WO2010122889A1 - パワーモジュールの絶縁劣化検知装置および方法、ならびにパワーモジュールシステム - Google Patents

パワーモジュールの絶縁劣化検知装置および方法、ならびにパワーモジュールシステム Download PDF

Info

Publication number
WO2010122889A1
WO2010122889A1 PCT/JP2010/056017 JP2010056017W WO2010122889A1 WO 2010122889 A1 WO2010122889 A1 WO 2010122889A1 JP 2010056017 W JP2010056017 W JP 2010056017W WO 2010122889 A1 WO2010122889 A1 WO 2010122889A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
signal
power module
determination result
deterioration
Prior art date
Application number
PCT/JP2010/056017
Other languages
English (en)
French (fr)
Inventor
暁紅 殷
西村 隆
山本 圭
和弘 多田
奥田 達也
大井 健史
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011510277A priority Critical patent/JPWO2010122889A1/ja
Priority to US13/265,446 priority patent/US20120039045A1/en
Publication of WO2010122889A1 publication Critical patent/WO2010122889A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/129Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of components or parts made of semiconducting materials; of LV components or parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a power module insulation deterioration detecting device and method capable of detecting in advance deterioration of an insulating sheet due to high-temperature moisture absorption in a power module having an insulating resin layer (insulating sheet), and a power module system. .
  • a typical power module is a ceramic substrate with circuit wiring or a metal core substrate with a power semiconductor element mounted on a frame case made of thermoplastic resin, and injected with silicone gel or epoxy resin. The whole is sealed.
  • This type of transfer mold is excellent in productivity and can reduce the manufacturing cost. Unlike silicone gel, it covers the whole with a resin with high elastic modulus, so heat cycleability, power cycleability, etc. Is known to have high reliability.
  • power modules are often used in high-temperature and high-humidity environments while a high voltage is applied, and the power module may fail due to deterioration of the insulating sheet. .
  • Patent Document 1 a resin mold circuit board and a package in which a lead frame is provided on a metal plate via an insulating layer have been proposed in order to improve heat dissipation regarding modules for home appliances and industrial use.
  • a resin mold circuit board and a package in which a lead frame is provided on a metal plate via an insulating layer have been proposed in order to improve heat dissipation regarding modules for home appliances and industrial use.
  • the present invention has been made to solve the above-described problems, and encapsulates a transfer mold type power module or silicone gel (or epoxy resin) having an insulating sheet structure using an epoxy resin as a sealing material.
  • a transfer mold type power module or silicone gel (or epoxy resin) having an insulating sheet structure using an epoxy resin as a sealing material.
  • An object of the present invention is to obtain a power module insulation deterioration detection device and method, and a power module system, which are capable of fail-safe control by notifying an insulation abnormality before failure.
  • An insulation deterioration detection device for a power module comprises: current detection means for sampling and detecting a current value flowing through an insulation sheet of a power module at a predetermined time interval; and an insulation characteristic of the insulation sheet based on the current value. Determining the state immediately before the deterioration and destruction, and calculating means for outputting the deterioration determination result when determining the state immediately before the insulation sheet destruction, current storage means for storing the current value at the previous sampling time, and deterioration Alarm means for generating an alarm in response to the judgment result, and the computing means outputs a degradation judgment result when the current value at the current sampling time exceeds 10 times the current value at the previous sampling time. To do.
  • the insulating sheet it is possible to detect in advance the deterioration of the insulating sheet by detecting the value of the current flowing through the insulating sheet in the power module having the insulating sheet structure using the epoxy resin as the sealing material. Therefore, it is possible to prevent unsafeness due to the failure of the power module due to the deterioration of the insulation, and it is possible to achieve a remarkable effect that cannot be obtained by the conventional technique.
  • Example 1 It is sectional drawing which shows typically the structure of the transfer mold type power module used as Example 1 of this invention.
  • Example 1 It is sectional drawing which shows typically the structure of the case type power module used as Example 1 of this invention.
  • Example 1 It is a block diagram which shows the insulation deterioration detection apparatus of the power module in Example 1 of this invention.
  • Example 1 It is explanatory drawing which shows the time change (measurement example) of the electric current value which flows into an insulating sheet at a high temperature, high humidity environment (85 degreeC / 85% RH).
  • Example 1 It is explanatory drawing which shows the time change (measurement example) of the electric current value immediately before a dielectric sheet fracture
  • Example 1 It is a block diagram which shows the insulation deterioration detection apparatus of the power module which concerns on Example 1 of this invention.
  • Example 1 It is a block diagram which shows the insulation deterioration detection apparatus of the power module which concerns on Example 2 of this invention.
  • Example 2 It is explanatory drawing which shows the time change (measurement example) of the differential value of the electric current value immediately before a dielectric sheet breaks at the time of the high temperature, high humidity environment (85 degreeC / 85% RH) in Example 2 of this invention.
  • Example 2 It is sectional drawing which shows typically the power module part of the power module system which concerns on Example 3 of this invention.
  • Example 3 It is a block diagram which shows the power module system which concerns on Example 3 of this invention.
  • Example 3 It is a timing chart which shows the voltage signal and electromagnetic wave signal in the case where insulation deterioration does not generate
  • Example 3 It is a block diagram which shows the power module system which concerns on Example 4 of this invention.
  • Example 4 It is a timing chart which shows the electromagnetic wave signal after removing the switching signal in Example 4 of this invention.
  • Example 4 It is a block diagram which shows the insulation deterioration detection apparatus of the power module which concerns on Example 5 of this invention. (Example 5) FIG.
  • Example 14 is a timing chart showing the relationship between the voltage signal applied to the main circuit and the current signal detected by the high-speed current detection means when insulation degradation does not occur in the power module in FIG. 14 and when insulation degradation occurs. It is. (Example 5) It is a timing chart which shows the relationship between the electric current signal from the high-speed electric current detection means in Example 5 of this invention, and the electric current signal after passing a signal processing means. (Example 5) It is a block diagram which shows the insulation deterioration detection apparatus of the power module which concerns on Example 6 of this invention. (Example 6) It is a timing chart for demonstrating the current signal extraction method corresponding to the insulation degradation detection method in Example 6 of this invention. (Example 6)
  • Example 1 Embodiment 1 of the present invention will be described in detail below with reference to the drawings.
  • a power module having an insulating sheet structure to which the first embodiment of the present invention is applied will be described.
  • 1 and 2 are sectional views schematically showing the structure of the power module, FIG. 1 shows a transfer mold type power module, and FIG. 2 shows a case type power module.
  • the transfer mold type power module includes a semiconductor chip 1, a heat spreader 2, an insulating sheet 3, a copper foil 4, lead frames 5 a and 5 b, a bonding wire 6, and an epoxy resin 7. Yes.
  • the semiconductor chip 1 is mounted on a heat spreader 2, and a copper foil 4 is in close contact with the back surface of the heat spreader 2 via an insulating sheet 3.
  • the insulating sheet 3 is disposed in close contact between the heat spreader 2 and the copper foil 4.
  • the lead frame 5 a is connected to the semiconductor chip 1 through bonding wires 6, and the lead frame 5 b is directly connected to the heat spreader 2.
  • the case type power module includes a semiconductor chip 1, a heat spreader 2, an insulating sheet 3, a terminal 5, a bonding wire 6, an epoxy resin (or silicone gel) 7 for sealing, and thermoplasticity.
  • a resin case 8 and a copper wiring board 9 are included.
  • the copper wiring board 9 is placed on the copper heat spreader 2 via the insulating sheet 3, and the semiconductor chip 1 is mounted on the copper wiring board 9 and the terminals 5 are connected thereto.
  • the insulating sheet 3 is disposed in close contact between the copper wiring board 9 on which the semiconductor chip 1 is mounted and the heat spreader 2. With the configuration of FIG. 2, the heat generated from the semiconductor chip 1 is released to the outside through the copper wiring board 9, the insulating sheet 3, and the heat spreader 2.
  • FIG. 3 is a functional block diagram showing an insulation deterioration detection device for a power module related to the present invention. Insulation is performed using a current value (change in current value) flowing through the insulation sheet 3 in FIG. 1 or 2 as a deterioration determination index. The structural example in the case of detecting the insulation deterioration of the sheet
  • seat 3 is shown.
  • an insulation deterioration detecting device for a power module includes a power source E for energizing the insulating sheet 3, current detecting means 10 for sampling and detecting a current value i flowing through the insulating sheet 3 at predetermined time intervals, An arithmetic unit 11 having a deterioration determination function based on the value i (detected value), an alarm unit 12 for driving an alarm in response to a deterioration determination result YES from the arithmetic unit 11, and a reference used for determining the deterioration of the arithmetic unit 11 And a reference current setting means 13 for setting the current ir.
  • the current detection means 10 detects a current value i flowing through the insulating sheet 3 via the lead frame 5b and the copper foil 4 (or the terminal 5 and the heat spreader 2 in FIG. 2) in FIG.
  • the calculation means 11 performs a comparison calculation between the current value i detected by the current detection means 10 and the reference current ir set by the reference current setting means 13, and when the relationship i> ir is satisfied, the deterioration determination result YES is output to the warning means 12.
  • the current value i is sampled at a predetermined time interval, and the calculation means 11 indicates that the current value i at the time of sampling exceeds the reference current ir corresponding to the current value immediately before the breakdown of the insulating sheet. If YES, the deterioration determination result YES is output.
  • the alarm unit 12 In response to the deterioration determination result YES, the alarm unit 12 notifies that the power module is immediately before a failure (several minutes to several tens of hours before the occurrence of the failure) by voice drive or light emission.
  • the reference current ir set by the reference current setting means 13 is set to a current value slightly smaller than the current value corresponding to the insulation deterioration of the insulating sheet 3. Further, the reference current ir may be obtained in advance from experimental results, but can be arbitrarily set according to the voltage applied to the insulating sheet 3 or the material or thickness of the insulating sheet 3.
  • the power module is usually exposed to a high-temperature and high-humidity environment.
  • the moisture-absorbing insulating sheet 3 has its electrical characteristics, mechanical characteristics, and thermal characteristics. May deteriorate and eventually cause insulation failure due to insulation deterioration.
  • FIG. 4 is an explanatory diagram showing the time change of the current value i (log current) [A] flowing through the insulating sheet 3, and a high voltage is applied to the three power modules under a high temperature and high humidity environment (85 ° C./85% RH). Each measurement example when applying is shown.
  • the current value i flowing through the insulating sheet 3 gradually increases as the moisture absorption time increases. It can be seen that the insulation sheet 3 is destroyed by sudden increase. It can also be seen that although the dielectric breakdown time varies depending on the individual variations of the three power modules, the current value change immediately before the insulating sheet 3 is broken is steep.
  • FIG. 5 is an explanatory diagram showing a measurement example of a current value immediately before the insulating sheet 3 breaks, and the break time is set to “0” on the time axis (horizontal axis).
  • the sampling interval is set to be shorter than 40 ms.
  • the insulating sheet 3 does not break without warning, but it can be seen that instantaneous fluctuation of the current value repeats within a certain time for about 5 hours before breaking. That is, it can be seen that several or more current pulses can be detected immediately before the insulating sheet 3 breaks.
  • the sign period until the dielectric breakdown is an insulation degradation period until the dielectric sheet 3 reaches the dielectric breakdown. Therefore, based on the characteristics of the current change immediately before the dielectric breakdown occurs, the insulation before the dielectric sheet 3 breaks down. It can be seen that deterioration can be detected.
