WO2010122974A1 - 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、および非水電解液二次電池 - Google Patents

非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、および非水電解液二次電池 Download PDF

Info

Publication number
WO2010122974A1
WO2010122974A1 PCT/JP2010/056912 JP2010056912W WO2010122974A1 WO 2010122974 A1 WO2010122974 A1 WO 2010122974A1 JP 2010056912 W JP2010056912 W JP 2010056912W WO 2010122974 A1 WO2010122974 A1 WO 2010122974A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
material layer
electrode plate
metal oxide
Prior art date
Application number
PCT/JP2010/056912
Other languages
English (en)
French (fr)
Inventor
裕之 小堀
慎吾 小村
英伸 渡辺
亮 藤原
圭介 野村
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to US13/257,177 priority Critical patent/US8394536B2/en
Publication of WO2010122974A1 publication Critical patent/WO2010122974A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode plate used for a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery, a method for producing the electrode plate, and a nonaqueous electrolyte secondary battery.
  • a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery has a high energy density and a high voltage, and has a memory effect during charging / discharging (when the battery is charged before it is completely discharged, Since there is no phenomenon in which the capacity decreases, it is used in various fields such as portable devices, notebook computers, and portable devices.
  • the non-aqueous electrolyte secondary battery is generally composed of a positive electrode plate, a negative electrode plate, a separator, and a non-aqueous electrolyte solution.
  • a positive electrode plate one having an electrode active material layer in which positive electrode active material particles are fixed on the surface of a current collector such as a metal foil is generally used.
  • a negative electrode plate one having an electrode active material layer in which negative electrode active material particles are fixed to the surface of a current collector such as copper or aluminum is generally used.
  • electrode material particles that are positive electrode active material particles or negative electrode active material particles, a resin binder, and a conductive material (however, the negative electrode active material particles have a conductive effect) If the electrode performance is sufficiently obtained even without a conductive material, the conductive material may be omitted), or, if necessary, use other materials in a solvent.
  • a slurry-like electrode active material layer forming composition is prepared by kneading and / or dispersing.
  • the method of manufacturing the electrode plate provided with the electrode active material layer by applying the electrode active material layer forming composition to the current collector surface, then drying to form a coating film on the current collector, and pressing. It is general (for example, JP-A-2006-310010 or JP-A-2006-107750).
  • the electrode active material particles contained in the electrode active material layer forming composition are particulate metal compounds dispersed in the composition, and as such, are applied to the surface of the current collector and dried. Even if pressed, it is difficult to adhere to the surface of the current collector, and it will be peeled off immediately from the current collector. Therefore, a resin binder is added to the electrode active material layer forming composition, and the electrode active material particles are fixed on the current collector with the resin binder to form the electrode active material layer. Therefore, the resin binder is a substantially essential component in the electrode active material layer forming composition.
  • lithium ion secondary batteries have been developed for fields that require high input / output characteristics such as electric vehicles, hybrid vehicles, and power tools. Even in the case of a secondary battery used in a relatively small device such as a cellular phone, the device tends to be multifunctional, and therefore, the input / output characteristics are expected to be improved. On the other hand, in order to improve the input / output characteristics of the secondary battery, it is necessary to reduce the impedance of the battery. This is because a battery with high impedance has a problem that its capacity cannot be fully utilized during high-speed charge / discharge.
  • the present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide an electrode plate having high input / output characteristics and excellent cycle characteristics in an electrode plate for a non-aqueous electrolyte secondary battery. Another object of the present invention is to provide a non-aqueous electrolyte secondary battery with high input / output characteristics by using such an electrode plate, and to provide a method for manufacturing such an electrode plate.
  • the inventors of the present invention do not use a resin binder that is generally used, and are crystalline on an electrode on a current collector through a metal oxide that does not exhibit alkali metal ion insertion / release reaction. Active material particles can be fixed, and it is found that this improves the input / output characteristics.
  • the electrode plate for a non-aqueous electrolyte secondary battery of the present invention, and the non-aqueous electrolyte secondary battery using the same was completed.
  • the present inventors have fixed the electrode active material particles on the current collector through a metal oxide that is crystalline and does not exhibit an alkali metal ion insertion / release reaction without using a resin binder.
  • a composition containing at least a metal element-containing compound and electrode active material particles for producing a metal oxide as a binder is prepared. Then, this was coated on a current collector to form a coating film, and a method for heating the coating film at an appropriate temperature was found.
  • the electrode plate for a non-aqueous electrolyte secondary battery is: A current collector, An electrode active material layer formed on at least a part of the surface of the current collector, The electrode active material layer contains electrode active material particles and a binder;
  • the binding material is made of a crystalline metal oxide that does not show alkali metal ion insertion / release reaction.
  • the electrode active material layer may further contain a conductive material.
  • the metal oxide includes Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Metal oxide containing any one metal element selected from the group consisting of Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, and Sn, or two or more metals selected from the above group You may consist of the complex metal oxide containing an element.
  • the electrode active material particles may have a particle size of 11 ⁇ m or less.
  • Non-aqueous electrolyte secondary battery A positive electrode plate; A negative electrode plate; A separator provided between the positive electrode plate and the negative electrode plate; An electrolyte solution containing a non-aqueous solvent, The positive electrode plate and / or the negative electrode plate, A current collector, An electrode active material layer formed on at least a part of the surface of the current collector, The electrode active material layer contains electrode active material particles and a binder;
  • the binding material is made of a crystalline metal oxide that does not show alkali metal ion insertion / release reaction.
  • the method for producing an electrode plate for a non-aqueous electrolyte secondary battery according to the present invention includes: An electrode active material layer forming composition containing at least a solvent, electrode active material particles, and a metal element-containing compound for producing a metal oxide as a binder is formed on at least a part of the current collector.
  • An application step of applying and forming a coating film A heating step that is performed after the coating step and heats the coating film, evaporating the solvent, and thermally decomposing the metal element-containing compound to form a metal oxide, thereby forming a metal oxide on the current collector; A heating step of forming an electrode active material layer containing the metal oxide and the electrode active material particles, The metal element-containing compound used in the coating step is selected in advance so that the metal oxide generated in the heating step becomes a metal oxide that does not exhibit an alkali metal ion insertion / release reaction, In the heating step, the coating film is heated at a temperature equal to or higher than a thermal decomposition start temperature of the metal element-containing compound and equal to or higher than a crystallization temperature of the metal oxide generated in the heating step.
  • the metal element-containing compound may comprise a metal salt.
  • the electrode plate for a non-aqueous electrolyte secondary battery of the present invention (hereinafter also simply referred to as “electrode plate”) is crystalline without using a resin binder as in the prior art, and has an alkali ion insertion. It comprises an electrode active material layer in which electrode active material particles are fixed on a current collector due to the presence of a metal oxide that does not exhibit a desorption reaction.
  • Such an electrode plate of the present invention is very high even when it contains the same amount of the same electrode active material particles as compared to a conventional electrode plate for a non-aqueous electrolyte secondary battery using a resin binder. It is possible to exhibit input / output characteristics and high cycle characteristics.
  • the electrode plate of the present invention has a very excellent adhesion exceeding the adhesion between the current collector and the electrode active material layer in an electrode plate using a conventional resin binder, and thus the electrode active material layer The film formability is good.
  • the non-aqueous electrolyte secondary battery of the present invention uses the electrode plate of the present invention with improved output / input characteristics as described above as the positive electrode plate and / or the negative electrode plate, the output of the electrode plate as described above. Since the input characteristics are improved, it contributes to the improvement of the output / input characteristics as a battery, and as a result, a nonaqueous electrolyte secondary battery having improved input / output characteristics is provided.
  • the conventional electrode plate is made of an easy method and a general-purpose material.
  • an electrode plate for a nonaqueous electrolyte secondary battery having improved input / output characteristics and cycle characteristics can be produced.
  • the electrode active material layer-forming composition prepared by containing at least the metal element-containing compound and the electrode active material particles can be applied to the current collector regardless of the particle diameter of the contained electrode active material particles. The viscosity is such that it is well maintained.
  • FIG. 3 is a graph showing the X-ray diffraction result of the electrode active material layer of Example 1.
  • FIG. 2 is a graph showing X-ray diffraction results of iron oxide obtained by heating under the same conditions as in Example 1.
  • FIG. It is a graph which shows the X-ray-diffraction result of the lithium manganate which is a positive electrode active material particle.
  • 6 is a graph showing an X-ray diffraction result of an electrode active material layer of Example 5. It is a graph which shows the X-ray-diffraction result of the film
  • FIG. 11A is a view showing a nonaqueous electrolyte secondary battery
  • FIG. 11B is a view showing a negative electrode plate for a nonaqueous electrolyte secondary battery.
  • the electrode plate for nonaqueous electrolyte secondary batteries of the present invention the method for producing the electrode plate for nonaqueous electrolyte secondary batteries, and the mode for carrying out the nonaqueous electrolyte secondary battery will be described in order.
  • a lithium ion secondary battery will be described as an example of the nonaqueous electrolyte secondary battery of the present invention unless otherwise specified.
  • lithium ions are used as examples of alkali metal ions unless otherwise specified. Desorption will be described.
  • the electrode plate of this invention contains both the positive electrode plate and negative electrode plate which are used for a nonaqueous electrolyte secondary battery. Therefore, in the following description, unless otherwise specified, the positive electrode plate and the negative electrode plate will be collectively described as electrode plates, and the positive electrode plate and the negative electrode plate will be described as necessary.
  • the negative electrode plate 15 for a nonaqueous electrolyte secondary battery includes a current collector 15a and an electrode active formed on at least a part of the surface of the current collector 15a.
  • the electrode active material layer 15b contains electrode active material particles and a binding material.
  • the binding material is made of a crystalline metal oxide that does not show alkali metal ion insertion / release reaction.
  • the electrode active material particles are not a resin binder as in the prior art, but are collected by a metal oxide that is crystalline and does not show an alkali metal ion insertion / release reaction such as lithium ions. It is fixed on the electric body.
  • the thickness of the electrode active material layer in the present invention can be appropriately designed in consideration of electric capacity and input / output characteristics required for the electrode plate. Generally, the thickness is designed to be 200 ⁇ m or less, more generally 100 ⁇ m or more and 150 ⁇ m or less. However, particularly in the present invention, since the electrode active material layer can be formed very thin, although depending on the particle diameter of the electrode active material particles used, the electrode active material layer having a film thickness of 300 nm to 200 ⁇ m. Can be formed. From the viewpoint that a high capacity can be obtained while improving the input / output characteristics, the thickness of the electrode active material layer is particularly preferably 300 nm to 30 ⁇ m, and more preferably 500 nm to 11 ⁇ m.
  • the electrode active material particles used have a small particle diameter, and are at least a particle diameter equal to or smaller than the film thickness of the electrode active material layer. This means that this greatly contributes to the improvement of the input / output characteristics.
  • the electrode active material layer is thin as described above, the moving distance of the electrons moving between the electrode active material particles and the current collector in the electrode active material layer is shortened. The resistance can be lowered, and as a result, it can contribute to the improvement of the input / output characteristics, which is desirable.
  • the lower limit of the film thickness of the electrode active material layer mainly depends on the particle diameter of the electrode active material particles to be used.
  • the electrode active material layer preferably has voids to the extent that the electrolytic solution can permeate, and the porosity in the electrode active material layer is generally 15 to 40%, more preferably 20 to 40%. It is. Below, the substance contained in the electrode active material layer in this invention is demonstrated concretely.
  • Electrode active material particles As the electrode active material particles contained in the electrode active material layer in the present invention, chargeable / dischargeable positive electrode active material particles generally showing a lithium ion insertion / release reaction used in electrode plates for non-aqueous electrolyte secondary batteries Or if it is a negative electrode active material particle, it will not specifically limit. That is, in the present invention, on the current collector, an electrode active material layer is formed by adhering to each other by interposing a metal oxide between particles such as electrode active material particles or between the electrode active material particles and the current collector. The metal oxide acts as a binder regardless of the type and shape of the electrode active material particles.
  • the metal oxide contained in the electrode active material layer of the present invention does not show alkali metal ion insertion / release reaction, it does not affect the reaction of any electrode active material particles.
  • the electrode active material particles used in the present invention can be used without particular limitation.
  • specific examples of the positive electrode active material particles include, for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiFeO 2 , Li 4 Ti 5 O 12.
  • active material particles such as lithium transition metal composite oxides such as LiFePO 4 .
  • the negative electrode active material particles include active material particles made of carbonaceous material such as natural graphite, artificial graphite, amorphous carbon, carbon black, or those obtained by adding different elements to these components, Alternatively, a material that exhibits an insertion / extraction reaction of lithium ions, such as a metal oxide such as Li 4 Ti 5 O 12 , metal lithium and an alloy thereof, tin, silicon, and an alloy thereof can be given.
  • the particle diameter of the electrode active material particles used in the present invention is not particularly limited, and those having an arbitrary size can be appropriately selected and used. However, the smaller the particle diameter, the larger the total surface area of the electrode active material particles in the electrode active material layer can be increased. It is desirable to do. Thus, the fact that the size of the particle diameter can be selected without any particular limitation is noted as an advantageous effect of the present invention. That is, in the production of a conventional electrode plate, it is difficult to use electrode active material particles having a small particle diameter because of a significant increase in the viscosity of the electrode active material layer forming composition.
  • the electrode active material particles having an arbitrary particle diameter can be contained in the electrode active material layer, the surface area of the electrode active material particles in the electrode active material layer is increased.
  • the reason why it is possible to use electrode active material particles having a particle size smaller than that of the conventional one is not clear, but instead of the conventional resin binder, a metal oxide is produced. This is presumably due to the addition of the metal element-containing compound to the electrode active material layer forming composition.
  • the viscosity of the composition becomes high and adjustment thereof is difficult. Yes, the handleability was poor.
  • the electrode plate of the present invention there is no particular problem in the viscosity of the electrode active material layer forming composition, and good handleability is shown. Therefore, an electrode active material having a particle diameter of 11 ⁇ m or less can be easily obtained.
  • An electrode plate provided with an electrode active material layer containing material particles can be obtained. As described above, it is desirable that the particle diameter of the electrode active material particles be 11 ⁇ m or less from the viewpoint of obtaining high input / output characteristics after sufficiently ensuring the handleability of the electrode active material layer forming composition.
  • the viscosity of the electrode active material layer forming composition is obtained even if an electrode plate having a conventional electrode active material layer using a resin binder is used. Became too high to lose fluidity and could not be applied to mass production equipment such as a printing press. Although it is possible to increase the fluidity of the electrode active material layer forming composition by adding a large amount of solvent, it takes a long time to dry and is not substantial, and in particular, production by a winding device is impossible. there were.
  • the viscosity of the electrode active material layer forming composition is maintained moderately and the fluidity is good. be able to. Therefore, it is desirable that the particle diameter of the electrode active material particles be 5 ⁇ m or less from the viewpoint of producing an electrode plate exhibiting high input / output characteristics by mass production equipment.
  • an electrode active material layer forming composition is used. It was difficult to disperse the electrode active material particles in the material, and this was not feasible.
  • the present invention even if electrode active material particles having a particle diameter of 1 ⁇ m or less are used, the dispersibility in the electrode active material layer forming composition is good, and the electrode active material particles of the size are contained well.
  • An electrode active material layer can be formed on the current collector. Therefore, it is very advantageous and desirable to use electrode active material particles having a particle diameter of 1 ⁇ m or less in the present invention.
  • the particle diameter of the electrode active material particles is further selected to be 500 nm or less, more preferably 100 nm or less.
  • the particle diameter of the electrode active material particles shown in the present invention and the present specification is an average particle diameter (volume median particle diameter: D50) measured by laser diffraction / scattering particle size distribution measurement.
  • the particle diameter of the electrode active material contained in the electrode active material layer can be measured using an image analysis type particle size distribution measurement software (manufactured by Mount Tech Co., Ltd., MAC VIEW).
  • Binder metal oxide The metal oxide contained as a binder in the electrode active material layer is an oxide of a metal element that is generally understood as a metal, and is a crystalline metal oxide that does not exhibit a lithium ion insertion / release reaction. If it is a thing, it will not specifically limit.
  • metal elements examples include Li, Be, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Cs, Ba, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Fr, Ra, Ce, etc. can be mentioned.
  • an oxide of a metal element belonging to the third to fifth periods is present as a binder in the electrode active material layer.
  • titanium oxide is inexpensive and easy to handle, and is contained as a binder in the electrode active material layer. In this case, it is possible to show a very excellent effect of improving the input / output characteristics. That is, in the electrode plate for a non-aqueous electrolyte secondary battery of the present invention having an electrode active material layer containing titanium oxide as a binder, a high charge / discharge rate (discharge capacity maintenance rate) of 80% or more at a discharge rate of 50C. It is possible to show a large amount of equipment such as an automobile.
  • the metal oxide in the present invention is a metal oxide in which oxygen is bonded to any one of the above-described metal elements, or a composite metal containing two or more metal elements selected from the above-described metal elements Any of oxides may be used.
  • metal oxides in which oxygen is bonded to one metal element include sodium oxide, magnesium oxide, aluminum oxide, silicon oxide, potassium oxide, calcium oxide, scandium oxide, titanium oxide, vanadium oxide, chromium oxide, and oxide.
  • examples thereof include manganese, iron oxide, cobalt oxide, nickel oxide, zinc oxide, gallium oxide, strontium oxide, yttrium oxide, zirconium oxide, molybdenum oxide, ruthenium oxide, tantalum oxide, tungsten oxide, and cerium oxide.
  • Examples of composite metal oxides containing two or more metal elements that can be used as the metal oxide of the present invention include, for example, cerium oxide doped with gadolinium and zirconium oxide doped with yttrium. And a mixed oxide of iron and titanium, an oxide in which indium and tin are mixed, nickel oxide doped with lithium, and the like.
  • the examples of the metal oxide described in this paragraph do not limit the metal oxide in the present invention.
  • An object is a crystalline metal oxide that does not show lithium ion insertion / release reaction, and can fix electrode active material particles on a current collector without using a resin binder. Any one may be used.
  • the metal oxide mentioned above can be contained in an electrode active material layer by 1 type, or 2 or more types of combination.
  • Binder compounding ratio In the present invention, the mixing ratio of the metal oxide and electrode active material particles in the electrode active material layer is not particularly specified, and the type and size of the electrode active material particles used, the type of metal oxide, and the electrode It can be determined as appropriate in consideration of the functions to be performed. However, in general, since the electric capacity of the electrode increases as the amount of the electrode active material particles in the electrode active material layer increases, from this point of view, the electrode active material particles present in the electrode active material layer It can be said that a smaller amount of the metal oxide is more preferable. More specifically, in the electrode active material layer, when the weight ratio of the electrode active material particles is 100 parts by weight, the weight ratio of the metal oxide is 1 part by weight or more and 50 parts by weight or less. be able to.
  • the electrode active material particles may not be satisfactorily fixed on the current collector.
  • the description of the upper limit of the weight ratio of the metal oxide is not intended to exclude the presence of the metal oxide in excess of the upper limit in the present invention. This shows that the active material particles can be fixed on the current collector with a smaller amount of metal oxide in order to increase the electric capacity of the electrode.
  • Samples 1 and 2 were then prepared by applying the sample solution on a glass substrate, sample 1 was heated at 300 ° C. for 1 hour, while sample 2 was heated at 500 ° C. for 1 hour. Subsequently, the film-forming surfaces of samples 1 and 2 after heating were scraped to obtain analytical samples 1 and 2, respectively, and composition analysis was performed on these samples.
  • the metal oxide in the present invention is specified to be crystalline.
  • the cycle characteristics of the electrode plate are desirably improved as compared with a conventional electrode plate using a resin binder. Therefore, the electrode plate of the present invention achieves two important problems in the non-aqueous electrolyte secondary battery, which are the intended purposes, namely, improvement of input / output characteristics and improvement of cycle characteristics.
  • the metal oxide in the present invention is specified as one that does not show alkali metal ion insertion / release reaction. The reason is that the metal oxide in the present invention does not electrochemically react with alkali metal ions such as lithium ions. As a result, no expansion or reactant is generated due to the electrochemical reaction of the metal oxide, and as a result, deterioration due to expansion or deficiency of the metal oxide in the electrode active material layer is suppressed.
  • an oxidation peak corresponding to the Li elimination reaction of LiMn 2 O 4 appears in the vicinity of about 3.9 V, and the Li insertion reaction occurs in the vicinity of about 4.1 V.
  • a corresponding reduction peak appears, whereby the presence or absence of lithium ion insertion / extraction reaction can be confirmed.
  • FIG. 4 when no peak appears, it can be determined that there is no lithium ion insertion / release reaction.
  • the fact that the metal oxide does not exhibit a lithium ion insertion / release reaction does not mean the electrical property inherent to the metal oxide, but is contained as a binder in the electrode active material layer.
  • the metal oxide does not exhibit a lithium ion insertion / release reaction in a voltage range suitable for the electrode active material particles contained in the electrode active material. This is because it is important that the metal oxide does not substantially insert and desorb lithium ions in the electrode plate.
  • the presence or absence of a lithium ion insertion / extraction reaction of a metal oxide to be contained in the electrode active material layer is confirmed as described above. be able to. Therefore, after confirmation in advance, a metal oxide that does not exhibit a lithium ion insertion / release reaction can be present as a binder in the electrode active material layer. On the other hand, whether or not a metal oxide that does not exhibit lithium ion insertion / release reaction is contained in the electrode active material layer in the electrode plate that has already been completed can be confirmed as follows, for example.
  • Carbon fiber is known as a different conductive material.
  • the carbon fiber can conduct electricity very well in the length direction and can improve the fluidity of electricity.
  • the fiber length is about 1 ⁇ m to 20 ⁇ m. Therefore, in addition to the particulate conductive material such as acetylene black described above, the effect of adding the conductive material can be improved by using carbon fiber together.
  • the conductivity of the conductive material is generally expressed as an electrical resistivity, and an electrical resistance of about 0.14 to 0.25 ⁇ cm is shown.
  • the said average primary particle size is calculated
  • the content is not particularly limited, but generally, the proportion of the conductive material is 5 parts by weight or more and 20 parts by weight with respect to 100 parts by weight of the electrode active material particles. It is desirable that the amount is not more than parts by weight.
  • the electrode active material layer in the present invention does not contain any carbon material other than electrode active material particles made of a carbon material such as graphite and a conductive carbon component such as the conductive material added optionally. Is desirable.
  • the substance added to the electrode active material layer forming composition does not contain a carbon component.
  • the present invention is not limited to this. Even when an organic component such as an organometallic compound used as a material for forming a metal oxide is contained in the electrode active material layer, an appropriate heating temperature or an appropriate temperature is used. By carrying out the heating step under a condition of an appropriate heating atmosphere, nonconductive carbon can be eliminated from the electrode active material layer to be formed.
