the steps (S1 to S3) for producing the silicon fine particles 15 may be performed, or the silicon fine particles 15 are produced. Thereafter, step S102 of disposing the metal oxide layer 13 on the substrate 11 on which the transparent electrode 12 is disposed may be performed.
  • Silicon source and carbon source (3-1) Silicon source
  • the silicon source containing the silicon compound is at least one selected from the group comprising a liquid silicon compound and a silicon solid synthesized from a hydrolyzable silicon compound.
  • a seed containing silicon A liquid silicon source and a solid silicon source can be used in combination. When a plurality of types of silicon sources are used, at least one type is liquid.
  • the liquid silicon source is a polymer of alkoxysilane (mono-, di-, tri-, tetra-) and tetraalkoxysilane.
  • alkoxysilanes tetraalkoxysilane is preferably used. Specific examples include methoxysilane, ethoxysilane, propoxysilane, butoxysilane and the like. In view of easy handling of the raw material, ethoxysilane is preferably used.
  • Examples of the tetraalkoxysilane polymer include a low molecular weight polymer (oligomer) having a polymerization degree of about 2 to 15, and a silicate polymer having a high polymerization degree and exhibiting a liquid state.
  • Examples of the solid silicon source that can be used in combination with these include silicon oxide.
  • Silicon oxide includes SiO, silica gel (colloidal ultrafine silica-containing liquid, hydroxyl group, alkoxyl group, etc. inside), silicon dioxide (fine silica, quartz powder, etc.) and the like.
  • a silicon-containing raw material a group of polymers obtained by trimethylation of a hydrolyzable silicic acid compound, an ester of a hydrolyzable silicon compound and a monovalent or polyhydric alcohol (for example, diol, triol) (for example, four Ethyl silicate synthesized by the reaction of silicon chloride and ethanol), reaction products other than esters obtained by the reaction of hydrolyzable silicon compounds and organic compounds (for example, tetramethylsilane, dimethyldiphenylsilane, polydimethylsilane) ) And the like.
  • a monovalent or polyhydric alcohol for example, diol, triol
  • reaction products other than esters obtained by the reaction of hydrolyzable silicon compounds and organic compounds for example, tetramethylsilane, dimethyldiphenylsilane, polydimethylsilane
  • the silicon solid synthesized from the hydrolyzable silicon compound only needs to react with carbon in a high temperature non-oxidizing atmosphere (in an inert atmosphere) to generate silicon carbide.
  • a preferred example of the siliceous solid is amorphous silica fine powder obtained by hydrolysis of silicon tetrachloride.
  • the silicon source may be used alone or in combination of two or more.
  • silicon sources from the viewpoint of good homogeneity and handling properties, it is preferable to use a tetraethoxysilane oligomer or a mixture of tetraethoxysilane oligomer and fine powder silica.
  • the silicon source is preferably a substance containing silicon with high purity.
  • high purity indicates that the impurity content of the silicon compound before the formation of the mixture is 20 ppm or less. More preferably, the impurity content is 5 ppm or less.
  • the silicon source is preferably one that generates silicon monoxide by heating. Specifically, it is preferable to use ethyl silicate as the silicon source.
  • the carbon-containing raw material used as the carbon source is preferably a high-purity organic compound containing oxygen in the molecule and carbon remaining by heating.
  • the carbon source is a monomer, oligomer, or polymer composed of any one or two or more organic compounds that can be polymerized or crosslinked by heat, a catalyst, or a crosslinking agent.
  • the carbon source include phenol resins, furan resins, urea resins, epoxy resins, unsaturated polyester resins, curable resins such as polyimide resins and polyurethane resins, phenoxy resins, monosaccharides such as glucose, sucrose, etc. And various saccharides such as polysaccharides such as cellulose and starch.
  • a resol type or novolac type phenol resin having a high residual carbon ratio and excellent workability is preferable.
  • the resol type phenolic resin useful in the present embodiment includes monovalent or divalent phenols such as phenol, cresol, xylenol, resorcin, and bisphenol A in the presence of a catalyst (specifically, ammonia or organic amine). It is produced by reacting aldehydes such as formaldehyde, acetaldehyde and benzaldehyde.
  • Carbon source is liquid at normal temperature.
  • the carbon source has solubility in a solvent.
  • the carbon source has thermoplasticity or heat melting property and becomes soft or liquid by heating.
  • the liquid or softening carbon source can be homogeneously mixed with the silicon source.
  • a resol type phenol resin, a novolac type phenol resin, or the like can be suitably used as a carbon source.
  • a resol type phenol resin is preferably used.
  • the polymerization and crosslinking catalyst used for the production of high purity silicon carbide powder can be appropriately selected according to the carbon source.
  • the carbon source is a phenol resin or a furan resin
  • acids such as maleic acid, toluenesulfonic acid, toluenecarboxylic acid, acetic acid, oxalic acid, sulfuric acid and the like can be mentioned.
  • toluenesulfonic acid is preferably used.
  • FIG. 6 shows a schematic diagram of a manufacturing device 301 used for manufacturing silicon fine particles.
  • the manufacturing apparatus 301 includes a heating container 302 and a stage 308 that holds the heating container 302.
  • the heating container 302 contains a mixture (high purity precursor) W in which a silicon source, a carbon source, and a polymerization or crosslinking catalyst are mixed.
  • the manufacturing apparatus 301 includes heating elements 310a and 310b.
  • the heating elements 310 a and 310 b heat the mixture W inside the heating container 302.
  • the manufacturing apparatus 301 includes a heat insulating material 312 that covers the heating container 302 and the heating elements 310a and 310b.
  • the manufacturing apparatus 301 includes a suction pipe 321 and a dust collector 322.
  • the suction tube 321 is connected to the inside of the heating container 302.
  • the suction pipe 321 sucks the gas generated when the mixture W is baked from the inside of the heating container 302 and guides it to the dust collector 322.
  • the dust collector 322 collects the mixed powder obtained from the sucked gas.
  • the manufacturing apparatus 301 includes a blower 323 and a supply pipe 324 connected to the heating container 302.
  • the blower 323 supplies argon gas to the supply pipe 324.
  • the supply pipe 324 supplies argon gas into the heating container 302. That is, the argon gas circulates in the order of the supply pipe 324, the heating container 302, and the suction pipe 321 of the manufacturing apparatus 301.
  • the gas generated from the mixture W is collected by the dust collector 322 on an argon gas stream.
  • the manufacturing apparatus 301 has a solenoid valve 325.
  • the electromagnetic valve 325 is provided in the suction pipe 321, and the electromagnetic valve 325 is automatically opened and closed according to the pressure set as the internal pressure of the heating container 302.
  • the manufacturing apparatus 301 generates heat from the heating elements 310a and 310b and heats the heating container 302 under a predetermined temperature condition. At this time, the inside of the heating container 302 is maintained in a nitrogen atmosphere or an argon atmosphere. The above corresponds to the firing step S1.
  • the manufacturing apparatus 301 operates the blower 323.
  • the blower 323 when the blower 323 is activated, the gas generated from the mixture W is extracted from the inside of the heating container 302 to the dust collector 322 via the suction pipe 321 along the air flow of the argon gas supplied from the blower 323. Since the outside of the heat insulating material 312 is at room temperature, the gas guided to the outside of the heating container 302 by riding on an argon gas stream is rapidly cooled to room temperature. At this time, a composite of silicon (Si) and silicon dioxide (SiO 2 ) is obtained from the gas. The obtained composite is collected by a dust collector 322. The above corresponds to the rapid cooling step S2.
  • the composite powder (referred to as mixed powder) collected by the dust collector 322 is wet-pulverized with an organic solvent by, for example, a planetary ball mill (not shown in FIG. 6). The above corresponds to the extraction step S3.
  • the semiconductor electrode 10 has a transparent electrode 12 disposed on the surface of the substrate 11 having optical transparency.
  • a metal is disposed on the opposite surface of the surface disposed on the substrate 11.
  • An oxide layer 13 is provided, and the metal oxide layer 13 includes silicon fine particles 15 that absorb a specific wavelength among light wavelengths transmitted through the substrate 11, and metal oxide fine particles 14, and the silicon fine particles. 15 is disposed between the metal oxide fine particles 14.
  • the silicon fine particles 15 disposed on the metal oxide layer 13 absorb a specific wavelength among the wavelengths of light transmitted through the substrate 11 and emit electrons. Therefore, the semiconductor electrode 10 can extract light energy of a specific wavelength among the wavelengths of light transmitted through the substrate 11 as electric energy.
  • a mixture of silicon fine particles 15 having a plurality of particle sizes is used. Since the silicon fine particles 15 absorb a specific wavelength according to the particle diameter, a mixture of the silicon fine particles 15 having a plurality of particle diameters can be used to widen the wavelength range of light that can be extracted as electric energy. it can. That is, by using silicon fine particles having a plurality of particle diameters, it is possible to cope with a wide range of wavelengths among light wavelengths in the visible light region.
  • the solar cell 2 has at least one intermediate electrode 500 having a light-transmitting transparent base material 501, a transparent electrode 502, and a transparent electrode 504.
  • the surface of the intermediate electrode 500 has a metal oxide layer 130, a metal The oxide layer 230, the metal oxide layer 330, and the metal oxide layer 430 are disposed, and the intermediate electrode 500 is located between the semiconductor electrode 10 and the counter electrode 20, and the semiconductor electrode 10 and the intermediate electrode 500 are disposed. And between the intermediate electrode 500 and the counter electrode 20 are sealed with the sealing material 40 while being filled with the electrolyte 30.
  • the silicon fine particles 15 not only the silicon fine particles 15 but also the silicon fine particles 115, the silicon fine particles 215, the silicon fine particles 315, and the silicon fine particles 415 absorb specific wavelengths and emit electrons, so that light energy can be extracted more as electric energy. it can.
  • the silicon fine particles contained in the metal oxide layer 13 disposed in the semiconductor electrode 10 and the metal oxide layer disposed in the intermediate electrode 500 have different particle sizes for each metal oxide layer.
  • the wavelength range of light that can be extracted as electric energy can be expanded.
  • the manufacturing method of the semiconductor electrode 10 according to the present embodiment includes a step S1 of firing a mixture containing a silicon source and a carbon source in an inert atmosphere, and a mixture containing silicon fine particles 15 by extracting a product gas from the inert atmosphere and rapidly cooling it.
  • a step S2 for obtaining powder, a step S3 for extracting the silicon fine particles 15 from the mixed powder, and a transparent electrode is disposed on the surface of the substrate having optical transparency, and the surface disposed on the substrate in the transparent electrode
  • a step S103 of adsorbing the silicon fine particles 15 on the metal oxide layer is disposed on the surface of the substrate having optical transparency, and the surface disposed on the substrate in the transparent electrode.
  • the silicon fine particles 15 are formed to have a predetermined particle size by etching the mixed powder containing the silicon fine particles 15 with an etching solution containing hydrofluoric acid and an oxidizing agent. By etching with an etching solution, silicon fine particles having a predetermined particle diameter can be easily obtained.
  • the particle size of the silicon fine particles 15 is controlled by adjusting the etching time.
  • H atoms added to the surface of the silicon fine particles 15 at the time of etching are substituted with unsaturated hydrocarbon groups.
  • the silicon fine particles 15 with good handling can be used.
  • the aggregation stability of the silicon fine particles is improved, the light absorption characteristics can be maintained for a long time.
  • the semiconductor electrode 10 according to the present embodiment can be used as an electrode used in a solar cell.
  • Japanese Patent Application No. 2009-111661 (filed on April 30, 2009), Japanese Patent Application No. 2009-111661 (filed on April 30, 2009), and Japanese Patent Application No. 2009-111663.
  • the entire contents of (filed April 30, 2009) are hereby incorporated by reference.
  • a semiconductor electrode according to the present invention, a solar cell using the semiconductor electrode, and a method for manufacturing the semiconductor electrode include a new semiconductor electrode that can be used as an electrode used in the solar cell, a solar cell using the semiconductor electrode, Since a new method for manufacturing a semiconductor electrode that can be used for a solar cell can be provided, the method is useful in the field of manufacturing a solar cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Silicon Compounds (AREA)