  • the calculation means 11 detects the timing at which the current value i detected by the current detection means 10 suddenly increases, and uses the current increase timing as an indicator for determining deterioration of the insulation sheet 3.
  • the failure of the power module due to the insulation deterioration 3 is detected in advance, and the alarm means 12 is driven.
  • the insulation deterioration detection device for the power module according to FIG. 3 includes the current detection means 10 that samples and detects the current value i flowing through the insulation sheet 3 of the power module at predetermined time intervals, and the current value i. Based on the calculation means 11 that outputs a deterioration determination result YES when the state immediately before the breakdown of the insulating sheet 3 is determined and the state immediately before the breakdown of the insulating sheet 3 is determined, and the deterioration determination result Alarm means 12 for generating an alarm in response to YES.
  • the current value i is sampled at a predetermined time interval, and the calculation means 11 deteriorates when the current value i at the time of sampling exceeds the reference current ir corresponding to the current value immediately before the breakdown of the insulating sheet 3. Since the determination result YES is output, the deterioration of the insulating sheet 3 can be detected in advance.
  • the calculation means 11 compares the current value i at the time of sampling with the reference current ir. However, as shown in FIG. 6, the current value in at the current sampling time and the previous sampling time are calculated in the calculation means 11A. It is desirable to compare the current value i (n-1) at the time.
  • FIG. 6 is a functional block diagram showing an insulation deterioration detection device for a power module according to Embodiment 1 of the present invention. Components similar to those described above (see FIG. 3) are denoted by the same reference numerals as those described above. Is followed by “A” and detailed description is omitted.
  • a current storage unit 14 is provided instead of the reference current setting unit 13 described above (FIG. 3).
  • the current storage unit 14 stores the current value i (n ⁇ 1) at the previous sampling time, and inputs the previous current value i (n ⁇ 1) to the calculation unit 11A.
  • the calculation means 11A performs a comparison operation between the current value in at the current sampling time from the current detection means 10 and the current value i (n-1) at the previous sampling time from the current storage means 14, and the ratio between the two is 10 If it is indicated that “in / i (n ⁇ 1)> 10”, the deterioration determination result YES is output.
  • the current detection means 10 always samples the current value i flowing through the insulating sheet 3 at a predetermined sampling speed during use of the power module, and inputs the current value in for each sampling to the calculation means 11A and the current storage means 14. is doing.
  • the current storage means 14 stores the current value at each sampling time from the current detection means 10 and always inputs the current value i (n ⁇ 1) one sampling period before the current sampling time to the calculation means 11A. .
  • the calculation means 11A can always compare the current value i (n-1) one sampling period before with the current value in sampled at the present time, and the current value in and the previous current value i ( From the comparison result with n-1), the insulation deterioration state of the insulating sheet 3 is determined and deteriorated only when the current value in exceeds 10 times the previous current value i (n-1).
  • the determination result YES (alarm signal) is output to the alarm means 12.
  • the insulation deterioration detection device for a power module according to Embodiment 1 (FIG. 6) of the present invention includes the current storage unit 14 that stores the current value at the previous sampling time, and the calculation unit 11A When the current value in at the sampling time exceeds 10 times the current value i (n-1) at the previous sampling time, the deterioration determination result YES is output.
  • the computing means 11A compares the current value in at the current sampling time with the current value i (n ⁇ 1) at the previous sampling time, but as shown in FIG.
  • the differential current di obtained by time differentiation (di / dt) of the current value i at the time of sampling may be compared with the reference differential current dir.
  • FIG. 7 is a functional block diagram showing an insulation deterioration detecting device for a power module according to Embodiment 2 of the present invention. Components similar to those described above (FIG. 3) are denoted by the same reference numerals as those described above, or A detailed description will be omitted with “B” attached later.
  • the insulation deterioration detecting device for the power module includes a current differentiating unit 15 for differentiating the current value i to calculate a differential current di between the current detecting unit 10 and the calculating unit 11B.
  • reference differential current setting means 16 for setting a reference differential current dir serving as a determination reference value is provided.
  • the current detection means 10 inputs the current value i to the current differentiation means 15 and inputs the differential current di to the calculation means 11B.
  • the calculation unit 11B outputs a deterioration determination result YES and drives the alarm unit 12.
  • the current detection means 10 detects the current value i flowing through the insulating sheet 3 during use of the power module and inputs it to the current differentiation means 15, and the current differentiation means 15 calculates the differential current di to calculate the calculation means. 11B.
  • the calculating means 11B compares the differential current di and the reference differential current dir, satisfies the relationship “di> dir”, and only when the differential current di exceeds the reference differential current dir YES Alarm signal) is output to the alarm means 12.
  • the reference differential current dir varies depending on the voltage applied to the insulating sheet 3, the material of the insulating sheet 3, and the like, but generally, for example, as shown in FIG. 8, 10 ⁇ 11 [A / sec. ] Or more.
  • FIG. 8 is an explanatory view showing the time change (measurement example) of the differential value of the current value i immediately before the insulating sheet breaks in the high temperature and high humidity environment (85 ° C./85% RH) in Example 2 of the present invention.
  • the insulation deterioration detecting device for a power module includes the current differentiating means 15 for calculating the differential current di of the current value i detected by the current detecting means 10, and the calculating means 11B includes Since the deterioration determination result YES is output when the differential current di of the current value i at the time of sampling exceeds the reference differential current dir, the deterioration of the insulating sheet 3 is detected in advance and the insulating sheet 3 is detected in the same manner as described above. It is possible to detect a failure of the power module due to the deterioration of insulation. Moreover, if each means 10, 11B, 12, 15, 16 in FIG. 7 is replaced with a process step, the insulation deterioration detection method of the power module which has an equivalent effect can be implement
  • FIG. 9 is a sectional view schematically showing a power module portion of a power module system according to Embodiment 3 of the present invention.
  • the same components as those described above (FIG. 1) are denoted by the same reference numerals as those described above. Is omitted.
  • an antenna 21 is installed in the vicinity of the power module 20 in place of the current detecting means 10 described above (FIGS. 3, 6, and 7).
  • the antenna 21 detects a current change in the insulating sheet 3 by detecting an electromagnetic wave radiated from the power module 20 as an electromagnetic wave signal Sa.
  • FIG. 10 is a block diagram showing a power module system according to Embodiment 3 of the present invention. Components similar to those described above (FIGS. 3, 6, and 7) are denoted by the same reference numerals as those described above. Is followed by "C" and detailed description is omitted.
  • the power module system includes a power module 20 and an antenna 21, an arithmetic means 11C to which an electromagnetic wave signal Sa from the antenna 21 is input, and an alarm means 12 driven by a deterioration determination result YES from the arithmetic means 11C.
  • a reference signal setting means 22 for setting a reference signal Sr that becomes a deterioration determination reference value in the calculating means 11C.
  • the calculation means 11C performs calculation processing using the electromagnetic wave signal Sa from the antenna 21 and the reference signal Sr from the reference signal setting means 22 as input information, and outputs a deterioration determination result YES to the alarm means 12 at the time of insulation deterioration determination.
  • the current value i in the period immediately before the insulation sheet 3 causes dielectric breakdown, the current value i repeatedly increases or recovers. Note that a single current fluctuation (increase) occurs in a short period, but the sudden fluctuation of the current value i generated during the insulation deterioration period appears as a current pulse and emits an electromagnetic wave.
  • An electromagnetic wave generated due to a sudden change in the current value i in the power module 20 is detected by the antenna 21 and input to the computing means 11C as an electromagnetic wave signal Sa.
  • the voltage V constantly changes due to switching ON or OFF, and noise is generated with the voltage change. Therefore, noise due to the voltage change is also detected by the antenna 21.
  • FIGS. 11A and 11B are timing charts showing the relationship between the voltage signal V and the electromagnetic wave signal Sa.
  • FIG. 11A is a voltage ON / OFF state when no deterioration occurs in the insulating sheet 3.
  • 11B shows the time variation of the electromagnetic wave signal Sa when the voltage is turned ON / OFF when the insulation sheet 3 is deteriorated.
  • FIG. 11A there is a sudden change in the applied voltage V of the power module 20 when the voltage is ON and when the voltage is OFF, and a noise signal resulting from this is detected by the antenna 21 as the electromagnetic wave signal Sa.
  • the electromagnetic wave signal Sa in FIG. 11B generates a high-level pulse signal at times t1, t2, t3, and t4 in addition to the noise signal corresponding to ON / OFF of the voltage V. As described above, this corresponds to an abrupt change in current caused by the deterioration of the insulating sheet 3 and indicates a sign of failure of the power module 20.
  • the electromagnetic wave signal Sa includes a noise signal generated by a rapid change in the voltage V in addition to the signal generated due to the deterioration of the insulating sheet 3, and thus the power module 20 In order to detect this failure, it is necessary to extract only the signal generated by the deterioration of the insulating sheet 3 from the electromagnetic wave signal Sa.
  • the calculation unit 11C extracts only the high level signal generated by the degradation using the reference signal Sr as a threshold value. Normally, when the insulation sheet 3 is deteriorated, a high-level electromagnetic wave signal Sa is detected in the antenna 21, whereas a noise signal generated by a sudden change in the voltage V is as shown in FIG. Low level.
  • the threshold level corresponds to the reference signal Sr set by the reference signal setting means 22.
  • the calculation means 11C performs a comparison operation between the electromagnetic wave signal Sa detected by the antenna 21 and the reference signal Sr set by the reference signal setting means 22 as input information, and a relationship of Sa> Sr is established. Only, a deterioration determination result YES indicating that the insulation sheet 3 has deteriorated is output to the alarm means 12.
  • the alarm means 12 Upon receiving the deterioration determination result YES (failure signal) from the computing means 11C, the alarm means 12 generates an alarm indicating that the power module 20 is immediately before the failure (several minutes to several tens of hours) to deal with the operator. Prompt.
  • the reference signal Sr may be obtained in advance from experimental results, but may be arbitrarily set according to the applied voltage V of the power module 20.
  • the antenna 21 that detects the electromagnetic wave signal Sa radiated from the power module 20 and the insulating sheet 3 are deteriorated.
  • the reference signal setting means 22 for setting the reference signal Sr to be shown, the alarm means 12 driven by the deterioration determination result YES, and the electromagnetic wave signal Sa and the reference signal Sr are subjected to a comparison operation as input information, and the electromagnetic wave signal Sa becomes the reference signal Sr.
  • the calculation means 11C for outputting the deterioration determination result YES to the warning means 12 only when the value exceeds the upper limit.
  • the alarm unit 12 that has received the deterioration determination result YES from the calculation unit 11C immediately generates an alarm.
  • the alarm unit 12 is predetermined within a predetermined time. Needless to say, an alarm may be generated when the number of times deterioration determination result YES is received.
  • FIG. 12 is a block diagram showing a power module system according to Embodiment 4 of the present invention. Components similar to those described above (FIG. 10) are denoted by the same reference numerals as those described above, or “H” after the reference numerals. A detailed description will be omitted.
  • the power module system includes a switching signal removing unit 23 and a calculating unit 11H in place of the calculating unit 11C described above (FIG. 10).
  • the switching signal removing unit 23 removes only the noise signal generated due to ON / OFF of the voltage V from the electromagnetic wave signal Sa input from the antenna 21, and the electromagnetic wave signal emitted when the insulating sheet 3 is deteriorated. Only Sb is extracted and input to the computing means 11H.
