WO2010122925A1 - パラジクロロベンゼンの製造方法 - Google Patents
パラジクロロベンゼンの製造方法 Download PDFInfo
- Publication number
- WO2010122925A1 WO2010122925A1 PCT/JP2010/056638 JP2010056638W WO2010122925A1 WO 2010122925 A1 WO2010122925 A1 WO 2010122925A1 JP 2010056638 W JP2010056638 W JP 2010056638W WO 2010122925 A1 WO2010122925 A1 WO 2010122925A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reactor
- chlorine gas
- stage
- paradichlorobenzene
- raw material
- Prior art date
Links
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000008569 process Effects 0.000 title claims abstract description 13
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims abstract description 111
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 60
- 239000003054 catalyst Substances 0.000 claims abstract description 58
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 claims abstract description 49
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 35
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000002994 raw material Substances 0.000 claims description 40
- 238000004519 manufacturing process Methods 0.000 claims description 24
- 239000002826 coolant Substances 0.000 claims description 21
- 239000002105 nanoparticle Substances 0.000 claims description 18
- 238000005660 chlorination reaction Methods 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 13
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 claims description 8
- 239000000047 product Substances 0.000 claims description 7
- 239000002002 slurry Substances 0.000 claims description 5
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 claims description 2
- 229960003750 ethyl chloride Drugs 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 abstract description 9
- 239000007858 starting material Substances 0.000 abstract 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 49
- 238000006243 chemical reaction Methods 0.000 description 47
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 37
- 239000000460 chlorine Substances 0.000 description 37
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 36
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 36
- 238000001816 cooling Methods 0.000 description 32
- 229960001701 chloroform Drugs 0.000 description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 239000012071 phase Substances 0.000 description 17
- 150000002430 hydrocarbons Chemical class 0.000 description 16
- 238000000926 separation method Methods 0.000 description 13
- 239000002815 homogeneous catalyst Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 11
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 10
- 229910052801 chlorine Inorganic materials 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 7
- 229940117389 dichlorobenzene Drugs 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000000499 gel Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- ZPQOPVIELGIULI-UHFFFAOYSA-N 1,3-dichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1 ZPQOPVIELGIULI-UHFFFAOYSA-N 0.000 description 4
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 4
- 229910021536 Zeolite Inorganic materials 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000635 electron micrograph Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000010412 perfusion Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 239000004734 Polyphenylene sulfide Substances 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 229950005499 carbon tetrachloride Drugs 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000007863 gel particle Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229920000069 polyphenylene sulfide Polymers 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 3
- KECIODWFKBDWHE-UHFFFAOYSA-N 1,2,3,3-tetrachlorocyclohexene Chemical compound ClC1=C(Cl)C(Cl)(Cl)CCC1 KECIODWFKBDWHE-UHFFFAOYSA-N 0.000 description 2
- 125000001340 2-chloroethyl group Chemical class [H]C([H])(Cl)C([H])([H])* 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000011949 solid catalyst Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- JLYXXMFPNIAWKQ-UHFFFAOYSA-N γ Benzene hexachloride Chemical compound ClC1C(Cl)C(Cl)C(Cl)C(Cl)C1Cl JLYXXMFPNIAWKQ-UHFFFAOYSA-N 0.000 description 2
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 0 C*1CCCC1 Chemical compound C*1CCCC1 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- -1 MDCB Chemical compound 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- VMPVEPPRYRXYNP-UHFFFAOYSA-I antimony(5+);pentachloride Chemical compound Cl[Sb](Cl)(Cl)(Cl)Cl VMPVEPPRYRXYNP-UHFFFAOYSA-I 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- ARQRPTNYUOLOGH-UHFFFAOYSA-N chcl3 chloroform Chemical compound ClC(Cl)Cl.ClC(Cl)Cl ARQRPTNYUOLOGH-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 239000000077 insect repellent Substances 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/10—Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
- C07C17/12—Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms in the ring of aromatic compounds
Definitions
- the present invention relates to a method for producing paradichlorobenzene, and in particular, chlorination with chlorine gas using at least one of benzene (hereinafter also referred to as “Bz”) and monochlorobenzene (hereinafter also referred to as “MCB”) as a raw material and chlorine as a catalyst.
- Bz benzene
- MBCB monochlorobenzene
- the present invention relates to a method for producing chlorobenzene (hereinafter also referred to as “p-DCB” or “PDCB”).
- alumina catalyst indicates “a catalyst mainly composed of alumina”.
- P-DCB is a compound with extremely high industrial value as a raw material for pharmaceuticals and agricultural chemicals, as an insecticide and insect repellent, and as a raw material for polyphenylene sulfide (PPS).
- p-DCB has been known to be a liquid phase chlorination of benzene and / or monochlorobenzene using a Lewis acid such as ferric chloride or antimony pentachloride as a catalyst.
- Ferric chloride has a high activity, the chlorine conversion rate reaches 99.99% or more, and a very small amount of unreacted chlorine in the by-produced hydrochloric acid gas remains.
- the selectivity of the desired para-substituted product is at most about 60% with the catalyst alone, and is increased to about 75% by adding a cocatalyst.
- Patent Document 1 a method for producing p-DCB having a selectivity of 90% or more
- Patent Document 2 a method using L-type zeolite as a catalyst
- the zeolite catalyst is expensive, and there are problems such as deterioration in a relatively short time depending on conditions.
- Patent Document 3 discloses a method of using activated alumina as a catalyst in producing dichlorobenzene by chlorinating benzene and / or monochlorobenzene. This method shows a high para-selectivity of 75%, a high chlorine conversion rate of 99.8%, and shows that no catalyst deterioration is observed over a long period of time.
- the method disclosed in Patent Document 3 is of a laboratory level and is not considered to be a specific one that can be operated as an actual apparatus.
- the chlorination reaction of benzene is a vigorous exothermic reaction, in an actual apparatus, it is very important to appropriately suppress the temperature rise and maintain the operation within a certain temperature range. It does not teach an effective solution to this point.
- the problem to be solved by the present invention is to provide a method capable of stable operation at a lower cost when operating as an actual apparatus when manufacturing p-DCB.
