WO2010125974A1 - 半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法 - Google Patents
半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法 Download PDFInfo
- Publication number
- WO2010125974A1 WO2010125974A1 PCT/JP2010/057217 JP2010057217W WO2010125974A1 WO 2010125974 A1 WO2010125974 A1 WO 2010125974A1 JP 2010057217 W JP2010057217 W JP 2010057217W WO 2010125974 A1 WO2010125974 A1 WO 2010125974A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fine particles
- electrode
- silicon fine
- disposed
- metal oxide
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 75
- 238000004519 manufacturing process Methods 0.000 title claims description 44
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 91
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 89
- 239000000758 substrate Substances 0.000 claims abstract description 69
- 239000002245 particle Substances 0.000 claims abstract description 30
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 212
- 229910052710 silicon Inorganic materials 0.000 claims description 212
- 239000010703 silicon Substances 0.000 claims description 212
- 239000010419 fine particle Substances 0.000 claims description 195
- 238000005530 etching Methods 0.000 claims description 47
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 32
- 229910052799 carbon Inorganic materials 0.000 claims description 32
- 239000011812 mixed powder Substances 0.000 claims description 28
- 239000003792 electrolyte Substances 0.000 claims description 23
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 18
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims description 17
- 239000012298 atmosphere Substances 0.000 claims description 16
- 238000010304 firing Methods 0.000 claims description 16
- 239000003054 catalyst Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 15
- 239000003566 sealing material Substances 0.000 claims description 13
- 238000001816 cooling Methods 0.000 claims description 11
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 10
- 239000005011 phenolic resin Substances 0.000 claims description 10
- 239000007800 oxidant agent Substances 0.000 claims description 9
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical group CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 claims description 6
- 230000035699 permeability Effects 0.000 claims description 3
- 238000002834 transmittance Methods 0.000 claims description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 6
- 229910001111 Fine metal Inorganic materials 0.000 abstract 2
- 239000011856 silicon-based particle Substances 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 50
- 238000010438 heat treatment Methods 0.000 description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 26
- 239000007789 gas Substances 0.000 description 26
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 14
- 239000000243 solution Substances 0.000 description 13
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 12
- 150000002430 hydrocarbons Chemical group 0.000 description 11
- 239000002243 precursor Substances 0.000 description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- -1 polyethylene terephthalate Polymers 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 229910010271 silicon carbide Inorganic materials 0.000 description 9
- 239000000428 dust Substances 0.000 description 8
- 238000000605 extraction Methods 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 150000003377 silicon compounds Chemical group 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 7
- 235000012239 silicon dioxide Nutrition 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000011244 liquid electrolyte Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 150000002894 organic compounds Chemical group 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 229920003987 resole Polymers 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- CWAFVXWRGIEBPL-UHFFFAOYSA-N ethoxysilane Chemical compound CCO[SiH3] CWAFVXWRGIEBPL-UHFFFAOYSA-N 0.000 description 2
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 2
- 239000007849 furan resin Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 1
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 239000005770 Eugenol Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 229920003189 Nylon 4,6 Polymers 0.000 description 1
- 229920000007 Nylon MXD6 Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004954 Polyphthalamide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052454 barium strontium titanate Inorganic materials 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229940006460 bromide ion Drugs 0.000 description 1
- ZZHNUBIHHLQNHX-UHFFFAOYSA-N butoxysilane Chemical compound CCCCO[SiH3] ZZHNUBIHHLQNHX-UHFFFAOYSA-N 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- WJKVFIFBAASZJX-UHFFFAOYSA-N dimethyl(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](C)(C)C1=CC=CC=C1 WJKVFIFBAASZJX-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229960002217 eugenol Drugs 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- HDNHWROHHSBKJG-UHFFFAOYSA-N formaldehyde;furan-2-ylmethanol Chemical compound O=C.OCC1=CC=CO1 HDNHWROHHSBKJG-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000006459 hydrosilylation reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- 229940006461 iodide ion Drugs 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229930007744 linalool Natural products 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- ARYZCSRUUPFYMY-UHFFFAOYSA-N methoxysilane Chemical compound CO[SiH3] ARYZCSRUUPFYMY-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 229930003658 monoterpene Natural products 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- ZWLPBLYKEWSWPD-UHFFFAOYSA-N o-toluenecarboxylic acid Natural products CC1=CC=CC=C1C(O)=O ZWLPBLYKEWSWPD-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- LPNBBFKOUUSUDB-UHFFFAOYSA-N p-toluic acid Chemical compound CC1=CC=C(C(O)=O)C=C1 LPNBBFKOUUSUDB-UHFFFAOYSA-N 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000555 poly(dimethylsilanediyl) polymer Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920006111 poly(hexamethylene terephthalamide) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920006375 polyphtalamide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- ZMYXZXUHYAGGKG-UHFFFAOYSA-N propoxysilane Chemical compound CCCO[SiH3] ZMYXZXUHYAGGKG-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000011134 resol-type phenolic resin Substances 0.000 description 1
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 1
- 229960001755 resorcinol Drugs 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 229940095068 tetradecene Drugs 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 150000003739 xylenols Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2027—Light-sensitive devices comprising an oxide semiconductor electrode
- H01G9/2031—Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
-
- H01L31/04—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2045—Light-sensitive devices comprising a semiconductor electrode comprising elements of the fourth group of the Periodic Table with or without impurities, e.g. doping materials
-
- H01L31/0224—
-
- H01L31/18—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2027—Light-sensitive devices comprising an oxide semiconductor electrode
- H01G9/2036—Light-sensitive devices comprising an oxide semiconductor electrode comprising mixed oxides, e.g. ZnO covered TiO2 particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2059—Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a semiconductor electrode that converts light energy into electric energy, a solar cell using the semiconductor electrode, and a method for manufacturing the semiconductor electrode.
- substrates such as crystalline silicon (Si) and amorphous silicon are used as photoelectric conversion elements (see Patent Document 1).
- Some conventional solar cells use an oxide semiconductor sensitized with an organic dye instead of silicon as a photoelectric conversion element (see Patent Document 2).
- the photoelectric conversion element converts light energy into electrical energy.
- an object of the present invention is to provide a new semiconductor electrode that can be used as an electrode for a solar cell, a solar cell using the semiconductor electrode, and a method for manufacturing the semiconductor electrode.
- a feature of the present invention is that it has a transparent electrode disposed on the surface of a light-transmitting substrate, and in the transparent electrode, a metal oxide layer is disposed on the opposite surface of the surface disposed on the substrate.
- the metal oxide layer includes silicon fine particles that absorb a specific wavelength among wavelengths of light transmitted through the substrate, and metal oxide fine particles, and the silicon fine particles are formed of the metal oxide.
- the gist is to be disposed between the fine particles.
- the silicon fine particles are formed in a predetermined particle size by etching the mixed powder containing the silicon fine particles with an etching solution containing hydrofluoric acid and an oxidizing agent.
- H atoms added to the surface of the silicon fine particles during the etching are substituted with unsaturated hydrocarbon groups.
- the unsaturated hydrocarbon group has a hydrophilic group.
- Another feature of the present invention is that the silicon fine particles having a plurality of types of particle diameters are mixed and used.
- the semiconductor electrode has light-transmitting properties and has an incident surface on which light is incident, a counter electrode disposed to face the semiconductor electrode, the semiconductor electrode, and the counter electrode An electrolyte disposed in a space between the first electrode and a sealing material that seals the electrolyte disposed in the space, and converts light energy of light incident on the semiconductor electrode into electrical energy.
- the semiconductor electrode has a transparent electrode disposed on a surface opposite to the incident surface side of the light-transmitting substrate, and the transparent electrode is disposed on the substrate.
- a metal oxide layer is disposed on the opposite surface of the surface, and the metal oxide layer includes silicon fine particles that absorb a specific wavelength among light wavelengths transmitted through the substrate, and metal oxide fine particles. And the silicon fine particles are fine particles of the metal oxide It is the fact that the gist disposed between.