  • the antenna 21 installed in the vicinity of the power module 20 detects the electromagnetic wave emitted from the power module 20 and inputs it to the switching signal removing means 23 as the electromagnetic wave signal Sa.
  • the switching signal removing means 23 removes a signal (noise signal generated due to ON / OFF of the circuit voltage V) unrelated to the deterioration of the insulating sheet 3 from the electromagnetic wave signal Sa, and the insulating sheet 3 is broken. Only the electromagnetic wave signal Sb generated sometimes is input to the computing means 11H.
  • FIG. 13 is a timing chart showing the electromagnetic wave signal Sb after the noise signal resulting from ON / OFF of the voltage V is removed.
  • the calculation unit 11H performs the comparison calculation between the electromagnetic wave signal Sb and the reference signal Sr set by the reference signal setting unit 22 through the switching signal removal unit 23 as input information, and the relationship of Sb> Sr is established. Only in the case, a deterioration determination result YES indicating that the insulating sheet 3 has deteriorated is output to the alarm means 12.
  • the reference signal Sr may be obtained in advance from experimental results, but may be arbitrarily set according to the applied voltage V of the power module 20.
  • the antenna 21 that detects the electromagnetic wave signal Sa radiated from the power module 20 and the circuit voltage V independent of the deterioration of the insulating sheet 3 are used.
  • Switching signal removing means 23 for removing a noise signal generated due to ON / OFF of the signal, reference signal setting means 22, alarm means 12 driven by the deterioration determination result YES, and electromagnetic wave signal Sb from which the switching signal is removed Is provided with a calculation means 11H for outputting a failure signal to the warning means 12 only when the reference signal Sr exceeds the reference signal Sr.
  • the alarm means 12 that has received the deterioration determination result YES immediately generates an alarm.
  • the alarm means 12 receives the deterioration determination result YES a predetermined number of times within a predetermined time, an alarm is generated. Needless to say.
  • FIG. 14 is a block diagram showing an insulation deterioration detecting device for a power module according to Embodiment 5 of the present invention. Components similar to those described above are denoted by the same reference numerals as those described above, or “D” after the reference numerals. A detailed description will be omitted.
  • the configuration of the power module 20 is as shown in FIG.
  • the high-speed current detection means 25 is connected to the main circuit of the power module 20 and detects the current signal ia.
  • the signal processing means 26 performs signal processing using the current signal ia from the high-speed current detection means 25 and the reference frequency fr set by the reference frequency setting means 27 as input information, and is equal to or higher than the reference frequency fr in the current signal ia. Only the current signal ip (high-frequency pulse signal) is passed and input to the computing means 11D.
  • the calculation means 11D performs calculation processing using the current signal ip via the signal processing means 26 and the reference current ipr set by the reference current setting means 13D as input information, and when the current signal ip exceeds the reference current ipr Only the deterioration determination result YES is input to the alarm means 12.
  • the current signal ia repeatedly increases or recovers in a period immediately before the insulation sheet 3 breaks down. Note that a single fluctuation (increase) in the current signal ia occurs in a very short period, so that the sudden fluctuation in the current signal ia that occurs during this insulation deterioration period appears as a current pulse.
  • the rapid fluctuation of the current signal ia is detected by the high-speed current detection means 25 provided in the main circuit.
  • FIGS. 15A and 15B are timing charts showing the relationship between the voltage signal V applied to the main circuit and the current signal ia detected by the high-speed current detecting means 25, and FIG. 15A is an insulating sheet. 3 shows the time fluctuation of the current signal ia at the time of voltage ON / OFF when no deterioration occurs, and FIG. 15B shows the current signal ia at the time of voltage ON / OFF when the insulation sheet 3 deteriorates. The time variation of is shown.
  • the current signal ia includes not only a signal corresponding to a rectangular signal by voltage ON / OFF, but also a noise signal corresponding to a sudden current change at each time t1, t2, t3.
  • a high level pulse signal generated at time t4 is included. As described above, this corresponds to a rapid change in the current signal ia caused by the deterioration of the insulating sheet 3, and indicates a sign of failure of the power module 20.
  • FIG. 16 is a timing chart showing input / output signals (current signals ia, ip) of the signal processing means 26.
  • the current signal ia from the high-speed current detection means 25 and the current signal ip after passing through the signal processing means 26 are shown in FIG. Showing the relationship.
  • the current signal ip after passing through the signal processing means 26 is only a high-frequency pulse signal from which the low-frequency component is removed from the current signal ia.
  • the signal processing means 26 arranged at the subsequent stage of the high-speed current detection means 25 is a current signal ip (high frequency pulse) of the current signal ia that is equal to or higher than the reference frequency fr set by the reference frequency setting means 27. Signal) is passed through. As a result, a current signal (high frequency pulse) corresponding to the deterioration of the insulating sheet 3 and a current signal corresponding to voltage switching of the main circuit of the power module 20 are extracted as the current signal ip of the high frequency component.
  • the level of the high-frequency pulse due to insulation deterioration is larger than the level of the pulse signal due to voltage ON / OFF. Can be separated. Accordingly, the calculation unit 11D distinguishes between them using the reference current ipr set by the reference current setting unit 13D as a threshold value.
  • the calculation means 11D performs a comparison calculation between the current signal ip and the reference current ipr set by the reference current setting means 13D as input information, and the insulation sheet 3 is deteriorated only when the relationship ip> ipr is established.
  • Degradation determination result YES indicating that has occurred is output to alarm means 12.
  • the alarm means 12 Upon receiving the deterioration determination result YES (failure signal) from the computing means 11D, the alarm means 12 responds to the operator by generating an alarm indicating that the power module 20 is immediately before the failure (several minutes to several tens of hours). Prompt.
  • the reference current ipr may be obtained in advance from experimental results, but may be arbitrarily set according to the applied voltage V of the power module 20.
  • the high-speed current detection means 25 connected to the main circuit of the power module 20 and the reference frequency setting means 27 for setting the reference frequency fr.
  • the signal processing unit 26 performs signal processing using the current signal ia from the high-speed current detection unit 25 and the reference frequency fr as input information, and sets the signal processing unit 26 that passes only the current signal ip that is equal to or higher than the reference frequency fr, and the reference current ipr.
  • the alarm means 12 that has received the deterioration determination result YES immediately generates an alarm.
  • the alarm means 12 receives the deterioration determination result YES a predetermined number of times within a predetermined time, an alarm is generated. Needless to say.
  • the computing means 11D compares the current signal ip via the signal processing means 26 with the reference current ipr. However, as shown in FIG. The current signal ipg from which a part of ip is removed may be compared with the reference current ipr.
  • FIG. 17 is a block diagram for demonstrating the insulation degradation detection method of the power module which concerns on Example 6 of this invention, About the same thing as the above, the same code
  • the configuration of the power module 20 is as shown in FIG.
  • a signal extraction means 29 is inserted between the signal processing means 26 and the calculation means 11F.
  • a voltage detection means 30 As circuit elements related to the calculation means 11F and the signal extraction means 29, a voltage detection means 30, a voltage differentiation means 31, a reference differential voltage setting means 32, and a removal period calculation means 33 are provided.
  • the voltage detection means 30 detects the applied voltage applied to the main circuit of the power module 20 as the voltage signal V, and the voltage differentiation means 31 calculates the differential voltage dV by differentiating the voltage signal V with time (dV / dt). To do.
  • the reference differential voltage setting unit 32 sets a reference differential voltage dVr that is a determination reference value in the removal period calculation unit 33.
  • the removal period calculation means 33 performs a comparison calculation using the differential voltage dV and the reference differential voltage dVr as input information, and generates the removal signal G only in the period ⁇ t in which the differential voltage dV exceeds the reference differential voltage dVr.
  • the signal extraction unit 29 performs arithmetic processing using the current signal ip and the removal signal G as input information, removes the current signal ip in the generation period ⁇ t of the removal signal G, and inputs a new current signal ipg to the calculation unit 11F.
  • the calculation means 11F performs calculation processing using the reference current ipr and current signal ipg set by the reference current setting means 13D as input information, and only when the current signal ipg exceeds the reference current ipr, the deterioration determination result YES is displayed as an alarm means. 12 is output.
  • the operation of the alarm means 12 is as described in the first to fourth embodiments.
  • FIG. 18A is a timing chart showing the relationship between the voltage signal V applied to the main circuit of the power module 20 and the current signal ip from the signal processing means 26.
  • the voltage signal V is turned ON / OFF corresponding to switching of the applied voltage, and a noise signal resulting from this is superimposed on the current signal ip.
  • the noise level at this time may be relatively large, and the level difference from the current signal ip at time t4 (corresponding to the deterioration of the insulating sheet 3) may be very small.
  • the noise level is high as shown in FIG. 18A, if the comparison determination is performed by the calculation unit 11D described above (FIG. 14), the noise level may exceed the reference current ipr, and an erroneous determination may be caused. Therefore, in the sixth embodiment (FIG. 17) of the present invention, the signal extraction means 29 is provided, and the current signal ipg shown in FIG. .
  • FIG. 18B is a timing chart showing the relationship between the current signal ip, the differential voltage dV, the removal signal G, and the new current signal ipg, and shows the operation corresponding to the functions of the removal period calculation means 33 and the signal extraction means 29. Yes.
  • the horizontal axis (time t) in FIG. 18A is enlarged about 10 times.
  • the removal period calculation means 33 is input with a differential voltage dV having a waveform approximately approximate to the current signal ip (high frequency pulse signal) and a reference differential voltage Vr, and the removal period calculation means. 33 generates the removal signal G only in the period ⁇ t in which the differential voltage dV exceeds the reference differential voltage dVr. That is, the period ⁇ t during which the removal signal G is generated corresponds to the generation period of the noise signal when the voltage signal V is turned on / off.
  • the signal extraction unit 29 removes the signal of only the period ⁇ t of the removal signal G from the current signal ip to generate a new current signal ipg.
  • the new current signal ipg from the signal extraction unit 29 has a waveform in which the generation period of the noise signal at time t1 is cut and only the signal level at time t4 is extracted. Therefore, the calculation unit 11F can easily generate the highly reliable deterioration determination result YES without erroneous determination.
  • the high-speed current detection means 25 that is connected to the main circuit of the power module 20 and detects the current signal ia, and the reference frequency fr are set.
  • the removal period calculation means 33 that outputs the removal signal G only in ⁇ t, and the current signal ip in the period ⁇ t of the removal signal G is removed and a new current signal ipg is output.
  • the alarm means 12 that has received the deterioration determination result YES generates an alarm immediately.
  • the alarm means 12 generates an alarm when it receives a predetermined number of deterioration determination results YES within a predetermined time. Needless to say.
  • any of the power module insulation deterioration detection devices of the first to sixth embodiments if each means is replaced with a processing step, a power module insulation deterioration detection method having the same operational effects can be realized.
  • the power module system according to the present invention can be applied with any of the configurations of the first to sixth embodiments, and an arbitrary insulation deterioration detection device and a semiconductor chip fed from the main circuit of the power module 20 1, a heat spreader 2 on which the semiconductor chip 1 is placed, and an insulating sheet 3 disposed on the back surface of the heat spreader 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