- each reactor of a reactor having a plurality of stages containing a catalyst mainly composed of alumina is supplied with chlorine gas.
- Supply in parallel supply the raw material and chlorine gas to the first-stage reactor, supply the reaction product of the previous stage to the reactor of the next stage, supply chlorine gas to the reactors of the subsequent stage, in parallel,
- the chlorination reaction of benzene and / or monochlorobenzene is a severe exothermic reaction, the temperature rise can be accurately suppressed and stable operation can be performed for a long time when operating as an actual device. become.
- FIG. 1 is a flowchart of a first embodiment of the present invention. It is a flow sheet that supplies raw material and chlorine gas under up-flow conditions.
- FIG. 2 is an electron micrograph and structural schematic diagram of ⁇ -alumina.
- A Electron micrograph of hydrogel
- B Electron micrograph after firing
- C Structural schematic after firing
- D Fractal structure of pores. It is a flow sheet of a 2nd embodiment of the present invention. It is a flow sheet of a 3rd embodiment of the present invention. It is a flow sheet of a 4th embodiment of the present invention.
- 2 is a graph showing dichlorobenzene yield and para selectivity in a system using ⁇ -alumina (nanoparticle gel), ⁇ zeolite, and silica alumina as a catalyst.
- 6 is a graph showing dichlorobenzene yield and para selectivity in a system using nanoparticle gel and nanoparticle sol ⁇ -alumina as a catalyst. 6 is a graph showing reaction stability for 20 hours in a system using ⁇ -alumina (nanoparticle gel) as a catalyst.
- FIG. 6 is a graph of p-DCB selectivity in a conventional example (using a homogeneous catalyst). It is a graph of the p-DCB yield accompanying chlorination in a conventional example (using a homogeneous catalyst). It is a graph which shows the influence of the reaction temperature of the selectivity in a prior art example (use of a homogeneous catalyst). It is a graph which shows the influence of the catalyst amount of the selectivity in a prior art example (use of a homogeneous catalyst).
- homogeneous catalysts such as ferric chloride not only have low p-DCB selectivity, but also impose a heavy equipment load on catalyst separation and recovery.
- the use of an alumina catalyst increases the selectivity of p-DCB, and the use of a solid catalyst enables reuse.
- the chlorination reaction is a vigorous exothermic reaction.
- the temperature is easily raised to 400 to 500 ° C. Therefore, it is necessary to appropriately suppress the temperature rise and maintain the operation within a certain temperature range. If the temperature is too low, the viscosity increases and the pressure loss increases.
- the temperature is high, the chlorine dissolution rate is controlled and the reaction is suppressed. Further, the boiling point of benzene is 80.1 ° C., and naturally the reaction is suppressed under the condition that benzene evaporates. It is also necessary to determine the reaction pressure so that an appropriate reaction temperature (reaction rate) can be maintained.
- a method for suppressing an exothermic reaction a method in which a reactor such as a jacket or a coil is provided with a cooling part, a method for suppressing a temperature rise by using a large amount of solvent (1.2 dichloroethane and MCB are considered as solvent candidates. )), And a method using a combination of a cooling part and a solvent, etc., and naturally these methods can also be used.
- suitable reaction conditions 40 to 130 ° C., 10 atm or less
- a gas-liquid mixed phase is obtained, but the overall heat transfer rate of the reaction part-metal part-cooling part is overwhelmed with the liquid phase volume.
- the heat transfer rate in the reaction section becomes dominant, and the overall heat transfer coefficient is only about 10 to 30 kcal / m 2 hr ° C. Under this condition, a huge heat transfer area is required, which is embodied as a reactor. Difficult to do.
- a direct cooling method using latent heat of vaporization of the cooling solvent is proposed as a more preferable condition. It is possible to absorb the enormous reaction heat generated by transferring the latent heat of vaporization caused by the evaporation of the compound to the compound by having a compound having the same boiling point as the reaction conditions in the reaction system. It becomes.
- Evaporated compounds can be condensed and reused.
- general-purpose external heat exchangers such as shell and tube that can secure a total heat transfer coefficient of 600 to 1100 kcal / m 2 hr ° C can be used. It is.
- Such a compound that can be directly used as a cooling medium is required not to react, and is suitable for chlorination reaction of p-DCB synthesis: dichloromethane (Tb ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 40.2 ° C.), trichloromethane (Tb 61.1 ° C.), tetra Chloromethanes such as chloromethane (Tb 76.8 ° C.), 1.1-dichloroethane (Tb 57. ° C.), 1.1.1-trichloroethane (Tb 73.9 ° C.), and chloroethanes.
- Stable temperature control is possible by selecting a suitable pressure condition in consideration of the desired reaction temperature and the boiling point of benzene and the direct cooling medium.
- the present invention uses benzene and / or chlorobenzene and chlorine gas and the direct cooling medium (chloroform in the following example).
- chloroform in the following example.
- reaction formula is as follows. Bz (C 6 H 6 ) ⁇ MCB (C 6 H 5 Cl) ⁇ PDCB, MDCB, ODCB (p-C 6 H 4 Cl 2 , o-C 6 H 4 Cl 2 , m-C 6 H 4 Cl 2 ⁇ TCB (C 6 H 3 Cl 3 ) PDCB synthesis reaction system: C 6 H 6 + Cl 2 ⁇ C 6 H 5 Cl + HCl (1) C 6 H 5 Cl + Cl 2 ⁇ pC 6 H 4 Cl 2 + HCl (2) C 6 H 5 Cl + Cl 2 ⁇ o-C 6 H 4 Cl 2 + HCl (3) C 6 H 5 Cl + Cl 2 ⁇ m-C 6 H 4 Cl 2 + HCl (4) p-C 6 H 4 Cl 2 + Cl 2 ⁇ C 6 H 3 Cl 3 + HCl (5) o-C 6 H 4 Cl 2 + Cl 2 ⁇ C 6 H 3 Cl 3 + HCl (6) C 6 H 3 Cl 3 + Cl 2 ⁇ C 6 H 2 ⁇ C
- a catalyst containing alumina is used.