Abstract

 半導体電極10は、光透過性を有する基板11の表面に配設される透明電極12を有し、透明電極12において、基板11に配設される表面の反対面に金属酸化物層13が配設され、金属酸化物層13は、基板11を透過する光の波長のうち特定の波長を吸収するケイ素微粒子15と、金属酸化物の微粒子14とを有し、ケイ素微粒子15は、金属酸化物の微粒子14の間に配設される。

Description

半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法
 本発明は、光エネルギーを電気エネルギーに変換する半導体電極、この半導体電極を用いた太陽電池、及び半導体電極の製造方法に関する。
 従来、太陽電池では、結晶性シリコン(Si)、アモルファスシリコン等の基板が光電変換素子として用いられる(特許文献1参照)。また、従来の太陽電池の中には、シリコンの代わりに、有機色素により増感させた酸化物半導体を光電変換素子として用いるものもある(特許文献2参照)。光電変換素子は、光エネルギーを電気エネルギーに変換する。
特開昭61-54275号公報 特許第2955646号公報
 しかしながら、例えば、特許文献1に開示された太陽電池では、原料となるシリコンの供給の問題、バルク状又は薄膜状の結晶性シリコン、アモルファスシリコン等の基板を形成する工程にかかるエネルギーと発電容量とのエネルギー収支の問題などがあり、解決すべき課題が多い。また、特許文献2に開示された色素増感型太陽電池では、耐久性の向上や発電効率の向上などが課題となっている。
 そのため、太陽電池の分野では、上述した従来の太陽電池の改良と併せて、従来の太陽電池とは異なる新規太陽電池の開発が望まれている。
 そこで、本発明は、太陽電池に用いる電極として利用可能な新たな半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法を提供することを目的とする。
 上述した課題を解決するため、本発明は、次のような特徴を有する。まず、本発明の特徴は、光透過性を有する基板の表面に配設される透明電極を有し、前記透明電極において、前記基板に配設される表面の反対面に金属酸化物層が配設され、前記金属酸化物層は、前記基板を透過する光の波長のうち特定の波長を吸収するケイ素微粒子と、金属酸化物の微粒子とを有し、前記ケイ素微粒子は、前記金属酸化物の微粒子の間に配設されることを要旨とする。
 本発明の他の特徴は、前記ケイ素微粒子を含む混合粉体がフッ酸および酸化剤を含むエッチング溶液でエッチングされることにより、前記ケイ素微粒子は、所定の粒径に形成されていることを要旨とする。
 本発明の他の特徴は、前記エッチング時に前記ケイ素微粒子の表面に付加されたH原子は、不飽和炭化水素基で置換されていることを要旨とする。
 本発明の他の特徴は、前記不飽和炭化水素基は、親水基を有することを要旨とする。
 本発明の他の特徴は、複数種類の粒径の前記ケイ素微粒子が混合して用いられることを要旨とする。
 本発明の他の特徴は、光透過性を有し、光が入射する入射面を有する前記半導体電極と、前記半導体電極に対向して配設される対向電極と、前記半導体電極と前記対向電極との間の空間に配設される電解質と、前記空間に配設される前記電解質を封止する封止材とを有し、前記半導体電極に入射された光の光エネルギーを電気エネルギーに変換する太陽電池であって、前記半導体電極は、光透過性を有する基板の前記入射面側とは反対側の表面に配設される透明電極を有し、前記透明電極において、前記基板に配設される表面の反対面に金属酸化物層が配設され、前記金属酸化物層は、前記基板を透過する光の波長のうち特定の波長を吸収するケイ素微粒子と、金属酸化物の微粒子とを有し、前記ケイ素微粒子は、前記金属酸化物の微粒子の間に配設されることを要旨とする。
 本発明の他の特徴は、前記ケイ素微粒子を含む混合粉体がフッ酸および酸化剤を含むエッチング溶液でエッチングされることにより、前記ケイ素微粒子は、所定の粒径に形成されていることを要旨とする。
 本発明の他の特徴は、前記太陽電池は、光透過性を有する透明基材と前記透明電極とを有する中間電極を少なくとも1以上有し、前記中間電極の表面には、前記金属酸化物層が配設されており、前記中間電極は、前記半導体電極と前記対向電極との間に位置し、前記半導体電極と前記中間電極との間、及び前記中間電極と前記対向電極との間には、前記電解質が充填された状態で前記封止材によって封止されることを要旨とする。
 本発明の他の特徴は、前記中間電極は、光透過性を有する透明基材と、前記透明基材の前記入射面に配設されており、前記入射面側の表面に触媒電極が配設された第1透明電極と、前記透明基材の前記入射面とは反対面に配設される第2透明電極とを有することを要旨とする。
 本発明の他の特徴は、前記半導体電極に配設される前記金属酸化物層及び前記中間電極に配設される前記金属酸化物層に含まれる前記ケイ素微粒子は、前記金属酸化物層毎に粒径が異なることを要旨とする。
 本発明の他の特徴は、不活性雰囲気下においてケイ素源と炭素源を含む混合物を焼成する工程と、前記不活性雰囲気から生成ガスを抜き出し急冷してケイ素微粒子を含む混合粉体を得る工程と、前記混合粉体から前記ケイ素微粒子を抽出する工程と、光透過性を有する基板の表面に透明電極が配設され、前記透明電極において、前記基板に配設される表面の反対面に金属酸化物層が配設される工程と、前記金属酸化物層に前記ケイ素微粒子を吸着させる工程とを有することを要旨とする。
 本発明の他の特徴は、前記ケイ素微粒子を抽出する工程は、前記混合粉体をフッ酸および酸化剤を含むエッチング溶液に浸漬してエッチングする工程を有することを要旨とする。
 本発明の他の特徴は、前記エッチングする工程では、エッチングの時間を調整することにより、前記ケイ素微粒子の粒径を制御することを要旨とする。
 本発明の他の特徴は、前記ケイ素微粒子を抽出する工程は、前記エッチングされることによって前記ケイ素微粒子の表面に付加されたH原子を不飽和炭化水素基で置換する終端工程を有することを要旨とする。
 本発明の他の特徴は、前記ケイ素源がエチルシリケートであることを要旨とする。
 本発明の他の特徴は、前記炭素源がフェノール樹脂であることを要旨とする。
 本発明によれば、太陽電池に用いる電極として利用可能な新たな半導体電極、半導体電極を用いた太陽電池、太陽電池に用いることが可能な新たな半導体電極の製造方法を提供することができる。
図1は、本発明の実施形態に係る単層型の太陽電池の構成図である。 図2は、本発明の実施形態に係るタンデム型の太陽電池の構成図である。 図3は、本発明の実施形態に係る中間電極を説明する構成図である。 図4は、ケイ素微粒子を含む混合粉体を説明するフローチャートである。 図5は、半導体電極の製造方法を説明するフローチャートである。 図6は、ケイ素微粒子の製造に用いられる製造装置の概略図である。
 本発明に係る半導体電極及び太陽電池の実施形態について図面を参照しながら説明する。具体的には、(1)太陽電池の構造、(2)ケイ素微粒子及び半導体電極の製造方法、(3)ケイ素源及び炭素源、(4)ケイ素微粒子の製造装置、(5)作用・効果、及び(6)その他の実施形態について説明する。
 以下の図面の記載において、同一または類似の部分には、同一または類似の符号を付している。図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。
 したがって、具体的な寸法などは以下の説明を参酌して判断すべきものである。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 (1)太陽電池の構造
 (1-1)単層型