 絶縁シートに流れる電流値から、絶縁特性が破壊する直前の電流変化に基づいて絶縁シートの劣化を事前に検知し、絶縁劣化に起因したパワーモジュールの故障を検知可能なパワーモジュールの絶縁劣化検知装置を得る。パワーモジュールの絶縁シート3に流れる電流値を所定の時間間隔でサンプリングして検出する電流検出手段10と、電流値に基づいて、絶縁シート3の絶縁特性が劣化して破壊する直前の状態を判定し、絶縁シート3の破壊直前の状態を判定したときに劣化判定結果YESを出力する演算手段11Aと、前回のサンプリング時点の電流値i(n-1)を記憶する電流記憶手段14と、劣化判定結果YESに応答して警報を発生する警報手段12とを備えている。演算手段11Aは、現在の電流値inが、前回の電流値i(n-1)の10倍を超えた場合に、劣化判定結果YESを出力する。

Description

パワーモジュールの絶縁劣化検知装置および方法、ならびにパワーモジュールシステム
 この発明は、絶縁樹脂層(絶縁シート)を有するパワーモジュールにおいて、高温吸湿による絶縁シートの劣化を事前に検知することのできるパワーモジュールの絶縁劣化検知装置および方法、ならびにパワーモジュールシステムに関するものである。
 従来から、パワーモジュールにおいては、電気的な絶縁を確保しながら、パワー半導体チップから発生した熱を効率よく放出することが要求されている。
 一般的なパワーモジュールは、回路配線の形成されたセラミックス基板や金属芯基板上にパワー半導体素子を搭載したものを、熱可塑性樹脂からなる枠ケースに固定し、シリコーンゲルまたはエポキシ樹脂を注入して、全体を封止することにより構成されている。
 しかしながら、この種のパワーモジュールは、製造コストが高いことが知られている。
 そこで、製造コストを低減することを目的として、リードフレームを用いるとともに、封止樹脂によりトランスファモールドするパワーモジュールが開発されている(たとえば、特許文献1参照)。
 この種のトランスファモールドは、生産性に優れており、製造コストを低減することができるうえ、シリコーンゲルとは異なり、弾性率の高い樹脂で全体を覆うことから、ヒートサイクル性やパワーサイクル性などの信頼性も高いことが知られている。
 一方、パワーモジュールは、高電圧が印加されつつ、高温高湿環境下で使用されることが多く、絶縁シートの劣化によってパワーモジュールが故障する可能性があるので、何らか対策をとる必要がある。
 上記特許文献1においては、家電用および産業用のモジュールに関し、放熱性を向上するために、金属板上に絶縁層を介してリードフレームを設けた樹脂モールド用回路基板およびパッケージが提案されており、一度のトランスファー成形で樹脂封止することによって、半導体チップから金属板への熱放散性が優れた安価なパワーモジュールを実現している。
特開2001-196495号公報
 しかしながら、上記従来技術によれば、実際のパワーモジュールの使用環境を考慮すると、高温、高湿や振動などの影響を受けながら使用されることが多く、特に、有機系のエポキシ樹脂系材料は高温高湿の環境は吸湿して絶縁特性が劣化する可能性があるという課題があった。
 また、高電圧で動作するパワーモジュールにおいては、その絶縁性を保つことが重要であるが、上記特許文献1に記載のパワーモジュールによれば、金属板とリードフレームとの間に高電圧が印加されながら高温高湿環境で使用することがあるので、使用時間の増加とともに、絶縁層の劣化による絶縁不良が発生する可能性があるという課題があった。
 特に、最近では、パワーモジュールが車載用途に使用されるケースが多く、パワーモジュールの故障は、場合によっては大きな不具合を招く可能性があるので、何らかのフェイルセーフ設計を採用することが望ましいが、格別な対策は実現されていないという課題があった。
 この発明は、上記のような課題を解決するためになされたものであり、エポキシ樹脂を封止材とする絶縁シート構造のトランスファモールド型のパワーモジュールまたはシリコーンゲル(または、エポキシ樹脂)を封止材とするケース型パワーモジュールにおいて、絶縁層(絶縁シート)の絶縁特性が劣化して破壊する事前に、絶縁シートに流れる電流値の特性変化を検知し、その検知結果に応答してパワーモジュールが故障する前に絶縁異常を報知することにより、フェイルセーフ制御を可能にしたパワーモジュールの絶縁劣化検知装置および方法、ならびにパワーモジュールシステムを得ることを目的とする。
 この発明に係るパワーモジュールの絶縁劣化検知装置は、パワーモジュールの絶縁シートに流れる電流値を所定の時間間隔でサンプリングして検出する電流検出手段と、電流値に基づいて、絶縁シートの絶縁特性が劣化して破壊する直前の状態を判定し、絶縁シートの破壊直前の状態を判定したときに劣化判定結果を出力する演算手段と、前回のサンプリング時点の電流値を記憶する電流記憶手段と、劣化判定結果に応答して警報を発生する警報手段とを備え、演算手段は、現在のサンプリング時点の電流値が、前回のサンプリング時点の電流値の10倍を超えた場合に、劣化判定結果を出力するものである。
 この発明によれば、エポキシ樹脂を封止材とし、絶縁シート構造のパワーモジュールにおいて、絶縁シートに流れる電流値を検出することにより、絶縁シートの劣化を事前に検知することが可能となり、絶縁シートの絶縁劣化に起因したパワーモジュールの故障による不安全性を防止することができ、従来技術では得られない顕著な作用効果を奏することができる。
この発明の実施例1の対象となるトランスファモールド型パワーモジュールの構造を模式的に示す断面図である。(実施例1) この発明の実施例1の対象となるケース型パワーモジュールの構造を模式的に示す断面図である。(実施例1) この発明の実施例1におけるパワーモジュールの絶縁劣化検知装置を示すブロック図である。(実施例1) 高温高湿環境(85℃/85%RH)時に絶縁シートに流れる電流値の時間変化(測定例)を示す説明図である。(実施例1) 高温高湿環境(85℃/85%RH)時に絶縁シートが破壊直前の電流値の時間変化(測定例)を示す説明図である。(実施例1) この発明の実施例1に係るパワーモジュールの絶縁劣化検知装置を示すブロック図である。(実施例1) この発明の実施例2に係るパワーモジュールの絶縁劣化検知装置を示すブロック図である。(実施例2) この発明の実施例2における高温高湿環境(85℃/85%RH)時に絶縁シートが破壊直前の電流値の微分値の時間変化(測定例)を示す説明図である。(実施例2) この発明の実施例3に係るパワーモジュールシステムのパワーモジュール部を模式的に示す断面図である。(実施例3) この発明の実施例3に係るパワーモジュールシステムを示すブロック図である。(実施例3) 図10内のパワーモジュールに絶縁劣化が発生しなかった場合と絶縁劣化が発生した場合とにおける電圧信号および電磁波信号を示すタイミングチャートである。(実施例3) この発明の実施例4に係るパワーモジュールシステムを示すブロック図である。(実施例4) この発明の実施例4におけるスイッチング信号を除去した後の電磁波信号を示すタイミングチャートである。(実施例4) この発明の実施例5に係るパワーモジュールの絶縁劣化検知装置を示すブロック図である。(実施例5) 図14内のパワーモジュールに絶縁劣化が発生しなかった場合と絶縁劣化が発生した場合とにおける主回路に印加される電圧信号と高速電流検出手段で検出された電流信号との関係を示すタイミングチャートである。(実施例5) この発明の実施例5における高速電流検出手段からの電流信号と信号処理手段を通過した後の電流信号との関係を示すタイミングチャートである。(実施例5) この発明の実施例6に係るパワーモジュールの絶縁劣化検知装置を示すブロック図である。(実施例6) この発明の実施例6における絶縁劣化検知方法に対応した電流信号抽出方法を説明するためのタイミングチャートである。(実施例6)
 (実施例1)
 以下、図面を参照しながら、この発明の実施例1について詳細に説明する。
 まず、この発明の実施例1の適用対象となる絶縁シート構造のパワーモジュールについて説明する。図1および図2はパワーモジュールの構造を模式的に示す断面図であり、図1はトランスファモールド型パワーモジュールを示し、図2はケース型パワーモジュールを示している。
 図1において、トランスファモールド型パワーモジュールは、半導体チップ1と、ヒートスプレッダ2と、絶縁シート3と、銅箔4と、リードフレーム5a、5bと、ボンディングワイヤ6と、エポキシ樹脂7とにより構成されている。
 半導体チップ1は、ヒートスプレッダ2上に実装されており、ヒートスプレッダ2の裏面には、絶縁シート3を介して銅箔4が密着されている。絶縁シート3は、ヒートスプレッダ2と銅箔4との間に密着して配置されている。
 リードフレーム5aは、ボンディングワイヤ6を介して半導体チップ1に接続され、リードフレーム5bは、ヒートスプレッダ2に直接接続されている。
 上記すべての構成要素は、エポキシ樹脂7によってトランスファモールド法で封止されている。
 図1の構成により、半導体チップ1から発生した熱は、ヒートスプレッダ2、絶縁シート3および銅箔4を通して外部に放出される。
 図2において、ケース型パワーモジュールは、半導体チップ1と、ヒートスプレッダ2と、絶縁シート3と、端子5と、ボンディングワイヤ6と、封止用のエポキシ樹脂(または、シリコーンゲル)7と、熱可塑性樹脂のケース8と、銅配線板9とにより構成されている。
 銅配線板9は、絶縁シート3を介して銅製のヒートスプレッダ2上に載置され、銅配線板9上には、半導体チップ1が実装されるとともに、端子5が接続されている。
 絶縁シート3は、半導体チップ1が実装された銅配線板9とヒートスプレッダ2との間に密着して配置されている。
 図2の構成により、半導体チップ1から発生した熱は、銅配線板9、絶縁シート3およびヒートスプレッダ2を通して外部に放出される。
 図3はこの発明に関連したパワーモジュールの絶縁劣化検知装置を示す機能ブロック図であり、図1または図2内の絶縁シート3に流れる電流値(電流値の変化)を劣化判定指標として、絶縁シート3の絶縁劣化を検知する場合の構成例を示している。
 図3において、パワーモジュールの絶縁劣化検知装置は、絶縁シート3に通電を行う電源Eと、絶縁シート3に流れる電流値iを所定の時間間隔でサンプリングして検出する電流検出手段10と、電流値i(検出値)に基づく劣化判定機能を有する演算手段11と、演算手段11からの劣化判定結果YESに応答して警報駆動を行う警報手段12と、演算手段11の劣化判定に用いられる基準電流irを設定する基準電流設定手段13とを備えている。
 電流検出手段10は、図1内のリードフレーム5bおよび銅箔4(または、図2内の端子5およびヒートスプレッダ2)を介して絶縁シート3に流れる電流値iを検出する。
 演算手段11は、電流検出手段10で検出された電流値iと、基準電流設定手段13で設定された基準電流irとの比較演算を行い、i>irの関係を満たす場合に、劣化判定結果YESを警報手段12に出力する。
 なお、電流検出手段10において、電流値iは、所定の時間間隔でサンプリングされ、演算手段11は、サンプリング時点の電流値iが、絶縁シートの破壊直前の電流値に相当する基準電流irを超えた場合に、劣化判定結果YESを出力する。
 警報手段12は、劣化判定結果YESに応答して、音声駆動または発光などにより、パワーモジュールが故障直前(故障発生の数分前~数10時間前)であることを報知する。
 なお、基準電流設定手段13で設定される基準電流irは、絶縁シート3の絶縁劣化時に相当する電流値よりもわずかに小さい電流値に設定されている。また、基準電流irは、事前に実験結果から求めてもよいが、絶縁シート3に印加される電圧、または絶縁シート3の材質あるいは厚さに応じて、任意に設定することができる。
 次に、図4および図5の説明図を参照しながら、図3に示した動作原理について説明する。
 前述の通り、通常、パワーモジュールは高温高湿環境にさらされており、高温高湿環境で長時間使用されると、吸湿した絶縁シート3は、その電気的特性、機械的特性および熱的特性が劣化し、最終的に絶縁劣化によって絶縁不良を起こす可能性がある。
 図4は絶縁シート3に流れる電流値i(log電流)[A]の時間変化を示す説明図であり、高温高湿環境(85℃/85%RH)下で3個のパワーモジュールに高電圧を印加した場合の各測定例を示している。
 図4から明らかなように、1点鎖線までの一定時間領域においては、吸湿時間の増加につれて、絶縁シート3に流れる電流値iが徐々に増加するが、一定時間を越えると、電流値iが急激に増加して絶縁シート3が破壊されることが分かる。
 また、3個のパワーモジュールの個々のバラツキによって、絶縁破壊時間が異なるものの、絶縁シート3が破壊される直前の電流値変化が急峻であることも分かる。
 さらに、我々は電流値のサンプリング間隔を短くして電流値を高速に収録することによって、絶縁シート3が破壊される直前の電流値変化を細かく把握することができた。
 図5は絶縁シート3が破壊する直前の電流値の測定例を示す説明図であり、時間軸(横軸)において、破壊時刻を「0」に設定している。
 図5において、電流値が、あらかじめ設定した所定の閾値を超えたときには、サンプリング間隔は、40ms以下に短く設定されている。
 図5から明らかなように、絶縁シート3は、前兆なく破壊するのではなく、破壊する前の5時間程度にわたって、電流値の瞬時的変動が一定時間内で繰り返すことが分かる。すなわち、絶縁シート3が破壊する直前に、数回以上の電流パルスが検出できることが分かる。
 なお、実験結果によれば、絶縁シート3に流れる電流が急激に1桁(10倍)以上増加する現象が現れた時点から、絶縁シート3の絶縁破壊に至るまでには、数分から数10時間だけ要することも判明している。
 すなわち、絶縁破壊までの予兆期間は、絶縁シート3が絶縁破壊に至るまでの絶縁劣化期間なので、この絶縁破壊が発生する直前の電流変化の特徴に基づいて、絶縁シート3が破壊する前の絶縁劣化検知が可能なことが分かる。
 具体的には、図3による演算手段11は、電流検出手段10で検出された電流値iが急激に増加したタイミングを検知し、電流増加タイミングを絶縁シート3の劣化判定の指標として、絶縁シート3の絶縁劣化に起因したパワーモジュールの故障を未然に検知し、警報手段12を駆動する。