- the silicon fine particles are formed in a predetermined particle size by etching the mixed powder containing the silicon fine particles with an etching solution containing hydrofluoric acid and an oxidizing agent.
- the solar cell has at least one intermediate electrode having a transparent substrate having light permeability and the transparent electrode, and the metal oxide layer is formed on the surface of the intermediate electrode.
- the intermediate electrode is located between the semiconductor electrode and the counter electrode, and between the semiconductor electrode and the intermediate electrode and between the intermediate electrode and the counter electrode.
- the gist is to be sealed with the sealing material in a state where the electrolyte is filled.
- the intermediate electrode is disposed on a light-transmitting transparent base material and the incident surface of the transparent base material, and a catalyst electrode is disposed on the surface on the incident surface side.
- the gist of the present invention is to have a first transparent electrode that is formed and a second transparent electrode that is disposed on a surface opposite to the incident surface of the transparent substrate.
- Another feature of the present invention is that the silicon fine particles contained in the metal oxide layer disposed on the semiconductor electrode and the metal oxide layer disposed on the intermediate electrode are provided for each metal oxide layer.
- the gist is that the particle sizes are different.
- Other features of the present invention include a step of firing a mixture containing a silicon source and a carbon source in an inert atmosphere, a step of extracting a product gas from the inert atmosphere and rapidly cooling to obtain a mixed powder containing silicon fine particles, Extracting the silicon fine particles from the mixed powder; and a transparent electrode is disposed on the surface of the light-transmitting substrate.
- a metal oxide is formed on the surface opposite to the surface disposed on the substrate.
- the gist of the invention is to include a step of disposing a physical layer and a step of adsorbing the silicon fine particles to the metal oxide layer.
- the step of extracting the silicon fine particles includes a step of etching by immersing the mixed powder in an etching solution containing hydrofluoric acid and an oxidizing agent.
- Another feature of the present invention is that, in the etching step, the particle size of the silicon fine particles is controlled by adjusting the etching time.
- the step of extracting the silicon fine particles includes a termination step of substituting H atoms added to the surface of the silicon fine particles by unsaturated hydrocarbon groups by the etching.
- the silicon source is ethyl silicate.
- the carbon source is a phenol resin.
- a new semiconductor electrode that can be used as an electrode for a solar cell, a solar cell using the semiconductor electrode, and a method for manufacturing a new semiconductor electrode that can be used for a solar cell can be provided.
- FIG. 1 is a configuration diagram of a single-layer solar cell according to an embodiment of the present invention.
- FIG. 2 is a configuration diagram of a tandem solar cell according to an embodiment of the present invention.
- FIG. 3 is a configuration diagram illustrating an intermediate electrode according to an embodiment of the present invention.
- FIG. 4 is a flowchart illustrating a mixed powder containing silicon fine particles.
- FIG. 5 is a flowchart illustrating a method for manufacturing a semiconductor electrode.
- FIG. 6 is a schematic view of a manufacturing apparatus used for manufacturing silicon fine particles.
- Embodiments of a semiconductor electrode and a solar cell according to the present invention will be described with reference to the drawings. Specifically, (1) structure of solar cell, (2) silicon fine particle and semiconductor electrode production method, (3) silicon source and carbon source, (4) silicon fine particle production apparatus, (5) action and effect, (6) Other embodiments will be described.
- FIG. 1 is a configuration diagram of a single layer type solar cell according to the present invention.
- the solar cell 1 includes a semiconductor electrode 10, a counter electrode 20, an electrolyte 30, and a sealing material 40.
- the semiconductor electrode 10 is light transmissive and has an incident surface 11a on which light is incident.
- the counter electrode 20 is disposed to face the semiconductor electrode 10.
- the electrolyte 30 is disposed in a space between the semiconductor electrode 10 and the counter electrode 20.
- the sealing material 40 seals the electrolyte 30 disposed in the space.
- the transparent electrode 12 and the counter electrode 20 are electrically connected by a terminal and an electric wire (not shown).
- the solar cell 1 converts light energy of light incident on the semiconductor electrode 10 into electric energy.
- the semiconductor electrode 10 includes a substrate 11, a transparent electrode 12, and a metal oxide layer 13.
- the transparent electrode 12 is disposed on the surface of the substrate 11 having optical transparency. Specifically, in the substrate 11 having light transmittance and having the incident surface 11a, the substrate 11 is disposed on the surface opposite to the incident surface 11a side.
- a metal oxide layer 13 is disposed on the surface opposite to the surface disposed on the substrate 11. That is, the substrate 11 is disposed on one surface of the transparent electrode 12 on the incident surface 11a side, and the metal oxide layer 13 is disposed on the other surface opposite to the one surface of the transparent electrode 12.
- the transparent electrode 12 is located closer to the incident surface 11a than the metal oxide layer 13.
- the metal oxide layer 13 includes metal oxide fine particles 14 and silicon fine particles 15.
- the substrate 11 is a substrate having optical transparency.
- the substrate 11 has an incident surface 11a on which light is incident.
- Examples of the material used for the substrate 11 include silicate glass and a plastic substrate.
- Various plastic substrates may be bonded together.
- a resin having a glass transition temperature of 50 ° C. or higher is preferable.
- polyester resins such as polyethylene terephthalate, polycyclohexylene terephthalate, and polyethylene naphthalate
- polyamide resins such as nylon 46, modified nylon 6T, nylon MXD6, and polyphthalamide
- ketone resins such as polyphenylene sulfide and polythioethersulfine Sulphone resins such as polysulfone and polyethersulfone, polyether nitrile, polyarylate, polyetherimide, polyamideimide, polycarbonate, polymethyl methacrylate, triacetyl cellulose, polystyrene, polyvinyl chloride and other organic resins as the main component
- a transparent resin substrate can be used.
- polycarbonate, polymethyl methacrylate, polyvinyl chloride, polystyrene, and polyethylene terephthalate are excellent in transparency. Also, the birefringence value is good.
- the transparent electrode 12 is a thin film of conductive metal oxide containing In 2 O 3 and SnO 2 .
- conductive metal oxides include In 2 O 3 : Sn (ITO), SnO 2 : Sb (ATO), SnO 2 : F (FTO), ZnO: Al (AZO), ZnO: F, CdSnO 4 can be mentioned.
- titanium oxide As the metal oxide fine particles 14, one or more of known semiconductors such as titanium oxide, zinc oxide, tungsten oxide, antimony oxide, niobium oxide, indium oxide, barium titanate, strontium titanate, and cadmium sulfide are used. Can be used. From the viewpoint of stability, it is preferable to use titanium oxide.
- titanium oxide include various types of titanium oxide such as anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide, metatitanic acid, orthotitanic acid, titanium hydroxide, and hydrous titanium oxide.
- the silicon fine particles 15 have a characteristic of absorbing a specific wavelength corresponding to the particle diameter among wavelengths of light transmitted through the substrate 11. That is, the silicon fine particles 15 are excited by light having a specific wavelength and emit electrons.
- the silicon fine particles 15 are disposed between the metal oxide fine particles 14.
- the silicon fine particles 15 are disposed around the metal oxide layer 13. That is, the silicon fine particles 15 are disposed so as to cover the metal oxide fine particles 14.
- the silicon fine particles 15 are used by mixing a plurality of types of silicon fine particles.
- the particle size of the silicon fine particles 15 is included in a predetermined size range.
- the predetermined size range is a range in which the silicon fine particles 15 are excited by light having a specific wavelength to emit electrons.
- the silicon fine particles 15 may be generated by immersing a mixed powder of silicon dioxide and silicon in an etching solution.
- the particle size of the silicon fine particles 15 is determined by the etching time in the etching process.
- the silicon fine particles 15 are obtained by immersing a mixed powder of silicon dioxide and silicon in an etching solution and then etching to replace H atoms added to the surface of the silicon fine particles 15 with unsaturated hydrocarbon groups having hydrophilic groups. You may do it.