 図1は、本発明にかかる単層型の太陽電池の構成図である。太陽電池1は、半導体電極10と、対向電極20と、電解質30と、封止材40とを有する。半導体電極10は、光透過性を有し、光が入射する入射面11aを有する。対向電極20は、半導体電極10に対向して配設される。電解質30は、半導体電極10と対向電極20との間の空間に配設される。封止材40は、空間に配設される電解質30を封止する。透明電極12と、対向電極20とは、図示しない端子及び電線によって電気的に接続される。太陽電池1は、半導体電極10に入射された光の光エネルギーを電気エネルギーに変換する。
 半導体電極10は、基板11と、透明電極12と、金属酸化物層13とを有する。透明電極12は、光透過性を有する基板11の表面に配設される。具体的には、光透過性を有し入射面11aを有する基板11において、入射面11a側とは反対側の表面に配設される。
 透明電極12において、基板11に配設される表面の反対面に金属酸化物層13が配設される。すなわち、透明電極12の入射面11a側の一の面には、基板11が配設され、透明電極12の一の面と反対側の他の面には、金属酸化物層13が配設される。透明電極12は、金属酸化物層13よりも入射面11a側に位置している。金属酸化物層13は、金属酸化物の微粒子14と、ケイ素微粒子15とを有する。
 基板11は、光透過性を有する基板である。基板11は、光が入射する入射面11aを有する。基板11に用いられる材料としては、例えば、ケイ酸塩ガラス、プラスチック基板があげられる。種々のプラスチック基板が貼り合わされていてもよい。プラスチック基板の材料としては、ガラス転移温度が50℃以上である樹脂が好ましい。
 例えば、ポリエチレンテレフタレート、ポリシクロヘキシレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、ナイロン46、変性ナイロン6T、ナイロンMXD6、ポリフタルアミド等のポリアミド系樹脂、ポリフェニレンスルフィド、ポリチオエーテルサルフィンなどのケトン系樹脂、ポリサルフォン、ポリエーテルサルフォン等のサルフォン系樹脂、ポリエーテルニトリル、ポリアリレート、ポリエーテルイミド、ポリアミドイミド、ポリカーボネート、ポリメチルメタクリレート、トリアセチルセルロース、ポリスチレン、ポリビニルクロライド等の有機樹脂を主成分とする透明樹脂基板を用いることができる。中でも、ポリカーボネート、ポリメチルメタクリレート、ポリビニルクロライド、ポリスチレン、ポリエチレンテレフタレートは、透明性に優れる。また、複屈折の値が良好である。
 透明電極12は、In、SnOを含み、導電性を有する金属酸化物の薄膜である。導電性を有する金属酸化物の一例としては、In:Sn(ITO)、SnO:Sb(ATO)、SnO:F(FTO)、ZnO:Al(AZO)、ZnO:F、CdSnOを挙げることができる。
 金属酸化物の微粒子14としては、酸化チタン、酸化亜鉛、酸化タングステン、酸化アンチモン、酸化ニオブ、酸化インジウム、チタン酸バリウム、チタン酸ストロンチウム、硫化カドミウムなどの公知の半導体のうち一種又は二種以上を用いることができる。安定性の点からは、酸化チタンを用いることが好ましい。酸化チタンとしては、アナタース型酸化チタン、ルチル型酸化チタン、無定形酸化チタン、メタチタン酸、オルソチタン酸などの各種の酸化チタン或いは水酸化チタン、含水酸化チタンが含まれる。
 ケイ素微粒子15は、基板11を透過する光の波長のうち、粒径に応じた特定の波長を吸収する特性を有する。すなわち、ケイ素微粒子15は、特定波長を有する光により励起されて電子を放出する。ケイ素微粒子15は、金属酸化物の微粒子14の間に配設される。ケイ素微粒子15は、金属酸化物層13の周りに配設される。すなわち、ケイ素微粒子15は、金属酸化物の微粒子14を覆って配設される。ケイ素微粒子15には、複数種類の粒径のケイ素微粒子が混合して用いられる。ケイ素微粒子15の粒径は、所定のサイズ範囲に含まれる。所定のサイズ範囲とは、ケイ素微粒子15が特定波長を有する光により励起されて電子を放出する範囲である。
 ケイ素微粒子15は、二酸化ケイ素とケイ素の混合粉体をエッチング溶液に浸漬することにより生成されても良い。本実施形態においては、ケイ素微粒子15の粒径は、エッチングする工程におけるエッチング時間によって決められる。ケイ素微粒子15は、二酸化ケイ素とケイ素の混合粉体をエッチング溶液に浸漬した後、エッチングされることによってケイ素微粒子15の表面に付加されたH原子を、親水基を有する不飽和炭化水素基で置換しても良い。
 金属酸化物の微粒子14及びケイ素微粒子15は、バインダーに分散させられて透明電極12に塗布されてもよい。バインダーは、金属酸化物の微粒子14及びケイ素微粒子15を分散させることができればよい。一般的に、ポリマーが使用される。一例として、ポリアルキレングリコール(例えば、ポリエチレングリコール)、アクリル樹脂、ポリエステル、ポリウレタン、エポキシ樹脂、シリコン樹脂、フッ素樹脂、ポリ酢酸ビニル、ポリビニルアルコール、ポリアセタール、ポリブチラール、石油樹脂、ポリスチレン、繊維系樹脂などを挙げることができる。
 電解質30は、例えば、レドックス電解質である。I/I 系、Br/Br 系、キノン/ハイドロキノン系等が挙げられる。I/I 系の電解質は、ヨウ素のアンモニウム塩とヨウ素とを混合することによって得ることができる。電解質30は、液体であっても固体であってもよい。例えば、液体電解質又は液体電解質を高分子物質中に含有させた固体高分子電解質である。
 液体電解質の溶媒は、電気化学的に不活性である電解質を用いることができる。液体電解質としては、例えば、アセトニトリル、炭酸プロピレン、エチレンカーボネート等を用いることができる。
 液体電解質の溶媒としては、導電性を有するものであってもよい。I イオン等の酸化型のレドックスイオンの還元反応を十分な速さで行わせる触媒能を有するものを使用することが好ましい。一例としては、白金電極、導電材料表面に白金めっきや白金蒸着を施したもの、ロジウム金属、ルテニウム金属、酸化ルテニウム、カーボン等が挙げられる。
 上述した各構成を用いて太陽電池1を作製する。透明電極12を形成した基板11上に金属酸化物層13を形成する。具体的には金属酸化物の微粒子14に必要に応じてバインダーを加えた分散液を作製し、基板11上に塗布し、金属酸化物の微粒子14を形成させる。必要に応じて、加熱、加圧等を行った後、ケイ素微粒子分散液中に基板11を浸漬させ、ケイ素微粒子15を金属酸化物の微粒子14表面に吸着させる。化学結合を強固にするために、加熱等を加えても良い。対向電極20は、透明基材と、透明基材の入射面側の表面に触媒透明電極(例えば、真空蒸着で作製した白金電極)が配設された基板を用いる。金属酸化物層13が配設された基板11に、封止材40を介して、対向電極20を接合する。基板11と対向電極20との間の空間に電解質30を封入する。
 上述した太陽電池1では、金属酸化物の微粒子14の周囲に配置されたケイ素微粒子15は、基板11を透過する光の波長のうち、粒径に応じた特定の波長を吸収する。すなわち、ケイ素微粒子15は、特定波長を有する光により励起されて電子を放出する。放出された電子は、金属酸化物の微粒子14を介して、透明電極12へと引き渡される。ケイ素微粒子15に残ったホールは、電解質30を酸化する。例えば、IをI に、或いはBrをBr に変化させる。酸化されたヨウ化物イオン或いは臭化物イオンは、対向電極20において再び電子を受けて還元される。このように電子が両極間をサイクルすることによって、太陽電池が構成される。
 (1-2)多接合型
 図2は、本発明にかかるタンデム型の太陽電池の構成図である。太陽電池2は、半導体電極10と、複数の中間電極500と、対向電極20と、電解質30と、封止材40とを有する。基板11は、光透過性を有し入射面11aを有する。対向電極20としては、透明電極の入射面側の表面に触媒透明電極(例えば、真空蒸着で作製した白金電極)が配設された基板を用いる。太陽電池2は、中間電極500を少なくとも1以上有する。本実施形態において、太陽電池2は、4つの中間電極500を有する。