- Alumina Al 2 O 3
- ⁇ -alumina has a high specific surface area and is frequently used as a catalyst or a catalyst support.
- Many of aluminas having catalytic activity and other activities called activated alumina are mainly composed of ⁇ -alumina.
- the stable phase ⁇ -type alumina is produced by heating and sintering the ⁇ -type to 1000 ° C. or higher, and is widely used mainly as a ceramic material.
- the ⁇ type and the ⁇ type are intermediates generated in the process of sintering the ⁇ type and converting it to the ⁇ type.
- FIG. 3 shows an electron micrograph and a schematic structure of ⁇ -alumina nanoparticles.
- FIG. 3A shows the state of the gel formed by neutralization precipitation
- FIG. 3B shows the ⁇ -alumina particles after drying at 550 ° C.
- the ⁇ -alumina particles have a nano-order stepped shape, and the pores formed as gaps between such ⁇ -alumina particles are also shown in FIG. 3 (D).
- the specific surface area is large and the reaction activity is also high.
- ⁇ -type, ⁇ -type, and ⁇ -type alumina is formed by phase transition of ⁇ -alumina at a high temperature, and the specific surface area is significantly reduced. Therefore, these aluminas do not have a high catalytic activity like ⁇ -alumina. Therefore, it is preferable to use ⁇ -alumina having a high specific surface area and high catalytic activity as the alumina catalyst used in the present invention.
- ⁇ -alumina can be suitably produced from any form of nanoparticle gel or nanoparticle sol, but when used as a fixed bed, production from nanoparticles is more preferred.
- the alumina catalyst is installed in the reactor.
- the reactor is used in multiple stages (minimum of two stages) in preparation for catalyst deterioration and used interchangeably.
- the alumina catalyst may be used as a fixed bed, and the raw material and chlorine gas may be circulated, or may be used as a slurry bed (FIG. 6).
- the slurry bed requires the separation of reaction products, unreacted components and catalyst, which makes the operation complicated.
- the temperature rise can be suppressed by stirring in the reactor, heat removal with a solvent described later is not required, and the jacket Since the temperature rise can be sufficiently suppressed only by the water cooling, it can be preferably used.
- the raw material and chlorine gas can be circulated in an up flow (FIG. 2), but are preferably circulated in a down flow (FIG. 1).
- the reactor becomes a continuous phase of the liquid, so the problem remains that the dissolution of chlorine gas in the solution becomes rate-limiting and back-mixing of reaction products in the liquid occurs.
- By making the flow down it is possible to solve the above problem by making the inside of the reactor a continuous phase of gas.
- the flow pattern of the gas-liquid multiphase flow changes depending on the diameter of the reactor used.
- the flow pattern to be adopted is a pulsating flow (Pulsing and Foaming Flow) or a perfusion flow (Gas-continuous or Triking Flow), and preferably a perfusion flow.
- Pulsating flow is a state where large and small portions of liquid hold-up flow alternately
- perfusion flow is a state in which liquid flows down in the form of a film over the catalyst particles by gravity, and gas becomes a continuous phase in the space. It is in a flowing state.
- the flow pattern changes from pulsating flow to perfusion flow.
- the reactor fixed bed has a plurality of stages, preferably three stages.
- the solid catalyst is deteriorated due to the loss of active sites due to the inflow of the deterioration-causing substance from the inlet.
- the reaction temperature As the reaction temperature, if the temperature is too low, the viscosity increases and the pressure loss increases. On the other hand, when the temperature is high, the chlorine dissolution rate is controlled and the reaction is suppressed. Therefore, the reaction temperature is 40 to 130 ° C, more preferably 55 to 90 ° C.
- the adiabatic evaporated chloroform and the reaction product are recovered and cooled for reuse in the next stage.
- a general-purpose external heat exchanger such as a shell and tube can be used.
- Direct cooling medium trichloromethane (chloroform) reacts with chlorine and is converted to tetrachloromethane.
- chloroform direct cooling medium
- the reaction product in the reactor is sent to a hydrogen chloride removal tower, and hydrogen chloride and the hydrocarbon compound accompanying it are separated from the top of the hydrogen chloride removal tower, and hydrogen chloride and a small amount of hydrocarbon accompanying it are separated.
- the compound is sent to the cooling tower, and in this cooling tower, the water phase cooled by the attached condenser is dispersed in the tower and cooled, so that the water phase and the hydrocarbon compound are separated at the bottom of the cooling tower, A 35% aqueous HCl solution is obtained as the separated aqueous phase.
- the separated hydrocarbon compound is separated into water and a hydrocarbon compound by a subsequent separation tower, and the hydrocarbon compound is reused.
- the reaction product collected at the bottom of the hydrogen chloride removal tower can be commercialized by crystallizing the desired p-DCB while removing TCB, m-DCB, and o-DCB.
- the liquid in the system can be returned to an appropriate position in the process and reused.
- FIG. 1 shows a preferred embodiment of the present invention.
- Reference numeral 10 denotes a reactor, which has a three-stage configuration in the embodiment.
- the benzene 1 as a raw material is supplied from the top of the first-stage reactor 10 after moisture is removed beforehand by a moisture removing means (not shown) if necessary.
- the chlorine gas 2 is supplied from the tops of the reactors 10, 10, 10 in each stage in parallel.
- Capacitors 12, 12, 12 are attached to each reactor 10, 10, 10.
- Chloroform (cooling medium) 3 is sent from the storage tank to the mixer 14, and is supplied from the top to the first stage reactor 10 by the pump 16.
- recovered chloroform 3A recovered in the subsequent step of the processing flow not shown in detail is supplied together with benzene 1 from the top of the first stage reactor 10.
- the mixer 14 is also supplied with recovered chloroform 3B recovered in a subsequent step of the processing flow, the details of which are not shown.
- an alumina catalyst 18 (molded body) is installed as a fixed bed, and raw materials (benzene) and chlorine gas are circulated in a down flow.