- the metal oxide fine particles 14 and the silicon fine particles 15 may be dispersed in a binder and applied to the transparent electrode 12.
- the binder only needs to disperse the metal oxide fine particles 14 and the silicon fine particles 15.
- polymers are used.
- polyalkylene glycol for example, polyethylene glycol
- acrylic resin for example, polyethylene glycol
- polyester for example, polyurethane
- epoxy resin for example, epoxy resin
- silicon resin fluorine resin
- polyvinyl acetate polyvinyl alcohol
- polyacetal polybutyral
- petroleum resin polystyrene, fiber resin, etc.
- the electrolyte 30 is, for example, a redox electrolyte. Examples thereof include I ⁇ / I 3 ⁇ system, Br ⁇ / Br 3 ⁇ system, and quinone / hydroquinone system. An electrolyte of the I ⁇ / I 3 ⁇ system can be obtained by mixing an ammonium salt of iodine and iodine.
- the electrolyte 30 may be a liquid or a solid. For example, a liquid electrolyte or a solid polymer electrolyte containing a liquid electrolyte in a polymer substance.
- an electrochemically inert electrolyte can be used as the solvent for the liquid electrolyte.
- the liquid electrolyte for example, acetonitrile, propylene carbonate, ethylene carbonate, or the like can be used.
- the solvent for the liquid electrolyte may have conductivity. I 3 - it is preferred to use those having a catalytic ability to perform fast enough the reduction reaction of oxidized-type redox ions such as ions.
- a platinum electrode, a surface of a conductive material subjected to platinum plating or platinum deposition, rhodium metal, ruthenium metal, ruthenium oxide, carbon, and the like can be given.
- the solar cell 1 is fabricated using each of the above-described configurations.
- a metal oxide layer 13 is formed on the substrate 11 on which the transparent electrode 12 is formed.
- a dispersion in which a binder is added to the metal oxide fine particles 14 as necessary is prepared and applied onto the substrate 11 to form the metal oxide fine particles 14. If necessary, after heating, pressurizing and the like, the substrate 11 is immersed in the silicon fine particle dispersion, and the silicon fine particles 15 are adsorbed on the surface of the metal oxide fine particles 14. Heating or the like may be added to strengthen the chemical bond.
- the counter electrode 20 uses a substrate in which a transparent base material and a catalyst transparent electrode (for example, a platinum electrode produced by vacuum deposition) are disposed on the incident surface side surface of the transparent base material. The counter electrode 20 is bonded to the substrate 11 on which the metal oxide layer 13 is disposed via the sealing material 40. An electrolyte 30 is sealed in a space between the substrate 11 and the counter electrode 20.
- the silicon fine particles 15 arranged around the metal oxide fine particles 14 absorb a specific wavelength corresponding to the particle diameter among wavelengths of light transmitted through the substrate 11. That is, the silicon fine particles 15 are excited by light having a specific wavelength and emit electrons. The emitted electrons are delivered to the transparent electrode 12 through the metal oxide fine particles 14. The holes remaining in the silicon fine particles 15 oxidize the electrolyte 30. For example, I ⁇ is changed to I 3 ⁇ or Br ⁇ is changed to Br 3 ⁇ . The oxidized iodide ion or bromide ion receives electrons again at the counter electrode 20 and is reduced. Thus, a solar cell is comprised by an electron cycling between both poles.
- FIG. 2 is a configuration diagram of a tandem solar cell according to the present invention.
- the solar cell 2 includes a semiconductor electrode 10, a plurality of intermediate electrodes 500, a counter electrode 20, an electrolyte 30, and a sealing material 40.
- the substrate 11 is light transmissive and has an incident surface 11a.
- a catalyst transparent electrode for example, a platinum electrode produced by vacuum deposition
- the solar cell 2 has at least one intermediate electrode 500. In the present embodiment, the solar cell 2 has four intermediate electrodes 500.
- the configuration of the intermediate electrode 500 is shown in FIG.
- the intermediate electrode 500 includes a transparent substrate 501, a transparent electrode 502, and a transparent electrode 504.
- the transparent substrate 501 has light transparency.
- the transparent base material 501 can use the same material as the substrate 11.
- the transparent electrode 502 is disposed on the incident surface of the transparent substrate 501.
- a catalyst electrode 503 is formed on the incident-side surface of the transparent electrode 502. Therefore, the catalyst electrode 503 is in contact with the electrolyte 30. Examples of the catalyst electrode 503 include a platinum electrode manufactured by vacuum deposition.
- the transparent electrode 504 is disposed on the surface opposite to the incident surface of the transparent substrate 501. Therefore, the transparent electrode 504 is in contact with the metal oxide layer.
- the same material as the transparent electrode 12 can be used for the transparent electrode 502 and the transparent electrode 504.
- the intermediate electrode 500 is located between the semiconductor electrode 10 and the counter electrode 20.
- the gap between the semiconductor electrode 10 and the intermediate electrode 500 and the gap between the intermediate electrode 500 and the counter electrode 20 are sealed with the sealing material 40 while being filled with the electrolyte 30.
- the solar cell 2 has a plurality of intermediate electrodes 500.
- the sealing material is filled not only between the semiconductor electrode 10 and the intermediate electrode 500 and between the intermediate electrode 500 and the counter electrode 20 but also between the intermediate electrode 500 and the intermediate electrode 500. 40 is sealed. Therefore, the electrolyte 30 is disposed in the space between the intermediate electrode 500 and the intermediate electrode 500.
- the sealing material 40 seals the electrolyte 30 in the space.
- a metal oxide layer is disposed on the surface of the intermediate electrode 500.
- the metal oxide layer has metal oxide fine particles 14 on which silicon fine particles are supported.
- a metal oxide layer 130, a metal oxide layer 230, a metal oxide layer 330, and a metal oxide layer 430 are disposed on the surface of each intermediate electrode 500, respectively.
- the metal oxide layer 130 includes metal oxide fine particles 14 and silicon fine particles 115.
- the metal oxide layer 230 includes metal oxide fine particles 14 and silicon fine particles 215.
- the metal oxide layer 330 includes metal oxide fine particles 14 and silicon fine particles 315.
- the metal oxide layer 430 includes metal oxide fine particles 14 and silicon fine particles 415.
- the silicon fine particles 15, the silicon fine particles 115, the silicon fine particles 215, the silicon fine particles 315, and the silicon fine particles 415 are so-called silicon nanodots.
- the silicon fine particles 115, the silicon fine particles 215, the silicon fine particles 315, and the silicon fine particles 415 the same material as the silicon fine particles 15 can be used.
- the particle size of the silicon fine particles is classified for each predetermined size. That is, the particle sizes of the silicon fine particles 15, the silicon fine particles 115, the silicon fine particles 215, the silicon fine particles 315, and the silicon fine particles 415 are different from each other. Therefore, the silicon fine particles contained in the metal oxide layer disposed on the semiconductor electrode 10 and the metal oxide layer disposed on the intermediate electrode 500 have different particle sizes for each metal oxide layer.
- the silicon fine particles 15, the silicon fine particles 115, the silicon fine particles 215, the silicon fine particles 315, and the silicon fine particles 415 absorb different specific wavelengths among the wavelengths of light transmitted through the substrate 11.
- the absorption wavelength of the silicon fine particles 15 is 500 nm.
- the absorption wavelength of the silicon fine particles 115 is 600 nm.
- the absorption wavelength of the silicon fine particles 215 is 700 nm.
- the absorption wavelength of the silicon fine particles 315 is 900 nm.
- the absorption wavelength of the silicon fine particles 415 is 1100 nm.
- Silicon Fine Particle A manufacturing process for manufacturing the above-described silicon fine particle 15, silicon fine particle 115, silicon fine particle 215, silicon fine particle 315, and silicon fine particle 415 will be described.