  • an electrode active material layer forming composition before adding a carbon material such as a conductive material or negative electrode active material particles composed of graphite is applied onto a substrate to form a coating film
  • Preliminary experiments are performed to preliminarily confirm that no carbon component is present in the formed film (the carbon component disappears) by heating at a heating temperature or an appropriate heating atmosphere.
  • an electrode active material layer forming composition containing a necessary material is applied onto a current collector, and a heating step is performed under the same conditions as in the preliminary experiment, whereby a negative electrode composed of a conductive material or graphite.
  • An electrode plate in which no carbon component other than the carbon material such as active material particles remains can be obtained.
  • an electrode plate having excellent adhesion between the current collector and the electrode active material layer by not containing a carbon component in the electrode active material layer as described above. can be provided. Therefore, according to the present invention, the electrode active material layer can be satisfactorily prevented from peeling from the current collector even when the electrode plate is used in severe conditions. Part of the surface of the electrode active material layer can be satisfactorily prevented from being peeled off due to physical contact in a manufacturing process for manufacturing a water electrolyte secondary battery or a transporting process of the electrode plate.
  • the electrode active material layer in the present invention contains at least the electrode active material particles described above and a metal oxide as a binder, and a conductive material can be further added, but deviates from the gist of the present invention. Further optional additives may be contained as long as they are not.
  • the current collector used in the present invention is not particularly limited as long as it is generally used as an electrode current collector of a nonaqueous electrolyte secondary battery electrode plate.
  • aluminum foil or nickel foil can be preferably used as the positive electrode current collector, and copper foil, aluminum foil, nickel foil or the like can be preferably used as the negative electrode current collector.
  • the thickness of the current collector is not particularly limited as long as it is a thickness that can generally be used as a current collector for a nonaqueous electrolyte secondary battery electrode plate, but is preferably 10 to 100 ⁇ m, and preferably 15 to 50 ⁇ m. It is more preferable.
  • the input / output characteristics of the electrode plate of the present invention can be evaluated by determining the discharge capacity retention rate (%). That is, the discharge capacity retention rate is an evaluation of the discharge rate characteristics, and it is generally understood that the charge rate characteristics are similarly improved in an electrode plate with improved discharge rate characteristics. Therefore, when a desirable discharge capacity maintenance ratio is indicated, it is evaluated that the charge / discharge rate characteristics are improved, and as a result, the input / output characteristics are evaluated as improved. More specifically, the discharge rate 1C is set such that the theoretical value of the discharge capacity (mAh / g) of the active material is completed in 1 hour, and the discharge actually measured at the set discharge rate of 1C.
  • the charge / discharge rate characteristics of the electrode plate of the present invention vary depending on the type and particle diameter of the electrode active material particles used, the amount of the metal oxide as the binder contained, the thickness of the electrode active material layer, and the like. In general, regarding the charge / discharge rate characteristics of the electrode plate for a non-aqueous electrolyte secondary battery, it is desirable that a discharge capacity maintenance rate of 50% or more is shown at a discharge rate of 50C or more, and more desirably 50% or more. It is desirable that the discharge capacity retention rate be shown at a discharge rate of 100 C or higher, and it can be evaluated that the charge / discharge rate characteristics are high.
  • the electrode plate of the present invention can exhibit the above-described high charge / discharge rate characteristics. However, it is desirable to pay attention to this point because a system capable of withstanding a large current is required when the discharge rate is 2000 C or higher.
  • the discharge capacity retention rate is high, and the discharge capacity is 50 C when the discharge rate is 50 C. It is desirable that the maintenance rate be 50% or more, or 80% or more, and even 100%. If it is the electrode plate for nonaqueous electrolyte secondary batteries of this invention, it is possible to show the high discharge maintenance factor shown above.
  • Electrode active material particles Since the electrode active material particles contained in the electrode active material layer forming composition are the same as the electrode active material particles already described above, the description thereof is omitted here. In the production method of the present invention, the desired particle size of the electrode active material particles used is the same as described above.
  • Binder generation material In the composition for forming an electrode active material layer, a metal element-containing compound is added as a generation material of a metal oxide to be generated.
  • metal element-containing compounds including organometallic compounds, are sometimes referred to as binding material generating materials.
  • the binder material generating material is a metal oxide generating material for fixing the electrode active material particles on the current collector as the binder material.
  • the binder generation material When the binder generation material is heated on the substrate at a temperature equal to or higher than the thermal decomposition start temperature, it can be thermally decomposed and oxidized to form a film.
  • the present inventors In studying the problems of the present invention, the present inventors have studied the inclusion of electrode active material particles in the metal oxide film when forming a metal oxide film on a substrate, and have earnestly studied. As a result, it has been found that the electrode active material particles can be fixed on the substrate due to the presence of the metal oxide even if the amount of the metal oxide is reduced.
  • the present inventors without using a resin binder, under the idea of including electrode active material particles in the binder material to be formed into a film, the binder material generating material, the electrode active material particles, Was prepared, applied on the current collector, and tried to heat.
  • the electrode active material particles are collected even if the amount of the binder material generated on the current collector is significantly reduced to the extent that the binder material exists in the electrode active material layer mainly composed of the electrode active material particles. It has been found that it is fixed on the electric body.
  • the metal element-containing compound includes Li, Be, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Cs, Ba, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Any compound selected from a general metal element group such as Tl, Pb, Bi, Fr, Ra, and Ce may be used as long as it is a compound containing two or more metal elements.
  • the input / output characteristics of the generated electrode plate become higher. It is preferable because of its tendency. That is, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Mo, Tc, A compound containing one or more metal elements selected from Ru, Rh, Pd, Ag, Cd, In, and Sn is preferable as the metal element-containing compound.
  • the metal element-containing compound containing the metal element for example, a metal salt is preferably used.
  • the metal salt include chloride, nitrate, sulfate, perchlorate, phosphate, bromate and the like.
  • chlorides and nitrates are preferably used because they are easily available as general-purpose products.
  • nitrate is preferably used because it is inexpensive.
  • metal salts include magnesium chloride, aluminum nitrate, aluminum chloride, calcium chloride, titanium tetrachloride, vanadium oxosulfate, ammonium chromate, chromium chloride, ammonium dichromate, chromium nitrate, chromium sulfate, manganese nitrate , Manganese sulfate, iron (I) chloride, iron (III) chloride, iron (III) nitrate, iron (II) sulfate, iron (III) sulfate, cobalt chloride, cobalt nitrate, nickel chloride, nickel nitrate, copper chloride, nitric acid Copper, zinc chloride, yttrium nitrate, yttrium chloride, zirconium chloride oxide, zirconium nitrate oxide, zirconium tetrachloride, silver chloride, indium nitrate, tin sulfate,
  • the organometallic compound which is a compound containing a metal and carbon especially as said metal element containing compound.
  • the organometallic compound includes both a metal complex containing a carbon element and a metal salt containing a carbon element. More specifically, the organometallic compound may be any one selected from a general metal element group as listed in the above metal element-containing compound, or a compound containing two or more metal elements and carbon. That's fine.
  • a metal element belonging to 3 to 5 cycles among the metal element group is contained, similarly to the metal element-containing compound.
  • the metal salt examples include acetate and oxalate.
  • acetate is preferably used because it is easily available as a general-purpose product.
  • Specific examples of the metal salt include scandium acetate, chromium acetate, iron (II) acetate, cobalt acetate, nickel acetate, zinc acetate, silver acetate, indium acetate, cerium acetate, Examples thereof include cerium oxalate, lead acetate, lanthanum acetate, strontium acetate, palladium acetate, and barium acetate.
  • the metal complex examples include magnesium diethoxide, aluminum acetylacetonate, calcium acetylacetonate dihydrate, calcium di (methoxyethoxide), calcium gluconate monohydrate, calcium citrate tetrahydrate, Calcium salicylate dihydrate, titanium lactate, titanium acetylacetonate, tetraisopropyl titanate, tetranormal butyl titanate, tetra (2-ethylhexyl) titanate, butyl titanate dimer, titanium bis (ethylhexoxy) bis (2-ethyl-3-hydroxy) Hexoxide), diisopropoxytitanium bis (triethanolaminate), dihydroxybis (ammonium lactate) titanium, diisopropoxytitanium bis (ethylacetoacetate) ), Ammonium peroxosodium citrate tetrahydrate, dicyclopentadienyl iron (II), iron (II) lactate trihydrate, iron (III) ace
  • the electrode active material layer provided on the electrode plate for a non-aqueous electrolyte secondary battery manufactured by the manufacturing method of the present invention is a binding material capable of fixing the electrode active material particles on the current collector. Any material can be appropriately selected and used as long as it is a material capable of producing a metal oxide.
  • the electrode active material layer forming composition is blended with a conductive material, or an organic substance that is a viscosity adjusting agent of the electrode active material layer forming composition, and other additives within the scope of the present invention.
  • organic substance include urethane resin, epoxy resin, ethyl cellulose, starch, polyethylene oxide, polyvinyl alcohol, and polyethylene glycol.
  • the organic substance remains as a carbon component that is distinguished from the conductive material in the generated electrode active material layer, it is necessary to eliminate the carbon component in the heating step in the same manner as the organic metal compound. There is.
  • the solvent used in the electrode active material layer forming composition can be prepared as an electrode active material layer forming composition to which electrode active material particles, a binding material generating material, or other additives are added, and If it can remove in a heating process after apply
  • lower alcohols having a total carbon number of 5 or less such as methanol, ethanol, isopropyl alcohol, propanol, butanol, diketones such as acetylacetone, diacetyl, benzoylacetone, ethyl acetoacetate, ethyl pyruvate, ethyl benzoylacetate, ethyl benzoylformate And ketoesters such as toluene, a single solvent such as toluene, or a mixed solvent composed of a combination of two or more thereof.
  • diketones such as acetylacetone, diacetyl, benzoylacetone, ethyl acetoacetate, ethyl pyruvate, ethyl benzoylacetate, ethyl benzoylformate
  • ketoesters such as toluene, a single solvent such as toluene, or a mixed solvent composed of
  • the above-mentioned electrode active material layer forming composition requires electrode active material particles in the electrode active material layer to be formed on the current collector, binder forming material, and other additives added as necessary. These amounts are determined in consideration of being included in the amounts. At that time, the solid content ratio is appropriately adjusted in consideration of applicability on the current collector in the coating step and removal of the solvent in the heating step. Generally, the solid content ratio in the electrode active material layer forming composition is adjusted to 30 to 70 wt%.
  • the current collector used in the production method of the present invention is the same as the current collector used in the electrode plate for a non-aqueous electrolyte secondary battery, and is omitted here.
  • any known coating method can be used as the coating method for the electrode active material layer forming composition.
  • a coating film can be formed by applying to any region of the current collector surface by printing, spin coating, dip coating, bar coating, spray coating, or the like.
  • the current collector used in the present invention is preferable because corona treatment, oxygen plasma treatment, and the like can be performed in advance as necessary to further improve the film forming property of the electrode active material layer.
  • the amount of the electrode active material layer forming composition applied to the current collector can be arbitrarily determined according to the use of the electrode plate to be produced, etc., but the electrode active material layer in the present invention is very Therefore, when it is desired to reduce the thickness of the electrode active material layer, it can be applied thinly so that the thickness of the electrode active material layer formed by the heating process described later is about 300 nm to 11 ⁇ m. .
  • electrode active material layer formation containing at least the electrode active material particles and the metal element-containing compound that is a material for forming the binder material is formed.
  • a coating film (hereinafter sometimes simply referred to as “coating film”) is formed.
  • the heating method is not particularly limited as long as it is a heating method or a heating apparatus that can heat the coating film at a desired heating temperature, and can be appropriately selected and carried out. Specific examples include a method of using a hot plate, an oven, a heating furnace, an infrared heater, a halogen heater, a hot air blower, or the like, or a combination of two or more.
  • a hot plate When the current collector to be used is planar, it is preferable to use a hot plate or the like.
  • the heating temperature in the heating step is determined in a temperature range that is equal to or higher than the thermal decomposition start temperature of the binder material generation material and equal to or higher than the crystallization temperature of the generated metal oxide.
  • the heating in the preliminary test is performed in an atmosphere similar to the heating atmosphere planned in the present manufacturing method. That is, in the present invention, the “thermal decomposition start temperature of the metal element-containing compound” can be understood as a temperature at which the metal element-containing compound is thermally decomposed by heating and oxidation of the metal element contained therein starts.
  • the “crystallization temperature” means a temperature at which the metal oxide is crystallized after the metal atom contained in the electrode active material layer forming composition becomes a metal oxide.
  • the metal oxide crystallizes at the crystallization temperature, and the crystallinity increases when the temperature is exceeded.
  • the term “crystallization” refers to the crystal state in the X-ray diffractometer regardless of the crystallinity. This refers to the case where the peak shown is confirmed.
  • the “crystallization temperature” in the present invention does not necessarily coincide with the intrinsic crystallization temperature of the metal oxide, and differs slightly from the intrinsic crystallization temperature depending on the state in the electrode active material layer forming composition. There is a case. Therefore, in consideration of this point, it is desirable to confirm in advance the crystallization temperature of the metal oxide in the electrode active material layer forming coating film.
  • the above heating temperature is “below the crystallization temperature” of the metal oxide to be produced when the metal oxide contained in the electrode active material layer formed on the current collector is in an amorphous state. It is a temperature that allows it to exist at.
  • the temperature is preliminarily applied by applying a solution containing the binding substance generating material on the substrate, heating at a temperature equal to or higher than the thermal decomposition start temperature of the binding substance generating material, and being made of a metal oxide on the substrate. Form a film, scrape the film into a sample, evaluate the crystallinity using an X-ray diffractometer, and understand that if the crystal peak is not confirmed, it was heated at a temperature below the crystallization temperature. can do.
  • the electrode active material layer in the present invention may contain conductive carbon components such as negative electrode active material particles made of graphite or a conductive material. It is not understood that there is a separate carbon component that is distinct from.
  • a material containing carbon such as an organic metal compound or an organic substance for viscosity adjustment is contained in the electrode active material layer forming composition, it is distinguished from the conductive material in the generated electrode active material layer.
  • the heating temperature in the heating step is adjusted so that no carbon component remains, and the heating conditions are adjusted so that the carbon contained in the electrode active material layer forming composition disappears.
  • the heating temperature in the said heating process is set to the temperature which is more than the thermal decomposition start temperature of the said binder substance production
  • the above-mentioned binder generation material is an organometallic compound, or when an organic substance is added as an additive, carbon that is distinguished from a conductive material in the generated electrode active material layer In order not to remain as a component, the heating temperature is set so that the carbon derived from these compounds can be lost.
  • the heating process is divided into two steps, in the first heating step, the metal oxide is heated at a temperature capable of generating, and in the second heating step, the heating atmosphere is performed in a hydrogen reduction atmosphere.
  • a temperature capable of generating for example, at a temperature of about 500 ° C.
  • carbon that can be a carbon component distinct from the conductive material can be converted into methane gas and disappear.
  • the electrically conductive material etc. which are electroconductive carbon components exist in the produced
  • the heating temperature at which a desired component can be present in the electrode active material layer is determined in advance in a preliminary experiment. It is desirable.
  • the heating step when determining the heating temperature, it is desirable to sufficiently take into account the heat resistance of the current collector, electrode active material particles, conductive material, and the like used.
  • the heat resistance temperature of a copper foil generally used as a current collector for a negative electrode plate is about 200 ° C. because it is oxidized in an air atmosphere, and about 1080 ° C. in an inert gas atmosphere.
  • the heat resistance temperature of the aluminum foil is around 660 ° C. For this reason, when the said heating temperature exceeds the said heat-resistant temperature, there exists a possibility that a collector may be damaged.
  • the heating atmosphere in the heating step is not particularly limited, and can be appropriately determined in consideration of the material used for manufacturing the electrode plate, the heating temperature, the oxygen potential of the metal element, and the like.
  • the heating step can be preferably performed because there is no possibility that the aluminum foil is oxidized even if the heating step is performed in an air atmosphere.
  • copper foil is used as the current collector, it is not desirable because it is oxidized when the heating step is performed in an air atmosphere.
  • an inert gas atmosphere it is preferable to heat in an inert gas atmosphere, a reducing gas atmosphere, or a mixed gas atmosphere of an inert gas and a reducing gas.
  • the heating step is performed in an atmosphere that does not contain sufficient oxygen gas, when the metal oxide is generated in the electrode active material layer, the oxidation of the metal element in the metal element-containing compound is caused by Since it is necessary to realize this by combining oxygen and a metal element in a compound contained in the material layer forming composition, it is necessary to use a compound containing an oxygen element in the compound to be used.
  • the inert gas atmosphere or the reducing gas atmosphere is not particularly limited to a specific atmosphere, and the production method of the invention can be appropriately carried out in these conventionally known atmospheres.
  • the inert gas atmosphere argon gas, nitrogen gas, and reducing gas atmosphere include hydrogen gas, carbon monoxide gas, or a gas atmosphere in which the inert gas and the reducing gas are mixed.
  • the heating step is performed in a hydrogen reducing atmosphere so that the carbon component that is different from the conductive material does not remain in the electrode active material layer so as to disappear the carbon component.
  • the nonaqueous electrolyte secondary battery 10 generally includes a positive electrode 16 and a positive electrode plate 17, a negative electrode 14 and a negative electrode plate 15, and a positive electrode plate 17 and a negative electrode plate 15. And a separator 13 made of a polyethylene porous film or the like provided therebetween.
  • the negative electrode 14 and the negative electrode plate 15, the positive electrode 16 and the positive electrode plate 17, and the separator 13 are accommodated in the container 11.
  • the container 11 is filled with a non-aqueous electrolyte (electrolyte) 19 containing a non-aqueous solvent, and the container 11 is sealed.
  • the non-aqueous electrolyte secondary battery of the present invention is characterized by using the above-described electrode plate of the present invention as the positive electrode plate and / or the negative electrode plate.
  • the electrode plate of the present invention has excellent input / output characteristics and cycle characteristics. Therefore, by using such an electrode plate, the performance of the electrode plate is exhibited also in the non-aqueous electrolyte secondary battery of the present invention, and the input / output characteristics and cycle characteristics of the battery itself are improved.
  • the negative electrode plate for the conventionally known non-aqueous electrolyte secondary battery is appropriately used. You can select and use.
  • a conventionally known negative electrode plate a copper foil such as an electrolytic copper foil or a rolled copper foil having a thickness of about 5 to 50 ⁇ m is used as a current collector, and the negative electrode plate is formed on at least a part of the current collector surface.
  • the electrode active material layer forming composition is applied, dried, and pressed as necessary.
  • the electrode active material layer forming composition in the negative electrode plate generally includes an active material composed of a carbonaceous material such as natural graphite, artificial graphite, amorphous carbon, carbon black, or a material obtained by adding a different element to these components.
  • an active material composed of a carbonaceous material such as natural graphite, artificial graphite, amorphous carbon, carbon black, or a material obtained by adding a different element to these components.
  • negative electrode active material particles such as metal lithium and its alloys, tin, silicon, and alloys thereof, materials that can occlude and release lithium ions, and resinous binders, and other additions such as conductive materials as necessary
  • the agent is dispersed and mixed, but is not limited thereto.
  • the positive electrode plate for the conventional non-aqueous electrolyte secondary battery is appropriately used as the positive electrode plate.
  • a conventionally known positive electrode plate an aluminum foil having a thickness of about 5 to 50 ⁇ m is used as a current collector, and an electrode active material layer forming composition for forming a positive electrode plate is formed on at least a part of the current collector surface. What was formed by apply
  • Nonaqueous electrolyte used in the present invention is not particularly limited as long as it is generally used as a non-aqueous electrolyte for a non-aqueous electrolyte secondary battery, but a lithium salt is dissolved in an organic solvent.
  • a non-aqueous electrolyte is preferably used.
  • lithium salt examples include inorganic lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, and LiBr; LiB (C 6 H 5 ) 4 , LiN (SO 2 CF 3 ) 2 , LiC ( Organic compounds such as SO 2 CF 3 ) 3 , LiOSO 2 CF 3 , LiOSO 2 C 2 F 5 , LiOSO 2 C 4 F 9 , LiOSO 2 C 5 F 11 , LiOSO 2 C 6 F 13 , and LiOSO 2 C 7 F 15 Typical examples include lithium salts.
  • inorganic lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, and LiBr
  • LiB (C 6 H 5 ) 4 LiN (SO 2 CF 3 ) 2
  • LiC Organic compounds such as SO 2 CF 3 ) 3 , LiOSO 2 CF 3 , LiOSO 2 C 2 F 5
  • chain esters examples include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, methyl butyl carbonate, methyl propyl carbonate, ethyl butyl carbonate, ethyl propyl carbonate, butyl propyl carbonate, propionic acid alkyl ester, Examples include malonic acid dialkyl esters and acetic acid alkyl esters.
  • Examples of the cyclic ethers include tetrahydrofuran, alkyltetrahydrofuran, dialkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3-dioxolane, alkyl-1,3-dioxolane, and 1,4-dioxolane.
  • Examples of the chain ethers include 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, and tetraethylene glycol dialkyl ether. It is done.
  • a conventionally known structure can be appropriately selected and used.
  • the structure which winds a positive electrode plate and a negative electrode plate in the shape of a spiral via the separator like a polyethylene porous film, and accommodates in a battery container is mentioned.
  • a structure in which a positive electrode plate and a negative electrode plate cut into a predetermined shape are stacked and fixed via a separator, and this is housed in a battery container may be employed.
  • the lead wire attached to the positive electrode plate is connected to the positive electrode terminal provided in the outer container, while the lead wire attached to the negative electrode plate Is connected to a negative electrode terminal provided in the outer container, and the battery container is further filled with a nonaqueous electrification solution and then sealed to produce a nonaqueous electrolyte secondary battery.
  • Example 1 As the metal element-containing compound Fe (NO 3) 3 ⁇ 9H 2 O [ molecular weight: 404] 9.0 g was added to the methanol 17g, further ethylene glycol 10g mixed, metal oxide that does not cause lithium ion intercalation and deintercalation reactions was used as a raw material solution.
  • Electrode active material layer forming composition 10 g of a positive electrode active material LiMn 2 O 4 having an average particle size of 4 ⁇ m, 1.5 g of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., Denka Black), carbon fiber (manufactured by Showa Denko KK, VGCF)
  • An electrode active material layer forming composition was prepared by mixing 0.1 g and kneading with an Excel auto homogenizer (Nihon Seiki Seisakusho Co., Ltd.) at a rotation speed of 7000 rpm for 15 minutes.
  • Excel auto homogenizer Nihon Seiki Seisakusho Co., Ltd.
  • Table 1 collectively.
  • the components of the electrode active material layer forming composition are also shown in Table 1 for Examples 2 to 16 and Comparative Examples 1 to 4 described later.
  • An aluminum plate having a thickness of 15 ⁇ m is prepared as a current collector, and an electrode prepared as described above is formed on one surface side of the current collector in such an amount that the weight of the electrode active material layer finally obtained is 20 g / m 2.
  • the active material layer forming composition was applied with an applicator to form a coating film for forming an electrode active material layer.
  • the positive electrode plate was taken out of the electric furnace and allowed to stand at room temperature, and then cut into a predetermined size (a disk having a diameter of 15 mm) to obtain Example 1. In addition, it was 28 micrometers when the thickness of the electrode active material layer was measured 10 points
  • Crystallinity evaluation Further, when the crystallinity of the sample 1 was evaluated with an X-ray diffractometer (XRD), the metal oxide contained in the electrode active material layer was found to be crystalline as shown in FIG. It was.
  • the raw material solution for forming the metal oxide (the solution before adding the positive electrode active material) was applied to a glass plate with a Miyaba No. 4 and heated under the same heating conditions as those for electrode preparation.
  • the result of evaluating the crystallinity using an X-ray diffractometer is shown in FIG.
  • the crystallinity of M1090 which is a positive electrode active material particle, was evaluated using an X-ray diffractometer, and the results are shown in FIG. FIG.
  • FIG. 7 is an X-ray diffraction result of iron oxide obtained by heating the raw material solution, and it was confirmed that the iron oxide was crystalline from the fact that a peak was confirmed.
  • FIG. 8 is an X-ray diffraction result of lithium manganate as positive electrode active material particles, and a peak representing crystalline lithium manganate was confirmed. Analysis of FIG. 6 with reference to FIG. 7 and FIG. 8 confirmed that peaks representing the crystal peak of iron oxide were shown in addition to the characteristic peak of crystalline lithium manganate.