 中間電極500の構成を図3に示す。中間電極500は、透明基材501と、透明電極502と、透明電極504とを有する。透明基材501は、光透過性を有する。透明基材501は、基板11と同じ材料を用いることができる。透明電極502は、透明基材501の入射面に配設されている。透明電極502の入射側の表面に触媒電極503が形成されている。従って、触媒電極503は、電解質30と接している。触媒電極503には、例えば、真空蒸着で作製した白金電極が挙げられる。透明電極504は、透明基材501の入射面とは反対面に配設される。従って、透明電極504は、金属酸化物層と接している。透明電極502及び透明電極504は、透明電極12と同じ材料を用いることができる。
 中間電極500は、半導体電極10と対向電極20との間に位置する。半導体電極10と中間電極500との間、及び中間電極500と対向電極20との間は、電解質30が充填された状態で封止材40によって封止される。図2に示されるように、太陽電池2は、複数の中間電極500を有する。この場合、半導体電極10と中間電極500との間、及び中間電極500と対向電極20との間だけでなく、中間電極500と中間電極500の間も電解質30が充填された状態で封止材40によって封止される。従って、電解質30は、中間電極500と中間電極500との間の空間に配設される。封止材40は、空間に電解質30を封止する。
 中間電極500の表面には、金属酸化物層が配設される。金属酸化物層には、ケイ素微粒子が担持された金属酸化物の微粒子14を有する。図2に示されるように、各中間電極500の表面には、それぞれ、金属酸化物層130、金属酸化物層230,金属酸化物層330及び金属酸化物層430が配設される。金属酸化物層130は、金属酸化物の微粒子14と、ケイ素微粒子115とを含む。金属酸化物層230は、金属酸化物の微粒子14と、ケイ素微粒子215とを含む。金属酸化物層330は、金属酸化物の微粒子14と、ケイ素微粒子315とを含む。金属酸化物層430は、金属酸化物の微粒子14と、ケイ素微粒子415とを含む。
 ケイ素微粒子15、ケイ素微粒子115、ケイ素微粒子215、ケイ素微粒子315、及びケイ素微粒子415は、いわゆるシリコンナノドットである。ケイ素微粒子115、ケイ素微粒子215、ケイ素微粒子315、及びケイ素微粒子415は、ケイ素微粒子15と同一の材料を用いることができる。ケイ素微粒子の粒径は、予め決められたサイズ毎に分級される。すなわち、ケイ素微粒子15、ケイ素微粒子115、ケイ素微粒子215、ケイ素微粒子315、及びケイ素微粒子415の粒径は、それぞれ異なる。従って、半導体電極10に配設される金属酸化物層及び中間電極500に配設される金属酸化物層に含まれるケイ素微粒子は、金属酸化物層毎に粒径が異なる。ケイ素微粒子15、ケイ素微粒子115、ケイ素微粒子215、ケイ素微粒子315、及びケイ素微粒子415は、基板11を透過する光の波長のうち、それぞれ異なる特定の波長を吸収する。例えば、ケイ素微粒子15の吸収波長は、500nmである。ケイ素微粒子115の吸収波長は、600nmである。ケイ素微粒子215の吸収波長は、700nmである。ケイ素微粒子315の吸収波長は、900nmである。ケイ素微粒子415の吸収波長は、1100nmである。
 (2)ケイ素微粒子及び半導体電極の製造方法
 (2-1)ケイ素微粒子
 上述したケイ素微粒子15、ケイ素微粒子115、ケイ素微粒子215、ケイ素微粒子315、及びケイ素微粒子415を製造する製造工程について説明する。以下、ケイ素微粒子15、ケイ素微粒子115、ケイ素微粒子215、ケイ素微粒子315、及びケイ素微粒子415を総称して、ケイ素微粒子又はケイ素微粒子15と適宜表す。
 炭化ケイ素焼結体を製造する過程では、炭化ケイ素焼結体を形成するために用いる粉体(炭化ケイ素粉末)を製造する。炭化ケイ素粉体の製造方法の一例として、高純度の炭化ケイ素前駆体(高純度プリカーサという)を焼成する方法がある。高純度のプリカーサとは、ケイ素源と炭素源と、重合又は架橋触媒とを均質に混合して得られる混合物である。
 本実施形態において用いられるケイ素微粒子は、高純度プリカーサを焼成する工程で副生成物として生成されるガスから分離される。高純度プリカーサから炭化ケイ素粉末を製造する工程では、ケイ素源と炭素源とを混合した後、混合物を非酸化雰囲気下において、1600℃以上の温度で加熱すると、炭化ケイ素(SiC)が粉体として取り出される。
 すなわち、高純度プリカーサから炭化ケイ素粉末を製造する工程では、不活性雰囲気下(非酸化雰囲気下)において、下記(1),(2)式に示す化学反応により、一酸化ケイ素(SiO)ガスを経由して炭化ケイ素が生成される。この方法によると、炭化ケイ素は、粉体として取り出される。
 SiO+C→SiO+CO …(1)
 SiO+2C→SiC+CO …(2)
 本発明者らは、炭化ケイ素が生成された後の不活性雰囲気から抜き出したガスを1600℃未満の温度まで速やかに冷却すると、下記(3)式に示す化学反応が起こることにより、ケイ素(Si)と二酸化ケイ素(SiO)とを含む混合粉体が得られることを見出した。本実施形態で使用するケイ素微粒子は、(3)式によってできる混合粉体に含まれる。
 2SiO→Si+SiO …(3)
 上述のように、本発明の実施形態として示すケイ素微粒子を含む混合粉体は、高純度プリカーサを焼成する工程で副生成物として生成されたガスからケイ素微粒子を分離するというものである。
 (2-2)ケイ素微粒子の製造方法
 図4は、ケイ素微粒子を含む混合粉体を説明するフローチャートである。図4に示すように、ケイ素微粒子を含む混合粉体は、焼成工程S1と、急冷工程S2と、抽出工程S3とを有する。
 焼成工程S1は、不活性雰囲気下においてケイ素源と炭素源を含む混合物を焼成する工程である。具体的には、焼成工程S1は、少なくとも1種以上のケイ素化合物を含むケイ素源と、加熱により炭素を生成する有機化合物を少なくとも1種以上含む炭素源と、重合又は架橋触媒とを混合した混合物(高純度プリカーサという)を不活性雰囲気下において焼成する工程である。ケイ素源は、例えば、エチルシリケートである。また、炭素源は、例えば、フェノール樹脂である。ケイ素源及び炭素源の詳細は、後述する。
 焼成工程S1では、まず、ケイ素源としてのエチルシリケートと、炭素源としてのフェノール樹脂と、重合触媒としてのマレイン酸とからなる混合物を150℃程度で加熱して硬化させる。Si/C比は0.5~3.0が好ましい。次に硬化物を窒素又はアルゴン雰囲気下で、800~1200℃で、0.5~2時間加熱する。その後、窒素又はアルゴン雰囲気下1500~2000℃で加熱する。
 急冷工程S2は、不活性雰囲気から生成ガスを抜き出し急冷してケイ素微粒子を含む混合粉体を得る工程である。具体的には、急冷工程S2は、焼成工程で高純度プリカーサを焼成した際に生成されたガスを不活性雰囲気から抜き出し、急冷する工程である。すなわち、高純度プリカーサを焼成することによって炭化ケイ素を生成する反応の副生成物であるガスを取り出し、冷却する。副生成物としてのガスを上記条件で冷却すると、ケイ素微粒子を含む混合粉体が得られる。
 急冷工程S2では、アルゴンガス気流に乗せて生成ガスを抜き出す。生成ガスは、室温まで急冷される。そして生成ガスからケイ素(Si)とシリカ(SiO)からなる混合粉体が得られる。
 抽出工程S3は、混合粉体からケイ素微粒子を抽出する工程である。具体的には、抽出工程S3は、急冷工程S2で得られた混合粉体からケイ素微粒子を抽出する工程である。急冷工程S2で得られた混合粉体からケイ素を取り出す。その後、ケイ素を溶媒から抽出し乾燥させる。これにより、所望とする粒径のケイ素微粒子が得られる。