- the silicon fine particles 15, the silicon fine particles 115, the silicon fine particles 215, the silicon fine particles 315, and the silicon fine particles 415 are collectively referred to as silicon fine particles or silicon fine particles 15 as appropriate.
- a powder (silicon carbide powder) used for forming the silicon carbide sintered body is manufactured.
- a method for producing silicon carbide powder there is a method of firing a high-purity silicon carbide precursor (referred to as a high-purity precursor).
- the high purity precursor is a mixture obtained by homogeneously mixing a silicon source, a carbon source, and a polymerization or crosslinking catalyst.
- the silicon fine particles used in the present embodiment are separated from the gas produced as a by-product in the step of firing the high purity precursor.
- silicon carbide powder from a high-purity precursor, after mixing a silicon source and a carbon source, when the mixture is heated at a temperature of 1600 ° C. or higher in a non-oxidizing atmosphere, silicon carbide (SiC) is converted into a powder. It is taken out.
- silicon monoxide (SiO) gas is generated by a chemical reaction represented by the following formulas (1) and (2) in an inert atmosphere (non-oxidizing atmosphere). Via, silicon carbide is produced. According to this method, silicon carbide is extracted as a powder.
- SiO + 2C ⁇ SiC + CO (2) When the gas extracted from the inert atmosphere after the silicon carbide is generated is rapidly cooled to a temperature of less than 1600 ° C., the present inventors cause a chemical reaction represented by the following formula (3) to generate silicon (Si ) And silicon dioxide (SiO 2 ) was found to be obtained.
- the silicon fine particles used in the present embodiment are included in the mixed powder formed by the formula (3).
- the mixed powder containing silicon fine particles shown as an embodiment of the present invention is to separate silicon fine particles from the gas generated as a by-product in the step of firing the high purity precursor.
- FIG. 4 is a flowchart for explaining a mixed powder containing silicon fine particles. As shown in FIG. 4, the mixed powder containing silicon fine particles has a firing step S1, a rapid cooling step S2, and an extraction step S3.
- the firing step S1 is a step of firing a mixture containing a silicon source and a carbon source in an inert atmosphere.
- the firing step S1 is a mixture in which a silicon source containing at least one silicon compound, a carbon source containing at least one organic compound that generates carbon by heating, and a polymerization or crosslinking catalyst are mixed.
- This is a step of firing (called a high-purity precursor) in an inert atmosphere.
- the silicon source is, for example, ethyl silicate.
- the carbon source is, for example, a phenol resin. Details of the silicon source and the carbon source will be described later.
- a mixture of ethyl silicate as a silicon source, a phenol resin as a carbon source, and maleic acid as a polymerization catalyst is first heated and cured at about 150 ° C.
- the Si / C ratio is preferably 0.5 to 3.0.
- the cured product is heated at 800 to 1200 ° C. in a nitrogen or argon atmosphere for 0.5 to 2 hours. Thereafter, heating is performed at 1500 to 2000 ° C. in a nitrogen or argon atmosphere.
- the rapid cooling step S2 is a step of extracting a generated gas from an inert atmosphere and rapidly cooling to obtain a mixed powder containing silicon fine particles.
- the rapid cooling step S2 is a step in which the gas generated when the high-purity precursor is baked in the baking step is extracted from the inert atmosphere and rapidly cooled. That is, a gas which is a by-product of the reaction for generating silicon carbide by firing a high-purity precursor is taken out and cooled. When the gas as a by-product is cooled under the above conditions, a mixed powder containing silicon fine particles is obtained.
- the product gas is extracted by placing it in an argon gas stream.
- the product gas is quenched to room temperature.
- a mixed powder composed of silicon (Si) and silica (SiO 2 ) is obtained from the generated gas.
- Extraction step S3 is a step of extracting silicon fine particles from the mixed powder. Specifically, the extraction step S3 is a step of extracting silicon fine particles from the mixed powder obtained in the rapid cooling step S2. Silicon is taken out from the mixed powder obtained in the rapid cooling step S2. Thereafter, silicon is extracted from the solvent and dried. Thereby, silicon fine particles having a desired particle diameter are obtained.
- the extraction step S3 includes an etching step S31 in which the mixed powder is etched by being immersed in an etching solution containing hydrofluoric acid and an oxidizing agent.
- the oxidizing agent include nitric acid (HNO3) and hydrogen peroxide (H2O2).
- a hydrophobic solvent such as cyclohexane or a slightly polar solvent such as 2-propanol may be mixed in the etching solution to facilitate the collection of silicon fine particles.
- the etching time is adjusted so that a desired emission peak is obtained. As the etching time becomes longer, the emission peak tends to shift to the shorter wavelength side. For this reason, the particle size of the silicon fine particles can be controlled by adjusting the etching time.
- the silicon fine particle light emitter is taken out of the etching solution.
- the silicon fine particle light emitter is separated from the etching solution by filtering the etching solution.
- the silicon fine particles having a desired extinction coefficient can be obtained by appropriately drying the separated silicon fine particles.
- the extraction step S3 includes a termination step S32 in which H atoms added to the surface of the silicon fine particles by etching are replaced with unsaturated hydrocarbon groups.
- etching step S31 When the etching step S31 is performed, instead of removing the silicon oxide that included the surface of the silicon fine particles, H atoms are partially added to the surface of the silicon fine particles by the hydrofluoric acid used in the etching step. ing. Therefore, inconvenience in handling silicon fine particles may occur. For example, silicon fine particles after the etching step become hydrophobic and easily aggregate in an aqueous solution.
- an unsaturated hydrocarbon group having a hydrophilic group is introduced onto the surface of the silicon fine particle light emitter.
- the H atom of Si—H which is the active terminal of the silicon fine particle, is replaced with a terminal material such as an unsaturated hydrocarbon group having a hydrophilic group.
- the silicon fine particles are mixed with the silicon fine particles in a solution to which the termination material is added. The reaction is promoted by heating or irradiating the mixed solution with ultraviolet rays. Thereby, a silicon fine particle dispersion can be obtained.
- the unsaturated hydrocarbon group only needs to have an unsaturated hydrocarbon group having a hydrophilic group.
- an unsaturated hydrocarbon group having a hydrophilic group For example, 1-decene, tetradecene, 1-octene, styrene and the like can be mentioned.
- generated from the isoprenoid compound which has a hydrophilic group may be sufficient.
- monoterpenoids such as linalool are applicable.
- the unsaturated hydrocarbon group having a hydrophilic group may be a group generated from an allyl compound having a hydrophilic group. For example, allyl alcohol, eugenol, etc. are applicable.
- FIG. 5 is a flowchart illustrating a method for manufacturing the semiconductor electrode 10 according to the present embodiment.
- the manufacturing method of the semiconductor electrode 10 according to the present embodiment includes a step S101 in which the transparent electrode 12 is disposed on the surface of the light-transmitting substrate 11, and a surface opposite to the surface disposed on the substrate 11 in the transparent electrode 12.
- Step S102 in which the metal oxide layer is disposed, and Step S103 in which the silicon fine particles 15 are adsorbed on the metal oxide layer.
- step S103 specifically, the silicon fine particle dispersion obtained through the above-described firing step S1, quenching step S2, and extraction step S3 is supported or adsorbed on the metal oxide layer.
- step S102 for disposing the metal oxide layer 13 on the substrate 11 on which the transparent electrode 12 is disposed, and the firing step S1, the quenching step S2, and the extraction step S3 described above are in the order shown in FIG. It is not limited. That is, after the metal oxide layer 13 is provided on the substrate 11 on which the transparent electrode 12 is provided, the steps (S1 to S3) for producing the silicon fine particles 15 may be performed, or the silicon fine particles 15 are produced. Thereafter, step S102 of disposing the metal oxide layer 13 on the substrate 11 on which the transparent electrode 12 is disposed may be performed.