- a cooling jacket 11 is provided on the peripheral wall of the reactor 10 and is cooled by a cooling medium such as water.
- the reaction product is sequentially led to the next reactors 10 and 10 by the pumps 20 and 20.
- the evaporated component is condensed by the condensers 12, 12, 12 and then sent to the reactors 10, 10 and the mixer 14 in the next stage.
- a part of a small amount of the reaction product that has not been condensed is sent to the cooling tower 24.
- the bottom component of the reactor 10 in the final stage is sent to the hydrogen chloride removing tower 22, and by lower heating, hydrogen chloride and the hydrocarbon compounds accompanying it are separated from the top of the hydrogen chloride removing tower 22, and this is separated.
- the cooling water is fed to the cooling tower 24, and the water phase cooled by the attached condenser 26 is sprayed into the cooling tower 24 by the pump 28 and cooled. Separate and obtain 35% aqueous HCl as the separated aqueous phase.
- the hydrocarbon compounds collected in the precipitation tank 30 provided at the bottom of the cooling tower 24 are separated into water and hydrocarbon compounds by a subsequent separation tower (not shown), and the hydrocarbon compounds are recycled. Use.
- reaction product collected at the bottom of the hydrogen chloride removal tower 22 is then crystallized from the target p-DCB while removing TCB, m-DCB, and o-DCB using an appropriate treatment means.
- Reference numeral 32 denotes a decompression pump.
- FIG. 4 shows a second embodiment of the present invention.
- the reactor 10 has a three-stage configuration.
- the benzene 1 as a raw material is supplied from the top of the first-stage reactor 10 after moisture is removed beforehand by a moisture removing means (not shown) if necessary.
- Chlorine gas 2 is supplied in excess from the top of reactor 10 in the final stage.
- an alumina catalyst 18 molded body
- raw materials benzene
- chlorine gas and a cooling medium are circulated in a down flow.
- a cooling jacket 11 is provided on the peripheral wall of the reactor 10 and is cooled by a cooling medium such as water.
- the reaction product is sequentially led to the next reactors 10 and 10 by the pumps 20 and 20.
- the evaporation component mainly the cooling medium
- Unreacted chlorine gas in the reactor 10 and / or hydrogen chloride produced by the reaction are supplied from the top of the reactor 10 in the preceding stage.
- a part of a small amount of the reaction product that has not been condensed and chloroform are sent to the cooling tower 24.
- FIG. 5 shows a third embodiment of the present invention.
- the reactor 10 has a two-stage configuration.
- the benzene 1 as a raw material is supplied from the top of the first-stage reactor 10 after moisture is removed beforehand by a moisture removing means (not shown) if necessary.
- the chlorine gas 2 is supplied from the tops of the reactors 10 and 10 in each stage in parallel. Capacitors 12 and 12 are attached to each reactor 10 and 10. Chloroform (cooling medium) 3 is sent from the storage tank to the mixer 14, and is supplied from the top to the first stage reactor 10 by the pump 16. Further, the recovered chloroform 3A recovered in the subsequent step of the processing flow not shown in detail is supplied together with benzene 1 from the top of the first stage reactor 10. The mixer 14 is also supplied with recovered chloroform 3B recovered in a subsequent step of the processing flow, the details of which are not shown.
- the reaction product is sequentially led to unreacted substance separation towers 13 and 13 by pumps 20 and 20.
- the evaporation component (mainly the cooling medium) is condensed by the condensers 12, 12, and then sent to the reactor 10 and the mixer 14 in the next stage.
- a part of a small amount of the reaction product that has not been condensed and chloroform are sent to the cooling tower 24.
- the unreacted substance in the previous stage and the hydrogen chloride accompanying it are separated from the tower portion of the unreacted substance separation tower 13 by lower heating. Further, after the vaporized component in the unreacted substance separation tower 13 is condensed by the condenser 15, the unreacted substance is returned to the previous reactor 10. Uncondensed hydrogen chloride and a small amount of unreacted material are sent to the cooling tower 24.
- the water phase cooled by the attached condenser 26 is dispersed in the tower by the pump 28 and cooled, so that the cooling tower 24 separates the water phase and the chloroform phase, and the separation is performed.
- a 35% aqueous HCl solution is obtained as the aqueous phase.
- the chloroform phase collected in the precipitation tank 30 provided at the bottom of the bottom of the cooling tower 24 is separated into water and chloroform by a subsequent separation tower (not shown), and the chloroform is reused.
- the cooling medium from the final stage of the reactor 10 is cooled by the condenser 12 and then led to the mixer 14 and can be used for supplying new chloroform.
- the target p-type is removed while removing TCB, m-DCB and o-DCB using an appropriate treatment means.
- DCB can be crystallized to produce a product.
- FIG. 6 shows a preferred embodiment of the present invention.
- the reactor 610 has a three-stage configuration.
- the benzene 1 as a raw material is supplied to the first-stage reactor 610 after moisture is removed in advance by a moisture removing unit (not shown) if necessary.
- the chlorine gas 2 is supplied to the reactors 610, 610, and 610 of each stage.
- an alumina catalyst 618 is installed as a slurry bed.
- a cooling jacket 611 is provided on the peripheral wall of the reactor 610 so as to be cooled by a cooling medium such as water.
- Each reactor 610, 610, 610 is provided with a stirrer 617, 617, 617.
- the reaction product is sequentially led to separators 619, 619, 619 by pumps 20, 20, 20.
- Separators 619, 619, and 619 separate the reaction product and the alumina catalyst, and the separated alumina catalyst is returned to the preceding reactors 610, 610, and 610.
- the reaction product from which the alumina catalyst has been separated is supplied to the subsequent reactors 610 and 610 and the hydrogen chloride removing tower 22. Hydrogen chloride gas generated in each reactor 610, 610, 610 is sent to the next reactor 610, 610 or the cooling tower 24.
- hydrogen chloride and a hydrocarbon compound accompanying the hydrogen chloride removal tower 22 are separated from the top of the hydrogen chloride removal tower 22 by lower heating, and this is sent to the cooling tower 24.