 以上のように、図3に係るパワーモジュールの絶縁劣化検知装置は、パワーモジュールの絶縁シート3に流れる電流値iを所定の時間間隔でサンプリングして検出する電流検出手段10と、電流値iに基づいて、絶縁シート3の絶縁特性が劣化して破壊する直前の状態を判定し、絶縁シート3の破壊直前の状態を判定したときに劣化判定結果YESを出力する演算手段11と、劣化判定結果YESに応答して警報を発生する警報手段12とを備えている。
 また、電流値iは、所定の時間間隔でサンプリングされ、演算手段11は、サンプリング時点の電流値iが、絶縁シート3の破壊直前の電流値に相当する基準電流irを超えた場合に、劣化判定結果YESを出力するので、絶縁シート3の劣化を事前に検知することができる。
 したがって、絶縁層(絶縁シート)の絶縁特性が劣化して破壊する事前に、絶縁シートに流れる電流値の特性変化を検知し、その検知結果に応答してパワーモジュールが故障する前に異常を報知することにより、フェイルセーフ制御を実現することができる。
 すなわち、絶縁シート3の絶縁劣化に起因したパワーモジュールの故障を未然に検知して、直前に対処することができる。
 なお、図3では、演算手段11において、サンプリング時点の電流値iと基準電流irとを比較したが、図6のように、演算手段11Aにおいて、現在のサンプリング時点の電流値inと前回のサンプリング時点の電流値i(n-1)とを比較することが望ましい。
 図6はこの発明の実施例1に係るパワーモジュールの絶縁劣化検知装置を示す機能ブロック図であり、前述(図3参照)と同様のものについては、前述と同一符号を付して、または符号の後に「A」を付して詳述を省略する。
 図6においては、前述(図3)の基準電流設定手段13に代えて、電流記憶手段14を備えている。
 電流記憶手段14は、前回のサンプリング時点の電流値i(n-1)を記憶して、前回の電流値i(n-1)を演算手段11Aに入力する。
 演算手段11Aは、電流検出手段10からの今回サンプリング時点の電流値inと、電流記憶手段14からの前回サンプリング時点の電流値i(n-1)との比較演算を行い、両者の比が10倍を超えたこと「in/i(n-1)>10」を示す場合に、劣化判定結果YESを出力する。
 なお、電流検出手段10は、パワーモジュールの使用中において、所定のサンプリング速度で常に絶縁シート3に流れる電流値iをサンプリングし、サンプリングごとの電流値inを演算手段11Aおよび電流記憶手段14に入力している。
 電流記憶手段14は、電流検出手段10から各サンプリング時点の電流値を記憶するとともに、現在のサンプリング時点と比べて常に1サンプリング周期前の電流値i(n-1)を演算手段11Aに入力する。
 これにより、演算手段11Aは、1サンプリング周期前の電流値i(n-1)と現時点でサンプリングした電流値inとを常に比較することができ、現在の電流値inと前回の電流値i(n-1)との比較結果から、現在の電流値inが、前回の電流値i(n-1)の10倍を超えた場合のみに、絶縁シート3の絶縁劣化状態を判定して、劣化判定結果YES(警報信号)を警報手段12に出力する。
 以上のように、この発明の実施例1(図6)に係るパワーモジュールの絶縁劣化検知装置は、前回のサンプリング時点の電流値を記憶する電流記憶手段14を備え、演算手段11Aは、現在のサンプリング時点の電流値inが、前回のサンプリング時点の電流値i(n-1)の10倍を超えた場合に、劣化判定結果YESを出力する。
 これにより、前述と同様に、絶縁シート3の劣化を事前に検知することができ、絶縁シート3の絶縁劣化に起因したパワーモジュールの故障を未然に検知することができる。
 また、図6内の各手段10、11A、12、14を処理ステップに置き換えれば、同等の作用効果を奏するパワーモジュールの絶縁劣化検知方法を実現することができる。
 (実施例2)
 なお、上記実施例1(図6)では、演算手段11Aにおいて、現在のサンプリング時点の電流値inと前回のサンプリング時点の電流値i(n-1)とを比較したが、図7のように、演算手段11Bにおいて、サンプリング時点の電流値iを時間微分(di/dt)した微分電流diと基準微分電流dirとを比較してもよい。
 図7はこの発明の実施例2に係るパワーモジュールの絶縁劣化検知装置を示す機能ブロック図であり、前述(図3)と同様のものについては、前述と同一符号を付して、または符号の後に「B」を付して詳述を省略する。
 図7において、パワーモジュールの絶縁劣化検知装置は、電流検出手段10と演算手段11Bとの間に、電流値iを微分して微分電流diを算出する電流微分手段15を備えているとともに、前述(図3)の基準電流設定手段13に代えて、判定基準値となる基準微分電流dirを設定する基準微分電流設定手段16を備えている。
 この場合、電流検出手段10は、電流値iを電流微分手段15に入力して、微分電流diを演算手段11Bに入力する。
 演算手段11Bは、サンプリング時点の電流値iの微分電流diが基準微分電流dirを超えた場合に、劣化判定結果YESを出力して警報手段12を駆動する。
 すなわち、電流検出手段10は、パワーモジュールの使用中において、絶縁シート3に流れる電流値iを検出して電流微分手段15に入力し、電流微分手段15は、微分電流diを算出して演算手段11Bに入力する。
 演算手段11Bは、微分電流diと基準微分電流dirとを比較演算し、「di>dir」の関係を満たして、微分電流diが基準微分電流dirを超えた場合のみに、劣化判定結果YES(警報信号)を警報手段12に出力する。
 なお、基準微分電流dirは、絶縁シート3に印加される電圧や、絶縁シート3の材質などによっても変動があるが、たとえば図8に示すように、一般的に、10-11[A/sec]以上に設定すればよい。
 図8はこの発明の実施例2における高温高湿環境(85℃/85%RH)時に絶縁シートが破壊直前の電流値iの微分値の時間変化(測定例)を示す説明図である。
 前述の実験結果(図5)によれば、絶縁シート3が絶縁破壊を起こす直前の絶縁劣化期間における電流値iは、増加および復帰を繰り返しており、各1回の電流の変動(増加)は非常に短い期間で発生するので、この絶縁劣化期間で発生する電流値iの急変動は、微分電流diとして容易に検出することができる。
 以上のように、この発明の実施例2に係るパワーモジュールの絶縁劣化検知装置は、電流検出手段10で検出した電流値iの微分電流diを算出する電流微分手段15を備え、演算手段11Bは、サンプリング時点の電流値iの微分電流diが基準微分電流dirを超えた場合に、劣化判定結果YESを出力するので、前述と同様に、絶縁シート3の劣化を事前に検知し、絶縁シート3の絶縁劣化に起因したパワーモジュールの故障を検知することができる。
 また、図7内の各手段10、11B、12、15、16を処理ステップに置き換えれば、同等の作用効果を奏するパワーモジュールの絶縁劣化検知方法を実現することができる。
 (実施例3)
 なお、上記実施例1、2(図6、図7)では、パワーモジュールの絶縁劣化検知装置(および方法)について説明したが、前述のパワーモジュールの絶縁劣化検知装置を用いてパワーモジュールシステムを構成してもよい。
 図9はこの発明の実施例3に係るパワーモジュールシステムのパワーモジュール部を模式的に示す断面図であり、前述(図1)と同様のものについては、前述と同一符号を付して詳述を省略する。
 図9において、パワーモジュール20の付近には、前述(図3、図6、図7)の電流検出手段10に代えて、アンテナ21が設置されている。
 アンテナ21は、パワーモジュール20から放射される電磁波を電磁波信号Saとして検出することにより、絶縁シート3の電流変化を検出する。
 図10はこの発明の実施例3に係るパワーモジュールシステムを示すブロック図であり、前述(図3、図6、図7)と同様のものについては、前述と同一符号を付して、または符号の後に「C」を付して詳述を省略する。
 図10において、パワーモジュールシステムは、パワーモジュール20およびアンテナ21と、アンテナ21からの電磁波信号Saが入力される演算手段11Cと、演算手段11Cからの劣化判定結果YESによって駆動される警報手段12と、演算手段11Cでの劣化判定基準値となる基準信号Srを設定する基準信号設定手段22とを備えている。
 演算手段11Cは、アンテナ21からの電磁波信号Saと、基準信号設定手段22からの基準信号Srとを入力情報として演算処理を行い、絶縁劣化判定時に劣化判定結果YESを警報手段12に出力する。
 次に、前述の図5とともに、図11を参照しながら、図9および図10に示したこの発明の実施例3による動作について説明する。
 図5に示した通り、絶縁シート3が絶縁破壊を起こす直前の期間においては、電流値iが増加または復帰を繰り返している。なお、一回の電流変動(増加)は、短い期間で発生するが、この絶縁劣化期間に発生する電流値iの急変動は、電流パルスとして現れるとともに、電磁波を放出する。
 パワーモジュール20内の電流値iの急変動により発生する電磁波は、アンテナ21によって検出され、電磁波信号Saとして演算手段11Cに入力される。
 しかし、実際のパワーモジュール20においては、スイッチングONまたはスイッチングOFFによって電圧Vが常時変化しており、電圧変化にともなってノイズが発生するので、電圧変化によるノイズも、アンテナ21によって検出される。
 図11(a)、(b)は電圧信号Vと電磁波信号Saとの関係を示すタイミングチャートであり、図11(a)は絶縁シート3に劣化が発生しなかった場合の電圧ON/OFF時の電磁波信号Saの時間変動を示し、図11(b)は絶縁シート3に劣化が発生した場合の電圧ON/OFF時の電磁波信号Saの時間変動を示している。
 図11(a)においては、電圧ON時および電圧OFF時にパワーモジュール20の印加電圧Vに急激な変化があり、これに起因したノイズ信号が電磁波信号Saとしてアンテナ21により検出される。
 一方、図11(b)における電磁波信号Saは、電圧VのON/OFFに対応したノイズ信号以外に、時刻t1、t2、t3、t4において高レベルのパルス信号が発生する。これは、前述の通り、絶縁シート3の劣化によって生じた電流の急激な変化に対応しており、パワーモジュール20の故障の前兆を示すものである。
 図11(b)に示すように、電磁波信号Saには、絶縁シート3の劣化に起因して発生する信号以外に、電圧Vの急激な変化によって発生するノイズ信号が含まれるので、パワーモジュール20の故障を検出するためには、電磁波信号Saの中から、絶縁シート3の劣化によって発生した信号のみを抽出する必要がある。
 そこで、図10に示すように、演算手段11Cは、基準信号Srを閾値として、劣化によって発生した高レベル信号のみを抽出する。
 通常、絶縁シート3に劣化が発生した場合には、アンテナ21において高レベルの電磁波信号Saが検出されるのに対し、電圧Vの急激な変化によって発生するノイズ信号は、図11に示すように低レベルである。
 したがって、絶縁劣化発生時の電磁波信号Saとノイズ信号との間に閾値レベルを設けることによって、両者を区別することが可能となる。
 この場合、閾値レベルは、基準信号設定手段22によって設定した基準信号Srに対応する。
 すなわち、演算手段11Cは、アンテナ21で検出した電磁波信号Saと、基準信号設定手段22で設定した基準信号Srとを入力情報として、両者の比較演算を行い、Sa>Srの関係が成立した場合のみ、絶縁シート3に劣化が発生したことを示す劣化判定結果YESを警報手段12に出力する。
 演算手段11Cから劣化判定結果YES(故障信号)を受けた警報手段12は、パワーモジュール20が故障直前(数分~数10時間)であることを示す警報を発生することにより、オペレータに対処を促す。
 なお、基準信号Srは、事前に実験結果から求めてもよいが、パワーモジュール20の印加電圧Vに応じて、任意に設定してもよい。
 以上のように、この発明の実施例3(図9、図10)に係るパワーモジュールシステムは、パワーモジュール20から放射される電磁波信号Saを検出するアンテナ21と、絶縁シート3が劣化したことを示す基準信号Srを設定する基準信号設定手段22と、劣化判定結果YESによって駆動される警報手段12と、電磁波信号Saおよび基準信号Srを入力情報として比較演算を行い、電磁波信号Saが基準信号Srを超えた場合のみ、劣化判定結果YESを警報手段12に出力する演算手段11Cとを備えている。
 これにより、絶縁シート3の劣化を事前に検知することが可能となり、絶縁シート3の絶縁劣化に起因したパワーモジュール20の故障を検知することができる。
 なお、上記説明では、演算手段11Cから劣化判定結果YESを受けた警報手段12は、直ちに警報を発生するようにしたが、冗長性を持たせて誤動作を回避するために、所定時間内で所定回数の劣化判定結果YESを受けた時点で、警報を発生してもよいことは言うまでもない。
 (実施例4)
 なお、上記実施例3(図10)では、演算手段11Cにおいて、電磁波信号Saと基準信号Srとを比較することにより劣化判定信号を生成したが、図12のように、アンテナ21と演算手段11Hとの間にスイッチング信号除去手段23を挿入してもよい。
 図12はこの発明の実施例4に係るパワーモジュールシステムを示すブロック図であり、前述(図10)と同様のものについては、前述と同一符号を付して、または符号の後に「H」を付して詳述を省略する。
 図12において、パワーモジュールシステムは、前述(図10)の演算手段11Cに代えて、スイッチング信号除去手段23および演算手段11Hを備えている。
 スイッチング信号除去手段23は、アンテナ21から入力される電磁波信号Saの中から、電圧VのON/OFFに起因して発生したノイズ信号のみを除去し、絶縁シート3の劣化時に放出される電磁波信号Sbのみを抽出して演算手段11Hに入力する。
 次に、図13を参照しながら、図12に示したこの発明の実施例4による動作について説明する。
 まず、前述と同様に、パワーモジュール20の付近に設置されたアンテナ21は、パワーモジュール20から放出される電磁波を検出して電磁波信号Saとしてスイッチング信号除去手段23に入力する。
 スイッチング信号除去手段23は、電磁波信号Saの中から、絶縁シート3の劣化とは無関係の信号(回路電圧VのON/OFFに起因して発生したノイズ信号)を除去し、絶縁シート3の故障時に発生する電磁波信号Sbのみを演算手段11Hに入力する。
 図13は電圧VのON/OFFに起因したノイズ信号を除去した後の電磁波信号Sbを示すタイミングチャートである。