- Silicon source and carbon source (3-1) Silicon source
- the silicon source containing the silicon compound is at least one selected from the group comprising a liquid silicon compound and a silicon solid synthesized from a hydrolyzable silicon compound.
- a seed containing silicon A liquid silicon source and a solid silicon source can be used in combination. When a plurality of types of silicon sources are used, at least one type is liquid.
- the liquid silicon source is a polymer of alkoxysilane (mono-, di-, tri-, tetra-) and tetraalkoxysilane.
- alkoxysilanes tetraalkoxysilane is preferably used. Specific examples include methoxysilane, ethoxysilane, propoxysilane, butoxysilane and the like. In view of easy handling of the raw material, ethoxysilane is preferably used.
- Examples of the tetraalkoxysilane polymer include a low molecular weight polymer (oligomer) having a polymerization degree of about 2 to 15, and a silicate polymer having a high polymerization degree and exhibiting a liquid state.
- Examples of the solid silicon source that can be used in combination with these include silicon oxide.
- Silicon oxide includes SiO, silica gel (colloidal ultrafine silica-containing liquid, hydroxyl group, alkoxyl group, etc. inside), silicon dioxide (fine silica, quartz powder, etc.) and the like.
- a silicon-containing raw material a group of polymers obtained by trimethylation of a hydrolyzable silicic acid compound, an ester of a hydrolyzable silicon compound and a monovalent or polyhydric alcohol (for example, diol, triol) (for example, four Ethyl silicate synthesized by the reaction of silicon chloride and ethanol), reaction products other than esters obtained by the reaction of hydrolyzable silicon compounds and organic compounds (for example, tetramethylsilane, dimethyldiphenylsilane, polydimethylsilane) ) And the like.
- a monovalent or polyhydric alcohol for example, diol, triol
- reaction products other than esters obtained by the reaction of hydrolyzable silicon compounds and organic compounds for example, tetramethylsilane, dimethyldiphenylsilane, polydimethylsilane
- the silicon solid synthesized from the hydrolyzable silicon compound only needs to react with carbon in a high temperature non-oxidizing atmosphere (in an inert atmosphere) to generate silicon carbide.
- a preferred example of the siliceous solid is amorphous silica fine powder obtained by hydrolysis of silicon tetrachloride.
- the silicon source may be used alone or in combination of two or more.
- silicon sources from the viewpoint of good homogeneity and handling properties, it is preferable to use a tetraethoxysilane oligomer or a mixture of tetraethoxysilane oligomer and fine powder silica.
- the silicon source is preferably a substance containing silicon with high purity.
- high purity indicates that the impurity content of the silicon compound before the formation of the mixture is 20 ppm or less. More preferably, the impurity content is 5 ppm or less.
- the silicon source is preferably one that generates silicon monoxide by heating. Specifically, it is preferable to use ethyl silicate as the silicon source.
- the carbon-containing raw material used as the carbon source is preferably a high-purity organic compound containing oxygen in the molecule and carbon remaining by heating.
- the carbon source is a monomer, oligomer, or polymer composed of any one or two or more organic compounds that can be polymerized or crosslinked by heat, a catalyst, or a crosslinking agent.
- the carbon source include phenol resins, furan resins, urea resins, epoxy resins, unsaturated polyester resins, curable resins such as polyimide resins and polyurethane resins, phenoxy resins, monosaccharides such as glucose, sucrose, etc. And various saccharides such as polysaccharides such as cellulose and starch.
- a resol type or novolac type phenol resin having a high residual carbon ratio and excellent workability is preferable.
- the resol type phenolic resin useful in the present embodiment includes monovalent or divalent phenols such as phenol, cresol, xylenol, resorcin, and bisphenol A in the presence of a catalyst (specifically, ammonia or organic amine). It is produced by reacting aldehydes such as formaldehyde, acetaldehyde and benzaldehyde.
- Carbon source is liquid at normal temperature.
- the carbon source has solubility in a solvent.
- the carbon source has thermoplasticity or heat melting property and becomes soft or liquid by heating.
- the liquid or softening carbon source can be homogeneously mixed with the silicon source.
- a resol type phenol resin, a novolac type phenol resin, or the like can be suitably used as a carbon source.
- a resol type phenol resin is preferably used.
- the polymerization and crosslinking catalyst used for the production of high purity silicon carbide powder can be appropriately selected according to the carbon source.
- the carbon source is a phenol resin or a furan resin
- acids such as maleic acid, toluenesulfonic acid, toluenecarboxylic acid, acetic acid, oxalic acid, sulfuric acid and the like can be mentioned.
- toluenesulfonic acid is preferably used.
- FIG. 6 shows a schematic diagram of a manufacturing device 301 used for manufacturing silicon fine particles.
- the manufacturing apparatus 301 includes a heating container 302 and a stage 308 that holds the heating container 302.
- the heating container 302 contains a mixture (high purity precursor) W in which a silicon source, a carbon source, and a polymerization or crosslinking catalyst are mixed.
- the manufacturing apparatus 301 includes heating elements 310a and 310b.
- the heating elements 310 a and 310 b heat the mixture W inside the heating container 302.
- the manufacturing apparatus 301 includes a heat insulating material 312 that covers the heating container 302 and the heating elements 310a and 310b.
- the manufacturing apparatus 301 includes a suction pipe 321 and a dust collector 322.
- the suction tube 321 is connected to the inside of the heating container 302.
- the suction pipe 321 sucks the gas generated when the mixture W is baked from the inside of the heating container 302 and guides it to the dust collector 322.
- the dust collector 322 collects the mixed powder obtained from the sucked gas.
- the manufacturing apparatus 301 includes a blower 323 and a supply pipe 324 connected to the heating container 302.
- the blower 323 supplies argon gas to the supply pipe 324.
- the supply pipe 324 supplies argon gas into the heating container 302. That is, the argon gas circulates in the order of the supply pipe 324, the heating container 302, and the suction pipe 321 of the manufacturing apparatus 301.
- the gas generated from the mixture W is collected by the dust collector 322 on an argon gas stream.
- the manufacturing apparatus 301 has a solenoid valve 325.
- the electromagnetic valve 325 is provided in the suction pipe 321, and the electromagnetic valve 325 is automatically opened and closed according to the pressure set as the internal pressure of the heating container 302.
- the manufacturing apparatus 301 generates heat from the heating elements 310a and 310b and heats the heating container 302 under a predetermined temperature condition. At this time, the inside of the heating container 302 is maintained in a nitrogen atmosphere or an argon atmosphere. The above corresponds to the firing step S1.
- the manufacturing apparatus 301 operates the blower 323.
- the blower 323 when the blower 323 is activated, the gas generated from the mixture W is extracted from the inside of the heating container 302 to the dust collector 322 via the suction pipe 321 along the air flow of the argon gas supplied from the blower 323. Since the outside of the heat insulating material 312 is at room temperature, the gas guided to the outside of the heating container 302 by riding on an argon gas stream is rapidly cooled to room temperature. At this time, a composite of silicon (Si) and silicon dioxide (SiO 2 ) is obtained from the gas. The obtained composite is collected by a dust collector 322. The above corresponds to the rapid cooling step S2.
- the composite powder (referred to as mixed powder) collected by the dust collector 322 is wet-pulverized with an organic solvent by, for example, a planetary ball mill (not shown in FIG. 6). The above corresponds to the extraction step S3.
- the semiconductor electrode 10 has a transparent electrode 12 disposed on the surface of the substrate 11 having optical transparency.
- a metal is disposed on the opposite surface of the surface disposed on the substrate 11.
- An oxide layer 13 is provided, and the metal oxide layer 13 includes silicon fine particles 15 that absorb a specific wavelength among light wavelengths transmitted through the substrate 11, and metal oxide fine particles 14, and the silicon fine particles. 15 is disposed between the metal oxide fine particles 14.