  • Cyclic voltammetry test (CV test): Further, a CV test was conducted using the positive electrode plate produced in Example 1. Specifically, the operation of first sweeping the electrode potential from 3.0 V to 4.3 V and then returning it to 3.0 V was repeated three times. The scanning speed was 1 mV / sec. The cyclic voltammogram showing the second cycle result corresponds to FIG. 3 described above. As is clear from FIG. 3, an oxidation peak corresponding to the Li elimination reaction of LiMn 2 O 4 was observed near 3.9 V, and a reduction peak corresponding to the Li insertion reaction was observed near 4.1 V. On the other hand, the raw material solution for producing the metal oxide (solution before adding the positive electrode active material) was applied to an aluminum substrate with a Miyabar No.
  • the coating amount of the electrode active material layer forming composition described above on the current collector, the film thickness and film forming property of the electrode active material layer to be formed, the binding material generated in the electrode active material layer, Tables 1 and 2 collectively show the crystallinity of the binder and the results of the CV test described in this paragraph.
  • the contents of Examples 2 to 16 and Comparative Examples 1 to 4 to be described later are also shown in Tables 1 and 2.
  • Example 1 (a disk with a diameter of 15 mm, weight of positive electrode active material contained: 3.5 mg / 1.77 cm 2 ) prepared as described above as a positive electrode plate was used as a working electrode, and a metal as a counter electrode and a reference electrode A tripolar coin cell was assembled using the non-aqueous electrolyte prepared above as the lithium plate and electrolyte, and this was designated as Example Test Cell 1.
  • the example test cell 1 was subjected to the following charge / discharge test.
  • Example test cell 1 which is a three-pole coin cell prepared as described above, in order to perform a discharge test of the working electrode, first, as shown in the following charge test of the example test cell 1, it was fully charged.
  • Example Test cell 1 was charged at a constant current (320 ⁇ A) under a 25 ° C. environment until the voltage reached 4.3 V, and after the voltage reached 4.3 V, the voltage was 4.3 V.
  • the current discharge rate: 1C
  • the “1C” means a current value (current value reaching the discharge end voltage) at which constant current discharge is performed using the tripolar coin cell and discharge is completed in one hour.
  • the constant current was set such that a theoretical discharge amount of 90 mAh / g of lithium manganate as an active material was discharged in one hour at the working electrode in Example Test Cell 1.
  • Example 2 as the metal element-containing compound Fe (NO 3) 3 ⁇ 9H 2 O [ molecular weight: 404] 0.48 g was added to the methanol 5g, that the further ethylene glycol and 10g mixed, and electrodes shown in Table 1
  • a positive electrode plate was prepared in the same manner as in Example 1 except that the amount of the active material layer-forming composition applied was changed to that of Example 2.
  • Example 3 A positive electrode plate was prepared in the same manner as in Example 1 except that 5 g of ethanol and 10 g of ethylene glycol were used as the solvent and a positive electrode active material LiMn 2 O 4 having an average particle size of 0.3 ⁇ m was used. Example 3 was used.
  • Example 4 A positive electrode plate was prepared in the same manner as in Example 1 except that 5 g of ethanol and 10 g of ethylene glycol were used as the solvent, and that the positive electrode active material LiMn 2 O 4 having an average particle size of 10 ⁇ m was used. It was.
  • Example 6 Li (CH 3 COO) ⁇ 2H 2 O [molecular weight: 102] (4.0 g) was used as the metal element-containing compound, and this was added to 16 g of methanol, and 10 g of diethylene glycol was further mixed, and the average particle diameter Example 1 except that 1 ⁇ m of the positive electrode active material LiMn 2 O 4 was used, the electrode active material layer forming composition application amount shown in Table 1 was changed, and the heating conditions were changed as follows. A positive electrode plate was prepared and used as Example 6. The heating conditions were set in a normal temperature electric furnace (Muffle furnace, manufactured by Denken, P90), heated to 450 ° C. over 1 hour, and then changed to 500 ° C. over 5 minutes.
  • Muffle furnace manufactured by Denken, P90
  • Example 8 As a metal element-containing compound, 10.0 g of TiCl 4 [molecular weight: 189] was used, added to 15 g of methanol, and further mixed with 10 g of diethylene glycol, a positive electrode active material LiMn 2 O having an average particle diameter of 1 ⁇ m A positive electrode plate was prepared in the same manner as in Example 1 except that No. 4 was used and the electrode active material layer forming composition application amount shown in Table 1 was used.
  • Example 9 Co (CH 3 COO) 2 .4H 2 O [molecular weight: 249] 9.0 g was used as the metal element-containing compound, and this was added to 15 g of methanol, and further 10 g of diethylene glycol was mixed.
  • a positive electrode plate was prepared in the same manner as in Example 1 except that the positive electrode active material LiMn 2 O 4 having a diameter of 1 ⁇ m was used and the amount of the electrode active material layer forming composition shown in Table 1 was used. It was.
  • Example 10 7.0 g of Ni (CH 3 COO) 2 .4H 2 O [molecular weight: 249] was used as the metal element-containing compound, and this was added to 13 g of methanol, and 10 g of diethylene glycol was further mixed.
  • a positive electrode plate was prepared in the same manner as in Example 1 except that the positive electrode active material LiMn 2 O 4 having a diameter of 1 ⁇ m was used and the coating amount of the electrode active material layer forming composition shown in Table 1 was used. It was.
  • Example 15 A positive electrode plate was prepared in the same manner as in Example 1 except that the positive electrode active material LiMn 2 O 4 having an average particle diameter of 1 ⁇ m was used and the amount of the electrode active material layer forming composition shown in Table 1 was set. Example 15 was made.
  • Example 16 A positive electrode plate was prepared in the same manner as in Example 1 except that the positive electrode active material LiMn 2 O 4 having an average particle diameter of 1 ⁇ m was used and the amount of the electrode active material layer forming composition shown in Table 1 was set. Example 16 was made.
  • Example 2 Similar to Sample 1 in Example 1, Samples 2 to 20 were prepared for Example 2 to Example 20, and composition analysis was performed using the samples. The results were as follows. In Example 2, 8 atomic% of Fe element, 22 atomic% of Mn element, 59 atomic% of O element, and 11 atomic% of C element were detected. On the other hand, N element was not detected. As a result, it was confirmed that the iron nitrate contained in the electrode active material layer forming coating film was thermally decomposed to produce iron oxide. In Example 3, Fe atomic element was detected at 16 atomic%, Mn element was detected at 15 atomic%, O element was detected at 59 atomic%, and C element was detected at 10 atomic%. On the other hand, N element was not detected.
  • Example 4 Fe atomic element was detected at 16 atomic%, Mn element was detected at 16 atomic%, O element was detected at 57 atomic%, and C element was detected at 11 atomic%. On the other hand, N element was not detected. As a result, it was confirmed that the iron nitrate contained in the electrode active material layer forming coating film was thermally decomposed to produce iron oxide. In Example 5, 4 atomic% of Fe element, 8 atomic% of Ti element, 13 atomic% of Mn element, 58 atomic% of O element, and 17 atomic% of C element were detected.
  • Example 8 the Ti element was detected at 11 atomic%, the Mn element at 21 atomic%, the O element at 58 atomic%, and the C element at 10 atomic%. On the other hand, Cl element was not detected. As a result, it was confirmed that the titanium chloride contained in the electrode active material layer forming coating film was thermally decomposed to produce titanium oxide.
  • Example 9 the Co element was detected at 13 atomic%, the Mn element was detected at 15 atomic%, the O element was detected at 60 atomic%, and the C element was detected at 12 atomic%.
  • Example 10 From the amount of C element detected, it was understood that carbon in cobalt acetate was lost by heating. As a result, it was confirmed that cobalt acetate contained in the electrode active material layer-forming coating film was thermally decomposed to produce cobalt oxide.
  • Example 10 13 atomic% of Ni element, 16 atomic% of Mn element, 61 atomic% of O element, and 10 atomic% of C element were detected. From the amount of C element detected, it was understood that carbon in nickel acetate disappeared by heating. As a result, it was confirmed that nickel acetate contained in the electrode active material layer-forming coating film was thermally decomposed to produce nickel oxide.
  • Example 11 14 atomic% of Zn element, 20 atomic% of Mn element, 54 atomic% of O element, and 12 atomic% of C element were detected. On the other hand, N element was not detected. As a result, it was confirmed that the zinc nitrate contained in the electrode active material layer-forming coating film was thermally decomposed to produce zinc oxide. In Example 12, 13 atomic% of Zr element, 19 atomic% of Mn element, 60 atomic% of O element, and 8 atomic% of C element were detected. On the other hand, Cl element was not detected. As a result, it was confirmed that the zirconium chloride contained in the electrode active material layer-forming coating film was thermally decomposed to produce zirconium oxide.
  • Example 13 15 atomic% Fe element, 16 atomic% Mn element, 58 atomic% O element, and 11 atomic% C element were detected. On the other hand, N element was not detected. As a result, it was confirmed that iron nitrate contained in the electrode active material layer-forming coating film was thermally decomposed to produce iron oxide.
  • Example 14 15 atomic% Fe element, 13 atomic% Mn element, 60 atomic% O element, and 12 atomic% C element were detected. On the other hand, N element was not detected. As a result, it was confirmed that iron nitrate contained in the electrode active material layer-forming coating film was thermally decomposed to produce iron oxide.
  • Example 15 Fe atomic element 14 atomic%, Mn element 16 atomic%, O element 60 atomic%, and C element 10 atomic% were detected. On the other hand, N element was not detected. As a result, it was confirmed that iron nitrate contained in the electrode active material layer-forming coating film was thermally decomposed to produce iron oxide. In Example 16, Fe atomic element 14 atomic%, Mn element 16 atomic%, O element 57 atomic%, and C element 13 atomic% were detected. On the other hand, N element was not detected. As a result, it was confirmed that iron nitrate contained in the electrode active material layer-forming coating film was thermally decomposed to produce iron oxide.
  • Crystallinity evaluation for Examples 2-16 Further, the crystallinity of the samples 2 to 16 in Examples 2 to 16 was evaluated in the same manner as the sample 1 in Example 1. As a result, it was confirmed that the metal oxide contained in the electrode active material layer was crystalline in Samples 2 to 16 as well as Sample 1 (illustration of the X-ray diffraction results was omitted).
  • Example Test Cells 2 to 16 were prepared in the same manner as Example Test Cell 1 in Example 1.
  • the disk-shaped size in each Example is the same as that of Example 1, and the weight of the positive electrode active material contained therein is shown in Table 2 or Table 3.
  • a charge / discharge test was conducted in the same manner as in Example 1 except that the test cells 2 to 16 were used and the constant current values shown in Table 2 or Table 3 were used.
  • the constant current at the time of charging (discharge rate: 1C) is the same as the constant current at the time of discharging (discharge rate: 1C). Description is omitted.
  • Comparative Example 1 10 g of positive electrode active material LiMn 2 O 4 having an average particle diameter of 4 ⁇ m, 1.5 g of acetylene black (manufactured by Denki Kagaku Co., Ltd., Denka Black), 0.1 g of carbon fiber (manufactured by Showa Denko KK, VGCF), and resin Excel Auto as a binder made by adding NDF (Mitsubishi Chemical Corporation), an organic solvent, to 1.3 g of PVDF (Kureha, KF # 1100) and dispersing it. The slurry was stirred for 15 minutes at a rotational speed of 7000 rpm with a homogenizer (Nippon Seiki Seisakusho Co., Ltd.) to prepare a slurry-like electrode active material layer forming composition.
  • acetylene black manufactured by Denki Kagaku Co., Ltd., Denka Black
  • carbon fiber manufactured by Showa Denko KK, VGCF
  • resin Excel Auto as a binder made by adding NDF (
  • the electrode active material layer forming composition was applied onto a 15 ⁇ m thick aluminum foil used as a positive electrode current collector so that the coating amount of the electrode active material layer forming composition after drying was 30 g / m 2.
  • the viscosity of the electrode active material layer forming composition it was difficult to adjust the viscosity of the electrode active material layer forming composition, the fluidity was deteriorated, application as designed was not possible, and the positive electrode active material layer could not be formed. Therefore, a positive electrode plate for a non-aqueous electrolyte secondary battery could not be prepared.
  • Example 2 A positive electrode plate for a nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the metal element-containing compound was not used. And the process which pulls out the disk of a predetermined shape similarly to Example 1 was performed, but the electrode active material layer peeled off at this time, and the electrode on the disk which can be used for a tripolar coin cell is created. I could't. That is, the film forming property of the electrode active material layer in the positive electrode plate for a non-aqueous electrolyte secondary battery was poor.
  • Comparative Example 3 A slurry-like electrode active material layer forming composition was prepared in the same manner as in Comparative Example 1 except that the positive electrode active material LiMn 2 O 4 having an average particle size of 10 ⁇ m was used. Then, the electrode active material layer forming composition was applied onto a 15 ⁇ m thick aluminum foil used as a positive electrode current collector so that the coating amount of the electrode active material layer forming composition after drying was 30 g / m 2. Then, it was dried in an air atmosphere at 120 ° C. for 20 minutes using an oven to form an electrode active material layer for the positive electrode on the current collector surface.
  • Comparative Example 3 For Comparative Example 3, a tripolar coin cell was assembled following Example 1, and a charge / discharge test was performed in the same manner as in Example 1 except for the constant current value, and the discharge capacity and the discharge rate were measured. The constant current value of Comparative Example 3 and the measurement results are shown in Table 3.
  • Comparative Example 4 An electrode active material layer forming composition was prepared in the same manner as in Comparative Example 1 except that the positive electrode active material LiMn 2 O 4 having an average particle diameter of 1 ⁇ m was used, and the dried electrode on the same aluminum foil as in Comparative Example 1 Application was performed so that the coating amount of the active material layer forming composition was 30 g / m 2 , but the viscosity of the electrode active material layer forming composition was difficult to adjust, the fluidity was poor, and the coating as designed was possible. In other words, the positive electrode active material layer could not be formed. Therefore, a positive electrode plate for a nonaqueous electrolyte secondary battery could not be prepared.
  • Titanium diisopropoxybis (acetylacetonate), which is a metal element-containing compound (manufactured by Matsumoto Kosho Co., Ltd., TC-100) is used as a binder material generating material in a solution obtained by dissolving 1 g of polyethylene oxide, which is an organic substance, in 9 g of methanol. ) 5.0 g was mixed to obtain a raw material solution that produces a metal oxide that does not exhibit lithium ion insertion / release reaction.
  • a copper plate having a thickness of 10 ⁇ m is prepared as a current collector, and the electrode active material layer prepared as described above is formed on one side of the current collector in an amount such that the weight of the electrode active material layer finally obtained is 15 g / m 2.
  • the material layer forming composition was applied with an applicator to form a coating film for forming an electrode active material layer.
  • the current collector on which the electrode active material layer-forming coating film was formed was used as an electric furnace (high temperature atmosphere box furnace, Koyo Thermo System Co., Ltd.) in a hydrogen reducing atmosphere (hydrogen concentration 4%, nitrogen concentration 96%). And then heated to 700 ° C. over 1 hour, then heated to 700 ° C.
  • a negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention was obtained in which an electrode active material layer suitable as a negative electrode active material layer containing a metal oxide and negative electrode active material particles was laminated on an electric body. Then, the negative electrode plate was cut into a predetermined size (a disk having a diameter of 15 mm) to obtain Example 17.
  • Example 18 A negative electrode plate was produced in the same manner as in Example 17 except that the electrode active material layer forming composition application amount shown in Table 5 was changed, and this was designated as Example 18.
  • Example 19 A negative electrode plate was produced in the same manner as in Example 17 except that the particle diameter of the negative electrode active material particles to be used was changed to 10 ⁇ m.
  • Example 20 A negative electrode body was produced in the same manner as in Example 17 except that the particle diameter of the negative electrode active material particles used was changed to 1 ⁇ m and the electrode active material layer forming composition application amount shown in Table 5 was changed. This was designated as Example 20.
  • Electrode active material layer thickness for Examples 17-20 About the said Examples 17 thru
  • Example 17 Composition analysis tests for Examples 17-20: In the same manner as Sample 1 in Example 1, Samples 17 to 20 were prepared for Example 17 to Example 20, and composition analysis was performed using the samples. The results were as follows. In Example 17, the Ti element was detected at 16 atomic%, the C element was detected at 53 atomic%, and the O element was detected at 31 atomic%. In Example 18, the Ti element was detected at 16 atomic%, the C element at 51 atomic%, and the O element at 33 atomic%. In Example 19, 19 atomic percent of Ti element, 42 atomic percent of C element, and 39 atomic percent of O element were detected. In Example 20, 19 atomic% Ti element, 40 atomic% C element, and 41 atomic% O element were detected.
  • Crystallinity evaluation for Examples 17-20 Further, the crystallinity of the samples 17 to 20 in Examples 17 to 20 was evaluated in the same manner as the sample 1 in Example 1. As a result, it was confirmed that the metal oxide (titanium oxide) contained in the electrode active material layer was crystalline in Samples 17 to 20 as well as Sample 1 (the X-ray diffraction results are shown in the figure). (Omitted).
  • the CV test was conducted in the same manner as described above. As a result, no peak (electrochemical reaction) was confirmed in the cyclic voltammogram showing any cycle result from the first to third cycles. From this, it was confirmed that the titanium oxide, which is the binding material of Examples 17 to 20, does not show lithium ion insertion / release reaction.
  • the CV test was performed using VMP3 manufactured by Bio Logic.
  • Example 17-20 Charge / Discharge Test for Examples 17-20: First, similarly to the charge / discharge test in Example 1, a non-aqueous electrolyte was prepared, and instead of using Example 1 as a positive electrode plate, Examples 17 to 20 were used as working electrodes as negative electrode plates. And Example test cell 17 thru
  • the test cell 17 was charged at a constant current (707 ⁇ A) under a 25 ° C. environment until the voltage reached 0.03 V. After the voltage reached 0.03 V, the voltage was 0.03 V.
  • the current discharge rate: 1C was reduced until it became 5% or less so as not to fall below, and the battery was charged at a constant voltage, fully charged, and then suspended for 10 minutes.
  • the “1C” means a current value (current value reaching the discharge end voltage) at which constant current discharge is performed using the tripolar coin cell and discharge is completed in one hour.
  • the constant current was set so that the theoretical discharge amount of 372 mAhr / g of graphite as an active material was discharged in one hour at the working electrode which is the test cell 17 of the example. (Discharge test) Thereafter, the fully charged example test cell 17 was subjected to a constant current (707 ⁇ A) (discharge) in an environment of 25 ° C. until the voltage changed from 0.03 V (full charge voltage) to 2.0 V (discharge end voltage).
  • the discharge capacity (mAh) was determined and converted to the discharge capacity (mAh / g) per unit weight of the working electrode.
  • each of the constant currents was similarly applied at the discharge rates of 50 C and 100 C.
  • Example 7 (Calculation of discharge capacity maintenance rate (%)) In the same manner as in Example 1, the discharge capacity retention ratio (%) was obtained for Examples 17 to 20. Moreover, the discharge rate characteristic evaluation of the electrode was performed as follows. The results are shown in Table 7. Discharge capacity maintenance rate at discharge rate 50C 80% or more and 100% or less Discharge capacity maintenance rate at 50C discharge rate 50% or more and less than 80% Discharge capacity maintenance rate at discharge rate 50C Less than 50% ...
  • Adhesion evaluation for Examples 17-20 The adhesion of the electrode active material layer to the current collector was evaluated as follows. That is, cellophane tape (“CT24” manufactured by Nichiban Co., Ltd.) was used on the surface of the electrode active material layer of Example 17 obtained, and the film was brought into close contact with the finger pad. Subsequently, the electrode active material layer surface after peeling this off was observed and evaluated as follows. The results are shown in Table 5. No peeling of the electrode active material layer was observed ... Part of the surface of the electrode active material layer was agglomerated and stuck to the cellophane tape, but the current collector surface was not exposed. Part of the electrode active material layer was agglomerated, stuck to the cellophane tape side, and part of the current collector surface was exposed ... ⁇ ⁇ ⁇
  • Example 17 Confirmation of carbon components distinct from conductive materials for Examples 17-20: It was confirmed as follows that the carbon component distinct from the conductive material in the electrode active material layer disappeared.
  • a composition was prepared in the same manner as the above-described electrode active material layer forming composition except that the negative electrode active material particles were not used.
  • a coating film was prepared and heated under the same conditions as in the heating step, and it was confirmed that no carbon atoms were contained in the obtained laminated film. Therefore, from the result of the preliminary test, it was confirmed in advance in Example 17 that there was no carbon component that was different from the conductive material and different from the negative electrode active material particles.
  • Example 17 the cross-section in the thickness direction of the electrode active material layer in Example 17 was measured with an EDX detector by scanning transmission electron microscopy (STEM method) using a transmission electron microscope (TEM).
  • STEM method scanning transmission electron microscopy
  • TEM transmission electron microscope
  • Cycle characteristic evaluation tests for Examples 17 to 20 Using each of Examples 17 to 20, following the charge test and the discharge test, a constant current charge / discharge test at a constant current (7 mA) (discharge rate: 10 C) was performed, and the cycle characteristic evaluation test was repeated 100 times. did. The maintenance rate of the 100th discharge capacity with respect to the first discharge capacity was taken as the 100 cycle capacity maintenance rate. Further, as a cycle characteristic evaluation, the cycle capacity maintenance rate was evaluated as follows. Table 6 shows the results of 100 cycle capacity retention rate and cycle characteristic evaluation. 100 cycle capacity maintenance rate 60% or more 100 cycle capacity maintenance rate less than 60%
  • Coating suitability evaluation for Examples 17 to 20 Regarding Examples 17 to 20, for the coating suitability of the electrode active material layer forming composition on the current collector, the coating film surface formed on the current collector was visually observed after the application of the negative electrode plate, The evaluation was as follows. The results are shown in Table 5. The surface of the coating was uniform ... Some unevenness was confirmed on a part of the coating surface. A streak or uneven coating was found on the coating surface ... Clear streaks that cannot be used as a negative electrode plate on the coating surface, Or coating unevenness was confirmed ...
  • the electrode active material layer forming composition was applied onto a 10 ⁇ m thick copper foil used as the negative electrode current collector so that the coating amount of the electrode active material layer forming composition after drying was 65 g / m 2. This was dried in an air atmosphere at 70 ° C. using an oven to form an electrode active material layer for the negative electrode plate on the current collector. Furthermore, after pressing using a roll press machine so that the thickness of the formed electrode active material layer is about 85 ⁇ m, it is cut into a predetermined size (a disk with a diameter of 15 mm) and 300 ° C. at 70 ° C. A negative electrode plate was produced by vacuum-drying for 5 minutes to obtain Comparative Example 5.
  • Examples 1 to 16 and Comparative Examples 1 to 4 of the positive electrode plate described above had a discharge capacity maintenance rate of about 100 when the discharge rate was 1C. However, when the discharge rate was increased, all of the examples maintained a high discharge capacity, whereas Comparative Example 3 showed a significant decrease in the discharge capacity maintenance rate.
  • Comparative Example 2 was formed in the same manner as in Example 1 except that no metal oxide was formed in the electrode active material layer, but the film forming property was poor and the electrode active material layer was peeled off. could not be formed. From this, it was confirmed that the metal oxide in the electrode active material layer surely acts as a binder.
  • Comparative Example 1 and Comparative Example 4 used a conventional resin binder, but the particle diameter of the positive electrode active material particles used was as small as 5 ⁇ m or less, making it difficult to adjust the viscosity of the electrode active material layer forming composition. As a result, a positive electrode plate could not be prepared.
  • the particle diameter of the positive electrode active material particle to be used is 5 micrometers or less, a positive electrode plate can be formed favorably and the discharge capacity of the obtained positive electrode plate can be maintained. The result was very high.
  • Examples 17 to 20 were very excellent in output / input characteristics and cycle characteristics.
  • the binder material was changed from a resin material to a metal oxide, it was confirmed that the film forming property and adhesion were superior to conventional ones.
  • the coating suitability the Examples showed excellent properties regardless of the particle size of the active material used, whereas Comparative Example 5 using a negative electrode active material having a particle size of 12 ⁇ m and In No. 6, moderate coating suitability was shown, but when the particle diameter of the active material used was 10 ⁇ m or less, it was shown that the coating suitability was not good.
  • a negative electrode active material having a small particle diameter, which was difficult to use in the past, can be used well.
  • the negative electrode plate of the present invention shown in Examples 17 to 20 exhibits very excellent input / output characteristics and cycle characteristics as compared with Comparative Examples 5 to 9, the negative electrode plate of the present invention is used as a battery. It is understood that the input / output characteristics and cycle characteristics of the battery are desirably improved.
  • the electrode plate for a non-aqueous electrolyte secondary battery according to the present invention exhibits a very high discharge capacity retention rate in both the positive electrode plate and the negative electrode plate, and thus has a very high discharge rate characteristic.
  • the charge rate characteristics were also high. That is, from the charge / discharge test, it was confirmed that the electrode plate of the present invention has excellent input / output characteristics.
  • the adhesion test and the cycle characteristic evaluation were evaluated using the example of the negative electrode plate as an evaluation of the electrode plate of the present invention. The excellent properties shown in the evaluation results are not limited to the negative electrode plate of the present invention, and the same properties are also exhibited in the positive electrode plate of the present invention.
  • the electrode plate of the present invention as a positive electrode plate and / or a negative electrode plate, an excellent non-aqueous electrolyte secondary battery exhibiting an excellent discharge rate characteristic than before. Can be provided.
  • an electrode plate having an electrode active material layer having a conventional thickness can be manufactured, or an electrode plate having a very thin electrode active material layer can be manufactured. It was shown that it can be done. Furthermore, as described above, it was shown that the electrode plate obtained by the production method of the present invention exhibits very desirable discharge rate characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 非水電解液二次電池は、集電体と、集電体の表面の少なくとも一部に形成される電極活物質層と、を備えている。電極活物質層は、電極活物質粒子および結着物質を含有している。結着物質は、アルカリ金属イオン挿入脱離反応を示さない結晶性の金属酸化物からなっている。