- the water phase cooled by the condenser 26 is sprayed into the tower by the pump 28 and cooled, so that the water phase and the hydrocarbon compound are separated in the cooling tower 24, and the separated water phase is 35%.
- An aqueous HCl solution is obtained.
- the hydrocarbon compounds collected in the precipitation tank 30 provided at the bottom of the bottom of the cooling tower 24 are separated into water and hydrocarbon compounds by a subsequent separation tower (not shown), and the hydrocarbon compounds are reused. To do.
- the reaction product collected at the bottom of the hydrogen chloride removal tower 22 is then crystallized from the target p-DCB while removing TCB, m-DCB, and o-DCB using an appropriate treatment means. Can be commercialized.
- Example 1 and 2 and Comparative Examples 1 and 2 ⁇ -alumina (nanoparticle gel, Example 1), ⁇ -alumina (nanoparticle sol, Example 2), ⁇ zeolite (BEA, Comparative Example 1), and silica alumina (Comparative Example 2) were fixed in the reactor as catalysts.
- a p-DCB was produced by chlorinating with chlorine gas using benzene as a raw material according to the flow shown in FIG. The reaction conditions were a temperature of 80 ° C. and a pressure of 1.8 kg / cm 2 , and dichlorobenzene yield and paraselectivity of dichlorobenzene were examined.
- FIG. 7 shows the results of Example 1 and Comparative Examples 1 and 2.
- ⁇ -alumina nanoparticle gel
- FIG. 8 shows a result comparison between Examples 1 and 2. It has been found that ⁇ -alumina exhibits high yield and para selectivity even when it is produced from either nanoparticle gel or nanoparticle sol.
- Example 1 the reaction was intermittently conducted for a total of 20 hours, and the reaction stability was examined. As shown in FIG. 9, it was shown that the catalytic activity and reaction selectivity of ⁇ -alumina (nanoparticle gel) were not deteriorated even after 20 hours of reaction.
- Comparative Example 3 Showing a comparative example 3 using the homogeneous catalyst of ferric chloride FeCl 3 is a conventional method.
- a reaction apparatus as shown in FIG. 10, a fully mixed reactor 50 with a jacket 51 and a stirrer 52 is used. To this, chlorine is supplied from a blower, benzene and FeCl 3 are supplied, and a cooling water unit 53 supplies a jacket. The reaction is conducted while cooling through 51. The reaction product from the bottom was stored in the liquid storage tank 54 after cooling, and the gas liquid component from the top was stored in the gas liquid storage tank 55 after cooling.
- reaction conditions are as follows. ⁇ Catalyst FeCl 3 concentration: 0.0088 catalyst mol / benzene mol ⁇ Raw material chlorine gas supply rate: 0.85 mol / benzene mol ⁇ Reaction temperature: 80 °C
- FIG. 11 shows the change in the product of chlorination of benzene in this reaction process, expressed as the reaction progress (degree of chlorination). It can be seen from FIG. 11 that the homogeneous catalyst proceeds in a sequential and concurrent manner. This is probably because the homogeneous catalyst has no resistance to diffusion, and benzene and the Mono isomer, or the Mono isomer and the Di isomer reacted at the same time. Therefore, the Di body selectivity in the reaction remains at a maximum of 80%.
- the experiment was conducted by reducing the reaction temperature under standard conditions from 80 ° C. to 70 ° C. The results are shown in FIG. It can be seen that the para-isomer selectivity does not change even when the reaction temperature is lowered.
- the catalyst amount was changed from 0.0181 g-cat / g-Bz (0.0088 catalyst mol / benzene mol) to about 1/20 0.0010 g-cat / g-Bz (0.00049 catalyst mol / benzene).