- the silicon fine particles 15 disposed on the metal oxide layer 13 absorb a specific wavelength among the wavelengths of light transmitted through the substrate 11 and emit electrons. Therefore, the semiconductor electrode 10 can extract light energy of a specific wavelength among the wavelengths of light transmitted through the substrate 11 as electric energy.
- a mixture of silicon fine particles 15 having a plurality of particle sizes is used. Since the silicon fine particles 15 absorb a specific wavelength according to the particle diameter, a mixture of the silicon fine particles 15 having a plurality of particle diameters can be used to widen the wavelength range of light that can be extracted as electric energy. it can. That is, by using silicon fine particles having a plurality of particle diameters, it is possible to cope with a wide range of wavelengths among light wavelengths in the visible light region.
- the solar cell 2 has at least one intermediate electrode 500 having a light-transmitting transparent base material 501, a transparent electrode 502, and a transparent electrode 504.
- the surface of the intermediate electrode 500 has a metal oxide layer 130, a metal The oxide layer 230, the metal oxide layer 330, and the metal oxide layer 430 are disposed, and the intermediate electrode 500 is located between the semiconductor electrode 10 and the counter electrode 20, and the semiconductor electrode 10 and the intermediate electrode 500 are disposed. And between the intermediate electrode 500 and the counter electrode 20 are sealed with the sealing material 40 while being filled with the electrolyte 30.
- the silicon fine particles 15 not only the silicon fine particles 15 but also the silicon fine particles 115, the silicon fine particles 215, the silicon fine particles 315, and the silicon fine particles 415 absorb specific wavelengths and emit electrons, so that light energy can be extracted more as electric energy. it can.
- the silicon fine particles contained in the metal oxide layer 13 disposed in the semiconductor electrode 10 and the metal oxide layer disposed in the intermediate electrode 500 have different particle sizes for each metal oxide layer.
- the wavelength range of light that can be extracted as electric energy can be expanded.
- the manufacturing method of the semiconductor electrode 10 according to the present embodiment includes a step S1 of firing a mixture containing a silicon source and a carbon source in an inert atmosphere, and a mixture containing silicon fine particles 15 by extracting a product gas from the inert atmosphere and rapidly cooling it.
- a step S2 for obtaining powder, a step S3 for extracting the silicon fine particles 15 from the mixed powder, and a transparent electrode is disposed on the surface of the substrate having optical transparency, and the surface disposed on the substrate in the transparent electrode
- a step S103 of adsorbing the silicon fine particles 15 on the metal oxide layer is disposed on the surface of the substrate having optical transparency, and the surface disposed on the substrate in the transparent electrode.
- the silicon fine particles 15 are formed to have a predetermined particle size by etching the mixed powder containing the silicon fine particles 15 with an etching solution containing hydrofluoric acid and an oxidizing agent. By etching with an etching solution, silicon fine particles having a predetermined particle diameter can be easily obtained.
- the particle size of the silicon fine particles 15 is controlled by adjusting the etching time.
- H atoms added to the surface of the silicon fine particles 15 at the time of etching are substituted with unsaturated hydrocarbon groups.
- the silicon fine particles 15 with good handling can be used.
- the aggregation stability of the silicon fine particles is improved, the light absorption characteristics can be maintained for a long time.
- the semiconductor electrode 10 according to the present embodiment can be used as an electrode used in a solar cell.
- Japanese Patent Application No. 2009-111661 (filed on April 30, 2009), Japanese Patent Application No. 2009-111661 (filed on April 30, 2009), and Japanese Patent Application No. 2009-111663.
- the entire contents of (filed April 30, 2009) are hereby incorporated by reference.
- a semiconductor electrode according to the present invention, a solar cell using the semiconductor electrode, and a method for manufacturing the semiconductor electrode include a new semiconductor electrode that can be used as an electrode used in the solar cell, a solar cell using the semiconductor electrode, Since a new method for manufacturing a semiconductor electrode that can be used for a solar cell can be provided, the method is useful in the field of manufacturing a solar cell.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
- Silicon Compounds (AREA)
Abstract
Description
(1-1)単層型
図1は、本発明にかかる単層型の太陽電池の構成図である。太陽電池1は、半導体電極10と、対向電極20と、電解質30と、封止材40とを有する。半導体電極10は、光透過性を有し、光が入射する入射面11aを有する。対向電極20は、半導体電極10に対向して配設される。電解質30は、半導体電極10と対向電極20との間の空間に配設される。封止材40は、空間に配設される電解質30を封止する。透明電極12と、対向電極20とは、図示しない端子及び電線によって電気的に接続される。太陽電池1は、半導体電極10に入射された光の光エネルギーを電気エネルギーに変換する。
図2は、本発明にかかるタンデム型の太陽電池の構成図である。太陽電池2は、半導体電極10と、複数の中間電極500と、対向電極20と、電解質30と、封止材40とを有する。基板11は、光透過性を有し入射面11aを有する。対向電極20としては、透明電極の入射面側の表面に触媒透明電極(例えば、真空蒸着で作製した白金電極)が配設された基板を用いる。太陽電池2は、中間電極500を少なくとも1以上有する。本実施形態において、太陽電池2は、4つの中間電極500を有する。