Description

非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、および非水電解液二次電池 関連する出願の相互参照
 本願は、2009年 4月24日に出願された特願2009-107180号および2010年 2月 5日に出願された特願2010- 24840号に対して優先権を主張し、これら特願2009-107180号および特願2010- 24840号のすべての内容が参照されてここに組み込まれるものとする。
 本発明は、リチウムイオン二次電池などの非水電解液二次電池に用いられる電極板、および上記電極板の製造方法並びに非水電解液二次電池に関するものである。
 リチウムイオン二次電池に代表される非水電解液二次電池は、高エネルギー密度、高電圧を有し、また充放電時におけるメモリ効果(完全に放電させる前に電池の充電を行なうと次第に電池容量が減少していく現象)が無いことから、携帯機器、ノート型パソコン、ポータブル機器など様々な分野で用いられている。
 上記非水電解液二次電池は、一般的に、正極板、負極板、セパレータ、及び非水電解液から構成される。ここで、上記正極板としては、金属箔などの集電体表面に、正極活物質粒子が固着されてなる電極活物質層を備えるものが一般に用いられている。また上記負極板としては、銅やアルミニウムなどの集電体表面に、負極活物質粒子が固着されてなる電極活物質層を備えるものが一般に用いられている。
 上記正極板または負極板である、電極板を製造するには、まず、正極活物質粒子または負極活物質粒子である電極物質粒子、樹脂製バインダー、及び導電材(但し負極活物質粒子が導電効果も発揮する場合など、導電材がなくても十分に電極性能が得られる場合には、導電材は省略される場合がある)、あるいはさらに、必要に応じてその他の材料を用い、溶媒中で混練及び/又は分散させて、スラリー状の電極活物質層形成組成物を調製する。そして上記電極活物質層形成組成物を集電体表面に塗布し、次いで乾燥させて集電体上に塗膜を形成し、プレスすることにより電極活物質層を備える電極板を製造する方法が一般的である(たとえば、特開2006-310010号公報、または特開2006-107750号公報)。
 このとき、電極活物質層形成組成物に含有される電極活物質粒子は、該組成物に分散する粒子状の金属化合物であって、それ自体だけでは、集電体表面に塗布され、乾燥させ、プレスされても該集電体表面に固着され難く、集電体からすぐに剥離してしまう。そこで、樹脂製バインダーを電極活物質層形成組成物に添加し、樹脂製バインダーにより、電極活物質粒子を集電体上に固着させて電極活物質層を形成している。したがって樹脂製バインダーは、上記電極活物質層形成組成物において、実質的に必須の成分であった。
 ところで、近年、リチウムイオン二次電池は、さらに電気自動車、ハイブリッド自動車そしてパワーツールなどの高出入力特性が必要とされる分野に向けての開発が進められている。また携帯電話等の比較的小型の装置に用いられる二次電池であっても、装置が多機能化される傾向にあるために、出入力特性の向上が期待されている。これに対し、二次電池において出入力特性の向上を実現するためには、電池のインピーダンスを下げる必要がある。インピーダンスが高い電池では、高速充放電時にその容量を充分に生かすことができないなどの問題があるからである。
 二次電池のインピーダンスを下げるには、電極板のインピーダンスを下げることが効果的であり、これまでにも電極板に形成される電極活物質層を薄膜化し、電極面積を大きくする方法が知られている。また、リチウムイオン二次電池に用いられる非水電解液は、一般的に水系電解液に比べて抵抗が高いことから、開発当初から鉛蓄電池などの他の電池に比べて、薄く広い面積の電極を使用し、かつ正極と負極との極板間距離を短くする形態が開発されている。
 しかしながら、電極活物質層における活物質粒子以外の成分の存在も勘案すると、層の厚みを薄くするにも限界があり、実質的には電極活物質層の厚みの下限は数十μm程度までであった。
 また電極板の高出入力特性を向上させるための別のアプローチとしては、用いられる活物質粒子の粒子径をより小さくする、という手段も有効である。活物質粒子の粒子径が小さくなることにより、電極活物質層中が含有される電極活物質粒子の表面積の総量を増大することができ、また電極活物質粒子内に挿入脱離するリチウムイオンの、当該粒子内の移動距離を小さくすることができるため、リチウムイオンの挙動がよりスムーズになり、結果として出入力特性の向上を実現することができるからである。
 しかしながら、実際には、活物質粒子の粒子径が小さくなるにつれて電極活物質層形成組成物の粘度が増大する傾向にあり、当該傾向は、特に粒子径が11μm以下、あるいはさらに小さい粒子径の活物質粒子を使用した場合に顕著に観察された。したがって、使用し得る活物質粒子の粒子径の大きさが実質的に制限されるため、上述する電極活物質層の薄膜化に対し、不利に働いていた。
 また上記高出入力化の課題に加え、電池の寿命を上げるべく、サイクル特性の向上についても、非水電解液二次電池の重要な課題である。
 本発明は上記の実状に鑑みて成し遂げられたものであり、非水電解液二次電池用電極板において、出入力特性が高く、且つ、サイクル特性に優れた電極板を提供することを目的とし、またかかる電極板を用いることによって出入力特性の高い非水電解液二次電池を実現すること、およびかかる電極板を製造する方法を提供することを目的とする。
 本発明者らは、一般的に用いられている樹脂製のバインダーを使用せず、結晶性であって、アルカリ金属イオン挿入脱離反応を示さない金属酸化物を介して集電体上に電極活物質粒子を固着させることができ、これによって出入力特性の向上が示されることを見出し、本発明の非水電解液二次電池用電極板、およびこれを用いた非水電解液二次電池を完成させた。
 また本発明者らは、樹脂製のバインダーを用いずに、結晶性であって、アルカリ金属イオン挿入脱離反応を示さない金属酸化物を介して集電体上に電極活物質粒子が固着されてなる電極活物質層を備える電極板を製造する手段の1つとして、金属酸化物を結着物質として生成するための金属元素含有化合物と電極活物質粒子とを少なくとも含有する組成物を調製し、これを集電体上に塗布して塗膜を形成し、該塗膜を適切な温度で加熱する方法を見出した。
 即ち、集電体上に塗布された金属元素含有化合物の熱分解開始温度以上であって、生成される金属酸化物の結晶化温度以上の温度で加熱することにより、該金属元素含有化合物から、結着物質である金属酸化物を生成し、且つ、このとき該結着物質の周囲に存在する電極活物質粒子を集電体上に固着させることができることを本発明者らは見出し、非水電解液二次電池用電極板の製造方法の発明を完成させた。
 本発明による非水電解液二次電池用電極板は、
 集電体と、
 前記集電体の表面の少なくとも一部に形成される電極活物質層と、を備え、
 前記電極活物質層が、電極活物質粒子および結着物質を含有し、
 前記結着物質が、アルカリ金属イオン挿入脱離反応を示さない結晶性の金属酸化物からなっている。
 本発明による非水電解液二次電池用電極板において、
 前記電極活物質層は、導電材をさらに含有してもよい。
 本発明による非水電解液二次電池用電極板において、
 前記金属酸化物は、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Rb、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、およびSnからなる群より選択されるいずれか1種の金属元素を含む金属酸化物、または前記群より選択される2種以上の金属元素を含む複合金属酸化物からなってもよい。
 本発明による非水電解液二次電池用電極板において、
 前記電極活物質粒子の粒子径は11μm以下からなってもよい。
 本発明による非水電解液二次電池は、
 正極板と、
 負極板と、
 前記正極板と前記負極板との間に設けられるセパレータと、
 非水溶媒を含む電解液と、を少なくとも備え、
 前記正極板および/または前記負極板が、
  集電体と、
  前記集電体の表面の少なくとも一部に形成される電極活物質層と、を有し、
  前記電極活物質層が、電極活物質粒子および結着物質を含有し、
  前記結着物質が、アルカリ金属イオン挿入脱離反応を示さない結晶性の金属酸化物からなっている。
 本発明による非水電解液二次電池用電極板の製造方法は、
 溶媒と、電極活物質粒子と、結着物質である金属酸化物を生成するための金属元素含有化合物とが少なくとも含有される電極活物質層形成組成物を、集電体上の少なくとも一部に塗布して塗膜を形成する塗布工程と、
 前記塗布工程後に実施されて前記塗膜を加熱する加熱工程であって、前記溶媒を蒸発させるとともに、前記金属元素含有化合物を熱分解して金属酸化物を生成することによって、前記集電体上に前記金属酸化物と前記電極活物質粒子とを含有する電極活物質層を形成する加熱工程と、を備え、
 前記加熱工程において生成される金属酸化物が、アルカリ金属イオン挿入脱離反応を示さない金属酸化物となるよう、前記塗布工程に用いられる前記金属元素含有化合物を予め選択し、
 前記加熱工程において、前記金属元素含有化合物の熱分解開始温度以上であって、かつ、該加熱工程において生成される前記金属酸化物の結晶化温度以上である温度で前記塗膜を加熱する。
 本発明による非水電解液二次電池用電極板の製造方法において、
 前記金属元素含有化合物は、金属塩からなってもよい。
 本発明の非水電解液二次電池用電極板(以下、単に「電極板」ともいう)は、従来技術のように樹脂製のバインダーを使用することなく、結晶性であって、アルカリイオン挿入脱離反応を示さない金属酸化物の存在により、電極活物質粒子を集電体上に固着させてなる電極活物質層を備えるものである。かかる本発明の電極板は、従来の樹脂製バインダーを用いてなる非水電解液二次電池用電極板に比べて、同一の電極活物質粒子を同量含む場合であっても、非常に高い出入力特性および高いサイクル特性を発揮することが可能である。しかも、本発明の電極板は、従来の樹脂製バインダーを用いた電極板における集電体と電極活物質層との密着性を上回る非常に優れた密着性を有し、したがって該電極活物質層の膜形成性が良好である。
 そして、上述のとおり出入力特性の向上が図られた本発明の電極板を正極板及び/または負極板として用いる本発明の非水電解液二次電池であれば、上述のとおり電極板の出入力特性が向上しているため、電池としての出入力特性の向上に寄与することになり、結果として出入力特性の向上した非水電解液二次電池が提供される。
 また本発明の非水電解液二次電池用電極板の製造方法(以下、単に「本発明の製造方法」ともいう)によれば、容易な方法、且つ、汎用の材料で、従来の電極板に比べて出入力特性およびサイクル特性の向上した非水電解液二次電池用電極板を製造することができる。
 しかも、金属元素含有化合物と電極活物質粒子とを少なくとも含有して調製される電極活物質層形成組成物は、含有される電極活物質粒子の粒子径によらず、集電体への塗布性が良好に維持される程度の粘度が示される。したがって、樹脂製のバインダーを使用した従来の電極活物質層形成組成物では、粘度の著しい上昇のため使用困難であった粒子径の小さい電極活物質粒子を使用することができるようになった。また上記電極活物質層形成組成物の集電体への塗布性が良好であることから、所望の厚みに塗布することも可能である。
非晶質の酸化鉄のX線回折結果を示すチャートである。 結晶性の酸化鉄のX線回折結果を示すチャートである。 リチウム挿入脱離反応を示す金属酸化物を用いたサイクリックボルタンメトリー試験の結果を示すサイクリックボルタモグラムである。 リチウム挿入脱離反応を示さない金属酸化物を用いたサイクリックボルタンメトリー試験の結果を示すサイクリックボルタモグラムである。 実施例1を集電体面に対して垂直に切断した際の断面を走査型電子顕微鏡(SEM)を用いて10,000倍の倍率で観察した電子顕微鏡写真である。 実施例1の電極活物質層のX線回折結果を示すグラフである。 実施例1と同様の条件で加熱して得られた酸化鉄のX線回折結果を示すグラフである。 正極活物質粒子であるマンガン酸リチウムのX線回折結果を示すグラフである。 実施例5の電極活物質層のX線回折結果を示すグラフである。 正極活物質を添加しなかったこと以外は、実施例5で用いた原料溶液と同様の溶液を用いて形成した膜のX線回折結果を示すグラフである。 図11(a)は非水電解液二次電池を示す図、図11(b)は非水電解液二次電池用負極板を示す図である。
 以下に、本発明の非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、および非水電解液二次電池を実施するための形態について、順に説明する。尚、以下の説明において、特に断りがない場合には、本発明の非水電解液二次電池として、リチウムイオン二次電池を例に説明する。また本発明における金属酸化物の特質である、「アルカリ金属イオン挿入脱離反応を示さない」という点については、特に断りがない場合には、アルカリ金属イオンの例としてリチウムイオンを用い、その挿入脱離について説明する。また、本発明の電極板は、非水電解液二次電池に用いられる正極板および負極板のいずれも含む。したがって、以下の説明において、特に断りがない場合には、正極板および負極板について、電極板としてまとめて説明し、必要に応じて、正極板および負極板それぞれに関し、説明する。
[非水電解液二次電池用電極板]
 本実施の形態の非水電解液二次電池用負極板15は、図11(b)に示すように、集電体15aと、集電体15aの表面の少なくとも一部に形成される電極活物質層15bと、を備えている。そして、この電極活物質層15bは電極活物質粒子および結着物質を含有している。また、この結着物質は、アルカリ金属イオン挿入脱離反応を示さない結晶性の金属酸化物からなっている。以下に、電極活物質層、集電体、電極の充放電レート特性評価方法について、順に説明する。
(電極活物質層)
 本発明における電極活物質層は、電極活物質粒子が、従来のように樹脂製のバインダーではなく、結晶性であってリチウムイオンなどのアルカリ金属イオン挿入脱離反応を示さない金属酸化物によって集電体上に固着されているものである。
 本発明における電極活物質層の厚みは、当該電極板に求められる電気容量や出入力特性を勘案して、適宜設計することができる。一般的には200μm以下、より一般的には100μm以上かつ150μm以下の厚みで設計される。しかし、特に本発明においては、電極活物質層を非常に薄く形成することが可能であるため、用いる電極活物質粒子の粒子径にもよるが、膜厚が300nm以上200μm以下の電極活物質層を形成することができる。出入力特性を向上させつつも高容量を得ることができるという観点からは、特に電極活物質層の膜厚を300nm以上30μm以下にすることが好ましく、500nm以上11μm以下とすることがより好ましい。
 電極活物質層の厚みが、上述の範囲のように薄い場合には、用いられる電極活物質粒子は粒子径が小さいものであり、少なくとも電極活物質層の膜厚以下の粒子径であることを意味し、これによって、出入力特性の向上に大きく寄与する結果となる。また、このように電極活物質層の膜厚が薄い場合には、電極活物質層中において、電極活物質粒子と集電体とを移動する電子の移動距離が短くなるので、電極板における電気抵抗を下げることができ、結果として出入力特性の向上に寄与することができるため望ましい。
 尚、本発明において電極活物質層の膜厚の下限は、主として、用いられる電極活物質粒子の粒子径に依存し、使用可能な電極活物質粒子の粒子径の縮小化に伴い、さらに上述の範囲を下回る、より薄い膜厚とすることが可能である。
 また電極活物質層は、電解液が浸透可能な程度に空隙が存在していることが好ましく、電極活物質層中の空隙率は、一般的に15~40%、より好ましくは20~40%である。
 以下に、本発明における電極活物質層中に含有される物質について具体的に説明する。
電極活物質粒子:
 本発明における電極活物質層に含有される電極活物質粒子としては、一般的に非水電解液二次電池用電極板において用いられるリチウムイオン挿入脱離反応を示す充放電可能な正極活物質粒子または負極活物質粒子であれば、特に限定されない。即ち、本発明では集電体上において、電極活物質粒子などの粒子間あるいは電極活物質粒子と集電体との間に金属酸化物が介在することによって互いに接着し電極活物質層が形成されており、上記金属酸化物は、電極活物質粒子の種類や形状によらず結着物質として作用する。
 また本発明の電極活物質層に含有される金属酸化物は、アルカリ金属イオン挿入脱離反応を示さないものであるため、いずれの電極活物質粒子の反応に対しても影響を及ぼすことがなく、この観点からも本発明において使用される電極活物質粒子は、特に限定されずに使用することができる。たとえばリチウムイオン二次電池において、上記電極活物質粒子のうち、特に正極活物質粒子の具体的な例としては、例えばLiCoO、LiMn、LiNiO、LiFeO、LiTi12、LiFePOなどのリチウム遷移金属複合酸化物などの活物質粒子を挙げることができる。また同様に、負極活物質粒子の具体的な例としては、天然グラファイト、人造グラファイト、アモルファス炭素、カーボンブラック、またはこれらの成分に異種元素を添加したもののような炭素質材料からなる活物質粒子、あるいは、LiTi12等の金属酸化物、金属リチウム及びその合金、スズ、シリコン、及びそれらの合金等、リチウムイオンの挿入脱離反応を示す材料を挙げることができる。
 本発明に用いられる電極活物質粒子の粒子径は、特に限定されず、任意の大きさのものを適宜選択して使用することができる。ただし、粒子径が小さいほど、電極活物質層中における電極活物質粒子の表面積の総量を増大させることができるので、より高い出入力特性を求める場合には、粒子径の寸法の小さいものを選択することが望ましい。このように、粒子径のサイズを特に限定されることがなく選択することができるということは、本発明の有利な効果として特筆される。即ち、従来の電極板は、その製造において、電極活物質層形成組成物の粘度の著しい上昇のため粒子径の小さい電極活物質粒子は、使用困難であった。これに対し本発明の電極板では、任意の粒子径の電極活物質粒子を電極活物質層中に含有させることができるので、電極活物質層中における電極活物質粒子の表面面積を増大させることができるとともに、1つの電極活物質粒子内におけるリチウムイオンの移動距離を短縮することが可能であるため、飛躍的に出入力特性を向上させることができる。このように本発明において、従来より小さい粒子径の電極活物質粒子を使用することが可能となった理由は明らかではないが、従来の樹脂製バインダーに代えて、金属酸化物を生成するための金属元素含有化合物を電極活物質層形成組成物に添加することによると思われる。
 より具体的には、粒子径が11μm以下の電極活物質粒子を選択した場合に、従来の電極活物質層形成組成物においては、該組成物の粘度が高くなってしまい、その調整が困難であり、取り扱い性が不良であった。これに対し、本発明の電極板を製造する際においては電極活物質層形成組成物の粘度に特段の問題がなく、良好な取り扱い性が示されるため、容易に、粒子径11μm以下の電極活物質粒子を含有する電極活物質層を備える電極板を得ることができる。上述のとおり、電極活物質層形成組成物の取り扱性を充分に確保した上で高い出入力特性を求めるという観点からは、電極活物質粒子の粒子径を11μm以下とすることが望ましい。
 また特に、電極活物質粒子の粒子径が5μm以下となると、樹脂製のバインダーを使用した従来の構成の電極活物質層を備える電極板を作成しようとしても、電極活物質層形成組成物の粘度が高くなりすぎて流動性がなくなり、印刷機などの量産設備に適用できなかった。尚、溶媒を多量に追加して、上記電極活物質層形成組成物の流動性を上げることは可能だが、そうすると乾燥に著しく時間がかかり実質的ではなく、特に巻き取り装置による生産は不可能であった。しかし、本発明では粒子径が5μm以下の電極活物質粒子を用いた場合であっても、電極活物質層形成組成物の粘度が適度に保たれ、流動性もよいため、量産設備へ適用することができる。したがって、高い出入力特性が発揮される電極板を量産設備により生産するという観点からは、電極活物質粒子の粒子径を5μm以下とすることが望ましい。
 さらに、電極活物質粒子の粒子径が1μm以下のものを用いて、従来の樹脂製のバインダーを含有する電極活物質層を備える電極板を形成しようとした場合には、電極活物質層形成組成物中に、電極活物質粒子を分散させること自体が困難であり、実現不可能であった。これに対し、本発明では、粒子径が1μm以下の電極活物質粒子を用いても、電極活物質層形成組成物中での分散性もよく、良好に当該サイズの電極活物質粒子が含有された電極活物質層を集電体上に形成することができる。したがって、本発明において粒子径が1μm以下の電極活物質粒子を使用することが非常に有利であり、望ましい。尚、上記観点では、本発明では電極活物質粒子の粒子径は、さらに500nm以下、より好ましく100nm以下のものが選択される。尚、本発明および本明細書に示す電極活物質粒子の粒子径は、レーザー回折/散乱式粒度分布測定により測定される平均粒径(体積中位粒径:D50)である。
 また電極活物質層中に含有される電極活物質の粒子径は、電子顕微鏡観察結果を画像解析式粒度分布測定ソフトウェア(株式会社マウンテック製、MAC VIEW)を用いて測定することができる。
結着物質である金属酸化物:
 上記電極活物質層中に結着物質として含有される金属酸化物は、一般的に金属と理解される金属元素の酸化物であって、リチウムイオン挿入脱離反応を示さない結晶性の金属酸化物であれば、特に限定されるものではない。上記金属元素の例としては、Li、Be、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Rb、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Cs、Ba、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Fr、Ra、およびCeなどを挙げることができる。
 また理由は明らかではないが、本発明の電極板において、上記金属元素の中でも、特に第3周期乃至第5周期に属する金属元素の酸化物が結着物質として電極活物質層中に存在する場合には、より良好に出入力特性の向上が示されるため、好ましい。即ち、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Rb、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnからなる群の中から選択される金属元素を含む金属酸化物が結着物質として電極活物質層中に存在していることがより好ましい。
 特には、上記第3周期乃至第5周期に属する金属元素を含む金属酸化物の中でも、酸化チタンは安価であって取扱性も容易である上、結着物質として電極活物質層中に含有された際に、非常に優れた出入力特性向上効果を示すことが可能であるため、好ましい。すなわち、酸化チタンを結着物質として含有する電極活物質層を備える本発明の非水電解液二次電池用電極板では、放電レート50Cにおいて80%以上の高い充放電レート(放電容量維持率)を示すことが可能であり、自動車などの大型な装置にも十分対応可能である。
 本発明における金属酸化物とは、上述する金属元素のうちのいずれか1種の元素に酸素が結合した金属酸化物、あるいは上述する金属元素から選択される2種以上の金属元素を含む複合金属酸化物のいずれであってもよい。例えば、1つの金属元素に酸素が結合した金属酸化物の例としては、酸化ナトリウム、酸化マグネシウム、酸化アルミニウム、酸化珪素、酸化カリウム、酸化カルシウム、酸化スカンジウム、酸化チタン、酸化バナジウム、酸化クロム、酸化マンガン、酸化鉄、酸化コバルト、酸化ニッケル、酸化亜鉛、酸化ガリウム、酸化ストロンチウム、酸化イットリウム、酸化ジルコニウム、酸化モリブデン、酸化ルテニウム、酸化タンタル、酸化タングステン、酸化セリウムなどを挙げることができる。
 また2種以上の金属元素を含む複合金属酸化物であって、本発明の金属酸化物として用いることができるものの例としては、例えば、ガドリニウムがドープされた酸化セリウム、イットリウムがドープされた酸化ジルコニウム、鉄とチタンの混合酸化物、インジウムとスズが混合された酸化物、リチウムがドープされた酸化ニッケルなどを挙げることができる。
 尚、本段落で記載する金属酸化物の例は、本発明における金属酸化物を何ら限定するものではなく、本発明において、集電体上で電極活物質粒子の結着物質として働きうる金属酸化物とは、リチウムイオン挿入脱離反応を示さない、結晶性の金属酸化物であって、樹脂製のバインダーを用いずとも、電極活物質粒子を集電体上に固着させることのできるものであれば、いずれのものであってもよい。上記金属酸化物が、結晶性であることによって、非晶質の金属酸化物を結着物質として用いる場合に比べて、電極活物質粒子間、あるいは電極活物質粒子と導電材などの任意の添加成分間において、より強固な結着性が得られ、この結果、本発明の電極板では、優れたサイクル特性が示されるものと推測される。
 また、本発明において、上述する金属酸化物は、1種または2種以上の組み合わせで、電極活物質層中に含有させることができる。
結着物質の配合比率:
 本発明において、電極活物質層中における金属酸化物と、電極活物質粒子の配合比率は特に特定されず、使用される電極活物質粒子の種類や大きさ、金属酸化物の種類、電極に求められる機能などを勘案して適宜決定することができる。ただし、一般的には、電極活物質層中における電極活物質粒子の量が多い方が、電極の電気容量が増大するため、この観点からは、電極活物質層中に存在する電極活物質粒子に対する金属酸化物の配合量が、少ない方が好ましいといえる。
 より具体的には、上記電極活物質層中において、上記電極活物質粒子の重量比率を100重量部としたときに、上記金属酸化物の重量比率を、1重量部以上50重量部以下とすることができる。1重量部未満であると、電極活物質粒子が集電体上に良好に固着されない場合がある。
 一方、上記金属酸化物の重量比率の上限の記載は、本発明において、金属酸化物が当該上限を超えて存在することを除外する趣旨ではない。電極の電気容量を大きくするために、より少ない量の金属酸化物で活物質粒子を集電体上に固着させることができることを示すものである。
結着物質の結晶性について:
 本発明における金属酸化物は、結晶性であることが特定される。本発明において結晶性の金属酸化物とは、当該金属酸化物、あるいは当該金属酸化物を含む試料を、X線回折装置で解析し、当該金属酸化物のピークが検出された場合を意味する。例えば、金属元素として鉄を例に結晶性の酸化鉄と、非晶質の酸化鉄についてそれぞれのX線回折装置における具体的な分析結果を用いて説明する。