 本実施形態において、抽出工程S3は、混合粉体をフッ酸および酸化剤を含むエッチング溶液に浸漬してエッチングするエッチング工程S31を有する。酸化剤としては、例えば、硝酸(HNO3)及び過酸化水素(H2O2)が挙げられる。またエッチング溶液に、シリコン微粒子の回収を容易にするため疎水性溶媒例えばシクロヘキサン、微極性溶媒例えば2-プロパノールを混ぜても構わない。エッチング時間を調節して所望の発光ピークが得られるように調整する。エッチング時間が長くなるほど、発光ピークは短波長側にシフトする傾向がある。このため、エッチングの時間を調整することにより、ケイ素微粒子の粒径を制御できる。所望の発光ピークが得られる程度までエッチングが進行した時点でケイ素微粒子発光体をエッチング溶液から取り出す。エッチング溶液をろ過することによって、ケイ素微粒子発光体をエッチング溶液から分離する。分離したケイ素微粒子を、適宜乾燥することで所望の吸光係数を有するケイ素微粒子が得られる。
 本実施形態において、抽出工程S3は、エッチングされることによってケイ素微粒子の表面に付加されたH原子を不飽和炭化水素基で置換する終端工程S32を有する。
 エッチング工程S31が行われると、ケイ素微粒子の表面を包含していた酸化ケイ素が除去されるかわりに、ケイ素微粒子の表面には、エッチング工程で使用したフッ酸によって、部分的にH原子が付加している。そのため、ケイ素微粒子を扱う上での不都合が生じる場合がある。例えば、エッチング工程後のケイ素微粒子は、疎水的となり、水溶液中で凝集し易くなる。
 そこで、ケイ素微粒子発光体の表面に、親水基を有する不飽和炭化水素基を導入する。ヒドロシリル化反応を行わせることにより、ケイ素微粒子の活性末端であるSi-HのH原子を、親水基を有する不飽和炭化水素基等の終端材料で置換する。これにより、ケイ素微粒子の凝集安定性が向上し、吸光特性を長時間維持することができる。終端工程S32は、具体的には、ケイ素微粒子を、終端材料を添加した溶液中にケイ素微粒子を混合する。混合溶液に加熱又は紫外線照射等を行うことにより、反応を促進させる。これによって、ケイ素微粒子分散液を得ることができる。
 不飽和炭化水素基は、親水基を有する不飽和炭化水素基を有するものであればよい。例えば、1-デセン、テトラデセン、1-オクテン、スチレンなどが挙げられる。また、親水基を有するイソプレノイド化合物から生成される基であってもよい。例えば、リナロール等のモノテルペノイドが適用可能である。また、親水基を有する不飽和炭化水素基は、親水基を有するアリル化合物から生成される基であってもよい。例えば、アリルアルコール、オイゲノール等が適用可能である。
 (2-3)半導体電極の製造方法
 図5は、本実施形態に係る半導体電極10の製造方法を説明するフローチャートである。本実施形態に係る半導体電極10の製造方法は、光透過性を有する基板11の表面に透明電極12が配設される工程S101と、透明電極12において基板11に配設される表面の反対面に金属酸化物層が配設される工程S102と、金属酸化物層にケイ素微粒子15を吸着させる工程S103とを有する。工程S103は、具体的には、上述した焼成工程S1、急冷工程S2、抽出工程S3を経て得られたケイ素微粒子分散液を金属酸化物層に担持又は吸着させる。
 なお、透明電極12が配設された基板11に金属酸化物層13を配設する工程S102と、上述した焼成工程S1、急冷工程S2、抽出工程S3との順序は、図5に示す順序に限定されない。すなわち、透明電極12が配設された基板11に金属酸化物層13を配設した後、ケイ素微粒子15を作製する工程(S1~S3)を実行しても良いし、ケイ素微粒子15を作製した後、透明電極12が配設された基板11に金属酸化物層13を配設する工程S102を実行しても良い。
 (3)ケイ素源及び炭素源
 (3-1)ケイ素源
 上記ケイ素化合物を含むケイ素源は、液状のケイ素化合物、加水分解性ケイ素化合物より合成されたケイ素質固体とを含む群より選ばれる少なくとも1種のケイ素含有原料である。液状のケイ素源と固体のケイ素源とを併用することができる。複数種類のケイ素源を用いる場合、少なくとも1種は液状である。
 液状のケイ素源とは、アルコキシシラン(モノ-、ジ-、トリ-、テトラ-)及びテトラアルコキシシランの重合体である。アルコキシシランの中では、テトラアルコキシシランが好適に用いられる。具体的には、メトキシシラン、エトキシシラン、プロポキシシラン、ブトキシシラン等が挙げられる。原料物質の扱い易さから、エトキシシランを用いることが好ましい。
 テトラアルコキシシランの重合体としては、重合度が2~15程度の低分子量重合体(オリゴマー)、及び重合度が高く液状を呈するケイ酸ポリマーが挙げられる。これらと併用可能な固体状のケイ素源としては、酸化ケイ素が挙げられる。
 酸化ケイ素は、SiO、シリカゲル(コロイド状超微細シリカ含有液、内部に水酸基、アルコキシル基など)、二酸化ケイ素(微細シリカ、石英粉末など)等を含む。
 また、ケイ素含有原料として、加水分解性ケイ酸化合物をトリメチル化して得られる1群のポリマー、加水分解性ケイ素化合物と1価もしくは多価アルコール(例えば、ジオール、トリオール)とのエステル(例えば、四塩化ケイ素とエタノールとの反応で合成されるエチルシリケート)、加水分解性ケイ素化合物と有機化合物との反応で得られたエステル以外の反応生成物(例えば、テトラメチルシラン、ジメチルジフェニルシラン、ポリジメチルシラン)等のケイ素化合物が挙げられる。
 加水分解性ケイ素化合物より合成されたケイ素質固体は、高温の非酸化性雰囲気中(不活性雰囲気中)で炭素と反応して炭化ケイ素を生成するものであればよい。ケイ素質固体の好ましい例は、四塩化ケイ素の加水分解により得られる無定型シリカ微粉末である。
 ケイ素源は、単独で用いてもよいし、2種以上併用してもよい。これらケイ素源の中でも、均質性やハンドリング性が良好な観点から、テトラエトキシシランのオリゴマー、又はテトラエトキシシランのオリゴマーと微粉末シリカとの混合物を用いることが好ましい。
 ケイ素源は、ケイ素を高純度に含む物質であることが好ましい。ここで、高純度とは、混合物形成前のケイ素化合物の不純物含有量が20ppm以下であることを示す。より好ましくは、不純物含有量が5ppm以下である。
 ケイ素源としては、加熱により一酸化ケイ素を生成するものであることが好ましい。具体的には、ケイ素源としてエチルシリケートを用いることが好ましい。
 (3-2)炭素源
 炭素源として使用する炭素含有原料は、分子内に酸素を含有し、加熱により炭素が残留する高純度有機化合物であることが好ましい。炭素源は、熱、触媒、若しくは架橋剤により重合又は架橋して硬化しうる任意の1種もしくは2種以上の有機化合物から構成されるモノマー、オリゴマー及びポリマーである。
 炭素源の好適な具体例としては、フェノール樹脂、フラン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ポリウレタン樹脂などの硬化性樹脂、フェノキシ樹脂、グルコース等の単糖類、ショ糖等の少糖類、セルロース、デンプン等の多糖類などの各種糖類が挙げられる。特に、残炭率が高く、作業性に優れているレゾール型またはノボラック型フェノール樹脂が好ましい。
 本実施形態に有用なレゾール型フェノール樹脂は、触媒(具体的には、アンモニアまたは有機アミン)の存在下において、フェノール、クレゾール、キシレノール、レゾルシン、ビスフェノールAなどの1価または2価のフェノール類と、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等のアルデヒド類とを反応させて製造する。
 炭素源は、常温で液状である。炭素源は、溶媒に対する溶解性を有する。炭素源は、熱可塑性或いは熱融解性を有し、加熱により軟化或いは液状となる。このように、液状或いは軟化する炭素源は、ケイ素源と均質に混合することができる。レゾール型フェノール樹脂、ノボラック型フェノール樹脂等は、炭素源として好適に用いることができる。特に、レゾール型フェノール樹脂が好適に使用される。
 (3-3)触媒
 高純度の炭化ケイ素粉末の製造に用いられる重合及び架橋触媒は、炭素源に応じて適宜選択できる。例えば、炭素源がフェノール樹脂又はフラン樹脂の場合、マレイン酸、トルエンスルホン酸、トルエンカルボン酸、酢酸、シュウ酸、硫酸等の酸類が挙げられる。これらの中でも、トルエンスルホン酸が好適に用いられる。