 演算手段11Hは、スイッチング信号除去手段23を介して電磁波信号Sbと、基準信号設定手段22で設定した基準信号Srとを入力情報として、両者の比較演算を行い、Sb>Srの関係が成立した場合のみ、絶縁シート3に劣化が発生したことを示す劣化判定結果YESを警報手段12に出力する。
 なお、基準信号Srは、事前に実験結果から求めてもよいが、パワーモジュール20の印加電圧Vに応じて、任意に設定してもよい。
 以上のように、この発明の実施例4(図12)に係るパワーモジュールシステムは、パワーモジュール20から放射する電磁波信号Saを検出するアンテナ21と、絶縁シート3の劣化とは無関係の回路電圧VのON/OFFに起因して発生したノイズ信号を除去するスイッチング信号除去手段23と、基準信号設定手段22と、劣化判定結果YESによって駆動される警報手段12と、スイッチング信号を除去した電磁波信号Sbが基準信号Srを超えた場合のみ、故障信号を警報手段12に出力する演算手段11Hとを備えている。
 これにより、絶縁シート3の劣化を事前に検知することが可能となり、絶縁シート3の絶縁劣化に起因したパワーモジュール20の故障を検知することができる。
 なお、上記説明では、劣化判定結果YESを受けた警報手段12は、直ちに警報を発生するようにしたが、所定時間内で所定回数の劣化判定結果YESを受けた時点で、警報を発生してもよいことは言うまでもない。
 (実施例5)
 なお、上記実施例1、2(図6、図7)では、絶縁シート3に流れる電流値iを検出する電流検出手段10を用いたが、図14に示すように、パワーモジュール20の主回路に流れる電流信号iaを高速に検出する高速電流検出手段25を用いてもよい。
 図14はこの発明の実施例5に係るパワーモジュールの絶縁劣化検知装置を示すブロック図であり、前述と同様のものについては、前述と同一符号を付して、または符号の後に「D」を付して詳述を省略する。また、パワーモジュール20の構成は、図9に示した通りである。
 図14において、高速電流検出手段25は、パワーモジュール20の主回路に接続されて、電流信号iaを検出する。
 信号処理手段26は、高速電流検出手段25からの電流信号iaと、基準周波数設定手段27で設定された基準周波数frとを入力情報として信号処理を行い、電流信号iaの中の基準周波数fr以上の電流信号ip(高周波パルス信号)のみを通過させて、演算手段11Dに入力する。
 演算手段11Dは、信号処理手段26を介した電流信号ipと、基準電流設定手段13Dで設定された基準電流iprとを入力情報として演算処理を行い、電流信号ipが基準電流iprを超えたときのみ、劣化判定結果YESを警報手段12に入力する。
 次に、図5とともに、図15および図16を参照しながら、図14に示したこの発明の実施例5による動作について説明する。
 前述(図5)と同様に、絶縁シート3が絶縁破壊を起こす直前の期間においては、電流信号iaが増加または復帰を繰り返している。なお、一回の電流信号iaの変動(増加)は、非常に短い期間で発生するので、この絶縁劣化期間に発生する電流信号iaの急変動は電流パルスとして現れる。
 電流信号iaの急変動は、主回路に設けられている高速電流検出手段25によって検出される。
 図15(a)、(b)は主回路に印加される電圧信号Vと高速電流検出手段25で検出された電流信号iaとの関係を示すタイミングチャートであり、図15(a)は絶縁シート3に劣化が発生しなかった場合の電圧ON/OFF時の電流信号iaの時間変動を示し、図15(b)は絶縁シート3に劣化が発生した場合の電圧ON/OFF時の電流信号iaの時間変動を示している。
 図15(a)においては、印加電圧VがONされた時刻t1、t3と、印加電圧VがOFFされた時刻t2とで、印加電圧Vの急激な変化があり、これに起因して時刻t1、t2、t3で急変する電流信号iaが高速電流検出手段25により検出される。
 図15(b)において、電流信号iaには、電圧ON/OFFによる矩形信号に対応した信号に加えて、各時刻t1、t2、t3での急激な電流変化に対応したノイズ信号のみならず、たとえば時刻t4で発生する高レベルのパルス信号が含まれる。これは、前述の通り、絶縁シート3の劣化によって生じた電流信号iaの急激な変化に対応しており、パワーモジュール20の故障の前兆を示している。
 図16は信号処理手段26の入出力信号(電流信号ia、ip)を示すタイミングチャートであり、高速電流検出手段25からの電流信号iaと、信号処理手段26を通過後の電流信号ipとの関係を示している。
 図16において、信号処理手段26を通過した後の電流信号ipは、電流信号iaの中から低周波成分が除去されて、高周波パルス信号のみとなっている。
 図14に示した通り、高速電流検出手段25の後段に配置された信号処理手段26は、電流信号iaのうち、基準周波数設定手段27で設定された基準周波数fr以上の電流信号ip(高周波パルス信号)のみを通過させるように処理を行う。
 この結果、絶縁シート3の劣化に対応した電流信号(高周波パルス)と、パワーモジュール20の主回路の電圧スイッチングに対応した電流信号とが、高周波数成分の電流信号ipとして抽出される。
 なお、図16から明らかなように、絶縁劣化に起因した高周波パルスのレベルは、電圧ON/OFFに起因したパルス信号のレベルよりも大きいので、両者の中間レベルに閾値を設定することにより、両者を分離することができる。
 したがって、演算手段11Dは、基準電流設定手段13Dで設定した基準電流iprを閾値として、両者を区別する。
 すなわち、演算手段11Dは、電流信号ipと基準電流設定手段13Dで設定した基準電流iprとを入力情報として両者の比較演算を行い、ip>iprの関係が成立した場合のみ、絶縁シート3に劣化が発生したことを示す劣化判定結果YESを警報手段12に出力する。
 演算手段11Dから劣化判定結果YES(故障信号)を受けた警報手段12は、パワーモジュール20が故障直前(数分~数10時間)であることを示す警報を発生することにより、オペレータに対処を促す。
 なお、基準電流iprは、事前に実験結果から求めてもよいが、パワーモジュール20の印加電圧Vに応じて、任意に設定してもよい。
 以上のように、この発明の実施例5(図9、図14)によれば、パワーモジュール20の主回路に接続される高速電流検出手段25と、基準周波数frを設定する基準周波数設定手段27と、高速電流検出手段25からの電流信号iaと基準周波数frとを入力情報として信号処理を行い、基準周波数fr以上の電流信号ipのみを通過させる信号処理手段26と、基準電流iprを設定する基準電流設定手段13Dと、劣化判定結果YESによって駆動される警報手段12と、電流信号ipが基準電流iprを超えたときのみ、劣化判定結果YESを警報手段12に出力する演算手段11Dとを備えている。
 これにより、絶縁シート3の劣化を事前に検知することが可能となり、絶縁シートの絶縁劣化に起因するパワーモジュールの故障を検知することができる。
 なお、上記説明では、劣化判定結果YESを受けた警報手段12は、直ちに警報を発生するようにしたが、所定時間内で所定回数の劣化判定結果YESを受けた時点で、警報を発生してもよいことは言うまでもない。
 (実施例6)
 なお、上記実施例5(図14)では、演算手段11Dにおいて、信号処理手段26を介した電流信号ipを基準電流iprと比較したが、図17に示すように、信号抽出手段29により電流信号ipの一部を除去した電流信号ipgを基準電流iprと比較してもよい。
 図17はこの発明の実施例6に係るパワーモジュールの絶縁劣化検知方法を説明するためのブロック図であり、前述と同様のものについては、前述と同一符号を付して、または符号の後に「F」を付して詳述を省略する。また、パワーモジュール20の構成は、図9に示した通りである。
 図17において、信号処理手段26と演算手段11Fとの間には、信号抽出手段29が挿入されている。
 また、演算手段11Fおよび信号抽出手段29に関連した回路要素として、電圧検出手段30と、電圧微分手段31と、基準微分電圧設定手段32と、除去期間演算手段33とを備えている。
 電圧検出手段30は、パワーモジュール20の主回路に印加される印加電圧を電圧信号Vとして検出し、電圧微分手段31は、電圧信号Vを時間微分(dV/dt)して微分電圧dVを算出する。
 基準微分電圧設定手段32は、除去期間演算手段33での判定基準値となる基準微分電圧dVrを設定する。
 除去期間演算手段33は、微分電圧dVおよび基準微分電圧dVrを入力情報として比較演算を行い、微分電圧dVが基準微分電圧dVrを超えた期間Δtのみにおいて除去信号Gを生成する。
 信号抽出手段29は、電流信号ipおよび除去信号Gを入力情報として演算処理を行い、除去信号Gの生成期間Δtにおける電流信号ipを除去して、新しい電流信号ipgを演算手段11Fに入力する。
 演算手段11Fは、基準電流設定手段13Dで設定した基準電流iprと電流信号ipgとを入力情報として演算処理を行い、電流信号ipgが基準電流iprを超えたときのみ、劣化判定結果YESを警報手段12に出力する。
 以下、警報手段12の動作は、前述の実施例1~4で述べた通りである。
 次に、図18(a)、(b)を参照しながら、図17に示したこの発明の実施例6による動作原理について説明する。
 図18(a)は、パワーモジュール20の主回路に印加される電圧信号Vと信号処理手段26からの電流信号ipとの関係を示すタイミングチャートである。
 図18(a)に示す通り、各時刻t1、t2、t3において、印加電圧のスイッチングに対応して電圧信号VがON/OFFされ、これに起因したノイズ信号が電流信号ipに重畳されるが、このときのノイズレベルが比較的大きく、時刻t4(絶縁シート3の劣化に対応)における電流信号ipとのレベル差が非常に小さい場合があり得る。
 図18(a)のようにノイズレベルが高い場合には、前述(図14)の演算手段11Dで比較判定しようとすると、ノイズレベルが基準電流iprを超えて誤判定を招く可能性がある。
 そこで、この発明の実施例6(図17)においては、信号抽出手段29を設け、図18(b)に示す電流信号ipgを生成することにより、高信頼性の絶縁劣化判定を実現している。
 図18(b)は電流信号ip、微分電圧dV、除去信号Gおよび新しい電流信号ipgの関係を示すタイミングチャートであり、除去期間演算手段33および信号抽出手段29の機能に対応した動作を示している。
 なお、図18(b)では、図18(a)の横軸(時間t)を約10倍に拡大して示している。
 図18(b)に示すように、除去期間演算手段33には、電流信号ip(高周波パルス信号)とほぼ近似した波形の微分電圧dVと、基準微分電圧Vrとが入力され、除去期間演算手段33は、微分電圧dVが基準微分電圧dVrを超えた期間Δtのみにおいて、除去信号Gを生成する。
 つまり、除去信号Gが生成される期間Δtは、電圧信号VのON/OFF時におけるノイズ信号の発生期間に対応する。
 信号抽出手段29は、除去信号Gが入力されると、電流信号ipから除去信号Gの期間Δtのみの信号を除去して新しい電流信号ipgを生成する。
 図18(b)から明らかなように、信号抽出手段29からの新しい電流信号ipgは、時刻t1におけるノイズ信号の発生期間がカットされて、時刻t4の信号レベルのみが抽出された波形となる。
 したがって、演算手段11Fは、誤判定することなく、高信頼性の劣化判定結果YESを簡単に生成することができる。
 以上のように、この発明の実施例6(図17、図18)によれば、パワーモジュール20の主回路に接続されて電流信号iaを検出する高速電流検出手段25と、基準周波数frを設定する基準周波数設定手段27と、電流信号iaのうち基準周波数fr以上の電流信号ipのみを通過させる信号処理手段26と、パワーモジュール20の主回路への印加電圧を電圧信号Vとして検出する電圧検出手段30と、電圧信号Vを微分して微分電圧dVを算出する電圧微分手段31と、基準微分電圧dVrを設定する基準微分電圧設定手段32と、微分電圧dVが基準微分電圧dVrを超えた期間Δtのみにおいて除去信号Gを出力する除去期間演算手段33と、除去信号Gの期間Δtにおける電流信号ipを除去して新しい電流信号ipgを出力する信号抽出手段29と、基準電流iprを設定する基準電流設定手段13Dと、電流信号ipgが基準電流iprを超えたときのみ、劣化判定結果YESを警報手段12に出力する演算手段11Fとを備えている。
 これにより、絶縁シート3の劣化を事前に検知することが可能となり、絶縁シート3の絶縁劣化に起因するパワーモジュール20の故障を検知することができる。
 なお、上記説明では、劣化判定結果YESを受けた警報手段12は、直ちに警報を発生するようにしたが、所定時間内で、所定回数の劣化判定結果YESを受けた時点で、警報を発生してもよいことは言うまでもない。
 また、上記実施例1~6のいずれのパワーモジュールの絶縁劣化検知装置においても、各手段を処理ステップに置き換えれば、同等の作用効果を奏するパワーモジュールの絶縁劣化検知方法を実現することができる。
 さらに、この発明に係るパワーモジュールシステムは、上記実施例1~6のいずれの構成を適用することも可能であり、任意の絶縁劣化検知装置と、パワーモジュール20の主回路から給電される半導体チップ1と、半導体チップ1を載置するヒートスプレッダ2と、ヒートスプレッダ2の裏面に重ね配置された絶縁シート3とを備えていればよい。
 1 半導体チップ、2 ヒートスプレッダ、3 絶縁シート、7 エポキシ樹脂、10 電流検出手段、11、11A、11B、11C、11D、11F、11H 演算手段、12 警報手段、13、13D 基準電流設定手段、14 電流記憶手段、15 電流微分手段、20 パワーモジュール、21 アンテナ、22 基準信号設定手段、23 スイッチング信号除去手段、25 高速電流検出手段、26 信号処理手段、27 基準周波数設定手段、29 信号抽出手段、30 電圧検出手段、31 電圧微分手段、32 基準微分電圧設定手段、33 除去期間演算手段、di 微分電流、dir 基準微分電流、dV 微分電圧、dVr 基準微分電圧、E 電源、fr 基準周波数、G 除去信号、i 電流値、ia、ip、ipg 電流信号、in 今回の電流値、i(n-1) 前回の電流値、ir、ipr 基準電流、Sa 電磁波信号、Sb 電磁波信号、Sr 基準信号、V 電圧信号(パワーモジュールの印加電圧)、Vr 基準微分電圧、YES 劣化判定結果、Δt 除去信号の期間。