 まず、Fe(NO)・9HO[分子量:404]4.0gをメタノール15gに混合させ、さらにエチレングリコール10gを加え、試料溶液を作成した。次いで、上記試料溶液をガラス基板上に塗布したサンプル1及び2を作成し、サンプル1は、300℃で1時間加熱し、一方、サンプル2は500℃で1時間加熱した。次いで、加熱後のサンプル1及び2の製膜面を削り、それぞれ、分析試料1及び2とし、これらについて組成分析を行った。ここで、分析試料1の組成分析の結果、Fe元素が34Atomic%、O元素が66Atomic%であり、また分析試料2の組成分析の結果、Fe元素が38Atomic%、O元素が62Atomic%であった。したがって分析試料1及び2に含有される鉄は、いずれも酸化していることが確認された。
 次に、分析試料1及び2の結晶性について、X線回折装置で評価した。それぞれの分析結果について、分析試料1については図1に、分析試料2については図2に示した。図1及び図2から明らかなように、図1はブロードなチャートが示されるだけで何らピークが観察させず、非晶質な状態であると理解される。一方、図2では、横軸の32°と58°付近にピークが確認でき、これによって結晶性の酸化鉄がガラス基板上に生成されていることが理解される。
 このように、本発明では、金属元素が酸化物となっているか否かを組成分析により確認するとともに、X線回折装置によって得られたチャートから、その金属酸化物が非晶質であるのか、結晶性であるのかを確認することができる。
 上述のとおり、本発明における金属酸化物は、結晶性であることが特定される。このように結晶性である金属酸化物を結着物質として備えた場合に、樹脂製バインダーを用いた従来の電極板と比較して、電極板のサイクル特性が望ましく向上する。したがって、本発明の電極板では、所期の目的である、出入力特性の向上と、サイクル特性の向上という非水電解液二次電池において重要な2つの課題が達成される。
結着物質のアルカリイオン挿入脱離反応の有無について:
 また本発明における金属酸化物は、アルカリ金属イオン挿入脱離反応を示さないものに特定される。かかる理由は、本発明における金属酸化物が、リチウムイオンなどのアルカリ金属イオンと電気化学的に反応しないことを趣旨とする。これによって該金属酸化物の電気化学的な反応に伴う膨張や反応物が生じず、結果として電極活物質層中の金属酸化物の膨張や欠損などによる劣化が抑制される。
 金属酸化物のリチウムイオン挿入脱離反応の有無については、電気化学測定(サイクリックボルタンメトリー:CV)法により確認することができる。
 以下に、CV試験について説明する。具体的には、電極電位を活物質の適切な電圧範囲において、例えばアルカリ金属イオンとしてリチウムイオンを想定し、金属酸化物としてLiMnであれば、3.0Vから4.3Vまで掃引したのち、再び3.0Vまで戻す作業を3回程度繰り返すものである。走査速度は1mV/秒が好ましい。例えばLiMnであれば、図3に示すように、約3.9V付近にLiMnのLi脱離反応に相当する酸化ピークが出現し、約4.1V付近にLi挿入反応に相当する還元ピークが出現し、これによってリチウムイオンの挿入脱離反応の有無を確認することができる。また、図4に示すように、ピークが出現しない場合にはリチウムイオンの挿入脱離反応がないと判断することができる。
 尚、本発明において、金属酸化物が、リチウムイオン挿入脱離反応を示さないとは、金属酸化物固有の電気的性質を意味するものではなく、電極活物質層中に結着物質として含有される金属酸化物が、該電極活物質中に含有される電極活物質粒子に適した電圧範囲において、リチウムイオン挿入脱離反応を示さないことを意味する。電極板において、上記金属酸化物が、実質的に、リチウムイオンを挿入脱離しないことが重要だからである。
 尚、本発明の非水電解液二次電池用電極板を製造するにあたり、電極活物質層中に含有が予定される金属酸化物のリチウムイオン挿入脱離反応の有無は、上述のとおり確認することができる。したがって、予め確認したうえで、リチウムイオン挿入脱離反応を示さない金属酸化物を電極活物質層中に結着物質として存在させることができる。一方、すでに完成された電極板における電極活物質層中にリチウムイオン挿入脱離反応を示さない金属酸化物が含有されているか否かは、例えば、以下のとおり確認することができる。即ち、電極活物質層を削ってサンプルを作成し、該サンプルの組成分析を実施することにより、サンプル中に、いかなる金属酸化物が含有されているかを推定することができる。そして、推定された金属酸化物よりなる膜を、ガラスなどの基板上に形成し、これをサイクリックボルタンメトリー試験に供することにより、当該金属酸化物がリチウムイオン挿入脱離反応を示すか示さないかを確認することができる。
導電材:
 本発明の電極板には、任意で、電極活物質層中に、さらに導電材を含有させることができる。一般的に、導電材を電極活物質層中に含有させることにより、電極活物質層における各電極活物質と集電体との電子伝導性をより良好に確保し、電極活物質層自体の体積抵抗率を効率よく下げることができるため、望ましい。上記導電材としては、通常、非水電解液二次電池用電極板に用いられるものを使用することができ、アセチレンブラック、ケッチェンブラック等の粒子状のカーボンブラック等の導電性の炭素材料が例示される。上記導電材の平均一次粒径は20nm~50nm程度であることが好ましい。また異なる導電材としては炭素繊維(VGCF)が公知である。上記炭素繊維は、長さ方向に非常に良好に電気を導くことができ、電気の流動性を向上させることができるもので、繊維長さは、1μmから20μm程度である。したがって、上述するアセチレンブラックなどの粒子状の導電材に加えて、炭素繊維も併せて用いることにより、導電材添加効果を向上させることができる。上記導電材の導電性は、一般的に、電気抵抗率で表記され、0.14~0.25Ωcm程度の電気抵抗が示される。
 尚、上記平均一次粒径は、活物質の粒径を測定する方法と同様に、電子顕微鏡による実測から求められる算術平均により求められる。
 導電材を電極活物質層に含有される場合には、その含有量は特に限定されないが、一般的には、電極活物質粒子100重量部に対して、導電材の割合が5重量部以上20重量部以下となるようにすることが望ましい。
 尚、本発明における電極活物質層中には、グラファイトなどの炭素材料からなる電極活物質粒子、および任意で添加される上記導電材などの導電性の炭素成分以外の、炭素材料は含有されないことが望ましい。
 本発明における電極活物質層中に、炭素成分を実質的に含有しないよう構成させるためには、電極活物質層形成組成物中に添加される物質が、炭素成分を含まないことが望ましい。ただしこれに限定されず、電極活物質層中に、金属酸化物を形成するための材料として用いられる有機金属化合物などの有機成分が含有される場合であっても、適切な加熱温度、あるいは適切な加熱雰囲気の条件下で加熱工程を実施することによって、形成させる電極活物質層中から非導電性の炭素を消失させることができる。
 より具体的には、導電材や、グラファイトから構成される負極活物質粒子などの炭素材料を添加する前の電極活物質層形成組成物を基板上に塗布して塗膜を形成し、適切な加熱温度あるいは適切な加熱雰囲気で加熱することにより、形成される膜中に炭素成分が存在しない(炭素成分が消失する)ことを予備的に確かめる予備実験を行う。次いで、必要な材料が含有された電極活物質層形成組成物を集電体上に塗布して予備実験と同様の条件で加熱工程を実施することにより、導電材や、グラファイトから構成される負極活物質粒子などの炭素材料以外の炭素成分が残存しない電極板を得ることができる。
 金属酸化物を結着物質として含有する本発明において、上述のとおり電極活物質層中に炭素成分を含有させないことにより、集電体と電極活物質層との密着性が非常に優れた電極板を提供することができる。したがって本発明であれば、電極板の使用条件が過酷な場合であっても、電極活物質層が集電体から剥離することを良好に防止することができ、また該電極板を用いて非水電解液二次電池を製造する製造工程、あるいは該電極板の輸送工程などにおいて、電極活物質層の表面の一部が物理的な接触によって剥離することを良好に防止することができる。
その他の添加材:
 本発明における電極活物質層は、上述する電極活物質粒子、および結着物質である金属酸化物を少なくとも含有しており、また導電材をさらに添加させることができるが、本発明の趣旨を逸脱しない範囲において、さらなる任意の添加剤が含有されていてもよい。
(集電体)
 本発明に用いられる集電体は、一般的に非水電解液二次電池用電極板の電極集電体として用いられるものであれば、特に限定されない。例えば、正極集電体としては、アルミニウム箔、ニッケル箔など、負極集電体としては、銅箔あるいは、アルミニウム箔、ニッケル箔などを好ましく用いることができる。
 上記集電体の厚みは、一般に非水電解液二次電池用電極板の集電体として使用可能な厚みであれば特に限定されないが、10~100μmであることが好ましく、15~50μmであることがより好ましい。
(電極の充放電レート特性評価方法)
 本発明の電極板の出入力特性は、放電容量維持率(%)を求めることにより評価することができる。即ち、上記放電容量維持率は、放電レート特性を評価するものであり、放電レート特性が向上した電極板においては、一般的に、充電レート特性も同様に向上していると理解される。したがって、望ましい放電容量維持率が示される場合には、充放電レート特性が向上したと評価され、この結果、出入力特性が向上とした評価するものである。より具体的には、活物質の有する放電容量(mAh/g)の理論値を1時間で放電終了となるよう放電レート1Cを設定し、設定された1Cの放電レートにおいて実際に測定された放電容量(mAh/g)を放電容量維持率100%とする。そしてさらに放電レートを高くしていった場合の放電容量(mAh/g)を測定し、以下の式1より放電容量維持率(%)を求めることができる。
 尚、上記放電容量は、三極式コインセルにより電極自体の放電容量を測定することにより求められる。
Figure JPOXMLDOC01-appb-M000001
 本発明の電極板の充放電レート特性は、用いられる電極活物質粒子の種類やその粒子径、含有される結着物質である金属酸化物の量、電極活物質層の厚みなどにより異なる。一般的に、非水電解液二次電池用電極板の充放電レート特性に関し、50%以上の放電容量維持率が50C以上の放電レートにおいて示されることが望ましく、さらに望ましくは、50%以上の放電容量維持率が100C以上の放電レートにおいて示されることが望ましく、充放電レート特性が高いと評価することができる。本発明の電極板であれば、上述する高い充放電レート特性を示すことが可能である。ただし放電レートが2000C以上になると大電流に耐えうるシステムが必要となるため、この点に留意することが望ましい。
 また別の観点から非水電解液二次電池用電極板の充放電レート特性を評価すれば、一般的に、放電容量維持率が高い方が望ましく、放電レートが50Cである場合に、放電容量維持率が50%以上、あるいは80%以上、さらには100%の放電容量維持率が示されることが望ましい。本発明の非水電解液二次電池用電極板であれば、上述に示す高い放電維持率を示すことが可能である。
[非水電解液二次電池用電極板の製造方法]
 次に、本発明の非水電解液二次電池用電極板の製造方法(以下、単に「本発明の製造方法」という場合がある)について説明する。
 本発明の製造方法は、電極活物質粒子と、結着物質である金属酸化物を生成するための1種または2種以上の金属元素含有化合物とが少なくとも含有される電極活物質層形成組成物を調製し、これを集電体表面の少なくとも一部に塗布して塗膜を形成する塗布工程と、上記塗膜を加熱して溶媒を蒸発させるとともに、上記金属元素含有化合物を熱分解し酸化させ、結晶性の金属酸化物を生成することによって、上記集電体上に金属酸化物と上記電極活物質粒子とを含有し、且つ、該電極活物質粒子が、金属酸化物により集電体上に固着される電極活物質層を形成する加熱工程と、を順に備える電極板の製造方法である。
 このとき、上記加熱工程において生成される金属酸化物が、アルカリ金属イオン挿入脱離反応を示さない金属酸化物となるよう、上記塗布工程に用いられる上記金属元素含有化合物が予め選択される。
 そして、上記加熱工程における加熱温度を、上記金属元素含有化合物の熱分解開始温度以上であって、上記加熱工程において生成される金属酸化物の結晶化温度以上である温度とするものである。
 尚、用いられる金属元素含有化合物として、炭素が含有される有機金属化合物を用いることが可能である。いずれの場合においても、導電材とは区別される炭素成分が生成される電極活物質層中に残存しないように、加熱工程における加熱温度に留意し、さらに必要に応じて加熱雰囲気に留意する。
 加えて本発明の製造方法において、電極活物質層形成組成物に含有される電極活物質粒子および金属元素含有化合物以外の任意の添加成分において、炭素が含有される材料を用いる場合には、当該炭素が導電材とは区別される炭素成分として、電極活物質層中に残存しないよう、留意する。必要に応じて、加熱工程における加熱温度あるいは加熱雰囲気を調整し、導電材とは区別される炭素成分を構成可能な炭素を加熱において消失させる必要がある。
 尚、非水電解液二次電池用電極板において一般的に用いられる導電材、あるいはグラファイトから構成される負極活物質粒子などの成分は、「導電材とは区別される炭素成分」には該当しないため、上記電極活物質層形成組成物中、あるいは生成される電極活物質層中に含有されていても問題がない。
 以下に本発明の製造方法に関し、より詳細に説明する。
電極活物質粒子:
 上記電極活物質層形成組成物に含有される電極活物質粒子は、上述において既に説明した電極活物質粒子と同様であるため、ここではその説明を割愛する。尚、本発明の製造方法において、用いられる電極活物質粒子の粒子径は、所望の大きさを選択することができることも上述と同様である。
結着物質生成材料:
 電極活物質層形成組成物中には、生成が予定される金属酸化物の生成材料として、金属元素含有化合物が添加される。本段落以下、有機金属化合物も含め、金属元素含有化合物を、結着物質生成材料という場合がある。
 上記結着物質生成材料は、結着物質として電極活物質粒子を集電体上に固着させるための金属酸化物の生成材料である。
 結着物質生成材料は、基板上で、熱分解開始温度以上の温度で加熱されると、熱分解し、且つ、酸化して、製膜することが可能である。本発明者らは、本発明の課題を検討するにあたり、金属酸化物膜を基板上に薄膜形成する際に、この金属酸化物膜中に電極活物質粒子を含有させることを検討し、鋭意研究の結果、金属酸化物の量を少なくしていっても、金属酸化物の存在により、電極活物質粒子を基板上に固着させることができることを見出したものである。即ち、本発明者らは、樹脂製のバインダーを使用せずに、上記膜化する結着物質中に電極活物質粒子を含有させる着想のもと、結着物質生成材料と電極活物質粒子とを含有する組成物を調製し、集電体上に塗布して加熱することを試みた。その結果、主として電極活物質粒子からなる電極活物質層中に結着物質が存在する程度に、集電体上で生成される結着物質の量を著しく減らしても、電極活物質粒子が集電体上に固着されることを見出した。
 したがって、本発明の製造方法に用いられる結着物質生成材料は、本発明の趣旨を逸脱しない範囲において、熱分解され、且つ、酸化されて、製膜可能な金属元素を含むものであり、且つ集電体上で生成される結着物質がリチウムイオンなどのアルカリ金属イオンの挿入脱離反応を示さないものであれば、いずれのものを選択してもよい。
 尚、使用する結着物質生成材料から生成される結着物質が、アルカリ金属イオン挿入脱離反応を示さないものであることは、予備実験において、結着物質生成材料を含有する溶液を基板上に塗布してこれを加熱することによって結着物質を形成し、上述するサイクリックボルタンメトリー法により確認することができる。
[金属元素含有化合物]
 上記金属元素含有化合物は、具体的には、Li、Be、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Rb、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Cs、Ba、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Fr、Ra、及びCeなどの一般的な金属元素群から選択されるいずれか1種、または2種以上の金属元素を含有する化合物であればよい。
 また理由は明らかではないが、上記金属元素の中でも、特に3乃至5周期に属する金属元素を含有する金属元素含有化合物を用いた場合には、生成される電極板の出入力特性がより高くなる傾向にあるため、好ましい。即ち、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Rb、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnから選択されるいずれか1種、または2種以上の金属元素を含有する化合物が、金属元素含有化合物として好ましい。
 また、上記金属元素を含有する金属元素含有化合物としては、例えば金属塩が好ましく使用される。上記金属塩としては、塩化物、硝酸塩、硫酸塩、過塩素酸塩、リン酸塩、臭素酸塩等を挙げることができる。中でも、本発明においては、塩化物、硝酸塩は汎用品として入手が容易なので、使用することが好ましい。とりわけ、硝酸塩は安価なため好ましく使用される。
 金属塩の具体的な例示としては、塩化マグネシウム、硝酸アルミニウム、塩化アルミニウム、塩化カルシウム、四塩化チタン、オキソ硫酸バナジウム、クロム酸アンモニウム、塩化クロム、二クロム酸アンモニウム、硝酸クロム、硫酸クロム、硝酸マンガン、硫酸マンガン、塩化鉄(I)、塩化鉄(III)、硝酸鉄(III)、硫酸鉄(II)、硫酸アンモニウム鉄(III)、塩化コバルト、硝酸コバルト、塩化ニッケル、硝酸ニッケル、塩化銅、硝酸銅、塩化亜鉛、硝酸イットリウム、塩化イットリウム、塩化酸化ジルコニウム、硝酸酸化ジルコニウム、四塩化ジルコニウム、塩化銀、硝酸インジウム、硫酸スズ、塩化セリウム、硝酸セリウム、硝酸二アンモニウムセリウム、硫酸セリウム、塩化サマリウム、硝酸サマリウム、塩化鉛、硝酸鉛、ヨウ化鉛、リン酸鉛、硫酸鉛、塩化ランタン、硝酸ランタン、硝酸ガドリニウム、塩化ストロンチウム、硝酸ストロンチウム、五塩化ニオブ、りん酸モリブデン酸アンモニウム、硫化モリブデン、塩化パラジウム、硝酸パラジウム、五塩化アンチモン、三塩化アンチモン、三フッ化アンチモン、テルル酸、亜硫酸バリウム、塩化バリウム、塩素酸バリウム、過塩素酸バリウム、硝酸バリウム、タングステン酸、タングステン酸アンモニウム、六塩化タングステン、五塩化タンタル、塩化ハフニウム、硫酸ハフニウム等を挙げることができる。
 尚、上記金属元素含有化合物として、特に、金属と炭素とを含む化合物である有機金属化合物を用いてもよい。上記有機金属化合物には、炭素元素を含有する金属錯体、炭素元素を含有する金属塩のいずれも含む。
 より詳しくは、有機金属化合物は、上記金属元素含有化合物において列挙されるような一般的な金属元素群から選択されるいずれか1種、または2種以上の金属元素および炭素を含有する化合物であればよい。また有機金属化合物において、上記金属元素群の中でも、特に3乃至5周期に属する金属元素が含有することが好ましいことも、上記金属元素含有化合物と同様である。
 上記金属塩としては、酢酸塩、シュウ酸塩等を挙げることができる。中でも、本発明においては、酢酸塩は汎用品として入手が容易なので、好ましく使用される。
 金属塩の具体的な例示としては、金属塩の具体的な例示としては、酢酸スカンジウム、酢酸クロム、酢酸鉄(II)、酢酸コバルト、酢酸ニッケル、酢酸亜鉛、酢酸銀、酢酸インジウム、酢酸セリウム、シュウ酸セリウム、酢酸鉛、酢酸ランタン、酢酸ストロンチウム、酢酸パラジウム、酢酸バリウム等を挙げることができる。
 また上記金属錯体としては、マグネシウムジエトキシド、アルミニウムアセチルアセトナート、カルシウムアセチルアセトナート二水和物、カルシウムジ(メトキシエトキシド)、グルコン酸カルシウム一水和物、クエン酸カルシウム四水和物、サリチル酸カルシウム二水和物、チタンラクテート、チタンアセチルアセトネート、テトライソプロピルチタネート、テトラノルマルブチルチタネート、テトラ(2-エチルヘキシル)チタネート、ブチルチタネートダイマー、チタニウムビス(エチルヘキソキシ)ビス(2-エチル-3-ヒドロキシヘキソキシド)、ジイソプロポキシチタンビス(トリエタノールアミネート)、ジヒドロキシビス(アンモニウムラクテート)チタニウム、ジイソプロポキシチタンビス(エチルアセトアセテート)、チタンペロキソクエン酸アンモニウム四水和物、ジシクロペンタジエニル鉄(II)、乳酸鉄(II)三水和物、鉄(III)アセチルアセトナート、コバルト(II)アセチルアセトナート、ニッケル(II)アセチルアセトナート二水和物、銅(II)アセチルアセトナート、銅(II)ジピバロイルメタナート、エチルアセト酢酸銅(II)、亜鉛アセチルアセトナート、乳酸亜鉛三水和物、サリチル酸亜鉛三水和物、ステアリン酸亜鉛、ストロンチウムジピバロイルメタナート、イットリウムジピバロイルメタナート、ジルコニウムテトラ-n-ブトキシド、ジルコニウム(IV)エトキシド、ジルコニウムノルマルプロピレート、ジルコニウムノルマルブチレート、ジルコニウムテトラアセチルアセトネート、ジルコニウムモノアセチルアセトネート、ジルコニウムアセチルアセトネートビスエチルアセトアセテート、ジルコニウムアセテート、ジルコニウムモノステアレート、ペンタ-n-ブトキシニオブ、ペンタエトキシニオブ、ペンタイソプロポキシニオブ、トリス(アセチルアセトナート)インジウム(III)、2-エチルヘキサン酸インジウム(III)、テトラエチルすず、酸化ジブチルすず(IV)、トリシクロヘキシルすず(IV)ヒドロキシド、ランタンアセチルアセトナート二水和物、トリ(メトキシエトキシ)ランタン、ペンタイソプロポキシタンタル、ペンタエトキシタンタル、タンタル(V)エトキシド、セリウム(III)アセチルアセトナートn水和物、クエン酸鉛(II)三水和物、シクロヘキサン酪酸鉛等を例示することができる。
 尚、上述に具体的に例示する結着物質生成材料以外であっても、本発明の趣旨を逸脱しない範囲において適宜、選択して金属元素を含有する化合物たり得る材料を使用することができる。即ち、本発明の製造方法において製造される非水電解液二次電池用電極板に設けられる電極活物質層において、電極活物質粒子を集電体上に固着させることができる結着物質である金属酸化物生成可能な生成材料となるものであれば、適宜選択して使用することが可能である。
 また上記電極活物質層形成組成物には、本発明の趣旨を逸脱しない範囲において、導電材、あるいは、電極活物質層形成組成物の粘度調整剤である有機物、その他の添加剤を配合してもよい。尚、上記有機物としては、具体的には、ウレタン樹脂、エポキシ樹脂、エチルセルロース、デンプン、ポリエチレンオキサイド、ポリビニルアルコールあるいはポリエチレングリコールなどを例示することができる。ただし、上記有機物は、生成される電極活物質層中に導電材とは区別される炭素成分として残存する虞がある場合には、有機金属化合物と同様に加熱工程において当該炭素成分を消失させる必要がある。
溶媒:
 上記電極活物質層形成組成物に用いられる溶媒は、電極活物質粒子、結着物質生成材料、あるいはその他の添加剤が添加されてなる電極活物質層形成組成物として調製可能であって、かつ集電体上に塗布された後、加熱工程において除去可能なものであれば特に限定されない。例えば、メタノール、エタノール、イソプロピルアルコール、プロパノール、ブタノール等の総炭素数が5以下の低級アルコール、アセチルアセトン、ジアセチル、ベンゾイルアセトン等のジケトン類、アセト酢酸エチル、ピルビン酸エチル、ベンゾイル酢酸エチル、ベンゾイル蟻酸エチル等のケトエステル類、トルエンなどの1種の溶媒、あるいはこれらの2種以上の組み合わせからなる混合溶媒等を挙げることができる。
 上記電極活物質層形成組成物は、集電体上に形成が予定される電極活物質層における電極活物質粒子、結着物質形成材料、さらに必要に応じて添加されるその他の添加剤を必要量含まれるように勘案して、これらの配合量が決定される。その際、固形分比は、塗布工程において集電体上への塗布性及び、加熱工程における溶媒の除去を勘案し、適宜調整する。一般的には、電極活物質層形成組成物における固形分比が30~70wt%となるよう調整される。
塗布工程:
 次に、以上のとおり調製された電極活物質層形成組成物を、集電体上に塗布して塗膜を形成する塗布工程について説明する。尚、本発明の製造方法において用いられる集電体は、上記非水電解液二次電池用電極板に用いられる集電体と同様であるため、ここでは割愛する。
 本塗布工程では、電極活物質層形成組成物の塗布方法として公知の塗布方法であれば、適宜選択して実施することができる。たとえば、印刷法、スピンコート、ディップコート、バーコート、スプレーコート等によって、集電体表面の任意の領域に塗布して塗膜を形成することができる。また、集電体表面が多孔質であったり、凹凸が多数設けられていたり、三次元立体構造を有したりする場合には、上記方法以外に手動で塗布することも可能である。尚、本発明において使用する集電体は、必要に応じて、予めコロナ処理や酸素プラズマ処理等を行うことで、電極活物質層の製膜性をさらに改善することができるため好ましい。
 上記電極活物質層形成組成物の集電体への塗布量は、製造される電極板の用途等に応じて任意に決めることができるが、本発明における電極活物質層は、上述のとおり非常に薄く形成することが可能であるため、薄膜化を図りたい場合には、後述する加熱工程により形成される電極活物質層の厚みが300nm~11μm程度となるように、薄く塗布することができる。以上の通り、集電体に電極活物質層形成組成物を塗布することにより、電極活物質粒子および、結着物質の生成材料である上記金属元素含有化合物が少なくとも含有される電極活物質層形成用塗膜(以下、単に「塗膜」という場合がある)が形成される。
加熱工程:
 次に、上記塗布工程において形成された塗膜を加熱する加熱工程について説明する。本加熱工程は、上記塗膜中に存在する結着物質生成材料を加熱して熱分解し、これに含まれる金属元素を含む、結晶性の金属酸化物を生成するとともに、該塗膜中に含まれる溶媒を除去することを目的に行われる。
 加熱方法としては、所望の加熱温度で、塗膜を加熱することができる加熱方法あるいは加熱装置であれば、特に限定されず、適宜選択して実施することができる。具体的な例としては、ホットプレート、オーブン、加熱炉、赤外線ヒーター、ハロゲンヒーター、熱風送風機等のいずれかを使用するか、あるいは2以上を組み合わせて使用する方法を挙げることができる。用いられる集電体が平面状である場合には、ホットプレート等を使用することが好ましい。尚、ホットプレートを用いて加熱する場合には、塗膜面側が、ホットプレート面と接しない向きに設置して加熱することが好ましい。
 上記加熱工程における加熱温度は、結着物質生成材料の熱分解開始温度以上であって、生成される金属酸化物の結晶化温度以上の温度範囲において決定される。
 結着物質生成材料の熱分解開始温度は、個々の化合物の種類によって異なる。