 (4)ケイ素微粒子の製造装置
 (4-1)製造装置の構成
 図6にケイ素微粒子の製造に用いられる製造装置301の概略図を示す。製造装置301は、加熱容器302と、加熱容器302を保持するステージ308とを有する。加熱容器302は、ケイ素源と炭素源と、重合又は架橋触媒とを混合した混合物(高純度プリカーサ)Wを収容する。
 製造装置301は、発熱体310a、310bを有する。発熱体310a,310bは、加熱容器302内部の混合物Wを加熱する。製造装置301は、加熱容器302と発熱体310a,310bとを覆う断熱材312を有する。
 製造装置301は、吸引管321と、集塵機322とを有する。吸引管321は、加熱容器302の内部に連結される。吸引管321は、混合物Wが焼成された際に生成されたガスを加熱容器302内部から吸引し、集塵機322に導く。集塵機322は、吸引したガスから得られる混合粉体を集める。
 製造装置301は、ブロア323と、加熱容器302に連結された供給管324とを有する。ブロア323は、アルゴンガスを供給管324に供給する。供給管324は、加熱容器302の内部にアルゴンガスを供給する。すなわち、アルゴンガスは、製造装置301の供給管324、加熱容器302、吸引管321の順に循環する。混合物Wから生成されたガスは、アルゴンガスの気流に乗って集塵機322で回収される。
 製造装置301は、電磁弁325を有する。電磁弁325は、吸引管321に設けられており、電磁弁325は、加熱容器302の内圧を設定された圧力に応じて自動的に開閉される。
 (4-2)製造装置の動作
 製造装置301は、発熱体310a、310bを発熱させて、所定の温度条件で加熱容器302を加熱する。このとき、加熱容器302の内部は、窒素雰囲気、或いはアルゴン雰囲気に保持される。以上は、焼成工程S1に相当する。
 続いて、製造装置301は、ブロア323を作動させる。このとき、ブロア323が起動すると、混合物Wから発生したガスは、ブロア323から供給されたアルゴンガスの気流に乗って、吸引管321を介して加熱容器302の内部から集塵機322に抜き出される。断熱材312の外部は、室温であるため、アルゴンガスの気流に乗って加熱容器302の外部まで導かれたガスは、室温まで急激に冷却される。このとき、ガスからケイ素(Si)と二酸化ケイ素(SiO)の複合体が得られる。得られた複合体は、集塵機322で集められる。以上は、急冷工程S2に相当する。
 集塵機322で収集された複合体の粉末(混合粉体という)は、例えば、遊星ボールミル(図6には不図示)によって、有機溶媒とともに湿式粉砕される。以上は、抽出工程S3に相当する。
 (5)作用・効果
 半導体電極10は、光透過性を有する基板11の表面に配設される透明電極12を有し、透明電極12において、基板11に配設される表面の反対面に金属酸化物層13が配設され、金属酸化物層13は、基板11を透過する光の波長のうち特定の波長を吸収するケイ素微粒子15と、金属酸化物の微粒子14とを有し、ケイ素微粒子15は、金属酸化物の微粒子14の間に配設される。
 太陽電池1では、金属酸化物層13に配設されたケイ素微粒子15は、基板11を透過した光の波長のうち特定の波長を吸収し、電子を放出する。従って、半導体電極10は、基板11を透過した光の波長のうち特定の波長の光エネルギーを電気エネルギーとして取り出すことができる。
 本実施形態において、複数種類の粒径のケイ素微粒子15が混合して用いられる。ケイ素微粒子15は、粒径に応じた特定の波長を吸収するため、複数種類の粒径のケイ素微粒子15が混合して用いることにより、電気エネルギーとして取り出すことのできる光の波長領域を広げることができる。すなわち、複数の粒径のケイ素微粒子を用いることにより、可視光領域の光の波長のうち、幅広い波長に対応することができる。
 太陽電池2は、光透過性を有する透明基材501と透明電極502及び透明電極504とを有する中間電極500を少なくとも1以上有し、中間電極500の表面には、金属酸化物層130、金属酸化物層230、金属酸化物層330、及び金属酸化物層430が配設されており、中間電極500は、半導体電極10と対向電極20との間に位置し、半導体電極10と中間電極500との間、及び中間電極500と対向電極20との間には、電解質30が充填された状態で封止材40によって封止される。これによって、ケイ素微粒子15だけでなく、ケイ素微粒子115、ケイ素微粒子215、ケイ素微粒子315及びケイ素微粒子415も、特定の波長を吸収し、電子を放出するため、光エネルギーを電気エネルギーとしてより取り出すことができる。
 太陽電池2において、半導体電極10に配設される金属酸化物層13及び中間電極500に配設される金属酸化物層に含まれるケイ素微粒子は、金属酸化物層毎に粒径が異なる。これによって、電気エネルギーとして取り出すことのできる光の波長領域を広げることができる。
 本実施形態に係る半導体電極10の製造方法は、不活性雰囲気下においてケイ素源と炭素源を含む混合物を焼成する工程S1と、不活性雰囲気から生成ガスを抜き出し急冷してケイ素微粒子15を含む混合粉体を得る工程S2と、混合粉体からケイ素微粒子15を抽出する工程S3と、光透過性を有する基板の表面に透明電極が配設され、透明電極において、前記基板に配設される表面の反対面に金属酸化物層が配設される工程と、金属酸化物層にケイ素微粒子15を吸着させる工程S103とを有する。これによって、本実施形態に係る半導体電極10を製造することができる。
 本実施形態において、ケイ素微粒子15を含む混合粉体がフッ酸および酸化剤を含むエッチング溶液でエッチングされることにより、ケイ素微粒子15は、所定の粒径に形成されている。エッチング溶液でエッチングをすることにより、所定の粒径のケイ素微粒子を容易に得ることができる。
 本実施形態において、エッチング工程S31では、エッチングの時間を調整することにより、ケイ素微粒子15の粒径を制御する。これによって、任意の波長を吸収し、電子を放出するため、光エネルギーを電気エネルギーとしてより取り出すことができる。
 本実施形態において、エッチング時にケイ素微粒子15の表面に付加されたH原子は、不飽和炭化水素基で置換されている。これによって、取り扱い良好なケイ素微粒子15を用いることができる。また、ケイ素微粒子の凝集安定性が向上するため、吸光特性を長時間維持することができる。
 以上説明したように、本実施形態に係る半導体電極10は、太陽電池に用いる電極として利用できる。
 (6)その他の実施形態
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
 なお、日本国特許出願第2009-111661号(2009年4月30日出願)、日本国特許出願第2009-111662号(2009年4月30日出願)及び、日本国特許出願第2009-111663号(2009年4月30日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係る半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法は、太陽電池に用いる電極として利用可能な新たな半導体電極、半導体電極を用いた太陽電池、太陽電池に用いることが可能な新たな半導体電極の製造方法を提供することができるため、太陽電池の製造分野において有用である。
 1…太陽電池、 2…太陽電池、 10…半導体電極、 11…基板、 11a…入射面、 12,502,504…透明電極、 13,130.230.330.430…金属酸化物層、 14…金属酸化物の微粒子、 15,115,215,315,415…ケイ素微粒子、 20…対向電極、 30…電解質、 40…封止材、 301…製造装置、 302…加熱容器、 308…ステージ、 310a,310b…発熱体、 312…断熱材、 321…吸引管、 322…集塵機、 323…ブロア、 324…供給管、 325…電磁弁、 500…中間電極、 501…透明基材、 503…触媒電極、