(2-1)ケイ素微粒子
上述したケイ素微粒子15、ケイ素微粒子115、ケイ素微粒子215、ケイ素微粒子315、及びケイ素微粒子415を製造する製造工程について説明する。以下、ケイ素微粒子15、ケイ素微粒子115、ケイ素微粒子215、ケイ素微粒子315、及びケイ素微粒子415を総称して、ケイ素微粒子又はケイ素微粒子15と適宜表す。
SiO+2C→SiC+CO …(2)
本発明者らは、炭化ケイ素が生成された後の不活性雰囲気から抜き出したガスを1600℃未満の温度まで速やかに冷却すると、下記(3)式に示す化学反応が起こることにより、ケイ素(Si)と二酸化ケイ素(SiO2)とを含む混合粉体が得られることを見出した。本実施形態で使用するケイ素微粒子は、(3)式によってできる混合粉体に含まれる。
上述のように、本発明の実施形態として示すケイ素微粒子を含む混合粉体は、高純度プリカーサを焼成する工程で副生成物として生成されたガスからケイ素微粒子を分離するというものである。
図4は、ケイ素微粒子を含む混合粉体を説明するフローチャートである。図4に示すように、ケイ素微粒子を含む混合粉体は、焼成工程S1と、急冷工程S2と、抽出工程S3とを有する。
図5は、本実施形態に係る半導体電極10の製造方法を説明するフローチャートである。本実施形態に係る半導体電極10の製造方法は、光透過性を有する基板11の表面に透明電極12が配設される工程S101と、透明電極12において基板11に配設される表面の反対面に金属酸化物層が配設される工程S102と、金属酸化物層にケイ素微粒子15を吸着させる工程S103とを有する。工程S103は、具体的には、上述した焼成工程S1、急冷工程S2、抽出工程S3を経て得られたケイ素微粒子分散液を金属酸化物層に担持又は吸着させる。
(3-1)ケイ素源
上記ケイ素化合物を含むケイ素源は、液状のケイ素化合物、加水分解性ケイ素化合物より合成されたケイ素質固体とを含む群より選ばれる少なくとも1種のケイ素含有原料である。液状のケイ素源と固体のケイ素源とを併用することができる。複数種類のケイ素源を用いる場合、少なくとも1種は液状である。
炭素源として使用する炭素含有原料は、分子内に酸素を含有し、加熱により炭素が残留する高純度有機化合物であることが好ましい。炭素源は、熱、触媒、若しくは架橋剤により重合又は架橋して硬化しうる任意の1種もしくは2種以上の有機化合物から構成されるモノマー、オリゴマー及びポリマーである。
高純度の炭化ケイ素粉末の製造に用いられる重合及び架橋触媒は、炭素源に応じて適宜選択できる。例えば、炭素源がフェノール樹脂又はフラン樹脂の場合、マレイン酸、トルエンスルホン酸、トルエンカルボン酸、酢酸、シュウ酸、硫酸等の酸類が挙げられる。これらの中でも、トルエンスルホン酸が好適に用いられる。
(4-1)製造装置の構成
図6にケイ素微粒子の製造に用いられる製造装置301の概略図を示す。製造装置301は、加熱容器302と、加熱容器302を保持するステージ308とを有する。加熱容器302は、ケイ素源と炭素源と、重合又は架橋触媒とを混合した混合物(高純度プリカーサ)Wを収容する。
製造装置301は、発熱体310a、310bを発熱させて、所定の温度条件で加熱容器302を加熱する。このとき、加熱容器302の内部は、窒素雰囲気、或いはアルゴン雰囲気に保持される。以上は、焼成工程S1に相当する。
半導体電極10は、光透過性を有する基板11の表面に配設される透明電極12を有し、透明電極12において、基板11に配設される表面の反対面に金属酸化物層13が配設され、金属酸化物層13は、基板11を透過する光の波長のうち特定の波長を吸収するケイ素微粒子15と、金属酸化物の微粒子14とを有し、ケイ素微粒子15は、金属酸化物の微粒子14の間に配設される。
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
Claims (20)
- 光透過性を有する基板の表面に配設される透明電極を有し、
前記透明電極において、前記基板に配設される表面の反対面に金属酸化物層が配設され、
前記金属酸化物層は、
前記基板を透過する光の波長のうち特定の波長を吸収するケイ素微粒子と、
金属酸化物の微粒子とを有し、
前記ケイ素微粒子は、前記金属酸化物の微粒子の間に配設される半導体電極。 - 前記ケイ素微粒子を含む混合粉体がフッ酸および酸化剤を含むエッチング溶液でエッチングされることにより、前記ケイ素微粒子は、所定の粒径に形成されている請求項1に記載の半導体電極。
- 前記エッチング時に前記ケイ素微粒子の表面に付加されたH原子は、不飽和炭化水素基で置換されている請求項2に記載の半導体電極。
- 前記不飽和炭化水素基は、親水基を有する請求項3に記載の半導体電極。
- 複数種類の粒径の前記ケイ素微粒子が混合して用いられる請求項1から4の何れか1項に記載の半導体電極。
- 光透過性を有し、光が入射する入射面を有する前記半導体電極と、
前記半導体電極に対向して配設される対向電極と、
前記半導体電極と前記対向電極との間の空間に配設される電解質と、
前記空間に配設される前記電解質を封止する封止材とを有し、
前記半導体電極に入射された光の光エネルギーを電気エネルギーに変換する太陽電池であって、
前記半導体電極は、
光透過性を有する基板の前記入射面側とは反対側の表面に配設される透明電極を有し、
前記透明電極において、前記基板に配設される表面の反対面に金属酸化物層が配設され、
前記金属酸化物層は、
前記基板を透過する光の波長のうち特定の波長を吸収するケイ素微粒子と、
金属酸化物の微粒子とを有し、
前記ケイ素微粒子は、前記金属酸化物の微粒子の間に配設される太陽電池。 - 前記ケイ素微粒子を含む混合粉体がフッ酸および酸化剤を含むエッチング溶液でエッチングされることにより、前記ケイ素微粒子は、所定の粒径に形成されている請求項6に記載の太陽電池。
- 前記エッチング時に前記ケイ素微粒子の表面に付加されたH原子は、不飽和炭化水素基で置換されている請求項7に記載の太陽電池。
- 前記不飽和炭化水素基は、親水基を有する請求項8に記載の太陽電池。
- 複数種類の粒径の前記ケイ素微粒子が混合して用いられる請求項6から9の何れか1項に記載の太陽電池。
- 前記太陽電池は、光透過性を有する透明基材と前記透明電極とを有する中間電極を少なくとも1以上有し、
前記中間電極の表面には、前記金属酸化物層が配設されており、
前記中間電極は、前記半導体電極と前記対向電極との間に位置し、
前記半導体電極と前記中間電極との間、及び前記中間電極と前記対向電極との間には、前記電解質が充填された状態で前記封止材によって封止される請求項6から10の何れか1項に記載の太陽電池。 - 前記中間電極は、
光透過性を有する透明基材と、
前記透明基材の前記入射面に配設されており、前記入射面側の表面に触媒電極が配設された第1透明電極と、
前記透明基材の前記入射面とは反対面に配設される第2透明電極とを有する請求項11に記載の太陽電池。 - 前記半導体電極に配設される前記金属酸化物層及び前記中間電極に配設される前記金属酸化物層に含まれる前記ケイ素微粒子は、前記金属酸化物層毎に粒径が異なる請求項11又は12に記載の太陽電池。
- 不活性雰囲気下においてケイ素源と炭素源を含む混合物を焼成する工程と、
前記不活性雰囲気から生成ガスを抜き出し急冷してケイ素微粒子を含む混合粉体を得る工程と、
前記混合粉体から前記ケイ素微粒子を抽出する工程と、
光透過性を有する基板の表面に透明電極が配設され、前記透明電極において、前記基板に配設される表面の反対面に金属酸化物層が配設される工程と、
前記金属酸化物層に前記ケイ素微粒子を吸着させる工程とを有する半導体電極の製造方法。 - 前記ケイ素微粒子を抽出する工程は、
前記混合粉体をフッ酸および酸化剤を含むエッチング溶液に浸漬してエッチングする工程を有する請求項14に記載の半導体電極の製造方法。 - 前記エッチングする工程では、エッチングの時間を調整することにより、前記ケイ素微粒子の粒径を制御する請求項15に記載の半導体電極の製造方法。
- 前記ケイ素微粒子を抽出する工程は、
前記エッチングされることによって前記ケイ素微粒子の表面に付加されたH原子を不飽和炭化水素基で置換する終端工程を有する請求項15又は16に記載の半導体電極の製造方法。 - 前記不飽和炭化水素基は、親水基を有する請求項17に記載の半導体電極の製造方法。
- 前記ケイ素源がエチルシリケートである請求項14から18の何れか1項に記載の半導体電極の製造方法。
- 前記炭素源がフェノール樹脂である請求項14から18の何れか1項に記載の半導体電極の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080029668.9A CN102460822B (zh) | 2009-04-30 | 2010-04-23 | 半导体电极、使用半导体电极的太阳能电池、及半导体电极的制造方法 |
US13/318,244 US20120118375A1 (en) | 2009-04-30 | 2010-04-23 | Semiconductor electrode, solar cell in which semiconductor electrode is used and semiconductor electrode manufacturing method |
EP10769673.4A EP2426781A4 (en) | 2009-04-30 | 2010-04-23 | SEMICONDUCTOR ELECTRODE, SOLAR CELL WITH A SEMICONDUCTOR ELECTRODE AND METHOD FOR PRODUCING SEMICONDUCTOR ELECTRODE |
KR1020117028295A KR101246385B1 (ko) | 2009-04-30 | 2010-04-23 | 반도체 전극, 반도체 전극을 사용한 태양 전지 및 반도체 전극의 제조 방법 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009111661A JP5519178B2 (ja) | 2009-04-30 | 2009-04-30 | 半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法 |
JP2009111662A JP5519179B2 (ja) | 2009-04-30 | 2009-04-30 | 半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法 |
JP2009-111661 | 2009-04-30 | ||
JP2009-111662 | 2009-04-30 | ||
JP2009111663A JP5519180B2 (ja) | 2009-04-30 | 2009-04-30 | 半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法 |
JP2009-111663 | 2009-04-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010125974A1 true WO2010125974A1 (ja) | 2010-11-04 |
Family
ID=43032126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/057217 WO2010125974A1 (ja) | 2009-04-30 | 2010-04-23 | 半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120118375A1 (ja) |
EP (1) | EP2426781A4 (ja) |
KR (1) | KR101246385B1 (ja) |
CN (1) | CN102460822B (ja) |