 上記塗膜中に含有される金属元素含有化合物は、加熱されて熱分解すると、一般的には、速やかに酸化し、これによって金属酸化物が形成される。したがって予備試験として、金属元素含有化合物が配合される溶液を基板上に塗布して加熱し、基板上に積層される積層膜を削って試料とし、組成分析を行い、金属元素と酸素の含有比率を測定することによって、金属酸化物が形成されているかどうかを判断することができ、また、金属酸化物が生成されていた場合には、用いられた金属元素含有化合物が、基板上で熱分解開始温度以上の温度で加熱されたことが確認される。尚、上記予備試験における加熱は、本製造方法において予定される加熱雰囲気と同様の雰囲気で実施する。即ち、本発明において「金属元素含有化合物の熱分解開始温度」とは、加熱により金属元素含有化合物が熱分解され、これに含まれる金属元素の酸化が開始する温度、と理解することができる。
 また、本発明において「結晶化温度」というときには、電極活物質層形成組成物中に含有される金属原子が、金属酸化物となった後、当該金属酸化物が結晶化する温度を意味する。当該結晶化温度において金属酸化物は結晶化し、当該温度を上回ると結晶化度が増大するが、本発明において「結晶化」というときには、結晶化度によらず、X線回折装置において結晶状態を示すピークが確認される場合をいう。
 本発明における「結晶化温度」は、金属酸化物の固有の結晶化温度とは必ずしも一致するとは限らず、電極活物質層形成組成物中の状態により、これらの固有の結晶化温度と若干相違する場合がある。したがって、この点を勘案し、予め、電極活物質層形成用塗膜中における金属酸化物の結晶化温度を確認しておくことが望ましい。
 一方、上記加熱温度が、生成される金属酸化物の「結晶化温度未満」とは、集電体上に形成される電極活物質層中に含有される金属酸化物が、非晶質の状態で存在することを可能とする温度である。当該温度は、予備的に、結着物質生成材料が配合される溶液を基板上に塗布し、結着物質生成材料の熱分解開始温度以上の温度で加熱し、基板上に金属酸化物からなる膜を形成し、当該膜を削って試料とし、X線回折装置を用いて、その結晶性について評価し、結晶のピークが確認されなければ、結晶化温度未満の温度で加熱された、と理解することができる。
 尚、本発明における電極活物質層中には、グラファイトから構成される負極活物質粒子あるいは導電材等の導電性の炭素成分などが含有される場合があるが、これは、活物質や導電等とは区別される炭素成分が、別途存在すると理解されるものではない。有機金属化合物、あるいは粘度調整用の有機物などの炭素を含有する材料が電極活物質層形成組成物中に含有される場合には、生成される電極活物質層中に導電材とは区別される炭素成分が残存しないよう、加熱工程における加熱温度を調整し、電極活物質層形成組成物中に含有される炭素を消失させるよう加熱条件を調整する。
 より具体的には、電極活物質粒子と、金属元素含有化合物と、が少なくとも含有される電極活物質層形成組成物を用いて本発明の電極板における電極活物質層を形成する場合には、上記加熱工程における加熱温度を、上記結着物質生成材料の熱分解開始温度以上であって、上記加熱工程において生成される金属酸化物の結晶化温度以上である温度に設定すればよい。
 また特に、上記結着物質生成材料が、有機金属化合物である場合、または、添加剤として有機物が添加されている場合には、生成される電極活物質層中に導電材とは区別される炭素成分として残存させないために、これらの化合物の由来の炭素を消失可能な温度となるよう上記加熱温度を設定する。あるいは、上記加熱工程を2度のステップに分けて、第一加熱ステップでは、金属酸化物を生成可能な温度で加熱し、第二加熱ステップで、加熱雰囲気を水素還元雰囲気中で行うことによれば、約500℃程度の温度で、導電材とは区別される炭素成分となり得る炭素をメタンガス化させて、消失させることができる。
 尚、電極活物質層形成組成物中の炭素成分であっても、導電性の炭素成分である導電材等は、生成される電極活物質層中にそのまま存在する。
 上述する加熱温度は、用いる結着物質生成材料、あるいは有機物などの配合成分の組み合わせによって異なるため、所望の成分が電極活物質層に存在することが可能な加熱温度を、予め予備実験において決定することが望ましい。
 また、上記加熱工程において、加熱温度を決定する際には、さらに用いられる集電体、電極活物質粒子、導電材などの耐熱性も充分勘案することが望ましい。たとえば、一般的に負極板の集電体として用いられる銅箔の耐熱温度は、空気雰囲気中では酸化してしまうので200℃前後であり、不活性ガス雰囲気であれば1080℃前後である。また、アルミ箔の耐熱温度は、660℃前後である。このため、上記加熱温度が、上記耐熱温度を超える場合には、集電体が損傷するおそれがある。
 上記加熱工程における加熱雰囲気は、特に限定されず、電極板を製造するために用いられる材料や加熱温度、金属元素の酸素ポテンシャルなどを勘案して適宜決定することができる。
 例えば空気雰囲気である場合には、特別な雰囲気の調整が必要なく、簡易に加熱工程を実施することができる点で好ましい。特に集電体としてアルミ箔を用いる場合には、空気雰囲気下において加熱工程を実施しても、該アルミ箔が酸化する虞がないので、好ましく加熱工程を実施することができる。
 一方、集電体として銅箔を用いる場合には、空気雰囲気下で加熱工程を実施すると酸化してしまい、望ましくない。したがって、かかる場合には、不活性ガス雰囲気下、あるいは還元ガス雰囲気下あるいは不活性ガスと還元ガスの混合ガス雰囲気で加熱することが好ましい。尚、酸素ガスが充分に含有されない雰囲気下で加熱工程を実施する場合において、電極活物質層中に金属酸化物を生成する場合には、金属元素含有化合物中における金属元素の酸化は、電極活物質層形成組成物中に含有される化合物中の酸素と金属元素とが結合することによって実現される必要があるので、使用する化合物中に酸素元素が含有される化合物を用いる必要がある。
 尚、本発明の製造方法において、不活性ガス雰囲気または還元ガス雰囲気は、特に特定の雰囲気に限定されず、従来公知のこれらの雰囲気下において適宜発明の製造方法を実施することができるが、たとえば、不活性ガス雰囲気としてはアルゴンガス、窒素ガス、還元ガス雰囲気としては、水素ガス、一酸化炭素ガス、あるいは上記不活性ガスと上記還元ガスを混合したガス雰囲気などが挙げられる。特に、電極活物質層中に導電材とは区別される炭素成分が残存しないよう、該炭素成分を消失させるために、水素還元雰囲気下において加熱工程が実施されることが好ましい。
[非水電解液二次電池]
 非水電解液二次電池10は、一般的には、図11(a)に示すように、正極16および正極板17と、負極14および負極板15と、正極板17と負極板15との間に設けられるポリエチレン製多孔質フィルムなどからなるセパレータ13と、を備えている。そして、これら負極14および負極板15と、正極16および正極板17と、セパレータ13は、容器11内に収納されている。また、容器11内には非水溶媒を含む非水電解液(電解液)19が充填されており、この容器11は密封されている。
(電極板)
 本発明の非水電解液二次電池は、正極板および/または負極板として、上述する本発明の電極板を用いることを特徴とする。本発明の電極板は、上述のとおり、出入力特性およびサイクル特性が非常に優れている。したがって、かかる電極板を用いることによって、本発明の非水電解液二次電池においても当該電極板の性能が発揮され、電池自体の出入力特性およびサイクル特性が向上する。
 上述する本発明の電極板のうち、正極板のみを、本発明の非水電解液二次電池に用いる場合には、負極板は、従来公知の非水電解液二次電池用負極板を適宜選択して使用することができる。一般的に、従来公知の負極板としては、集電体として厚み5~50μm程度の電解銅箔や圧延銅箔等の銅箔等を用い、上記集電体表面の少なくとも一部に、負極板における電極活物質層形成組成物を塗布して、乾燥し、必要に応じてプレスすることにより形成されたものが使用される。上記負極板における電極活物質層形成組成物には、一般的に、天然グラファイト、人造グラファイト、アモルファス炭素、カーボンブラック、またはこれらの成分に異種元素を添加したもののような炭素質材料からなる活物質、あるいは、金属リチウム及びその合金、スズ、シリコン、及びそれらの合金等、リチウムイオンを吸蔵放出可能な材料などの負極活物質粒子、および樹脂製バインダー、必要に応じて導電材などの他の添加剤が分散混合されることが一般的であるが、これに限定されない。
 上述する本発明に電極板のうち、負極板のみを、本発明の非水電解液二次電池に用いる場合には、正極板は、従来公知の非水電解液二次電池用正極板を適宜選択して使用することができる。一般的に、従来公知の正極板としては、集電体として厚み5~50μm程度のアルミニウム箔などを用い、上記集電体表面の少なくとも一部に、正極板形成用の電極活物質層形成組成物を塗布して、乾燥し、必要に応じてプレスすることにより形成されたものが使用される。上記正極板形成用の電極活物質層形成組成物には、一般的に、LiCoO、LiMn、LiNiO、LiFeO、LiTi12、LiFePOなどのリチウム遷移金属複合酸化物などの正極活物質粒子、および樹脂製バインダー、必要に応じて導電材などの他の添加剤が分散混合されることが一般的であるが、これに限定されない。
(非水電解液)
 本発明に用いられる非水電解液は、一般的に、非水電解液二次電池用の非水電解液として用いられるものであれば、特に限定されないが、リチウム塩を有機溶媒に溶解させた非水電解液が好ましく用いられる。
 上記リチウム塩の例としては、LiClO、LiBF、LiPF、LiAsF、LiCl、及びLiBr等の無機リチウム塩;LiB(C、LiN(SOCF、LiC(SOCF、LiOSOCF、LiOSO、LiOSO、LiOSO11、LiOSO13、及びLiOSO15等の有機リチウム塩;等が代表的に挙げられる。
 リチウム塩の溶解に用いられる有機溶媒としては、環状エステル類、鎖状エステル類、環状エーテル類、及び鎖状エーテル類等が挙げられる。
 上記環状エステル類としては、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、ビニレンカーボネート、2-メチル-γ-ブチロラクトン、アセチル-γ-ブチロラクトン、及びγ-バレロラクトン等が挙げられる。
 上記鎖状エステル類としては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、メチルブチルカーボネート、メチルプロピルカーボネート、エチルブチルカーボネート、エチルプロピルカーボネート、ブチルプロピルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、及び酢酸アルキルエステル等が挙げられる。
 上記環状エーテル類としては、テトラヒドロフラン、アルキルテトラヒドロフラン、ジアルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3-ジオキソラン、アルキル-1,3-ジオキソラン、及び1,4-ジオキソラン等が挙げられる。
 上記鎖状エーテル類としては、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、及びテトラエチレングリコールジアルキルエーテル等が挙げられる。
 上記正極板、負極板、セパレータ、非水電解液を用いて製造される電池の構造としては、従来公知の構造を適宜選択して用いることができる。例えば、正極板及び負極板を、ポリエチレン製多孔質フィルムのようなセパレータを介して渦巻状に巻き回して、電池容器内に収納する構造が挙げられる。また別の態様としては、所定の形状に切り出した正極板及び負極板をセパレータを介して積層して固定し、これを電池容器内に収納する構造を採用してもよい。いずれの構造においても、正極板及び負極板を電池容器内に収納後、正極板に取り付けられたリード線を外装容器に設けられた正極端子に接続し、一方、負極板に取り付けられたリード線を外装容器内に設けられた負極端子に接続し、さらに電池容器内に非水電化液を充填した後、密閉することによって非水電解液二次電池が製造される。
(実施例1)
 金属元素含有化合物としてFe(NO・9HO[分子量:404]9.0gをメタノール17gに加えて、さらにエチレングリコールを10g混合し、リチウムイオン挿入脱離反応を示さない金属酸化物を生成する原料溶液とした。次いで、上記原料溶液に、平均粒径4μmの正極活物質LiMn10gと、アセチレンブラック(電気化学工業株式会社製、デンカブラック)1.5g、炭素繊維(昭和電工株式会社製、VGCF)0.1gを混合させ、エクセルオートホモジナイザー(株式会社日本精機製作所)で7000rpmの回転数で15分間混練することによって電極活物質層形成組成物を調製した。尚、上記電極活物質層形成組成物の各成分については、あわせて表1に示す。後述する実施例2乃至16、及び比較例1乃至4についても同様に電極活物質層形成組成物の各成分を表1に示す。
 集電体として厚さ15μmのアルミ板を準備し、最終的に得られる電極活物質層の重さが20g/mとなる量で、当該集電体の一面側に上記にて調製した電極活物質層形成組成物をアプリケーターで塗布して電極活物質層形成用塗膜を形成した。
 次に、表面に電極活物質層形成用塗膜が形成された集電体を、常温の電気炉(マッフル炉、デンケン社製、P90)内に設置し、1時間かけて250℃まで加熱し、その後、250℃に温度を維持したまま1時間加熱し、一度基板を取り出した後に500℃に加熱した電気炉へ設置し、500℃に温度を維持したまま3分間加熱し、集電体上に正極活物質層として適切な電極活物質層が積層された本発明の非水電解液二次電池用正極板を得た。そして上記正極板を電気炉から取り出して室温になるまで放置した後、所定の大きさ(直径15mmの円板)に裁断し、実施例1とした。尚、マイクロメーターを用いて電極活物質層の厚みを、任意の箇所で10点測定し、平均値を算出したところ、28μmであった。
膜形成性の確認:
 尚、実施例1を作成するにあたり、上述で得られた非水電解液二次電池用正極板を所望のサイズの円板形状に繰り抜く加工を行ったが、当該加工作業において、電極活物質層が剥離するなどの不具合なく、作用極を形成することができた。このことから、電極活物質層の膜形成性が良好であることを確認した。以下に示す実施例および比較例においても、膜形成性が良好であるとは、上述するように、不具合なく正極板(あるいは負極板)を円板上に繰り抜く加工ができた場合を意味する。一方、上記繰り抜き加工において電極活物質層の一部が剥がれたり、あるいは電極活物質が集電体上から落下して三極式コインセルの作用極として使用に耐える円板が形成されなかった場合には、電極活物質層の膜形成性が不良であると評価するものとする。
 上述で得られた、実施例1を、走査型電子顕微鏡(SEM)を用いて10,000倍の倍率で、集電体上の膜面を観察したところ、図5に示すとおり、集電体上に正極活物質粒子が固着され、良好に膜化されていることが観察された。
組成分析試験:
 次に、実施例1における電極活物質層を削って、試料1を得た。そして試料1を用いて、X線光電子分光法(Electron Spectroscopy for Chemical Analysis)によって組成分析を実施したところ、Fe元素が39Atomic%、Mn元素が18Atomic%、O元素が60Atomic%、C元素が11Atomic%検出された。一方、N元素は検出されなかった。以上の結果、電極活物質層形成用塗膜中に含有されていた硝酸鉄が、熱分解されて酸化鉄が生成されたことが確認された。
結晶性評価:
 また試料1を用いてX線回折装置(XRD)で、その結晶性を評価したところ、図6に示すように、電極活物質層中に含有される金属酸化物は結晶性であることがわかった。尚、参考に、上記金属酸化物を生成する原料溶液(正極活物質を添加する前の溶液)をガラス板にミヤバー4番で塗布し、電極作成時と同じ加熱条件で加熱し、得られた積層膜を削りとり、X線回折装置を用いてその結晶性を評価した結果を図7に示した。また正極活物質粒子であるM1090をX線回折装置を用いてその結晶性を評価し、結果を図8示した。図7は、原料溶液を加熱して得られた酸化鉄のX線回折結果であり、ピークが確認されることより、該酸化鉄が結晶性であることが確認された。また図8は、正極活物質粒子であるマンガン酸リチウムのX線回折結果であり、結晶性のマンガン酸リチウムを表すピークが確認された。図7及び図8を参考に、図6を解析すると、結晶性のマンガン酸リチウムの特徴的なピークに加え、酸化鉄の結晶ピークを表す山が示されていることが確認された。
サイクリックボルタンメトリー試験(CV試験):
 さらに実施例1で作製した正極板を用いてCV試験を行った。具体的には、まず電極電位を3.0Vから4.3Vまで掃引したのち、再び3.0Vまで戻す作業を3度繰り返した。走査速度は1mV/秒とした。2回目のサイクル結果を示すサイクリックボルタモグラムは、上述で示す図3に相当する。図3より明らかなように、3.9V付近にLiMnのLi脱離反応に相当する酸化ピークが、4.1V付近にLi挿入反応に相当する還元ピークが確認できた。一方、上記金属酸化物を生成する原料溶液(正極活物質を添加する前の溶液)をアルミ基板にミヤバー4番で塗布し、電極作成時と同じ加熱条件で加熱し、得られた積層体について、上述と同様にCV試験を行った。2回目のサイクル結果を示すサイクリックボルタモグラム上述で示す図4に相当する。図4より明らかなように、上記積層膜では、電気化学的な反応が示されなかった。このことから、実施例1の結着物質である酸化鉄はリチウムの挿入脱離反応を示さない事が確認できた。尚、本実施例では、CV試験は、Bio Logic社製のVMP3を用いて実施した。尚、上述する、電極活物質層形成組成物の集電体への塗布量、形成される電極活物質層の膜厚及び膜形成性、該電極活物質層中に生成される結着物質、上記結着物質の結晶性、及び本段落に記載するCV試験の結果について表1および表2にまとめて示す。後述する実施例2乃至16及び比較例1乃至4についての内容も同様に表1および表2に示す。
<三極式コインセルの作製>
 エチレンカーボネート(EC)/ジメチルカーボネート(DMC)混合溶媒(体積比=1:1)に、溶質として六フッ化リン酸リチウム(LiPF)を加えて、当該溶質であるLiPFの濃度が、1mol/Lとなるように濃度調整して、非水電解液を調製した。
 正極板として上述のとおり作製した実施例1(直径15mmの円板、含有される正極活物質の重量:3.5mg/1.77cm)を作用極として用い、対極板及び参照極板として金属リチウム板、電解液として上記にて作製した非水電解液を用い、三極式コインセルを組み立て、これを実施例試験セル1とした。そして実施例試験セル1を下記充放電試験に供した。
充放電試験:
 上述のとおり作成した三極式コインセルである実施例試験セル1において、作用極の放電試験を実施するために、まず実施例試験セル1の下記充電試験のとおり満充電させた。
(充電試験)
 実施例試験セル1を、25℃の環境下で、電圧が4.3Vに達するまで定電流(320μA)で定電流充電し、当該電圧が4.3Vに達した後は、電圧が4.3Vを上回らないように、当該電流(放電レート:1C)が5%以下となるまで減らしていき、定電圧で充電を行ない、満充電させた後、10分間休止させた。尚、ここで、上記「1C」とは、上記三極式コインセルを用いて定電流放電して、1時間で放電終了となる電流値(放電終止電圧に達する電流値)のことを意味する。また上記定電流は、実施例試験セル1における作用極において、活物質であるマンガン酸リチウムの理論放電量90mAh/gが1時間で放電されるよう設定された。
(放電試験)
 その後、満充電された実施例試験セル1を、25℃の環境下で、電圧が4.3V(満充電電圧)から3.0V(放電終止電圧)になるまで、定電流(320μA)(放電レート:1C)で定電流放電し、縦軸にセル電圧(V)、横軸に放電時間(h)をとり、放電曲線を作成し、作用極(実施例1である正極用電極板)の放電容量(mAh)を求め、当該作用極の単位重量当たりの放電容量(mAh/g)に換算した。
 続いて、上述のとおり実施した定電流(320μA)(放電レート:1C、放電終了時間:1時間)での定電流放電試験を基準として、50倍の定電流(16mA)(放電レート:50C、放電終了時間:1.2分)、100倍の定電流(32mA)(放電レート:100C、放電終了時間:0.6分)においても、同様にして各々定電流放電試験を行ない、各放電レートにおける作用極の放電容量(mAh)を求め、これより単位重量当たりの放電容量(mAh/g)を換算した。
(放電容量維持率(%)の算出)
 作用極の放電レート特性を評価するため、上述のとおり得られた各放電レートにおける単位重量当たりの各放電容量(mAh/g)を用い、上述で示した数1における式により放電容量維持率(%)を求めた。尚、上記放電試験により得られた単位重量当たりの放電容量(mAhr/g)及び放電容量維持率(%)は、100Cにおいて91%、50Cにおいて100%であった。尚、上記充放電試験の結果は、表2に示す。
 尚、本発明において、電極の放電レート特性評価は、以下のように行う。
放電レート50Cにおける放電容量維持率 60%以上・・・・・・・◎
放電レート50Cにおける放電容量維持率 50%以上60%未満・・○
放電レート50Cにおける放電容量維持率 30%以上50%未満・・△
放電レート50Cにおける放電容量維持率 30%未満・・・・・・・×
(実施例2乃至16)
 実施例2:金属元素含有化合物としてFe(NO・9HO[分子量:404]0.48gをメタノール5gに加えて、さらにエチレングリコールを10g混合したこと、および、表1に示す電極活物質層形成組成物塗布量としたこと以外、実施例1と同様に正極板を作成し、実施例2とした。
 実施例3:溶媒としてエタノール5g及びエチレングリコールを10g用いたこと、平均粒径0.3μmの正極活物質LiMnを用いたこと以外、実施例1と同様に正極板を作成し、実施例3とした。
 実施例4:溶媒としてエタノール5g及びエチレングリコールを10g用いたこと、平均粒径10μmの正極活物質LiMnを用いたこと以外、実施例1と同様に正極板を作成し、実施例4とした。
 実施例5:金属元素含有化合物として、Fe(NO・9HO[分子量:404]を4.0gと、TiCl[分子量:189.68]を4.0g用い、これらをメタノール17gに加えて、さらにジエチレングリコールを10g混合したこと、及び、平均粒径1μmの正極活物質LiMnを用いたこと以外、実施例1と同様に正極板を作成し、実施例5とした。
 実施例6:金属元素含有化合物として、Li(CHCOO)・2HO[分子量:102]4.0gを用い、これをメタノール16gに加えて、さらにジエチレングリコールを10g混合したこと、平均粒径1μmの正極活物質LiMnを用いたこと、表1に示す電極活物質層形成組成物塗布量としたこと、および、加熱条件を下記のとおり変更したこと以外、実施例1と同様に正極板を作成し、実施例6とした。加熱条件は、常温の電気炉(マッフル炉、デンケン社製、P90)内に設置し、1時間かけて450℃まで昇温し、その後、500℃まで5分かけて昇温するよう変更した。
 実施例7:金属元素含有化合物として、Ce(NO・6HO[分子量:434]6gを用い、これをメタノール16gに加えて、さらにジエチレングリコールを10g混合したこと、集電体をNi金属にしたこと、平均粒径1μmの正極活物質LiMnを用いたこと、表1に示す電極活物質層形成組成物塗布量としたこと、および、加熱条件を下記のとおり変更したこと以外、実施例1と同様に正極板を作成し、実施例7とした。加熱条件は、常温の電気炉にて、1時間かけて300℃まで昇温し、その後、800℃まで15分かけて昇温するよう変更した。
 実施例8:金属元素含有化合物として、TiCl[分子量:189]10.0gを用い、これをメタノール15gに加えて、さらにジエチレングリコールを10g混合したこと、平均粒径1μmの正極活物質LiMnを用いたこと、および、表1に示す電極活物質層形成組成物塗布量としたこと以外、実施例1と同様に正極板を作成し、実施例8とした。
 実施例9:金属元素含有化合物として、Co(CHCOO)・4HO[分子量:249]9.0gを用い、これをメタノール15gに加えて、さらにジエチレングリコールを10g混合したこと、平均粒径1μmの正極活物質LiMnを用いたこと、および、表1に示す電極活物質層形成組成物塗布量としたこと以外、実施例1と同様に正極板を作成し、実施例9とした。
 実施例10:金属元素含有化合物として、Ni(CHCOO)・4HO[分子量:249]7.0gを用い、これをメタノール13gに加えて、さらにジエチレングリコールを10g混合したこと、平均粒径1μmの正極活物質LiMnを用いたこと、および、表1に示す電極活物質層形成組成物塗布量としたこと以外、実施例1と同様に正極板を作成し、実施例10とした。
 実施例11:金属元素含有化合物として、Zn(NO・6HO[分子量:298]7.0gを用い、これをメタノール20gに加えて、さらにジエチレングリコールを10g混合したこと、平均粒径1μmの正極活物質LiMnを用いたこと、および、表1に示す電極活物質層形成組成物塗布量としたこと以外、実施例1と同様に正極板を作成し、実施例11とした。
 実施例12:金属元素含有化合物として、ZrCl[分子量:233]7.0gを用い、これをメタノール25gに加えて、さらにジエチレングリコールを10g混合したこと、平均粒径1μmの正極活物質LiMnを用いたこと、集電体をNiにしたこと、表1に示す電極活物質層形成組成物塗布量としたこと、および、加熱条件を下記のとおり変更したこと以外、実施例1と同様に正極板を作成し、実施例12とした。加熱条件は、常温の電気炉にて、1時間かけて300℃まで昇温し、その後、800℃まで15分かけて昇温するよう変更した。
 実施例13:平均粒径0.3μmの正極活物質LiMnを用いたこと、および、表1に示す電極活物質層形成組成物塗布量としたこと以外、実施例1と同様に正極板を作成し、実施例13とした。
 実施例14:平均粒径1μmの正極活物質LiMnを用いたこと、および、表1に示す電極活物質層形成組成物塗布量としたこと以外、実施例1と同様に正極板を作成し、実施例14とした。
 実施例15:平均粒径1μmの正極活物質LiMnを用いたこと、および、表1に示す電極活物質層形成組成物塗布量としたこと以外、実施例1と同様に正極板を作成し、実施例15とした。
 実施例16:平均粒径1μmの正極活物質LiMnを用いたこと、および、表1に示す電極活物質層形成組成物塗布量としたこと以外、実施例1と同様に正極板を作成し、実施例16とした。
電極活物質層の厚み:
 上記実施例2乃至16について、実施例1と同様に、電極活物質層の厚みを測定し、平均値を算出した。結果は、表1に示す。
膜形成性の確認:
 上記実施例2乃至16について、実施例1と同様に、膜形成性の確認を行った。結果は、表1に示す。
組成分析試験:
 実施例1における試料1と同様に、実施例2乃至実施例20について、試料2乃至20を作成し、これを用いて組成分析を行った。結果は、以下の通りであった。
 実施例2では、Fe元素が8Atomic%、Mn元素が22Atomic%、O元素が59Atomic%、C元素が11Atomic%検出された。一方、N元素は検出されなかった。以上の結果、電極活物質層形成用塗膜中に含有されていた硝酸鉄が、熱分解されて酸化鉄が生成されたことが確認された。