Claims (20)

  1.  光透過性を有する基板の表面に配設される透明電極を有し、
     前記透明電極において、前記基板に配設される表面の反対面に金属酸化物層が配設され、
     前記金属酸化物層は、
     前記基板を透過する光の波長のうち特定の波長を吸収するケイ素微粒子と、
     金属酸化物の微粒子とを有し、
     前記ケイ素微粒子は、前記金属酸化物の微粒子の間に配設される半導体電極。
  2.  前記ケイ素微粒子を含む混合粉体がフッ酸および酸化剤を含むエッチング溶液でエッチングされることにより、前記ケイ素微粒子は、所定の粒径に形成されている請求項1に記載の半導体電極。
  3.  前記エッチング時に前記ケイ素微粒子の表面に付加されたH原子は、不飽和炭化水素基で置換されている請求項2に記載の半導体電極。
  4.  前記不飽和炭化水素基は、親水基を有する請求項3に記載の半導体電極。
  5.  複数種類の粒径の前記ケイ素微粒子が混合して用いられる請求項1から4の何れか1項に記載の半導体電極。
  6.  光透過性を有し、光が入射する入射面を有する前記半導体電極と、
     前記半導体電極に対向して配設される対向電極と、
     前記半導体電極と前記対向電極との間の空間に配設される電解質と、
     前記空間に配設される前記電解質を封止する封止材とを有し、
     前記半導体電極に入射された光の光エネルギーを電気エネルギーに変換する太陽電池であって、
     前記半導体電極は、
     光透過性を有する基板の前記入射面側とは反対側の表面に配設される透明電極を有し、
     前記透明電極において、前記基板に配設される表面の反対面に金属酸化物層が配設され、
     前記金属酸化物層は、
     前記基板を透過する光の波長のうち特定の波長を吸収するケイ素微粒子と、
     金属酸化物の微粒子とを有し、
     前記ケイ素微粒子は、前記金属酸化物の微粒子の間に配設される太陽電池。
  7.  前記ケイ素微粒子を含む混合粉体がフッ酸および酸化剤を含むエッチング溶液でエッチングされることにより、前記ケイ素微粒子は、所定の粒径に形成されている請求項6に記載の太陽電池。
  8.  前記エッチング時に前記ケイ素微粒子の表面に付加されたH原子は、不飽和炭化水素基で置換されている請求項7に記載の太陽電池。
  9.  前記不飽和炭化水素基は、親水基を有する請求項8に記載の太陽電池。
  10.  複数種類の粒径の前記ケイ素微粒子が混合して用いられる請求項6から9の何れか1項に記載の太陽電池。
  11.  前記太陽電池は、光透過性を有する透明基材と前記透明電極とを有する中間電極を少なくとも1以上有し、
     前記中間電極の表面には、前記金属酸化物層が配設されており、
     前記中間電極は、前記半導体電極と前記対向電極との間に位置し、
     前記半導体電極と前記中間電極との間、及び前記中間電極と前記対向電極との間には、前記電解質が充填された状態で前記封止材によって封止される請求項6から10の何れか1項に記載の太陽電池。
  12.  前記中間電極は、
     光透過性を有する透明基材と、
     前記透明基材の前記入射面に配設されており、前記入射面側の表面に触媒電極が配設された第1透明電極と、
     前記透明基材の前記入射面とは反対面に配設される第2透明電極とを有する請求項11に記載の太陽電池。
  13.  前記半導体電極に配設される前記金属酸化物層及び前記中間電極に配設される前記金属酸化物層に含まれる前記ケイ素微粒子は、前記金属酸化物層毎に粒径が異なる請求項11又は12に記載の太陽電池。
  14.  不活性雰囲気下においてケイ素源と炭素源を含む混合物を焼成する工程と、
     前記不活性雰囲気から生成ガスを抜き出し急冷してケイ素微粒子を含む混合粉体を得る工程と、
     前記混合粉体から前記ケイ素微粒子を抽出する工程と、
     光透過性を有する基板の表面に透明電極が配設され、前記透明電極において、前記基板に配設される表面の反対面に金属酸化物層が配設される工程と、
     前記金属酸化物層に前記ケイ素微粒子を吸着させる工程とを有する半導体電極の製造方法。
  15.  前記ケイ素微粒子を抽出する工程は、
     前記混合粉体をフッ酸および酸化剤を含むエッチング溶液に浸漬してエッチングする工程を有する請求項14に記載の半導体電極の製造方法。
  16.  前記エッチングする工程では、エッチングの時間を調整することにより、前記ケイ素微粒子の粒径を制御する請求項15に記載の半導体電極の製造方法。
  17.  前記ケイ素微粒子を抽出する工程は、
     前記エッチングされることによって前記ケイ素微粒子の表面に付加されたH原子を不飽和炭化水素基で置換する終端工程を有する請求項15又は16に記載の半導体電極の製造方法。
  18.  前記不飽和炭化水素基は、親水基を有する請求項17に記載の半導体電極の製造方法。
  19.  前記ケイ素源がエチルシリケートである請求項14から18の何れか1項に記載の半導体電極の製造方法。
  20.  前記炭素源がフェノール樹脂である請求項14から18の何れか1項に記載の半導体電極の製造方法。
PCT/JP2010/057217 2009-04-30 2010-04-23 半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法 WO2010125974A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080029668.9A CN102460822B (zh) 2009-04-30 2010-04-23 半导体电极、使用半导体电极的太阳能电池、及半导体电极的制造方法
US13/318,244 US20120118375A1 (en) 2009-04-30 2010-04-23 Semiconductor electrode, solar cell in which semiconductor electrode is used and semiconductor electrode manufacturing method
EP10769673.4A EP2426781A4 (en) 2009-04-30 2010-04-23 SEMICONDUCTOR ELECTRODE, SOLAR CELL WITH A SEMICONDUCTOR ELECTRODE AND METHOD FOR PRODUCING SEMICONDUCTOR ELECTRODE
KR1020117028295A KR101246385B1 (ko) 2009-04-30 2010-04-23 반도체 전극, 반도체 전극을 사용한 태양 전지 및 반도체 전극의 제조 방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009111661A JP5519178B2 (ja) 2009-04-30 2009-04-30 半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法
JP2009111662A JP5519179B2 (ja) 2009-04-30 2009-04-30 半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法
JP2009-111661 2009-04-30
JP2009-111662 2009-04-30
JP2009111663A JP5519180B2 (ja) 2009-04-30 2009-04-30 半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法
JP2009-111663 2009-04-30