- the activity was not changed, and it was clarified that the selectivity was arranged with a single curve as shown in FIG. 15 and the selectivity was not changed.
- a compound having a very high industrial value can be continuously obtained as a raw material for PPS.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Abstract
Description
〔請求項1記載の発明〕
ベンゼン及びモノクロロベンゼンの少なくとも一方を原料として塩素ガスにより塩素化してパラジクロロベンゼンを製造する方法において、アルミナを主成分とする触媒を内装した複数段を有する反応器の、各反応器には塩素ガスを並列に供給し、初段の反応器に前記原料及び塩素ガスを供給し、前段の反応生成物を次段の反応器に供給し、次段以降の反応器には塩素ガスを並列に供給し、最終段の反応生成物からパラジクロロベンゼンを得ることを特徴とするパラクロロベンゼンの製造方法。
ベンゼン及びモノクロロベンゼンの少なくとも一方を原料として塩素ガスにより塩素化してパラジクロロベンゼンを製造する方法において、アルミナを主成分とする触媒を内装した複数段を有する反応器のうち、初段の反応器に前記原料、塩素ガス及び/又は後段の未反応塩素ガスを供給し、前段の反応生成物を次段の反応器に供給し、次段以降の反応器には過剰量の塩素ガスを供給し、最終段の生成反応物からパラジクロロベンゼンを得ることを特徴とするパラジクロロベンゼンの製造方法。
ベンゼン及びモノクロロベンゼンの少なくとも一方を原料として塩素ガスにより塩素化してパラジクロロベンゼンを製造する方法において、アルミナを主成分とする触媒を内装した複数段を有する反応器のうち、初段の反応器に前記原料、塩素ガスを供給し、前段の反応生成物を未反応原料と生成物に分離し、未反応原料は前段の反応器に戻し、生成物を次段の反応器に供給し、次段以降の反応器には塩素ガスを供給し、最終段の反応生成物からパラジクロロベンゼンを得ることを特徴とするパラジクロロベンゼンの製造方法。
ベンゼン及びモノクロロベンゼンの少なくとも一方を原料として塩素ガスにより塩素化してパラジクロロベンゼンを製造する方法において、前記原料及び前記塩素ガスをアルミナを主成分とする触媒をスラリー床として内装した反応器に導くことを特徴とするパラジクロロベンゼンの製造方法。
前記反応器が、前記アルミナを主成分とする触媒を固定床として内装した反応器である請求項1~3のいずれかに記載のパラジクロロベンゼンの製造方法。
前記原料及び塩素ガスをダウンフローで流通させる請求項5に記載のパラジクロロベンゼンの製造方法。
クロロメタン及びクロロエタンの少なくとも一種の冷却媒体を前記反応器の各段に導入し、前記冷却媒体を蒸発させて前記塩素化反応の温度上昇を抑制する請求項1~3のいずれかに記載のパラジクロロベンゼンの製造方法。
前記冷却媒体の蒸発ガス分は反応器外で凝縮させ、その凝縮液を前記冷却媒体として再利用する請求項1~3のいずれかに記載のパラジクロロベンゼンの製造方法。
前記アルミナが、比表面積の高いナノアルミナである請求項1~4のいずれかに記載のパラジクロロベンゼンの製造方法。
前記ナノアルミナが、ナノ粒子ゲル及び/またはナノ粒子ゾルから製造される請求項9記載のパラジクロロベンゼンの製造方法。
前記塩素化反応を温度40~130℃、圧力10atm以下で行う請求項1~4のいずれかに記載のパラジクロロベンゼンの製造方法。
前述のように、塩化第二鉄などの均一系触媒では、p-DCBの選択性が低いばかりでなく、触媒の分離回収の装置的な負担が大きくなる。本発明ではアルミナ触媒を使用することで、p-DCBの選択性を高め、また固体触媒を使用することにより、再利用を可能とした。
1)原料及び原料不純物:ベンゼン、クロロベンゼン、塩素
2)溶剤・溶液及びその不純物:クロロホルム、水
3)反応生成物:モノクロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、塩化水素
以上の成分を考慮して、適宜の分離手段を組み合わせて、目的にパラジクロロベンゼンを得る。
Bz(C6H6)→MCB(C6H5Cl)→PDCB、MDCB、ODCB(p-C6H4Cl2、o-C6H4Cl2、m-C6H4Cl2→ TCB(C6H3Cl3)
PDCB合成反応システム:
C6H6 +Cl2 → C6H5Cl+HCl (1)
C6H5Cl +Cl2 → p-C6H4Cl2+HCl (2)
C6H5Cl +Cl2 → o-C6H4Cl2+HCl (3)
C6H5Cl +Cl2 → m-C6H4Cl2+HCl (4)
p-C6H4Cl2+Cl2 → C6H3Cl3+HCl (5)
o-C6H4Cl2+Cl2 → C6H3Cl3+HCl (6)
C6H3Cl3 +Cl2 → C6H2Cl4+HCl (7)
ベンゼンの塩素付加反応によるテトラクロロシクロヘキセン及びベンゼンヘキサクロライドの生成:
C6H6 + 2Cl2 → C6H6Cl4 (8)
C6H6 + 3Cl2 → C6H6Cl6 (9)
好ましくない副反応により生成するテトラクロロシクロヘキセン及びベンゼンヘキサクロライドは触媒の被毒物質となる可能性があり、触媒の劣化につながる可能性が懸念される。
本発明では、アルミナを含む触媒を使用する。アルミナ(Al2O3)は、その結晶形態から、主にα型、γ型、δ型、θ型に分けられる。このうちγ-アルミナは、高い比表面積を有し、触媒または触媒担体として多用されている。活性アルミナといわれる触媒活性その他の活性を有するアルミナの多くは、γ-アルミナを主成分としている。安定相のα型アルミナは、γ型を1000℃以上に熱して焼結させることで生成され、おもにセラミックス材料として広く使用されている。δ型、θ型は、γ型を焼結させα型に変換する過程で生じる中間体である。
本発明において、アルミナ触媒は、反応器内に内装される。アルミナ触媒は長時間安定な触媒ではあるものの、反応器は触媒の劣化に備えて多段 (最低 2段)にし、交換的に使用する。アルミナ触媒は、固定床として使用し、原料及び塩素ガスを流通させてもよく、またスラリー床として使用してもよい(図6)。スラリー床は、反応生成物、未反応成分と触媒の分離が必要となり操作が煩雑となる反面、反応器内の攪拌によって温度上昇を抑制できることから、後述の溶媒による除熱を必要とせず、ジャケットによる水冷のみで十分な温度上昇抑制が可能となるため、好適に使用することができる。
反応器での反応生成物中には、副生物(炭化水素化合物)及び塩化水素が含まれている。塩化水素の沸点は-85℃であり、極めて液体回収が難しいので、水溶液として回収する。回収する塩化水素濃度はできるだけ高い方が望ましいが、35%HCl程度ならば容易に回収できる。
また、系内の液はプロセス内の適宜の位置に返送して再利用することができる。
次に、本発明の実施の形態を説明する。
図1は、本発明の好適な実施の形態を示す。
10は反応器であり、実施の形態では3段構成である。原料たるベンゼン1は、必要により図示しない水分除去手段により予め水分が除去された後に、第1段の反応器10の塔頂から供給される。
塩素ガス2は、各段の反応器10、10、10に並列にそれらの塔頂から供給される。各反応器10、10、10にはコンデンサ12、12、12が付設されている。クロロホルム(冷却媒体)3は、貯蔵タンクから、混合器14に送られ、ポンプ16により、第1段の反応器10にその塔頂から供給される。また、詳細は図示していない処理フローの後工程で回収された回収クロロホルム3Aがベンゼン1と共に、第1段の反応器10の塔頂から供給されるようになっている。また、前記混合器14には、同じく詳細は図示していない処理フローの後工程で回収された回収クロロホルム3Bが供給される。
図4は、本発明の第2の実施形態を示す。