 実施例3では、Fe元素が16Atomic%、Mn元素が15Atomic%、O元素が59Atomic%、C元素が10Atomic%検出された。一方、N元素は検出されなかった。以上の結果、電極活物質層形成用塗膜中に含有されていた硝酸鉄が、熱分解されて酸化鉄が生成されたことが確認された。
 実施例4では、Fe元素が16Atomic%、Mn元素が16Atomic%、O元素が57Atomic%、C元素が11Atomic%検出された。一方、N元素は検出されなかった。以上の結果、電極活物質層形成用塗膜中に含有されていた硝酸鉄が、熱分解されて酸化鉄が生成されたことが確認された。
 実施例5では、Fe元素が4Atomic%、Ti元素が8Atomic%、Mn元素が13Atomic%、O元素が58Atomic%、C元素が17Atomic%検出された。一方、N元素及びCl元素は検出されなかった。以上の結果、電極活物質層形成用塗膜中に含有されていた硝酸鉄が、熱分解されて酸化鉄が生成されたことが確認された。
 また試料5を用いてX線回折装置(XRD)で、その結晶性を評価したところ、図9に示すように、電極活物質層中に含有される金属酸化物は結晶性であることがわかった。尚、参考に、上記金属酸化物を生成する原料溶液(正極活物質を添加する前の溶液)をガラス板にミヤバー4番で塗布し、電極作成時と同じ加熱条件で加熱し、得られた積層膜を削りとり、X線回折装置を用いてその結晶性を評価した結果を図10に示した。上述する正極活物質粒子であるM1090の結晶性を示す図8と図10とをあわせて図9を解析すると、図9には、結晶性のマンガン酸リチウムの特徴的なピークに加え、金属酸化物の結晶性を表すピークが示されていることが確認された。
 実施例6では、Li元素が9、Mn元素が18Atomic%、O元素が60Atomic%、C元素が13Atomic%検出された。
 実施例7では、Ce元素が15Atomic%、Mn元素が23Atomic%、O元素が54Atomic%、C元素が8Atomic%検出された。一方、N元素は検出されなかった。以上の結果、電極活物質層形成用塗膜中に含有されていた硝酸セリウムが、熱分解されて酸化セリウムが生成されたことが確認された。
 実施例8では、Ti元素11Atomic%、Mn元素が21Atomic%、O元素が58Atomic%、C元素が10Atomic%検出された。一方、Cl元素は検出されなかった。以上の結果、電極活物質層形成用塗膜中に含有されていた塩化チタンが、熱分解されて酸化チタンが生成されたことが確認された。
 実施例9では、Co元素13Atomic%、Mn元素が15Atomic%、O元素が60Atomic%、C元素が12Atomic%検出された。検出されたC元素の量から、酢酸コバルトにおける炭素は加熱により消失したものと理解された。以上の結果、電極活物質層形成用塗膜中に含有されていた酢酸コバルトが熱分解されて、酸化コバルトが生成されたことが確認された。
 実施例10では、Ni元素13Atomic%、Mn元素が16Atomic%、O元素が61Atomic%、C元素が10Atomic%検出された。検出されたC元素の量から、酢酸ニッケルにおける炭素は加熱により消失したものと理解された。以上の結果、電極活物質層形成用塗膜中に含有されていた酢酸ニッケルが熱分解されて、酸化ニッケルが生成されたことが確認された。
 実施例11では、Zn元素14Atomic%、Mn元素が20Atomic%、O元素が54Atomic%、C元素が12Atomic%検出された。一方、N元素は検出されなかった。以上の結果、電極活物質層形成用塗膜中に含有されていた硝酸亜鉛が、熱分解されて酸化亜鉛が生成されたことが確認された。
 実施例12では、Zr元素13Atomic%、Mn元素が19Atomic%、O元素が60Atomic%、C元素が8Atomic%検出された。一方、Cl元素は検出されなかった。以上の結果、電極活物質層形成用塗膜中に含有されていた塩化ジルコニウムが、熱分解されて酸化ジルコニウムが生成されたことが確認された。
 実施例13では、Fe元素15Atomic%、Mn元素が16Atomic%、O元素が58Atomic%、C元素が11Atomic%検出された。一方、N元素は検出されなかった。以上の結果、電極活物質層形成用塗膜中に含有されていた硝酸鉄が熱分解されて、酸化鉄が生成されたことが確認された。
 実施例14では、Fe元素15Atomic%、Mn元素が13Atomic%、O元素が60Atomic%、C元素が12Atomic%検出された。一方、N元素は検出されなかった。以上の結果、電極活物質層形成用塗膜中に含有されていた硝酸鉄が熱分解されて、酸化鉄が生成されたことが確認された。
 実施例15では、Fe元素14Atomic%、Mn元素が16Atomic%、O元素が60Atomic%、C元素が10Atomic%検出された。一方、N元素は検出されなかった。以上の結果、電極活物質層形成用塗膜中に含有されていた硝酸鉄が熱分解されて、酸化鉄が生成されたことが確認された。
 実施例16では、Fe元素14Atomic%、Mn元素が16Atomic%、O元素が57Atomic%、C元素が13Atomic%検出された。一方、N元素は検出されなかった。以上の結果、電極活物質層形成用塗膜中に含有されていた硝酸鉄が熱分解されて、酸化鉄が生成されたことが確認された。
実施例2乃至16に関する結晶性評価:
 また実施例1における試料1と同様の方法で、実施例2乃至16における試料2乃至16を用いて、その結晶性を評価した。その結果、試料1と同様に、試料2乃至16においても、電極活物質層中に含有される金属酸化物は結晶性であることが確認された(X線回折結果の図示は省略する)。
実施例2乃至16に関するサイクリックボルタンメトリー試験:
 実施例1と同様の方法で、上記実施例2乃至16を用いてそれぞれのCV試験を行い、得られたサイクリックボルタモグラムからLi脱離反応に相当する酸化ピーク及びLi挿入反応に相当する還元ピークを確認した(サイクリックボルタモグラムの図示は省略する)。一方、実施例2乃至16において、上記金属酸化物を生成する原料溶液(正極活物質を添加する前の溶液)を用い、実施例1におけるCV試験と同様に積層体を形成し、上述と同様にCV試験を行った。その結果、上記積層膜では、電気化学的な反応が示されなかった。このことから、実施例2乃至16それぞれにおける結着物質はリチウムの挿入脱離反応を示さない事が確認された。
実施例2乃至16に関する充放電試験:
 実施例2乃至16について、実施例1における実施例試験セル1と同様に、実施例試験セル2乃至16を作成した。尚、各実施例における、円板状のサイズは実施例1と同様であり、またこれに含有される正極活物質の重量は、表2あるいは表3に示す。
 上記実施例試験セル2乃至16を用い、表2あるいは表3に示す、定電流値に変更した以外は、実施例1に倣って、充放電試験を行った。尚、各実施例及び比較例において、充電時の定電流(放電レート:1C)は、いずれも放電時の定電流(放電レート:1C)と同じであるため、充電時の定電流の数値の記載は省略した。そして、各放電レートにおける作用極の放電容量(mAh)を求め、これより単位重量当たりの放電容量(mAh/g)を換算し、放電容量維持率(%)を算出した。結果は、実施例2乃至11については表2に、実施例12~16については表3に示す。
(比較例1)
 平均粒径4μmの正極活物質LiMnを10gと、アセチレンブラック(電気化学工業株式会社製、デンカブラック)1.5g、炭素繊維(昭和電工株式会社製、VGCF)0.1g、及び樹脂製のバインダーとしてPVDF(クレハ社製、KF#1100)1.3gに、有機溶媒であるNMP(三菱化学社製)を加えて、分散させ、固形分濃度が55重量%となるようにエクセルオートホモジナイザー(株式会社日本精機製作所)で7000rpmの回転数で15分間攪拌して、スラリー状の電極活物質層形成組成物を調製した。
 そして上記電極活物質層形成組成物を、正極集電体として用いる厚さ15μmのアルミ箔上に、乾燥後の電極活物質層形成組成物の塗工量が30g/mとなるように塗布したが、上記電極活物質層形成組成物の粘度が調整困難で、流動性が悪くなり、設計通りの塗布ができず、正極活物質層を形成することができなかった。したがって、非水電解液二次電池用正極板を作成することができなかった。
(比較例2)
 金属元素含有化合物を用いなかったこと以外は、実施例1と同様に非水電解液二次電池用正極板を作成した。
 そして、実施例1と同様に所定形状の円板を繰り抜く加工を行ったが、このとき、電極活物質層が剥がれてしまい、三極式コインセルに使用可能な円板上の電極を作成することができなかった。即ち、上記非水電解液二次電池用正極板における電極活物質層の膜形成性は不良であった。
(比較例3)
 平均粒径が10μmの正極活物質LiMnを使用したこと以外は比較例1と同様にスラリー状の電極活物質層形成組成物を調製した。
 そして上記電極活物質層形成組成物を、正極集電体として用いる厚さ15μmのアルミ箔上に、乾燥後の電極活物質層形成組成物の塗工量が30g/mとなるように塗布し、オーブンを用いて、120℃の空気雰囲気下で20分乾燥させて、集電体表面上に正極用の電極活物質層を形成した。さらに、形成された電極活物質層の塗工密度が2.0g/cm(正極活物質層の厚さ:30μm)となるように、ロールプレス機を用いてプレスした後、所定の大きさ(直径15mmの円板)に裁断し、120℃にて12時間、真空乾燥させて、非水電解液二次電池用正極板を作製し、これを比較例3とした。比較例3の膜形成性は良好であった。また比較例3における電極活物質層の厚みは、30μmであった。
 比較例3について、実施例1に倣い三極式コインセルを組み立て、定電流値以外は、実施例1と同様に充放電試験を実施し、放電容量及び放電レートを測定した。比較例3の定電流値、および測定結果は表3に示す。
(比較例4)
 平均粒径1μmの正極活物質LiMnを使用したこと以外は比較例1と同様に電極活物質層形成組成物を調製し、比較例1と同様のアルミ箔上に、乾燥後の電極活物質層形成組成物の塗工量が30g/mとなるように塗布したが、上記電極活物質層形成組成物の粘度が調整困難で、流動性が悪くなり、設計通りの塗布ができず、正極活物質層を形成することができなかった。したがって、非水電解液二次電池用正極板を作成することができなかった。
(実施例17)
 有機物であるポリエチレンオキサイド1gをメタノール9gに溶解させた溶液に、結着物資生成材料として、金属元素含有化合物であるチタンジイソプロポキシビス(アセチルアセトネート)(株式会社マツモト交商製、TC-100)5.0gとを混合させ、リチウムイオン挿入脱離反応を示さない金属酸化物を生成する原料溶液とした。次いで、上記原料溶液に、平均粒径4μmの負極活物質粒子であるグラファイト7gを混合させ、エクセルオートホモジナイザー(株式会社日本精機製作所)で7000rpmの回転数で20分間混練することによって電極活物質層形成組成物を調製した。
 集電体として厚さ10μmの銅板を準備し、最終的に得られる電極活物質層の重さが15g/mとなる量で、当該集電体の一面側に上記にて調製した電極活物質層形成組成物をアプリケーターで塗布して電極活物質層形成用塗膜を形成した。
 次に、表面に電極活物質層形成用塗膜が形成された集電体を、水素還元雰囲気(水素濃度4%、窒素濃度96%)の電気炉(高温雰囲気ボックス炉、光洋サーモシステム株式会社製、KB8610N-VP)内に設置し、1時間かけて700℃まで加熱し、その後、700℃に温度を維持したまま10分間加熱し、室温になるまで放置した後に大気開放して取り出し、集電体上に金属酸化物と負極活物質粒子を含む負極活物質層として適切な電極活物質層が積層された本発明の非水電解液二次電池用負極板を得た。そして上記負極板を所定の大きさ(直径15mmの円板)に裁断し、実施例17とした。
(実施例18乃至20)
 実施例18:表5に示す電極活物質層形成組成物塗布量に変更したこと以外は、実施例17と同様に負極板を製造し、これを実施例18とした。
 実施例19:用いる負極活物質粒子の粒子径を10μmに変更したこと以外は実施例17と同様に負極板を製造し、これを実施例19とした。
 実施例20:用いる負極活物質粒子の粒子径を1μmに変更し、且つ、表5に示す電極活物質層形成組成物塗布量に変更したこと以外は実施例17と同様に負極体を製造し、これを実施例20とした。
実施例17乃至20に関する電極活物質層の厚み:
 上記実施例17乃至20について、実施例1と同様に、電極活物質層の厚みを測定し、平均値を算出した。結果は、表5に示す。
実施例17乃至20に関する膜形成性の確認:
 上記実施例17乃至20について、実施例1と同様に、膜形成性の確認を行った。結果は、表5に示す。
実施例17乃至20に関する組成分析試験:
 実施例1における試料1と同様に、実施例17乃至実施例20について、試料17乃至20を作成し、これを用いて組成分析を行った。結果は、以下の通りであった。
 実施例17では、Ti元素が16Atomic%、C元素が53Atomic%、O元素が31Atomic%検出された。
 実施例18では、Ti元素が16Atomic%、C元素が51Atomic%、O元素が33Atomic%検出された。
 実施例19では、Ti元素が19Atomic%、C元素が42Atomic%、O元素が39Atomic%検出された。
 実施例20では、Ti元素が19Atomic%、C元素が40Atomic%、O元素が41Atomic%検出された。
 また、以上の結果、実施例17乃至20において、電極活物質層形成用塗膜中に含有されていたチタンジイソプロポキシビス(アセチルアセトネート)が熱分解されて、電極活物質層中に酸化チタンが生成されたことが確認された。
実施例17乃至20に関する結晶性評価:
 また実施例1における試料1と同様の方法で、実施例17乃至20における試料17乃至20を用いて、その結晶性を評価した。その結果、試料1と同様に、試料17乃至20においても、電極活物質層中に含有される金属酸化物(酸化チタン)は結晶性であることが確認された(X線回折結果の図示は省略する)。
実施例17乃至20に関するサイクリックボルタンメトリー試験:
 実施例17乃至20における電極活物質層を構成する金属酸化物(即ち、酸化チタン)が、リチウムイオン挿入脱離反応を示すか否かを予め確認するために、CV試験を行った。具体的には、まず電極電位を3Vから0.03Vまで掃引したのち、再び3Vまで戻す作業を3度繰り返した。走査速度は1mV/秒とした。2回目のサイクル結果を示すサイクリックボルタモグラムから、明らかな、酸化ピークおよび還元ピークが確認できた。一方、上記金属酸化物を生成する原料溶液(負極活物質を添加する前の溶液)をアルミ基板にミヤバー4番で塗布し、電極作成時と同じ加熱条件で加熱し、得られた積層体について、上述と同様にCV試験を行った。その結果、1回目から3回目のいずれのサイクル結果を示すサイクリックボルタモグラムにおいても、ピーク(電気化学的な反応)は確認されなかった。このことから、実施例17乃至20の結着物質である酸化チタンはリチウムイオンの挿入脱離反応を示さない事が確認できた。尚、上記CV試験は、Bio Logic社製のVMP3を用いて実施した。
実施例17乃至20に関する充放電試験:
 まず、実施例1における充放電試験と同様に、非水電解液を調製し、正極板として実施例1を用いた代わりに、負極板として実施例17乃至20をそれぞれ作用極として用いた。そして、実施例試験セル1と同様に、実施例試験セル17乃至20を作成し、それぞれの試験セルを、以下の充放電試験に供した。尚、下記には、実施例試験セル17を用いた充放電試験について記載するが、実施例18乃至20についても、表6に示す定電流値に変更した以外は同様に充放電試験を行った。
(充電試験)
 実施例試験セル17を、25℃の環境下で、電圧が0.03Vに達するまで定電流(707μA)で定電流充電し、当該電圧が0.03Vに達した後は、電圧が0.03Vを下回らないように、当該電流(放電レート:1C)が5%以下となるまで減らしていき、定電圧で充電を行ない、満充電させた後、10分間休止させた。尚、ここで、上記「1C」とは、上記三極式コインセルを用いて定電流放電して、1時間で放電終了となる電流値(放電終止電圧に達する電流値)のことを意味する。また上記定電流は、実施例試験セル17である作用極において、活物質であるグラファイトの理論放電量372mAhr/gが1時間で放電されるよう設定された。
(放電試験)
 その後、満充電された実施例試験セル17を、25℃の環境下で、電圧が0.03V(満充電電圧)から2.0V(放電終止電圧)になるまで、定電流(707μA)(放電レート:1C)で定電流放電し、縦軸にセル電圧(V)、横軸に放電時間(h)をとり、放電曲線を作成し、作用極(実施例17である負極用電極板)の放電容量(mAh)を求め、当該作用極の単位重量当たりの放電容量(mAh/g)に換算した。
 続いて、上述のとおり実施した定電流(707μA)(放電レート:1C、放電終了時間:1時間)での定電流放電試験を基準として、放電レート50C、100Cにおいても、同様にして各々定電流放電試験を行ない、各放電レートにおける作用極の放電容量(mAh)を求め、これより単位重量当たりの放電容量(mAh/g)を換算した。尚、実施例17乃至20について、上記放電試験により得られた単位重量当たりの放電容量(mAhr/g)及び放電容量維持率(%)は、表6にまとめて示す。
(放電容量維持率(%)の算出)
 実施例1と同様の方法で、実施例17乃至20について、放電容量維持率(%)を求めた。また、電極の放電レート特性評価を以下の通り行った。結果は、表7に示す。
放電レート50Cにおける放電容量維持率 80%以上100%以下・・◎
放電レート50Cにおける放電容量維持率 50%以上80%未満・・・○
放電レート50Cにおける放電容量維持率 50%未満・・・・・・・・×
実施例17乃至20に関する密着性評価:
 集電体への電極活物質層の密着性を以下のとおり評価した。即ち、得られた実施例17の電極活物質層表面にセロハンテープ(「CT24」ニチバン(株)製)を用い、指の腹でフィルムに密着させた。次いで、これをはがした後の電極活物質層表面を観察し、以下のとおり評価した。結果は表5に示す。
電極活物質層の剥がれが全く観察されなかった・・・・・○
電極活物質層の表面の一部が凝集破壊し、セロハンテープ側に張り付いたが、集電体表面が露出することはなかった・・・・・・・・・・・・・・・△
電極活物質層一部が凝集破壊し、セロハンテープ側に張り付き、集電体表面の一部が露出した・・・・・・・・・・・・・・・・・・・・・・・・・×
実施例17乃至20に関する導電材とは区別される炭素成分の確認:
 電極活物質層中における導電材とは区別される炭素成分が消失していることを以下のとおり確認した。まず、実施例17の予備試験として、負極活物質粒子を用いなかったこと以外は、上記電極活物質層形成組成物と同様に組成物を調製し、上述と同様の方法にて集電体上に塗膜を作成し、上記加熱工程と同様の条件で加熱し、得られた積層膜中に炭素原子が含有されないことを確認した。したがって、上記予備試験の結果より、実施例17において、導電材とは区別される炭素成分であって、負極活物質粒子とも異なる、炭素成分が存在しないことを予め確認した。また、実施例17の作成後、実施例17における電極活物質層の厚み方向の断面を、透過型電子顕微鏡(TEM)を用い、走査透過型電子顕微鏡法(STEM法)によって、EDX検出器でナノオーダーの元素分析により示される元素マッピングによって炭素元素を確認したところ、負極活物質粒子以外の炭素成分は確認されなかった。また、実施例18乃至20についても実施例21と同様に、炭素成分について確認した。結果は表5に示す。
実施例17乃至20に関するサイクル特性評価試験:
 実施例17乃至20をそれぞれ用い、上記充電試験と放電試験に倣い、定電流(7mA)(放電レート:10C)での定電流充放電試験を実施し、100回繰り返すことでサイクル特性評価試験とした。1回目の放電容量に対する100回目の放電容量の維持率を100サイクル容量維持率とした。また、サイクル特性評価として、サイクル容量維持率を以下の通り評価した。尚、100サイクル容量維持率およびサイクル特性評価の結果については、表6に示す。
100サイクル容量維持率60%以上・・・・・・・・・・・○
100サイクル容量維持率60%未満・・・・・・・・・・・×
実施例17乃至20に関する塗工適性評価:
 実施例17乃至20に関し、電極活物質層形成組成物の集電体への塗工適性について、負極板の塗布工程実施後、集電体上に形成された塗膜表面を目視で観察し、以下のとおり評価した。結果は表5に示す。
塗膜表面が均一であった・・・・・・・・・・・・・・・◎
塗膜表面の一部に若干の凹凸が確認された・・・・・・・○
塗膜表面に、スジ、または塗りムラが確認された・・・・△
塗膜表面に、負極板として使用不可能な程度の明らかなスジ、
または塗りムラが確認された・・・・・・・・・・・・・×
(比較例5)
 結着物質生成材料は用いずに、平均粒径12μmの負極活物質グラファイトを10gと、樹脂製のバインダーとしてPVDF(クレハ社製、KF#1100)1.3gに、溶媒としてNMP(三菱化学社製)を加えて、分散させ、固形分濃度が55重量%となるようにエクセルオートホモジナイザー(株式会社日本精機製作所)で7000rpmの回転数で15分間攪拌して、スラリー状の電極活物質層形成組成物を調製した。
 そして上記電極活物質層形成組成物を、負極集電体として用いる厚さ10μmの銅箔上に、乾燥後の電極活物質層形成組成物の塗工量が65g/mとなるように塗布し、これを、オーブンを用いて、70℃の大気雰囲気下で乾燥を行ない、集電体上に負極板用の電極活物質層を形成した。
 さらに、形成された電極活物質層の厚みが、約85μmとなるように、ロールプレス機を用いてプレスした後、所定の大きさ(直径15mmの円板)に裁断し、70℃にて300分間、真空乾燥させて負極板を作製し、比較例5とした。
(比較例6乃至9)
 用いる負極活物質粒子の粒子径を表4に示すとおりとし、且つ、集電体上への電極活物質層形成組成物の塗布量、電極活物質層の厚みを表5に示すとおりに変更したこと以外は、比較例5と同様に負極板を作製し、比較例6乃至9とした。
 上述のとおり得た、比較例5乃至9について、実施例17に倣って充放電試験およびサイクル特性評価試験を行った。これらの結果を表6に示す。尚、充放電試験は、上記実施例試験セル17と同様に、比較例試験セル5乃至9を作成した。しかし、比較例セル6乃至9は、膜形成性が不良であったため、コインセルを組み立てることができず、正しく充放電試験を実施することができなかった。比較例試験セル5について、表6に示す定電流値に変更した以外は、実施例17と同様に、充放電試験を行った。結果について表6に示す。
 また比較例5乃至9について、実施例17と同様に、膜形成評価、塗工適性評価、密着性試験を行った。結果は表5にまとめて示す。
 以上に示す正極板の実施例1乃至16及び比較例1乃至4の結果より、実施例1乃至16、及び比較例3は、放電レートが1Cの場合には、その放電容量維持率は約100%であるが、放電レートを上げたとき、実施例はいずれも高い放電容量を維持したのに対し、比較例3は、放電容量維持率の低下が著しいことが示された。
 また比較例2は、電極活物質層において金属酸化物が形成されないこと以外は、実施例1と同様に形成したが、膜形成性が不良であり電極活物質層が剥がれてしまい、正極板を形成することができなかった。このことから、電極活物質層中における金属酸化物が確かに結着物質として作用していることが確認された。
 さらにまた、比較例1及び比較例4は、従来の樹脂製のバインダーを使用したが、用いた正極活物質粒子の粒子径が5μm以下と小さく、電極活物質層形成組成物の粘度調整が困難で、結果として正極板を作成することができなかった。これに対し、本発明の実施例では、使用する正極活物質粒子の粒子径が5μm以下であっても、良好に正極板を形成することができ、且つ、得られた正極板の放電容量維持率が非常に高いという結果が示された。
 また、以上に示す負極板の実施例17乃至20及び比較例5乃至9の結果より、実施例17乃至20は、いずれも出入力特性およびサイクル特性が非常に優れていることが示された。また、実施例17乃至20は、結着物質を樹脂製のものから金属酸化物に変更したが、膜形成性、密着性について従来以上の優れた品質であることが確認された。さらに、塗工適性について、実施例では、用いた活物質の粒子径の大小にかかわらず、優れた性質が示されたのに対し、12μmの粒子径の負極活物質を使用した比較例5および6では、適度な塗工適性が示されたものの、用いる活物質の粒子径が10μm以下の場合には、いずれも塗工適性が良好でなくなることが示された。この結果、本発明では、従来使用が困難であった、粒子径の小さい負極活物質でも良好に使用することができることが確認された。
 以上のとおり、実施例17乃至20によって示す、本発明の負極板が、比較例5乃至9に比べて、非常に優れた出入力特性およびサイクル特性を示すことから、本発明の負極板を電池に用いた場合には、当該電池の出入力特性およびサイクル特性が、望ましく向上することが理解される。
 以上のとおり、本発明の非水電解液二次電池用電極板は、正極板、負極板のいずれにおいても非常に高い放電容量維持率を示し、したがって非常に高い放電レート特性を備えていることが確認された。これにより充電レート特性も同様に高いことが推察された。即ち、上記充放電試験から、本発明の電極板は出入力特性が優れていることが確認された。また、密着性試験およびサイクル特性評価については、本発明の電極板の評価として、特に負極板の実施例を用いて評価した。当該評価結果に示される優れた性質は、本発明の負極板にのみ限定的に示されるものではなく、本発明の正極板においても同様の性質が示されるものである。したがって、非水電解液二次電池において、本発明の電極板を、正極板および/または負極板として使用することにより、従来よりも優れた放電レート特性を示す優れた非水電解液二次電池を提供することが可能である。
 また、以上に記載の実施例は、いずれも本発明の製造方法に従って実施された。これにより、本発明の非水電解液二次電池用電極板の製造方法では、従来のように、プレス工程なども必要なく、非常に簡易な工程から構成されている。その上、従来のように樹脂製のバインダーを使用せず、電極活物質層形成組成物に結着物質の前駆体を含有させているので、電極活物質粒子の粒子径によらず、望ましい粘度の塗布液を調整することができ、集電体上への塗工作業も非常に容易であることが確認された。また本発明の製造方法であれば、従来どおりの厚みの電極活物質層を備える電極板を製造することもできるし、あるいは非常に薄い厚みの電極活物質層を備える電極板を製造することができることが示された。さらに上述のとおり、本発明の製造方法により得られた電極板は、非常に望ましい放電レート特性を示すことが示された。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007