Claims (14)

  1.  パワーモジュールの絶縁シートに流れる電流値を所定の時間間隔でサンプリングして検出する電流検出手段と、
     前記電流値に基づいて、前記絶縁シートの絶縁特性が劣化して破壊する直前の状態を判定し、前記絶縁シートの破壊直前の状態を判定したときに劣化判定結果を出力する演算手段と、
     前回のサンプリング時点の電流値を記憶する電流記憶手段と、
     前記劣化判定結果に応答して警報を発生する警報手段とを備え、
     前記演算手段は、現在のサンプリング時点の電流値が、前記前回のサンプリング時点の電流値の10倍を超えた場合に、前記劣化判定結果を出力することを特徴とするパワーモジュールの絶縁劣化検知装置。
  2.  パワーモジュールの絶縁シートに流れる電流値を所定の時間間隔でサンプリングして検出する電流検出手段と、
     前記電流値に基づいて、前記絶縁シートの絶縁特性が劣化して破壊する直前の状態を判定し、前記絶縁シートの破壊直前の状態を判定したときに劣化判定結果を出力する演算手段と、
     前記電流値を微分して微分電流を算出する電流微分手段と、
     前記劣化判定結果に応答して警報を発生する警報手段とを備え、
     前記演算手段は、サンプリング時点の微分電流の値が所定値を超えた場合に、前記劣化判定結果を出力することを特徴とするパワーモジュールの絶縁劣化検知装置。
  3.  パワーモジュールの絶縁シートに流れる電流値を所定の時間間隔でサンプリングして検出する電流検出ステップと、
     前記電流値に基づいて、前記絶縁シートの絶縁特性が劣化して破壊する直前の状態を判定し、前記絶縁シートの破壊直前の状態を判定したときに劣化判定結果を出力する演算ステップと、
     前回のサンプリング時点の電流値を記憶する電流記憶ステップと、
     前記劣化判定結果に応答して警報を発生する警報ステップとを備え、
     前記演算ステップは、サンプリング時点の電流値が、前記前回のサンプリング時点の電流値の10倍を超えた場合に、前記劣化判定結果を出力することを特徴とするパワーモジュールの絶縁劣化検知方法。
  4.  パワーモジュールの絶縁シートに流れる電流値を所定の時間間隔でサンプリングして検出する電流検出ステップと、
     前記電流値に基づいて、前記絶縁シートの絶縁特性が劣化して破壊する直前の状態を判定し、前記絶縁シートの破壊直前の状態を判定したときに劣化判定結果を出力する演算ステップと、
     前記電流値を微分して微分電流を算出する微分ステップと、
     前記劣化判定結果に応答して警報を発生する警報ステップとを備え、
     前記演算ステップは、サンプリング時点の微分電流の値が所定値を超えた場合に、前記劣化判定結果を出力することを特徴とするパワーモジュールの絶縁劣化検知方法。
  5.  パワーモジュールから放射する電磁波信号を検出するアンテナと、
     絶縁シートが劣化したことを示す劣化判定基準値となる基準信号を設定する基準信号設定手段と、
     前記絶縁シートが破壊する直前の状態を判定したときに劣化判定結果を出力する演算手段と、
     前記劣化判定結果に応答して警報を発生する警報手段とを備え、
     前記演算手段は、前記電磁波信号が前記基準信号を超えた場合に、前記劣化判定結果を出力することを特徴とするパワーモジュールの絶縁劣化検知装置。
  6.  前記演算手段は、前記アンテナで検出した電磁波信号から、前記絶縁シートの劣化とは無関係の回路電圧ON/OFFに起因して発生したノイズ信号を除去した後の電磁波信号が前記基準信号を超えた場合に、劣化判定結果を出力することを特徴とする請求項5に記載のパワーモジュールの絶縁劣化検知装置。
  7.  パワーモジュールの主回路に接続される高速電流検出手段と、
     基準周波数を設定する基準周波数設定手段と、
     前記基準周波数以上の電流信号ipのみを通過させる信号処理手段と、
     基準電流iprを設定する基準電流設定手段と、
     前記電流信号ipおよび前記基準電流iprを入力情報として演算処理を行い、前記電流信号ipが前記基準電流iprを超えたときのみ、劣化判定結果を出力する演算手段と、
     前記劣化判定結果に応答して警報を発生する警報手段と
     を備えたパワーモジュールの絶縁劣化検知装置。
  8.  前記演算手段は、
     前記パワーモジュールの主回路に印加される電圧信号を検出する電圧検出手段と、
     前記電圧信号を微分して微分電圧を算出する電圧微分手段と、
     基準微分電圧を設定する基準微分電圧設定手段とを備え、
     前記微分電圧が前記基準微分電圧を超えた期間Δtのみにおいて前記信号処理手段からの電流信号ipを除去して、新しい電流信号ipgを得るとともに、
     前記電流信号ipgと基準電流iprとの演算処理を行い、前記電流信号ipgが前記基準電流iprを超えたときのみ、劣化判定結果を前記警報手段に出力することを特徴とする請求項7に記載のパワーモジュールの絶縁劣化検知装置。
  9.  パワーモジュールから放射する電磁波信号を検出する信号検出ステップと、
     絶縁シートが劣化したことを示す劣化判定基準値となる基準信号を設定する基準信号設定ステップと、
     前記絶縁シートが破壊する直前の状態を判定したときに劣化判定結果を出力する演算ステップと、
     前記劣化判定結果に応答して警報を発生する警報ステップとを備え、
     前記演算ステップは、前記電磁波信号が前記基準信号を超えた場合に、前記劣化判定結果を出力することを特徴とするパワーモジュールの絶縁劣化検知方法。
  10.  前記演算ステップは、前記信号検出ステップで検出した電磁波信号から、前記絶縁シートの劣化とは無関係の回路電圧ON/OFFに起因して発生したノイズ信号を除去した後の電磁波信号が前記基準信号を超えた場合に、前記劣化判定結果を出力することを特徴とする請求項9に記載のパワーモジュールの絶縁劣化検知方法。
  11.  パワーモジュールの主回路に接続される高速電流検出ステップと、
     基準周波数設定ステップと、
     前記基準周波数設定ステップで設定した基準周波数以上の電流信号ipのみを通過させる信号処理ステップと、
     基準電流設定ステップと、
     前記電流信号ipと前記基準電流設定ステップで設定した基準電流iprとを入力情報として演算処理を行い、前記電流信号ipが前記基準電流iprを超えたときのみ、劣化判定結果を出力する演算ステップと、
     前記劣化判定結果に応答して警報を発生する警報ステップと、
     を備えたパワーモジュールの絶縁劣化検知方法。
  12.  前記演算ステップは、
     前記パワーモジュールの主回路に印加される電圧信号を検出する電圧検出ステップと、
     前記電圧信号を微分して微分電圧を算出する微分ステップと、
     基準微分電圧を設定する基準微分電圧設定ステップとを備え、
     前記微分電圧が前記基準微分電圧を超えた期間Δtのみにおいて前記信号処理ステップからの電流信号ipを除去して、新しい電流信号ipgを得るとともに、
     前記電流信号ipgと基準電流iprとの演算処理を行い、前記電流信号ipgが前記基準電流iprを超えたときのみ、劣化判定結果を出力して前記警報ステップを有効化することを特徴とする請求項11に記載のパワーモジュールの絶縁劣化検知方法。
  13.  前記警報手段は、所定時間内で所定回数の故障信号を受けると、警報を発生することを特徴とする請求項1または請求項2、または請求項5から請求項8までのいずれか1項に記載のパワーモジュールの絶縁劣化検知装置。
  14.  請求項1または請求項2、または請求項5から請求項8までのいずれか1項、または請求項13に記載のパワーモジュールの絶縁劣化検知装置と、
     前記パワーモジュールの主回路から給電される半導体チップと、
     前記半導体チップを載置するヒートスプレッダと、
     前記ヒートスプレッダの裏面に重ね配置された絶縁シートと
     を備えたパワーモジュールシステム。
PCT/JP2010/056017 2009-04-22 2010-04-01 パワーモジュールの絶縁劣化検知装置および方法、ならびにパワーモジュールシステム WO2010122889A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011510277A JPWO2010122889A1 (ja) 2009-04-22 2010-04-01 パワーモジュールおよびその絶縁劣化検知方法
US13/265,446 US20120039045A1 (en) 2009-04-22 2010-04-01 Power module and method for detecting insulation degradation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-104140 2009-04-22
JP2009104140 2009-04-22