反応器10は3段構成である。原料たるベンゼン1は、必要により図示しない水分除去手段により予め水分が除去された後に、第1段の反応器10の塔頂から供給される。
塩素ガス2は、最終段の反応器10の塔頂から過剰量が供給される。各反応器10、10、10内にはアルミナ触媒18(成形体)が固定床として内装されており、原料(ベンゼン)、塩素ガス及び冷却媒体がダウンフローで流通するようになっている。反応器10周壁には冷却用ジャケット11が設けられ、水などの冷却媒体によって冷却されるようになっている。
図5は、本発明の第3の実施形態を示す。
反応器10は2段構成である。原料たるベンゼン1は、必要により図示しない水分除去手段により予め水分が除去された後に、第1段の反応器10の塔頂から供給される。
図6は、本発明の好適な実施の形態を示す。
反応器610は3段構成である。原料たるベンゼン1は、必要により図示しない水分除去手段により予め水分が除去された後に、第1段の反応器610へ供給される。
γ-アルミナ(ナノ粒子ゲル、実施例1)、γ-アルミナ(ナノ粒子ゾル、実施例2)、βゼオライト(BEA、比較例1)、シリカアルミナ(比較例2)を触媒として反応器に固定床として内装し、図1のフローに従ってベンゼンを原料として塩素ガスにより塩素化してp-DCBを製造した。反応条件を、温度80℃、圧力1.8kg/cm2として、ジクロロベンゼン収率、ジクロロベンゼンのパラ選択性を検討した。
従来法である均一系触媒塩化第二鉄FeCl3を用いた比較例3を示す。反応装置としては、図10に示すように、ジャケット51及び攪拌機52付き完全混合型反応器50を使用し、これに塩素を供給ブロアから、ベンゼン及びFeCl3を供給し、冷却水ユニット53によりジャケット51を介して冷却しながら反応を行うものである。底部からの反応生成物は冷却後に液貯槽54に、頂部からのガス液成分は冷却後にガス液貯槽55に貯留した。
○ 触媒FeCl3濃度:0.0088触媒mol/ベンゼンmol
○ 原料塩素ガス供給速度:0.85mol/ベンゼンmol
○ 反応温度:80℃
図11から均一系触媒は反応が逐次及び併発的にも進行していることがわかる。この理由として、均一系触媒は拡散の抵抗がないため、ベンゼンとMono体、あるいはMono体とDi体が同時に反応したためだと考えられる。それ故、反応におけるDi体選択性は最大80%に留まる。
Claims (11)
- ベンゼン及びモノクロロベンゼンの少なくとも一方を原料として塩素ガスにより塩素化してパラジクロロベンゼンを製造する方法において、アルミナを主成分とする触媒を内装した複数段を有する反応器の、各反応器には塩素ガスを並列に供給し、初段の反応器に前記原料及び塩素ガスを供給し、前段の反応生成物を次段の反応器に供給し、次段以降の反応器には塩素ガスを並列に供給し、最終段の反応生成物からパラジクロロベンゼンを得ることを特徴とするパラクロロベンゼンの製造方法。
- ベンゼン及びモノクロロベンゼンの少なくとも一方を原料として塩素ガスにより塩素化してパラジクロロベンゼンを製造する方法において、アルミナを主成分とする触媒を内装した複数段を有する反応器のうち、初段の反応器に前記原料、塩素ガス及び/又は後段の未反応塩素ガスを供給し、前段の反応生成物を次段の反応器に供給し、次段以降の反応器には過剰量の塩素ガスを供給し、最終段の生成反応物からパラジクロロベンゼンを得ることを特徴とするパラジクロロベンゼンの製造方法。
- ベンゼン及びモノクロロベンゼンの少なくとも一方を原料として塩素ガスにより塩素化してパラジクロロベンゼンを製造する方法において、アルミナを主成分とする触媒を内装した複数段を有する反応器のうち、初段の反応器に前記原料、塩素ガスを供給し、前段の反応生成物を未反応原料と生成物に分離し、未反応原料は前段の反応器に戻し、生成物を次段の反応器に供給し、次段以降の反応器には塩素ガスを供給し、最終段の反応生成物からパラジクロロベンゼンを得ることを特徴とするパラジクロロベンゼンの製造方法。
- ベンゼン及びモノクロロベンゼンの少なくとも一方を原料として塩素ガスにより塩素化してパラジクロロベンゼンを製造する方法において、前記原料及び前記塩素ガスをアルミナを主成分とする触媒をスラリー床として内装した反応器に導くことを特徴とするパラジクロロベンゼンの製造方法。
- 前記反応器が、前記アルミナを主成分とする触媒を固定床として内装した反応器である請求項1~3のいずれかに記載のパラジクロロベンゼンの製造方法。
- 前記原料及び塩素ガスをダウンフローで流通させる請求項5に記載のパラジクロロベンゼンの製造方法。
- クロロメタン及びクロロエタンの少なくとも一種の冷却媒体を前記反応器の各段に導入し、前記冷却媒体を蒸発させて前記塩素化反応の温度上昇を抑制する請求項1~3のいずれかに記載のパラジクロロベンゼンの製造方法。
- 前記冷却媒体の蒸発ガス分は反応器外で凝縮させ、その凝縮液を前記冷却媒体として再利用する請求項1~3のいずれかに記載のパラジクロロベンゼンの製造方法。
- 前記アルミナが、比表面積の高いナノアルミナである請求項1~4のいずれかに記載のパラジクロロベンゼンの製造方法。
- 前記ナノアルミナが、ナノ粒子ゲル及び/またはナノ粒子ゾルから製造される請求項9記載のパラジクロロベンゼンの製造方法。
- 前記塩素化反応を温度40~130℃、圧力10atm以下で行う請求項1~4のいずれかに記載のパラジクロロベンゼンの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080017502.5A CN102405201B (zh) | 2009-04-21 | 2010-04-14 | 对二氯苯的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-102917 | 2009-04-21 | ||
JP2009102917A JP5658865B2 (ja) | 2009-04-21 | 2009-04-21 | パラジクロロベンゼンの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010122925A1 true WO2010122925A1 (ja) | 2010-10-28 |
Family
ID=43011043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/056638 WO2010122925A1 (ja) | 2009-04-21 | 2010-04-14 | パラジクロロベンゼンの製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5658865B2 (ja) |
CN (1) | CN102405201B (ja) |
TW (1) | TWI481585B (ja) |
WO (1) | WO2010122925A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102584522A (zh) * | 2012-02-21 | 2012-07-18 | 南通市东昌化工有限公司 | 2,4-二氯甲苯的生产方法 |
EP4365158A1 (en) | 2022-11-04 | 2024-05-08 | PCC ROKITA Spolka Akcyjna | Method of selective paradichlorobenzene preparation with improved catalytic system recovery |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102630752B1 (ko) * | 2021-01-25 | 2024-01-29 | 한화솔루션 주식회사 | 방향족 화합물의 염소화 반응 방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0193550A (ja) * | 1987-10-02 | 1989-04-12 | Toagosei Chem Ind Co Ltd | ジクロロベンゼンの製造方法 |