Publications (1)

Publication Number Publication Date
WO2010125974A1 true WO2010125974A1 (ja) 2010-11-04

Family

ID=43032126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057217 WO2010125974A1 (ja) 2009-04-30 2010-04-23 半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法

Country Status (5)

Country Link
US (1) US20120118375A1 (ja)
EP (1) EP2426781A4 (ja)
KR (1) KR101246385B1 (ja)
CN (1) CN102460822B (ja)
WO (1) WO2010125974A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141983A (ja) * 2014-01-28 2015-08-03 京セラ株式会社 半導体粒子ペーストおよびその製法、ならびに光電変換装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9455366B2 (en) * 2013-03-15 2016-09-27 Lawrence Livermore National Security, Llc Sol-gel process for the manufacture of high power switches
JP6214281B2 (ja) * 2013-08-30 2017-10-18 クラリオン株式会社 車載用カメラ
CN109326658A (zh) * 2018-09-13 2019-02-12 福州大学 一种亲水性电极及其在制备太阳能光伏电池上的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154275A (ja) 1984-08-22 1986-03-18 Kimura:Kk 飲料水用の浄水剤の製造法及びその浄化浄水装置
JP2955646B2 (ja) 1996-09-12 1999-10-04 工業技術院長 有機色素増感型酸化物半導体電極及びそれを含む太陽電池
JP2000294304A (ja) * 1999-04-02 2000-10-20 Idemitsu Kosan Co Ltd 色素増感型光半導体およびそれを用いた色素増感型太陽電池
JP2001160426A (ja) * 1999-09-24 2001-06-12 Toshiba Corp 色素増感型太陽電池、その製造方法およびこれを用いた携帯用機器
JP2006310134A (ja) * 2005-04-28 2006-11-09 Institute Of National Colleges Of Technology Japan チタニア粒子から構成される多孔質薄膜電極及びその改質法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100291456B1 (ko) * 1996-06-19 2001-09-07 모리시타 요이찌 광전자재료및그를이용한장치와,광전자재료의제조방법
US7118936B2 (en) * 2001-10-11 2006-10-10 Bridgestone Corporation Organic dye-sensitized metal oxide semiconductor electrode and its manufacturing method, and organic dye-sensitized solar cell
JP4563697B2 (ja) * 2003-04-04 2010-10-13 シャープ株式会社 色素増感太陽電池およびその製造方法
EP1513171A1 (en) * 2003-09-05 2005-03-09 Sony International (Europe) GmbH Tandem dye-sensitised solar cell and method of its production
US8115093B2 (en) * 2005-02-15 2012-02-14 General Electric Company Layer-to-layer interconnects for photoelectric devices and methods of fabricating the same
JP2006315923A (ja) * 2005-05-13 2006-11-24 Kenji Yamamoto 半導体ナノ粒子の製造方法
KR100696636B1 (ko) * 2005-08-18 2007-03-19 삼성에스디아이 주식회사 염료감응 태양 전지용 염료 및 이로부터 제조된 염료감응태양 전지
JP4980603B2 (ja) * 2005-10-19 2012-07-18 株式会社ブリヂストン ケイ素微粒子の製造方法
JP2007234580A (ja) * 2006-02-02 2007-09-13 Sony Corp 色素増感型光電変換装置
CN101330111A (zh) * 2007-06-18 2008-12-24 精碟科技股份有限公司 染料敏化太阳能电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154275A (ja) 1984-08-22 1986-03-18 Kimura:Kk 飲料水用の浄水剤の製造法及びその浄化浄水装置
JP2955646B2 (ja) 1996-09-12 1999-10-04 工業技術院長 有機色素増感型酸化物半導体電極及びそれを含む太陽電池
JP2000294304A (ja) * 1999-04-02 2000-10-20 Idemitsu Kosan Co Ltd 色素増感型光半導体およびそれを用いた色素増感型太陽電池
JP2001160426A (ja) * 1999-09-24 2001-06-12 Toshiba Corp 色素増感型太陽電池、その製造方法およびこれを用いた携帯用機器
JP2006310134A (ja) * 2005-04-28 2006-11-09 Institute Of National Colleges Of Technology Japan チタニア粒子から構成される多孔質薄膜電極及びその改質法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141983A (ja) * 2014-01-28 2015-08-03 京セラ株式会社 半導体粒子ペーストおよびその製法、ならびに光電変換装置

Also Published As

Publication number Publication date
EP2426781A4 (en) 2013-05-22
EP2426781A1 (en) 2012-03-07
CN102460822A (zh) 2012-05-16
KR101246385B1 (ko) 2013-03-22
CN102460822B (zh) 2015-04-15
US20120118375A1 (en) 2012-05-17
KR20120003011A (ko) 2012-01-09

Similar Documents

Publication Publication Date Title
WO2010125974A1 (ja) 半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法
WO2007007671A1 (ja) 光電変換素子用シール剤及びそれを用いた光電変換素子
JP2014200926A (ja) 透明導電フィルムおよび電気素子
JP2007134328A (ja) 太陽電池及びその製造方法
KR20110016289A (ko) 탄소나노판 복합체 제조방법
CN104638066B (zh) ZnO/ZnS/FeS2核壳结构阵列薄膜及制备方法
JP5519178B2 (ja) 半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法
JP5363125B2 (ja) 透明導電性膜積層基板とその製造方法
JP5519180B2 (ja) 半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法
JP5519179B2 (ja) 半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法
JPH11219734A (ja) 光電変換材料用半導体及びこの半導体を用いた積層体並びにこれらの製造方法及び光電池
KR101998586B1 (ko) 그래핀 기반의 쇼트키 접합 태양전지 및 이의 제조 방법
JP2009065216A (ja) 光電変換素子
JP2010129379A (ja) 湿潤ゲル体膜、透明導電性膜および透明導電性膜積層基板並びにそれらの製造方法
WO2012060418A1 (ja) 樹脂材料の製造方法、樹脂材料、太陽電池モジュールの製造方法及び太陽電池モジュール
Yan et al. Dual Defocused Laser Pyrolysis: A Lasing‐Centric Strategy for Defect and Morphological Optimization in Microsupercapacitor Electrodes
JP5720837B2 (ja) 光学変換装置及び同装置を含む電子機器
JP2012099650A (ja) 太陽電池モジュールの製造方法及び太陽電池モジュール
CN114231163A (zh) 一种聚氨酯类有机无机复合材料及其制备方法和应用
JP4195225B2 (ja) 光電変換素子及びこれを用いた色素増感型太陽電池
CN114940804B (zh) 一种稀土基绝缘材料及其制备工艺
KR102258124B1 (ko) 광활성층의 제조방법, 이에 의해 제조된 광활성층을 포함하는 소자
JP2006019190A (ja) 光電気セル
KR102189350B1 (ko) 은나노 와이어 기반의 투명전극 및 이의 제조방법
KR101042096B1 (ko) 염료감응형 태양전지 및 염료감응형 태양전지용 이산화티타늄-카본나노튜브 페이스트 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029668.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010769673

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117028295

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13318244

Country of ref document: US