Publications (1)

Publication Number Publication Date
WO2010122889A1 true WO2010122889A1 (ja) 2010-10-28

Family

ID=43011011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056017 WO2010122889A1 (ja) 2009-04-22 2010-04-01 パワーモジュールの絶縁劣化検知装置および方法、ならびにパワーモジュールシステム

Country Status (3)

Country Link
US (1) US20120039045A1 (ja)
JP (1) JPWO2010122889A1 (ja)
WO (1) WO2010122889A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102478614A (zh) * 2010-11-30 2012-05-30 西门子公司 电流互感器断线检测方法、装置及继电保护设备
JP2018082548A (ja) * 2016-11-16 2018-05-24 三菱電機株式会社 リモート監視システム
JP2021060296A (ja) * 2019-10-08 2021-04-15 新日本無線株式会社 半導体装置の良否判定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103513145B (zh) * 2012-06-29 2016-12-21 西门子公司 电流互感器断线检测方法及装置
US10560047B2 (en) 2017-10-11 2020-02-11 Toyota Motor Engineering & Manufacturing North America, Inc. Method and apparatus for predicting degradation in power modules
WO2019234984A1 (ja) * 2018-06-06 2019-12-12 三菱電機株式会社 半導体装置及び電力変換装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221276A (ja) * 1988-07-08 1990-01-24 Hitachi Cable Ltd パルス性部分放電測定回路
JPH03221880A (ja) * 1990-01-27 1991-09-30 Hitachi Ltd 電気機器の絶縁劣化検出器
JPH0493671A (ja) * 1990-08-06 1992-03-26 Toshiba Corp 絶縁劣化診断方法
JP2001196495A (ja) * 2000-01-13 2001-07-19 Denki Kagaku Kogyo Kk 樹脂モールド用回路基板と電子パッケージ
JP2002051570A (ja) * 2000-08-03 2002-02-15 Toshiba Corp 変換器のノイズ低減装置
JP2003130909A (ja) * 2001-08-02 2003-05-08 Alstom パワーモジュールの検査方法および検査装置
JP2004347424A (ja) * 2003-05-21 2004-12-09 Fujikura Ltd 活線絶縁劣化診断方法及びその装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471144A (en) * 1993-09-27 1995-11-28 Square D Company System for monitoring the insulation quality of step graded insulated high voltage apparatus
JP3487017B2 (ja) * 1995-06-02 2004-01-13 日新電機株式会社 電気機器絶縁診断装置
JP4167872B2 (ja) * 2001-10-04 2008-10-22 株式会社日立産機システム 漏れ電流の監視装置及びその監視システム
JP3740116B2 (ja) * 2002-11-11 2006-02-01 三菱電機株式会社 モールド樹脂封止型パワー半導体装置及びその製造方法
JP4046120B2 (ja) * 2005-01-27 2008-02-13 三菱電機株式会社 絶縁シートの製造方法およびパワーモジュールの製造方法
JP5329235B2 (ja) * 2006-01-31 2013-10-30 コーニンクレッカ フィリップス エヌ ヴェ Ledドライバ回路
JP2007235004A (ja) * 2006-03-03 2007-09-13 Mitsubishi Electric Corp 半導体装置
JP2008304357A (ja) * 2007-06-08 2008-12-18 Mitsubishi Electric Corp 部分放電計測装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221276A (ja) * 1988-07-08 1990-01-24 Hitachi Cable Ltd パルス性部分放電測定回路
JPH03221880A (ja) * 1990-01-27 1991-09-30 Hitachi Ltd 電気機器の絶縁劣化検出器
JPH0493671A (ja) * 1990-08-06 1992-03-26 Toshiba Corp 絶縁劣化診断方法
JP2001196495A (ja) * 2000-01-13 2001-07-19 Denki Kagaku Kogyo Kk 樹脂モールド用回路基板と電子パッケージ
JP2002051570A (ja) * 2000-08-03 2002-02-15 Toshiba Corp 変換器のノイズ低減装置
JP2003130909A (ja) * 2001-08-02 2003-05-08 Alstom パワーモジュールの検査方法および検査装置
JP2004347424A (ja) * 2003-05-21 2004-12-09 Fujikura Ltd 活線絶縁劣化診断方法及びその装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102478614A (zh) * 2010-11-30 2012-05-30 西门子公司 电流互感器断线检测方法、装置及继电保护设备
JP2018082548A (ja) * 2016-11-16 2018-05-24 三菱電機株式会社 リモート監視システム
JP2021060296A (ja) * 2019-10-08 2021-04-15 新日本無線株式会社 半導体装置の良否判定方法
JP7372104B2 (ja) 2019-10-08 2023-10-31 日清紡マイクロデバイス株式会社 半導体装置の良否判定方法

Also Published As

Publication number Publication date
US20120039045A1 (en) 2012-02-16
JPWO2010122889A1 (ja) 2012-10-25

Similar Documents

Publication Publication Date Title
WO2010122889A1 (ja) パワーモジュールの絶縁劣化検知装置および方法、ならびにパワーモジュールシステム
US7884625B2 (en) Capacitance structures for defeating microchip tampering
US8325452B2 (en) Semiconductor device
US20090207016A1 (en) Apparatus and method for secure sensing
CN104344918A (zh) 检测机械应力并监视系统的电路、方法和计算机程序
US20120081109A1 (en) Hall sensor arrangement for the redundant measurement of a magnetic field
CN110612600B (zh) 半导体装置
US20140109693A1 (en) Pressure sensing device and manufacturing method of the same
CN101789593A (zh) 带检测功能的浪涌防护器件
Kurukuru et al. Condition monitoring of IGBT modules using online TSEPs and data‐driven approach
JP5696628B2 (ja) 高圧モジュール
US20140118873A1 (en) Power module and apparatus for preventing malfunction, and method of controlling thereof
JP2012142351A (ja) パワー半導体モジュール
US8643982B2 (en) Discrete input signal generation via output short-circuit detection
JPH1093297A (ja) 半導体装置
US20070144903A1 (en) Packaging structure of gas detector and method for making the same
CN110741266A (zh) 用于功率开关电子装置的故障检测和保护的方法和装置
WO2011152151A1 (ja) 素子寿命予測方法及び素子寿命予測機能を備えた回路基板
CN212276933U (zh) 一种具有温度保护的瓷壳电阻器
CN112505146A (zh) 一种基于超声波反射的igbt模块焊线断裂检测方法
JP2009036656A (ja) パワーモジュールの故障検出装置
CN103207213A (zh) 结露监测装置
EP2555006B1 (en) Semiconductor device
US7349189B2 (en) Electrical surge protection using in-package gas discharge system
JP2005308503A (ja) 半導体センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766948

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011510277

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13265446

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766948

Country of ref document: EP

Kind code of ref document: A1