Claims (7)

  1.  集電体と、
     前記集電体の表面の少なくとも一部に形成される電極活物質層と、を備え、
     前記電極活物質層が、電極活物質粒子および結着物質を含有し、
     前記結着物質が、アルカリ金属イオン挿入脱離反応を示さない結晶性の金属酸化物であることを特徴とする非水電解液二次電池用電極板。
  2.  前記電極活物質層は、導電材をさらに含有していることを特徴とする請求項1に記載の非水電解液二次電池用電極板。
  3.  前記金属酸化物は、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Rb、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、およびSnからなる群より選択されるいずれか1種の金属元素を含む金属酸化物、または前記群より選択される2種以上の金属元素を含む複合金属酸化物であることを特徴とする請求項1に記載の非水電解液二次電池用電極板。
  4.  前記電極活物質粒子の粒子径が11μm以下であることを特徴とする請求項1に記載の非水電解液二次電池用電極板。
  5.  正極板と、
     負極板と、
     前記正極板と前記負極板との間に設けられるセパレータと、
     非水溶媒を含む電解液と、を少なくとも備え、
     前記正極板および/または前記負極板が、
      集電体と、
      前記集電体の表面の少なくとも一部に形成される電極活物質層と、を有し、
      前記電極活物質層が、電極活物質粒子および結着物質を含有し、
      前記結着物質が、アルカリ金属イオン挿入脱離反応を示さない結晶性の金属酸化物からなっている、
     ことを特徴とする非水電解液二次電池。
  6.  溶媒と、電極活物質粒子と、結着物質である金属酸化物を生成するための金属元素含有化合物とが少なくとも含有される電極活物質層形成組成物を、集電体上の少なくとも一部に塗布して塗膜を形成する塗布工程と、
     前記塗布工程後に実施されて前記塗膜を加熱する加熱工程であって、前記溶媒を蒸発させるとともに、前記金属元素含有化合物を熱分解して金属酸化物を生成することによって、前記集電体上に前記金属酸化物と前記電極活物質粒子とを含有する電極活物質層を形成する加熱工程と、を備え、
     前記加熱工程において生成される金属酸化物が、アルカリ金属イオン挿入脱離反応を示さない金属酸化物となるよう、前記塗布工程に用いられる前記金属元素含有化合物を予め選択し、
     前記加熱工程において、前記金属元素含有化合物の熱分解開始温度以上であって、かつ、該加熱工程において生成される前記金属酸化物の結晶化温度以上である温度で前記塗膜を加熱することを特徴とする非水電解液二次電池用電極板の製造方法。
  7.  前記金属元素含有化合物が、金属塩であることを特徴とする請求項6に記載の非水電解液二次電池用電極板の製造方法。
PCT/JP2010/056912 2009-04-24 2010-04-19 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、および非水電解液二次電池 WO2010122974A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/257,177 US8394536B2 (en) 2009-04-24 2010-04-19 Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-107180 2009-04-24
JP2009107180 2009-04-24
JP2010-024840 2010-02-05
JP2010024840A JP5212394B2 (ja) 2009-04-24 2010-02-05 非水電解液二次電池用電極板の製造方法

Publications (1)

Publication Number Publication Date
WO2010122974A1 true WO2010122974A1 (ja) 2010-10-28

Family

ID=43011091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056912 WO2010122974A1 (ja) 2009-04-24 2010-04-19 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、および非水電解液二次電池

Country Status (3)

Country Link
US (1) US8394536B2 (ja)
JP (1) JP5212394B2 (ja)
WO (1) WO2010122974A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4957931B2 (ja) * 2010-10-19 2012-06-20 大日本印刷株式会社 非水電解液二次電池用電極板、非水電解液二次電池、及び電池パック
JP6246682B2 (ja) * 2014-09-01 2017-12-13 日立オートモティブシステムズ株式会社 リチウムイオン二次電池
US9508976B2 (en) 2015-01-09 2016-11-29 Applied Materials, Inc. Battery separator with dielectric coating
WO2019036137A1 (en) 2017-08-17 2019-02-21 Applied Materials, Inc. LI-ION BATTERY WITHOUT OLEFIN SEPARATOR
CN112534636A (zh) 2018-08-21 2021-03-19 应用材料公司 在用于电池的隔板上的超薄陶瓷涂层
WO2023283406A1 (en) * 2021-07-09 2023-01-12 Qiao Quinn Low-concentration electrolyte for suppressing dendrite growth in lithium metal

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208747A (ja) * 1997-01-29 1998-08-07 Hitachi Ltd 二次電池および二次電池を利用した組電池と機器システム
JPH11144736A (ja) * 1997-11-12 1999-05-28 Mitsubishi Chemical Corp リチウムイオン電解質電池および該電池の製造方法
JP2001155739A (ja) * 1999-11-24 2001-06-08 Nissha Printing Co Ltd 二次電池用正極および二次電池
JP2001508916A (ja) * 1996-11-13 2001-07-03 三菱化学株式会社 リチウムイオン電池およびその製造方法
JP2003142101A (ja) * 2001-10-31 2003-05-16 Nec Corp 二次電池用正極およびそれを用いた二次電池
JP2003317707A (ja) * 2002-04-26 2003-11-07 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極とその製造方法
JP2005078985A (ja) * 2003-09-02 2005-03-24 Toshiba Battery Co Ltd 非水系二次電池用電極及びこれを用いたリチウム二次電池。
JP2008517435A (ja) * 2004-10-21 2008-05-22 エボニック デグサ ゲーエムベーハー リチウムイオンバッテリー用の無機セパレータ電極ユニット、その製造方法及びリチウムバッテリーにおけるその使用
JP2009104818A (ja) * 2007-10-19 2009-05-14 Sumitomo Electric Ind Ltd 全固体電池およびその製造方法
JP2010067436A (ja) * 2008-09-10 2010-03-25 Sumitomo Chemical Co Ltd 非水電解質二次電池用電極合剤、電極および非水電解質二次電池

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902589A (en) 1988-06-08 1990-02-20 Moli Energy Limited Electrochemical cells, electrodes and methods of manufacture
JP2960834B2 (ja) 1993-06-07 1999-10-12 シャープ株式会社 リチウム二次電池
JPH09503092A (ja) 1993-09-27 1997-03-25 アーサー・ディー・リトル・インコーポレイテッド エーロゾル法による粉体電極
JP2000277119A (ja) 1999-03-26 2000-10-06 Kyocera Corp リチウム電池
EP1142834A4 (en) 1999-11-15 2009-06-17 Mitsubishi Chem Corp LITHIUM MANGANIC OXIDE, POSITIVE ELECTRODE MATERIAL FOR SECONDARY LITHIUM CELLS, POSITIVE ELECTRODE AND SECONDARY LITHIUM CELL AND METHOD FOR PRODUCING LITHIUM MANGANIC OXIDE
JP4160271B2 (ja) 2000-08-21 2008-10-01 三星エスディアイ株式会社 リチウム二次電池用の電極及びリチウム二次電池
KR100378014B1 (ko) 2000-08-21 2003-03-29 삼성에스디아이 주식회사 리튬 이차 전지용 전극 및 리튬 이차 전지
JP4799776B2 (ja) 2000-08-22 2011-10-26 富士フイルム株式会社 電解質組成物及びそれを用いた電気化学電池
JP3809770B2 (ja) 2001-02-28 2006-08-16 財団法人電力中央研究所 電池材料の製造方法
CN1526178A (zh) 2001-05-15 2004-09-01 Fdk株式会社 非水电解质二次电池及其正极材料的制造方法
JP4767484B2 (ja) 2002-08-08 2011-09-07 パナソニック株式会社 非水電解質二次電池用正極活物質の製造法および正極活物質
JP2004103304A (ja) 2002-09-05 2004-04-02 National Institute Of Advanced Industrial & Technology 高性能二次電池
KR20050057237A (ko) 2002-09-05 2005-06-16 도꾸리쯔교세이호진 상교기쥬쯔 소고겡뀨죠 금속 산화물, 금속 질화물 또는 금속 탄화물 코트 탄소 미분말, 그 제조 방법, 당해 탄소 미분말을 사용한 슈퍼 커패시터 및 2차 전지
JP4610213B2 (ja) 2003-06-19 2011-01-12 三洋電機株式会社 リチウム二次電池及びその製造方法
JP4407211B2 (ja) 2003-09-02 2010-02-03 日産自動車株式会社 非水電解質二次電池
US7687102B2 (en) 2003-10-23 2010-03-30 Medtronic, Inc. Methods and apparatus for producing carbon cathodes
US20050130042A1 (en) * 2003-12-11 2005-06-16 Byd America Corporation Materials for positive electrodes of lithium ion batteries and their methods of fabrication
BRPI0508130A (pt) 2004-08-17 2007-07-17 Lg Chemical Ltd baterias secundárias de lìtio com segurança e desempenho aperfeiçoados
JP4834975B2 (ja) 2004-09-30 2011-12-14 大日本印刷株式会社 活物質層用塗工組成物、非水電解液二次電池用電極板、及び非水電解液二次電池
JP4193141B2 (ja) 2005-03-25 2008-12-10 ソニー株式会社 リチウム二次電池用負極およびリチウム二次電池、並びにそれらの製造方法
JP2006310010A (ja) 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
FR2890785A1 (fr) 2005-09-15 2007-03-16 Batscap Sa Dispositif de stockage d'energie electrique comprenant une couche barriere de protection du collecteur
US20070154807A1 (en) 2005-12-30 2007-07-05 Yevgen Kalynushkin Nanostructural Electrode and Method of Forming the Same
JP5262143B2 (ja) 2008-01-31 2013-08-14 トヨタ自動車株式会社 正極体およびその製造方法
JP2010129418A (ja) 2008-11-28 2010-06-10 Sumitomo Chemical Co Ltd 無機粒子バインダを用いた電極、及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508916A (ja) * 1996-11-13 2001-07-03 三菱化学株式会社 リチウムイオン電池およびその製造方法
JPH10208747A (ja) * 1997-01-29 1998-08-07 Hitachi Ltd 二次電池および二次電池を利用した組電池と機器システム
JPH11144736A (ja) * 1997-11-12 1999-05-28 Mitsubishi Chemical Corp リチウムイオン電解質電池および該電池の製造方法
JP2001155739A (ja) * 1999-11-24 2001-06-08 Nissha Printing Co Ltd 二次電池用正極および二次電池
JP2003142101A (ja) * 2001-10-31 2003-05-16 Nec Corp 二次電池用正極およびそれを用いた二次電池
JP2003317707A (ja) * 2002-04-26 2003-11-07 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極とその製造方法
JP2005078985A (ja) * 2003-09-02 2005-03-24 Toshiba Battery Co Ltd 非水系二次電池用電極及びこれを用いたリチウム二次電池。
JP2008517435A (ja) * 2004-10-21 2008-05-22 エボニック デグサ ゲーエムベーハー リチウムイオンバッテリー用の無機セパレータ電極ユニット、その製造方法及びリチウムバッテリーにおけるその使用
JP2009104818A (ja) * 2007-10-19 2009-05-14 Sumitomo Electric Ind Ltd 全固体電池およびその製造方法
JP2010067436A (ja) * 2008-09-10 2010-03-25 Sumitomo Chemical Co Ltd 非水電解質二次電池用電極合剤、電極および非水電解質二次電池

Also Published As

Publication number Publication date
JP5212394B2 (ja) 2013-06-19
US20120028125A1 (en) 2012-02-02
US8394536B2 (en) 2013-03-12
JP2010272512A (ja) 2010-12-02

Similar Documents

Publication Publication Date Title
JP5136804B2 (ja) 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、および非水電解液二次電池
JP5196197B2 (ja) 非水電解液二次電池用電極板の製造方法
WO2010122922A1 (ja) 非水電解液二次電池用負極板、非水電解液二次電池用負極板の製造方法、および非水電解液二次電池
JP5212394B2 (ja) 非水電解液二次電池用電極板の製造方法
JP4924852B2 (ja) 非水電解液二次電池用電極板の製造方法
JP2012079651A (ja) 非水電解液二次電池用電極板、非水電解液二次電池、および電池パック
JP4972199B2 (ja) 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、非水電解液二次電池、および電池パック
JP4936032B1 (ja) 非水電解液二次電池用電極板、非水電解液二次電池、および電池パック
JP2012094361A (ja) 非水電解液二次電池用電極板、非水電解液二次電池および電池パック
JP2011100747A (ja) 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、および非水電解液二次電池
WO2011030846A1 (ja) 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、非水電解液二次電池、および電池パック
JP2012094338A (ja) 非水電解液二次電池用電極板、非水電解液二次電池、及び電池パック
JP2011100748A (ja) 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、および非水電解液二次電池
JP2012084423A (ja) 非水電解液二次電池用電極板、非水電解液二次電池、および電池パック
JP2012079448A (ja) 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、非水電解液二次電池、および電池パック
JP2012094352A (ja) 非水電解液二次電池用正極板、非水電解液二次電池、および非水電解液二次電池用正極板の製造方法、並びに電池パック
JP2012089247A (ja) 非水電解液二次電池用電極板、非水電解液二次電池および電池パック
JP2012094334A (ja) 非水電解液二次電池用正極板、非水電解液二次電池、電池パック、非水電解液二次電池用正極板の製造方法、および正極用電極活物質層の形成方法
JP2012089272A (ja) 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、非水電解液二次電池、および電池パック
JP2012190728A (ja) 非水電解液二次電池用正極板、非水電解液二次電池、および電池パック
JP2012089275A (ja) 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、非水電解液二次電池、および電池パック
JP2012089274A (ja) 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、非水電解液二次電池、および電池パック
JP2012074226A (ja) 非水電解液二次電池用電極板、非水電解液二次電池、および電池パック
JP2012079447A (ja) 非水電解液二次電池用電極板、非水電解液二次電池および電池パック
JP2012089273A (ja) 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、非水電解液二次電池、および電池パック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10767031

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13257177

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10767031

Country of ref document: EP

Kind code of ref document: A1