WO (1) | WO2010125974A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015141983A (ja) * | 2014-01-28 | 2015-08-03 | 京セラ株式会社 | 半導体粒子ペーストおよびその製法、ならびに光電変換装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9455366B2 (en) * | 2013-03-15 | 2016-09-27 | Lawrence Livermore National Security, Llc | Sol-gel process for the manufacture of high power switches |
JP6214281B2 (ja) * | 2013-08-30 | 2017-10-18 | クラリオン株式会社 | 車載用カメラ |
CN109326658A (zh) * | 2018-09-13 | 2019-02-12 | 福州大学 | 一种亲水性电极及其在制备太阳能光伏电池上的应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6154275A (ja) | 1984-08-22 | 1986-03-18 | Kimura:Kk | 飲料水用の浄水剤の製造法及びその浄化浄水装置 |
JP2955646B2 (ja) | 1996-09-12 | 1999-10-04 | 工業技術院長 | 有機色素増感型酸化物半導体電極及びそれを含む太陽電池 |
JP2000294304A (ja) * | 1999-04-02 | 2000-10-20 | Idemitsu Kosan Co Ltd | 色素増感型光半導体およびそれを用いた色素増感型太陽電池 |
JP2001160426A (ja) * | 1999-09-24 | 2001-06-12 | Toshiba Corp | 色素増感型太陽電池、その製造方法およびこれを用いた携帯用機器 |
JP2006310134A (ja) * | 2005-04-28 | 2006-11-09 | Institute Of National Colleges Of Technology Japan | チタニア粒子から構成される多孔質薄膜電極及びその改質法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100291456B1 (ko) * | 1996-06-19 | 2001-09-07 | 모리시타 요이찌 | 광전자재료및그를이용한장치와,광전자재료의제조방법 |
US7118936B2 (en) * | 2001-10-11 | 2006-10-10 | Bridgestone Corporation | Organic dye-sensitized metal oxide semiconductor electrode and its manufacturing method, and organic dye-sensitized solar cell |
JP4563697B2 (ja) * | 2003-04-04 | 2010-10-13 | シャープ株式会社 | 色素増感太陽電池およびその製造方法 |
EP1513171A1 (en) * | 2003-09-05 | 2005-03-09 | Sony International (Europe) GmbH | Tandem dye-sensitised solar cell and method of its production |
US8115093B2 (en) * | 2005-02-15 | 2012-02-14 | General Electric Company | Layer-to-layer interconnects for photoelectric devices and methods of fabricating the same |
JP2006315923A (ja) * | 2005-05-13 | 2006-11-24 | Kenji Yamamoto | 半導体ナノ粒子の製造方法 |
KR100696636B1 (ko) * | 2005-08-18 | 2007-03-19 | 삼성에스디아이 주식회사 | 염료감응 태양 전지용 염료 및 이로부터 제조된 염료감응태양 전지 |
JP4980603B2 (ja) * | 2005-10-19 | 2012-07-18 | 株式会社ブリヂストン | ケイ素微粒子の製造方法 |
JP2007234580A (ja) * | 2006-02-02 | 2007-09-13 | Sony Corp | 色素増感型光電変換装置 |
CN101330111A (zh) * | 2007-06-18 | 2008-12-24 | 精碟科技股份有限公司 | 染料敏化太阳能电池 |
-
2010
- 2010-04-23 KR KR1020117028295A patent/KR101246385B1/ko not_active IP Right Cessation
- 2010-04-23 EP EP10769673.4A patent/EP2426781A4/en not_active Withdrawn
- 2010-04-23 WO PCT/JP2010/057217 patent/WO2010125974A1/ja active Application Filing
- 2010-04-23 US US13/318,244 patent/US20120118375A1/en not_active Abandoned
- 2010-04-23 CN CN201080029668.9A patent/CN102460822B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6154275A (ja) | 1984-08-22 | 1986-03-18 | Kimura:Kk | 飲料水用の浄水剤の製造法及びその浄化浄水装置 |
JP2955646B2 (ja) | 1996-09-12 | 1999-10-04 | 工業技術院長 | 有機色素増感型酸化物半導体電極及びそれを含む太陽電池 |
JP2000294304A (ja) * | 1999-04-02 | 2000-10-20 | Idemitsu Kosan Co Ltd | 色素増感型光半導体およびそれを用いた色素増感型太陽電池 |
JP2001160426A (ja) * | 1999-09-24 | 2001-06-12 | Toshiba Corp | 色素増感型太陽電池、その製造方法およびこれを用いた携帯用機器 |
JP2006310134A (ja) * | 2005-04-28 | 2006-11-09 | Institute Of National Colleges Of Technology Japan | チタニア粒子から構成される多孔質薄膜電極及びその改質法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015141983A (ja) * | 2014-01-28 | 2015-08-03 | 京セラ株式会社 | 半導体粒子ペーストおよびその製法、ならびに光電変換装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2426781A4 (en) | 2013-05-22 |
EP2426781A1 (en) | 2012-03-07 |
CN102460822A (zh) | 2012-05-16 |
KR101246385B1 (ko) | 2013-03-22 |
CN102460822B (zh) | 2015-04-15 |
US20120118375A1 (en) | 2012-05-17 |
KR20120003011A (ko) | 2012-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010125974A1 (ja) | 半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法 | |
WO2007007671A1 (ja) | 光電変換素子用シール剤及びそれを用いた光電変換素子 | |
JP2014200926A (ja) | 透明導電フィルムおよび電気素子 | |
JP2007134328A (ja) | 太陽電池及びその製造方法 | |
KR20110016289A (ko) | 탄소나노판 복합체 제조방법 | |
CN104638066B (zh) | ZnO/ZnS/FeS2核壳结构阵列薄膜及制备方法 | |
JP5519178B2 (ja) | 半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法 | |
JP5363125B2 (ja) | 透明導電性膜積層基板とその製造方法 | |
JP5519180B2 (ja) | 半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法 | |
JP5519179B2 (ja) | 半導体電極、半導体電極を用いた太陽電池、及び半導体電極の製造方法 | |
JPH11219734A (ja) | 光電変換材料用半導体及びこの半導体を用いた積層体並びにこれらの製造方法及び光電池 | |
KR101998586B1 (ko) | 그래핀 기반의 쇼트키 접합 태양전지 및 이의 제조 방법 | |
JP2009065216A (ja) | 光電変換素子 | |
JP2010129379A (ja) | 湿潤ゲル体膜、透明導電性膜および透明導電性膜積層基板並びにそれらの製造方法 | |
WO2012060418A1 (ja) | 樹脂材料の製造方法、樹脂材料、太陽電池モジュールの製造方法及び太陽電池モジュール | |
Yan et al. | Dual Defocused Laser Pyrolysis: A Lasing‐Centric Strategy for Defect and Morphological Optimization in Microsupercapacitor Electrodes | |
JP5720837B2 (ja) | 光学変換装置及び同装置を含む電子機器 | |
JP2012099650A (ja) | 太陽電池モジュールの製造方法及び太陽電池モジュール | |
CN114231163A (zh) | 一种聚氨酯类有机无机复合材料及其制备方法和应用 | |
JP4195225B2 (ja) | 光電変換素子及びこれを用いた色素増感型太陽電池 | |
CN114940804B (zh) | 一种稀土基绝缘材料及其制备工艺 | |
KR102258124B1 (ko) | 광활성층의 제조방법, 이에 의해 제조된 광활성층을 포함하는 소자 | |
JP2006019190A (ja) | 光電気セル | |
KR102189350B1 (ko) | 은나노 와이어 기반의 투명전극 및 이의 제조방법 | |
KR101042096B1 (ko) | 염료감응형 태양전지 및 염료감응형 태양전지용 이산화티타늄-카본나노튜브 페이스트 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080029668.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10769673 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010769673 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117028295 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13318244 Country of ref document: US |