JPH0317036A (ja) * | 1989-06-14 | 1991-01-25 | Color Chem Kogyo Kk | ハロゲン化ベンゼンの連続反応装置およびそれを用いた連続製造装置と方法 |
JPH04128245A (ja) * | 1990-09-19 | 1992-04-28 | Toagosei Chem Ind Co Ltd | ジクロロベンゼンの製造方法 |
JPH10218807A (ja) * | 1997-02-05 | 1998-08-18 | Chiyoda Corp | p−ジクロロベンゼンの製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100402831B1 (ko) * | 1996-03-05 | 2004-05-06 | 고로 사토 | 알루미나졸및그의제조방법,및그들을이용한알루미나성형체의제조방법,및알루미나성형체로부터얻어진알루미나계촉매 |
JP5110570B2 (ja) * | 2006-11-06 | 2012-12-26 | 独立行政法人産業技術総合研究所 | アルミナ微粒子及びアルミナゾルの製造方法 |
-
2009
- 2009-04-21 JP JP2009102917A patent/JP5658865B2/ja not_active Expired - Fee Related
-
2010
- 2010-04-14 WO PCT/JP2010/056638 patent/WO2010122925A1/ja active Application Filing
- 2010-04-14 CN CN201080017502.5A patent/CN102405201B/zh active Active
- 2010-04-15 TW TW099111750A patent/TWI481585B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0193550A (ja) * | 1987-10-02 | 1989-04-12 | Toagosei Chem Ind Co Ltd | ジクロロベンゼンの製造方法 |
JPH0317036A (ja) * | 1989-06-14 | 1991-01-25 | Color Chem Kogyo Kk | ハロゲン化ベンゼンの連続反応装置およびそれを用いた連続製造装置と方法 |
JPH04128245A (ja) * | 1990-09-19 | 1992-04-28 | Toagosei Chem Ind Co Ltd | ジクロロベンゼンの製造方法 |
JPH10218807A (ja) * | 1997-02-05 | 1998-08-18 | Chiyoda Corp | p−ジクロロベンゼンの製造方法 |
Non-Patent Citations (1)
Title |
---|
TOSHIAKI AKABANE: "Kabushiki Kaisha Kagaku Kogyo Sha", BATCH PLANT TO ENGINEERING, 25 March 1979 (1979-03-25), pages 133 - 138 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102584522A (zh) * | 2012-02-21 | 2012-07-18 | 南通市东昌化工有限公司 | 2,4-二氯甲苯的生产方法 |
EP4365158A1 (en) | 2022-11-04 | 2024-05-08 | PCC ROKITA Spolka Akcyjna | Method of selective paradichlorobenzene preparation with improved catalytic system recovery |
Also Published As
Publication number | Publication date |
---|---|
JP5658865B2 (ja) | 2015-01-28 |
TW201040129A (en) | 2010-11-16 |
JP2010254582A (ja) | 2010-11-11 |
TWI481585B (zh) | 2015-04-21 |
CN102405201A (zh) | 2012-04-04 |
CN102405201B (zh) | 2014-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4746544B2 (ja) | 1−クロロ−3,3,3−トリフルオロプロペン(HCFC−1233zd)の低温での製造 | |
RU2552531C2 (ru) | Способ получения 2-хлор-1,1,1,2-тетрафторпропана фторированием 2-хлор-3,3,3-трифторпропена в жидкой фазе | |
RU2547440C2 (ru) | Способ получения 2,3,3,3-тетрафторпропена | |
WO2012063566A1 (ja) | トランス-1,3,3,3-テトラフルオロプロペンの製造方法 | |
JP2015511230A (ja) | 2,3,3,3−テトラフルオロプロぺンの製造方法 | |
JP2010533113A (ja) | 多段階断熱的気相酸化による塩素の製造方法 | |
JP5658865B2 (ja) | パラジクロロベンゼンの製造方法 | |
JP5159245B2 (ja) | パラジクロロベンゼンの製造方法 | |
CN103649039B (zh) | 将包含二氯乙酸的液体进料加氢脱氯的方法 | |
WO2016079122A1 (en) | A method for producing a chemical compound and apparatus therefor | |
WO2010110163A1 (ja) | パラジクロロベンゼンの製造方法 | |
JP4437715B2 (ja) | 塩化メチルの製造方法及び高次塩素化メタン類の製造方法 | |
WO2013157384A1 (ja) | シス-1,3,3,3-テトラフルオロプロペンの製造方法 | |
KR20110110146A (ko) | 염소의 제조 방법 | |
JP5366610B2 (ja) | パラジクロロベンゼンの製造方法 | |
JP5425503B2 (ja) | パラジクロロベンゼンの製造方法 | |
JP5474389B2 (ja) | パラジクロロベンゼンの製造方法 | |
KR20110114570A (ko) | 염소의 제조 방법 | |
JP5669362B2 (ja) | パラジクロロベンゼンの製造方法 | |
US20190300459A1 (en) | Method for improving the production of a chlorinated alkane by chlorination of a chloroalkene using a diluent | |
JP6360084B2 (ja) | 2−クロロ−3,3,3−トリフルオロプロペンの液相フッ素化で2−クロロ−1,1,1,2−テトラフルオロプロペンを製造する方法 | |
WO2020041731A1 (en) | Gallium catalyzed dehydrochlorination of a chlorinated alkane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080017502.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10766982 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 8468/DELNP/2011 Country of ref document: IN |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10766982 Country of ref document: EP Kind code of ref document: A1 |